
LIMITS OF SINGULARLY PERTURBED CONTROL PROBLEMS
WITH STATISTICAL DYNAMICS OF FAST MOTIONS∗

ALEXANDER VIGODNER†

SIAM J. CONTROL OPTIM. c© 1997 Society for Industrial and Applied Mathematics
Vol. 35, No. 1, pp. 1–28, January 1997 001

Abstract. We describe the limit behavior of admissible trajectories in a singularly perturbed
control system as the small parameter tends to zero. A general case is considered where, in the limit,
the fast motion may infinitely rapidly oscillate in time. Invariant measures of the parameterized fast
flow are employed to describe the limit behavior and construct the limit control problem. The notion
of relatively slow controls is introduced. Approximating properties of the limit problem within the
families of relatively slow controls are verified. The results are illustrated by examples.
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1. Introduction. In this paper we consider a singularly perturbed control sys-
tem which consists of two differential equations,

(1.1)
ẋ = f(u, x, y),
εẏ = g(u, x, y),

together with initial conditions

(1.2) x(0) = x0, y(0) = y0.

Here x ∈ Rm, y ∈ Rn, and ε is a positive small parameter. A dot denotes
a derivative with respect to time t. The controls u(t) are functions satisfying the
inclusion u(t) ∈ U , where U is a prescribed compact metric space. As is customary,
we refer to the first equation in (1.1) as generating the slow x-trajectory, while the
second one generates the fast y-trajectory. This terminology may be justified by
orders of magnitude of the derivatives ẋ, ẏ which are |f | and |g|/ε, respectively.

The control problem associated with these equations consists of minimizing the
integral Jε(u) given by

(1.3) Jε(u) =
∫ 1

0
Q(u(t), xε(t), yε(t))dt,

where (xε(t), yε(t)) is the assumed unique solution of (1.1)–(1.2) for t ∈ [0, 1], induced
by u(·).

The problems that we are interested in are as follows:
— to study the limit behavior of the trajectories of this control system and the

cost as ε tends to zero,
— to construct a limit system which could in some sense approximate the behavior

of the original ε-system for ε small.
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Such problems were examined by many authors. See for instance the works of
Bensoussan [Be1, Be2]; O’Malley [O’M]; Kokotovic [Ko1]; Kokotovic, O’Malley, and
Sannuti [KOS]; Bensoussan and Blankenship [BB]; and Donchev and Veliov [DV1,
DV2]. These papers consider the case where it is possible to identify a limit system
for ε→ 0 in the form of a reduced system which is obtained by setting ε = 0 in (1.1),
namely,

(1.4)
ẋ = f(u, x, y), x(0) = x0;
0 = g(u, x, y).

This reduced order scheme was suggested by Tichonov [Ti] for uncontrolled singularly
perturbed differential equations and has been developed, among many others, by
Vasil’eva [Va], Vasil’eva and Butuzov [VB], O’Malley [O’M2], and Campbell [Ca].

Under appropriate conditions the algebraic equation can be inverted with respect
to y, resulting in a manifold y = q(u, x). This manifold is then inserted into the
dynamic part of (1.4) as follows:

(1.5)
ẋ = f(u, x, q(u, x)), x(0) = x0;
y = q(u, x).

The limit control problem is then to minimize the cost

J0(u) =
∫ 1

0
Q(u(t), x0(t), y0(t)) dt,

where (x0(t), y0(t)) is the trajectory of (1.5) induced by the control u(t). Under
appropriate conditions xε(t)→ x0(t) uniformly for t ∈ [0, 1], yε(t)→ y0(t) uniformly
for t ∈ [δ, 1], where δ > 0 is arbitrary, and Jε(u)→ J0(u). Moreover under additional
conditions the value of the original problem converges to the value of the reduced
problem. Namely infu Jε(u) → infu J0(u). A main condition for this scheme to be
valid is that the point q(u, x) (u, x are fixed) be a (locally) asymptotically stable
equilibrium point for the (u, x)-parameterized time-invariant differential equation

(1.6)
dy

dτ
= g(u, x, y).

The problem of Mayer’s type, that is, Jε(u) = Q(yε(1)), was considered in [DV1].
Some related recent results are given in the works of Kabanov and Pergamenshchikov
[KaP] and Tuan [Tu]. In the latter works the well-posedness of Mayer’s problems is
considered. The well-posedness is connected with the convergence as ε → 0 of the
reachable set of the original system to the reachable set of the limit problem. One
can easily extend the results of this paper for Mayer’s problems too.

In many works (see, e.g., Gaitsgory [G1, G2, G3]) it was noted that the reduced
model approximates the original problem (1.1)–(1.3) only if the optimal control uε(t)
does not change rapidly as ε → 0. If, for instance, in the optimal regime the control
u and the fast variable y oscillate rapidly and the oscillation rate grows to infinity
as ε tends to zero, then the reduced model cannot describe the limit behavior of
the optimal trajectories of the original system. To define the limit control system in
this case, Gaitsgory [G1, G2, G3] suggests another approach which is an extension of
the averaging method described for uncontrolled motions in Volosov [Vo]. The limit
problem in [G1, G2, G3] has the following form of a differential inclusion for the slow
variable x:

(1.7) ẋ ∈ V (x),
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where V (x) is a convex compact set-valued function, constructed by the special scheme
of averaging of the function f(u, x, y) over solutions of (1.6) on the infinite time inter-
val. For a more recent result concerning topological dynamics and other properties of
the differential inclusion in (1.7) see Grammel [Gr].

In this paper we consider a more general case where, even for constant in time
controls u ∈ U , the reduced order system (1.4) may not be an appropriate nominal
limit for (1.1)–(1.3) as ε→ 0. More specifically, the solutions of (1.6) for x, u fixed may
not converge to an equilibrium. We establish conditions on the asymptotic topological
dynamics of these trajectories and build a limit control system for (1.1)–(1.2). We
develop here an approach suggested in [AV] for uncontrolled singularly perturbed
dynamical systems.

We use invariant measures of (1.6) for x, u fixed instead of considering a root
y = q(u, x) of 0 = g(u, x, y). If there is a (locally) unique invariant measure of (1.6)
(depending on parameters u, x), say ν(u, x), we suggest the following limit control
system instead of (1.4):

(1.8)
ẋ =

∫
Rm

f(u, x, y) ν(u, x)(dy), x(0) = x0;

µ(t) = ν(u(t), x(t)).

The limit control problem is then to minimize over u the integral

(1.9) J0(u) =
∫ 1

0
Q(u(t), x0(t), y)µ0(t)(dy),

where (x0(t), µ0(t)) is the trajectory of (1.8) generated by a control u(t). µ0(t) =
ν(u(t), x0(t)) is a function which takes values in the space of probability measures on
Rn. The limit control problem (1.8)–(1.9) is similar to the chattering control problem
as developed in [A1, A2, A3, A4]. The only complication is that in our model the
measure-valued function µ0(t) is a function of x(t) and u(t) rather than a parametric
function. We then verify that this limit control problem approximates the original
(1.1)–(1.3) problem on the special families of relatively slow controls. By relatively
slow control we mean a function uε(t) which may be “fast” in time t as ε tends to zero,
but in time τ = ε−1t the control ũε(τ) = uε(ετ) is “slow.” The families of relatively
slow controls are deeply connected with the so-called ergodic families of controls with
respect to the fast system (1.6) defined in [G1]. Note also that the average technique
suggested in [G1, G2, G3] is applicable in our case too. However, our approach has two
advantages. First, in the average technique, attention is paid only to the asymptotic
behavior of the slow variable xε(t). Asymptotic behavior of the fast variable yε(t) is
studied only in the reduced order case. Our approach employs the theory of measure-
valued functions and determines completely the statistical asymptotic behavior of the
fast variable yε(t) in the general case. And second, we have in the limit, an explicit
form of the control problem rather than the form of the differential inclusion (1.7).

The paper is organized as follows. Section 2 is devoted to the properties of in-
variant measures of dynamical system (flows) and their invariant measures depending
on parameters. The results of this section are not new but presented in a convenient
form. In section 3 we give a formal description of the singularly perturbed control
problem and the technical conditions. We construct the limit control problem (1.8)–
(1.9) and verify when this problem is well posed. In section 4 we employ relaxed
controls and construct the limit relaxed control problem which guarantees existence
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of the optimal solutions. We use the standard technique originally introduced by
Warga [Wa]. In section 5 we define the notion of relatively slow controls and give
two preliminary estimates on convergence for the trajectories of the original system.
The main result is presented in section 6. It consists of four convergence theorems.
The first three theorems state the same convergence result of the trajectories and
the cost of the original system when, respectively, continuous, piecewise continuous,
and measurable controls are applied. The difference between these theorems is only
in appropriate assumptions. The fourth theorem determines the convergence result
for the value of the original control problem to the value of the limit problem on the
families of relatively slow controls. The proof of Theorems I–III is given in section 7.
In the closing section we comment on the results obtained.

2. Dynamical systems, invariant measures, and convergence of mo-
tions. In this section we recall some properties of dynamical systems and invariant
measures which depend on parameters. We establish the properties of asymptotic
convergence of motions to invariant measure and prescribed sets. Consult with Ne-
mytskii and Stepanov [NS] and Sell [Se] as a general reference and with Billingsley
[Bi] as our reference on probability measures.

Consider a dynamical system (semiflow) φ(τ, y) which is a continuous mapping

φ(τ, y) : R+ × Rn → Rn; φ(0, y) = y; φ(τ1, φ(τ2, y)) = φ(τ1 + τ2, y) ∀τ1,2 ∈ R+.

In what follows we shall often use the term flow instead of semiflow if no difference
between properties of flows and semiflows appears.

The ω-limit set Ω(y) of a point y consists of all the points z = limφ(τk, y) for
some sequence τk → +∞. A set A is positively invariant with respect to φ if y ∈ A
implies φ(τ, y) ∈ A for τ ≥ 0.

We shall need also in the sequel the notion of a prolongation of a set; see, e.g.,
Bhatia and Szegö [BS]. Let K be a subset of Rn. The prolongation of K with respect
to φ consists of all limit points z = limφ(τi, yi) with r(yi,K) → 0 as i → ∞ and
τi ≥ 0 for all i. Here r is a distance on Rn.

Let Γ be a complete separable metric space, endowed with its Borel structure.
We need some properties of measures defined on Γ. (We let Γ be an abstract space
rather than, say Rn, since in this paper we shall use measures on different spaces.)

Let Σ be a Borel σ-algebra on Γ. We denote the space of Borel probability
measures on (Γ,Σ) by P(Γ). The space P(Γ) is endowed with the weak convergence
of measures defined as follows. The sequence µk converges to µ if for every continuous
bounded function h(y) : Γ→ R

(2.1)
∫
�
h(y)µk(dy)→

∫
Γ
h(y)µ(dy).

P(Γ) is metrizable. For definiteness we choose the Prohorov metric ρ defined as follows
(see [Bi, p. 238]):

(2.2) ρ(µ1, µ2) = inf{η : µ1(A) ≤ µ2(Aη) + η, µ2(A) ≤ µ1(Aη) + η ∀A ∈ Σ},

where Aη denotes the η-neighborhood of A in Γ.
A measure ν in P(Rn) is said to be an invariant measure with respect to φ if for

every τ ∈ R+ and for every bounded and continuous function h(·)

(2.3)
∫
Rn
h(φ(τ, y)) ν(dy) =

∫
Rn
h(y) ν(dy).

(2.3) is thus equivalent to the relation ν(A) = ν(φ(−τ, A)) for any Borel A in Γ.
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In what follows we shall denote the Lebesgue measure on R by λ.
DEFINITION 2.1. Let w(τ) : R+ → Rn be continuous, and let ν be a probability

measure on Rn. We say that w(·) converges asymptotically in distribution to ν if the
probability measures µs, given by

µs(A) =
1
s
λ({τ : τ ∈ [0, s], w(τ) ∈ A}), A ∈ Σ,

converge weakly to ν as s→∞.

Parameterized flows. Consider now the following differential equation depend-
ing on the parameter p ∈ P where P is a metric space:

(2.4)
dy

dτ
= g(p, y)

with y ∈ Rn. We assume that g(·, ·) is continuous on P ×Rn and that with any initial
condition y(0) = y the equation has a unique solution φ(τ, p, y) for τ ∈ R+ such that
φ(0, p, y) = y. Thus the mapping φ is continuous on R+ × P ×Rn, and for p fixed, φ
is a continuous semiflow. For φ(·, p, ·) we shall often use the notations φp or φp(τ, y).

We state now an assumption under which we work throughout.
Assumption 2.2. For each p let G(p) be an open subset of Rn and such that
(i) G(p) is positively invariant with respect to φp;
(ii) for open P ′ ⊂ P , the set {(p, y) : p ∈ P ′, y ∈ G(p)} is an open subset of

P × Rn;
(iii) a compact K(p) ⊂ G(p) exists such that the ω-limit set of φp(τ, y) for p fixed,

is in K(p) for all y ∈ G(p), and for compact P ′ ⊂ P the set {(p, y) : p ∈ P ′, y ∈ K(p)}
is compact in P ×Rn.

Let L(p) be the prolongation of the set K(p) with respect to φp for p fixed. It is
clear that L(p) ⊃ K(p).

PROPOSITION 2.3. Under Assumption 2.2 the set-valued function L(p) has com-
pact values included in G(p) and L(·) is upper semicontinuous.

Proof. See [AV, Proposition 8.2].
Note that by the Krilov–Bogolubov theorem (see, e.g., [NS, p. 493] the parame-

terized flow φ(τ, p, y) for each p has at least one invariant measure supported in G(p)
if G(p) is bounded. In our case G(p) may not be bounded (actually G(p) can coincide
with Rn). Nevertheless the existence of the compact subset K(p) with properties (iii)
of the latter assumption implies (see [AV, Proposition 3.2]) that the set of all φp-
invariant measures in G(p) is not empty, compact, and convex. Moreover, all these
measures are supported on K(p).

PROPOSITION 2.4. Suppose that Assumption 2.2 is fulfilled. Then for (p, y) ∈
graphG

(i) the average integral

1
s

∫ s

0
d((p, φ(τ, p, y)), graphK) dτ

tends to zero as s→∞. (Here d is a distance on P × Rn.)
(ii) the pair (p, φ(τ, p, y)) converges to graphL as τ →∞. Namely, d((p, φ(τ, p, y)),

graphL)→ 0 as τ →∞.
(iii) the convergences in (i) and (ii) are uniform on compact subsets of pairs (p, y)

in graphG.
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If additionally ν(p) for each p is the unique invariant measure of (2.4) supported
on G(p), then

(iv) ν(p) is supported on K(p) and continuous on P (in topology on P(Rn)).
(v) the parameterized flow φ(τ, p, y) converges asymptotically in distribution to

ν(p) uniformly on compact subsets of pairs (p, y) in graphG.
Proof. (i) follows from [AV, Lemma 3.1 and Proposition 3.2] and properties of the

weak convergence of measures. (ii) follows from (i) and the definition of a prolongation
of a set. Uniformity of these convergences follows from [AV, Proposition 3.5]. (iv)
and (v) follow also from [AV, Proposition 3.7]. The full proof of the results can be
found in [Vi, Proposition 2.4.9].

Remark 2.5. The openness of graphG is essential for further considerations.
However it can be easily proved that all latter results hold true if the graph {(p, y) :
p ∈ P ′, y ∈ G(p)} is closed for closed P ′. Then, in particular, G(p) can be compact
and K(p) may coincide with G(p). For the details see [Vi, Chapter II].

It may seem that the stronger continuity property (for instance the Lipschitz
continuity) of function g with respect to p implies the Lipschitz continuity of the
invariant measure ν(p) in the sense of the Prohorov metric (2.2). But in general this
is not true. As an example consider the one-dimensional system ẏ = y(p − r(y)),
p ∈ [1/2, 2]; r(y) = sin(y) if y ≤ π/2 and r(y) = (y − π/2)2 + 1 if y > π/2. This
system is C1 in p, y. For any p there exists then the equilibrium point y(p) = arcsin(p)
if p ≤ 1 and y(p) =

√
(p− 1) + π/2 if p > 1 which is locally asymptotically stable.

The set is G(p) = (0, π) and K(p) = {y(p)}. The invariant measure is concentrated
on the point y(p). It is clear that for p∗ = 1 we have ρ(ν(p∗), ν(p))/|p− p∗| → ∞ as
p→ 1. Then ν(p) is not Lipschitz continuous in p on the interval [1/2, 2].

The next result is concerned with time-varying perturbation of the variable p.
PROPOSITION 2.6. Suppose that Assumption 2.2 is fulfilled. Let E be a compact

subset of graphG. Then for any η > 0, there exist an s0 > 0 and a θ > 0 such that
whenever |p(τ)− p0| < θ for τ ∈ [0, 2s0] and w(τ) is a solution of ẏ = g(p(τ), y), with
(p0, w(0)) ∈ E, then for s ∈ [s0, 2s0] the following inequalities hold:

1
s
λ({τ : τ ∈ [0, s], d((p(τ), w(τ)), graphK) > η}) < η,

d((p(s), w(s)), graphL) < η.

Proof. It follows from Proposition 2.4 and the continuous dependence results in
ordinary differential equations.

The next proposition states a correspondence of the Prohorov metric between two
measures and the difference between the corresponding integrals. This is a general
property of the Prohorov metric without any connection to dynamical systems and
invariant measures.

PROPOSITION 2.7. Let h : Γ → R be a bounded uniformly continuous function;
namely, there exist constants a, b and a nondecreasing function ω(s) → 0 as s → 0
such that

a ≤ h(x) ≤ b; |h(x)− h(y)| ≤ ω(|x− y|) ∀x, y ∈ Γ.

Assume that µ1, µ2 ∈ P(Γ). Let δ = ρ(µ1, µ2).
Then

(2.5)
∣∣∣∣∫

Γ
h(s)µ2(ds)−

∫
Γ
h(s)µ1(ds)

∣∣∣∣ ≤ ω(δ) + (b− a)δ.



LIMITS OF SINGULARLY PERTURBED CONTROL PROBLEMS 7

Proof. We can write the following representation of the integrals for i = 1, 2:

(2.6)

∫
Γ
h(s)µi(ds) =

∫
{x:h(x)≥a}

h(s)µi(ds)

= a+
∫ ∞
a

µi{x : h(x) ≥ s}ds = a+
∫ b

a

µi{x : h(x) ≥ s}ds

(see [Bi, p. 222]). We denote the set As = {x : h(x) ≥ s}. Take the sequence
δk > δ, δk → δ. From the continuous property of h it follows that Aδks ⊂ A′s where
A′s = {x : h(x) > s − w(δk)}. Then µi(A′s) ≥ µi(Aδks ). Therefore from (2.6) we can
make the following estimate:

(2.7)

∫
Γ
h(s)µ2(ds) −

∫
Γ
h(s)µ1(ds) =

∫ b

a

µ2(As)− µ1(As)ds

=
∫ b

a

µ2(As) −µ1(A′s)ds+
∫ a

a−ω(δk)
µ1(As)ds−

∫ b

b−ω(δk)
µ1(As)ds

≤
∫ b

a

µ2(As) −µ1(Aδks )ds+ ω(δk) ≤ ω(δk) + (b− a)δk.

Passing to the limit as k → ∞ and according to the symmetry in (2.7), we obtain
estimate (2.5). This completes the proof.

In what follows we shall denote the metric on the abstract metric space, say Γ,
by dΓ.

3. The setting. In this section we give a formal description of the singularly
perturbed control problem (we refer to this problem as the ε-problem) and introduce
the conditions under which we work.

The control problem (1.1–1.3) is identified by the following data functions:

f(u, x, y) : U × Rm × Rn → Rm,

g(u, x, y) : U × Rm × Rn → Rn,

Q(u, x, y) : U × Rm × Rn → R.

The trajectories xε(t), yε(t) of the system (1.1)–(1.2) generated by some admissible
control function u(t) induce the cost Jε(u) given by (1.3). We define the value of the
ε-problem as follows:

valε(U) = inf
u(·)∈U

Jε(u).

Here U is the family of admissible control functions u(·):

u(t) : [0, 1]→ U.

In this paper we consider three classes of admissible controls:
(1) Uc is a family of all continuous functions.
(2) Up is a family of all piecewise continuous functions. By piecewise continuous

functions we mean the functions which are continuous on [0, 1] except possibly at a
finite number of points and these points are discontinuities of the first type.

(3) Um is a family of all measurable functions.
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Let us introduce now the technical conditions assumed throughout the paper. We
construct these conditions in order to study just a phenomenon of singular perturba-
tions and to avoid other pathologies.

Remark. In the various estimates we shall often use the value of the function
u(t + z) where t ∈ [0, 1] and z is some number. Since t + z may not be included in
[0, 1] we shall suppose that u(t) is extended for t ∈ R such that u(t) = u(0) for t < 0
and u(t) = u(1) for t > 1. No confusion should arise.

Assumption 3.1 (continuity of the data).
(i) The functions f, g,Q are continuous on U × Rm × Rn.
(ii) For any (u, x, y0) fixed, the system ẏ = g(u, x, y), y(0) = y0 has a unique

solution φ(τ, u, x, y0) defined for all τ ≥ 0.
Note that the pair (u, x) ∈ U ×Rm can be denoted as the parameter p ∈ P from

the previous section. Here P = U × Rm. With this notation the parameterized flow
φ(τ, p, y) (or φ(τ, u, x, y)) is a solution of (1.6). The following assumption copies the
assumptions under which the results of section 2 were obtained.

Assumption 3.2. For any p = (u, x) there exist sets G(u, x) and K(u, x) such that
the corresponding set-valued maps G(p) and K(p) satisfy Assumption 2.2.

The following growth condition is there to ensure that for ε small, the trajectories
xε(t) stay bounded over [0, 1].

Assumption 3.3 (growth condition). For some c > 0 the function f(u, x, y) satisfies

sup
y∈G(u,x)

|f(u, x, y)| ≤ c(1 + |x|) ∀u ∈ U.

Assumption 3.4 (unique ergodicity). For each (u, x), the (u, x)-parameterized flow
φ(τ, u, x, y) has a unique invariant measure in G(u, x); we denote this by ν(u, x).

Note that by Proposition 2.4 the mapping ν(u, x) : U×Rm → P(Rn) is continuous
on U × Rm.

Assumption 3.5 (Lipschitz continuity).
(i) The function ν(·, ·) is Lipschitz continuous in x on every compact subset of Rm

in the sense of the Prohorov metric and uniformly with respect to u ∈ U . Namely,
for any compact D from Rm there exists a number L > 0 such that for any u ∈ U
and x1, x2 ∈ D

ρ(ν(u, x1), ν(u, x2)) ≤ L|x1 − x2|.

(ii) On each compact subset of Rm×Rn the function f is Lipschitz continuous in
x, y uniformly with respect to u ∈ U .

The limit control problem. Under Assumptions 3.1–3.4 we can formally build
the limit control problem for ε = 0 in the following form:

(3.1)

minimize
u(·)∈U

∫ 1

0

∫
Rn
Q(u(t), x(t), y)µ(t)(dy) dt

subject to ẋ =
∫
Rn
f(u(t), x, y)µ(t)(dy), x(0) = x0,

µ(t) = ν(u(t), x(t)).

Here µ(t) ∈ P(Rn) for each t.
We do not specify here the family of admissible controls U . For u(·) ∈ U fixed we

denote by (x0(t), µ0(t)) (µ0(t) = ν(u(t), x0(t))) an admissible trajectory of (3.1).



LIMITS OF SINGULARLY PERTURBED CONTROL PROBLEMS 9

We define also the value of the limit problem

val0(U) = inf
u(·)∈U

J0(u).

In the next sections we shall show that this limit problem actually approximates
in some sense the ε-problem (1.1)–(1.3). But in order to verify the approximating
properties of the limit problem we need that the equations in (3.1) be uniquely solvable
for t ∈ [0, 1] with respect to x(t), µ(t) for any given control u(·) ∈ U . To do that it is
enough to assume that for the right-hand side of the differential equation

(3.2) ẋ =
∫
Rn
f(u, x, y) ν(u, x)(dy)

is Lipschitz continuous in x on any compact subset of Rm uniformly with respect to
u ∈ U . Assumptions 3.3–3.5 imply this property.

LEMMA 3.6. Under Assumptions 3.3–3.5 the right-hand side of (3.2) is Lipschitz
continuous in x on any compact subset of Rm uniformly with respect to u ∈ U .

Proof. It follows directly from Proposition 2.7 and that by Assumption 3.2 for
any compact D from Rm all measures {ν(u, x) : u ∈ U, x ∈ D} are supported in the
compact set {y : u ∈ U, x ∈ D, y ∈ K(u, x)}.

Therefore by Lemma 3.6 and under all assumptions in this section the system in
(3.1) is uniquely solvable on the interval t ∈ [0, 1] for any given u(·) ∈ U .

Comments on the assumptions. Assumption 3.1 is standard. Without this
assumption we could get various deviations which are not connected with singular
perturbations.

Assumption 3.2 is crucial. Openness of the set G(u, x) is essential for the proof
that the triple (uε(t), xε(t), yε(t)) is defined for all t ∈ [0, 1], and it is included in
graphG for ε small enough. On the other hand, without any additional requirements
we can define (1.1) on the metric space X×Y where X is homeomorphic to Rm and Y
is a closed subset of Rn. Then the triple (uε(t), xε(t), yε(t)) is automatically included
in the set U×X×Y . Hence G can be taken as Y and by Remark 2.5 the main results
of this paper can be extended to the case where G is not open.

Assumption 3.3 implies that if the fast trajectory yε(t) induced by a control uε(t)
exists uniquely on the time interval [0, 1] and yε(t) ∈ G(uε(t), xε(t)) (we shall prove
this), then the slow trajectory xε(t) is also defined for t ∈ [0, 1]. This assumption
can be omitted if it is known a priori that xε(t) can be defined for all t ∈ [0, 1]. We
could assume that the function g satisfies the same growth condition too. But then
we would rule out interesting examples.

Assumption 3.5 is needed only to prove the uniqueness of the solutions of (3.2).
Thus instead of these assumptions we could assume the uniqueness directly. The
similar condition is introduced in the steady state approach (Assumption (E) in Wa-
sow [Was, p. 253]), but certainly in the steady state approach this condition can be
checked easier.

Assumption 3.4 is crucial. Without this assumption the limit differential equation
in (3.2) makes no sense, since the measure ν(u, x) is not uniquely defined. Instead, in
this equation a limit differential inclusion must be defined; see [AV, Theorem I]. On
the other hand, the local (in G) uniqueness of the invariant measure is equivalent to
that for all continuous f of the following convergence:

1
S

∫ S

0
f(u, x, φ(τ, u, x, y)) dτ →

∫
Rn
f(u, x, y) ν(u, x)(dy)
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holds for S →∞ uniformly with respect to y, x, u (Proposition 2.4 (v)). This property
reflects the deep connection between our technique and the averaging approach; see
[Vo] and [G1, G2, G3]. In some sense the unique ergodicity is the weakest possible
condition which guarantees applicability of the averaging technique for an arbitrary
f . The simplest cases of the unique (local) ergodicity are where ẏ = g(u, x, y) has an
asymptotic stable equilibrium q(u, x) or it has a stable limit cycle. In the first case
ν(u, x) is the Dirac measure concentrated at the point q(u, x) and in the second case
ν(u, x) is distributed on the corresponding periodic curve. In a more general case the
verification of the unique ergodicity is more difficult.

Measure-valued functions. Note that the trajectory µ0(t) = ν(u(t), x0(t)) of
(3.1) is a measure-valued function. We want to display how this function approximates
the fast trajectory yε(t) of the ε-system. But yε(t) and µ0(t) take values in different
spaces. Thus we need to define the type of convergence.

Let us describe briefly the properties of measure-valued functions. We use here
the description of chattering parametric functions given in [A3]. By measure-valued
functions we mean the family M of measurable mapping

µ(t) : [0, 1]→ P(Γ).

Here Γ is a separable complete metric space. A measure-valued function is assumed
measurable if for every measurable A ⊂ Γ the real-valued map µ(t)(A) : [0, 1]→ [0, 1]
is measurable (see [A3, section 3]). Here µ(t)(A) is the weight the measure assigns
to A. Any measurable function r(t) with values in Γ can be presented as an element
of M which for each t ∈ [0, 1] is the measure concentrated on the point {r(t)}. We
denote this measure-valued function by δr(t). Each measure-valued function µ(·) can
be identified with the measure µ on the product [0, 1]×Γ which is the direct integral

(3.3) µ = (D)
∫ 1

0
µ(t) dt

defined as follows. On a Borel set E ⊂ [0, 1]× Γ it is given by

µ(E) =
∫ 1

0
µ(t)(Et) dt,

where Et = {y : (t, y) ∈ E} is a t-section of the set E.
Convergence on M is taken to be the weak convergence defined in (2.1)–(2.2) of

the corresponding probability measures on [0, 1]× Γ. (See also [A3, section 4].)
Note that since Γ, hence [0, 1]×Γ, is complete and separable, it follows (see, e.g.,

Artstein [A3]) that M itself is a complete metric space. If Γ is compact, then M is
also compact.

The distance on M between µ1(·) and µ2(·) is denoted by ρ(µ1, µ2) and equal
to the Prohorov distance between the corresponding measures µ1 and µ2, namely
ρ(µ1, µ2) = ρ(µ1,µ2). No confusion should arise with the distance ρ on M between
two functions µ1(·) and µ2(·) and the distance on P(M) between two measures µ1(t)
and µ2(t) for the t fixed.

Remark 3.7. For the sake of convenience we consider the problem on the unit
interval of time t ∈ [0, 1]. Hence all measures µ defined by (3.3) are probability
measures namely µ([0, 1] × Γ) = 1. If we take an interval [0, T ] instead of [0, 1] then
µ([0, T ] × Γ) = T and T is common for all µ. Therefore the weak convergence of
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measures on Γ̃ = [0, T ] × Γ is also defined by (2.1). The distance ρT (µ1,µ2) can be
taken as Tρ(µ1/T,µ2/T ). Thus all further results hold true for the general finite time
interval case.

DEFINITION 3.8. Let µ(t) be an element of M. Let yk(t) be a sequence of mea-
surable functions defined on [0,1] with values in Γ. We say that yk(·) statistically
converges to µ(·) if the corresponding measure-valued functions δyk(·) converge to µ(·)
on M.

4. Relaxed controls. Optimal solutions of the limit control problem.
We want the limit problem (3.1) to be an approximation of the ε-problem in some
sense. In particular we need the optimal trajectories of the limit problem to be ε-close
to some admissible trajectories of the ε-system. But it is well known that the solution
of the optimal control problem may fail to exist; see Warga [Wa]. In this section
we recall the notion of relaxed controls to provide (generalized) solutions to the limit
optimal control problem (3.1). We apply the standard technique originally introduced
by Warga [Wa] and developed by Artstein [A1, A2, A3, A4].

Following the ideas of Warga we introduce the relaxed controls as follows. We
allow the control function to assign to each t a probability measure on U . Namely,
the relaxed control v(·) is a measure-valued function:

(4.1) v(t) : [0, 1]→ P(U).

Denote the family of all measurable relaxed controls (4.1) by V. Convergence on V is
taken to be the convergence of measure-valued functions.

Relaxed limit control problem. A relaxed control v(·) affects (3.1) by inte-
gration with respect to the measure v(t), for each t, the effects of the points u ∈ U .
To employ another integral notation in (3.1) could complicate the formulas. Thus
we use here the standard notation. If h(u) is a function of the variable u on U and
if v is a measure on U , then h̄(v)) is a function of v on P(U), which is the average∫
U
h(u)v(du). Define now the new data functions Q and f :

(4.2)
Q(u, x) =

∫
Rn
Q(u, x, y) ν(u, x)(dy),

f (u, x) =
∫
Rn
f(u, x, y) ν(u, x)(dy).

With this notation, the limit optimal control problem (3.1) with the availability
of relaxed controls has the following form:

(4.3)

minimize
v(·)∈V

∫ 1

0
Q̄(v(t), x(t)) dt

subject to ẋ = f̄ (v(t), x); x(0) = x0,

µ(t) = ν̄(v(t), x(t)).

Here µ(t) ∈ P(Rn) and by ν̄(v, x) we understand the following integration for every
measurable set A ⊂ Rn:

ν̄(v, x)(A) =
∫
U

ν(u, x)(A) v(du);
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namely, µ(t) for each t is an average of the measures ν(u, x(t)) on U with the measure
v(t) on U .

We shall denote the cost of the relaxed problem by J̄0(v), namely,

J̄0(v) =
∫ 1

0
Q̄(v(t), x0(t)) dt.

It is clear that if v(t) for each t is a Dirac measure concentrated on the point u(t),
then J̄0(v) = J0(u).

The limit optimal control problem (3.1) with ordinary controls can be rewritten
as follows:

(4.4)

minimize
u(·)∈U

∫ 1

0
Q(u(t), x(t)) dt

subject to ẋ = f (u(t), x); x(0) = x0,

µ(t) = ν(u(t), x(t)).

Approximation of relaxed controls.
PROPOSITION 4.1. V is compact. The family of ordinary measurable controls Um

is dense in V.
Proof. The space of measures supported on a common compact set with the weak

convergence of measures is compact. Since the convergence on V is taken to be the
weak convergence of measures on [0, 1]×U , the first claim follows. The approximation
by ordinary controls follows from [A3, Proposition 4.5].

Suppose now that U can be included in a separable Banach space—say, Z. Then
the Lebesgue integral

∫ t
0 u(t) dt is well defined. If U is convex, then any measurable

function u(·) can be approximated by a continuous function uδ(t) ∈ U such that
uδ(t)→ u(t) as δ → 0 for almost every t ∈ [0, 1] and defined as follows:

(4.5) uδ(t) =
1
2δ

∫ t+δ

t−δ
u(s) ds.

COROLLARY 4.2. If U is a convex subset of a separable Banach space, then the
family Uc is dense in V. Moreover, for any u0 ∈ U and v0(·) ∈ V there exists a
sequence uk(·) ∈ Uc statistically converging to v0(·) and such that uk(0) = u0 for any
k.

Proof. The first statement directly follows from Proposition 4.1 and (4.5). Sup-
pose now that ũk(·) statistically converges to v0(·), and take a u0 ∈ U . Construct
a new sequence uk(·) such that uk(0) = u0, uk(t) = ũk(t) for t ≥ 1/k, and affine
otherwise. Then clearly uk(·) statistically converges to v0(·). This completes the
proof.

COROLLARY 4.3. The family of piecewise constant functions u(t) : [0, 1] → U is
dense in V.

Proof. By Proposition 4.1 it is enough to show that piecewise constant functions
are dense in Um in some strong topology, say L1. Since U is compact, we can just show
that for any simple function u0(t) : [0, 1]→ U with a finite number of different values
ui, i = 1, k + 1, there exists a sequence uj of piecewise constant functions converging
in measure to u. The proof is standard. It follows from the property that for any
measurable subset T ⊂ [0, 1] and any δ > 0 there exists a subset E ⊂ [0, 1] which is a
union of a finite number of disjoint intervals of [0, 1] and such that λ(T∆E) < δ; see
Halmos [Ha, p. 56].
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Existence of optimal solutions to (4.3) and their approximation follow from the
general theory of Warga [Wa, Chapter 4]. We formulate these results in the following
lemma.

LEMMA 4.4. Under Assumptions 3.1–3.5 the optimization problem (4.3) has an
optimal relaxed control—say, v(·). There is a sequence of ordinary measurable con-
trols uk(·) ∈ Um which statistically converges to v(·). In particular the cost J0(uk)
converges to the value val0(Um) = val0(V).

5. Relatively slow controls. Preliminary convergence estimates. In this
section we present the results on the limit behavior of the admissible trajectories
(xε(t), yε(t)), with respect to prescribed sets. We establish also a preliminary result
on the statistical convergence of the fast variable yε(t).

The trajectories (xε(t), yε(t)) are induced by special families of relatively slow
controls.

Relatively slow controls. We introduce now the special families of continuous,
piecewise continuous, and measurable controls, depending additionally on the param-
eter ε. We call these families relatively slow controls since the control uε(t) may change
rapidly in time t ∈ [0, 1] as ε → ∞, but for τ = ε−1t the function ũε(τ) = uε(ετ)
converges to constant as ε → 0 while τ is fixed. For instance if uε(t) = cos(t/

√
ε),

then ũε(τ) = cos(
√
ετ)→ 1 as ε→ 0.

Let F > 0 be the diameter of the set U . Define two special positive real-valued
functions M(z) and ∆ε of variables z ∈ [0, 1], ε > 0 such that for some L > 0

(5.1)
Lz ≤M(z) ≤ F,

M(z)→ 0, as z → 0 and ∆ε → 0, ε∆−1
ε → 0, as ε→ 0.

DEFINITION 5.1. Let z ∈ [0,∆ε]. A control function uε(·) is said to be a relatively
slow continuous control with respect to the functions M(·) and ∆ε if for any t ∈ [0, 1]

(5.2) dU (uε(t+ z), uε(t)) ≤M(∆−1
ε z).

A control function uε(·) is said to be a relatively slow piecewise continuous control
if

(i) the minimal length of interval of continuity is not less than ∆ε,
(ii) for t, t+ z from every common interval of continuity, (5.2) is satisfied.
A control function uε(·) is said to be a relatively slow measurable control if∫ 1

0
dU (uε(t+ z), uε(t)) dt ≤M(∆−1

ε z).

We denote by Ucε ,Upε , and Umε , respectively, the families of all relatively slow
continuous, piecewise continuous, and measurable controls with respect to the fixed
functions M(·) and ∆ε.

In what follows we assume that the functions M(z) and ∆ε are given, and there-
fore the families Ucε , Upε , Umε are completely determined.

Remark 5.2. LetM(·) and ∆ε be fixed functions. Note then that if u(·) is piecewise
constant (with a finite number of discontinuities), then for small ε, u(·) ∈ Upε and
u(·) ∈ Umε . If u(·) is continuous and piecewise linear (if U is certainly included in
a vector space), then for sufficiently small ε, u(·) ∈ Ucε . These inclusions obviously
follow from Definition 5.1 and the properties of the latter functions. On the other
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hand, by the standard approximation arguments, any continuous function can be
uniformly approximated by a continuous piecewise linear function. Besides, by the
proof of Corollary 4.3, any measurable function with values in a compact space can
be approximated in L1-metric by a piecewise constant function.

Therefore, for ε→ 0
(i) for an arbitrary measurable function u(·) ∈ Um there exists a function uε(·) ∈

Umε such that

(5.3)
∫ 1

0
dU (u(t), uε(t)) dt→ 0 as ε→ 0,

(ii) for an arbitrary piecewise continuous function u(·) ∈ Up there exists a function
uε(·) ∈ Upε satisfying (5.3),

(iii) for an arbitrary continuous function u(·) ∈ Uc (if U is convex) there exists a
function uε(·) ∈ Ucε satisfying

sup
t∈[0,1]

dU (u(t), uε(t))→ 0 as ε→ 0.

In this sense the families Ucε , Upε , Umε converge as ε→ 0 to the basic families Uc,
Up, Um, respectively.

Preliminary estimates. We now establish two important lemmas which will
be useful in what follows. The first lemma states convergence of the trajectory
(xε(t), yε(t)) to prescribed sets. The second lemma determines statistical convergence
of yε(t) to the corresponding measure-valued function.

Suppose that uε(·) is a relatively slow control, and consider the fast equation from
the system (1.1) separately:

(5.4) εẏ = g(uε(t), xε(t), y).

LEMMA 5.3. Suppose that Assumptions 3.1–3.3 are satisfied. Let D be a compact
subset of graphG.

Then for any η0 > 0 there exists an ε0 > 0 such that if ε < ε0, then for
(uε(0), xε(0), yε(0)) ∈ D and uε(·) ∈ Ucε

(i) the pair (xε(t), yε(t)) can be extended to t ∈ [0, 1], and (uε(t), xε(t), yε(t)) ∈
graphG. Moreover there exists a compact X ⊂ Rm such that xε(t) ∈ X;

(ii) λ{t : t ∈ [0, 1], d((uε(t), xε(t), yε(t)),K ) > η0} < η0;
(iii) d((uε(t), xε(t), yε(t)),L) < η0 for t ∈ [∆ε, 1].
Here K , L are compact subsets of graphG defined as follows:

(5.5)
K = {(u, x, y) : u ∈ U, x ∈ X, y ∈ K(u, x)},

L = {(u, x, y) : u ∈ U, x ∈ X, y ∈ L(u, x)}.

Proof. (i). The result follows directly from [AV, Lemma 4.7]. (ii) and (iii). Denote
p = (u, x) and pε(t) = (uε(t), xε(t)). Take η < η0 such that Lη ⊂ graphG. Such an η
exists by Assumption 3.2 and Proposition 2.3. Denote C = clLη. Choose s0 > 0 and
θ > 0 provided by Proposition 2.6 with E = C ∪D. Take ε0 > 0 such that for ε < ε0
we have εs0 < η, 2εs0 < ∆ε and the following inequality holds for s ∈ [s0, 2s0] and
t ∈ [0, 1− εs]:

M(ε∆−1
ε s) + |xε(t+ εs)− xε(t)| < θ.
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Such an ε0 exists by property (5.1) of the functions M(z), ∆ε. Then since uε(·)
satisfies (5.2) we obtain that for s ∈ [s0, 2s0] and t ∈ [0, 1− εs]:

dP (pε(t+ εs), pε(t)) < θ.

Define a subset of [0, 1]:

Rε = {t : (pε(t), yε(t)) ∈ E}.

Then Proposition 2.6 implies that for t′ ∈ Rε and s ∈ [s0, 2s0]

(5.6)

1
εs
λ({t : t ∈ [t′, t′ + εs], d((pε(t), yε(t)),K ) > η}) < η,

d((pε(t′ + εs), yε(t′ + εs)),L) < η.

Construct a sequence ti+1 = ti + εs0, i = 0, k − 1, t0 = 0, tk+1 = 1 such that
1 − tk < εs0. Then since t0 ∈ Rε we obtain from (5.6) that ti ∈ Rε for i = 1, k − 1.
Then from (5.6) it follows that for i = 0, k,

(5.7)
λ({t : t ∈ [ti, ti+1], d((pε(t), yε(t)),K ) > η}) < η(ti+1 − ti),

d((pε(t), yε(t)),L) < η ∀t ∈ [ti+1, ti+2].

By an extension of (5.7) to the interval [0, 1] and as εs0 < ∆ε we obtain the desired
result. This completes the proof.

LEMMA 5.4. Suppose that Assumptions 3.1–3.5 are fulfilled and the function uε(·)
is a relatively slow measurable control. Furthermore, assume that (xε(t), yε(t)) for
small ε can be extended to t ∈ [0, 1] and there exists a compact set C, C ⊂ graphG,
such that

(5.8) λ{t : (uε(t), xε(t), yε(t)) /∈ C} → 0 as ε→ 0.

Then the distance ρ(δyε , µε) tends to 0 as ε → 0. Here µε(t) = ν(uε(t), xε(t)) is
invariant for the flow φ(τ, uε(t), xε(t), y) for any t fixed.

Proof. Denote pε(t) = (uε(t), xε(t)). Take any bounded uniformly continuous
function h(t, y) : [0, 1]× Rn and an arbitrary η > 0. Define the set

Iε = {t : (pε(t), yε(t)) /∈ C}.

From Propositions 2.4 and 2.7 it follows that there exists an s0 > 0 such that for
t ∈ [0, 1] \ Iε

(5.9)
∣∣∣∣∫
Rn
h(t, y)ν(pε(t))(dy)− 1

s0

∫ s0

0
h(t, φ(τ, pε(t), yε(t))) dτ

∣∣∣∣ < η

4
.

Note that ∫ 1

0
h(t, yε(t)) dt =

∫ 1−ετ

−ετ
h(t+ ετ, yε(t+ ετ)) dτ.

Since h is bounded and uniformly continuous, we can find a positive ε1 > 0 such
that for ε < ε1 and τ ∈ [0, s0]

(5.10)
∣∣∣∣∫ 1

0
h(t, yε(t)) dt−

∫ 1−ε1s

0
h(t, yε(t+ ετ)) dt

∣∣∣∣ < η

4
.
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A change of time scale t to τ = (t−t′)/ε yields that yε(t′+ετ) solves the equation

(5.11)
dy

dτ
= g(pε(t′ + ετ), y), y(0) = yε(t′).

The flow φ(τ, pε(t′), yε(t′)) for t′ fixed solves the following equation:

(5.12)
dy

dτ
= g(pε(t′), y), y(0) = yε(t′).

Denote

n(ε, t′) =
1
s0

∫ s0

0
dP (pε(t′ + ετ), pε(t′)) dτ.

Take θ > 0 such that if n(ε, t′) < θ, then for τ ∈ [0, s0] the solutions of (5.11) and
(5.12) satisfy

(5.13) w(|yε(t′ + ετ)− φ(τ, pε(t′), yε(t′))|) <
η

4
.

Here the function w(s) is the modulus of continuity of the function h(t, y). Such a θ
exists by standard continuous dependence arguments.

Define the set Tε:

Tε = {t′ : n(ε, t′) ≥ θ}.

By property xε(t) and uε(t) (Definition 5.1) λ(Tε) → 0 as ε → 0. This implies that
there exists an ε2 > 0 (and ε2 ≤ ε1) such that for ε < ε2 we get

(5.14)
∫
Iε

h(t, yε(t)) dt+
∫
Tε

h(t, yε(t+ ετ)) dt <
η

4
.

Then from (5.9), (5.10), (5.13), and (5.14) we obtain that for ε < ε2∣∣∣∣∫ 1

0
h(t, yε(t)) dt−

∫ 1

0

(∫
Rn
h(t, y)ν(pε(t))(dy)

)
dt

∣∣∣∣ < η.

This implies that ρ(δyε(t), ν(pε(t)))→ 0, which completes the proof.

6. Approximating properties of the limit problem: The main results.
In this section we present the main approximating properties of the limit control
problem (3.1) and the relaxed limit problem (4.3).

Approximation of relaxed controls by relatively slow controls.
Claim 6.1. Let v0(·) ∈ V be an arbitrary relaxed control. Then
(i) there exists a relatively slow measurable control uε(·) statistically converging

to v0(·) as ε→ 0;
(ii) there exists a relatively slow piecewise continuous control uε(·) statistically

converging to v0(·) as ε→ 0;
(iii) if U is a convex subset of a separable Banach space, there exists a relatively

slow continuous control uε(·) statistically converging to v0(·) as ε → 0. Moreover,
for any u0 ∈ U there exists a relatively slow continuous control uε(·) statistically
converging to v0(·) and such that uε(0) = u0 for any ε.

Proof. The result directly follows from Proposition 4.1, Corollaries 4.2 and 4.3,
and Remark 5.2.
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Convergence result with continuous control. We establish now the first
convergence result. We refer to the original ε-problem, the limit problem, and the
limit relaxed problem. Let v0(·) be an arbitrary admissible relaxed control defined
in (4.1). Let the pair (x0(t), µ0(t)) be the trajectory of (4.3) induced by v0(t). Let
the pair (xε(t), yε(t)) be the trajectory of (1.1)–(1.2) induced by the control uε(t)
and an initial data x0

ε → x0 and y0
ε → y0. Note that if uε(·) is a relatively slow

continuous control, then by Lemma 5.3 this trajectory indeed exists on [0, 1] and the
triple (uε(t), xε(t), yε(t)) is included in graphG if (uε(0), xε(0), yε(0)) is in a compact
set E of graphG for all ε > 0 small enough.

THEOREM I. Under Assumptions 3.1–3.5, suppose that there exists a relatively
slow continuous control uε(·) converging to v0(·), and a compact set E ⊂ graphG
such that (uε(0), xε(0), yε(0)) ∈ E for all ε > 0 small enough. Then

(i) supt∈[0,1] |xε(t)− x0(t)| → 0 as ε→ 0;
(ii) yε(t) statistically converges to the measure-valued function µ0(t), where µ0(t) =

ν̄(v0(t), x0(t));
(iii) Jε(uε)→ J̄0(v0) as ε→ 0.
COROLLARY 6.2. Suppose that v0(t) = δu0(t) where u0(·) ∈ Uc. Then under

Assumptions 3.1–3.5 if y0 ∈ G(u0(0), x0), then the trajectory (xε(t), yε(t)) and the
cost Jε(u) of the ε-system induced by the control u0(t) converge, respectively, to the
trajectory (x0(t), µ0(t)) and the cost J0(u0) of the limit system (3.1). This convergence
is uniform for (x0, y0) in compact sets of the graphG(u0(0), ·).

Proof. It follows immediately from Theorem I.
Remark 6.3. Corollary 6.2 coincides with [AV, Theorem II], where the result has

been proved for uncontrolled systems.
Remark 6.4. For some u0 ∈ U take a compact set H ⊂ graphG(u0, ·). If U is a

convex subset of a separable Banach space, then Claim 6.1 implies that there exists a
relatively slow continuous control uε(·) converging to v0(·) and such that uε(0) = u0.
In this case if (x0, y0) ∈ H, then the ε-system can always approximate any trajectories
and the cost (in particular, the value) of the limit relaxed problem. But if U is not
convex, then, in general, this approximation does not work.

Example 6.5. We provide now an example illustrating the convergence result in
Theorem I. (Compare with [AV, Example 7.4].)

Consider the system with U = [2, 4], x ∈ R, and y = (y1, y2) ∈ R2:

ẋ = 2
y2

1

|y| − 3x,

εẏ1 = y1

(
1− |y|

xu

)
− y2,

εẏ2 = y2

(
1− |y|

xu

)
+ y1,

x(0) = x0, y(0) = y0.

Here by |y| we denote the Euclidean norm of the vector y. Define

Q(u, x, y) = (x− 1)2 + (u− 2)2(u− 4)2 + y1.

Then

Jε(u) =
∫ 1

0
(xε(t)− 1)2 + (u(t)− 2)2(u(t)− 4)2 + y1,ε(t) dt.
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The fast system for u > 0, x > 0 fixed, converges to the limit cycle |y| = ux if
|y(0)| 6= 0. The sets G(u, x) and K(u, x) can be chosen as follows: G(u, x) = {y :
3ux > |y| > 0} and K(u, x) = {(y : |y| = xu}. The prolongation L(u, x) of K(u, x)
coincides with K(u, x). It is easily checked that all conditions of Theorem I are
satisfied. The invariant measure ν(u, x) is equally distributed on the circle |y| = xu,
namely,

ν(u, x)(A) =
1

2π

∫ 2π

0
χA(ux cos θ, ux sin θ) dθ,

where A ⊂ R2 and χA is the indicator function of the set A. Then it is easy to see
that the limit problem has the following form:

(6.1)

minimize
∫ 1

0
(x(t)− 1)2 + (u(t)− 4)2(u(t)− 2)2 dt

subject to ẋ = x(u(t)− 3); x(0) = x0,

µ(t) = ν(u(t), x(t)).

Thus the slow solution xε(t) tends to x0(t) = x0 exp(
∫ t

0 (u(t) − 3) dt), while the fast
solution tends to the measure-valued function ν(u(t), x0(t)). Suppose that x0 = 1. It
is easy to see that the optimization problem (6.1) does not have an optimal solution.
The infimal cost in this problem is zero, but clearly it cannot be achieved with an
ordinary control. But we can construct a sequence of controls uk such that J0(uk)→ 0.
To do this we define the relaxed limit problem in the following form:

minimize
∫ 1

0
(x(t)− 1)2 +

∫
U

(u− 4)2(u− 2)2 v(t)(du)dt

subject to ẋ = x

∫
U

(u− 3) v(t)(du),

µ(t) =
∫
U

ν(u, x(t) v(t)(du).

The optimal relaxed control v0(·) assigns to each t the values 2 and 4 with equal
probability. Then ẋ0(t) = 0 and x0(t) = x0 = 1, and µ(t) = 1/2ν(2, 1) + 1/2ν(4, 1).
The relaxed control can certainly be approximated by the sequence of continuous
controls ũk which can be defined as follows. The interval [0, 1] can be divided on 2k
intervals of length 1/k− 1/k2 and 1/k2 where the small and large intervals alternate.
Then ũk(t) is chosen equal to 2 or 4 on the large alternate intervals and affine on the
small intervals.

We now have to find a relatively slow continuous control uε(t) statistically con-
verging to v0(t) and such that y0 ∈ G(uε(0), 1). Suppose that y0 = (1, 0). Then
(1, 0) ∈ G(u, 1) for u ∈ [2, 4] and we can take any initial values of uε(0). To find uε
we should define the functions M(z) and ∆ε. Take ∆ε =

√
ε and M(z) = z. Define

an integer-valued function k(ε) such that k(ε) < ε−1/4. Then it is easy to verify that
uε(t) = ũk(ε) is a relatively slow continuous control with respect to the given M(z)
and ∆ε.

Suppose now that the set U is not convex and consists only of two points 2 and 4.
Namely, U = {2, 4}. Then we have only two admissible continuous functions u(t) ≡ 2
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or 4 which certainly cannot approximate the relaxed control v0. We should take a
piecewise continuous control to approximate the optimal solution of the limit relaxed
problem.

However, if u(·) is a piecewise continuous function, then the assumptions of The-
orem I are not enough to provide the convergence result even in the case when the
invariant measure is a Dirac measure; namely, the reduced order system (1.4) can be
defined.

Example 6.6. Consider only the fast equation with u(t) ∈ U = [1/2, 1],

εẏ = y
(

1− y

2u

)(
1− y

u

)
; y(0) = y0 > 0.

Then we can define the open set G(u) = (0, 2u) and the corresponding compact
K(u) = {u}. All conditions of Theorem I are satisfied. Suppose now that u(t) is the
piecewise constant function u(t) = 1 if t ∈ [0, 1/2] and u(t) = 1/2 if t ∈ [1/2, 1]. Then
if y0 > 1, at time t = 1/2, set G(u(t)) = G(1) switches to G(1/2) = (0, 1) and the
fast solution yε(1/2) > 1, and therefore yε(t) /∈ G(1/2). Thus yε(t) goes to infinity as
ε→ 0 and the desired convergence does not hold.

Convergence result with piecewise continuous controls.
Assumption 6.7. There exists a set G(u, x) such that for any u ∈ U, u′ ∈ U , and

x, the following inclusion is valid: G(u, x) ⊃ L(u′, x).
Note that in Example 6.6 there is no G(u, x) satisfying Assumption 6.7.
Remark 6.8. Assumption 6.7 is satisfied automatically if G(u, x) can be found not

depending on u.
The following theorem extends Theorem I to the case where uε(·) is a relatively

slow piecewise continuous control. Notice that if Assumption 6.7 is satisfied then
there exists a compact set H such that H ⊂ G(u, ·) for any u ∈ U .

THEOREM II. Suppose that Assumptions 3.1–3.5, Lemma 3.6, Remark 3.7, and
Assumption 6.7 are fulfilled. Let uε(·) be a relatively slow piecewise continuous control
statistically converging to v0(·). Let H be a compact subset of graphG(uε(0), ·) for
any ε and (x0

ε, y
0
ε) ∈ H. Then all statements of Theorem I hold.

COROLLARY 6.9. Suppose that v0(t) = δu0(t), where u0(·) ∈ Up. Then under As-
sumptions 3.1–3.5 and 6.7 and Lemma 3.6 if (x0, y0) ∈ H, the trajectory (xε(t), yε(t))
and the cost Jε(u) of the ε-system induced by the control u0(t) converge, respectively,
to the trajectory (x0(t), µ0(t)) and the cost J0(u0) of the limit system (3.1). This
convergence is uniform for (x0, y0) ∈ H.

Proof. It follows directly from Theorem II.
Remark 6.10. Take a compact set H ⊂ graphG(w, ·) for all w ∈ U . By Assump-

tion 6.7 such an H exists. Therefore if (x0, y0) ∈ H, then the ε-system can always
approximate any trajectories and the cost (in particular the value) of the limit relaxed
problem if the family Upε is applied.

Example 6.11. Consider the system from Example 6.5 and suppose that U =
{2, 4}. Note that the prolongation of the set K(u, x) coincides in this example with
K(u, x), namely L(u, x) = K(u, x) = {y : |y| = xu}. Recall that we take G(u, x) =
{y : 3ux > |y| > 0}. Since 6x > 4x we see that Assumption 6.7 is fulfilled. Then
if we define ∆ε =

√
ε, we can take a relatively slow piecewise continuous control

which is equal to 2 or to 4 on alternative intervals with the same length equal to δ(ε)
converging to zero and such that δ(ε) ≥

√
(ε).

Remark 6.12. We emphasize that piecewise continuous functions considered by
us have only discontinuities of the first type. The next example illustrates the case
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when discontinuity of a control uε(·), even at a single point (say, t = 0), may falsify
the consequences of Theorem II and even Corollary 6.9 if the right limit u(0+) does
not exist.

Example 6.13. This example employs the same idea of resonance as in [AV,
Example 9.2]. We could use the example from [AV], but let us show that the same
phenomenon arises in control systems which are linear with respect to control. We
shall show that even the convergence result in Corollary 6.9 does not hold in general
if we deal with measurable controls. We consider the case when u0(t) has only the
discontinuity of the second type in 0.

Define a nonlinear two-dimensional controlled oscillator with U = [−1, 1] as fol-
lows:

(6.2)

dy1

dτ
= y2,

dy2

dτ
= −k

(
1− |y|

4

)
y2 − y1 + β(y)u.

Here k > 0 is small and

β(y) =


1, |y| < 4,

2(1− |y|8 ), 8 > |y| ≥ 4,
0, |y| ≥ 8.

The corresponding fast system for t ∈ [0, 1] has the following form:

(6.3) εẏ = g(u, y); g(u, y) =

(
y2

−k(1− |y|4 )y2 − y1 + β(y)u

)
.

For u fixed, the point (u, 0) is asymptotically stable for (6.2) if |y(0)| < 4. For
any u fixed, the sets K(u) and G(u) can be defined as follows: K(u) = {(u, 0)} and
G(u) : G(u) = {(y1, y2) : (y1 − u)2 + y2

2 < 9}. It is clear that for any u ∈ [−1, 1]

{y : |y| < 2} ⊂ G(u) ⊂ {y : |y| < 4}.

The prolongation L(u) of K(u) coincides with K(u) in this example. Namely L(u) =
K(u) and then L(u) ⊂ G(v) for any u, v ∈ [−1, 1]. All assumptions of Theorem II
are satisfied, and we can guarantee the statistical convergence of the solution yε(t) of
(6.3) to the measure δ(u(t),0) if any piecewise continuous control u(·) is applied and
if |yε(0)| < 4. In this example the statistical convergence of yε(t) is reduced to the
L1 convergence to the function (u(t), 0) (see [A3, Remark 4.4]). Besides for small ε:
yε(t) ∈ G(u(t)) and therefore |yε(t)| < 4.

Suppose now that in (6.2) u = sin(τ). Then it can be proved that for small k
because of the resonance, the solution tends to infinity for any initial condition. This
convergence is uniform with respect to y(0) in compact sets of the set {y : |y| < 8}.
Since for |y(0)| ≥ 8 the solution y(τ) never comes back in the ball {y : |y| < 8} we
conclude that there exists a number T > 0 such that for any initial data y(0) we have
y(T ) > 8.

Now we are ready to construct a control u0(t) which is continuous on (0, 1] and
such that for any y0 ∈ G(u(0)), yε(t) does not converge to the function (u0(t), 0). As
in [AV, Example 9.2] we identify a sequence of disjoint intervals [aj , bj ] with aj > 0
and aj , bj → 0 as j →∞. Next we denote εj = (bj − aj)T−1.
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Define u0(t) as follows:
(1) u0(0) = 0.
(2) For t ∈ [aj , bj ] let u0(t) = sin(ε−1

j (t− aj)).
(3) For t ∈ (bj , aj−1) define u0(t) such that u0(t) becomes continuous on [bj , aj−1].

Note that u0(0+) does not exist.
Consider now the solution yε(t) with |yε(0)| < 2 (namely, yε(0) ∈ G(u) for all

u ∈ [−1, 1]) and take a sequence εj → 0. Then by the properties of the sequence aj , bj
for any j large, we have |yεj (bj)| > 8 and therefore |yεj (t)| > 8 for all t ∈ [bj , 1]. So
yεj (t) stays away from the set {(y1, y2) : y1 ∈ [−1, 1], y2 = 0} for t ∈ [bj , 1] and cannot
converge to the function (u(t), 0). The counterexample is complete.

Convergence result with measurable controls. We present now a similar
result as in Theorems I and II but in the general case when the relatively slow mea-
surable control is applied. An additional condition of the following theorem may not
seem constructive since it is difficult to check it in the general case. However we
shall display an assumption and the corresponding example when these conditions
are fulfilled automatically.

THEOREM III. Suppose that Assumptions 3.1–3.5 are satisfied. Let v0(·) be a
relaxed control and uε(t) be a relatively slow measurable control statistically converging
to v0(t). Let H be a compact subset of Rm×Rn, (x0

ε, y
0
ε) ∈ H, and (x0

ε, y
0
ε)→ (x0, y0).

Assume, additionally, that there exists a compact set C ⊂ graphG such that

(6.4) λ({t : (uε(t), xε(t), yε(t)) /∈ C})→ 0 as ε→ 0.

Then all convergence statements of Theorem I hold.
Remark 6.14. It is easy to show that condition (6.4) (which is identical to (5.8) in

Lemma 5.4) actually is a necessary condition for the desired convergence in Theorems
I and II. We omit the details. Notice just that in Example 6.13 the fast motion yε(t)
goes to infinity as ε → 0 for t ∈ [δ, 1], where δ > 0 is an arbitrary fixed positive
number. Thus the desired convergence cannot hold.

The following assumption implies condition (6.4) of Theorem III. Recall that by
Remark 2.5, the set G(u, x) may be taken closed and upper semicontinuous in (u, x)
if the existence of the triple (uε(t), xε(t), yε(t)) ∈ graphG for t ∈ [0, 1] is known a
priori.

Assumption 6.15. Suppose that G is compact and does not depend on u, x.
Assume additionally that for any measurable function u(τ) : R+ → U , x fixed and
y0 ∈ G, the solution of the system

(6.5)
dy

dτ
= g(u(τ), y, x), y(0) = y0, x-fixed,

is unique and is included in the set G for any τ ≥ 0. We denote this by π(τ, u, x, y).
LEMMA 6.16. Assume that y0 ∈ G and x0 ∈ X0, where X0 is a compact subset of

Rm. Then under Assumptions 3.1, 3.3–3.5, and 6.15 there exists a compact X ⊂ Rm
such that for any ε > 0 and any measurable uε(t), the solution of the ε-system exists
uniquely for t ∈ [0, 1] and xε(t) ∈ X, yε(t) ∈ G.

Proof. From Assumption 6.15 we immediately see that the solution of (6.5) exists
uniquely for any τ ≥ 0 if x is a piecewise constant function. Take an arbitrary ε > 0
and let τ ′ = ε−1. Then since any continuous function on [0, τ ′] can be approximated
uniformly by a sequence of piecewise constant functions, we see by the continuous
dependence and compactness arguments that for τ ∈ [0, τ ′] the solution of (6.5) exists
uniquely and is included in G for any continuous function x(τ). After changing
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the time scale from τ to t = ετ and from Assumption 3.3, we obtain the desired
result.

Lemma 6.16 immediately implies that under Assumption 6.15 the conditions of
Theorem III are fulfilled. Indeed the set C can be defined then as the product C =
U × X × G. Moreover (uε(t), xε(t), yε(t)) ∈ C for every t ∈ [0, 1]. In the following
example we consider a case in which Assumption 6.15 is satisfied.

Example 6.17. This example displays the convergence result if any measurable
function u(·) is applied. The fast subsystem is defined on R2 and is presented in polar
coordinates (r, θ):

ẋ = f(x, r, θ, u);x(0) = x0,

εṙ = r(1− r); r(0) = r0,

εθ̇ = sin2(θ/2) + ux2; θ(0) = θ0.

Here u(t) ∈ [0, 1]. The associated system has the following form:

dr

dτ
= r(1− r),

dθ

dτ
= sin2

(
θ

2

)
+ ux2.

It is clear that the sets G = {(r, θ)) : a ≤ |r| ≤ b} are positively invariant for
0 < a < 1 < b if any measurable u(τ) is used. We can also define K = L = G. Hence
all conditions of Lemma 6.16, and thus of Theorem III, are satisfied.

For ux2 > 0 the system has a stable limit cycle and the unique invariant measure
ν(u, x) which is supported on the circle {y : |y| = 1} with density β(u, x, θ) for
θ ∈ [0, 2π] given by

β(u, x, θ) =

(
(sin2

(
θ

2

)
+ ux2)

∫ 2π

0

ds

sin2( s2 ) + ux2

)−1

.

If ux2 = 0 then the system has an attracting point r = 1, θ = 0 and the unique
invariant measure is a Dirac measure concentrated at the point (1, 0).

Thus for all measurable u(·) the solutions of the original system converge to the
solution of the limit system:

ẋ =
∫ 2π

0
f(x, 1, θ)ν(u, x)(dθ); x(0) = x0,

ν(u, x)(dθ) =

{
β(u, x, θ)dθ, ux2 > 0,
δ(θ)dθ, ux2 = 0.

(Here δ(·) is the delta-function.)
If we take a relaxed control v(t), we can find a relatively slow measurable con-

trol uε(t) statistically converging to v(t) and such that the corresponding trajectory
(xε(t), yε(t)) converges to the trajectory of the relaxed limit problem

ẋ =
∫
U

(∫ 2π

0
f(x, 1, θ)ν(u, x)(dθ)

)
v(τ)(du); x(0) = x0,

ν̄(v(τ), x) =
∫
U

ν(u, x)v(τ)(du).
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Continuity of the value. The last result of this paper deals with continuity of
the value of the ε-problem with respect to ε on the families of relatively slow controls,
namely, valε(Uε)→ val0(U). Note that in general the convergence valε(U) to val0(U)
does not hold. Sometimes we can find a control uε(t) such that the cost Jε(uε) may
be much less than val0(U). Usually a phenomenon of resonance and nonconvexity of
the cost function Q is employed. We refer to Gaitsgory [G1, G2] for various examples.

Example 6.18. Consider the fast system of Example 6.13. Define Q(u, y) =
u2 − |y|2. The limit system is defined only by the algebraic equation y1 = u, y2 = 0.
Then Q(u, y) is equal to zero on admissible trajectories and thus val0(U) = 0. On the
other hand if we apply a control u = sin(t/ε) to the fast system we obtain |yε(t)| → ∞
as ε → 0 for t ∈ (0, 1]. Therefore valε(U) → −∞ as ε → 0 and the limit control
problem cannot approximate optimal or near optimal trajectories of the ε-system.

Remark 6.19. In the classic case where the invariant measure ν(u, x) is con-
centrated on the point q(u, x) (the reduced system (1.4),(1.5) is well defined) the
conditions under which valε(U) → val0(U) can be found for instance in Bensoussan
[Be] and Gaitsgory [G1, G2]. However, for the general model, to the best of the au-
thor’s knowledge, the conditions for the validity of this approximation still have not
been provided.

THEOREM IV. Suppose that Assumptions 3.1–3.5 and Lemma 3.6 are satisfied.
Let v0(·) be the optimal relaxed control for the limit problem. Then

(i) if U is convex, then valε(Ucε )→ val0(Uc) = val0(Um);
(ii) if Assumption 6.7 is fulfilled, then valε(Upε )→ val0(Up) = val0(Um);
(iii) if there exists a compact C ⊂ graphG such that (5.8) is satisfied for any

uε(·) ∈ Umε , then valε(Umε )→ val0(Um);
(iv) if in (i)–(iii) uε(·) statistically converges to v0(·), then |Jε(uε)−valε(Uε)| → 0

for the corresponding family of relatively slow controls.
Proof. Theorems I–III with Claim 6.1 imply upper semicontinuity of valε(Uε)

where Uε is a corresponding family of relatively slow controls. Indeed, for uε(·)→ v0(·)
we have that

valε(Uε) ≤ Jε(uε) and Jε(uε)→ val0(Um).

This implies that lim sup valε(Uε) ≤ val0(Um).
Lower semicontinuity follows from the compactness of the family V (Proposition

4.1). The pair (xε(t), yε(t)) for each ε takes value in a compact set. Then by continuity
properties of the function Q, the value valε(Uε) is finite for each ε. Take uε(·) ∈ Uε
such that Jε(uε)− valε(Uε) tends to zero. Take any sequence εk → 0 as k → ∞ and
find a subsequence εk(j) such that uεk(j) tends to some v(·) ∈ V. Then from Theorems
I–III we have that Jεk(j)(uεk(j))→ J0(v) ≥ val0(Um) and therefore as the sequence εj
is arbitrary, we have

lim inf valε(Uε) ≥ val0(Um).

Then lim valε(Uε) = val0(Um), and this completes the proof of (i)–(iii). The proof of
(iv) follows immediately from Theorems I–III and (i)–(iii).

7. Proof of Theorems I–III. Let E ⊂ graphG be a compact set. The first
part of the proof verifies that the trajectories xε(t) of the solution (xε(t), yε(t)) of
(1.1), induced by a control function uε(·) and initial conditions (uε(0), x0

ε, y
0
ε) in E,

indeed converge to the x-trajectory x0(t) of (3.1).
Note that xε(t) solves the differential equation

(7.1) ẋ = f(uε(t), x, yε(t)), x(0) = x0
ε,
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which is a time-varying equation. Our method now is to modify (7.1) and construct
a differential equation

(7.2) ẋ = fε(t, x)

which, on the one hand has xε(t) as a solution and on the other hand will converge
to the equation (3.2) as ε→ 0 in a sense that guarantees the continuous dependence
of solutions. The function fε(t, x) is constructed as follows:

(7.3)
fε(t, x) = α(ε, x, t)

∫
Rn
f(uε(t), x, y)ν(uε(t), x)(dy)

+(1− α(ε, x, t))f(uε(t), x, yε(t))

with α(ε, x, t) given by

(7.4) α(ε, x, t) =


0, |x− xε(t)| ≤ ε,
|x− xε(t)|/ε− 1, ε < |x− xε(t)| ≤ 2ε,
1, |x− xε(t)| > 2ε.

Note that α(ε, xε(t), t) ≡ 0 and hence xε(t) solves (7.2) as well.
The function f0(t, x) is defined as follows:

(7.5) f0(t, x) = f̄ (v0(t), x),

where we recall that f̄ is defined by (4.2) as

f̄ (v0, x) =
∫
U

(∫
Rn
f(u, x, y) ν(u, x)(dy)

)
v0(du).

We now explain in what sense we claim that fε(t, x) converges to f0(t, x).
LEMMA 7.1. Suppose that ζε(t) : [0, 1]→ Rn are continuous functions, uniformly

converging to ζ0(t). Then for every s ∈ [0, 1]

(7.6)
∫ s

0
fε(t, ζε(t))dt→

∫ s

0
f0(t, ζ0(t))dt,

if ρ(δyε , µε)→ 0 as ε→ 0. Here µε(t) = ν(uε(t), xε(t)).
Proof. We interpret the right-hand side of (7.6) as an integral,∫ s

0
f̄ (v0(t), ζ0(t)) dt,

which by the definition of f̄ is given by

(7.7)
∫ s

0

∫
U

(∫
Rn
f(u, ζ0(t), y) ν(u, ζ0(t))(dy)

)
v0(t)(du) dt.

We interpret the left-hand side of (7.6) as an integral,

(7.8)
∫ s

0

(∫
Rn
f(uε(t), ζε(t), y)βε(t)(dy)

)
dt,

with βε(t) : [0, 1]→ P(Rn) a measure-valued function given by

βε(t) = α(ε, ζε(t), t)νε(t) + (1− α(ε, ζε(t), t))δyε(t),
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where

(7.9) νε(t) = ν(uε(t), ζε(t)).

We also define another function β̃ε(t) given by

β̃ε(t) = α(ε, ζε(t), t)νε(t) + (1− α(ε, ζε(t), t))µε(t).

By definition (7.4) of the function α(ε, x, t) and continuity of the function ν(u, x) it
follows that ρ(β̃ε, νε)→ 0. By an assumption of the lemma, ρ(δyε , µε)→ 0. Therefore
ρ(β̃ε, βε)→ 0 and then ρ(βε, νε)→ 0. Thus from (7.8) we have that for every s ∈ [0, 1]∣∣∣∣∫ s

0
fε(t, ζε(t)) dt−

∫ s

0

(∫
Rn
f(uε(t), ζε(t), y) νε(t)(dy)

)
dt

∣∣∣∣→ 0,

and hence we have just to prove that

(7.10)
∫ s

0

(∫
Rn
f(uε(t), ζε(t), y) νε(t)(dy)

)
dt→

∫ s

0
f̄0(v0(t), ζ0(t)) dt,

where the right-hand side is defined in (7.7) But from (7.9) we can interpret the
left-hand side of (7.10) as an integral∫ s

0
f̄ (vε(t), ζε(t)) dt,

where vε(t) = δuε(t) is a measure-valued interpretation of the ordinary function uε(t).
Since vε(·) statistically converges to v0(·) and ζε(·) uniformly converges to ζ0(·) and
from the uniform continuity of f̄ (v, x) on compact sets we conclude that∫ s

0
f̄ (vε(t), ζε(t)) dt→

∫ s

0
f̄ (v0(t), ζ0(t)) dt.

This completes the proof.
LEMMA 7.2. Under the assumptions of Theorems I–III, ρ(δyε , µε) → 0, where

µε(t) = ν(uε(t), xε(t)).
Proof. For Theorem III the result immediately follows from Lemma 5.4. Now

define set C as follows:

(7.11) C = λ({t : d((uε(t), xε(t), yε(t)),K ) ≤ η}),

where K is defined in (5.5) and η is chosen such that C ⊂ graphG. Then under
assumptions of Lemma 5.3 (and hence of Theorem I) conditions of Lemma 5.4 are
satisfied. Therefore the result follows for Theorem I also. Thus we have to prove the
claim of the lemma only for Theorem II, namely, for the case where relatively slow
piecewise continuous controls are employed.

We just have to show that statements of Lemma 5.3 hold true. Indeed, let tiε,
i = 1, k(ε) be the points of discontinuity of the function uε(·). Then ti+1

ε − tiε ≥ ∆ε.
On each interval [tiε, t

i+1
ε ) the function uε(·) is relatively slow continuous with the

common modulus of continuity M(∆−1
ε z), and then on each interval of continuity we

can use Lemma 5.3 if we prove that the pairs (xε(tiε), yε(t
i
ε)) stay in a common compact

set and the triples (uε(t), xε(t), yε(t)) are included in graphG. Let E = U × H be
a compact subset of graphG and (xε(0), yε(0)) ∈ H. Let X be a compact subset
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of Rm such that if (uε(t), xε(t), yε(t)) ∈ graphG for t ∈ [0, s] then xε(t) ∈ X for
t ∈ [0, s]. Such a set exists by Assumption 3.3. Define the set L̃(x) = ∪u∈UL(u, x).
By the upper semicontinuity of L the mapping L̃(·) is compact for each x and upper
semicontinuous. Thus by Assumption 6.7 graphG contains the compact set

L̃ = {(u, x, y) : u ∈ U, x ∈ X, y ∈ L̃(x)}

(with, say, an η-neighborhood small enough).
We denote now a new compact set

Ẽ = E ∪ {(u, x, y) : u ∈ U, x ∈ X, d((u, x, y), L̃) ≤ η}.

Since by the definition the set L̃ contains the set L defined in (5.5), we can employ es-
timates (5.6) and (5.7) of Lemma 5.3 to conclude that the triples (uε(t), xε(t), yε(t))
are included in graphG for t ∈ [0, 1]. Moreover for (uε(tiε), xε(t

i
ε), yε(t

i
ε)) ∈ Ẽ the

triples (uε(ti+1
ε ), xε(ti+1

ε ), yε(ti+1
ε )) are also included in Ẽ for ε small enough. Hence

the first inequality in (5.7) can be extended for t ∈ [0, 1], and we obtain the conver-
gence in (5.8) (or (6.4)) if the set C is defined by (7.11). Therefore by Lemma 5.4 the
result follows from the conditions of Theorem II too.

Now we can proceed with the proof of Theorems I–III.
From Lemmas 7.1 and 7.2 it follows by the standard continuous dependence

arguments (see, e.g., [AV, Lemma 4.1]) that xε(t) → x0(t). Since by Lemma 7.2
ρ(δyε , µε)→ 0 where µε(t) = ν(uε(t), xε(t)) and ν(u, x) is continuous in (u, x), we ob-
tain ρ(δyε , νε)→ 0, where νε(t) = ν(uε(t), x0(t)). By an assumption uε(·) statistically
converges to v0(·), and then for any continuous function h(t, u)

(7.12)
∫ 1

0
h(t, uε(t)) dt→

∫ 1

0

∫
U

h(t, y) v0(t)(du) dt.

For an arbitrary continuous function h̃(t, y) define

(7.13) h(t, u) =
∫
Rn
h̃(t, y) ν(u, x0(t))(dy).

Then from (7.12) and (7.13) it follows that for any continuous h̃(t, y)∫ 1

0

(∫
Rn
h̃(t, y)ν(uε(t), x0(t))(dy)

)
dt→

∫ 1

0

(∫
Rn
h̃(t, y) ν̄(v0(t), x0(t))(dy)

)
dt.

Therefore νε(t) statistically converges to ν̄(v0(t), x0(t)), and since ρ(δyε , νε) → 0 we
get that yε(t) statistically converges to ν̄(v0(t), x0(t)). Since the function Q(u, x, y) is
continuous, the convergence of the cost Jε → J0 follows. This completes the proof of
Theorems I–III.

8. Concluding remarks. Note that in our consideration U is an abstract metric
compact space. This means that U itself may be a space of probability measures—
say, on a compact set W of Rk. Then the controls u(t) ∈ U are themselves relaxed
controls. In this case the relaxed controls v(t) ∈ P(U) are relaxed with respect to the
controls u(t).

Our convergence results may have another interpretation. Suppose we have an
original control problem in the limit form (3.1). This type of problem arises for
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instance in systems with uncertainty when we make appropriate averaging of the
data functions. Then if we can find a function g such that the flow induced by the
corresponding differential equation has an invariant measure ν from the model (3.1),
we can construct the ε-system (1.1)–(1.3) which approximates (3.1).

We emphasize that our limit model completely approximates only the ε-problem
on the families of relatively slow controls. We do not consider the fast controls u(τ) =
u(t/ε). If, for instance, u(τ) is a periodic function, then the limit of valε(U) may be
much less than val0(U), as was mentioned in Example 6.18. (Consult also Gaitsgory
[G1, G2, G3].) However, periodic controls induce the discrete time dynamical systems
which are Poincaré maps. This gives an opportunity to apply the dynamical system
approach to construct an extension of the limit control problem (3.1) when the fast
periodic control is allowed.
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der the supervision of Professor Zvi Artstein. The author would like to express his
gratitude to Prof. Artstein for very useful discussions of these results.
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Abstract. For the bilinear control system of the form ẋ = (A+
∑m
i=1 uiBi)x, x ∈ Rn, ui ∈ R,

with A essentially nonnegative and Bi constant diagonal matrices, the following global controllability
question is studied: when can any two points in Rn with positive coordinates be connected by a
trajectory of this system? The answers for m = n− 1 and m = n− 2 for any n > 2 are given; some
necessary conditions for other cases are proven.

Key words. bilinear system, global controllability, positive orthant

AMS subject classifications. 93B05, 93B27

PII. S0363012994270898

1. Introduction. The bilinear systems proved to be an interesting class of non-
linear control systems, both in theory and for applications. This class is one of the
rare ones for which global controllability questions can be answered rather completely.
This paper is devoted to one of such questions proposed by Boothby in [1].

Consider the bilinear control system

ẋ =

(
A+

m∑
i=1

uiBi

)
x,(1)

where x ∈ Rn; u1, . . . , um are the piecewise continuous scalar unbounded inputs; and
A, B1, . . . , Bm are the constant n× n matrices.

The attainability set for system (1) from a point x ∈ Rn for all nonnegative times
will be denoted by A(x).

We will denote the open positive orthant {x ∈ Rn : x > 0} by
◦
Rn

+.
System (1) is called controllable in

◦
Rn

+ if for any x ∈
◦
Rn

+ we have A(x) =
◦
Rn

+.
In what follows we will suppose that all trajectories of system (1) starting in

◦
Rn

+

do not leave
◦
Rn

+, i.e.,
(1) the matrix A is essentially nonnegative: A = (aij), aij ≥ 0 for all i 6= j;
(2) the matrices B1, . . . , Bm are diagonal: Bi = diag (bi), bi ∈ Rn, i = 1, . . . ,m.

We will also suppose that the matrices Bi (or, equivalently, the vectors bi) are linearly
independent: for the linear hull l = span (b1, . . . , bm) we have dim l = m. This can be
achieved, if necessary, by eliminating some Bi and decreasing m.

The problem of controllability of system (1) in
◦
Rn

+ under the conditions (1) and
(2) was studied first by Boothby in [1]; he obtained some results for m = 1 and showed
that for m = n system (1) is controllable in

◦
Rn

+. A complete solution for m = 1, n = 2
was obtained by Bacciotti in [2]. In [3] it was proven that for m = 1, n > 2, system
(1) is, generically, noncontrollable in

◦
Rn

+. So the problem was solved for the extreme
codimensions 0 and n− 1.

In this paper we propose a solution of the problem for the systems of codimension
1 and 2 (i.e., for m = n − 1 and m = n − 2) and give some conditions sufficient for
noncontrollability for m ≤ n− 2.

The main idea is natural: if a simply connected state space is stratified into the
integral manifolds of codimension one of the fields Bix, then system (1) is globally
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1995.
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controllable iff all these manifolds are intersected by the field Ax in both directions.
The corresponding general result was obtained by Bacciotti and Stefani in [4].

The structure of this paper is as follows. In section 2 we introduce a function
determining the direction of intersection of the integral manifolds of the fields Bix
by the field Ax and obtain conditions of change of sign of this function. In section 3
these conditions are applied to obtain the controllability conditions for m = n− 1. In
section 4 we give a test of controllability in

◦
Rn

+ in terms of the notion of directional
controllability. Finally, in sections 5 and 6 we apply the above results and give the
conditions of controllability for other cases.

2. Conditions of change of sign. For every vector h = (h1, . . . , hn) ∈ Rn we
will consider the corresponding function H defined on

◦
Rn

+ by the equality

H(x) = xh1
1 xh2

2 · · ·xhnn .

LEMMA 2.1. Let B = diag (b) be an n × n diagonal matrix and let h ∈ Rn.
The corresponding function H is an integral of the field Bx iff vectors h and b are
orthogonal.

Here and below we use the scalar product in Rn: 〈x, y〉 =
∑n
i=1 xiyi.

Proof. 〈gradH(x), Bx〉 = 〈h, b〉H(x).
Consider the function

φ(x) = 〈gradH(x), Ax〉/H(x),

which determines the direction of intersection of the level surfaces {H(x) = C} by
the field Ax. In the further part of this section we obtain, in terms of the vector h
and matrix A, conditions that

∀C > 0 the function φ(x)|{H(x)=C} changes its sign.(2)

These conditions (Theorems 2.2 and 2.3) will be applied in the following sections to
obtain the conditions of controllability of system (1) in

◦
Rn

+.
Let us recall that an n × n matrix A is called permutations irreducible if the

corresponding linear operator A has no k-dimensional invariant coordinate subspaces
in Rn with 0 < k < n; A = (aij) is called essentially positive if aij > 0 for all i 6= j.

THEOREM 2.2. Let h = (h1, . . . , hn) ∈ Rn and let
∑n
i=1 hi 6= 0.

(1) If the matrix A is permutations irreducible and the vector h has a pair of
components with the mutually opposite signs, then condition (2) is satisfied.

(2) If hi ≥ 0 for all i = 1, . . . , n and
∑n
i=1 hiaii ≥ 0, then condition (2) is not

satisfied.
Proof. Statement (1). Without loss of generality we can assume that h1 > 0 and

hn < 0. H is a homogeneous function of order
∑n
i=1 hi 6= 0, and every ray through x

with the vertex in the origin intersects all hypersurfaces {H(x) = C}. So condition
(2) holds iff φ(x) changes its sign in

◦
Rn

+.
For x2 = x3 = · · · = xn = 1 and small x1 > 0 the sign of the function

φ(x) =
∑n
i,j=1 aijhixj/xi is determined by the large positive term h1

∑n
j=2 a1jxj/x1.

For x1 = x2 = · · · = xn−1 = 1 and small xn > 0 the function φ(x) is negative because
of the term hn

∑n−1
j=1 anjxj/xn. That is why φ(x) changes its sign in

◦
Rn

+. Statement
(1) is proven.

Statement (2) follows directly from the expansion

φ(x) =
∑
i6=j

aijhixj/xi +
n∑
i=1

aiihi.
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THEOREM 2.3. Let the matrix A be essentially positive, h = (h1, . . . , hn) ∈ Rn,
and

∑n
i=1 hi = 0. Then condition (2) holds iff vector h has at least two positive and

at least two negative components.
This theorem follows from Lemmas 2.4–2.6.
LEMMA 2.4. Let n = 4 and let the matrix A be essentially positive; suppose that∑4

i=1 hi = 0; h1 > 0, h2 > 0, h3 < 0, h4 < 0. Then condition (2) is satisfied.
Proof. Suppose that there exists C > 0 such that φ(x) does not change its sign

on {H(x) = C}. We can assume that φ(x) ≥ 0 on {H(x) = C}.
In the homogeneous coordinates ui = xi/x4, i = 1, 2, 3, u4 ≡ 1, we have H(u) =

uh1
1 uh2

2 uh3
3 , φ(u) =

∑4
i,j=1 hiaijuj/ui, and φ(u) ≥ 0 on {H(u) = C}.

On the surface {H(u) = C} we have u3 = C1/h3up1
1 u

p2
2 , where

p1 = −h1/h3 > 0, p2 = −h2/h3 > 0.

(A) First we show that p2 ≤ 1.
Introduce the following family of curves parametrized by α:

γα(s) = (s, sα, C1/h3sp1+αp2).(3)

Note that for any α ∈ R and s > 0 we have H(γα(s)) ≡ C.
Let α < 0. On the curve γα(s) for s→ +∞ we have u1 →∞, u2 → 0. Then the

largest positive terms in φ(u) are h2a21u1/u2 and h2a23u3/u2. Let us show that if p2 >
1, then the parameter α can be chosen such that these positive terms have absolute
value less than the negative term h3a31u1/u3 = h3a31C

−1/h3s1−p1−αp2 . Actually, on
the curve γα(s) we have u1/u2 = s1−α, u3/u2 = C1/h3sp1+αp2−α, and existence of the
indicated α follows from compatibility of the system of inequalities

1− p1 − αp2 > 1− α
1− p1 − αp2 > p1 + αp2 − α
α < 0

⇐⇒
(if p2 > 1)


α < p1/(1− p2)
α < (2p1 − 1)/(1− 2p2)
α < 0.

So the indicated α exists, and the contradiction with (φ(u)|H(u)=C) ≥ 0 shows that
statement (A) is proven.

(B) Then we show, in the same way, that p1 ≤ 1.
(C) Then we show that p1 + p2 ≤ 1. We consider family (3) for α > 0 and s→ 0

and show, analogously to (A), that p1+p2 > 1, p1 ≤ 1, p2 ≤ 1 imply that φ(γα(s)) < 0
for these α and s.

But inequality p1 + p2 ≤ 1 is equivalent to h1 + h2 + h3 ≤ 0, which contradicts
the conditions h1 + h2 + h3 + h4 = 0 and h4 < 0. This contradiction shows that φ(x)
changes its sign on the surface {H(x) = C}.

Then we generalize Lemma 2.4 for any n > 4.
LEMMA 2.5. Let n > 4 and let the matrix A be essentially positive; h = (h1, . . . , hn)

∈ Rn,
∑n
i=1 hi = 0; h1 > 0, h2 > 0, h3 < 0, h4 < 0. Then condition (2) is satisfied.

Proof. The general case is reduced to the case n = 4 by “freezing” the superfluous
coordinates.

In the homogeneous coordinates ui = xi/x4, i 6= 4, u4 ≡ 1, we consider for any
K > 0 the plane

ΠK = {u = (u1, . . . , un) : u5 = · · · = un = K}.

H(u)|ΠK = uh1
1 uh2

2 uh3
3 Kh5+···+hn , and the plane ΠK intersects with the surface

{H(u) = C} for any C > 0, K > 0. So to prove this lemma it is sufficient to
show that

∀C > 0 ∃K > 0 such that φ(u)|{H(u)=C}∩ΠK changes its sign.(4)
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The direct calculations show that

φ(u)|ΠK =
4∑

i,j=1

hiãij(K)uj/ui,

where

ãij(K) ≡ aij for i, j = 1, 2, 3,

ãi4(K) = ai4 +K
n∑
j=5

aij for i = 1, 2, 3,

ã4j(K) = a4j + 1/K
n∑
i=5

hi/h4aij for j = 1, 2, 3,

ã44(K) = a44 +K
n∑
j=5

a4j + 1/K
n∑
i=5

hi/h4ai4 +
n∑

i,j=5

hi/h4aij .

So the function φ(u)|ΠK coincides with the function of change of sign φ̃K(x) =
〈grad H̃(x), Ã(K)x〉/H̃(x) with x ∈ R4, H̃(x) = xh1

1 xh2
2 xh3

3 xh4
4 , Ã(K) = (ãij(K)),

i, j = 1, . . . , 4 (after φ̃K(x) is expressed in the usual homogeneous coordinates ui). For
a sufficiently large K the matrix Ã(K) is essentially positive, so we can use conditions
of change of sign for n = 4 obtained before. If h1 + h2 + h3 + h4 6= 0, then it follows
from statement (1) of Theorem 2.2 that φ̃K(x)|H(x)=C changes sign for any C > 0.
And if h1 + h2 + h3 + h4 = 0, the same result follows from Lemma 2.4. So statement
(4) is proven, as is Lemma 2.5.

Now we will consider the case when h has only one component with the sign
opposite to the signs of all other components. (There always exists at least one such
component under the assumption

∑n
i=1 hi = 0, h 6= 0.)

LEMMA 2.6. Let the matrix A be essentially positive, h ∈ Rn,
∑n
i=1 hi = 0;

h1 ≥ 0, h2 ≥ 0, . . . , hn−1 ≥ 0, hn < 0. Then condition (2) is not satisfied.
Proof. In the coordinates ui = xi/xn, i = 1, . . . , n − 1, un ≡ 1, we have H(u) =

uh1
1 uh2

2 . . . u
hn−1
n−1 . It follows from the inequalities h1 ≥ 0, h2 ≥ 0, . . . , hn−1 ≥ 0 that

lim
C→0

sup
H(u)=C

min
hi>0

{ui} = 0;

i.e., for small C > 0 at least one of those components ui of vector u, for which hi > 0,
becomes small on the surface {H(u) = C}. Choose sufficiently small C > 0, and let
uk be the small component in some neighborhood of u, H(u) = C, with hk > 0.

In expansion φ(u) =
∑n
i,j=1 hiaijuj/ui the negative terms are hn

∑n−1
j=1 anjuj

and, maybe,
∑n
i=1 hiaii. But for small uk the absolute values of all these terms

are less than the large positive term hk
∑
j 6=k akjuj/uk. Actually, we decompose the

negative terms in the form

hn

k−1∑
j=1

anjuj + ankuk +
n−1∑
j=k+1

anjuj

+
n∑
i=1

hiaii

and the positive terms in the form

hk

k−1∑
j=1

akjuj/uk +
n−1∑
j=k+1

akjuj/uk + akn/uk

 .



POSITIVE ORTHANT CONTROLLABILITY 33

For sufficiently small uk we have

hk

k−1∑
j=1

akjuj/uk >

∣∣∣∣∣∣hn
k−1∑
j=1

anjuj

∣∣∣∣∣∣ ,
hk

n−1∑
j=k+1

akjuj/uk >

∣∣∣∣∣∣hn
n−1∑
j=k+1

anjuj

∣∣∣∣∣∣ ,
hkakn/uk > |hnankuk|+

∣∣∣∣∣
n∑
i=1

hiaii

∣∣∣∣∣ .
So the positive terms dominate all negative terms, and φ is positive in the neigh-

borhood of the chosen u. Since u is arbitrary, φ(u)|H(u)=C > 0 for small C > 0.

3. Systems of codimension one. In this section we suppose that m = n − 1
and obtain conditions of controllability of system (1) in

◦
Rn

+ for this case.
There exists a unique (up to a scalar factor) nonzero vector h ∈ Rn orthogonal

to the hyperplane l = span (b1, . . . , bn−1). We fix such vector h = (h1, . . . , hn) and
the corresponding function H(x) = xh1

1 . . . xhnn .
LEMMA 3.1. System (1) is controllable in

◦
Rn

+ iff the field Ax intersects any level
surface {H(x) = C} in both directions.

Proof. We use the theory of global controllability of systems with n − 1 inputs
on a manifold of dimension n, developed by Bacciotti and Stefani in [4]. It follows
from Theorem 5.1 in [4] that system (1) is controllable in

◦
Rn

+ iff for any x ∈
◦
Rn

+
the maximal integral manifold of the fields B1x, . . . , Bn−1x through the point x is
intersected by the field Ax in both directions. But the family of fields B1x, . . . ,
Bn−1x is involutive (as all Lie brackets [Bix,Bjx] = [Bi, Bj ]x vanish), so this integral
manifold has dimension n − 1. On the other hand, the function H is an integral of
the fields B1x, . . . , Bn−1x (see Lemma 2.1). The level surfaces of H are connected,
so they coincide with the maximal integral manifolds of these fields.

The direction of intersection of a level surface of H by the field Ax is determined
by the sign of the function φ(x) = 〈gradH(x), Ax〉/H(x), so Lemma 3.1 gives the
following theorem.

THEOREM 3.2. Let m = n− 1, h ⊥ l, h 6= 0. System (1) is controllable in
◦
Rn

+ iff
for any C > 0 the function φ(x)|H(x)=C changes its sign.

Now we apply the conditions of change of sign of φ obtained before (Theorems
2.2 and 2.3) and get the controllability conditions in the following form.

THEOREM 3.3. Let m = n− 1, h ⊥ l,
∑n
i=1 hi 6= 0.

(1) If the matrix A is permutations irreducible and the vector h has a pair of
components with the mutually opposite signs, then system (1) is controllable in

◦
Rn

+.
(2) If hi ≥ 0 for all i = 1, . . . , n and

∑n
i=1 hiaii ≥ 0, then system (1) is not

controllable in
◦
Rn

+.
THEOREM 3.4. Let m = n − 1, h ⊥ l, h 6= 0,

∑n
i=1 hi = 0. Suppose that the

matrix A is essentially positive. System (1) is controllable in
◦
Rn

+ iff the vector h has
at least two positive and two negative components.

4. Directional controllability. In this section we apply the notion of directio-
nal controllability of system (1) and obtain controllability test in

◦
Rn

+.
System (1) is directionally controllable in

◦
Rn

+ if for any x, y ∈
◦
Rn

+ there exists
r ∈ R+ such that ry ∈ A(x).
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We will say that a point x ∈ Rn \ {0} determines the direction entering (leaving)
origin for system (1) if rx ∈ A(x) for all r ∈ (0; 1) (respectively, rx ∈ A(x) for all
r ∈ (1; +∞)).

THEOREM 4.1. System (1) is controllable in
◦
Rn

+ iff

(1) it is directionally controllable in
◦
Rn

+;

(2) there exist the vectors in
◦
Rn

+ determining a direction entering the origin and
a direction leaving the origin.

Proof. Necessity is obvious.
Sufficiency. Let x determine an entering direction and y determine a leaving

direction; x, y ∈
◦
Rn

+. Then we can move along the interval {rx : r ∈ (0; 1)} toward
origin and along the ray {ry : r ∈ (1; +∞)} away from origin. But directional
controllability of system (1) in

◦
Rn

+ means that A(z) meets every ray of the form

{rw : r ∈ R+} in
◦
Rn

+. So for any z ∈
◦
Rn

+ the attainable set A(z) is invariant under

homotheties with respect to the origin, and that is why A(z) =
◦
Rn

+.

5. Systems of codimension two. In this section we consider the case m =
n− 2. We use the controllability test from the previous section and reduce this case
to the case of codimension one.

Let the (n − 2)-dimensional plane l = span (b1, . . . , bn−2) not contain the vector
e = (1, 1, . . . , 1). Then we fix a nonzero vector h = (h1, . . . , hn) ∈ Rn, orthogonal
to the hyperplane span (e, l), and the corresponding functions H(x) = xh1

1 xh2
2 · · ·xhnn

and φ(x) = 〈gradH(x), Ax〉/H(x).
Note that

∑n
i=1 hi = 0 for the chosen vector h.

LEMMA 5.1. Let the matrix A be essentially positive. System (1) is directionally
controllable in

◦
Rn

+ iff the vector h has at least two positive and at least two negative
components.

Proof. Consider the auxiliary system

ẋ =

(
A+

m∑
i=1

uiBi + um+1E

)
x,(5)

where A, Bi, ui, i = 1, . . . ,m, are the same as in system (1), E is the identity n× n
matrix, and um+1 is an unbounded scalar input. It may easily be seen that system
(1) is directionally controllable in

◦
Rn

+ iff system (5) is controllable in
◦
Rn

+. But system
(5) has codimension 1, and we can apply Theorem 3.4 to obtain the conditions of
controllability of system (5)

◦
Rn

+.
LEMMA 5.2. Let the matrix A be permutations irreducible. If there exists a vector

b ∈ l∩
◦
Rn

+ with pairwise distinct components, then system (1) has a direction entering

origin and a direction leaving origin in
◦
Rn

+.
Proof. We apply Proposition 4.3 of [1] to the matrix B = diag (b) and obtain

that for sufficiently large u (respectively, sufficiently negative u) all eigenvalues of the
matrix A+ uB are positive (respectively, all negative). But the matrix A+ uB is es-
sentially nonnegative and permutations irreducible. So we apply Frobenius’s theorem
on spectral properties of the nonnegative irreducible matrices [5] and the argument of
Boothby from section 4 of [1] and obtain that the corresponding eigenvectors x with
positive eigenvalue and y with negative eigenvalue belong to

◦
Rn

+. But then x and y

determine the direction leaving the origin and the direction entering the origin in
◦
Rn

+,
respectively.
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Now we apply Theorem 4.1 and Lemmas 5.1 and 5.2 and obtain the following
controllability conditions for the systems of codimension 2.

THEOREM 5.3. Let m = n− 2, e /∈ l, h ⊥ span (e, l). Let the following conditions
additionally hold:

(1) the vector h has at least two positive and at least two negative components;
(2) the matrix A is essentially positive;
(3) there exists a vector b ∈ l∩

◦
Rn

+ with pairwise distinct components.

Then system (1) is controllable in
◦
Rn

+.
THEOREM 5.4. Let m = n − 2, the matrix A be essentially positive, e /∈ l,

h ⊥ span (e, l). Suppose that for some i = 1, . . . , n we have hi > 0 and hj ≤ 0 for all
j 6= i. Then system (1) is not controllable in

◦
Rn

+.

6. Systems of arbitrary codimensions. For the systems not covered by cont-
rollability conditions of sections 3 and 5 we can give some conditions sufficient for non-
controllability (i.e., in fact, necessary for controllability) due to the following simple
consideration: if system (1) can be complemented to a system

ẋ =

(
A+

m∑
i=1

uiBi +
m+k∑
i=m+1

uiBi

)
x

for some k > 0 in such a way that the above system is noncontrollable in
◦
Rn

+, then

the initial system (1) is noncontrollable in
◦
Rn

+ too.
THEOREM 6.1. Let m < n − 1, and let there exist a vector h ∈ Rn, h ⊥ l,

such that hi ≥ 0 for all i = 1, . . . , n and
∑n
i=1 aiihi ≥ 0. Then system (1) is not

controllable in
◦
Rn

+.
Proof. Let L be the hyperplane in Rn orthogonal to the vector h. We have

L ⊃ l = span (b1, . . . , bm), so we can choose vectors bm+1, . . . , bn−1 complementing
b1, . . . , bm to a basis of L. Let us introduce the diagonal matrices Bi = diag (bi) for
i = m + 1, . . . , n − 1. Then the system ẋ = (A +

∑n−1
i=1 uiBi)x has codimension one

and is not controllable by statement 2. of Theorem 3.3. That is why system (1) is not
controllable too.

THEOREM 6.2. Let m < n − 2, the matrix A be essentially positive, and there
exists a vector h ∈ Rn, h ⊥ span (e, l), such that for some i = 1, . . . , n we have hi > 0
and hj ≤ 0 for j 6= i. Then system (1) is not controllable in

◦
Rn

+.
Proof. With the help of the same argument as in Theorem 6.1 we complement

system (1) to a system of codimension two and obtain noncontrollability by Theorem
5.4.
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Abstract. Consider the Wonham optimal filtering problem for a finite state ergodic Markov
process in both discrete and continuous time, and let σ be the noise intensity for the observation. We
examine the sensitivity of the solution with respect to the filter’s initial conditions in terms of the gap
between the first two Lyapunov exponents of the Zakai equation for the unnormalized conditional
probability. This gap is studied in the limit as σ → 0 by techniques involving considerations of
nonlinear filtering and the stochastic Feynman–Kac formula. Conditions are given for the limit to
be either negative or −∞. Asymptotic bounds are derived in the latter case.

Key words. Lyapunov exponents, nonlinear filtering, Wonham’s equation, Feynman–Kac for-
mula
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1. Introduction and statement of results. Let {Xn}∞n=0 denote a finite state
space, discrete time homogeneous Markov chain, with transition matrix G and initial
distribution p0. Without loss of generality, we take the state space of the Markov
chain to consist of the set {1, . . . , d}. Denote the law of the chain Xn on {1, . . . , d}Z
by P . Throughout this paper, we assume that G leads to an ergodic noncyclic chain.
That is, we assume

(A1) there exists a k ≥ 1 such that Gk(i, j) > 0 for all i, j ∈ {1, . . . , d}.

We denote by Es expectations under the unique stationary measure of {Xn}.
We assume that the Markov chain Xn is observed through the sequence {Yn}∞n=1,

where

Yn = δhXn +
√
δσνn .

Here, h : {1, . . . , d} → R is the observation function, δ > 0 is a parameter (which,
for as long as one deals only with discrete time, may be taken as δ = 1), σ is an
observation noise parameter related to the signal-to-noise ratio (SNR), and {νn}∞n=1
is a sequence of i.i.d., standard Gaussian random variables.

Let Yn denote the σ-algebra generated by the observations Y1, . . . , Yn. The nonlin-
ear filtering problem consists of computing the conditional law pj(n) = P (Xn = j|Yn).
Let Dn denote the diagonal matrix with Dn(i, i) = exp[σ−2(hiYn−h2

i δ/2)], and define

ρ(n) = DnG
∗ρ(n− 1) ,(1)

where G∗ denotes the transpose of G, and ρ(0) = p0. It is a straightforward conse-
quence from Bayes’s rule (see, e.g., [1, p. 460] and also the continuous time case in
[9]) that the vector p(n) = (p1(n), . . . , pd(n))∗ satisfies p(n) = ρ(n)/〈ρ(n),1〉, where
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ρ(n) = (ρ1(n), . . . , ρd(n))∗, 1 = (1, . . . , 1)∗, and 〈·, ·〉 denotes the standard inner prod-
uct in Rd.

Often, one has no access to the initial distribution p0. A common procedure is
then to initialize (1) with some initial condition q0 ∈ Sd−1, where Sd−1 denotes the
(d − 1)-dimensional simplex. Denote by ρq0(n) the solution to (1) initialized this
way, and denote by pq0(n) the corresponding normalized (random) probability vector.
Natural questions are then, how far is pq0(n) from pp0(n), what are the conditions for
stability in the sense that ‖pq0(n)−pp0(n)‖ →n→∞ 0, and under these conditions what
is the rate of convergence? We emphasize that we deal here with the dependence of the
optimal filter on its initial conditions and not with its dependence on perturbations
of the initial distribution of the state process {Xn}. The latter is a different problem
which we do not deal with here.

Motivated by the approach taken in [4] (see [6] for a related computation in the
continuous time, linear case), we couch the question in terms of Lyapunov exponents.
That is, for any two q0 6= q′0 ∈ Sd−1, define

γδσ(q0, q
′
0, ω) = lim sup

n→∞

1
nδ

log ||pq0(n)− pq′0(n)|| .

Although here and in what follows we take || · || to denote the Euclidean norm, note
that the definition does not depend on the precise norm used and, in particular, one
could use the variation (`1) norm here.

We will see that, under mild conditions, γδσ(q0, q
′
0, ω) is almost surely determin-

istic and γδσ = γδσ(q0, q
′
0, ω) is independent of q0, q

′
0 for a.e. q0, q

′
0 (when q0, q

′
0 are

distributed uniformly over the simplex) and is related to the gap between the top
two Lyapunov exponents associated with the Zakai equation for the unnormalized
conditional probability. The deterministic quantity −1/γδσ can then be interpreted
as the “memory length” of the filter. Obviously, this approach is meaningful only if
γδσ < 0. We will identify below sufficient conditions for this to happen. An analogous
continuous time question is examined as well.

We remark that in order to deal with the filter’s memory length, we introduce
and use tools borrowed from the theory of products of random matrices. Especially,
we formulate the (qualitative) question of stability and the (quantitative) question of
memory length in terms of Lyapunov exponents of the solution of Zakai’s equation.
While the question of computing Lyapunov exponents is, in general, difficult, we study
the above-mentioned gap in the limiting cases, i.e., the regimes σ → ∞ and σ → 0.
Under appropriate conditions, we obtain the exact order of the memory length as a
function of σ in the latter case.

A natural guess is that γδσ becomes more negative as the SNR increases (i.e., as
σ → 0). As pointed out in [4] for the continuous time setup, this is not always the
case, and one may even have situations where limσ→0 γ

δ
σ = 0 though γδσ < 0 for all

positive σ. We identify below conditions for the memory length −1/γδσ to remain
bounded as a function of σ and conditions for it to decay to zero as σ → 0.

The structure of the paper is as follows. In the rest of this section, we describe
the results for the memory length in both discrete and continuous time. In particular,
in both cases we provide the uniform bounds on γδσ alluded to above and determine
under appropriate conditions the limits of γδσ under both high and low SNR. Sec-
tions 2 and 3, respectively, are devoted to proofs of the discrete and continuous time
results.

We begin with the following rather straightforward consequence of Oseledec’s
theorem (see [2, p. 181] and [3]).
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THEOREM 1.1. Assume (A1). Then there exists a deterministic function of σ and
δ, γδσ which admits the following:

(1) Let q0, q
′
0 be random, uniformly distributed (U) on the simplex Sd−1, inde-

pendent of each other, and of the chain X0, {Xn, Yn}∞n=1. Then

γδσ(q0, q
′
0, ω) = γδσ , U × U × P − a.s.

(2) For any deterministic q0 6= q′0 with all entries strictly positive, one has

γδσ(q0, q
′
0, ω) ≤ γδσ , P − a.s.

As is seen in section 2, γδσ is just δ−1 times the difference between the two top
Lyapunov exponents of solutions of (1).

We turn to study γδσ quantitatively. First is a bound which is uniform with respect
to σ.

THEOREM 1.2. Assume that all entries of G are strictly positive. Then

γδσ ≤
c

δ
< 0

for some constant c independent of h, σ, δ.
Remark. Actually, one may somewhat relax the condition that all entries of G are

positive and still have the conclusion of the theorem. See Theorem 2.3 in section 2
for such a statement and its proof there (which also serves as a proof of Theorem 1.2)
for the explicit dependence of c on the matrix G.

While the above bound relies on the nature of the law of {Xn} and its mixing
properties, the next bound relies on the quality of the observation. In fact, it is shown
that under a condition on h, the decay rate tends to infinity as the noise parameter
tends to zero. The condition required on h is that it possesses one coordinate which
differs from the rest (h one to one suffices). For each i ∈ {1, . . . , d}, define the set

nbr(i) = {j 6= i : |hi − hj | = min
k 6=i
|hi − hk|}

and define hnbr(i) = hj , where j is one of the members in the set nbr(i).
THEOREM 1.3. Assume (A1). Then

lim sup
σ→0

σ2γδσ ≤ −
1
2
Es[hX1 − hnbr(X1)]2 .(2)

If, in addition, det(G) 6= 0, then

lim inf
σ→0

σ2γδσ ≥ −
1
2
Es

d∑
i=1

[hX1 − hi]2 .(3)

Note that while the gap between the upper and the lower bounds increases with
the dimension d (and is nonzero as soon as d > 2), one may conclude from Theorem
1.3 that γδσ = Ω(σ−2) as soon as there exists an i such that the set {j : hj = hi}
consists of a single point. The memory length is thus of the order of σ2.

In continuous time, the behavior at low SNR (σ →∞) is completely determined
by the top, nonzero eigenvalue of G (see [4]). An analogous result is shown here to
hold for the discrete time case.
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Let τ be the Birkhoff contraction coefficient (see (11) for a definition).
THEOREM 1.4. Assume (A1). Then

lim sup
σ→∞

γδσ ≤ inf
m≥1

1
mδ

log τ(Pm) < 0.

In continuous time we prove results analogous to Theorems 1.1, 1.2, and 1.3.
Though the statements are similar, the proofs are harder and involve different tech-
niques; in particular, a naive discretization approach fails. Let {xt} denote a Markov
chain, with state space {1, . . . , d} and transition matrix Ĝ. We assume that Ĝ leads
to an ergodic chain; that is,

(A2) for every δ > 0, (exp(Ĝδ))(i, j) > 0 for all i, j ∈ {1, . . . , d}.
The above holds iff all states are communicating. Next, assume that {xt} is observed
via

dyt = hxtdt+ σdνt,

where νt is a standard Wiener process independent of {xt} and h is as in the discrete
time case. Let H denote the diagonal matrix with elements H(i, i) = hi; then the
Zakai equation for the problem is

dρt = Ĝ∗ρtdt+ σ−2Hρtdyt(4)

with pt = ρt/〈ρt,1〉. Now define for every q0 6= q′0 ∈ Sd−1

γσ(q0, q
′
0, ω) = lim sup

t→∞

1
t

log ‖pq0t − p
q′0
t ‖ ;

then a result similar to Theorem 1.1 holds.
THEOREM 1.5. Assume (A2). Then there exists a deterministic function of σ,

γσ, which admits the following:
(1) Let q0, q

′
0 be random, uniformly distributed (U) on the simplex Sd−1, inde-

pendent of each other and of the chain {xt, yt}∞t=0. Then

γσ(q0, q
′
0, ω) = γσ , U × U × P − a.s.

(2) For any deterministic q0 6= q′0 , one has

γσ(q0, q
′
0, ω) ≤ γσ , P − a.s.

A result analogous to Theorem 1.2 holds also.
THEOREM 1.6. Assume (A2). Then

γσ ≤ −2 min
1≤i,j≤d : i6=j

(gijgji)1/2,

where gij = Ĝ(i, j).
Remark. In [4] it is already proven that γσ < 0 under certain conditions, although

not uniformly in σ.
Finally, a result analogous to Theorem 1.3 holds.
THEOREM 1.7. Assume (A2). Then

lim sup
σ→0

σ2γσ ≤ −
1
2
Es[hx0 − hnbr(x0)]2 .(5)

Moreover,

lim inf
σ→0

σ2γσ ≥ −
1
2
Es

d∑
i=1

[hx0 − hi]2 .(6)
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2. Proofs—discrete time. Throughout, we let Tn =DnG
∗ andMσ

n = Tn · · ·T1.
We denote by a∧b the exterior product of two vectors in Rd and by A∧B the exterior
product of two subspaces of Rd (see [2] for definitions of exterior products). For a
d× d matrix A, ||A|| denotes the operator norm (with respect to the Euclidean norm
on Rd). Finally, we use c throughout to denote a constant whose value may change
from line to line which is independent of n, σ, δ.

Proof of Theorem 1.1. Note first that it is enough to prove the theorem in the case
in which X0 is distributed according to the stationary distribution of {Xn}. Indeed,
due to (A1), the stationary distribution has all entries strictly positive, and thus all
almost sure statements, once proved for X0 distributed according to the stationary
law, must translate to the case where X0 = j for any j = 1, . . . , d. The case of general
initial distributions follows immediately.

We may thus assume that X0 is distributed according to its stationary law. In
that case, the sequence of matrices {DnG

∗}∞n=1 possesses a stationary law, which is
also ergodic by (A1). Moreover,

E log+ ||DnG
∗|| ≤ cE d

max
i=1

σ−2
(
Y (n)hi −

1
2
h2
i δ

)+

<∞ .

Hence, we may apply Oseledec’s theorem (see, e.g., [2, p. 181]) to conclude that there
exists a (random) strict subspace S1

ω ⊂ Rd such that if q0 6∈ S1
ω then

1
n

log ||ρq0(n)|| → λσ1 , P − a.s.(7)

Here and in what follows, λσi denotes the ith (nonrandom) Lyapunov exponent as-
sociated with the product of matrices Mσ

n . As is well known (see [3]), the matrix
sequence ((Mσ

n )∗Mσ
n )1/2n has a (random) limit a.s., the eigenvalues of which are eλ

σ
i .

Note that (Mσ
n )∗Mσ

n is a nonnegative matrix, thus by the Perron–Frobenius theorem
the eigenvector associated with the highest eigenvalue of (Mσ

n )∗Mσ
n has all coordi-

nates real and nonnegative. The last property thus holds for ((Mσ
n )∗Mσ

n )1/2n, too,
and hence also for limn→∞(M∗nMn)1/2n. Since S1

ω must be orthogonal to the eigen-
vector associated with the highest eigenvalue of limn→∞(M∗nMn)1/2n, it follows that
S1
ω cannot include any probability vector with all entries strictly positive. As for the

case where q0 does not have all its entries strictly positive, notice that pq0(k) does
(where k is such that Gk(i, j) > 0 for all i, j ∈ {1, . . . , d} ). Thus (7) really holds for
any q0 ∈ Sd−1.

Using again Oseledec’s theorem, this time for the Rd∧Rd-valued process ρq0(n)∧
ρq
′
0(n), there exists a (random) strict subspace S2

ω ⊂ Rd ∧Rd such that if q0 ∧ q′0 6∈ S2
ω

then
1
n

log ||ρq0(n) ∧ ρq′0(n)|| →n→∞ λσ1 + λσ2 , P − a.s.(8)

Furthermore, for q0 ∧ q′0 ∈ S2
ω, Oseledec’s theorem implies

lim sup
n→∞

1
n

log ||ρq0(n) ∧ ρq′0(n)|| ≤ λσ1 + λσ2 , P − a.s.(9)

Next, note that there exists a dimensional constant cd such that if a, b are two
probability vectors in Sd−1 then

1
cd
| sin(a, b)| ≤ ||a− b|| ≤ cd| sin(a, b)| ,
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where (a, b) denotes the angle between the vectors a, b. Since for any two nonzero
vectors c, d (not necessarily normalized) one has that | sin(c, d)| = ||c∧d||/(||c|| · ||d||),
one may conclude that

lim sup
n→∞

1
n

log ||pq0(n)− pq′0(n)||

= lim sup
n→∞

1
n

[log ||ρq0(n) ∧ ρq′0(n)|| − log ||ρq0(n)|| − log ||ρq′0(n)|| .

Combining this and the fact that (7) holds for any probability vectors q0, q
′
0 with

either (8) or (9) yields both parts of the theorem, with γδσ = δ−1(λσ2 − λσ1 ).
It is useful to state the last sentence of the proof of Theorem 1.1 as the following.
COROLLARY 2.1.

γδσ = δ−1(λσ2 − λσ1 ) .(10)

As is clear from [4] (and is evident also in the course of the proof of Theorem 1.1),
the gap between the first and the second Lyapunov exponents will play a crucial role
in our study of the stability of the nonlinear filter. Before providing the proof of
Theorem 1.2, it is useful to recall some definitions and a result of Peres concerning
this gap. We follow the notations of [7], [8].

We say that a matrix A possessing nonnegative entries is allowable if it contains
no columns or rows whose entries are all zero. Let Sd−1

+ denote those elements of
Sd−1 whose entries are all strictly positive. Hilbert’s projective metric is the metric
h̄(·, ·) on Sd−1

+ × Sd−1
+ defined by

h̄(x, y) = log max
1≤i,j≤d

xiyj
xjyi

.

Every allowable matrix A can be seen, by normalization of the linear action of A, as
an operator A : Sd−1

+ → Sd−1
+ . We denote by A.x its action on x ∈ Sd−1

+ . Define now
the Birkhoff contraction coefficient of an allowable matrix A by

τ(A) = sup
{
h̄(A.x,A.y)
h̄(x, y)

∣∣x, y ∈ Sd−1
+ , x 6= y

}
.(11)

LEMMA 2.2 (see Peres [7]). Let {Tn}n≥1 be an ergodic stationary sequence of
nonnegative, allowable matrices, such that Elog+||T1|| < ∞. Let λ1, λ2 denote the
top two Lyapunov exponents for the random product of the Ti. Then

λ1 − λ2 ≥ −E log τ(T1) ,

where λ2 = −∞ if the right-hand side is infinite.
Proof. See [7, Prop. 5].
We recall from [7] and [8] the following useful properties of the contraction coef-

ficient τ(·):
Property 1. τ(AD) = τ(DA) = τ(A) for any diagonal matrix D with strictly

positive diagonal terms.
Property 2. For any matrix A with strictly positive entries, τ(A) < 1.
Property 3. Let A be allowable and define

ψ(A) = min
i,j,k,l

{
aikajl
ailajk

∣∣∣∣ ailajk 6= 0
}
.(12)
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Then

τ(A) =
1−

√
ψ(A)

1 +
√
ψ(A)

.(13)

We are now in a position to state the extension of Theorem 1.2 alluded to in the
introduction.

THEOREM 2.3. Assume that τ(G) < 1. Then

γδσ ≤
log τ(G)

δ
< 0 .

Note that Theorem 1.2 follows at once from Theorem 2.3 by using Property 2
for τ(G). Moreover, it follows that c may be taken as c = log(1 − Ψ)/(1 + Ψ) with
Ψ = mini,j Gij/maxi,j Gij .

Proof of Theorem 2.3. Applying Theorem 1.1 and Corollary 2.1 in combination
with Lemma 2.2 to the recursion (1), one sees that

γδσ ≤ δ−1E log τ(D1G
∗) = δ−1 log τ(G∗) = δ−1 log τ(G) < 0 ,

where the first equality follows from Property 1 for τ(·), the second from Property 3,
and the last inequality from the assumption τ(G) < 1.

Proof of Theorem 1.3. Suppose equation (1) is given two initial conditions q0, q
′
0;

denote

qn = pq0n , q′n = p
q′0
n , rn = qn − q′n.

Now, qn = Tnqn−1/〈Tnqn−1,1〉, and subtracting 〈Tnq′n−1,1〉q′n = Tnq
′
n−1 from

〈Tnqn−1,1〉qn = Tnqn−1 one gets

〈Tnqn−1,1〉rn + 〈Tnrn−1,1〉q′n = Tnrn−1.

Denoting an = 〈Tnqn−1,1〉 and noticing an > 0 one obtains

rn = a−1
n Tnrn−1 − a−1

n q′n〈Tnrn−1,1〉 = a−1
n (I − q′n1∗)Tnrn−1

= a−1
n (I − q′n1∗)DnG

∗rn−1.

The following recursion for rn then holds:

r0 = q0 − q′0,
rn = a−1

n T ′nG
∗rn−1,(14)

where we denote

T ′n = (I − q′n1∗)Dn.

In order to estimate the growth rate of rn one notices

1
n

log ‖rn‖ ≤
1
n

n∑
i=1

log a−1
i +

1
n

n∑
i=1

log ‖T ′i‖+
1
n

n∑
i=1

log ‖G∗‖+
1
n

log ‖r0‖.(15)
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Since the third term is bounded by zero and the fourth tends to zero, we turn to
bound the two first terms. The first term tends for any q0, a.s., to −λσ1 , since

1
n

n∑
i=1

log a−1
i = − 1

n
log〈TnTn−1 · · ·T1q0,1〉

(cf. the discussion following (7) above). Hence, it suffices to compute the limit of the
last quantity for q0 = p0. Denoting the density of (Y1, . . . , Yn) by fY n1 (βn1 ) and the
distribution of (X1, . . . , Xn) by P ((X1, . . . , Xn) = (α1, . . . , αn)) = pXn1 (αn1 ) it follows
from Bayes’ rule that

1
n

n∑
i=1

log a−1
i = − 1

n
log

[
fY n1 (Y n1 )(2πσ2δ)n/2 exp

1
2σ2δ

∑
i

Y 2
i

]

= − 1
n

log

∑
αn1

pXn1 (αn1 )(2πσ2δ)−n/2 exp− 1
2σ2δ

∑
i

(Yi − hαiδ)2


− 1

2
log 2πσ2δ − 1

2nσ2δ

∑
i

Y 2
i

≤ − 1
n

log

[
pXn1 (Xn

1 ) exp−
∑
i

1
2σ2 (σνi)2

]
− 1

2σ2δ

1
n

∑
i

Y 2
i

= − 1
n

log pXn1 (Xn
1 )− 1

2σ2

1
n

∑
i

[h2
Xiδ + 2

√
δσνihXi ].(16)

Next we turn to the second term in the right-hand side of (15). Writing the
diagonal terms of Dn as ∆i

n = Dn(i, i) we have the following expression for T ′n:

T ′n =


∆1
n(1− q′1n ) ∆2

n(−q′1n ) · · · ∆d
n(−q′1n )

∆1
n(−q′2n ) ∆2

n(1− q′2n ) · · · ∆d
n(−q′2n )

...
...

. . .
...

∆1
n(−q′dn ) ∆2

n(−q′dn ) · · · ∆d
n(1− q′dn )

 .

It is useful to consider here the operator norm of T ′n : `1 → `1, namely, ‖T ′n‖1 =
maxk

∑
i |(T ′n)ik|. Fix n and suppose Xn = j; then Yn = hjδ + σνn

√
δ, and

‖T ′n‖1 = max
i

∆i
n

1− q′in +
∑
l 6=i

q′ln

 = 2 max
i

∆i
n(1− q′in).

Denoting the vector bn = (b1n, . . . , b
d
n)∗ := G∗q′n−1 it follows that

q′jn =
bjn∆j

n∑d
l=1 b

l
n∆l

n

,

and thus

1− q′jn =

∑
k 6=j b

k
n∆k

n∑d
l=1 b

l
n∆l

n

≤ min
(

1,
maxk 6=j ∆k

n

bjn∆j
n

)
≤ 1{bjn<α} + 1{bjn≥α}

maxk 6=j ∆k
n

α∆j
n
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for every fixed 0 < α < 1. Therefore,

2∆j
n(1− q′jn ) ≤ 2∆j

n1{bjn<α} +
2
α

1{bjn≥α}max
k 6=j

∆k
n

and, clearly,

∀i, i 6= j 2∆i
n(1− q′in) ≤ 2

α
max
k 6=j

∆k
n.

Using the equivalence of the norms || · || and || · ||1, it follows that there exists a
constant c, independent of n such that

‖T ′n‖ ≤
2c
α

[
1{bjn<α}max

k
∆k
n + 1{bjn≥α}max

k 6=j
∆k
n

]
and thus, defining hmax = maxi{|hi|},

1
n

n∑
i=1

log ‖T ′i‖

≤ log
2c
α

+
1
n

n∑
i=1

1{bXii <α} σ
−2 max

k

(
hkhXiδ + hkσ

√
δνi −

1
2
h2
kδ

)

+
1
n

n∑
i=1

1{bXii ≥α}
σ−2 max

k 6=Xi

(
hkhXiδ + hkσ

√
δνi −

1
2
h2
kδ

)

≤ log
2c
α

+
1
n

n∑
i=1

1{bXii <α}(σ
−2δhmax

2 + σ−1
√
δhmax|νi|)

+
1
n

n∑
i=1

σ−2δ

(
hnbr(Xi)hXi −

1
2
h2

nbr(Xi)

)
+ σ−1

√
δhmax|νi|.

Now, bXii ≥ (G)Xi−1Xiq
′Xi−1
i−1 so choosing α = 1

2 minu,v:(G)uv>0(G)uv it follows that
1{bXii <α} ≤ 1{qXi−1

i−1 < 1
2 }

. Combining this with inequalities (15) and (16) one arrives,

after taking expectation and limit, at

lim
n→∞

1
n
E log ‖rn‖ ≤ c1 + c2

√
δ/σ − δ

2σ2Es (hXi − hnbr(Xi))
2

+c3σ−2 lim
n→∞

1
n

n∑
i=1

P

(
q
Xi−1
i−1 <

1
2

)
.

Since P (q′Xnn < 1
2 ) −→σ→0 0 uniformly in n and since again by Oseledec’s theorem

(see, e.g., [2, p. 181])

lim
1
n

log ‖ ∧r Tn · · ·T1‖ = lim
1
n
E log ‖ ∧r Tn · · ·T1‖ a.s.,

the first part of the theorem is proved.
The second part easily follows from the following facts. First, the spectrum of

the matrix process certainly satisfies

λσ2 − λσ1 ≥ λσ2 − λσ1 + 2λσ1 + λσ3 + · · ·+ λσd − dλσ1 =
d∑
i=1

λσi − dλσ1 .
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Second, since detTn · · ·T1 = detTn · · · detT1, the sum of the exponents can be explic-
itly expressed as

d∑
i=1

λσi = lim
n→∞

1
n

log | detTn · · ·T1| = Es
1
σ2

(
Y1

d∑
i=1

hi −
1
2

d∑
i=1

h2
i δ

)
+ log | detG|

=
δ

σ2Es

(
hX1

d∑
i=1

hi −
1
2

d∑
i=1

h2
i

)
+ log | detG| ,

while

λσ1 ≤ E log ‖ diag(∆i
1)di=1‖1 + log ‖G‖1

≤ E max
i

[
− δ

2σ2 (hX1 − hi)2 +
δh2

X1

2σ2 + hi

√
δν1

σ

]
≤ δ

2σ2Es h
2
X1

+
c
√
δ

σ
.

Thus we conclude that

lim inf
σ→0

σ2γδσ ≥ Es

[
hX1

d∑
i=1

hi −
1
2

d∑
i=1

h2
i −

d

2
h2
X1

]
= Es

[
−1

2

∑
i

(hX1 − hi)2

]
.

Proof of Theorem 1.4. The last inequality holds, since by the assumption there
exists an m0 such that for all m ≥ m0, Gm0 > 0. As for the first inequality, as in the
proof of Theorem 1.1, it suffices to work under the assumption that X0 is distributed
according to the stationary distribution. One may apply Lemma 2.2 for the process of
matrices that are derived from {Tn} by taking products of blocks at length m, where
m ≥ m0:

TmTm−1 · · ·T1, T2mT2m−1 · · ·Tm+1, . . . .

Ergodicity, stationarity, and integrability follow from those of {Tn}. Since (G∗)m is
positive, that is, ∑

i2,...,im−1

(G∗)i1i2 · · · (G∗)im−1im > 0,

it follows that

(Tm · · ·T1)i1im =
∑

i2,...,im−1

∆i1
i (G∗)i1i2 · · ·∆im

m (G∗)im−1im > 0

and allowability follows. The Lyapunov spectrum for this sequence is {mλσi }di=1, thus

γδσ ≤
1
mδ

E log τ(TmTm−1 · · ·T1).(17)

The diagonal terms ∆i
j for which Tj = diag(∆i

j)
d
i=1G

∗ may be expressed as

∆i
j = expσ−2

(
hiYj −

1
2
h2
i δ

)
= exp

[
δσ−2

(
hihXj −

1
2
h2
i

)
+
√
δσ−1hiνj

]
= 1+αij .

Thus

TmTm−1 · · ·T1 = (I + diag(αim)di=1)G∗ · · · (I + diag(αi1)di=1)G∗ = (G∗)m +M,
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where M is a matrix satisfying

‖M‖ ≤ ‖G‖m[(1 + ‖ diag(αim)di=1‖) · · · (1 + ‖ diag(αi1)di=1‖) − 1].

Now,

‖ diag(αij)
d
i=1‖ = max

i

∣∣∣∣exp
[
δσ−2

(
hihXj −

1
2
h2
i

)
+
√
δσ−1hiνj

]
− 1
∣∣∣∣ −→σ→∞ 0 a.s.;

therefore

TmTm−1 · · ·T1 −→σ→∞ (G∗)m a.s.

Since (G∗)m is positive, ψ is continuous at (G∗)m and so is τ ; hence,

τ(TmTm−1 · · ·T1) −→σ→∞ τ((G∗)m) = τ(Gm) a.s.

Since log(τ(·)) ≤ 0 , Fatou’s lemma may be applied to get

lim supσ→∞E log τ(TmTm−1 · · ·T1) ≤ E lim supσ→∞ log τ(TmTm−1 · · ·T1)

= E log τ(Gm) = log τ(Gm),

and the result follows from inequality (17).

3. Proofs—continuous time. Throughout this section, c denotes a t-indepen-
dent deterministic constant (whose value may change from line to line). pxstat denotes
the (unique, by (A2)) stationary law corresponding to Ĝ. We use the notations xt0
and yt0 to denote the sub σ-fields generated, respectively, by {xs, 0 ≤ s ≤ t} and
{ys, 0 ≤ s ≤ t}. E0 denotes expectations under the product measure Px × Py, where
Px denotes the law of the Markov chain x (under the stationary measure) and Py
denotes the law of the observation process {yt, 0 ≤ t <∞}.

Proof of Theorem 1.5. Aside from the conditions needed to meet the assumptions
of Oseledec’s theorem that are proved below, the proof is identical to that of Theorem
1.1. Notice that equation (4) is bilinear, thus there exists a multiplicative process
denoted U = {Ut}t∈R+ such that ρt = Utρ0. Assuming x0 is distributed according
to its stationary law, the shift transformation θt is measure preserving with respect
to {x, ν} and thus with respect to U . Ergodicity of U follows from that of {x, ν},
and separability follows from continuity. It follows from Theorem 2.1 in [5] that
Ut : Rd → Rd is a homeomorphism and thus is invertible for any t ≥ 0. For Oseledec’s
theorem to hold, one needs to show also the integrability of (see [2, p. 181])

u1 = sup
0≤t≤1

log+ ‖Ut‖, u2 = sup
0≤t≤1

log+ ‖U−1
t ‖.

To show u1 is integrable, it suffices to show that sup0≤t≤1 ‖Ut‖ is. Note that by the
Kallianpur–Striebel formula, Ut is a nonnegative matrix for any t ≥ 0, and hence
the unit vector w maximizing ‖Utw‖ has nonnegative entries. Thus, it suffices, by
considering the projection on w, to show integrability of sup0≤t≤1 ‖Utv‖ for some v,
all of whose entries are positive. Under (A2) all entries of pxstat are positive, so v may
be chosen to be pxstat. Since this vector is also the initial distribution of x, it follows
that ‖Utpxstat‖1 = 〈ρt,1〉. By the Kallianpur–Striebel formula,

〈ρt,1〉 = E0

[
exp

∫ t

0

(
hxsdys −

1
2
h2
xsds

) ∣∣∣∣yt0 ] ≤ E0

[
exphmax

∑
i

|∆yi|
]
,
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where ∆yi = yτi+1 − yτi , τ0 = 0, τi = min{t > τi−1 : xt 6= xτi−1} ∧ 1, and integrability
follows from the existence of exponential moments of the normal distribution and the
exponential law of τi − τi−1. As for u2, denote, for a symmetric matrix A, by λi(A)
the ith largest eigenvalue of A, then

log+ ‖U−1
t ‖ ≤ ‖U−1

t ‖ = [λ1(U−1∗
t U−1

t )]1/2 = [λd(UtU∗t )]−1/2

≤ [λ1(UtU∗t )](d−1)/2

(| detUtU∗t |)1/2 ≤ ‖(UtU
∗
t )‖(d−1)/2

| detUt|
≤ ‖Ut‖

d−1

| detUt|
.(18)

Now, Ut solves the Stratonovich equation

dUt =
(
Ĝ∗ − 1

2
σ−2H2

)
Utdt+ σ−2HUt ◦ dyt ;

thus

| detUt| = exp
[∫ t

0
trace

(
Ĝ∗ − 1

2
σ−2H2

)
ds+

∫ t

0
trace(σ−2H) ◦ dys

]
,

and combining this with inequality (18) and the Cauchy–Schwartz inequality, the
integrability of u2 follows.

A corollary analogous to Corollary 2.1 follows.
COROLLARY 3.1. Let λσ1 ≥ λσ2 ≥ · · · ≥ λσd denote the Lyapunov exponents

associated with the multiplicative process Ut. Then,

γσ = λσ2 − λσ1 .(19)

Proof of Theorem 1.6. By Oseledec’s theorem,

lim
t

1
t

log ‖ ∧r Ut‖ = λσ1 + · · ·+ λσr a.s.

This limit equals the limit on the discrete time sequence {nδ} for some δ > 0, so if
one looks at the sequence of linear operators {Âδn} for which

ρp0(nδ) = Âδnρ
p0((n− 1)δ) , ρp0(0) = p0 ,(20)

then

lim
n

1
nδ

log ‖ ∧r Âδn · · · Âδ1‖ = λσ1 + · · ·+ λσr a.s.

Stationarity, ergodicity, and integrability of {Âδn} follow from those of the continu-
ous time process, so the assumptions of Oseledec’s theorem hold, and there exists a
Lyapunov spectrum for (20) denoted {λσ,δi }di=1. The relation between the spectra is
1
δλ

σ,δ
i = λσi and thus by (19),

γσ =
1
δ

(λσ,δ2 − λσ,δ1 ).

It is useful to consider here the well-known representation of the solution to the
Zakai equation as

ρp0(t) = Ltft,
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where

Lt = diag
{

expσ−2
(
hiyt −

1
2
h2
i t

)}d
i=1

and f : R+ 7→ Rd is the solution of{
ḟt = L−1

t Ĝ∗Ltft,

f0 = p0.

Denote by {Aδi } the matrices for which fnδ = Aδnf(n−1)δ. Now, by Property 1 ,
τ(Âδ1) = τ(LδAδ1) = τ(Aδ1). As Ut is a homeomorphism, Âδ1 is invertible. Therefore,
Aδ1 is invertible and thus also allowable. One therefore has by Lemma 2.2 and Fatou’s
lemma

γσ ≤ lim sup
δ→0

1
δ
E log τ(Aδ1) ≤ E lim sup

δ→0

1
δ

log τ(Aδ1).(21)

Since ft belongs to C1[0,∞), it follows that

fδ = (I + L−1
0 Ĝ∗L0δ +Mδ)f0,

where M δ is a d × d matrix with ‖M δ‖ = o(δ). It suffices to prove the theorem for
Ĝ, for which ∀i, j, i 6= j, gij > 0. Under this condition, ψ may be expressed as

ψ(Aδ1) = ψ(I + Ĝ∗δ +Mδ) = min
1≤i,j,k,l≤d

(1{i=j} + gjiδ +mδ
ij)(1{l=k} + gklδ +mδ

lk)
(1{i=k} + gkiδ +mδ

ik)(1{l=j} + gjlδ +mδ
lj)
,

where mδ
ij = (M δ)ij . There exists a δ0 such that for every 0 < δ < δ0, the minimum

is achieved on i = k 6= l = j; thus

ψ(Aδ1) = min
i,j:i6=j

gijgjiδ
2 + o(δ2),

ψ1/2(Aδ1) = min
i,j:i6=j

(gijgji)1/2δ + o(δ),

and

1
δ

log τ(Aδ1) =
1
δ

log
1− ψ1/2(Aδ1)
1 + ψ1/2(Aδ1)

=
1
δ

[
−2 min

i,j:i6=j
(gijgji)1/2δ + o(δ)

]
−→δ→0 −2 min

i,j:i6=j
(gijgji)1/2,

and the result follows from inequality (21).
Proof of Theorem 1.7. It seems natural to approach the continuous time case as

a limit of the discrete time problem. Note, however, that a change in the order of
limits is needed to carry out this approach, and justifying this change of order seems
challenging. We thus take below a different route. Although the general idea is similar
to the discrete time case, extra care is needed due to the fact that the trajectories of
the x process do not possess positive probability, and an appropriate version of the
Feynman–Kac formula is needed.

The first part of the theorem is a direct consequence of the following three lemmas,
whose proof is deferred.

LEMMA 3.2. Assume (A2) holds. Then lim supσ→0 σ
2λσ1 ≤ 1

2 Eh
2
x0

.
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LEMMA 3.3. Assume (A2) holds. Then

lim sup
σ→0

σ2(λσ1 + λσ2 ) ≤ 1
2
Eh2

x0
+ Ehx0hnbr(x0) −

1
2
Eh2

nbr(x0).

LEMMA 3.4. Assume (A2) holds. Then lim infσ→0 σ
2λσ1 ≥ 1

2 Eh
2
x0

.
Given Lemma 3.2 above, the proof of (6) is similar to the proof of (3) in the

discrete time setup, with trace Ĝ playing the role of log | detG| there.
Proof of Lemma 3.2. Using (A2), and denoting by ei the unit vectors in Rd,

it holds that cos(ei, pxstat) ≥ c > 0 for some c independent of t. Therefore, since
Ut is nonnegative, and using c1 to denote another positive deterministic constant
independent of t, ‖ Utpxstat ‖≥ mini cos(ei, pxstat) maxi ‖ Utei ‖≥ c1 ‖ Ut ‖ and

λσ1 = lim
t→∞

1
t
E log ‖ Ut ‖≤ lim

t→∞

1
t
E log ‖ Utpxstat ‖ .

Let x̃ denote the realization of the x process under E0, initialized at the stationary
measure. Then, by the Kallianpur–Striebel formula and Oseledec’s theorem,

λσ1 ≤ lim
t→∞

1
t
E logE0

[
exp

(
σ−2

(∫ t

0
h(x̃s)dys −

1
2
h2(x̃s)ds

)) ∣∣∣∣ yt0] .(22)

Fix δ > 0 and define ∆iy = y(i+1)δ − yiδ, |∆y|i,δmax = max{|yt − yt′ | : t, t′ ∈ [iδ, (i +
1)δ)}. Let {τi} be the jumping times of {x̃t}, and let |∆y|τi,δmax = max {|yt − yt′ | : t ,
t′ ∈ [τi − δ, τi + δ)}. Define similarly ∆iν, |∆ν|i,δmax, |∆ν|τi,δmax and let hmax = maxi |hi|.
Let it = [t/δ] and Nt = max{i : τi ≤ t} = #{τi ≤ t}. We control the integral in (22)
by its discrete time skeleton, with errors occurring only around jump times. That is,∫ t

0

(
h(x̃s)dys −

1
2
h2(x̃s)ds

)
(23)

≤
it∑
i=0

(
h(x̃iδ)∆iy −

1
2
h2(x̃iδ)δ

)
+

Nt∑
i=1

(2hmax|∆y|τi,δmax + hmax
2δ)

≤ 1
2

it∑
i=0

(∆iy)2

δ
+

Nt∑
i=1

[
2hmax

(
2hmaxδ + σ|∆ν|τi,δmax

)
+ h2

mδ
]
.

Thus, by Jensen’s inequality,

1
t
E logE0

[
exp

(
σ−2

∫ t

0
h(x̃s)dys −

1
2
h2(x̃s)ds

) ∣∣∣∣ yt0](24)

≤ 1
t

1
2σ2δ

E

it∑
i=0

(∆iy)2 +
1
t

logE0

[
exp

(
σ−2

Nt∑
i=1

(5hmax
2δ + 2hmaxσ|∆ν|τi,δmax)

)]
.

On the other hand, using stationarity,

E(∆iy)2 = E

(∫ δ

0
h(xs)ds+ σνδ

)2

= E

(∫ δ

0
h(xs)ds

)2

+ σ2δ(25)

≤ Esh2(x0)δ2 + σ2δ + E
[
1{xt jumps in [0, δ)}(2hmaxδ)2

]
= Esh

2(x0)δ2 + σ2δ + δ2C ′δ ,

with C ′δ −→
δ → 0

0.
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Conditioning on Nt, one has

1
t

logE0 exp

(
σ−2

Nt∑
i=1

(
5hmax

2δ + 2hmaxσ|∆ν|τi,δmax
))

≤1
t

logE0 exp(Ntcσ−2δ)

≤1
t

log
∞∑
n=0

exp(ncσ−2δ)c
(µt)n

n!
e−µt

=
1
t

log c+ µ(ecδ/σ
2 − 1) ,(26)

where µ = maxi
∑
j 6=i Ĝij . Combining (22), (24), (25), and (26),

σ2λσ1 ≤
1
2
Esh

2(x0) +
σ2

2δ
+
C ′δ
2

+ σ2µ
(
ecδ/σ

2 − 1
)
.(27)

Now take σ2/δ = ε and δ, σ → 0, then take infimum over {ε > 0} to get

lim sup
σ→0

σ2λσ1 ≤
1
2
Esh

2(x0) .

Proof of Lemma 3.3. We use the same notations as in Lemma 3.2. Let dρt =
Ĝ∗ρtdt + σ−2Hρtdyt, dηt = Ĝ∗ηtdt + σ−2Hηtdyt (the difference between ρt and ηt
lies in possibly different initial conditions). In what follows, we suppress the index t.
Write ρ ∧ η = 1

2 (ρη∗ − ηρ∗), then

(28)
dρη∗ = Ĝ∗ρη∗dt+ σ−2Hρη∗dyt + ρη∗Ĝdt+ σ−2ρη∗Hdyt + σ−2Hρη∗Hdt ,

d(ρ ∧ η) =
[
Ĝ∗(ρ ∧ η)−

(
Ĝ∗(ρ ∧ η)

)∗]
dt+ σ−2 [H(ρ ∧ η)− (H(ρ ∧ η))∗

]
dyt

+σ−2H(ρ ∧ η)Hdt .

Let the (d − 1)d-dimensional vector α = (α12 α13 · · ·α1d α21 α23 · · ·αd(d−1))∗ be
defined by

ρ ∧ η =


0 α12 α13 · · · α1d

α21 0 α23 · · · α2d
...

. . .
αd1 0

 .

Then (28) can be written as

dα = Ḡ∗ αdt+ σ−2H̄1 αdt+ σ−2H̄2 αdyt(29)
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with Ḡ(i, j) ≥ 0 for all i 6= j,

H̄1 =


h1h2

h1h3
. . .

hdhd−1

 ,

H̄2 =


h1 + h2

h1 + h3
. . .

hd + hd−1

 .

We may now regard α as a d(d − 1)-dimensional vector indexed by ij with i 6= j.
Viewed this way, the matrix Ḡ has off-diagonal entries

Ḡij,`m =

 Ĝ`i j = m 6= `,

Ĝmj i = ` 6= m,
0 j 6= m and i 6= `.

The matrix Ḡ is not necessarily a transition-rate matrix. However, there exists a
transition-rate matrix G̃ which is equal to Ḡ off the diagonal. Thus (29) may be
written

dα = G̃∗ αdt+ σ−2H̃1 αdt+ σ−2H̃2 αdyt ,(30)

with G̃∗ + σ−2H̃1 = Ḡ∗ + σ−2H̄1, H̃2 = H̄2. It follows that

H̃1 =


h1h2 + σ2∆g12

h1h3 + σ2∆g13
. . .

hdhd−1 + σ2∆gd(d−1)

 .

Note that while we are primarily interested in solutions to (30) which are in the anti-
symmetric subspace αij = −αji, (30) makes perfect sense for arbitrary vectors in
Rd(d−1). This point of view is particularly useful when computing upper bounds on
Lyapunov exponents.

We now use h̃i(j k) (h̄i(j k)) to denote the jkth element on the diagonal of H̃i

(respectively, H̄i), i = 1, 2. Let S = {jk : j, k ∈ {1, . . . , d}, j 6= k}. Associate to the
Markovian generator G̃ the S-valued process {x̃t}, independent of {xt0} and of {yt0}.
We now introduce an auxiliary assumption on G̃, which will later be proved to be
implied by (A2).

(A3) Let (A2) hold. In addition, assume that x̃ has no transient states.
Note that (A3) implies that x̃ possesses a stationary distribution (not necessarily

unique) with strictly positive components.
By the stochastic Feynman–Kac formula of nonlinear filtering (using, e.g., an

argument similar to Lemma 2.1 of [10]), if αij(t = 0) = P (x̃0 = (ij)), then

〈α,1〉 =
∑
i,j

αij = E0

[
exp

(
σ−2

(∫ t

0
h̃2(x̃s)dys −

1
2
h̃2

2(x̃s)ds+ h̃1(x̃s)ds
)) ∣∣∣∣ yt0] .
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Let At denote the linear map α0 → αt. Let px̃stat denote the stationary distribution
of x̃, which by (A3) has all entries strictly positive. Mimicking the argument used in
the proof of Lemma 3.2, one has by positivity and Oseledec’s theorem that

(31)
λσ1 + λσ2

= lim
t→∞

1
t

log sup
{ρ0,η0:‖ρ0∧η0‖=1}

‖ ρt ∧ ηt ‖≤ lim
t→∞

1
t
E log ‖At‖

≤ lim
t→∞

1
t
E log ‖ Atpx̃stat ‖

= lim
t→∞

1
t
E logE0

[
exp

(
σ−2

(∫ t

0
h̃2(x̃s)dys −

1
2

∫ t

0
h̃2(x̃s)ds+

∫ t

0
h̃1(xs)ds

))
|yt0
]
.

Define n̂ : R → {1, . . . , d} by n̂(a) = argmini|hi − a|. Then there exists a constant
r0 > 0 such that if |hi−a| ≤ r0 then argmini6=n̂(a)|hi−a| = nbr(n̂(a)) . Now, denoting
gm = max |∆g(·)|,

(32)

Jt:=
∫ t

0
h̃2(x̃s)dys −

1
2

∫ t

0
h̃2

2(x̃s)ds+
∫ t

0
h̃1(x̃s)ds

=
∫ t

0
h̄2(x̃s)dys +

∫ t

0
σ2∆g(x̃s)dys −

∫ t

0

1
2
h̄2

2(x̃s)ds

+
∫ t

0
h̄2(x̃s)σ2∆g(x̃s)ds−

∫ t

0

1
2
σ4∆g2(x̃s)ds+

∫ t

0
h̄1(x̃s)ds

≤
it∑
i=0

{
h̄2(x̃iδ)∆iy −

1
2
h̄2

2(x̃iδ)δ + h̄1(x̃iδ) + σ2gm|∆y|i,δmax + 2hmaxσ
2gmδ

}

+
Nt∑
i=1

(2hmax|∆y|τi,δmax + 2hmax
2δ)

≤ J1
t + J2

t ,

where

J1
t =

it∑
i=0

δ

{[
h

(
n̂

(
∆iy

δ

))
+ h

(
nbr

(
n̂

(
∆iy

δ

)))]
∆iy

δ

− 1
2
h2
(
n̂

(
∆iy

δ

))
− 1

2
h2
(

nbr
(
n̂

(
∆iy

δ

)))}
+

∑
{i≤it: |∆iyδ −hj |>r0 ∀j}

{
4hmax|∆iy|i,δmax + h2

mδ
}

and

J2
t =

it∑
i=1

{
σ2gm(2hmaxδ + σ|∆ν|i,δmax) + 2hmaxgmσ

2δ
}

+
Nt∑
i=1

{
2hmax

(
2hmaxδ + σ|∆ν|τi,δmax

)
+ 2hmax

2δ
}
.
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Having J1
t measurable with respect to yt0, it follows using Jensen’s inequality that

1
t
E logE0

[
exp (σ−2Jt)|yt0

]
≤ 1
t

1
σ2EJ

1
t +

1
t

logE0 exp (σ−2J2
t ) .(33)

Now,

1
t
EJ1

t ≤
1
δ
Es

{
(h(x0) + h(nbr(x0)))(δh(x0) + σ∆ν)− δ

2
h2(x0)− δ

2
h2(nbr(x0))

}
+ cδ + ce−r

2
0δ/2σ

2
,(34)

where the second term is due to the fact that the probability of having a jump in the
x process on any δ-interval is of order δ, and the last term is due to the Gaussian law
of ν. Next,

1
t

logE0
(
expσ−2J2

t

)
≤ 1
t

logE0E0
[
exp(σ−2J2

t )|Nt
]

(35)

≤ 1
t

logE0E0

[
exp

{
Nt∑
i=1

(
cδ + cσ|∆ν|i,δmax

)
+

Nt∑
i=1

cδσ−2 + cσ−1|∆ν|τiδmax

}
|Nt

]

=
1
t

logE0 exp
(
t

δ
cδ +

t

δ
c2σ2δ +Ntcδσ

−2 +Ntc
2σ−2δ

)
= c+ c2σ2 +

1
t

logE exp cNtδσ−2

≤ c+ c2σ2 + λ(ecδ/σ
2 − 1) .

Finally, combining (33), (34), and (35),

σ2(λσ1 + λσ2 ) ≤ Es
[
(h(x0) + h(nbr(x0)))h(x0)− 1

2
h2(x0)− 1

2
h2(nbr(x0))

]
+ cδ

+ ce−r
2
0δ/2σ

2
+ σ2c+ σ4c2 + σ2c(ecδ/σ

2 − 1) .

Take now σ2/δ = ε, δ, σ → 0, then take ε→ 0 to conclude the lemma under (A3).
Although (A2) does not imply that all states of x̃ are communicating (as the

example d = 3, Ĝ13 = Ĝ31 = 0 shows), we now show that it does imply (A3). It
suffices to show that for every two states ij, kl ∈ S, if (G̃m)ij, kl > 0 for some m,
then there exists an n such that (G̃n)kl, ij > 0, or, in the terminology we use in what
follows, if the path ij → kl exists then the path kl → ij exists, too. Note next that
it suffices to show the above for j = l and for i, k 6= j such that Ĝi k > 0 (that is
i → k in one step). Suppose, then, that ij → kj in one step. It needs to be shown
that kj → ij. If there exists a path k → i that does not contain j, then the claim
is proved. Otherwise, since Ĝ is communicating, there exists a path k → j → i such
that k → j does not contain i and j → i does not contain k. Thus the following path
exists too:

kj → ki→ ji→ jk → ik → ij,

and it follows that x̃ has no transient states. This concludes the proof.
Proof of Lemma 3.4. The top Lyapunov exponent satisfies

λσ1 = lim
t→∞

1
t
E log ‖Ut‖ ≥ lim

t→∞

1
t
E log ‖Utpxstat‖ .
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Again, we compute ‖Utpxstat‖ using the Kallianpur–Striebel formula. Fix δ > 0 and
let Ii be the interval [δj, δ(j + 1)) such that τi ∈ Ii. Then denoting, as above, by x̃ a
copy of the process x which is independent of yt0 under E0,

1
t
E logE0

[
exp

(
σ−2

(∫ t

0
h(x̃s)dys −

1
2

∫ t

0
h2(x̃s)ds

))
|yt0
]

≥ 1
t
E logE0

[
E0

[
1{x̃s=xs ∀s6∈

⋃
i Ii, s<t}

exp
(
σ−2

(∫ t

0
h(x̃s)dys −

1
2

∫ t

0
h2(x̃s)ds

))
|xt0, yt0

]
|yt0
]

≥ 1
t
E logE0

[
E0
[
1{x̃s=xs ∀s6∈

⋃
i Ii, s<t} exp

(
σ−2Bt(x, y)

)
|xt0, yt0

]
|yt0
]
,

where

Bt(x, y) =
∫ t

0
h(xs)dys −

1
2

∫ t

0
h2(xs)ds−

∑
i

(c|∆y|τi,δmax + cδ).

Thus, by Jensen’s inequality,

1
t
E log ‖Utpxstat‖ ≥

1
t
E logE0

[
1{x̃s=xs ∀s6∈

⋃
i Ii, s<t} exp

(
σ−2Bt(x, y)

)
|xt0, yt0

]
=

1
t

logE
[
1{x̃s=xs ∀s6∈

⋃
i Ii, s<t}|x

t
0
]

+
1
t
Eσ−2Bt(x, y).

Now,

1
t
E logE

[
1{x̃s=xs ∀s6∈

⋃
i Ii, s<t}|x

t
0
]

=
1
t
E logE

[
1{x̃jδ=xjδ ∀j<t/δ s.t. jδ 6∈

⋃
i Ii}|x

t
0
]

≥ 1
t
E logE

[
1{x̃jδ=xjδ ∀j<t/δ}|xt0

]
.

The last quantity tends to − 1
δH({xjδ}), where H({xjδ}) is the entropy rate for {xjδ}.

Moreover,

lim
t→∞

1
t
EBt(x, y) =

1
2
Eh2(x0)− cδ,

and thus we have shown

σ2λσ1 ≥
1
2
Eh2(x0)− cδ − σ2

δ
log d.

Now taking σ → 0 and then δ → 0 yields the result.
Remark. The vector ρ ∧ η has only (d − 1)d/2 degrees of freedom, the same as

the vector α. We have used a (d− 1)d dimensional vector α in order to write (29) as
a matrix with nonnegative off-diagonal entries. For general (nonfiltering) situations,
this might not be possible.
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Abstract. This paper provides necessary conditions of optimality for a general variational
problem for which the dynamic constraint is a differential inclusion with a possibly nonconvex right
side. They take the form of an Euler–Lagrange inclusion involving convexification in only one co-
ordinate, supplemented by the transversality and Weierstrass conditions. It is also shown that for
time-invariant, free time problems, the adjoint arc can be chosen so that the Hamiltonian func-
tion is constant along the minimizing state arc. The methods used here, based on simple “finite
dimensional” nonsmooth calculus, Clarke decoupling, and a rudimentary version of the maximum
principle, offer an alternative, and somewhat simpler, derivation of such results to those used by Ioffe
and Rockafellar in concurrent research.

Key words. Euler–Lagrange condition, calculus of variations, nonconvex differential inclusion,
nonsmooth analysis, limiting subdifferential
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1. Introduction. We consider nonsmooth variational problems of the form (P):

(P)

minimize l(x(0), x(1)) +
∫ 1

0
L(t, x(t), ẋ(t))dt

over arcs x ∈W 1,1([0, 1];Rn) which satisfy

ẋ(t) ∈ F (t, x(t)) a.e. on [0, 1].

Here l : Rn ×Rn → R ∪ {+∞} and L : [0, 1]×Rn ×Rn → R are given functions and
F : [0, 1]×Rn→→Rn is a given multifunction.

The minimization is performed over arcs x in W 1,1([0, 1];Rn) (the space of abso-
lutely continuous Rn-valued functions on [0, 1]) which satisfy the differential inclusion
constraint and for which L(t, x(t), ẋ(t)) is an integrable function. Let x̄ be a mini-
mizer.

Problem (P) provides a framework for dynamic optimization which emphasizes
the constraints on allowable velocities ẋ for a given time and state (t, x). It covers the
formulation traditionally adopted in optimal control theory involving a differential
equation parameterized by a control function u

ẋ(t) = f(t, x(t), u(t)) a.e.

and

u(t) ∈ U(t) a.e.

Here we choose the multifunction to be F (t, x) ≡ f(t, x(t), U(t)). (A differential
inclusion arising in this way is said to have a “parameterization” (f, U).) But problem
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(P) is a convenient description of dynamic systems incorporating feedback loops,
state-dependent control constraints, and other such features for purposes of deriving
optimality conditions.

In the case of no dynamical constraints (F ≡ Rn), smooth l, and L and when
the Lipschitz rank of (x, u) → L(t, x, u) is suitably bounded, the following classical
first-order necessary conditions are satisfied by the minimizer x̄: there exists p ∈W 1,1

such that

(1) (ṗ(t), p(t)) = ∇L(t, x̄(t), ˙̄x(t))

(the Euler–Lagrange condition),

(2) p(t) ˙̄x(t)− L(t, x̄(t), ˙̄x(t)) ≥ p(t)v − L(t, x̄(t), v) ∀ v ∈ Rn a.e.

(the Weierstrass condition), and

(3) (p(0),−p(1)) ∈ ∇l(x̄(0), x̄(1))

(the transversality condition).
Modern developments provide necessary conditions when a dynamic constraint is

present (F 6≡ Rn) and when the functions l and L are possibly nonsmooth. There
are three main strands to this research. The first is the maximum principle (for
parameterized problems) and its nonsmooth counterparts. The second is to replace
(1) and (2) with Clarke’s Hamiltonian inclusion [2]:

(4) (−ṗ(t), ˙̄x(t)) ∈ co∂Hλ(t, x̄(t), p(t))

(p(0),−p(1)) ∈ ∂l(x̄(0), x̄(1)),

in which Hλ is the Hamiltonian

Hλ(t, x, p) := sup{pv − λL(t, x, v) : v ∈ F (t, x)}.

Here ∂Hλ denotes the limiting subdifferential of Hλ(t, ·, ·), defined below (its convex
hull co∂Hλ is the Clarke generalized gradient). The presence of constraints necessi-
tates the introduction of a cost multiplier λ (λ ≥ 0, λ and p(·) not both zero).

We focus attention on the third type of conditions, namely conditions which are
nonsmooth analogues of the classical conditions (1)–(3). What form should they take?
Notice that x̄ is a minimizer for a variational problem in which the dynamic constraint
is absorbed into the cost integrand, namely

minimize
∫ 1

0
(L(t, x, ẋ) + ΨGr{F (t,·)}(x, ẋ))dt.

(Here ΨA is the indicator function for the setA, which takes value 0 on A and +∞ else-
where.) This would suggest a nonsmooth version of (1) “(ṗ(t), p(t)) ∈ λco∂(L(t, ·, ·)+
ΨGr{F (t,·)})(x̄(t), ˙̄x(t)),” from which we might expect to deduce, via a sum rule and a
subdifferential calculus for indicator functions

(ṗ(t), p(t)) ∈ λco∂L(t, x̄(t), ˙̄x(t)) + coNGr{F (t,·)}(x̄(t), ˙̄x(t)) a.e.

Here NGr{F (t,·)} is the limiting normal cone, defined below. (Its closed convex hull
coNGrF (t,·), featured here, is the Clarke normal cone.) See Clarke’s paper [1] for
results in this spirit, which we refer to as the Euler–Lagrange inclusion.
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The weak convergence techniques used in the proof of necessary conditions of
this type make it almost inevitable that the conditions take the form of a convex set
inclusion. Nonetheless a research theme of recent years has been to reduce the extent
of convexification involved. Under the convexity hypothesis Mordukhovich [11, 12]
derived, via discrete approximations, a form of the Euler–Lagrange inclusion which
involves convexification with respect to only one coordinate

ṗ(t) ∈ co{η :(η, p(t)) ∈ λ∂L(t, x̄(t), v) +NGr{F (t,·)}(x̄(t), v) for some v ∈ F (t, x̄(t))

such that p(t)v − λL(t, x̄(t), v) = Hλ(t, x̄(t), p(t))} a.e.

The sharpest available conditions along these lines, in which the convex hull is taken
just with respect to v = ˙̄x(t) rather than all v’s achieving the maximum in the
Hamiltonian, were obtained by Loewen and Rockafellar [9] with an analysis based on
Hamiltonian inclusions and a subdifferential calculus of perturbed Hamiltonian func-
tions for convex differential inclusions. Under the convexity hypothesis they showed
that there exists λ ≥ 0 and p ∈W 1,1 (not all zero) such that

(5) ṗ(t) ∈ co{η : (η, p(t)) ∈ λ∂L(t, x̄(t), ˙̄x(t)) +NGr{F (t,·)}(x̄(t), ˙̄x(t))}

(p(0),−p(1)) ∈ λ∂l(x̄(0), x̄(1)).

(We have been informed that similar results were derived by Smirnov [16] for a nar-
rower class of problems using discrete approximation methods.) We refer to (5) as
the extended Euler–Lagrange condition.

Interest in these conditions has been heightened by recent findings of Rockafellar
[15] that under the convexity assumption and other mild hypotheses this last condition
is equivalent to

ṗ(t) ∈ co{η : (−η, ˙̄x(t)) ∈ ∂Hλ(t, x̄(t), p(t))} a.e.,

which will be recognized as a sharpened version of the Hamiltonian inclusion (4)
involving convexification with respect to only one coordinate. Thus sharpened forms
of the Hamiltonian inclusion and extended Euler–Lagrange inclusion coalesce under
the convexity hypothesis.

We mention that in addition to the three types of necessary conditions for (P)
outlined above there are hybrid conditions due to Kaśkosz and Lojasiewicz [6, 7] and
refined by Zhu [18]. These conditions, expressed in terms of a family of “Lipschitz
selectors” of the multifunction coF , are applicable to variational problems involving
general, unparameterized, differential inclusions, yet have the character of the maxi-
mum principle.

What necessary conditions are valid for variational problems (P) with general
endpoint constraints when the convexity hypothesis is dropped? The maximum prin-
ciple remains valid and also the maximum principle–like conditions of Kaśkosz, Lo-
jasiewicz, and Zhu. Whether the Hamiltonian inclusion is valid in this situation is a
long-standing open question in dynamic optimization.

What about nonsmooth analogues of the classical first-order conditions for non-
smooth, nonconvex problems? The expected conditions are as follows: there exist λ
(≥ 0) and p ∈W 1,1, not both zero, such that

(6) ṗ(t) ∈ co{η : (η, p(t)) ∈ λ∂L(t, x̄(t), ˙̄x(t)) +NGr{F (t,·)}(x̄(t), ˙̄x(t))},

(7) p(t) ˙̄x(t)− λL(t, x̄(t), ˙̄x(t)) ≥ p(t)v − λL(t, x̄(t), v) for all v ∈ F (t, x̄(t)) a.e.,
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and

(8) (p(0),−p(1)) ∈ λ∂l(x̄(0), x̄(1)).

Notice that the extended Euler–Lagrange inclusion (6) and transversality conditions
(8) have been supplemented by a form of the Weierstrass condition (7) appropriate
to problems with dynamic constraints. The Weierstrass condition is superfluous for
convex problems (it is implied by the extended Euler–Lagrange inclusion (6)), but
for nonconvex problems it is a genuinely independent condition on minimizers which
introduces an important global dimension into the optimality conditions regarding
treatment of the velocity variable. The methods of Loewen and Rockafellar [9], which
depend critically on the convexity of the differential inclusion concerned, give little
indication of how such conditions might be derived.

Mordukhovich [14], using a discrete approximation approach, derived the ex-
tended Euler–Lagrange inclusion and transversality condition (but not the Weierstrass
condition) for the costate arc p in the nonconvex case. However, the dropping of the
convexity hypothesis was counterbalanced by imposition of hypotheses stronger than
those of Loewen and Rockafellar regarding regularity and boundedness of F and its
associated subdifferentials.

In a recent paper [5] Ioffe and Rockafellar established validity of the extended
Euler–Lagrange, Weierstrass, and transversality conditions for nonconvex problems
in the case F ≡ Rn (no dynamic constraints). For the class of problems considered,
the regularity and boundedness hypotheses imposed on the data are considerably
weaker than those of [14]. The analysis is based on an analysis of integral functionals
and is a showcase of new constructs of infinite dimensional nonsmooth analysis (those
associated with fuzzy calculus of approximate subdifferential, etc.).

We come now to the contributions of this paper. These are partly improve-
ments on earlier results concerning extended Euler–Lagrange and related conditions
for nonconvex problems with a dynamic constraint and partly methodology. A rel-
atively straightforward derivation of Ioffe and Rockafellar’s necessary conditions for
nonconvex problems is first given, when F ≡ Rn, which just uses the “elementary”
finite dimensional calculus of limiting subdifferentials, a simple version of the maxi-
mum principle and the most traditional of nonsmooth variational principles, Ekeland’s
theorem. These results are a stepping stone to our subsequent derivation of related
necessary conditions (via an exact penalization technique akin to that used by Clarke
[2]) when a (nonconvex) differential inclusion is added to the constraints. The nec-
essary conditions provided here go beyond those for W 1,1 minimizers in [14], both
because they incorporate the Weierstrass condition and because they are derived un-
der boundedness and regularity hypotheses akin to those adopted by Loewen and
Rockafellar (in the convex case), which are significantly weaker than those invoked in
[14]. In particular the hypotheses concerning a.e. continuity of F (·, x), upper semi-
continuous dependence of certain subdifferentials, and uniform boundedness of F are
dispensed with. Finally, we examine free time, autonomous problems (problems where
neither L nor F depend on t). It is shown here that the earlier conditions can be aug-
mented by a constancy condition on the Hamiltonian and a modified transversality
condition.

A word about methodology. This borrows ideas from Clarke’s “decoupling” tech-
nique [3], whereby a variational problem involving a state-dependent velocity con-
straint is approximated by one for which the velocity constraint is state-free. The
Pontryagin maximum principle provides very precise optimality conditions for this
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latter category of variational problems; these are applied to the approximate problems
and we then pass to the limit. However, our approximations procedure is based on
use of Ekeland’s theorem rather than on density properties of proximal subgradients
(as with Clarke), which allows us to conclude strong L1 convergence of velocities. (It
would appear that weak L1 convergence provided by the proximal analysis approach
is inadequate for the derivation of optimality conditions in the nonconvex case.)

Consider the F = Rn case. Our simple idea is to replace the variational problem
(P) with the “decoupled” problem

minimize l(x(0), x(1)) +
∫ 1

0
L(t, w(t), v(t))dt+ ε−1

∫ 1

0
k(t)|x(t)− w(t)|2dt

over (x, (w, v)) which satisfies ẋ(t) = v(t) for some arbitrarily small ε > 0. (Here
k(t) is a Lipschitz constant for the data.) (v, w) are treated as control functions.
Because of the third (penalty) term in the cost, which forces w to approximate a state
trajectory corresponding to v, x̄ is an approximate minimizer for this new problem.
We then can perturb the approximating problem, with the help of Ekeland’s theorem,
to guarantee it has a local minimizer converging to x̄ as ε ↓ 0, in some sense. Applying
the Pontryagin maximum principle to the perturbed problem and passing to the limit
as ε ↓ 0 give the desired necessary conditions when F = Rn. From this everything
follows.

We claim our methods provide a simple derivation of the extended Euler–Lagrange
and related conditions. Some readers might object that we call upon the Pontryagin
maximum principle, which, in its full generality, has a lengthy proof. However, the
special case of it required for application to the decoupled approximation problem,
a case treated by Mordukhovich in [10], admits a simple, direct proof because the
dynamics and cost integrand are smooth in the state variable and nonsmoothness is
confined to the description of the endpoint constraints.

Concurrently, Ioffe [4] too has derived extended Euler–Lagrange and related con-
ditions for nonconvex problems of type (P) with a dynamic constraint. Ioffe improves
on the necessary conditions reported in this paper, regarding fixed time problems, by
weakening the Lipschitz continuity hypotheses on F under which they apply. Again,
the starting point is the necessary conditions of Ioffe and Rockafellar for the case
F ≡ Rn, but then a more refined penalty function argument than that employed here
is used to introduce the dynamic constraint. It would appear, however, that a combi-
nation of the proof techniques of this paper based on application of a simple version of
the maximum principle to treat the case F ≡ Rn and the penalization arguments of
Ioffe to allow for dynamic constraints provides the most straightforward but general
derivation of the Euler–Lagrange and related conditions currently available.

The picture that emerges of necessary conditions for optimal control problems
involving differential inclusions is one in which the extended Euler–Lagrange condition
(coupled with the Weierstrass and transversality conditions) has a pivotal position.
As we have noted, under the convexity hypothesis, it is more or less equivalent to
the latest refinements of the Hamiltonian inclusion condition, but it also applies to
nonconvex problems. Besides, as Ioffe has recently shown [4], the extended Euler–
Lagrange condition (with its associated conditions) provides general versions of the
Pontryagin-type necessary conditions of a kind previously derived by Kaśkosz and
Lojasiewicz [7] as straightforward corollaries. Simple derivations of the extended
Euler–Lagrange inclusion, etc., such as we provide have a valuable role then in making
more accessible latest developments in the theory of necessary conditions.
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The norm on W 1,1 is taken to be

‖x‖W 1,1 := |x(0)|+ ‖ẋ‖L1 .

| · | denotes the Euclidean norm throughout. The Euclidian closed unit ball is
written B. dC(x) denotes the Euclidian distance of the point x ∈ Rn from the set
C ⊂ Rn. dHaus(F1, F2) denotes the Hausdorff distance between two sets. epi{f} is
the epigraph set of the function f .

The following two constructs from nonsmooth analysis are required.
DEFINITION 1. Take a closed set A ⊆ Rk and points x ∈ A, p ∈ Rk. We say that

p is a limiting normal to A at x if and only if there exists pi → p and xi → x in A
such that, for each i, pi · (x − xi) ≤ o(|x − xi|) for all x ∈ A, in which o(α)/α → 0
as α ↓ 0 (i.e., limiting normals are limits of vectors which support A at points near x
to first order). The limiting normal cone to A at x, written NA(x), is the set of all
limiting normals to A at x.

DEFINITION 2. Given a lower semicontinuous function f : Rk → R ∪ {+∞} and
a point x ∈ Rk such that f(x) < +∞, the limiting subdifferential of f at x, written
∂f(x), is

∂f(x) := {ξ : (ξ,−1) ∈ Nepi{f}(x, f(x))},

in which epi{f} denotes the epigraph set {(x, α) ∈ Rk ×R : α ≥ f(x)}.
We refer to [8, 13] for expository accounts of the properties of limiting normal

cones, limiting subdifferentials, and associated calculus rules.
Finally we mention that necessary conditions are derived throughout this paper

for an arc x̄ to be a W 1,1 local minimizer for (P) (or special cases of this general
problem). This means that there exists η > 0 such that x̄ is a minimizer with respect
to all arcs x ∈W 1,1 which satisfy the constraints of (P) and also

(9) ‖x− x̄‖W 1,1 < η.

The concept of a W 1,1 local minimizer is less restrictive than that of strong local
minimizer (where (9) is replaced by ‖x− x̄‖L∞ < η). See [14] and [17] for a discussion
of this point.

2. The Bolza problem with finite Lagrangian. We begin by deriving nec-
essary conditions for the special case of problem (P) in which F = Rn, namely,

(2.1) minimize J(x) := l(x(0), x(1)) +
∫ 1

0
L(t, x(t), ẋ(t))dt over arcs x ∈W 1,1.

(This is described as the “finite Lagrangian” case because the extended Lagrangian
Le(t, x, v) which coincides with L(t, x, v) on F (t, x) and takes value +∞ off F (t, x) is
finite valued.) The primary role of these necessary conditions is to provide a stepping
stone to treat problems with a dynamic constraint. But necessary conditions for finite
Lagrangian problems are of independent interest because of the unrestrictive nature
of the hypotheses under which they are valid (apart of course from the assumption
that F = Rn!). These hypotheses, which relate to the local minimizer x̄ of interest,
are as follows:

(H1) l is lower semicontinuous.
(H2) L(·, x, ·) is measurable for each x with respect to the product σ-algebra L×B.

(L denotes the Lebesgue subsets of [0, 1] and B the Borel sets of Rn.) L(t, ·, ·)
is lower semicontinuous for a.e. t.
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(H3) For every K > 0 there exist δ > 0 and k ∈ L1 such that

|L(t, x′, v)− L(t, x, v)| ≤ k(t)|x′ − x|, L(t, x̄(t), v) ≥ −k(t)

for all x′, x ∈ x̄(t) + δB, and v ∈ ˙̄x(t) +KB a.e. t ∈ [0, 1].
THEOREM 3. Let x̄ be a W 1,1 local minimizer for (2.1), for which J(x̄) < ∞.

Then there exists an arc p ∈W 1,1 which satisfies
(i) the Euler condition: ṗ(t) ∈ co{η : (η, p(t)) ∈ ∂L(t, x̄(t), ˙̄x(t))} a.e.;

(ii) the transversality condition: (p(0),−p(1)) ∈ ∂l(x̄(0), x̄(1));
(iii) the Weierstrass condition: p(t) ˙̄x(t)−L(t, x̄(t), ˙̄x(t)) ≥ p(t)v−L(t, x̄(t), v) for

all v ∈ Rn a.e.
Remark. If L(t, x, v) is continuous in x, v, then the measurability condition in

(H2) can be replaced by the requirement that L(·, x, v) is Lebesgue measurable for
each x, v. We make use of this fact later.

Proof. Fix K > 0 and let k(·) and δ be the corresponding bounds and constant
of (H3). We may of course assume that k(t) ≥ 1 a.e. Let η > 0 be a constant such
that x̄ is a minimizer with respect to all competing arcs which satisfy ‖x− x̄‖W 1,1 ≤ η
and also such that ‖x− x̄‖W 1,1 ≤ η implies ‖x− x̄‖L∞ ≤ δ.

The first step of the proof is to find p ∈ W 1,1 which satisfies the conditions of
the theorem statement, except that (iii) is replaced by a weaker local version of the
condition:

(iii′) p(t) ˙̄x(t)− L(t, x̄(t), ˙̄x(t)) ≥ p(t)v − L(t, x̄(t), v) for all v ∈ ˙̄x(t) +KB.
We can assume without loss of generality that (H3) has been strengthened to

(H3′) |L(t, x′, v)−L(t, x, v)| ≤ k(t)|x′−x| and L(t, x̄(t), v) ≥ −k(t) for all x′, x ∈ Rn
and v ∈ ˙̄x(t) +KB a.e.

This is because, if (H3′) were not satisfied, we could replace it with

L′(t, x, v) :=

{
L(t, x, v) if |x− x̄(t)| ≤ δ,
L(t, x̄(t) + δ x−x̄(t)

|x−x̄(t)| , v) otherwise.

The data (L′, l) satisfy (H3′) (in addition to (H1) and (H2)). x̄ remains a W 1,1 local
minimizer. If some p satisfies (i), (ii), and (iii′) for data (L′, l) at x̄, it also satisfies
these same conditions for data (L, l) because of their “local” nature. So we may
assume that (H3′) is satisfied. Define

L̃(t, w, v) := L(t, x̄(t) + w, ˙̄x(t) + v),

l̃(x, y) := l(x̄(0) + x, x̄(1) + y).

Choose a positive sequence εi → 0. Define

W := {(ξ, w, v) ∈ Rn × L1 × L1 : |v(t)| ≤ K a.e., ‖xξ,v‖W 1,1 ≤ η},

where xξ,v(t) = ξ +
∫ t

0 v(s)ds,

‖(ξ, w, v)‖k := |ξ|+ ‖kw‖L1 + ‖kv‖L1

and, for each i,

J̃i(ξ, w, v) := l̃(xξ,v(0), xξ,v(1)) +
∫ 1

0
L̃(t, w(t), v(t))dt+ ε−1

i

∫ 1

0
k(t)|xξ,v(t)−w(t)|2dt.
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LEMMA 4. For each i, (W, ‖ · ‖k) is a complete metric space and J̃i is lower
semicontinuous on (W, ‖ · ‖k). There exists a positive sequence αi → 0 such that, for
each i, J̃i(0, 0, 0) ≤ infW J̃i(ξ, w, v) + α2

i .
Proof. Obviously, W is a subset of the Banach space {(ξ, w, v) ∈ Rn×L1×L1 :

‖(ξ, w, v)‖k <∞} with norm ‖ · ‖k. We show that it is strongly closed and, for each i,
J̃i is lower semicontinuous on W . Take an arbitrary sequence (ξj , wj , vi) → (ξ, w, v)
in (W, ‖ · ‖k). Write xj = xξj ,vj . Then xj → xξ,v in W 1,1. Restricting attention
to a subsequence, we have wj(t) → w(t) and vj(t) → v(t) a.e. So |v(t)| ≤ K and
‖xξ,v‖W 1,1 ≤ η. The limit point (ξ, w, v) then satisfies the conditions confirming
membership of W , so W is strongly closed. This establishes that (W, ‖·‖k) is complete.

Next we show that J̃i is lower semicontinuous. Again take an arbitrary se-
quence (ξj , wj , vj) → (ξ, w, v) in (W, ‖ · ‖k). By hypothesis (H3′), the sequence
L̃(t, wj(t), vj(t)) + k(t)|wj(t) − w(t)| is bounded below by the integrable function
−k(t)− k(t)|w(t)|. We may therefore deduce from the lower semicontinuity of L̃ and
Fatou’s lemma that

lim inf
j→∞

∫ 1

0
L̃(t, wj(t), vj(t))dt = lim inf

j→∞

∫ 1

0
(L̃(t, wj(t), vj(t)) + k(t)|wj(t)− w(t)|)dt

≥
∫ 1

0
lim inf
j→∞

(L̃(t, wj(t), vj(t)) + k(t)|wj(t)− w(t)|)dt

≥
∫ 1

0
L̃(t, w(t), v(t))dt.

Since xj → xξ,v uniformly, lower semicontinuity of l̃ gives

lim inf
j→∞

l̃(xj(0), xj(1)) ≥ l̃(xξ,v(0), xξ,v(1)).

It follows that

lim inf
j→∞

J̃i(ξj , wj , vj) ≥ lim inf
j→∞

l̃(xj(0), xj(1)) + lim inf
j→∞

∫ 1

0
L̃(t, wj(t), vj(t))dt

+ lim inf
j→∞

∫ 1

0
ε−1
i k(t)|xj(t)− wj(t)|2dt

≥ l̃(xξ,v(0), xξ,v(1)) +
∫ 1

0
L̃(t, w(t), v(t))dt

+
∫ 1

0
ε−1
i k(t)|xξ,v(t)− w(t)|2dt

= J̃i(ξ, w, v).

We conclude that J̃i is lower semicontinuous.
Define

α2
i := J̃i(0, 0, 0)− inf

W
J̃i(ξ, w, v).

Since (0, 0, 0) ∈W , α2
i ≥ 0. For arbitrary (ξ, w, v) ∈W ,

J̃i(ξ, w, v) = J̃i(ξ, xξ,v, v) +
∫

(L̃(t, w(t), v(t))− L̃(t, xξ,v(t), v(t)))dt+ ε−1
i c2

≥ J̃i(0, 0, 0)−
∫
k(t)|xξ,v(t)− w(t)|dt+ ε−1

i c2

(by the minimizing properties of (0, 0, 0))
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≥ J̃i(0, 0, 0)− cd+ ε−1
i c2

= J̃i(0, 0, 0) + ε−1
i (c− εid/2)2 − εid2/4

≥ J̃i(0, 0, 0)− εid2/4,

where c2 :=
∫ 1

0 k(t)|w(t)− xξ,v(t)|2dt and d2 :=
∫ 1

0 k(t)dt. So we have

0 ≤ α2
i ≤ εi

∫ 1

0
k(t)dt/4.

Since the right side converges to 0 as i→∞, the lemma is proved.
We have shown that for each i, (0, 0, 0) is an “α2

i minimizer” for J̃i over W . By
Ekeland’s variational principle there exists (ξi, wi, vi) ∈W which minimizes

Ji(ξ, w, v) := J̃i(ξ, w, v) + αi‖(ξ, w, v)− (ξi, wi, vi)‖k

over W . Also

‖(ξi, wi, vi)‖k ≤ αi.

Write xi = xξi,vi . This last property implies that, for some subsequence, (wi, vi)→ 0
in L1 and a.e. and xi → 0 uniformly.

Since J̃i(0, 0, 0) + αi‖(ξi, wi, vi)‖k ≥ J̃i(ξi, wi, vi), we have

J̃i(0, 0, 0) = l̃(0, 0) +
∫ 1

0
L̃(t, 0, 0)dt

≥ lim sup
i→∞

J̃i(ξi, wi, vi)

≥ lim sup
i→∞

l̃(xi(0), xi(1)) + lim inf
i→∞

∫ 1

0
L̃(t, wi(t), vi(t))dt

But lim infi→∞ l̃(xi(0), xi(1)) ≥ l̃(0, 0) and lim infi→∞
∫ 1

0 L̃(t, wi(t), vi(t))dt ≥∫ 1
0 L̃(t, 0, 0)dt. It follows from these relationships that

lim
i→∞

l̃(xi(0), xi(1)) = l̃(0, 0)

and

lim inf
i→∞

∫ 1

0
(L̃(t, wi(t), vi(t))− L̃(t, 0, 0))dt = 0.

But as before we can use Fatou’s lemma to deduce that∫ 1

0
(lim inf
i→∞

L̃(t, wi(t), vi(t))−L̃(t, 0, 0))dt ≤ lim inf
i→∞

∫ 1

0
(L̃(t, wi(t), vi(t))−L̃(t, 0, 0))dt = 0.

Since lim infi→∞ L̃(t, wi(t), vi(t)) ≥ L̃(t, 0, 0) a.e. We conclude that

lim inf
i→∞

L̃(t, wi(t), vi(t)) = L̃(t, 0, 0) a.e.

We pause to sharpen this last relationship.
LEMMA 5. We may arrange by subsequence extraction that

lim
i→∞

L̃(t, wi(t), vi(t)) = L̃(t, 0, 0) a.e.
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Proof. Write ∆i(t) := L̃(t, wi(t), vi(t)) − L̃(t, 0, 0) + k(t)|wi(t)|. Note that the
functions ∆i(t) are bounded below by an integral function k1(t) := −k(t)− L̃(t, 0, 0).
This fact is required for application of Fatou’s lemma below. Since kwi → 0 in L1

and a.e., we have from the preceding analysis that lim infi→∞∆i(t) → 0 a.e. After
extracting a subsequence we also have

lim
i→∞

∫ 1

0
(L̃(t, wi(t), vi(t))− L̃(t, 0, 0))dt = 0.

This implies that
∫ 1

0 ∆i(t)dt→ 0 as i→∞.
We show ∆i → 0 in measure. This will imply that, for a subsequence, ∆i(t)→ 0

a.e.
Suppose that it is not true; then there exist two positive numbers ε and δ and a

subsequence of {∆i} such that

(10) m({t : |∆i(t)| > ε}) > δ,

where m is Lebesgue measure on [0, 1]. Write Aεi = {t : ∆i(t) > ε} and Bri = {t :
∆i(t) < −r}. Here r is a positive number whose value will be set presently. Note that

lim inf
i→∞

∆i(t)χBri (t) = 0,

where χBri (t) equals 1 if t ∈ Bri and 0 otherwise. We have that

lim inf
i→∞

(−rm(Bri )) ≥ lim inf
i→∞

∫ 1

0
∆i(t)χBri (t)dt

≥
∫ 1

0
lim inf
i→∞

∆i(t)χBri (t)dt = 0.

Hence lim supi→∞m(Bri ) = 0. By (10) however, m(Aεi) > δ for i sufficiently large.
Now choose r > 0 and an integer N such that

r +
∫
Bri

k1(t)dt < εδ/2 for i ≥ N.

We have ∫ 1

0
∆i(t)dt =

∫
Aεi

∆i(t)dt+
∫
Bri

∆i(t)dt+
∫
{−r≤∆i(t)≤ε}

∆i(t)dt

≥ εδ −
∫
Bri

k1(t)dt− r > εδ/2 for i ≥ N.

This contradicts
∫ 1

0 ∆i(t)dt → 0 as i → ∞. So ∆i → 0 in measure. It follows that
∆i(t)→ 0 a.e. along a subsequence.

We can summarize the above discussion in control theoretic terms. Define

L̃i(t, x, w, v) := L̃(t, w, v) + αik(t)|w − wi(t)|+ αik(t)|v − vi(t)|+ ε−1
i k(t)|x− w|2,

l̃i(x, y) := l̃(x, y) + αi|x− xi(0)|.
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The minimizing property of (ξi, vi, wi) can be expressed as follows: ((xi, yi, zi), (vi, wi))
is a minimizer for the problem

minimize z(1) +
∫ 1

0
L̃i(t, x(t), w(t), v(t))dt

subject to
ẋ(t) = v(t), ż(t) = 0,

w(t) ∈ Rn, v(t) ∈ KB,
(x(0), x(1), z(1)) ∈ epi{l̃i}

and{
ẏ(t) = |v(t)|,
y(0) = 0, |x(0)|+ y(1) ≤ η.

Here xi(t) := xξi,vi(t), yi(t) :=
∫ t

0 |vi(s)|ds, and zi(t) := l̃i(xi(0), xi(1)). We have
shown vi, wi → 0 in L1 and a.e., xi, yi → 0 uniformly and

L̃(t, wi(t), vi(t))→ L̃(t, 0, 0),

l̃(xi(0), xi(1))→ l̃(0, 0).

This is an optimal control problem to which the maximum principle in
[2, Thm. 5.2.1] is applicable, with transversality conditions refined as indicated in
[9]. We observe that the differential equation constraint has a right side which is in-
dependent of the state variable. Also, since k(t)|xi(t)−wi(t)|2 is an L1 function there
exist a function c : [0, 1]×Rn ×Rn → R+ and η > 0 such that (a) the cost integrand
x → L̃i(t, x, v, w) is Lipschitz continuous on xi(t) + ηB with rank c(t, v, w) for all
v ∈ KB, w ∈ Rn and a.e. t and (b) c(t, xi(t), vi(t), wi(t)) is integrable in accordance
with the Lipschitz continuity hypotheses which must be checked for application of
[2, Thm. 5.2.1] with modified transversality condition. We take advantage then of
the unrestrictive nature of the hypotheses under which this version of the maximum
principle applies. (The hypothesis that c(t, x, v, w) = c̃(t) for some integrable function
c̃, invoked elsewhere in the necessary conditions literature, is violated.)

Notice that because the right endpoint constraint on y is inactive at y ≡ yi and
because of the “decoupled” structure of the cost and dynamics in y and (x, z), the
costate arc component associated with y must be zero; we therefore drop it from the
relationships. The optimality conditions tell us that there exist pi ∈W 1,1 and λi ≥ 0
such that

(A) −ṗi(t) = −2λiε−1
i k(t)(xi(t)− wi(t)),

(B) (pi(0),−pi(1),−λi) ∈ Nepi{l̃i}(xi(0), xi(1), l̃i(xi(0), xi(1))),
(C) (w, v) 7→ pi(t)v − λiL̃i(t, xi(t), w, v) achieves its maximum at (wi(t), vi(t))

over all (w, v) ∈ Rn ×KB for almost every t,
(D) ‖pi‖∞ + λi = 1.
Condition (C) implies

(11) (ṗi(t), pi(t)) ∈ λi∂[L̃(t, wi(t), vi(t)) + ΨKB(vi(t))] + λiαik(t)(B ×B).
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Fix v = vi(t), then w 7→ pi(t)vi(t) − λiL̃i(t, xi(t), w, vi(t)) achieves its maximum at
wi(t) over all w ∈ Rn. This implies

(12) ṗi(t) ∈ λi∂wL̃(t, wi(t), vi(t)) + λiαik(t)B.

Fix w = wi(t), then v 7→ pi(t)v−λiL̃i(t, xi(t), wi(t), v) achieves its maximum at vi(t)
over v ∈ KB. This implies

(13)
pi(t)(v−vi(t)) ≤ λiL̃(t, wi(t), v)−λiL̃(t, wi(t), vi(t))+λiαik(t)|v−vi(t)| ∀v ∈ KB a.e.

Since L̃(t, ·, v) is Lipschitz with rank k(t) for all v ∈ KB, (12) implies |ṗi(t)| ≤
2k(t). Since the pi’s are uniformly bounded (see (D)), we can arrange, by limiting
attention to a subsequence, that pi → p uniformly and ṗi → ṗ weakly in L1 for some
p ∈W 1,1. We can also ensure that λi → λ for some λ ≥ 0 such that

(14) ‖p‖L∞ + λ = 1.

(13) implies in the limit that

p(t)v ≤ λL̃(t, 0, v)− λL̃(0, 0, 0) a.e. for v ∈ KB.

Observe now that λ > 0, since otherwise this last relation implies p(t) ≡ 0, which
contradicts (D). Since λ > 0, (B) implies

(pi(0),−pi(1)) ∈ λi∂l̃i(xi(0), xi(1)),

and we conclude that

(p(0),−p(1)) ∈ λ∂l̃(0, 0).

We next verify the Euler–Lagrange inclusion in the limit.
By Mazur’s theorem there exists for each i an integer Ni ≥ i and a convex

combination {λi1, . . . , λiNi} such that if we write

qi(t) =
Ni∑
j=i

λij ṗj(t),

then

qi(t)→ ṗ(t) strongly in L1.

Appealing to Carathéodory’s theorem, we deduce that for each i and t there exists
a convex combination {αi0(t), . . . , αin(t)} and integers 0 ≤ ki0(t) < · · · < kin(t) such
that

qi(t) =
n∑
j=0

αij(t)ṗi+kij(t)(t).

A subsequence {qi}i∈S can be chosen (S denotes the index values which are
retained) such that

qi(t)
S→ṗ(t) a.e.
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Write A ⊂ [0, 1] for the set of full measure:

A := {t : qi(t)
S→ṗ(t), |ṗi(t)| ≤ 2k(t)∀i, k(t) <∞ and (wi(t), vi(t))→ (0, 0)}.

Fix t ∈ A. For any j ∈ {0, . . . , n} we note that {αij(t)}i=1,2,... and {ṗi+kij(t)(t)}i=1,2,...
are bounded sequences. Consequently we may choose subsequences with index values

the set S′ ⊂ S such that as iS
′
→∞,

αij(t)→ αj(t) and ṗi+kij (t)→ qj(t) for j = 0, . . . , n

for some convex combination {αj(t) : j = 0, . . . , n} and qj(t) ∈ Rn. Since (wi(t), vi(t))
→ (0, 0), L̃i(t, wi(t), vi(t)) + ΨKB(vi(t)) → L̃(t, 0, 0) and pi(t) → p(t) as i → ∞, we
deduce from (11) that

(qj(t), p(t)) ∈ λ∂L̃(t, 0, 0) for j = 0, . . . , n.

It follows that

ṗ(t) =
n∑
j=0

αjqj(t) ∈ co{η : (η, p(t)) ∈ λ∂L̃(t, 0, 0)} a.e.

These are precisely the assertions of Theorem 3, except that they are expressed in
terms of a cost multiplier λ which is possibly not equal to 1 and that, in the last
condition, the inequality holds only for v ∈ ˙̄x(t) +KB.

Take Ki →∞. Let pi denote the adjoint arc and λi > 0 the cost multiplier when
K = Ki. We deduce from the Euler condition that the ṗi’s are uniformly integrably
bounded. Of course the pi’s are uniformly bounded. Now extract subsequences to
arrange that pi converges uniformly to some limit p, ṗi converges weakly to ṗ, and
λi → λ for some λ such that ‖p‖L∞ + λ = 1. Arguing as before, we arrive at
our earlier conclusions, but the Weierstrass condition is now satisfied globally. From
the Weierstrass condition, however, λ = 0 implies p(t) ≡ 0, which is not possible.
So λ > 0. The final touch is to scale p and λ so that λ = 1. The theorem is
proved.

3. Problems with dynamic and endpoint constraints. We now derive nec-
essary conditions for a version of (P) which allow for dynamic constraints ẋ ∈ F , with
possibly F 6= Rn, and endpoint constraints. The problem (which is labeled (Q)) is

(Q)

minimize l(x(0), x(1)) +
∫ 1

0
L(t, x(t), ẋ(t))dt

over arcs x ∈W 1,1 which satisfy

ẋ(t) ∈ F (t, x(t)), (x(0), x(1)) ∈ C.

l : Rn×Rn → R and L : [0, 1]×Rn×Rn → R are given functions. F : [0, 1]×Rn → Rn

is a given multifunction. C ⊂ Rn ×Rn is a given closed set.
Notice that in this formulation l is everywhere finite. Endpoint constraints are

specified directly via the constraint setC rather than implicitly in terms of the effective
domain of l.

The hypotheses which will be invoked are now listed. They involve δ ∈ (0,∞)
and kl ∈ (0,∞) (for convenience we assume kl ≥ 1) and nonnegative, measurable
functions kF and kL which satisfy

kF ∈ L1, kL ∈ L1, kF kL ∈ L1.
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(G1) |l(x, y)−l(x′, y′)| ≤ kl|(x, y)−(x′, y′)|∀(x, y), (x′, y′) ∈ (x̄(0), x̄(1))+δ(B×B).
(G2) F (t, x) is nonempty and closed for each (t, x). F (t, x) is measurable in t for

fixed x and

F (t, x′) ⊂ F (t, x) + kF (t)|x′ − x|B ∀x, x′ ∈ x̄(t) + δB a.e.

(G3) L(t, x, v) is measurable in t for fixed (x, v) and |L(t, x, v) − L(t, x′, v′)| ≤
kL(t)|(x, v)− (x′, v′)|∀(x, v), (x′, v′) ∈ (x̄(t) + δB)×Rn.

THEOREM 6. Let x̄ be a local minimizer for (Q), for which hypotheses (G1)–(G3)
above are satisfied for some δ > 0. Then there exist p ∈ W 1,1 and λ ≥ 0, not both
zero, satisfying

(i) the Euler condition:

ṗ(t) ∈ co{η : (η, p(t)) ∈ λ∂L(t, x̄(t), ˙̄x(t)) +NGr{F (t,·)}(x̄(t), ˙̄x(t))} a.e.;

(ii) the transversality condition:

(p(0),−p(1)) ∈ λ∂l(x̄(0), x̄(1)) +NC(x̄(0), x̄(1));

(iii) the Weierstrass condition:

p(t) ˙̄x(t)− λL(t, x̄(t), ˙̄x(t)) ≥ p(t)v − λL(t, x̄(t), v)∀v ∈ F (t, x̄(t)) a.e.

We begin by proving the theorem under the condition L = 0. We may assume
without loss of generality that F is globally Lipschitz continuous in x (i.e., the first
condition in hypothesis (G2) is satisfied for all x, x′ ∈ Rn × Rn.) This is because we
can derive necessary conditions for the “truncated” differential inclusion

F̃ (t, x) :=

F (t, x) if x ∈ x̄(t) + δB,

F
(
t, x̄(t) + δ x−x̄(t)

|x−x̄(t)|

)
otherwise,

which is globally Lipschitz continuous, and the necessary conditions are the same.
We may arrange, by reducing δ if necessary, that x̄ is a minimizer with respect

to competing arcs which satisfy ‖x− x̄‖W 1,1 ≤ δ/2.
Denote by W the subset of Rn ×W 1,1:

W = {(e, x) ∈ Rn ×W 1,1 : (x(0), e) ∈ C, ẋ(t) ∈ F (t, x(t)), ‖x− x̄‖W 1,1 ≤ δ/2}.

Here W is equipped with norm

‖(e, x)‖W := |e|+ |x(0)|+ ‖ẋ‖L1 .

We must show that (W, ‖ · ‖W ) is complete. Consider a Cauchy sequence (ej , xj) in
(W, ‖ · ‖W ). Then ej → e, xj(0) → η, and ẋj → ξ in L1 for some e ∈ Rn, η ∈ Rn,
and ξ ∈ L1. We see that xj(t) −

∫ t
0 ξ(s)ds − η =

∫ t
0 (ẋj(s) − ξ(s))ds + (xj(0) − η)

tends to zero uniformly in t. So in fact xj(t) converges in W 1,1 to the absolutely
continuous function x(t) := η +

∫ t
0 ξ(s)ds. It follows we can identify ξ(t) with ẋ(t)

and (e, x(0)) ∈ C since C is closed. Along a subsequence then ẋj → ẋ a.e. By the
continuity of F in x, ẋ(t) ∈ F (t, x(t)) a.e. we see that (e, x) ∈ W , so (W, ‖ · ‖W ) is
complete.

For each i define

li(x, y, x′, y′) := max{l(x, y)− l(x̄(0), x̄(1)) + ε2i , |x′ − y′|}.
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Notice that li is Lipschitz continuous with rank at most kl on δ(B ×B)× δ(B ×B).
(We use here kl ≥ 1.)

Now consider the minimization problem

minimize {li(x(0), e, x(1), e) : (e, x) ∈W}.

The functional (e, x) → li(x(0), e, x(1), e) is continuous on (W, ‖ · ‖W ). Notice also
that li is nonnegative valued and

li(x̄(0), x̄(1), x̄(1), x̄(1)) = ε2i .

So (x̄(1), x̄) is an “ε2i minimizer.” According to Ekeland’s principle, there exists
(ei, xi) ∈W such that

(15) li(xi(0), ei, xi(1), ei) ≤ li(x(0), e, x(1), e) + εi‖(e, x)− (ei, xi)‖W

for all (e, x) ∈W and

(16) ‖(ei, xi)− (x̄(1), x̄)‖W ≤ εi

for all i. Take yi to be the constant arc

yi(t) ≡ ei.

(16) implies that yi(1) → x̄(1), xi(0) → x̄(0), and also (following extraction of sub-
sequences) ẋi → ˙̄x both in L1 and a.e. We have then that xi → x̄. We can arrange,
by eliminating initial terms of the sequence, that ‖xi − x̄‖W 1,1 < δ/2 for all i; i.e.,
the state constraint ‖x − x̄‖W 1,1 ≤ δ/2 implicit in the definition of W is nonactive
and can be disregarded since we are interested only in local minimizing properties of
(ei, xi).

Define

l̃i(x, y, x′, y′) := li(x, y, x′, y′) + εi|x− xi(0)|+ εi|y − yi(0)|.

(15) implies that for each i the arc (xi, yi) is a local minimizer for the variational
problem:

(17)

minimize Ji(x, y) := l̃i(x(0), y(0), x(1), y(1)) + εi

∫ 1

0
|ẋ(t)− ẋi(t)|dt

over arcs (x, y) ∈W 1,1 which satisfy

(ẋ(t), ẏ(t)) ∈ F (t, x(t))× {0} a.e., (x(0), y(0)) ∈ C.

The following lemma justifies replacing (17) by another variational problem in which
the dynamic constraint is represented by a term in the cost function (“exact penal-
ization,” cf. [2, Chap. 3]). This involves the function

ρ(t, x, y, v, w) := dF (t,x)×{0}(v, w) = dF (t,x)(v) + |w|.

LEMMA 7. For each i, (xi, yi) is a local minimizer for

minimize Ji(x, y) +M

∫ 1

0
ρ(t, x(t), y(t), ẋ(t), ẏ(t))dt

over arcs (x, y) which satisfy (x(0), y(0)) ∈ C.

Here M is any constant satisfying M > (kl + 3)K, where K = exp(
∫ 1

0 kF (t)dt).
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Proof. Suppose that the assertions of Lemma 7 are false. Then there must exist
a sequence {(x̃j , ỹj)} in W 1,1 such that ‖(x̃j , ỹj)− (xi, yi)‖W 1,1 → 0 and, for each j,
(x̃j(0), ỹj(0)) ∈ C and

Ji(x̃j , ỹj) +M

∫ 1

0
ρ(t, x̃j(t), ỹj(t), ˙̃xj(t), ˙̃yj(t))dt < Ji(xi, yi).

Since Ji(x̃j , ỹj) ≥ li(x̃j(0), ỹj(0), x̃j(1), ỹj(1)) for each j and the right side of this
inequality tends to Ji(xi, yi) as j →∞, we deduce that∫ 1

0
ρ(t, x̃j(t), ỹj(t), ˙̃xj(t), ˙̃yj(t))dt→ 0.

For sufficiently large j, the successive approximations theorem [2, Thm. 3.1.6] yields
an arc (x̂j , ŷj) satisfying the differential inclusion and endpoint constraints of problem
(17) and for which

(x̂j(0), ŷj(0)) = (x̃j(0), ỹj(0))

and

‖(x̂j , ŷj)− (x̃j , ỹj)‖W 1,1 ≤
∫ 1

0
|( ˙̂xj(t), ˙̂yj(t))− ( ˙̃xj(t), ˙̃yj(t)|dt

≤ K
∫ 1

0
ρ(t, x̃j(t), ỹj(t), ˙̃xj(t), ˙̃yj(t))dt.

Since (x̃j , ỹj) → (xi, yi) uniformly, those relationships tell us that (x̂j , ŷj) → (xi, yi)
uniformly. For sufficiently large j therefore we have from the fact that (xi, yi) is a
local minimizer for (17),

Ji(xi, yi) ≤ Ji(x̂j , ŷj).

Also, we can deduce from the Lipschitz continuity properties of the data that

Ji(x̂j , ŷj) ≤ Ji(x̃j , ỹj) + (kl + 3εi)K
∫ 1

0
ρ(t, x̃j(t), ỹj(t), ˙̃xj(t), ˙̃yj(t))dt

≤ Ji(x̃j , ỹj) +M

∫ 1

0
ρ(t, x̃j(t), ỹj(t), ˙̃xj(t), ˙̃yj(t))dt

< Ji(xi, yi).

This contradicts the preceding inequality, and Lemma 7 is proved.
LEMMA 8. For any x, v ∈ Rn ×Rn and t ∈ [0, 1]

dF (t,x)(v) ≤ (1 + kF (t))dGr{F (t,·)}(x, v).

Proof. Because F (t, ·) has closed values and is assumed to be globally Lip-
schitz continuous, Gr{F (t, ·)} is closed and there exists (y, w) ∈ Gr{F (t, ·)} such that
dGr{F (t,·)}(x, v) = |(x, v)− (y, w)|. By the Lipschitz continuity of F (t, ·), however,

dF (t,x)(v) ≤ dF (t,y)(v) + dHaus(F (t, x), F (t, y))

≤ |v − w|+ kF (t)|x− y|

≤ (1 + kF (t))|(x, v)− (y, w)|

≤ (1 + kF (t))dGr{F (t,·)}(x, v).
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(Here dHaus(F1, F2) is the Hausdorff distance function.) This result is the desired
inequality.

Lemma 8 tells us that the penalty term M
∫ 1

0 ρ(t, x, y, ẋ, ẏ)dt satisfies

M

∫ 1

0
ρ(t, x, y, ẋ, ẏ)dt ≤M

∫ 1

0
((1 + kF )dGr{F (t,·)}(x, ẋ) + |ẏ|)dt

for all (x, y) ∈W 1,1. Of course, because (ẋi, ẏi) ∈ F (t, xi)× {0},

0 = M

∫ 1

0
ρ(t, xi, yi, ẋi, ẏi)dt = M

∫ 1

0
(1 + kF )dGr{F (t,·)}(xi, ẋi)dt.

These relationships combine with the assertions of the lemma to give the following:
for each i, (xi, yi) is a local minimizer for

minimize Ji(x, y) +M

∫ 1

0
((1 + kF )dGr{F (t,·)}(x, ẋ) + |ẏ|)dt

over arcs (x, y) ∈W 1,1 which satisfy (x(0), y(0)) ∈ C.

Our findings up to this point can be expressed as follows: for each i, (xi, yi) is a
minimizer for

minimize l̃i(x(0), y(0), x(1), y(1)) +
∫ 1

0
L̃i(t, x(t), y(t), ẋ(t), ẏ(t))dt

over arcs (x, y) which satisfy (x(0), y(0)) ∈ C.

Here, we recall

l̃i(x, y, x′, y′) := max{l(x, y)− l(x̄(0), x̄(1)) + ε2i , |x′−y′|}+ εi|x−xi(0)|+ εi|y−yi(0)|,

and L̃i is taken to be the function

L̃i(t, x, y, v, w) := εi|v − ẋi(t)|+M(1 + kF (t))dGr{F (t,·)}(x, v) +M |w|.

The hypotheses under which Theorem 3 applies are satisfied, to give the following
information about the minimizer (xi, yi). (See Remark after Theorem 3.) There exist
arcs pi and qi such that

(A′) (ṗi(t), q̇i(t)) ∈ co{(η, ξ) : (η, ξ, pi(t), qi(t)) ∈ ∂L̃i(t, xi(t), yi(t), ẋi(t), 0)};
(B′) (pi(0), qi(0),−pi(1),−qi(1)) ∈ ∂l̃i(xi(0), yi(0), xi(1), yi(1))+NC(xi(0), yi(0))×

{(0, 0)};
(C′) pi(t)ẋi(t) ≥ pi(t)v + qi(t)w − L̃i(t, xi(t), yi(t), v, w) ∀v, w ∈ Rn a.e.
Condition (A′) implies that qi(t) is a constant (we write it qi); |qi| ≤M , |ṗi(t)| ≤

M(1 + kF (t)); and

(18)
ṗi(t) ∈ co{η : (η, pi(t)) ∈ {0} × εiB +M(1 + kF (t))∂dGr{F (t,·)}(xi(t), ẋi(t))}

⊆ co{η : (η, pi(t)) ∈ {0} × εiB +NGr{F (t,·)}(xi(t), ẋi(t))}.

From (B′),

(19)
(pi(0), qi,−pi(1),−qi) ∈ ∂li(xi(0), yi(0), xi(1), yi(1))

+ εi(B ×B)× {(0, 0)}+NC(xi(0), yi(0))× {(0, 0)}.
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We observe that li(xi(0), yi(0), xi(1), yi(1)) > 0 for all i. Otherwise it is zero for some
i which implies yi(1) = xi(1), (xi(0), xi(1)) ∈ C and l(xi(0), xi(1)) ≤ l(x̄(0), x̄(1))−ε2i .
But then xi would satisfy the constraints of (Q) and also ‖xi− x̄‖W 1,1 ≤ δ/2 and have
lower cost than x̄; this contradicts the optimality properties of x̄.

It is now claimed that there exist λi ≥ 0 and ei ∈ Rn such that λi + |ei| = 1 and

(20) ∂li(xi(0), yi(0), xi(1), yi(1)) ⊆ λi∂l(xi(0), yi(0))× {(0, 0)}+ {(0, 0, ei,−ei)}.

Fix i. There are two cases to consider:
(i) xi(1) = yi(1). In this case li(x, y, x′, y′) = l(x, y) − l(x̄(0), x̄(1)) + ε2i on a

neighborhood of (xi(0), yi(0), xi(1), yi(1)), so

∂li(xi(0), yi(0), xi(1), yi(1)) = ∂l(xi(0), yi(0))× {(0, 0)}.

This implies (20) with λi = 1 and ei = 0.
(ii) xi(1) 6= yi(1). In this case the chain rule gives ∂{(x, y)→ |x−y|}|xi(1),yi(1) =

(ẽi,−ẽi) for some unit vector ẽi. We may therefore deduce from the calculus rules con-
cerning function defined by the pointwise-maximum operation (see, e.g., [13, Thm. 6.9])
that, for some λi ∈ [0, 1],

∂li(xi(0), yi(0), xi(1), yi(1)) ⊆ λi∂l(xi(0), yi(0))× {(0, 0)}+ (1− λi){(0, 0, ẽi,−ẽi)}.

Now set ei = (1− λi)ẽi. We see that λi + |ei| = 1 and (20) is satisfied.
We may now deduce from (19) that −pi(1) = ei = qi, and

(21) |pi(1)|+ λi = 1,

(22) (pi(0),−pi(1)) ∈ λi∂l(xi(0), yi(0)) + εi(B ×B) +NC(xi(0), yi(0)).

Condition (C′) implies

(23) pi(t)ẋi(t) ≥ pi(t)v − εi|v − ẋi(t)| ∀v ∈ F (t, xi(t)).

Recall that |ṗi(t)| ≤M(1 + kF (t)) and |pi(1)| ≤ 1. We may therefore arrange by
subsequence extraction that ṗi → ṗ weakly in L1 and pi → p uniformly for some arc
p. We have shown also that ẋi → ˙̄x strongly in L1 and a.e., yi(0)→ x̄(1), and xi → x̄
uniformly. Straightforward limit-taking arguments permit us now to deduce all the
assertions of Theorem 6 from (18), (21)–(23). (Analysis of (18) in the limit is based
on the upper semicontinuous properties of the limiting normal cone and an appeal to
Carathéodory’s theorem.)

This completes the proof in the case L = 0.
Suppose now the integral term is present in the cost of (Q). We reformulate (Q)

as

(24)

minimize l(x(0), x(1)) + z(1)
over arcs (x, z) which satisfy
(ẋ(t), ż(t)) ∈ E(t, x(t))
(x(0), x(1)) ∈ C, z(0) = 0.

Here

E(t, x) := {(v, w) : v ∈ F (t, x), w ≥ L(t, x, v)}.
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For reasons similar to those previously given, we may assume that the mul-
tifunctions F (t, ·) and the functions L(t, ·, ·) are Lipschitz continuous on Rn and
Rn × ( ˙̄x(t) + rB) with Lipschitz ranks at most kF (t) and kL(t), respectively. We
claim that

E(t, x) ⊂ E(t, x′) + k(t)|x− x′|B ∀x, x′ ∈ Rn a.e.,

where k(t) := kF (t)+kL(t)+kF (t)kL(t) which, under the hypotheses, is an integrable
function. To verify this take any x′, x ∈ Rn and (v′, w′) ∈ E(t, x′). Then v′ ∈ F (t, x′)
and w′ ≥ L(t, x′, v′). The Lipschitz continuity of F (t, ·) implies the existence of some
v ∈ F (t, x) such that |v′− v| ≤ kF (t)|x′− x|. Define w := L(t, x, v)−L(t, x′, v′) +w′.
Obviously, (v, w) ∈ E(t, x). We have by the Lipschitz continuity properties of L

|w′ − w| = |L(t, x′, v′)− L(t, x, v)| ≤ kL(t)|(x′, v′)− (x, v)|.

But then

|(v′, w′)− (v, w)| ≤ (k2
F |x′ − x|2 + k2

L(|x′ − x|2 + k2
F |x′ − x|2))1/2

≤ (kF + kL + kLkF )|x′ − x| = k(t)|x′ − x|.

Set z̄(t) =
∫ t

0 L(s, x̄(s), x̄′(s))ds. Then, since x̄ is a minimizer for (Q), (x̄, z̄) is
a minimizer for (24), a problem of the special kind (“L ≡ 0”) for which necessary
conditions have already been derived. We have already checked that E(t, ·) satisfies
the Lipschitz continuity hypothesis for application of Theorem 4, the other hypotheses
on the data for (24) are easily verified. From Theorem 6 we know that there exist
p ∈W 1,1, q ∈ Rn, and λ ≥ 0, not all zero, such that

(A′′) ṗ(t) ∈ co{η : (η, p(t), q) ∈ NGr{E(t,·)}(x̄(t), ˙̄x(t), L(t, x̄(t), ˙̄x(t)))},
(B′′) (p(0),−p(1), q,−q) ∈ λ[∂l(x̄(0), x̄(1))× {(0, 1)}] +NC(x̄(0), x̄(1))×R× {0},
(C′′) p(t) ˙̄x(t) + q ˙̄z(t) ≥ p(t)v + qw ∀(v, w) ∈ E(t, x̄(t)).

Condition (B′′) implies q = −λ, so in particular p and λ are not both zero, and

(p(0),−p(1)) ∈ λ∂l(x̄(0), x̄(1)) +NC(x̄(0), x̄(1)).

Now Gr{E(t, ·)} = epi{(x, v) → ΨGrE(t,·)(x, v) + L(t, x, v)}. Furthermore, since
Gr{E(t, ·)} is closed, the normal cone of this epigraph set at (x̄(t), ˙̄x(t), L(t, x̄(t), ˙̄x(t)))
is known to be contained in

{(ξ,−α) : α ≥ 0, ξ ∈ α∂x,vL(t, x̄(t), ˙̄x(t)) +NGr{F (t,·)}(x̄(t), ˙̄x(t))}.

It follows therefore from (A′′) that we must choose α = −q = λ and

ṗ(t) ∈ co{η : (η, p(t)) ∈ λ∂L(t, x̄(t), ˙̄x(t)) +NGr{F (t,·)}(x̄(t), ˙̄x(t))}.

Finally from condition (C′′), since (v, L(t, x̄(t), v)) ∈ E(t, x̄(t)) for any v ∈
F (t, x̄(t)), we get

p(t) ˙̄x(t)− λL(t, x̄(t), ˙̄x(t)) ≥ p(t)v − λL(t, x̄(t), v) ∀v ∈ F (t, x̄(t)).

Proof of the theorem is complete.
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4. Autonomous problems. Consider a modification of problem (Q), in which
the dynamics and the cost integrand are independent of time, the terminal time is a
choice variable, and the terminal time, together with the end states, are constrained
to lie in a specified set:

minimize l(x(0), x(T ), T ) +
∫ T

0
L(x(t), ẋ(t))dt

over terminal times T > 0 and arcs x ∈W 1,1 satisfying

ẋ(t) ∈ F (x(t)), (x(0), x(T ), T ) ∈ D.

The data here are functions l : Rn ×Rn ×R→ R, L : Rn ×Rn → R, a multifunction
F : Rn→→Rn, and a closed set D ⊂ Rn ×Rn ×R.

A pair (T̄ , x̄) is said to be a local minimizer for the free time problem with
autonomous dynamics if there exists ε > 0 such that it is minimizing over all (T, x)’s
such that

(25) Gr{x} ⊂ Gr{x̄}+ εB.

Necessary conditions are now derived with the help of transformation of the in-
dependent variable techniques previously used, for example, in [2, p. 151 et seq.].

THEOREM 9. Let (T̄ , x̄) be a local minimizer for the free time problem with au-
tonomous dynamics, with T̄ > 0. Assume that for some δ ∈ (0,∞) and some nonneg-
ative measurable functions kF and kL such that kF ∈ L1, kL ∈ L1, and kF kL ∈ L1,
we have the following:

(GF1) l is Lipschitz continuous on a neighborhood of (x̄(0), x̄(T̄ ), T̄ ).
(GF2) F (x) is nonempty and closed for each x,

F (x′) ⊂ F (x) + kF (t)|x′ − x|B ∀x, x′ ∈ x̄(t) + δB a.e.

(GF3) |L(x, v)−L(x′, v′)| ≤ kL(t)|(x, v)−(x′, v′)|∀(x, v), (x′, v′) ∈ (x̄(t)+δ)×Rn.
Then there exist p ∈W 1,1([0, T̄ ];Rn) and λ ≥ 0, not both zero, such that

ṗ(t) ∈ co{η : (η, p(t)) ∈ λ∂L(x̄(t), ˙̄x(t)) +NGr{F (·)}(x̄(t), ˙̄x(t))},

p(t) ˙̄x(t)− λL(x̄(t), ˙̄x(t)) ≥ p(t)v − λL(x̄(t), v)∀v ∈ F (x̄(t)),

p(t) ˙̄x(t)− λL(x̄(t), ˙̄x(t)) = h a.e. for some constant h, and

(p(0),−p(1), h) ∈ λ∂l(x̄(0), x̄(T̄ ), T̄ ) +ND(x̄(0), x̄(T̄ ), T̄ ).

Proof. We deal first with the case L ≡ 0. Consider the fixed time problem:

minimize l(x(0), x(T̄ ), y(T̄ ))

subject to

(ẋ(t), ẏ(t)) ∈ F̃ (x(t))

(x(0), x(T̄ ), y(T̄ )) ∈ D, y(0) = 0

in which F̃ (x) := {(αv, α) : α ∈ [0.5, 1.5], v ∈ F (x)}.
Take any ε′ > 0 and any feasible arc (x, y) for this problem satisfying |(x(s), y(s))−

(x̄(s), ȳ(s) = s)| ≤ ε′ for all s ∈ [0, T̄ ]. Then there exist measurable function α :
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[0, T̄ ] → [0.5, 1.5] and an integrable function φ(s) such that ẋ(s) = α(s)φ(s), φ(s) ∈
F (x(s)), and ẏ(s) = α(s) a.e. Now consider the strictly increasing function θ(s) =∫ s

0 α(σ)dσ. We can use this to define a change of variables t = θ(s). Write x̃(t) =
x(θ−1(t)), 0 ≤ t ≤ T , where T = θ(T̄ ). We can show, with the help of Fabini’s
theorem, that x̃ is absolutely continuous, ˙̃x(t) = φ(θ−1(t)) ∈ F (x̃(t)) a.e. We note
also that

(x̃(0), x̃(T ), T ) = (x(0), x(T̄ ), y(T̄ )).

Hence l(x̃(0), x̃(T ), T ) = l(x(0), x(T̄ ), y(T̄ )), and (x̃(0), x̃(T ), T ) ∈ D. We see that
(T, x̃) is feasible for the original free time problem and has the same cost as that of
(x, y) for the fixed time problem. It is also the case that we can arrange, by choosing
ε′ sufficiently small that Gr{x} ⊂ Gr{x̄} + εB, where ε is the parameter in (25)
associated with (T̄ , x̄) as local minimizer. Since (x̄(s), ȳ(s) = s) is feasible for the
fixed time problem and has cost l(x̄(0), x̄(T̄ ), T̄ ) we conclude that (x̄, ȳ) is a local
minimizer. The hypotheses are satisfied under which Theorem 6 is available to give
information about the local minimizer (x̄, ȳ): there exist p ∈W 1,1, q ∈ R, and λ ≥ 0,
not all zero, such that

ṗ(s) ∈ co{η : (η, p(s), q) ∈ NGr{F̃}(x̄(s), ˙̄x(s), 1)},

(p(0),−p(T̄ ),−q) ∈ λ∂l(x̄(0), x̄(T̄ ), T̄ ) +ND(x̄(0), x̄(T̄ ), T̄ ),

p(s) ˙̄x(s) + q ≥ (p(s)v + q)α ∀α ∈ [0.5, 1.5], v ∈ F (x̄(s)).

This last relation tells us that

−q = p(s) ˙̄x(s) a.e. s ∈ [0, T̄ ],

p(s) ˙̄x(s) ≥ p(s)v ∀v ∈ F (x̄(s)).

To analyze the implications of the costate equation above, note that neighboring
points to (x̄(s), ˙̄x(s), 1) in the graph of F̃ can be expressed as (x′, α′v′, α′) for some
x′, v′, α′ close to (x̄(s), ˙̄x(s), 1) and that, if (η′, p′, q′) is a proximate normal to Gr{F̃}
for some such (x′, α′v′, α′), then

η′(x− x′) + p′(αv − α′v′) + q′(α− α′) ≤M(|(x, αv, α)− (x′, α′v′, α′)|2)

for all x ∈ Rn, v ∈ F (x), and α near (x′, v′, α′). Setting α = α′, we deduce from
the inequality that (η′, α′p′) ∈ NGrF (x′, v′). The usual limit-taking procedure now
permits us to deduce from (η, p(s), q) ∈ NGr{F̃}(x̄(s), ˙̄x(s), 1) that

(η, p(s)) ∈ NGr{F}(x̄(s), ˙̄x(s)).

Assembling all the above relationships and defining h = −q we arrive at the theorem
statement. (Note that q = 0 if p = 0, so that p and λ cannot both be zero.)

To conclude, we allow an integral cost term. The free time problem is reformu-
lated as an integral cost free problem by state augmentation (the dynamics remain
autonomous). The desired necessary conditions for the original problem are now ob-
tained by applying the special case of the necessary conditions (already proved) to the
“augmented” problem. (The arguments required to show that the relevant hypothe-
ses are satisfied for application of the special case of the necessary conditions are in
essential respects the same as those appearing in the proof of Theorem 6.)
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Abstract. It is well known that closing the loop around an exponentially stable, finite-dimen-
sional, linear, time-invariant plant with square transfer-function matrix G(s) compensated by a
controller of the form (k/s)Γ0, where k ∈ R and Γ0 ∈ Rm×m, will result in an exponentially stable
closed-loop system which achieves tracking of arbitrary constant reference signals, provided that (i)
all the eigenvalues of G(0)Γ0 have positive real parts and (ii) the gain parameter k is positive and
sufficiently small.

In this paper we consider a rather general class of infinite-dimensional linear systems, called
regular systems, for which convenient representations are known to exist, both in time and in fre-
quency domain. The purpose of the paper is twofold: (i) we extend the above result to the class of
exponentially stable regular systems and (ii) we show how the parameters k and Γ0 can be tuned
adaptively. The resulting adaptive tracking controllers are not based on system identification or
parameter estimation algorithms, nor is the injection of probing signals required.

Key words. regular infinite-dimensional systems, integral controllability, robust tracking, adap-
tive tracking, state-space methods, frequency-domain methods

AMS subject classifications. 93C20, 93C25, 93C40, 93D09, 93D15, 93D21, 93D25

PII. S0363012994275920

1. Introduction. The synthesis of low-gain I and PI-controllers for uncertain
stable plants has received considerable attention in the past 20 years. Let G be a
stable proper rational transfer function matrix. The main existence result on robust
low-gain I-control says that for any matrix Γ0 satisfying

spectrum(G(0)Γ0) ⊂ {s ∈ C |Re s > 0} ,(1.1)

there exists k∗ > 0 such that for all k ∈ (0, k∗) the controller (1/s)kΓ0 stabilizes
G and the resulting closed-loop system asymptotically tracks arbitrary constant ref-
erence signals. This result has been proved by Davison [4]1 and Lunze [18] using
state-space methods and by Grosdidier, Morari, and Holt [5] and Morari [25] using
frequency-domain methods (see also the book by Lunze [20, Chapter 10], and the text-
book by Morari and Zafiriou [26, p. 362]). There are consequently two parts to the
design of low-gain tracking controllers: choosing Γ0 and tuning k. Such a controller
design approach, called “tuning regulator theory” [4], has been successfully applied
to industrial control problems; see Coppus, Sha, and Wood [2] and Lunze [19].

In the case that G is square, G−1(0) would be a natural choice for Γ0, but in
the presence of uncertainty, G(0) might not be known exactly. However, an estimate
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1In [4] the result is proven for the special choice Γ0 = G−1(0). However, an inspection of the
Lyapunov argument in the proof of lemma 3 in [4] shows that it can be easily extended to the more
general case when Γ0 satisfies (1.1) (simply replace the identity I in equation (28) in [4] by N , where
N is the positive definite solution of the Lyapunov equation (G(0)Γ0)TN +N(G(0)Γ0) = −I).
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G0 of G(0) can be obtained, in principle, by performing step response experiments
on the plant. In this case the matrix Γ0 is then chosen such that (1.1) holds with
G(0) replaced by G0. Although Mustafa [28] has recently derived a formula for the
maximal k∗ in terms of a minimal realization (A,B,C,D) of G, in the presence of
uncertainty there are only crude methods available for determining a number k∗ > 0
such that all gain parameters k ∈ (0, k∗) will lead to a stable closed-loop system; see,
e.g., Lunze [18] and Owens and Chotai [29]. Methods for tuning Γ0 and k by means
of experiments and simulation have been developed and discussed in many places; we
mention only [4], [18], [20], [29], and the paper by Penttinen and Koivo [31].

The above-mentioned tuning regulator result has been extended by Pohjolainen
[32], [33], Pohjolainen and Lätti [34], Logemann and Owens [15] and Logemann,
Bontsema, and Owens [11] to various classes of (abstract) infinite-dimensional sys-
tems and by Koivo and Pohjolainen [9] and Jussila and Koivo [8] to differential delay
systems.

If the plant uncertainty is large and/or if reliable plant step data are not available,
then the parameters k and Γ0 need to be tuned adaptively. It turns out that, once
the tuning problem for k is solved, the tuning of Γ0 can be achieved by applying the
spectrum unmixing techniques used in multivariable high-gain adaptive stabilization,
Mårtensson [21], [22]. Low-gain universal adaptive controllers which achieve asymp-
totic tracking of constant reference signals for finite-dimensional linear stable plants
have been presented by Cook [1] and Miller and Davison [23], [24].2 By “universal”
we mean that the controllers are not based on system identification or parameter
estimation algorithms. The controller given in [1] is smooth, while the control laws
derived in [23], [24] are “piecewise constant.” The controller given in [24] satisfies a
control input constraint.

In this paper we consider the problem of low-gain I-control for the class of expo-
nentially stable, linear, regular infinite-dimensional systems introduced and studied
by Weiss; see [44], [45], [46], [47], [48], [49]. This class is rather general and in-
cludes all distributed parameter systems and all time-delay systems (retarded and
neutral) which are of interest in applications. In particular, it includes the classes of
infinite-dimensional systems considered in the references [8], [9], [15], [11], [32], [33],
[34] mentioned earlier and the well-known class of Pritchard–Salamon systems; see
Pritchard and Salamon [35], [36] and Curtain et al. [3]. Although there exist well-
posed infinite-dimensional systems which are not regular, the authors believe that any
physically motivated well-posed linear time-invariant control system is regular.

In section 2 we provide the necessary background on regular systems which will
be needed in sections 3–5. With one exception, all the results in section 2 are due to
Weiss [44], [45], [46], [47], [48], [49], the exception being a nonlinear existence result
which is required for adaptive low-gain control. The proof of this result is relegated
to an appendix.

Section 3 is devoted to nonadaptive low-gain control of regular systems. We first
prove a frequency-domain result on the existence of low-gain tuning regulators of the
form (1/s)kΓ0 for all square transfer function matrices G which are holomorphic and
bounded on some right-half plane Re s > α for some α = α(G) < 0 and satisfy
det G(0) 6= 0. This result is then applied to regular state-space systems, and it is
shown that for all sufficiently small k the closed-loop system will achieve asymptotic

2Surprisingly, the low-gain adaptive tracking problem has received less attention than its high-
gain counterpart; see Ilchmann [7], Logemann and Ilchmann [12], Ryan [38], and the references
therein.
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tracking of constant reference signals, provided that the initial state of the open-loop
system is sufficiently “smooth.”

In sections 4 and 5 we consider the adaptive low-gain tracking problem for regular
infinite-dimensional systems. While the problem of universal adaptive stabilization
for infinite-dimensional systems has received some attention in recent years (see Lo-
gemann [10], Logemann and Mårtensson [13], Logemann and Owens [14], Logemann
and Zwart [17], and Townley [41]), very little work has been done on adaptive track-
ing (see, however, the paper by Logemann and Ilchmann [12] on a high-gain adaptive
servomechanism for a class of infinite-dimensional systems). In particular, it seems
that so far no research has been carried out on the adaptive low-gain control prob-
lem in an infinite-dimensional setting. We mention that the main result in Cook [1]
(at least as we understand it) relies on the Kalman–Yakubovich lemma. A straight-
forward extension of the approach in [1] to regular infinite-dimensional systems is
not possible, since the existence of an appropriate infinite-dimensional version of the
Kalman–Yakubovich lemma is a difficult open problem. The (discontinuous) piece-
wise constant controllers presented in Miller and Davison [23], [24] seem unnecessarily
complicated and would not generalize to the infinite-dimensional case either. Section
4 is restricted to the case when the steady-state gain matrix G(0) is sign definite; i.e.,
G(0) is either positive or negative definite. We first give an alternative proof of the
finite-dimensional result obtained by Cook [1]. Our proof illustrates certain special
system theoretic properties of the low-gain problem, properties which can even be
exploited in the infinite-dimensional case. The basic idea in [1] is to set the integrator
gain k equal to K(γ), where K is a function, the so-called tuning function, and γ
is a parameter which is adjusted by a suitable adaptation law. The class of tuning
functions K given in [1] exploits the low-gain nature of the problem in the sense that
K(γ)→ 0 as γ →∞. We then prove the main result in section 4, a low-gain adaptive
tuning regulator result for infinite-dimensional regular systems. The choice of tuning
functions is more constrained than in the finite-dimensional case, although we can
still work with functions K satisfying that K(γ)→ 0 as γ →∞. In the sign-indefinite
case, which is treated in section 5, we have to resort to tuning functions which oscillate
smoothly between 0 and an arbitary positive number.

We illustrate our results by a number of examples and simulations in section 6.

Notation.
• For α ∈ R set Cα := {s ∈ C |Re s > α} .
• For α ∈ R and H a Hilbert space we define the exponentially weighted L2-

space L2
α(R+, H) := {f ∈ L2

loc(R+, H) | f(·) exp(−α ·) ∈ L2(R+, H)}.
• If A is a linear operator, then the domain, spectrum, and resolvent set of A

are denoted by D(A), σ(A), and %(A), respectively.
• The Laplace transform is denoted by L.

2. Preliminaries on abstract linear systems. In this section we give some
background on abstract linear systems. Apart from Proposition 2.4 almost all the
results are due to Weiss [44], [45], [46], [47], [48], [49].

First we introduce some notation. For any Hilbert spaceH and any τ ≥ 0, Rτ and
Lτ will denote the right-shift by τ and the left-shift by τ on L2

loc(R+, H), respectively.
The truncation operator Pτ : L2

loc(R+, H)→ L2(R+, H) is given by

(Pτu)(t) =

{
u(t) if t ∈ [0, τ ],

0 if t > τ.
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For u, v ∈ L2
loc(R+, H) and τ ≥ 0, the τ -concatenation u

τ

♦ v is defined by

u
τ

♦ v = Pτu+ Rτv .

The following concept was introduced by Weiss [46]. An equivalent definition can be
found in Salamon [39].

DEFINITION 2.1. Let U , X, and Y be real Hilbert spaces. An abstract linear
system with state-space X, input-space U , and output-space Y is a quadruple Σ =
(T,Φ,Ψ,F), where

(i) T = (Tt)t≥0 is a C0-semigroup of bounded linear operators on X;
(ii) Φ = (Φt)t≥0 is a family of bounded linear operators from L2(R+, U) to X

such that

Φτ+t(u
τ

♦ v) = TtΦτu+ Φtv

for all u, v ∈ L2(R+, U) and all τ, t ≥ 0;
(iii) Ψ = (Ψt)t≥0 is a family of bounded linear operators from X to L2(R+, Y )

such that

Ψτ+tx0 = Ψτx0
τ

♦ ΨtTτx0

for all x0 ∈ X and all τ, t ≥ 0, and Ψ0 = 0;
(iv) F = (Ft)t≥0 is a family of bounded linear operators from L2(R+, U) to

L2(R+, Y ) such that

Fτ+t(u
τ

♦ v) = Fτu
τ

♦ (ΨtΦτu+ Ftv) ,

u, v ∈ L2(R+, U) and all τ, t ≥ 0, and F0 = 0.
It follows easily from the definition that Φ0 = 0 and that for any τ ≥ 0, x0 ∈ X,

and u ∈ L2
loc(R+, U)

(Ψτx0)(t) = (Fτu)(t) = 0 for a.e. t ≥ τ .

Let an input u ∈ L2
loc(R+, U) and an initial state x0 ∈ X be given. The state

x(t) = x(t;x0, u) of Σ at time t ≥ 0 and the output y(·) = y(· ;x0, u) of Σ are defined
by

x(t) = Ttx0 + ΦtPtu ,(2.1a)

Pty = Ψtx0 + FtPtu .(2.1b)

The state trajectory x(·) is continuous from R+ → X, and the output y(·) is in
L2
loc(R+, Y ). Furthermore, if t ≥ τ ≥ 0, then the functions x(·) and y(·) defined by

(2.1) satisfy

x(t) = Tt−τx(τ) + Φt−τLτPtu ,(2.2a)

LτPty = Ψt−τx(τ) + Ft−τLτPtu .(2.2b)

The equations (2.2) express the time-invariance of Σ. They follow in a straightforward
way from Definition 2.1. We say that Σ is exponentially stable if the semigroup T is
exponentially stable, i.e.,

ω(T) := lim
t→∞

1
t

log ‖Tt‖ < 0 .
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It is clear that there exist unique operators Ψ∞ : X → L2
loc(R+, Y ) and F∞ :

L2
loc(R+, U)→ L2

loc(R+, Y ) such that for all τ ≥ 0

Ψτ = PτΨ∞ , Fτ = PτF∞ .

The generator of T is denoted by A. Let X1 be the space D(A) endowed with
the graph norm, and let X−1 be the completion of X with respect to the norm
‖x‖−1 = ‖(λI − A)−1)x‖, where λ ∈ %(A) is fixed. We have X1 ⊂ X ⊂ X−1 and the
canonical injections are bounded and dense. The semigroup T can be restricted to a
C0-semigroup onX1 and extended to a C0-semigroup onX−1. The exponential growth
constant is the same on all three spaces. The generator on X1 is the restriction of A to
D(A2), and the generator on X−1 is an extension of A to X (which is bounded as an
operator from X to X−1). We shall use the same symbols for the original semigroup
and its generator and the corresponding restrictions and extensions.

By a representation theorem due to Salamon [39] (see also Weiss [44], [45]) there
exist unique operators B ∈ L(U,X−1) and C ∈ L(X1, Y ) (the control operator and the
observation operator of Σ, respectively) such that for all t ≥ 0, all u ∈ L2

loc(R+, U),
and all x0 ∈ X1

ΦtPtu =
∫ t

0
Tt−ξBu(ξ) dξ and (Ψ∞x0)(t) = CTtx0 .

B is called bounded if B ∈ L(U,X) (and unbounded otherwise), whereas C is called
bounded if it can be extended continuously to X (and unbounded otherwise).

The Lebesgue extension of C was introduced in [45] and is defined by

CLx0 = lim
t→0

C
1
t

∫ t

0
Tξx0 dξ ,

where D(CL) is equal to the set of all those x0 ∈ X for which the above limit exists.
Clearly X1 ⊂ D(CL) ⊂ X, and for any x0 ∈ X we have that Ttx0 ∈ D(CL) for almost
every t ≥ 0. Furthermore,

(Ψ∞x0)(t) = CLTtx0 for a.e. t ≥ 0 .

Let Ω be a subset of C. A function H : Ω→ L(U, Y ) is called well posed if there
exists α ∈ R such that Cα ⊂ Ω and H is holomorphic and bounded on Cα. It can be
shown (see Weiss [47]) that if α > ω(T) and if u ∈ L2

α(R+, U), then F∞u ∈ L2
α(R+, Y )

and there exists a unique well-posed function G : Cω(T) → L(U, Y ) such that

G(s)(Lu)(s) = [L(F∞u)](s) ∀ s ∈ Cα .

In particular, G is holomorphic on Cω(T) and bounded on Cα for all α > ω(T). The
function G is called the transfer function of Σ. Conversely, due to a result by Salamon
[39], any well-posed function can be realized by an abstract linear system in the sense
of Definition 2.1.

The following lemma will be needed in section 3. Certainly, it should be well
known. However, since we could not find it in the literature, we include the proof.

LEMMA 2.2. Suppose that Σ = (T,Φ,Ψ,F) is exponentially stable. For any
x0 ∈ X and any u ∈ L2(R+, U), the functions x(·) and y(·) defined by (2.1) satisfy

x ∈ L2(R+, X) , y ∈ L2(R+, Y ) .
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Proof. Since x(t) = Ttx0 +
∫ t

0 Tt−ξBu(ξ) dξ, it follows from the exponential
stability of T that x ∈ L2(R+, X) if and only if the function x̄ : t 7→

∫ t
0 Tt−ξBu(ξ) dξ is

in L2(R+, X). Let H2(C0, X) denote the usual Hardy space of holomorphic functions
defined on C0 with values in X. Appealing to the Paley–Wiener theorem, it follows
that x̄ ∈ L2(R+, X) if we can show that Lx̄ ∈ H2(C0, X). To this end set ω0 := ω(T)
and recall from [48] that for any ω > ω0 there exists Mω > 0 such that

‖(sI −A)−1B‖L(U,X) ≤
Mω√

Re s− ω
∀ s ∈ Cω .(2.3)

(In particular, (sI−A)−1B ∈ L(U,X) for all s ∈ Cω.) Moreover, it is routine to show
that the function

Cω0 → L(U, Y ) , s 7→ (sI −A)−1B

is holomorphic. Finally, the Laplace transform of x̄ is given by

(Lx̄)(s) = (sI −A)−1B(Lu)(s) ∀ s ∈ Cω0 ,(2.4)

and by hypothesis, ω0 < 0 and Lu ∈ H2(C0, X). Therefore, combining (2.3) and (2.4)
we obtain that Lx̄ ∈ H2(C0, X).

In order to prove that y ∈ L2(R+, Y ), write y in the form

y = Ψ∞x0 + F∞u.

Using the remarks preceding the lemma, it follows from the hypothesis that F∞u ∈
L2(R+, Y ). It remains to show that Ψ∞x0 ∈ L2(R+, Y ). By the exponential stability
of T it follows in a straightforward way from condition (iii) in Definition 2.1 that
there exists a constant γ > 0 such that

‖Ψτx0‖L2(R+,Y ) ≤ γ‖x0‖ ∀ τ ≥ 0 ∀x0 ∈ X .

Hence

‖PτΨ∞x0‖L2(R+,Y ) = ‖Ψτx0‖L2(R+,Y ) ≤ γ‖x0‖ ∀ τ ≥ 0 , ∀x0 ∈ X ,

which implies that Ψ∞x0 ∈ L2(R+, Y ).
Σ and its transfer function G are called regular if for any u ∈ U the limit

lim
s→∞, s∈R

G(s)u = Du

exists. It follows from the principle of uniform boundedness that D ∈ L(U, Y ). The
operator D is called the feedthrough operator of Σ. If Σ is regular, then for any
x0 ∈ X and u ∈ L2

loc(R+, U), the functions x(·) and y(·), defined by (2.1), satisfy the
equations

ẋ(t) = Ax(t) +Bu(t) ,(2.5a)

y(t) = CLx(t) +Du(t)(2.5b)

for a.e. t ≥ 0 (in particular x(t) ∈ D(CL) for a.e. t ≥ 0). The derivative on the
left-hand side of (2.5a) has of course to be understood in X−1. Moreover, as has been
shown in [47], if Σ is regular, then (sI − A)−1BU ⊂ D(CL) for all s ∈ %(A) and the
transfer function G can be expressed in the following way:

G(s) = CL(sI −A)−1B +D ∀ s ∈ Cω(T) ,
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FIG. 2.1. Static output feedback.

which is familiar from finite-dimensional systems theory. The operators A, B, C, and
D are called the generating operators of Σ.

Finally, we review some of the results on static output feedback for abstract linear
systems which have been recently obtained by Weiss [49]. Consider the feedback
system shown in Figure 2.1.

An operator K ∈ L(Y, U) is called an admissible feedback operator for Σ if
I +KG has a well-posed inverse, i.e., if there exists a well-posed transfer function J
such that

J(s)(I +KG(s)) = (I +KG(s))J(s) = I ∀ s ∈ Cα

for some α ∈ R. It is easy to see that I +KG has a well-posed inverse if and only if
I + GK has. If Σ is regular and if K ∈ L(Y, U) is an admissible feedback operator
for Σ, then I +DK (and hence also I +KD) is left invertible. In particular, if U or
Y is finite-dimensional, then I +DK (and hence also I +KD) is invertible.

The next result shows that if K is an admissible feedback operator for Σ, then
there exists a unique abstract linear system ΣK representing the feedback system
shown in Figure 2.1.

THEOREM 2.3. Let Σ = (T,Φ,Ψ,F) be an abstract linear system, let G denote
its transfer function and let K ∈ L(Y, U) be an admissible feedback operator for Σ.
Then the following statements are true:

(i) There exists a unique abstract linear system ΣK = (TK ,ΦK ,ΨK ,FK) such
that, when we denote

Στ =
(

Tτ Φτ

Ψτ Fτ

)
, ΣK

τ =

(
TK
τ ΦK

τ

ΨK
τ FKτ

)

(τ ≥ 0), we have

ΣK
τ = Στ−Στ

(
0 0
0 K

)
ΣK
τ and Στ = ΣK

τ +ΣK
τ

(
0 0
0 K

)
Στ ∀ τ ≥ 0 .

(2.6)

The transfer function GK of ΣK is given by GK = G(I + KG)−1. Moreover, L ∈
L(Y, U) is an admissible feedback operator for ΣK if and only if K+L is an admissible
feedback operator for Σ. If this is the case, then

(ΣK)L = ΣK+L .(2.7)
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(ii) Under the extra assumptions that Σ is regular and that I+DK is invertible,
it follows that ΣK is regular, and the generating operators AK , BK , CK , and DK of
ΣK are given by

AK = A−BK(I +DK)−1CL , C
K = (I +DK)−1CL , B

K = B(I +KD)−1 ,

and DK = (I +DK)−1D ,

where D(AK) = {x ∈ D(CL) | (A−BK(I +DK)−1CL)x ∈ X}.
For x0 ∈ X and u ∈ L2

loc(R+, U) define the functions x(·) and y(·) by (2.1). The
second equation in (2.6) then implies for t ≥ 0

x(t) = TK
t x0 + ΦK

t Pt(Ky + u),(2.8a)

Pty = ΨK
t x0 + FKt Pt(Ky + u) .(2.8b)

Moreover, for t ≥ τ ≥ 0 we have that

x(t) = TK
t−τx(τ) + ΦK

t−τLτPt(Ky + u),(2.9a)

LτPty = ΨK
t−τx(τ) + FKt−τLτPt(Ky + u) .(2.9b)

The above formulas (2.8) and (2.9) will turn out to be very useful in sections 4 and 5.
Finally, consider the nonlinear system given by

γ̇(t) = ‖v(t)‖2 , k(0) = k0 ∈ R,(2.10a)

w(t) = K(γ(t))v(t) , t ≥ 0 ,(2.10b)

where v ∈ L2
loc(R+,Rm) is the input and w denotes the output. The function K :

R→ R is assumed to be locally Lipschitz.
For sections 4 and 5 we need a well-posedness result for the feedback intercon-

nection of Σ and (2.10). More precisely, consider the feedback system given by (2.1),
(2.10), and the interconnection equations

v = y , u = −w

(where, of course, we assume that U = Y = Rm). The closed-loop equations for y
and γ then take the following form:

y(t) = (Ψ∞x0)(t)− (F∞K(γ)y)(t) ,(2.11a)

γ(t) = γ0 +
∫ t

0
‖y(ξ)‖2 dξ .(2.11b)

Let τ ∈ (0,∞]. A function (y, γ) : [0, τ) → Rm × R is called a solution of (2.11) on
[0, τ) if

(i) (y, γ) ∈ L2([0, τ ′],Rm)×AC([0, τ ′],R) for all τ ′ ∈ [0, τ), where AC([0, τ ′],R)
denotes the real-valued absolutely continuous functions defined on [0, τ ′].

(ii) (y, γ) satisfies (2.11) almost everywhere on [0, τ).
If (2.11) has a solution (y, γ) on [0, τ), then the corresponding state trajectory of

Σ is given by

x(t) = Ttx0 −Φt(PtK(γ)y) ∀ t ∈ [0, τ) .

PROPOSITION 2.4. Suppose that U = Y = Rm and that L−1G ∈ L1
loc(R+,Rm×m).

Then for any (x0, γ0) ∈ X × R there exists a maximal solution of (2.11). To be more
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FIG. 3.1. Closed-loop system F(G,K).

precise, there exists τmax ∈ (0,∞] such that (2.11) has a unique solution (ymax, γmax)
on [0, τmax), and moreover

τmax <∞ =⇒
∫ τmax

0
‖ymax(t)‖2 dt =∞ .

The proof of Proposition 2.4 is given in the appendix.

3. Nonadaptive low-gain control. For α ∈ R let Mα denote the field of
all meromorphic functions defined on Cα. The algebra of all bounded holomorphic
functions defined on Cα will be denoted by H∞α . The symbol H2

α stands for the vector
space of all holomorphic functions f : Cα → C such that supξ>α

∫∞
−∞ |f(ξ+ıω)|2 dω <

∞. Moreover, we define

M− :=
⋃
α<0

Mα , H∞− :=
⋃
α<0

H∞α , H2
− :=

⋃
α<0

H2
α .

Let G ∈Mm×m
− and K ∈Mm×m

− be square transfer-function matrices, and consider
the feedback system shown in Figure 3.1, which will be denoted by F(G,K). We
shall call the feedback system F(G,K) input-output stable if every transfer function
ui 7→ yj that occurs around the loop has all its entries in H∞− . More precisely, we
make the following definition.

DEFINITION 3.1. Let G ∈ Mm×m
− and K ∈ Mm×m

− . The feedback system
F(G,K) is called input-output stable if det(I + G(s)K(s)) 6≡ 0 and

F (G,K) :=

(
K(I + GK)−1 −KG(I + KG)−1

GK(I + GK)−1 G(I + KG)−1

)
∈ H∞− 2m×2m .

We say that K stabilizes G if F(G,K) is input-output stable.
Note that the above concept of input-output stability is stronger than L2-stability,

which is equivalent to F (G,K) ∈ H∞0 2m×2m. However, Definition 3.1 has the advan-
tage that it guarantees the analyticity of the closed-loop transfer function on Cα for
some α < 0, a property which will be needed in the following.

Remark 3.2. (i) It is trivial that K stabilizes G if and only if G stabilizes K.
(ii) Let Q(H∞− ) denote the quotient field of H∞− , i.e., Q(H∞− ) = {n/d |n, d ∈

H∞− , d(s) 6≡ 0}. If F(G,K) is input-output stable, then G ∈ Q(H∞− )m×m and
K ∈ Q(H∞− )m×m.

(iii) If G ∈ H∞− m×m, then F(G,K) is input-output stable if and only if det(I +
G(s)K(s)) 6≡ 0 and K(I + GK)−1 is in H∞−

m×m.
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(iv) A left coprime factorization of G over H∞− is a pair (D,N) ∈ H∞− m×m ×
H∞−

m×m such that det D 6≡ 0, G = D−1N and there exist X,Y ∈ H∞− m×m satisfying
DX+NY = I. Right coprime factorizations over H∞− are defined in an analogous way.
It follows from Smith [40] that G and K admit left and right coprime factorizations
over H∞− if F(G,K) is input-output stable.

PROPOSITION 3.3. Let G ∈Mm×m
− and K ∈Mm×m

− . If K stabilizes G and if

lim
Re s→∞

K(s) = 0 ,

then G is well posed.
Proof. By Remark 3.2 (ii) we have that G,K ∈ Q(H∞− )m×m, and hence, by

Remark 3.2 (iv), there exists a right coprime factorization (NG,DG) of G over H∞−
and a left coprime factorization (DK,NK) of K over H∞− . By a standard result
in fractional representation theory (cf. Vidyasagar, Schneider, and Francis [42]) the
input-output stability of the closed-loop system is equivalent to

inf
s∈C cl0

| det[NK(s)NG(s) + DK(s)DG(s)]| > 0 .(3.1)

Seeking a contradiction, suppose that G is not well posed. Then there exists a se-
quence (sn)n∈N ⊂ C cl

0 with limn→∞Re sn =∞ and such that limn→∞ ‖G(sn)‖ =∞.
As a consequence

lim
n→∞

det DG(sn) = 0 .(3.2)

On the other hand limn→∞K(sn) = 0, and hence

lim
n→∞

NK(sn) = 0 .(3.3)

Combining (3.2) and (3.3) shows that

lim
n→∞

det[NK(sn)NG(sn) + DK(sn)DG(sn)] = 0 ,

contradicting (3.1).
Since in this paper we will be mainly concerned with controllers of the form

K(s) = (1/s)Γ, where Γ ∈ Rm×m, the following definition will turn out to be useful.
DEFINITION 3.4. A transfer function matrix G ∈Mm×m

− is called integral stabi-
lizable if there exists Γ ∈ Rm×m such that the controller K(s) = (1/s)Γ stabilizes G.
If the extra condition

[GK(I + GK)−1](0) = I(3.4)

is satisfied, then G is called integral controllable.
A controller of the form (1/s)Γ is called an integrator. It is a trivial consequence

of Proposition 3.3 that if a transfer-function matrix inMm×m
− is integral stabilizable,

then necessarily it is well posed.
In the following let θ(·) denote the Heaviside step function, i.e.,

θ(t) =

{
1 if t > 0,

0 if t ≤ 0,

As usual, convolution will be denoted by ? . The next result shows that condition
(3.4) is closely related to the asymptotic tracking of constant reference signals.
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PROPOSITION 3.5. Suppose that G ∈ Mm×m
− is integral stabilizable, and let

K(s) = (1/s)Γ, where Γ ∈ Rm×m, be a stabilizing integrator. Then

lim
t→∞

[L−1(GK(I + GK)−1) ? θr](t) = r

for all r ∈ Rm if and only if (3.4) holds.
For the proof of the above proposition we need the following lemma, which is a

special case of the main result in Mossaheb [27].
LEMMA 3.6. Suppose that h is a holomorphic function defined on Cα such that the

function s 7→ sh(s) is in H∞α . Then there exists a measurable function f : R+ → C
with f(·) exp(−β ·) ∈ L1(R+,C) for all β > α and such that

(Lf)(s) = h(s) ∀ s ∈ Cα .

Proof of Proposition 3.5. By assumption we have that

H := (I + GK)−1G = G(I + KG)−1 ∈ H∞− m×m ,

and hence

s[GK(I + GK)−1](s) = s[(I + GK)−1GK](s) = H(s)Γ ∈ H∞− m×m .

Thus, by Lemma 3.6

L−1[GK(I + GK)−1] ∈ L1(R+,Cm×m) .

Therefore

lim
t→∞

[L−1(GK(I + GK)−1) ? θr](t) = lim
t→∞

(∫ t

0
[L−1(GK(I + GK)−1)](τ) dτ

)
r

= [GK(I + GK)−1](0)r ,

which yields the claim.
The next result gives a necessary condition for integral controllability. It shows

that an integral controllable transfer function does not have any transmission zeros
at 0.

PROPOSITION 3.7. Suppose that G ∈Mm×m
− is integral controllable. Then there

exists a left coprime factorization (D,N) of G over H∞− , and the numerator N in
any such factorization satisfies

det N(0) 6= 0 .

Proof. It follows from Remark 3.2 (iv) that there exists a left coprime factorization
(D,N) of G over H∞− . Let Γ ∈ Rm×m be such that K(s) = (1/s)Γ stabilizes G and
(3.4) is satisfied. Define

H := GK(I + GK)−1 , ∆ := lim
s→0

[K(I + GK)−1](s) .

Then DH = NK(I + GK)−1. Moreover, letting s→ 0 and using (3.4) yield D(0) =
N(0)∆. Since D and N are left coprime over H∞− , it follows that

rank N(0)(∆, I) = rank [D(0),N(0)] = m.

Therefore rank N(0) = m, and hence det N(0) 6= 0.
The following theorem is the main input-output result of this section.
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THEOREM 3.8. Suppose that G ∈ H∞−
m×m and that G(0) is real. Then G is

integral controllable if and only if

det G(0) 6= 0 .(3.5)

If (3.5) holds, then there exists Γ0 ∈ Rm×m such that

σ(G(0)Γ0) ⊂ C0 ,(3.6)

and for any Γ0 ∈ Rm×m satisfying (3.6), there exists k∗ > 0 such that for all k ∈
(0, k∗)

F (G,Kk) ∈ H∞− 2m×2m and [GKk(I + GKk)−1](0) = I ,(3.7)

where Kk(s) := (1/s)kΓ0. Moreover, setting Ek(s) = (1/s)(I + GKk)−1(s), we have
that Ek ∈ H2

−
m×m for all k ∈ (0, k∗).

The result shows in particular that there exist low-gain integral controllers which
achieve stability and asymptotic tracking of constant reference signals. Since for
constant reference signals rθ(t), the error signal e(t) of the feedback system is given
by (Le)(s) = Ek(s)r, it follows from the last statement of Theorem 3.8 via the Paley–
Wiener theorem that e ∈ L2(R+,Rm) for all k ∈ (0, k∗). In order to apply Theorem
3.8, we have to know only that the plant is stable and that (3.5) holds. Estimates of
G0 of G(0) can be obtained from step response data. An obvious choice for the gain
matrix Γ0 is Γ0 = G−1

0 . Once a Γ0 satisfying (3.6) has been found, the solution of the
tracking problem reduces to the tuning of the gain parameter k.

Proof of Theorem 3.8. The necessity of (3.5) for integral controllability follows
from Proposition 3.7 and from the hypothesis that G ∈ H∞− m×m. In order to prove
sufficiency, define Γ0 := G−1(0). Then, trivially, (3.6) is satisfied. Moreover, as in
Logemann and Owens [15, pp. 17, 18], it can be shown that there exists a number
k∗ > 0 such that for all k ∈ (0, k∗) the controller Kk stabilizes G, i.e.,

F (G,Kk) ∈ H∞− 2m×2m .

Next observe that by the invertibility of kG(0)Γ0

lim
s→0

[GKk(I + GKk)−1](s) = lim
s→0

G(s)kΓ0(sI + kG(s)Γ0)−1 = I ,

which yields the second equation in (3.7). Finally, Ek = k−1Γ−1
0 Kk(I + GKk)−1,

and therefore Ek ∈ H∞−
m×m for all k ∈ (0, k∗). Since for all such k the transfer

function matrix (I + GKk)−1 is in H∞−
m×m as well, we see that Ek ∈ H2

−
m×m for

all k ∈ (0, k∗).
For Hermitian matrices M,N ∈ Cm×m, in the following we write M ≺ N if

N−M is positive definite and M � N if N−M is negative definite. Similarly, we write
M � N if N−M is positive semidefinite and M � N if N−M is negative semidefinite.
Moreover, for a complex matrix M let MH denote the conjugate transpose of M .

The next result will be an important tool in section 4, although it is interesting
in its own right.

PROPOSITION 3.9. Let G ∈ H∞−
m×m and suppose that det G(0) 6= 0. Setting

G̃(s) := (1/s)G(s) and using the notation of Theorem 2.3 we write

G̃k(s) = G̃(s)(I + kG̃(s))−1 =
1
s
G(s)

(
I +

k

s
G(s)

)−1

, 3

3By slight abuse of notation we write G̃k instead of G̃kI .
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where k ∈ R. Under these conditions there exists k∗ > 0 such that for all k ∈ (0, k∗)

‖G̃k‖∞ =
1
k

(3.8)

if and only if G(0) � 0. Moreover, the claim remains true if we replace k with −k in
(3.8) and G(0) � 0 by G(0) ≺ 0.

As usual, the H∞-norm in (3.8) is defined to be the supremum over C0 of
σmax(G̃k(s)), the largest singular value of G̃k(s). For the single-input single-output
case it follows that if G(0) 6= 0 and if G(0) ∈ R, then there exists k∗ > 0 such that
‖G̃k‖∞ = 1/|k| for all k ∈ R satisfying |k| ∈ (0, k∗) and kG(0) > 0.

Proposition 3.9 is an immediate consequence of the following lemma.
LEMMA 3.10. Let G ∈ H∞−

m×m. Using the notation of Proposition 3.9, the
following statements hold:

(i) Suppose that det G(0) 6= 0 and k 6= 0. Then (3.8) (with k replaced by |k|) is
true if and only if I + kG̃(s) + kG̃H(s) � 0 for all s ∈ C0.

(ii) There exists k∗ > 0 such that I + kG̃(s) + kG̃H(s) � 0 for all s ∈ C0 and
for all k ∈ (0, k∗) if and only if G(0) � 0.

Note that if G(s) ∈ Rm×m for all s ∈ (0,∞), then I + kG̃(s) + kG̃H(s) � 0 for
all s ∈ C0 if and only if (1/2)I + kG̃(s) is positive real.

Proof of Lemma 3.10. (i) By assumption, G−1(0) exists, and thus σmax(G̃k(0)) =
1/k. Therefore (3.8) holds if and only if

σmax(G̃k(s)) ≤ 1
k
∀ s ∈ C0 ,

or equivalently

(I + kG̃(s))−1G̃(s)G̃H(s)(I + kG̃H(s))−1 � 1
k2 I ∀ s ∈ C0 ,

or equivalently

k2G̃(s)G̃H(s) � (I + kG̃(s))(I + kG̃H(s)) ∀ s ∈ C0 ,

which in turn is equivalent to the positive semidefiniteness of I+kG̃(s) +kG̃H(s) for
all s ∈ C0.

(ii) Since G is holomorphic at 0, we can write

G(s) = G(0) +
∞∑
i=1

Gis
i ,(3.9)

where Gi ∈ Cm×m and the power series in (3.9) converges in some disc ∆ε centred
at 0 and with radius ε > 0. Consequently,

I + kG̃(s) + kG̃H(s) = I +
k

s
G(0) +

k

s̄
GH(0) + kH(s) ∀ s ∈ ∆ε ,(3.10)

where

H(s) :=
∞∑
i=1

Gis
i−1 +

∞∑
i=1

GHi s̄
i−1 .

Moreover, since G̃(s) is bounded on C0 \∆ε, there exists k1 > 0 such that

I + kG̃(s) + kG̃H(s) � 0 ∀ s ∈ C0 \∆ε , ∀ k ∈ (0, k1) .(3.11)
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FIG. 3.2. Cascade Σ̃ with input v and output y.

Suppose first that G(0) � 0. Then, using (3.10) and the boundedness of H(s) on ∆ε,
it follows that there exists k2 > 0 such that

I + kG̃(s) + kG̃H(s) � 0 ∀ s ∈ C0 ∩∆ε , ∀ k ∈ (0, k2) .(3.12)

Setting k∗ := min(k1, k2) we obtain from (3.11) and (3.12) that

I + kG̃(s) + kG̃H(s) � 0 ∀ s ∈ C0 , ∀ k ∈ (0, k∗) .(3.13)

Conversely, suppose that (3.13) holds. Then, by (3.10), we obtain for any ξ ∈ Cm
that

2Re
〈
ξ,
k

s
G(0)ξ

〉
+ ‖ξ‖2 + k〈ξ,H(s)ξ〉 ≥ 0 ∀ s ∈ C0 ∩∆ε , ∀ k ∈ (0, k∗) ,

and hence it follows that for all s ∈ C0 ∩∆ε and all k ∈ (0, k∗)

2k
|s|2 (Re sRe 〈ξ,G(0)ξ〉 − Im s Im 〈ξ,G(0)ξ〉) + ‖ξ‖2 + k〈ξ,H(s)ξ〉 ≥ 0 .

Therefore, using the boundedness of H(s) on ∆ε, we may conclude that for all ξ ∈ Cm,
Im 〈ξ,G(0)ξ〉 = 0 and Re 〈ξ,G(0)ξ〉 ≥ 0, which in turn implies that G(0) � 0.

In the following we will apply Theorem 3.8 to regular linear state space-systems.
Since this additional assumption of regularity does not exclude any physically moti-
vated well-posed system, the following results are as general as can be expected. For
the rest of the section let Σplant = (T,Φ,Ψ,F) be an exponentially stable abstract
linear regular system with generating operators (A,B,C,D), state space X, input
space U = Rm, output space Y = Rm, and transfer function G. Clearly, by expo-
nential stability, G ∈ H∞− m×m. If u ∈ L2

loc(R+,Rm) denotes the input and x0 ∈ X
denotes the initial state, then the state x(·) and the output y(·) are given by (2.1).
Moreover, let Σint denote the integrator described by

z(t) = z0 +
∫ t

0
v(τ) dτ , z0 ∈ Rm ,

where v ∈ L2
loc(R+,Rm) is the integrator input.

We will consider the series connection Σ̃ of Σint followed by Σplant with input v
and output y (cf. Figure 3.2).

In order to show that Σ̃ is again an abstract linear regular system, we introduce
an extra external input w ∈ L2

loc(R+,Rm) and consider the cascade interconnection
Σ̂ with input (w, v) and output (y, z) obtained by setting u = z + w (cf. Figure 3.3).

We claim that Σ̂ is an abstract linear regular system. To this end consider the
parallel interconnection Σpar of Σint and Σplant shown in Figure 3.4.

Clearly, Σpar is an abstract linear regular system, and the matrix J given by

J =
(

0 −I
0 0

)
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FIG. 3.3. Cascade Σ̂ with input (w, v) and output (y, z).
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FIG. 3.4. Parallel interconnection Σpar.

is an admissible feedback operator for Σpar. Using the notation of section 2, we have
that Σ̂ = (Σpar)J , and hence it follows from Theorem 2.3 that Σ̂ is an abstract linear
regular system. Writing Σ̂ = (T̂, Φ̂, Ψ̂, F̂), we see that Σ̃ = (T̃, Φ̃, Ψ̃, F̃), where

T̃ = T̂ , Φ̃ = Φ̂
(

0
I

)
, Ψ̃ = (I, 0)Ψ̂ , F̃ = (I, 0)F̂

(
0
I

)
.

Therefore Σ̃ is an abstract linear regular system whose state, input, and output spaces
are given by X × Rm, U = Rm, and Y = Rm, respectively. Denoting the generating
operators of Σ̃ by Ã, B̃, C̃, and D̃ it follows from Theorem 2.3 (ii) that

Ã =
(
A B
0 0

)
, B̃ =

(
0
I

)
, C̃ = (CL, D), D̃ = 0,(3.14)

where the domain D(Ã) of Ã is given by

D(Ã) = {(x, u) ∈ D(CL)× Rm |Ax+Bu ∈ X} .

If B is bounded, then it follows easily that D(Ã) = D(A) × Rm. Note that any
unboundedness of B is absorbed into the unboundedness of Ã and hence the control
operator B̃ of Σ̃ is bounded. Trivially, the function G̃(s) := (1/s)G(s) is the transfer
function of Σ̃.

LEMMA 3.11. Every Γ ∈ Rm×m is an admissible feedback operator for Σ̃ and
(using the notation of section 2) we have that for all Γ ∈ Rm×m

D(ÃΓ) = D(Ã) = {(x, u) ∈ X × Rm |Ax+Bu ∈ X} .(3.15)

Proof. Since G̃(s) = (1/s)G(s) and G ∈ H∞α for some α < 0, it follows from
section 2 that any Γ ∈ Rm×m is an admissible feedback operator for Σ̃.
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We show first that the second equality in (3.15) holds. It is clear that

D(Ã) ⊂ {(x, u) ∈ X × Rm |Ax+Bu ∈ X} =: D ,

and it only remains to prove that D ⊂ D(Ã). To this end define

W := D(A) + (λI −A)−1BRm ,

where λ ∈ %(A). Since D(A) ⊂ D(CL) and, by regularity, (λI −A)−1BRm ⊂ D(CL),
it follows that W ⊂ D(CL).

Let (x, u) ∈ D. Then ξ := (λI −A)x−Bu ∈ X, and hence

x = (λI −A)−1ξ + (λI −A)−1Bu ∈W .

It follows that x ∈ D(CL) and therefore (x, u) ∈ D(Ã).
In order to show that the first equality in (3.15) is true, recall from section 2 that

ÃΓ(x, u) = (Ã− B̃ΓC̃L)(x, u)

for all (x, u) ∈ D(ÃΓ), where D(ÃΓ) is given by

D(ÃΓ) = {(x, u) ∈ D(C̃L) | (Ã− B̃ΓC̃L)(x, u) ∈ X × Rm} .

Moreover, using (3.14), we see that for all (x, u) ∈ D(ÃΓ)

ÃΓ(x, u) = (Ax+Bu,−ΓC̃L(x, u)) .

This shows that

D(ÃΓ) = {(x, u) ∈ D(C̃L) |Ax+Bu ∈ X} .(3.16)

Since D(C̃L) ⊂ X × Rm, it follows from (3.16) that D(ÃΓ) ⊂ D = D(Ã).
To prove that D(Ã) ⊂ D(ÃΓ), let (x, u) ∈ D(Ã). Then (x, u) ∈ D(C̃L) and

Ax+Bu ∈ X, and hence, by (3.16), (x, u) ∈ D(ÃΓ).
In the following we endow D(ÃΓ) with its graph norm. The resulting complete

space will be denoted by X̃Γ
1 .

PROPOSITION 3.12. Let Γ ∈ Rm×m and suppose that det Γ 6= 0. If the integra-
tor K(s) = (1/s)Γ stabilizes G (in the sense of Definition 3.1), then the following
statements hold:

(i) The closed-loop semigroup T̃Γ is exponentially stable.
(ii) C̃Γ = C̃ and there exist M > 0 and ω > 0 such that for all (x0, u0) ∈ D(Ã)

‖C̃T̃Γ
t (x0, u0)‖ ≤Me−ωt‖(x0, u0)‖X̃Γ

1
∀ t ≥ 0 .

If the observation operator C is bounded, then for any (x0, u0) ∈ X × Rm

‖C̃T̃Γ
t (x0, u0)‖ ≤Me−ωt‖(x0, u0)‖X×Rm ∀ t ≥ 0 .

Proof. (i) The semigroup T̃Γ describes the dynamics of the feedback system
shown in Figure 3.5. Note that the state of Σint and the input of Σplant are identical.
Therefore we denote both by the same symbol u(·).

The state (x(t), u(t)) ∈ X × Rm at time t ≥ 0 is given by

(x(t), u(t)) = T̃Γ
t (x0, u0) ,

where (x0, u0) := (x(0), u(0)) ∈ X × Rm. Defining

y0(t) := CLTtx0 , t ≥ 0 ,
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FIG. 3.5. Internal dynamics of the closed loop.

it follows from the exponential stability of T that y0 ∈ L2(R+,Rm). The Laplace
transform of u(·) is then given by

(Lu)(s) =
1
s
u0 −K(s)[(Ly0)(s) + G(s)(Lu)(s)];

cf. Figure 3.5. It follows that

Lu = (I + KG)−1KΓ−1u0 − (I + KG)−1KLy0 .(3.17)

By assumption the closed-loop system is input-output stable, and so (I + KG)−1K,
(I + KG)−1 ∈ H∞− m×m. Using the fact that K(s) = (1/s)Γ we see that

(I + KG)−1K ∈ H2
−
m×m ,

and thus, since Ly0 ∈ H2
0
m, we obtain from (3.17) that Lu ∈ H2

0
m. Hence, by the

Paley–Wiener theorem, u ∈ L2(R+,Rm). Moreover, Σplant is exponentially stable
and driven by u, and therefore by Lemma 2.2, x ∈ L2(R+, X). Thus, we see that for
all (x0, u0) ∈ X × Rm

t 7→ T̃Γ
t (x0, u0) ∈ L2(R+, X × Rm) .

By a well-known result on the stability of C0-semigroups (cf. Pazy [30, p. 116]) it
follows that the semigroup T̃Γ is exponentially stable.

(ii) Since D̃ = 0, it follows from Theorem 2.3 (ii) that

C̃Γ(x, u) = C̃L(x, u) ∀ (x, u) ∈ D(ÃΓ) .

An application of Lemma 3.11 shows that C̃Γ = C̃.
Let (x0, u0) ∈ D(Ã). Then, by Lemma 3.11, (x0, u0) ∈ X̃Γ

1 . By part (i) the semi-
group T̃Γ is exponentially stable on X̃ = X × Rm, and hence it is also exponentially
stable on X̃Γ

1 . Since C̃Γ ∈ L(X̃Γ
1 ,Rm), it follows from the above that C̃ ∈ L(X̃Γ

1 ,Rm)
as well. As a consequence there exist M,ω > 0 such that

‖C̃T̃Γ
t (x0, u0)‖ ≤Me−ωt‖(x0, u0)‖X̃Γ

1
∀ t ≥ 0 .

The last statement of part (ii) follows from the fact that the boundedness of the
observation operator C implies the boundedness of the observation operator C̃.

Remark 3.13. Part (i) of Proposition 3.12 shows that in our special situation
(i.e., the plant is exponentially stable and the controller is an integrator) input-output
stability implies exponential stability. Using a result by Rebarber [37], it can be



LOW-GAIN CONTROL 95

6
–

j-rθ(t)

+
- k

s
Γ0

-
u(t)

Σplant r -
y(t; (x0, u0))

u0 x0

FIG. 3.6. Low-gain control system.

shown (Weiss [50]) that under suitable stabilizability and detectability assumptions
the feedback interconnection of any two linear regular systems is exponentially stable
if it is input-output stable. Since this result is not yet available in the literature (not
even in form of a preprint), we have included a proof of Proposition 3.12 (i).

We are now in the position to prove the main result of this section, an internal
version of Theorem 3.8 which applies to abstract linear regular state-space systems.
Consider the feedback system in Figure 3.6, where r ∈ Rm, Γ0 ∈ Rm×m, k > 0, and
(x0, u0) ∈ X × Rm. The output y(· ; (x0, u0)) can be written in the form

y(t; (x0, u0)) = C̃kΓ0
L T̃kΓ0

t (x0, u0) + y(t; (0, 0)) .(3.18)

Moreover, we define the corresponding error by

e(t; (x0, u0)) = rθ(t)− y(t; (x0, u0)) .

THEOREM 3.14. Let r ∈ Rm. Suppose that det G(0) 6= 0 and let Γ0 ∈ Rm×m be
such that σ(G(0)Γ) ⊂ C0. Then there exists k∗ > 0 such that for any k ∈ (0, k∗) the
closed-loop semigroup T̃kΓ0 is exponentially stable and e(· ; (x0, u0)) ∈ L2(R+,Rm) for
all (x0, u0) ∈ X × Rm. Furthermore,

lim
t→∞

e(t; (x0, u0)) = 0 ∀ (x0, u0) ∈ D(Ã) .

If the observation operator C is bounded, then the above equation holds for all (x0, u0) ∈
X × Rm.

Remark 3.15. If (x0, u0) 6∈ D(Ã), then in general e(t) := e(t; (x0, u0)) will not
converge to 0 as t→∞. (In fact e(·) does not even make sense pointwise.) However,
by Theorem 3.14, we still have that e ∈ L2(R+,Rm), which implies that e(t) converges
to 0 in measure as t→∞ in the sense that for any ε > 0 and any δ > 0 there exists
T = T (ε, δ) > 0 such that

λ({t ∈ [τ,∞) | |e(t)| > δ} < ε ∀ τ ≥ T ,

where λ denotes the Lebesgue measure.
Proof of Theorem 3.14. As in Theorem 3.8 we set Ek(s) = (1/s)(I+GKk)−1(s).

By Theorem 3.8 there exists a k∗ > 0 such that for all k ∈ (0, k∗) the compensator
Kk(s) = (1/s)kΓ0 stabilizes G, and furthermore

Ek ∈ H2
−
m×m and [GKk(I + GKk)−1](0) = I ∀ k ∈ (0, k∗) .(3.19)

In particular it follows from Proposition 3.12(i) that the semigroup T̃kΓ0 is exponen-
tially stable for all k ∈ (0, k∗). Moreover, we have that

e(· ; (0, 0)) = L−1(Ekr) , y(· ; (0, 0)) = L−1[GKk(I + GKk)−1 ? θr] ,
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and therefore we obtain, using (3.19) and Proposition 3.5,

e(· ; (0, 0)) ∈ L2(R+,Rm) and lim
t→∞

e(t; (0, 0)) = 0 ,(3.20)

provided that k ∈ (0, k∗). Since the function

y0(t; (x0, u0)) := C̃kΓ0
L T̃kΓ0

t (x0, u0)

is the output of an exponentially stable regular system, it follows from Lemma 2.2
that y0(· ; (x0, u0)) ∈ L2(R+,Rm) for all (x0, u0) ∈ X × Rm and all k ∈ (0, k∗). Now,
by (3.18),

e(t; (x0, u0)) = e(t; (0, 0))− y0(t; (x0, u0)) ,

and thus, using (3.20), we obtain

e(· ; (x0, u0)) ∈ L2(R+,Rm) ∀ (x0, u0) ∈ X × Rm ,

provided that k ∈ (0, k∗). Finally, let (x0, u0) ∈ D(Ã). Then, by Proposition 3.12(ii),
we may conclude that

lim
t→∞

y0(t; (x0, u0)) = lim
t→∞

C̃kΓ0
L T̃kΓ0

t (x0, u0) = lim
t→∞

C̃T̃kΓ0
t (x0, u0) = 0 .(3.21)

Using (3.18), (3.20), and (3.21) we obtain that

lim
t→∞

e(t; (x0, u0)) = 0 .(3.22)

It follows from Proposition 3.12 (ii) that (3.22) holds for all (x0, u0) ∈ X ×Rm if the
observation operator C is bounded.

We close this section with a lemma which will be needed in section 4 in order to
reformulate adaptive tracking problems as adaptive stabilization problems.

LEMMA 3.16. For any r ∈ Rm there exists (xr, ur) ∈ D(Ã) such that

C̃T̃t(xr, ur) = r ∀ t ≥ 0 .

Proof. For given r ∈ Rm define

xr := −A−1BG−1(0)r , ur := G−1(0)r .

Then (xr, ur) ∈ X × Rm, and moreover Axr + Bur = 0. It follows that (xr, ur) ∈
{(x, u) ∈ X × Rm |Ax + Bu ∈ X} = D(Ã), and by (3.14), Ã(xr, ur) = 0. We
therefore easily conclude that T̃t(xr, ur) = (xr, ur) for all t ≥ 0. Finally, since
G(0) = D − CLA−1B, we see that for all t ≥ 0

C̃T̃t(xr, ur) = CLxr +Dur = (G(0)−D)G−1(0)r +DG−1(0)r = r .

4. Adaptive low-gain control of multivariable systems with sign-definite
steady-state gain. In this section we consider the adaptive low-gain control of sys-
tems with sign-definite steady-state gains G(0), that is where either G(0) � 0 or
G(0) ≺ 0. This situation arises most naturally in the single-input single-output case
where we need to assume only that the steady-state gain is nonzero.4 In the mul-
tivariable case the situation of significance is when the steady-state gain is positive
definite (see Propositions 4.4 and 4.6).

4Of course, we also need that G(0) is real. This will always be the case if G is the transfer
function of a regular system, which is real by definition.
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Consider the control law given by

u̇(t) = K(γ(t))e(t) , u(0) = u0 ,(4.1a)

γ̇(t) = ‖e(t)‖2 , γ(0) = γ0 > a ≥ −∞ ,(4.1b)

where K : (a,∞) → R is locally Lipschitz. In the following K will be called a tuning
function. Choosing a = 0 and

K(γ) = sin(γq)/γp , 0 < q < p < 1− q,(4.2)

Cook [1] has shown that (4.1) is a universal adaptive, low-gain tracking controller
for the class of single-input single-output, exponentially stable, finite-dimensional,
linear systems with transfer function G, input function u(·), output function y(·),
and constant reference signal rθ(t), r ∈ R, in the sense that (i) e(t) = (r − y(t)) → 0
as t→∞ and (ii) state and input functions remain bounded, independently of initial
data, provided that G(0) 6= 0. It is also shown in [1] that if G(0) > 0, then K in
(4.2) can be replaced by K(γ) = γ−p, 0 < p < 1. The main tool in [1] is the fact that
the return difference function is positive real for all k small enough and of the correct
sign. It is clear, using Lemma 3.10, that these results extend to the multivariable case
provided that G(0) is sign-definite.

In this section we prove that with different, suitably chosen tuning functions K,
these results extend to the case when the system is infinite-dimensional, regular, and
exponentially stable. However, first we give alternative proofs of the finite-dimensional
results in [1].

The finite-dimensional case. Our approach is based on Proposition 3.9, i.e.,
the fact that the H∞-norm of the closed-loop transfer function G̃k equals 1/|k| for
all small enough k of the correct sign, and on the connection between this result and
the existence of solutions to certain algebraic Riccati equations which arise in the
characterization of the complex stability radius given in Hinrichsen and Pritchard [6].
We note that whilst neither this approach based on the algebraic Riccati equation
nor the approach based on positive realness of the return difference equation and
associated Lur’e equations extends to general regular systems, Proposition 3.9 will
remain a crucial tool in the infinite-dimensional case.

LEMMA 4.1. There exists k∗ > 0 such that for any k with |k| < k∗ and kG(0) � 0
the Riccati equation

(Ã− kB̃C̃)TZ + Z(Ã− kB̃C̃)− k2C̃T C̃ − ZB̃B̃TZ = 0,(4.3)

where Ã, B̃, and C̃ are given by (3.14), has a unique solution P̃k = P̃Tk � 0.
Proof. An application of Theorem 3.8 and Proposition 3.9 shows the existence

of a constant k∗ > 0 such that for any k with |k| < k∗ and kG(0) � 0 the matrix
Ã − kB̃C̃ is exponentially stable and ‖G̃k‖∞ = 1/|k|. Therefore the existence of a
unique P̃k = P̃Tk � 0 satisfying (4.3) is guaranteed by Hinrichsen and Pritchard [6,
pp. 107–109].

The above lemma can now be used to give an alternative proof of the main result
in [1].

THEOREM 4.2. Let

ẋ(t) = Ax(t) +Bu(t) , x(0) = x0 ∈ Rn ,(4.4a)

y(t) = Cx(t) +Du(t)(4.4b)
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be any finite-dimensional, m-input m-output, exponentially stable system with sign-
definite steady-state gain G(0). Moreover, let K : (a,∞) → R, where a ≥ −∞, be
locally Lipschitz and bounded with K ∈ L2(b,∞;R) for some b > a and such that

lim inf
γ→∞

∫ γ

b

K(ξ) dξ = −∞ , lim sup
γ→∞

∫ γ

b

K(ξ) dξ = +∞ .(4.5)

If rθ(t), r ∈ Rm, is any constant reference signal and u(t) is defined by (4.1), with
e(t) = r− y(t), then for each γ0 > a, x0 ∈ Rn, and u0 ∈ Rm the following statements
hold:

(i) limt→∞ γ(t) = γ∞ <∞;
(ii) ‖x(t)‖ and ‖u(t)‖ remain bounded as t→∞;
(iii) limt→∞ y(t) = r.
Proof. The first step is to realize the reference signal rθ as an unforced motion of

the series connection of the integrator 1/s followed by (4.4). By Lemma 3.16, applied
in this simple finite-dimensional context, there exists (xr, ur) ∈ Rn × Rm such that
r = C̃eÃt(xr, ur) for all t ≥ 0. It follows that

e(t) = r − y(t) = C̃x̃(t) ,(4.6)

where x̃(t) is given by

x̃(t) = eÃt(xr, ur)− (x(t), u(t)) .(4.7)

Clearly, x̃(·) satisfies

˙̃x(t) = Ãx̃(t)−K(γ(t))B̃C̃x̃(t)(4.8)

= (Ã− kB̃C̃)x̃(t)− (K(γ(t)− k)B̃e(t) ,(4.9)

where k ∈ R is arbitrary. Now the right-hand sides of (4.1b) and (4.8) are locally
Lipschitz in x̃ and γ so that x̃(t) and γ(t) are uniquely determined on a maximal
interval of existence—say, [0, τ). We now invoke Lemma 4.1 and define

V (t) = −〈x̃(t), P̃kx̃(t)〉,

where P̃k = P̃Tk � 0 is the unique solution of (4.3), with |k| small enough and
kG(0) � 0. Differentiating V along solutions of (4.1b) and (4.8) gives

V̇ = −k2‖C̃x̃‖2 − ‖B̃T P̃kx̃‖2 − 2(K(γ)− k)〈C̃x̃, B̃T P̃kx̃〉

= −(k2 − (K(γ)− k)2)‖C̃x̃‖2 − ‖(K(γ)− k)C̃x̃+ B̃T P̃kx̃‖2

≤ K(γ)(K(γ)− 2k)‖C̃x̃‖2 .

Integrating this inequality from t0 to t, where 0 ≤ t0 < t < τ , and using (4.1b) and
(4.6) yield

−∞ < −V (t0) ≤ V (t)− V (t0) ≤
∫ γ(t)

γ(t0)
K(ξ)(K(ξ)− 2k) dξ .(4.10)

Seeking a contradiction, assume that limt→τ γ(t) =∞. Then, using (4.5) and exploit-
ing the assumption that K ∈ L2(b,∞;R) we obtain

lim
n→∞

∫ γ(tn)

γ(t0)
K(ξ)(K(ξ)− 2k) dξ = −∞



LOW-GAIN CONTROL 99

for some sequence (tn)n∈N with γ(t0) = b and limn→∞ tn = τ . Since this contradicts
(4.10), it follows that γ(t) is bounded on [0, τ) and consequently τ = ∞, which
establishes (i).

In order to prove statements (ii) and (iii), choose k in (4.9) such that Ã − kB̃C̃
is exponentially stable (this is possible by Theorem 3.8). Trivially, by (i), e ∈
L2(R+,Rm), and so it follows from the boundedness of K that the forcing term on
the right-hand side of (4.9) is in L2(R+,Rm). Therefore x̃(t) is the state of an ex-
ponentially stable system driven by an L2-input, and consequently limt→∞ x̃(t) = 0.
Statements (ii) and (iii) follow now from (4.7) and (4.6), respectively.

Remark 4.3. Whilst the property of symmetry for a general m×m matrix is non-
generic in that symmetry is destroyed by arbitrarily small perturbations, symmetry
of G(0) is a direct consequence of, for example,

A = AT , B = CT , and D = DT .

If additionally, D � 0, then positive definiteness of G(0) follows, since A is exponen-
tially stable and G(0) is invertible.

It is not difficult to show that the function given in (4.2) satisfies the conditions
imposed on K in Theorem 4.2. Notice that in general these conditions do not imply
that limγ→∞K(γ) = 0.

PROPOSITION 4.4. Suppose G(0) � 0. With the tuning function K(γ) = γ−p,
0 < p < 1, and γ0 > 0 statements (i)–(iii) of Theorem 4.2 hold.

Proof. The proof is the same as that of Theorem 4.2 up to (4.10). By the special
choice of K, (4.10) implies that γ(·) is bounded. The remainder of the proof is the
same as that of Theorem 4.2.

In Proposition 4.4 we may replace γ−p by any function K which satisfies∫ ∞
γ0

K(ξ)(K(ξ)− 2k)dξ = −∞

for some stabilizing gain k > 0.

The infinite-dimensional case. For the rest of this paper we will let Σplant =
(T,Φ,Ψ,F) be an exponentially stable regular system with transfer function G. Let
A, B, C, and D denote the generating operators of Σplant. As in section 3 we denote
the series connection of the integrator 1/s followed by Σplant by Σ̃ = (T̃, Φ̃, Ψ̃, F̃).
It was shown in section 3 that the system Σ̃ is regular. Let Ã, B̃, and C̃ denote
the corresponding generating operators (trivially, D̃ = 0), and let G̃(s) = (1/s)G(s)
denote the transfer function of Σ̃.

We were not able to extend the proofs of Theorem 4.2 and Proposition 4.4 to
the infinite-dimensional setting outlined in section 2. The problem is caused by the
fact that Lemma 4.1 does not hold in the infinite-dimensional case, unless very strong
and unnatural controllability assumptions are imposed. As already mentioned in
the introduction, the approach in Cook [1] does not carry over to infinite-dimensional
systems either. Nevertheless, it will turn out that in the infinite-dimensional situation
we can still use tuning functions K satisfying K(γ)→ 0 as γ →∞.

THEOREM 4.5. Let Σplant be a m-input m-output exponentially stable regular
system given by (2.1). Suppose that the transfer function G of Σplant is such that
G(0) is sign definite. Let r θ(t), r ∈ Rm, be an arbitrary constant vector-valued
reference signal, and consider the control law

u(t) = u0 +
∫ t

0
log−p γ(ξ) cos(logq γ(ξ))e(ξ) dξ ,(4.11)
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γ̇(t) = ‖e(t)‖2 , γ(0) = γ0 ,(4.12)

where e(t) = r−y(t) and p ≥ 0, q > 0, and q+2p < 1. Then for all (x0, u0) ∈ X×Rm
and γ0 > 1, where X denotes the state space of Σplant, the following statements hold
true:

(i) limt→∞ γ(t) = γ∞ <∞;
(ii) ‖x(t)‖ and ‖u(t)‖ remain bounded as t→∞;
(iii) e(·) ∈ L2(R+,Rm).

Moreover, if (x0, u0) ∈ D(Ã), then

lim
t→∞

y(t) = r .(4.13)

If the observation operator C of Σplant is bounded, then (4.13) is true for all (x0, u0) ∈
X × Rm.

Proof. We assume throughout the proof that p > 0. The case p = 0 can be
proven using the techniques in the proof of Theorem 5.1. The first step is to convert
the tracking problem (r 6= 0) into a stabilization problem (r = 0). By Lemma 3.16
there exists (xr, ur) ∈ D(Ã) so that r = C̃T̃t(xr, ur) for all t ≥ 0. Therefore, setting
K(γ) = log−p γ cos(logq γ) and using (4.11), it follows that

e = rθ − y = Ψ̃∞(xr − x0, ur − u0)− F̃∞(K(γ)e) .(4.14)

The nonlinear closed-loop system given by (4.14) and (4.12) is in a form so that
Proposition 2.4 is applicable. Let [0, τ) be the maximal interval of existence for
solutions (e, γ) of (4.14) and (4.12) as guaranteed by Proposition 2.4. We know that
τ <∞ only if limt→τ γ(t) =∞. We will prove that γ(t) is bounded on [0, τ).

Let (ρi)i∈N, with ρ0 ≥ γ0, be a strictly increasing sequence converging to ∞ and
satisfying

sign(G(0)) cos(logq ρ2i) = 1 and K(ρ2i+1) = K(ρ2i)/2 , i = 0, 1, 2, . . . ,

where sign(G(0)) = ±1, depending on whether G(0) is positive or negative definite.
Choosing ρ0 sufficiently large, it follows from Theorem 3.8 that the numbers

ki := K(ρ2i)

are stabilizing gains for G̃(s) = (1/s)G(s); i.e., the integrators ki/s stabilize G in the
sense of Definition 3.1. Note that (ρi)i∈N can be chosen so that

|K(γ)| ∈ (|ki|/2, |ki|) and kiK(γ) > 0 ∀ γ ∈ (ρ2i, ρ2i+1)

and that |ki| ↘ 0 as i → ∞. Moreover, by applying Proposition 3.9 we can always
choose ρ0 sufficiently large so that

‖G̃ki‖∞ =
1
|ki|

(4.15)

for all i.
Seeking a contradiction, suppose that γ(t) is unbounded on [0, τ). Then we can

find a sequence of times t0 < t1 < · · · < τ with

γ(ti) = ρi.

We now use these observations combined with estimates we obtain from contraction-
mapping–type arguments. Using (2.9b) on each interval [t2i, t2i+1] we can write the
error e(·) as

Lt2iPt2i+1e = Ψ̃ki
t2i+1−t2i(x̃(t2i))− F̃kit2i+1−t2i(Lt2iPt2i+1(K(γ)− ki)e) , 5(4.16)

5By slight abuse of notation we write Ψ̃ki
t2i+1−t2i instead of Ψ̃kiI

t2i+1−t2i , etc.
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where

x̃(t) = T̃t(xr − x0, ur − u0)− Φ̃t(PtK(γ)e) .

By using (2.8a) we can express x̃(t) as

x̃(t) = T̃k0
t (xr − x0, ur − u0)− Φ̃k0

t (Pt(K(γ)− k0)e) .(4.17)

Using (2.7) and (2.8b), with u = 0 and K = k0 − ki, we obtain

Ψ̃ki
t z = Ψ̃k0

t z − F̃k0
t ((ki − k0)Ψ̃ki

t z) ∀ t ≥ 0 , ∀ z ∈ X × Rm .(4.18)

Now for all t ∈ [t2i, t2i+1] we have

|K(γ(t))− ki| ≤
|ki|
2
.

Moreover, ‖F̃ki∞‖ = ‖G̃ki‖∞, and hence it follows from (4.15) that

‖F̃kit2i+1−t2i‖ ≤ ‖F̃
ki
∞‖ =

1
|ki|

, whilst ‖F̃k0
t ‖ ≤ ‖F̃k0

∞‖ =
1
|k0|

.

Therefore integrating (4.16) from 0 to t2i+1 − t2i and taking estimates we have

‖e‖L2(t2i,t2i+1) ≤
1

1− ‖F̃ki∞‖ ‖K(γ)− ki‖L∞(t2i,t2i+1)
‖Ψ̃ki

t2i+1−t2i(x̃(t2i))‖L2(0,t2i+1−t2i)

≤ 2‖Ψ̃ki
t2i+1−t2i(x̃(t2i))‖L2(0,t2i+1−t2i) .(4.19)

Since G̃ki ∈ H∞−
m×m, an application of Theorem 3.14 yields that the closed-loop

semigroup T̃ki is exponentially stable. It follows that Ψ̃ki
∞z ∈ L2(R+,Rm) for all

z ∈ X×Rm. As a consequence, integrating in (4.18) from 0 to∞ and taking estimates
gives

‖Ψ̃ki
∞(x̃(t2i))‖L2(0,∞) ≤

1
1− ‖F̃k0∞‖|k0 − ki|

‖Ψ̃k0
∞(x̃(t2i))‖L2(0,∞)

=
k0

ki
‖Ψ̃k0
∞(x̃(t2i))‖L2(0,∞) .(4.20)

Combining (4.19) and (4.20) and using the definition of γ(t), we obtain√
ρ2i+1 − ρ2i = ‖e‖L2(t2i,t2i+1) ≤ 2

k0

ki
‖Ψ̃k0
∞x̃(t2i)‖L2(0,∞) ≤

c0
|ki|
‖x̃(t2i)‖ ,(4.21)

where c0 > 0 is a constant obtained from the exponential stability of the semigroup
T̃k0 . Setting t = t2i in (4.17) and taking estimates yield

‖x̃(t2i)‖ ≤ c1 + c2
√
ρ2i − γ0(4.22)

for suitable constants c1 > 0 and c2 > 0. Combining (4.21) and (4.22) and using the
fact that ki = K(ρ2i), we have√

ρ2i+1 − ρ2i ≤
c0

|K(ρ2i)|
(c1 + c2

√
ρ2i − γ0) .(4.23)
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Now, by the mean value theorem, there exists ξ2i ∈ (ρ2i, ρ2i+1) such that

− 1
K′(ξ2i)

=
ρ2i+1 − ρ2i

K(ρ2i)−K(ρ2i+1)
= 2

ρ2i+1 − ρ2i

K(ρ2i)

so that (4.23) becomes √
−K3(ρ2i)

2K′(ξ) ≤ c0(c1 + c2
√
ρ2i − γ0) .(4.24)

Using the specific form of K we have

K′(ξ) = −p cos(logq ξ) + q logq ξ sin(logq ξ)
ξ log1+p ξ

,

which on substituting in (4.24) and rearranging yields

1 ≤ 2
[
c0(c1 + c2

√
ρ2i − γ0)

]2 1
|K(ρ2i)|3

|p cos(logq ξ2i) + q logq ξ2i sin(logq ξ2i)|
ξ2i log1+p ξ2i

.

(4.25)

Using the fact that K(ρ2i) = | log−p ρ2i| and gathering dominant terms in (4.25) lead
to

1 ≤ c3
(
p(log ρ2i)2p−1 + q(log ρ2i)2p+q−1)(4.26)

for some constant c3 > 0. But p, q > 0 and q + 2p < 1 so that the right-hand side
of (4.26) approaches zero for ρ2i → ∞, which is in contradiction to (4.26). Hence
γ(·) is bounded, which establishes statements (i) and (iii). Boundedness of x̃(t) and
therefore part (ii) follows directly from (4.17), the exponential stability of T̃k0 , and
statements (i) and (iii).

To prove the last statement in the theorem let (x0, u0) ∈ D(Ã). Then x̃0 :=
(xr − x0, ur − u0) ∈ D(Ã), and from (4.14) and (2.8b) we obtain

e(t) = C̃k0T̃k0
t x̃0 − (F̃k0

∞[(K(γ)− k0)e])(t) ∀ t ≥ 0 .(4.27)

By Lemma 3.11, x̃0 ∈ D(Ãk0), and hence it follows from the exponential stability of
the semigroup T̃k0 that the first term on the right-hand side of (4.27) tends expo-
nentially to 0 as t → ∞. In order to show that the second term converges to 0 as
t → ∞ set v(t) = (K(γ(t)) − k0)e(t), and realize that, by statements (i) and (iii),
v ∈ L2(R+,Rm) . Clearly,

(L(F̃k0
∞v))(s) = G̃(s)(1 + k0G̃(s))−1(Lv)(s) = G̃k0(s)(Lv)(s) .

Since |k0| is sufficiently small, it follows from Theorem 3.8 that G̃k0 ∈ H2
−
m×m.

(Note that using the notation in Theorem 3.8 we have G̃k0 = GEk0 .) There-
fore, by the Paley–Wiener theorem, F̃k0

∞ is a convolution operator with a matrix-
valued kernel whose entries are L2-functions. Now it is well known that the con-
volution of two functions belonging to L2(R+,R) converges to 0 as t → ∞, and
hence limt→∞(F̃k0

∞v)(t) = 0. Finally, if C is bounded, then C̃ is bounded, i.e.,
C̃ ∈ L(X × Rm,Rm). Furthermore, by Proposition 3.12, C̃k0 = C̃, and therefore the
first term on the right-hand side of (4.27) converges (exponentially) to 0 as t → ∞
for all (x0, u0) ∈ X × Rm.

Note that the condition (x0, u0) ∈ D(Ã) in statement (iv) of Theorem 4.5 re-
quired in proving that limt→0 e(t) = 0 is system dependent. This is a little disturbing
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since, from the outset, we assume that the specific system to be controlled is un-
known. However, in most cases, the initial states will be sufficiently smooth so that
the condition (x0, u0) ∈ D(Ã) is satisfied. Note that if (x0, u0) 6∈ D(Ã), then e(·) will
in general not make sense pointwise and cannot be expected to converge to 0 in the
usual sense (see, however, Remark 3.15).

Note that in the infinite-dimensional case the tuning function K(γ) decays to 0
like a fractional power of log γ as γ → ∞, whereas in the finite-dimensional case
it decays to 0 like a fractional power of γ. However, in the case when it is known
that G(0) � 0, we can use tuning functions which decay to 0 like a fractional power,
although more slowly than in the finite-dimensional case.

PROPOSITION 4.6. Suppose that the conditions of Theorem 4.5 hold and that
additionally G(0) � 0. If

u(t) = u0 +
∫ t

0
γ−p(ξ)e(ξ) dξ ,(4.28)

γ̇(t) = ‖e(t)‖2 , γ(0) = γ0 > 0 ,(4.29)

and 0 < p < 1
2 , then the conclusions of Theorem 4.5 hold.

Proof. It is sufficient to show that γ(·) is bounded. Let [0, τ) be the maximal
interval of existence. If γ(·) is unbounded on [0, τ), then there exists t1 ≥ 0 such that
with γ1 = γ(t1), k1 = γ−p1 is a stabilizing gain. For any t ∈ (t1, τ) we have, as in the
proof of Theorem 4.5, that on [t1, t]

Lt1Pte = Ψ̃k1
t−t1(x̃(t1))− F̃k1

t−t1(Lt1Pt(K(γ)− k1)e) .(4.30)

We can assume that k1 is small enough so that, using Proposition 3.9 and estimating,
we obtain √

γ(t)− γ1 ≤ cγp(t)
for some c > 0 and all t ∈ [t1, τ). This inequality clearly contradicts the unbounded-
ness of γ(·) and the assumption that p < 1/2.

The condition G(0) � 0 is satisfied for a large class of exponentially stable infinite-
dimensional systems with self-adjoint generator A, co-located control and observation
and positive semidefinite feedthrough (cf. Remark 4.3).

5. Adaptive low-gain control of multivariable systems with sign-indefinite
steady-state gain. In this section we consider the adaptive low-gain tracking prob-
lem, for stable regular systems with square m×m transfer functions G(s) and invert-
ible steady-state gain. In section 4, under the assumption that G(0) is sign definite,
we could exploit the fact that for all gains k having the “correct” sign and with |k|
sufficiently small, ‖G̃k‖∞ = 1/|k| (see Proposition 3.9). If G(0) is sign indefinite or
even nonsymmetric, then, again by Proposition 3.9, we no longer have this result.
To overcome this problem we do not use a tuning function K reflecting the low-gain
nature of the problem in the sense that limγ→∞K(γ) = 0 but instead resort to a
gain which oscillates smoothly between 0 and 2. (In fact, 2 could be replaced by any
positive number δ.)

As in the previous sections let u(·) and y(·) denote the plant input and plant
output, respectively, and set e(·) = r − y(·), where r ∈ Rm is a demand vector.
Modulo certain technicalities involving “spectrum unmixing” of G(0) (to be made
precise) we show that

u(t) = u0 +
∫ t

0
[1 + cos(logq γ(ξ))]e(ξ) dξ , where 0 < q < 1 ,(5.1)
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γ̇(t) = ‖e(t)‖2 , γ(0) = γ0,(5.2)

is a universal adaptive tracking controller.
We assume throughout that Σplant is an m-input m-output, exponentially stable,

regular system given by (2.1). We will consider two cases. In the first one we assume
that the spectrum of G(0) is unmixed in the sense that σ(G(0)) ⊂ C0. In the second
case the a priori knowledge about G(0) guarantees only that G(0) is invertible.

THEOREM 5.1. Assume that σ(G(0)) ⊂ C0. Let r ∈ Rm be an arbitrary demand
vector. If u(t) is given by (5.1), with gain adaptation (5.2), then for each (x0, u0) ∈
X × Rm and γ0 > 1 we have

(i) limt→∞ γ(t) = γ∞ <∞;
(ii) ‖x(t)‖ and ‖u(t)‖ remain bounded as t→∞;
(iii) e(·) ∈ L2(R+,Rm).

Moreover, if (x0, u0) ∈ D(Ã), then

lim
t→∞

y(t) = r .(5.3)

If the observation operator C is bounded, then (5.3) holds for all (x0, u0) ∈ X ×Rm.
In the proof of this result we do not have to be so careful with the estimates,

since we need only to work in a neighborhood of a stabilizing integral gain and do not
need to account for the possibility of the feedback gain approaching 0.

Proof. The first step is to convert the tracking problem (r 6= 0) into a stabilization
problem (r = 0). Let r ∈ Rm, (x0, u0) ∈ X × Rm be given and set K(γ) := 1 +
cos(logq γ(t)). By Lemma 3.16 there exists x̃0 ∈ X × Rm such that

e = Ψ̃∞x̃0 − F̃∞(K(γ)e) .(5.4)

Moreover, if (x0, u0) ∈ D(Ã), then x̃0 ∈ D(Ã). The closed-loop system given by (5.4)
and (5.2) is in a form so that Proposition 2.4 is applicable.

By Theorem 3.8 there exists k ∈ (0, 1) for which G̃k ∈ H∞− m×m. Consequently,
by Theorem 3.14, T̃k is an exponentially stable semigroup on X × Rm. As in the
sign-definite case, seeking a contradiction, suppose that γ(t) is unbounded on the
maximal interval of existence [0, τ). To this end choose ε ∈ (0, k) such that k+ ε < 1
and let (ρi)i∈N be a sequence with

ρi ↗∞ , ρ0 ≥ γ0 , K(ρ2i) = k − ε , K(ρ2i+1) = k + ε

and such that

K(γ) ∈ (k − ε, k + ε) ∀ γ ∈ (ρ2i, ρ2i+1) .

Exploiting the unboundedness of γ(t) we can find a sequence of times t0 < t1 < · · · < τ
so that γ(ti) = ρi. Using (2.9b) we obtain

Lt2iPt2i+1e = Ψ̃k
t2i+1−t2i x̃(t2i)− F̃kt2i+1−t2i(Lt2iPt2i+1(K(γ)− k)e) ,(5.5)

where

x̃(t) = T̃tx̃0 − Φ̃tPtK(γ)e .

Integrating from 0 to t2i+1 − t2i in (5.5) and taking estimates yield

‖e‖L2(t2i,t2i+1) ≤
1

1− ‖F̃k∞‖‖K(γ)− k‖L∞(t2i,t2i+1)
‖Ψ̃k
∞x̃(t2i)‖L2(0,∞)

≤ c0‖x̃(t2i)‖(5.6)

for some suitable c0 > 0, provided that ε is small enough (for example, ‖F̃k∞‖ε = 1/2).
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Applying the input-state variation of parameters formula (2.8a) to Σ̃ with K = kI
and u = K(γ)e it follows from the exponential stability of T̃k and (5.2) that

‖x̃(t2i)‖ ≤ c1 + c2
√
ρ2i − γ0(5.7)

for some constants c1 > 0 and c2 > 0. Combining (5.6) and (5.7) we have√
ρ2i+1 − ρ2i ≤ c0(c1 + c2

√
ρ2i − γ0) .(5.8)

Clearly,

ρ2i+1 − ρ2i = 2ε/K′(ξ2i)

for some ξ2i ∈ (ρ2i, ρ2i+1). Combining this with (5.8) leads to

1 ≤ 1
2ε

[c0(c1 + c2
√
ρ2i − γ0)]2K′(ξ2i) .(5.9)

Now

K′(ξ) = −q sin(logq ξ)(logq−1 ξ)/ξ,

and 0 < q < 1, and we see that the right-hand side of (5.9) converges to 0 as i→∞,
which yields a contradiction. It follows that γ(·) is bounded, showing that (i) and
(iii) hold true. The remaining claims follow readily, using the same techniques as in
the proof of Theorem 4.5.

Specialized to the case when G(0) � 0, it is natural to compare the control law
in Theorem 5.1 to the one in Proposition 4.6. Intuitively it should be advantageous
to use the controller in Proposition 4.6, since in this case the gain passes rapidly
into the “correct” parameter region once and remains there, whereas the gain in the
controller in Theorem 5.1 oscillates slowly and may pass in and out of the “correct”
region several times before converging. Moreover, small output disturbances could
lead to further cycles in the gain adaptation.

In Theorem 5.1 we assumed that σ(G(0)) ⊂ C0. We now consider the case when
we know only that det G(0) 6= 0. In the context of high-gain adaptive stabilization
Mårtensson [21], [22] has shown that there exists a finite set {Γ1, . . . ,Γ`} so that given
any invertible m×m matrix M there exists ν ∈ {1, 2, . . . , `} such that σ(MΓν) ⊂ C0.
We now use this result in order to unmix the spectrum of G(0). Consider the feedback
law

u(t) = u0 +
∫ t

0
[1 + cos(logq γ(ξ))]ΓS(γ(ξ))e(ξ) dξ ,(5.10)

where 0 < q < 1 and

S(γ) = j if (2π)−1 logq γ ∈ [p`+ j, p`+ j + 1) for some p ∈ N.

Note that the feedback gain matrix in (5.10) is piecewise smooth but discontinuous
whenever (2π)−1 logq γ takes on integer values, so Proposition 2.4 is no longer valid.
However, these discontinuities in the gain are easily handled by a minor modification
to the proof of Proposition 2.4.

THEOREM 5.2. Assume that det G(0) 6= 0. Let r ∈ Rm be an arbitrary demand
vector. If u(t) is given by (5.10), with adaptation (5.2), then for each (x0, u0) ∈ X×Rm
and γ0 > exp( q

√
2π) we have 6

6Note that S(γ) is defined only for γ ≥ exp( q
√

2π).
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(i) limt→∞ γ(t) = γ∞ <∞;
(ii) ‖x(t)‖ and ‖u(t)‖ remain bounded as t→∞;
(iii) e(·) ∈ L2(R+,Rm).

Moreover, if (x0, u0) ∈ D(Ã), then (5.3) holds. If the observation operator C is
bounded, then (5.3) holds for all (x0, u0) ∈ X × Rm.

Proof. Let ν ∈ {1, 2, . . . , `} be such that σ(G(0)Γν) ∈ C0. By Theorem 3.8
there exists k ∈ (0, 1) such that the integrator (k/s)Γν stabilizes G. Consequently,
by Theorem 3.14, the semigroup T̃kΓν is exponentially stable. As in the proof of
Theorem 5.1 set K(γ) = 1 + cos(logq γ). By Lemma 3.16 there exists x̃0 ∈ X × Rm

such that

e = Ψ̃∞x̃0 − F̃∞(K(γ)ΓS(γ)e) .(5.11)

Let [0, τ) be the maximal interval of existence for the solution (e, γ) of the closed-loop
system given by (5.11) and (5.2). Seeking a contradiction, suppose that limt→τ γ(t) =
∞. Choose ε ∈ (0, k) such that ε+ k < 1. Then there exists a sequence 0 ≤ t0 < t1 <
· · · < τ with

K(γ(t2i)) = k − ε , K(γ(t2i+1)) = k + ε

and such that

K(γ(t)) ∈ (k − ε, k + ε) and S(γ(t)) = ν ∀ t ∈ [t2i, t2i+1] .

As in the proof of Theorem 5.1, we can use (2.9b) to obtain

Lt2iPt2i+1e = Ψ̃kΓν
t2i+1−t2i x̃(t2i)− F̃kΓν

t2i+1−t2i(Lt2iPt2i+1(K(γ)− k)Γνe) .

The remainder of the proof follows closely that of Theorem 5.1 and is omitted.
The control law given by (5.10) and (5.2) depends crucially on the unmixing set

{Γ1,Γ2, . . . ,Γ`}. Clearly, if m = 1, then {1,−1} is an unmixing set. For the case
m = 2 an unmixing set of cardinality 6 is given in Mårtensson [21], [22]. Zhu [51] has
constructed an unmixing set having cardinality 32 for the case m = 3. Unfortunately,
the cardinality of the unmixing sets given by the general construction in [22] is far
too large than would be convenient for applications.

6. Examples and simulations. The results of sections 3–5 apply to the general
class of regular linear systems. For the purpose of illustration we consider two simple
examples: finite-dimensional systems with output delays and a damped wave equation
in a single spatial variable with boundary control and observation. In all of the
simulations we used Simulink in Matlab. Note that the reference signals to be tracked
are stepped, with nonzero step time.

Example 6.1. Systems with output delays:
We consider a class

ẋ(t) = Ax(t) +Bu(t) , y(t) = Cx(t− h)(6.1)

of systems with output delay, where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and h > 0.
The system (6.1) can be represented as a so-called Pritchard–Salamon system with
state space Rn × L2(−h, 0;Rn); see, e.g., Pritchard and Salamon [35, 36]. Since
Pritchard–Salamon systems are regular in the sense of section 2, it follows that
the results of sections 3–5 can be applied to (6.1), provided that σ(A) ⊂ C0 and
detCA−1B 6= 0. We consider three particular cases.
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FIG. 6.1. Tolerable delay as a function of k.

(a) m = 1, n = 2, and

A =
(

0 1
−2 −3

)
, B =

(
0
1

)
, C = (1, 0) .

If h = 0, then u̇ = −ky stabilizes (6.1) for all k ∈ (0, 6). Using a stability window
analysis (Walton and Marshall [43]), we can compute for each k ∈ (0, 6) the range of
h ∈ (0, h(k)) for which u̇ = −ky stabilizes (6.1). In Figure 6.1, h(k) is plotted against
k for k in the range (0, 6). Figure 6.2 shows a plot of y(t), r(t), and K(γ(t)) against
t for (4.28) with p = 0.4 when h = 4, x(0) = (−1 3)T , u(0) = −1, and y(t) = −4 for
t < 0. Note in this case that the integrator gain can take values in (0, 0.6) and that
K(γ(∞)) = 0.07.

(b) We now consider two cases with m = 2, n = 3. In the first case G(0) is sign
definite and in the second G(0) is sign indefinite.

(i) In this example we take

A =

 −1 0 −2
0 −1 −3
−2 −3 −14

 , B =

 1 0
0 1
0 0

 , C =
(

1 0 0
0 1 0

)

so that

G(0) =
(

7 6
6 11

)
� 0 .

We assume that this knowledge of the sign of the steady-state gain is available and
use (4.28) with p = 0.15.

Figure 6.3 shows plots of y(t), r(t), and K(γ(t)) for the case h = 1 with y(·) = 0
on [−1, 0), x(0) = (0.4, 0.3, 0.25)T , and u(0) = (1.5, 1)T , with the reference signal
r(t) = θ(t)(5, 0)T + θ(t− 20)(5, 3)T .
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FIG. 6.2. Simulation with K(γ) = γ−0.4.

0 5 10 15 20 25 30 35 40

0

2

4

6

8

10

12

Time

FIG. 6.3. Simulation with K(γ) = γ−0.15.

(ii) In this example we take

A =

 0 1 0
0 0 1
−6 −11 −6

 , B =

 0 0
1 0
0 1

 , C =
(

1 0 0
0 1 0

)
so that

G(0) =
[

3 0.1667
0 1

]
.
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FIG. 6.4. Simulation with K(γ) = 1 + cos(log0.95 γ).

Clearly σ(G(0)) ⊂ C0. We assume that this knowledge is available and use (5.1) with
q = 0.95.

Figure 6.4 shows plots of y(t), r(t), and K(γ(t)) for the case h = 0.5 with y(·) = 0
on [−0.5, 0), x(0) = (0.4, 0.3, 0.25)T and u(0) = (1.5, 1)T with the reference signal
r(t) = θ(t)(5,−3)T + θ(t− 10)(5, 1)T .

Example 6.2. A wave equation with boundary control and observation: We
consider the damped wave equation

∂2w

∂t2
(z, t) =

∂2w

∂z2 (z, t)− 2a
∂w

∂t
(z, t)− a2w(z, t) , t > 0 , z ∈ (0, 1) ,(6.2)

with boundary conditions

w(0, t) = 0 ,
∂w

∂z
(1, t) = u(t)

and boundary observation

y(t) =
∂w

∂t
(1, t) + bw(1, t) ,

where a > 0 and b 6= 0. This system has a regular, exponentially stable realization on
the state space

X = {x = [x1, x2]T ∈ H1[0, 1]⊕ L2[0, 1] | x1(0) = 0}.

Moreover, G(s) = s+b
s+a

sinh(s+a)
cosh(s+a) so that G(0) = b sinh(a)

a cosh(a) 6= 0. We assume that a =
1
2 log 0.3 and b = 0.3. For purposes of illustration we assume that sign (G(0)) is
unknown so that we use (4.11) with p = 0 and q = 0.9 and the initial conditions are
equal to zero.

Figure 6.5 shows y(t), r(t), and K(γ(t)), whilst Figure 6.6 shows y(t), r(t), and
K(γ(t)) when the sign of G(0) is switched. Note that whilst (6.2) gives a partial
differential equation realization of G(s), for the simulations we exploited the fact
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FIG. 6.5. Simulation with K(γ) = cos(log0.9 γ) and G(0) > 0.

that the input-ouput behavior of (6.2), with zero initial conditions, is the same as
that for the series connection of s+b

s+a with the functional difference equation

y(t) = −e−2ay(t− 2) + u(t)− e−2au(t− 2) .(6.3)

The system given by (6.3) is easily realized using Simulink in Matlab.
In comparing Figures 6.5 and 6.6, we note that in the former, the gain function

K(γ) undergoes two switches in sign before reaching a positive limit and in the latter
switches sign only once before reaching a negative limit. The simulations are consistent
with the fact that G(0) > 0 in Figure 6.5 and G(0) < 0 in Figure 6.6.

7. Concluding remarks. In this paper we have obtained results on nonadaptive
and adaptive low-gain control of square regular systems for tracking step reference
signals. It is possible to extend some of the results to nonsquare systems and sinusoidal
reference signals. Finally, in [16] we have obtained discrete-time versions of the results
in sections 3 and 4, with applications to sampled-data control of regular systems.

Appendix.
Proof of Proposition 2.4. For a < b ≤ ∞ we define L(a, b) := L2(a, b;Rm) ×

L∞(a, b;R) and Lloc(a,∞) := L2
loc(a,∞;Rm) × L∞loc(a,∞;R). We define a norm

on L(a, b) by setting ‖(f1, f2)‖(a,b) := ‖f1‖L2(a,b) + ‖f2‖L∞(a,b). In order to prove
Proposition 2.4 we shall first consider an initial value problem which contains (2.11)
as a special case.

Let T ≥ 0, (y0, γ0) ∈ Lloc(T,∞) and (f, g) ∈ L(0, T ) be given, and suppose that
F ∈ L1

loc(R+,Rm×m) and K : R→ R is a locally Lipschitz function. For τ > T define
the operator Nτ : L(0, τ)→ L(0, τ) by

Nτ

(
y

γ

)
(t) =

(
f(t)
g(t)

)
, t ∈ [0, T ] ,(A.1a)
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FIG. 6.6. Simulation with K(γ) = cos(log0.9 γ) and G(0) < 0.

Nτ

(
y

γ

)
(t) =

(
y0(t)
γ0(t)

)
+
∫ t

0

(
F (t− ξ) 0

0 1

)(
K(γ(ξ))y(ξ)
‖y(ξ)‖2

)
dξ , t ≥ T .(A.1b)

For ρ > 0 and τ > T , let Bρ,τ denote the closed ball in L(T, τ) of radius ρ with center
in (y0|[T,τ ], γ

0|[T,τ ] + ‖f‖2L2(0,T )). Finally define

Mρ,τ := {(y, γ) ∈ L(0, τ) | (y, γ)|[T,τ ] ∈ Bρ,τ , (y, γ)|[0,T ] = (f, g)} .
Endowed with the metric

d[(y1, γ1), (y2, γ2)] = ‖(y1 − y2, γ1 − γ2)‖(T,τ) = ‖(y1 − y2, γ1 − γ2)‖(0,τ) ,

Mρ,τ becomes a complete metric space.
The following lemma will be the key tool for the proof of Proposition 2.4.
LEMMA A.1. Let ρ ∈ (0, 1/2). Then there exists a T ∗ > T such that for all

τ ∈ (T, T ∗) the operator Nτ is a contraction on Mρ,τ , i.e., (i) NτMρ,τ ⊂ Mρ,τ and
(ii) there exists δτ ∈ (0, 1) such that for all (y1, γ1), (y2, γ2) ∈Mρ,τ

‖Nτ (y1, γ1)−Nτ (y2, γ2)‖(T,τ) ≤ δτ‖(y1, γ1)− (y2, γ2)‖(T,τ) .

In particular, for all τ as above, Nτ has a unique fixed point in Mρ,τ .
Proof. Let Πi, i = 1, 2, denote the operator on L(0, τ) defined by Πi(f1, f2) = fi,

and let τ∗ > T be fixed.
(i) Setting η(t) :=

∫ T
0 F (t − ξ)K(g(ξ))f(ξ) dξ, it is clear that η ∈ L2

loc(R+,Rm).
For all τ ∈ (T, τ∗) and all (y, γ) ∈Mρ,τ it follows that

‖Π1Nτ (y, γ)− y0‖2L2(T,τ)

=
∫ τ

T

‖η(t) +
∫ t

0
(Pτ−TF )(t− ξ)[(I −PT )K(γ)y](ξ) dξ‖2 dt

≤ 2

(
‖η‖2L2(T,τ) +

(∫ τ

0
‖(Pτ−TF )(ξ)‖ dξ

)2 ∫ τ

T

‖K(γ(ξ))y(ξ)‖2 dξ
)
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≤ 2

‖η‖2L2(T,τ) +K2

(∫ τ−T

0
‖F (ξ)‖ dξ

)2(
ρ2 +

∫ τ

T

‖y0(ξ)‖2 dξ
) ,(A.2)

where K > 0 is such that |K(κ)| ≤ K for all κ ∈ R with |κ| ≤ ρ + ‖γ0‖L∞(T,τ∗) +
‖f‖2L2(0,T ). It follows from (A.2) that there exists T1 ∈ (T, τ∗) such that for all
(y, γ) ∈Mρ,τ and for all τ ∈ (T, T1)

‖Π1Nτ (y, γ)− y0‖2L2(T,τ) ≤
ρ2

4
.(A.3)

Moreover, we have that for (y, γ) ∈Mρ,τ

‖Π2Nτ (y, γ)−γ0(·)−‖f‖2L2(0,T )‖L∞(T,τ) =
∫ τ

T

‖y(ξ)‖2 dξ ≤ ρ2 +‖y0‖2L2(T,τ) .(A.4)

Since ρ < 1
2 , it follows that ρ2 < ρ/2, and hence we obtain by using (A.4) that there

exists T2 > T such that for all (y, γ) ∈Mρ,τ and for all τ ∈ (T, T2)

‖Π2Nτ (y, γ)− γ0(·)− ‖f‖2L2(0,T )‖L∞(T,τ) <
ρ

2
.(A.5)

Combining (A.3) and (A.5), we see that

NτMρ,τ ⊂Mρ,τ ∀ τ ∈ (T,min(T1, T2)) .(A.6)

(ii) For any τ ∈ (T, τ∗) and any (y1, γ1), (y2, γ2) ∈ Mρ,τ the following estimates
hold:

‖Π1Nτ (y1, γ1)−Π1Nτ (y2, γ2)‖2L2(T,τ)

=
∫ τ

0

(∫ t

0
(PT−τF )(t− ξ)(K(γ1(ξ))y1(ξ)−K(γ2(ξ))y2(ξ)) dξ

)2

dt

≤
(∫ τ

0
‖(Pτ−TF )(ξ)‖ dξ

)2 ∫ τ

0
‖K(γ1(ξ))y1(ξ)−K(γ1(ξ))y2(ξ)

+ K(γ1(ξ))y2(ξ)−K(γ2(ξ))y2(ξ)‖2 dξ

≤ 2

(∫ τ−T

0
‖F (ξ)‖ dξ

)2(
K2
∫ τ

T

‖y1(ξ)− y2(ξ)‖2 dξ

+ L2
(∫ τ

0
‖y2(ξ)‖2 dξ

)
‖γ1 − γ2‖2L∞(T,τ)

)
,(A.7)

where we have chosen K > 0 and L > 0 in such a way that for all real numbers κ, κ1
and κ2 with |κ|, |κ1|, |κ2| ≤ max(‖g‖L∞(0,T ), ρ+ ‖γ0‖L∞(T,τ∗) + ‖f‖2L2(0,T ))

K(κ) ≤ K and |K(κ1)−K(κ2)| ≤ L|κ1 − κ2| .

Realizing that ∫ τ

0
‖y2(ξ)‖2 dξ ≤ ‖f‖2L2(0,T ) + ‖y0‖2L2(T,τ) + ρ2 ,
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it follows from (A.7) that there exists M > 0 such that for all τ ∈ (T, τ∗) and all
(y1, γ1), (y2, γ2) ∈Mρ,τ

‖Π1Nτ (y1, γ1)−Π1Nτ (y2, γ2)‖2L2(T,τ)

≤M
(∫ τ−T

0
‖F (ξ)‖ dξ

)2

(‖y1 − y2‖2L2(T,τ) + ‖γ1 − γ2‖2L∞(T,τ)).

Defining

δ′τ :=
√
M

∫ τ−T

0
‖F (ξ)‖ dξ ,(A.8)

we obtain that for all τ ∈ (T, τ∗) and all (y1, γ1), (y2, γ2) ∈Mρ,τ

‖Π1Nτ (y1, γ1)−Π1Nτ (y2, γ2)‖L2(T,τ) ≤ δ′τ (‖y1−y2‖L2(T,τ) +‖γ1−γ2‖L∞(T,τ)) .
(A.9)

Furthermore, we have that for all (y1, γ1), (y2, γ2) ∈Mρ,τ

‖Π2Nτ (y1, γ1)−Π2Nτ (y2, γ2)‖L∞(T,τ)

= sup
t∈[T,τ ]

∣∣∣∣∫ t

T

‖y1(ξ)‖2 dξ −
∫ t

T

‖y2(ξ)‖2 dξ
∣∣∣∣

≤
∫ τ

T

(‖y1(ξ)‖+ ‖y2(ξ)‖)‖y1(ξ)− y2(ξ)‖ dξ

≤ (‖y1‖L2(T,τ) + ‖y2‖L2(T,τ))‖y1 − y2‖L2(T,τ)

≤ 2(ρ+ ‖y0‖L2(T,τ))‖y1 − y2‖L2(T,τ) .(A.10)

Setting

δ′′τ := 2(ρ+ ‖y0‖L2(T,τ)) ,(A.11)

it follows from (A.10) that for all (y1, γ1), (y2, γ2) ∈Mρ,τ

‖Π2Nτ (y1, γ1)−Π2Nτ (y2, γ2)‖L∞(T,τ) ≤ δ′′τ ‖y1 − y2‖L2(T,τ) .(A.12)

Clearly, since ρ < 1
2 and by (A.8) and (A.11), there exists T3 ∈ (T, τ∗) such that

δτ := max(δ′τ , δ
′′
τ ) < 1 for all τ ∈ (T, T3). Setting T ∗ = min(T1, T2, T3), we see that

T ∗ > T , δτ < 1 for all τ ∈ (T, T ∗), and moreover, by (A.6), (A.9), and (A.12), we
have that for all τ ∈ (T, T ∗) and all (y1, γ1), (y2, γ2) ∈Mρ,τ

NτMρ,τ ⊂Mρ,τ , ‖Nτ (y1, γ1)−Nτ (y2, γ2)‖(T,τ) ≤ δτ‖(y1, γ1)− (y2, γ2)‖(T,τ) .

Finally, it follows from Banach’s contraction mapping theorem that for all τ as above
Nτ has a unique fixed point in Mρ,τ .

Proof of Proposition 2.4. We proceed in several steps.
Step 1 (existence and uniqueness on a small interval). An application of Lemma

A.1 to the case where T = 0, y0 = Ψ∞x0, γ0(t) ≡ γ0 and F = −L−1G shows that
for all sufficiently small τ > 0 the operator Nτ has a unique fixed point in Mρ,τ and
hence there exists τ∗ > 0 such that (2.11) has a unique solution (y∗, γ∗) on [0, τ∗).

Step 2 (continuation of solutions). If ‖y∗‖L2(0,τ∗) = ∞, then τmax = τ∗ and
(ymax, γmax) = (y∗, γ∗), and we are finished. Thus, let us suppose that ‖y∗‖L2(0,τ∗) <
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∞. We claim that then the solution (y∗, γ∗) can be extended beyond τ∗. To this end
we apply Lemma A.1 to the case where T = τ∗, (f, g) = (y∗, γ∗), y0 = (Ψ∞x0)|[τ∗,∞),
γ0(t) ≡ γ0, and F = −L−1G. It follows that there exist τ∗∗ > τ∗ and (y∗∗, γ∗∗) ∈
L(0,τ∗∗) such that (y∗∗, γ∗∗)|[0,τ∗] = (y∗, γ∗), and moreover (y∗∗, γ∗∗) solves (2.11) on
[0, τ∗∗).

Step 3 (extended uniqueness). Let (y1, γ1) and (y2, γ2) be two solutions of (2.11)
on [0, τ1) and [0, τ2), respectively, where τ2 ≥ τ1 > 0. We claim that

(y2(t), γ2(t)) = (y1(t), γ1(t)) for a.e. t ∈ [0, τ1) .(A.13)

For τ ∈ [0, τ1) define

Ωτ := {t ∈ [0, τ ] | (y1(t), γ1(t)) 6= (y2(t), γ2(t))} ,

and set

τ̂ := inf{τ ∈ [0, τ1) |λ(Ωτ ) > 0} ,

where λ denotes the Lebesgue measure. It is clear that (A.13) is equivalent to τ̂ = τ1.
Seeking a contradiction, assume that τ̂ < τ1. Let tn ∈ (0, τ̂) with limn→∞ tn = τ̂ .
(Recall that by Step 1, τ̂ > 0.) Obviously,

Ωτ̂ \ {τ̂} =
⋃
n∈N

Ωtn .

Now λ(Ωtn) = 0 for all n ∈ N, and thus λ(Ωτ̂ ) = 0, which in turn implies that for
a.e. t ∈ [0, τ̂ ]

(y1(t), γ1(t)) = (y2(t), γ2(t)) =: (ŷ(t), γ̂(t)) .

An application of Lemma A.1 to the case where T = τ̂ , (f, g) = (ŷ, γ̂), y0 =
(Ψ∞x0)|[τ̂ ,∞), γ0(t) ≡ γ0, and F = −L−1G shows that there exists t∗ ∈ (τ̂ , τ1)
such that the operator Nt∗ has a unique fixed point in Mρ,t∗ . Since the restric-
tions of (y1, γ1) and of (y2, γ2) to [0, t∗] are both fixed points of Nt∗ , we see that
(y1, γ1)|[0,t∗] = (y2, γ2)|[0,t∗], which is in contradiction to the definition of τ̂ .

Step 4 (existence of a maximal solution). Define

T := {τ > 0 | (2.11) has a solution on [0, τ)} .

Set τmax := sup T and let τn ∈ T be such that τn ↗ τmax as n → ∞. Let (yn, γn)
denote the unique (by Step 3) solution of (2.11) on [0, τn). Using Step 3 again it is
clear that (yn, γn)[0,τm] = (ym, γm) for all m,n ∈ N with n > m. Therefore, we obtain
a well-defined function (ymax, γmax) on [0, τmax) by setting

(ymax(t), γmax(t)) = (yn(t), γn(t)) if t ∈ [0, τn) .

By construction (ymax, γmax) is a solution of (2.11) on [0, τmax), which, by Step 3, is
unique. Finally, it follows from Step 2 and the definition of τmax that

τmax <∞ =⇒
∫ τmax

0
‖ymax(ξ)‖2 dξ =∞ .
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Birkhäuser Verlag, Basel, 1991. pp. 367–378.

[49] G. WEISS, Regular linear systems with feedback, Math. Control Signals Systems, 7 (1994),
pp. 23–57.

[50] G. WEISS, Private communication, 1994.
[51] X.-J. ZHU, A finite spectrum unmixing set for GL(3,R), in Computation and Control, K. Bow-
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Abstract. We study linear descriptor control systems with rectangular variable coefficient
matrices. We introduce condensed forms for such systems under equivalence transformations and
use these forms to detect whether the system can be transformed to a uniquely solvable closed loop
system via state or derivative feedback. We show that under some mild assumptions every such
system consists of an underlying square subsystem that behaves essentially like a standard state
space system, plus some solution components that are constrained to be zero.
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1. Introduction. In this paper we study linear variable coefficient descriptor
systems

E(t)ẋ(t) = A(t)x(t) +B(t)u(t)(1)

in the interval [t0, t1] ⊂ R together with an initial condition

x(t0) = x0.(2)

If we denote by Cr([t0, t1], Cn,`) the set of r-times continuously differentiable functions
from the interval [t0, t1] to the vector space Cn,` of complex n × ` matrices, then we
assume that

E(t), A(t) ∈ C([t0, t1], Cn,`),
B(t) ∈ C([t0, t1], Cn,m),
x(t) ∈ C([t0, t1], C`) is the state of the system,
u(t) ∈ C([t0, t1], Cm) is the control of the system.

(3)

Descriptor systems of the form (1) are used in modeling control problems for mechan-
ical multibody systems [32, 30, 31] or electrical circuits [16]. They are also obtained
as linearizations of general nonlinear systems along trajectories [6].

In order to study the properties of such systems one needs an understanding of
the behavior of the corresponding differential algebraic equations (DAEs). However,
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fundamentally different definitions of solvability, index, etc., appear in the literature.
See, for example, [1, 18]. These different definitions lead to different results, although
only a few have been achieved so far [7, 8]. In particular, the latter results use the
solvability concepts for differential algebraic equations as described in [1, 9, 10, 6].

In recent papers, Kunkel and Mehrmann have discussed a more general solvability
concept and developed canonical forms [18, 20], existence and uniqueness theorems
[18, 21], and numerical methods [22, 23] for linear variable coefficient DAEs. Exten-
sions to this approach have recently been given by Rabier and Rheinboldt [27].

Several generalizations of the concept of index have also been discussed in the
literature. The approach in [7, 8] is based on the solvability concept in [9]. Another
approach based on generic solvability is discussed in [14].

It is our ultimate goal to develop numerical methods that allow the computation
of the invariants in finite precision arithmetic. We do not discuss the generic approach
here, because it is better suited for computer algebra computation. Instead, we will
briefly discuss the two different solvability concepts of [9] and [18] in section 2 and
give some extensions of solvability results discussed in [18, 20, 27].

We then show in section 3 that analogous methods can be used to study the
properties of linear descriptor systems with variable coefficients. We obtain condensed
forms for linear systems which display properties of the system.

In section 4 we show that under some mild assumptions every rectangular vari-
able coefficient descriptor system has an underlying square system which in principle
behaves like a standard linear state space system, together with some purely algebraic
equations and some solution components which are constrained to be zero.

In section 5 we study the question whether the solvability properties of descriptor
systems can be improved by different types of feedback, i.e., whether appropriate
linear time-varying feedbacks can be chosen, so that the closed loop system is uniquely
solvable for all consistent initial conditions. This topic has been discussed for linear,
constant coefficient descriptor systems in [5]. There, it is shown (in the square case
n = `) that uncontrollable higher index modes are constrained to be zero. Thus,
regularizable descriptor systems consist of a subsystem that can be made index one
via feedback together with some zero components of the state. In this paper we come
to essentially the same conclusion for time-varying descriptor systems despite the fact
that the transformations are more complex.

2. Existence and uniqueness of solutions of linear time-varying DAEs.
We begin our analysis of the descriptor system (1), (2) with the following definition
from [18, 20] on the solvability of linear variable coefficient DAEs of the form

E(t)ẋ(t) = A(t)x(t) + f(t), t ∈ [t0, t1] ⊂ R(4)

with initial condition (2), E,A as in (3), and f ∈ C([t0, t1], Cn).
DEFINITION 2.1. A function x : [t0, t1]→ C` is a solution of (4) if x ∈ C1([t0, t1],

C`) and x satisfies (4) pointwise. It is a solution of the initial value problem (4), (2)
if x is solution of (4) and x satisfies (2). An initial condition (2) is called consistent
if the corresponding initial value problem is solvable, i.e., has at least one solution.

The definition of solvability is still a subject of discussion in the literature. Often
it is required that a solution exists for all sufficiently differentiable inhomogeneities [1,
p. 22]. Alternatively, only a well-behaved manifold of solutions is required [28]. Also,
unique dependence on initial conditions is sometimes incorporated in the definition of
solvability [1, 7].

The difficulty is illustrated by the following examples.
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Example 1. Consider the DAE[
−t t2

−1 t

]
ẋ(t) =

[
−1 0
0 −1

]
x(t), t ∈ [−1, 1].

By Definition 2.1

x(t) = c(t)
[
t
1

]
is a solution for all c ∈ C1([−1, 1], C). Nevertheless, this DAE is not solvable in the
sense of [1].

Example 2. The linear DAE[
0 t
0 0

] [
ẋ1(t)
ẋ2(t)

]
=
[

1 0
0 1

] [
x1(t)
x2(t)

]
+
[
f1(t)
f2(t)

]
has the solution x1(t) = −tḟ2(t)− f1(t) and x2(t) = −f2(t). Although the matrix E
changes rank, no singularity appears in the solution. This DAE does not satisfy the
hypothesis of the solvability theorem in [18], but as shown in [27], the requirement
of constant rank for E can be relaxed in this case and an extension of the solvability
theorem under weaker assumptions is true. This system also satisfies the hypothesis
of the solvability theorem in [1, p. 30].

Example 3. A special case of (4) is the purely algebraic equation 0 = A(t)x(t) +
f(t). If A(t) is nonsingular, then there is a unique solution x(t) = −A(t)−1f(t)
regardless of the smoothness of f(t). However, this DAE is not solvable in the sense of
[1] unless f(t) is differentiable, because the equivalent ODE is A(t)ẋ(t) = −Ȧ(t)x(t)+
ḟ(t). Although this system is also not solvable in the sense of [18], the normal form
given in [18] exists and suggests the introduction of a weaker solution concept; see
also [15]. If A(t) drops rank for some t, then one has to apply the extension of the
theory in [18, 20] given in [27] to show solvability. The weakness in [1], which is used
in the context of control problems in [7, 8], is that it requires differentiability of all
components of the inhomogeneity which is usually not the case in the applications
from control. Another weakness of this concept is that it does not apply to rectangular
systems. The concept introduced in [18] with the extensions given in [20, 27] is more
general, is better suited to control problems, and applies to rectangular systems and
distributional solutions. This is the reason why we prefer [18] to [1]. In this paper we
will, however, discuss only classical solutions in the sense of Definition 2.1.

Remark 1. A simple but useful trick that removes some but not all of the discussed
difficulties with the solvability concept is the following. If we add the term Ė(t)x(t)
on both sides of (4), we obtain

d

dt
(E(t)x(t)) = (A(t) + Ė(t))x(t) + f(t).(5)

In this form we would have to require sufficient smoothness of x(t) only in the range
of E(t)T . This would allow weaker differentiability assumptions for x at the cost
of smoothness assumptions for E. Such an approach would be more suitable for
index one problems in particular, since exactly the differentiability that is needed is
displayed. But as is shown in [18] for higher index problems, it is still not possible to
identify the exact differentiability conditions without going to a canonical form. In



120 RALPH BYERS, PETER KUNKEL, AND VOLKER MEHRMANN

order to avoid confusion with the existing literature we therefore use the solvability
condition introduced in Definition 2.1.

Another modification of the solvability concept that has been used frequently
with constant coefficient systems is to restrict the initial conditions to the range of E
by requiring

E(t0)x(t0) = E(t0)x0.(6)

This would be in line with (5). We will determine in general what the exact consis-
tency conditions for the initial values are in the following. Since these include not
only modifications like (6) but also others, we will use the more general condition in
Definition 2.1.

The standard variable coefficient transformations that can be applied to linear
DAEs are changes of bases, i.e., x(t) = Q(t)y(t), and premultiplication of (1) by P (t).
Under these transformations (4) transforms to

P (t)E(t)Q(t)ẏ(t) = (P (t)A(t)Q(t)− P (t)E(t)Q̇(t))y(t) + P (t)f(t).(7)

DEFINITION 2.2. Two pairs of matrix functions (Ei(t), Ai(t)), Ei, Ai ∈ C([t0, t1],
Cn,`), i = 1, 2 are equivalent if there exist P ∈ C([t0, t1], Cn,n) and Q ∈ C1([t0, t1], C`,`)
with P (t), Q(t) nonsingular for all t ∈ [t0, t1] such that

(E2(t), A2(t)) = P (t)(E1(t), A1(t))
[
Q(t) −Q̇(t)

0 Q(t)

]
.(8)

Based on suitable equivalence transformations we will now extend the solvability
theorems of [18, 20, 27].

To simplify the notation in the condensed forms, we denote in the following by
Σj(t) a square diagonal matrix valued function of dimension j × j which is invertible
for all but finitely many t ∈ [t0, t1]. We also denote blocks of a matrix which are not
specifically needed but which are not necessarily identically zero by ∗ and zero blocks
of all dimensions by 0.

We construct the condensed form via smooth unitary equivalence transformations.
This displays the invariants of the system but does not produce a canonical form
but rather a condensed staircase form in the sense of Van Dooren [33] from which
invariants can be read off. To do the transformations we use smooth singular value
decompositions as they were introduced in [2] and for which several numerical methods
are available [2, 25, 34]. To apply these transformations, we need derivatives of the
right transformations. These can be obtained numerically from the original matrix
function E(t) and its derivatives using the method described in [17]. Note, however,
that the following theorem and the construction procedure in the proof cannot be
applied as a practical numerical algorithm. Nevertheless, it gives an indication how
the computation of the invariants can be carried out locally. (For a discussion of
this topic for DAEs see [18]. The extension to descriptor systems is currently being
investigated.) One step of the construction given in the proof of the following theorem
can be carried out locally. If more steps are needed, then local computation is not
applicable in the given form. For the use of determining the required information on
the global invariants via local computation see [22].

THEOREM 2.3. Given analytic matrix-valued functions E(t), A(t) as in (3) there
exist unitary analytic matrix-valued functions P (t), Q(t), as in (8) such that the
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matrices P (t)E(t)Q(t), P (t)A(t)Q(t)− P (t)E(t)Q̇(t) have the following form:

dµ
aµ
ulµ

 E11(t) E12(t) 0
0 E22(t) 0
0 E32(t) 0

 ,
 A11(t) A12(t) A13(t)

0 A22(t) 0
0 A32(t) 0

 ,(9)

where E11(t) is diagonal and nonsingular except for isolated points, E22(t), E32(t),
and A32(t) are block upper triangular with zero diagonal blocks, and A22(t) is block
upper triangular with diagonal blocks which are nonsingular except for isolated points.
The block columns have sizes dµ, aµ, urµ. (Note that 0× 0 matrices are diagonal and
invertible, e.g., [11].)

Proof. The proof is constructive using a sequence of analytic singular value de-
compositions (ASVDs); see [2]. In the following we drop the dependence on t in the
formulas. Consider the following recursive procedure:
Begin: Let E0 = E, A0 = A and set j = 0, nj = n, `j = `.

(1) Let P1, Q1 be unitary matrices of appropriate dimensions that produce an
ASVD of E0 such that

E1 := P ∗1E0Q1 =
[

Σrj 0
0 0

]
.

Set

A1 := P ∗1A0Q1 − P ∗1E0Q̇1 =
[
A11 A12
A21 A22

]
.

If rj = nj , i.e., E1 has full row rank except for isolated points, then we STOP
the process here.

(2) Let P̃2, Q2 be unitary matrices that produce a permuted ASVD of
[
A21 A22

]
:

P̃ ∗2
[
A21 A22

]
Q2 =

[
0 Σtj
0 0

]
.

Set

P2 :=
[
Irj 0
0 P̃2

]
,

and set

E2 := P ∗2E1Q2 =

 Ẽ11 Ẽ12

0 0
0 0

 , A2 := P ∗2A1Q2 − P ∗2E1Q̇2 =

 Ã11 Ã12

0 Σtj
0 0

 .
The row dimensions are now rj , tj , pj = nj − rj − tj and the column dimensions are
`j − tj , tj .

We then set nj+1 := rj , `j+1 := `j − tj , E0 := Ẽ11, A0 := Ã11, and j = j + 1 and
repeat the process from step (1) by applying transformations always to the complete
system via an appropriate embedding of the transformation matrices.
end
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It is clear that the procedure is finite, since nj decreases in each step. At the end
of this recursion we have the form

P (t)E(t)Q(t) =



Σnµ(t) 0 ∗ ∗ . . . ∗
0 0 0 ∗ . . . ∗
0 0 0 ∗ . . . ∗

0
. . .

...

0
...

. . .
...
0
0



nµ
tµ−1
pµ−1

tµ−2

pµ−2
...
t0
p0

,(10)

P (t)A(t)Q(t)− P (t)E(t)Q̇(t)

=



Â11(t) Â12(t) ∗ ∗ . . . ∗
0 0 Σtµ−1(t) ∗ . . . ∗
0 0 0 ∗ . . . ∗

Σtµ−2(t) . . . ∗
0 . . . ∗

. . .
...

Σt0(t)
0



nµ
tµ−1
pµ−1

tµ−2
pµ−2
...
t0
p0

.(11)

We then set E11(t) = Σnµ(t) and permute the second block column to the end and the
block rows in the order 1, 2, 4, 6, . . . , 3, 5, 7, . . . to obtain the final form with dµ = nµ,
aµ = t0 + · · ·+ tµ, ulµ = n− aµ − dµ, and urµ = `− aµ − dµ.

Remark 2. Note that the analyticity assumption on the coefficient matrices can be
relaxed to the condition that all smooth singular value decompositions exist and that
rank changes in the factored matrices occur only at isolated points. This property
is hard to quantify, however, since already infinite differentiability of the coefficient
matrices may not be enough to guarantee the existence of such a decomposition with
once-differentiable unitary factors; see [2]. The construction given in the proof of
Theorem 2.3 is similar to the construction given in [18], but it needs fewer assumptions;
in particular, no constant rank assumptions are needed.

Remark 3. The block sizes tµ−1, . . . , t0, pµ−1, . . . , p0 can be combined to determine
the invariants of the equivalence transformation. However, (10) does not display all
invariants, so it is a condensed form—not a canonical form. The quantities dµ, aµ,
u`µ, urµ are invariants (see [18]), and they determine existence and uniqueness, as is
shown in the following corollary. The condensed form is analogous to the staircase
form of Van Dooren [33], which is a condensed form for constant matrix pencils
that displays some of the invariants of the Kronecker canonical. Such condensed
forms are useful, because they allow one to compute the relevant information via
unitary transformations, which can be implemented in a numerically stable way. The
quantity µ is called the strangeness index of the DAE, and it is a generalization of
the differentiation index, e.g., [1, 18, 27, 21]. A variant of the solvability theorem of
[20] is then as follows.

COROLLARY 2.4. Let (E(t), A(t)) be analytic matrix-valued functions as in (3)
and f ∈ Cµ([t0, t1], Cn). Then, (4) is equivalent to a DAE of the form
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(a) Σdµ(t)ẋ1(t) + E12(t)ẋ2(t)
= A11(t)x1(t) +A12(t)x2(t) +A13(t)x3(t) + f1(t),

(b) E22(t)ẋ2(t) = A22(t)x2(t) + f2(t),
(c) E32(t)ẋ2(t) = A32(t)x2(t) + f3(t),

(12)

where the inhomogeneity is determined by f (0), . . . , f (µ) and E22(t), E32(t), A22(t),
and A32(t) are as in (9). In particular, dµ, aµ, urµ are the numbers of differential,
algebraic, and undetermined components of the unknown x in (a), (b), while ulµ is the
number of conditions in (c). In particular, if in addition f ∈ Cµ+1([t0, t1], Cn), then
equation (4) is solvable if and only if the following properties hold:

(i) At isolated points where the diagonal matrix Σdµ(t) or the diagonal blocks of
A22(t) are singular, the components in x3(t) (if they occur) can be chosen so that the
solution can be completed in a continuously differentiable way.

(ii) The conditions in (12(b)) are satisfied at the initial point.
(iii) The ulµ functional consistency conditions in (12(c)) are satisfied for x2(t),

which is fixed by (12(b)). (Observe that (12(b)) fixes x2(t) by recursive insertion and
differentiation except for points where the diagonal blocks of A22(t) are singular, using
the nilpotency structure of E22(t).)

An initial condition (2) is consistent if and only if the aµ conditions

E22(t0)ẋ2(t0) = A22(t0)x2(t0) + f2(t0)(13)

yield an x2(t0) which coincides with solution of (12(b)) at t0.
The initial value problem (1), (2) is uniquely solvable if we also have

urµ = 0.(14)

Otherwise, we can choose x3(t) ∈ C1([t0, t1], Curµ) arbitrarily.
Proof. The proof follows directly from Theorem 2.3. Considering the second block

equation, we obtain from the form of E22(t), A22(t) that we can recursively solve
for the solution components. The diagonal blocks of A22(t) are diagonal matrices
which are invertible except possibly at isolated points. In these points we have to
be able to complete the solution in a smooth way, since these components then have
to be differentiated to continue the solution process. There are µ differentiations
necessary to completely solve for the second block. Inserting ẋ2 and x2 and choosing
x3 we can solve equation (12(a)) except at points where the matrix Σdµ(t) is singular.
The same argument as above applies in these points. The remaining assertions are
straightforward.

In this section we have given a generalization of the condensed form and the
solvability results of [18, 20, 27]. We do not need to apply constant rank assumptions,
but we need assumptions that guarantee the existence of all ASVDs according to
Remark 2. Here we could generalize the construction to weak solvability, which would
allow us to drop some further smoothness assumptions; see [27]. In the next section
we perform the corresponding construction for linear systems.

3. Condensed forms for linear descriptor systems. In this section we dis-
cuss the set of equivalence transformations that we will apply to variable coefficient
descriptor systems and canonical forms under these transformations. Using these
forms, we obtain information about the system properties. For constant coefficient
systems such forms have been studied for general transformations in [24] and for uni-
tary transformations in [3, 4, 5]. The results that we give here generalize the results
for the unitary case even for constant coefficient systems.
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Observe that we cannot apply directly the solvability result of section 2, since
usually we cannot assume that the input functions u(t) are sufficiently differentiable.
In principle we can apply differentiation of components only in the uncontrollable
subspace, i.e., the part of the system operating in the left nullspace of B(t). Note
that this is a major difference to the approach in [7, 8], where it is assumed that the
input functions are sufficiently smooth.

We use the following global equivalence transformations for the triple of matrix
valued functions (E(t), A(t), B(t)).

DEFINITION 3.1. Two triples of matrix functions (Ei(t), Ai(t), Bi(t)), Ei, Ai ∈
C([t0, t1], Cn,`), Bi ∈ C([t0, t1], Cn,m), i = 1, 2 are called equivalent if there exist P ∈
C([t0, t1], Cn,n), Q ∈ C1([t0, t1], C`,`) and W ∈ C([t0, t1], Cm,m) with P (t), Q(t),W (t)
nonsingular for all t ∈ [t0, t1] such that

(E2(t), A2(t), B2(t)) = P (t)(E1(t), A1(t), B1(t))

 Q(t) −Q̇(t) 0
0 Q(t) 0
0 0 W (t)

 .(15)

It is easily checked that the above transformations describe equivalence transforma-
tions.

We obtain the following condensed form.
THEOREM 3.2. Given analytic matrix-valued functions E(t), A(t), B(t) as in (3)

there exist unitary analytic matrix-valued functions P (t), Q(t), W (t) as in (15) such
that the three matrices P (t)E(t)Q(t), P (t)A(t)Q(t)−P (t)E(t)Q̇(t), and P (t)B(t)W (t)
have the following form:

dν
vν
sν

ũlν
ulν


Σdν (t) 0 E13(t) 0

0 0 E23(t) 0
0 0 E33(t) 0
0 0 E43(t) 0
0 0 E53(t) 0

 ,

A11(t) A12(t) A13(t) A14(t)
A21(t) A22(t) A23(t) A24(t)

0 0 A33(t) 0
A41(t) A42(t) A43(t) A44(t)

0 0 A53(t) 0

 ,

B11(t) B12(t) B13(t)
Σvν (t) 0 0

0 0 0
0 Σũlν (t) 0
0 0 0


(16)

with E33(t) block upper triangular with zero diagonal blocks, and A33(t) block upper
triangular with diagonal blocks which are diagonal matrices that are nonsingular except
for isolated points. The block columns in E,A have sizes dν , vν , sν , urν .

Proof. The proof is constructive using again a sequence of analytic singular value
decompositions (ASVDs). We again drop the dependence on t in the formulas. Con-
sider the following recursive procedure:
Begin:

Let E0 = E, A0 = A, B0 = B and set j = 0, nj = n, `j = `.
(1) Let P1, Q1 be unitary matrices of appropriate dimensions that produce an

ASVD of E0 such that

E1 := P ∗1E0Q1 =
[

Σdj 0
0 0

]
.
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Set

A1 := P ∗1A0Q1 − P ∗1E0Q̇1 =
[
A11 A12
A21 A22

]
, B1 := P1B0 =

[
B11
B21

]
.

(2) Let P̃2,W2 be unitary matrices of appropriate dimensions that produce an
ASVD of B21. Set

P̃ ∗2B21W2 =
[

Σcj 0
0 0

]
, P2 :=

[
Idj 0
0 P̃2

]
,

and

E2 := P ∗2E1 =

 Σdj 0
0 0
0 0

 , A2 := P ∗2A1 =

 Ã11 Ã12

Ã21 Ã22

Ã31 Ã32

 ,
B2 := P ∗2B1W2 =

 B̃11 B̃12

Σcj 0
0 0

 .
If B21 has full row rank except at isolated points, then we STOP the process

here.
(3) Let P̃3, Q3 be unitary matrices that produce a permuted ASVD of

[
Ã31 Ã32

]
.

Set

P̃ ∗3
[
Ã31 Ã32

]
Q3 =

[
0 Σkj
0 0

]
, P3 :=

 Idj 0 0
0 Icj 0
0 0 P̃3


and

E3 := P ∗3E2Q3 =


Ê11 Ê12
0 0
0 0
0 0

 , A3 := P ∗3A2Q3 − P ∗3EQ̇3 =


Â11 Â12

Â21 Â22

0 Σkj
0 0

 ,

B3 := P ∗3B2 =


B̂11 B̂12

Σcj 0
0 0
0 0

 .
(17)

with block rows of sizes dj , cj , kj , qj = nj − dj − cj − kj and block columns of sizes
`j − kj , kj in E3, A3, and cj ,m− cj in B3.

Now we set nj+1 = dj+cj , `j+1 = `j−kj , and we set E0, A0 to be the nj+1×`j+1
upper left submatrices of E3, A3 and B0 to be the upper nj+1 ×m submatrix of B3.
Set j = j + 1, and repeat the process from step (1) by applying transformations
always to the complete system via an appropriate embedding of the transformation
matrices.
end
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It is clear that the procedure is finite, since nj decreases in each step. At the end
of this recursion we have the following forms for the transformed E,A,B:



Σdν (t) 0 ∗ ∗ . . . ∗
0 0 ∗ ∗ . . . ∗

0 ∗ . . . ∗
0 ∗ . . . ∗

. . .
...
0 ∗
0 ∗

0
0



dν
cν
kν−1
qν−1
...
k1
q1

k0
q0

,



A11(t) A12(t) ∗ ∗ . . . ∗
A21(t) A22(t) ∗ ∗ . . . ∗

Σkν−1(t) ∗ . . .
...

0 ∗
...

. . . . . .
...

Σk1(t) ∗
0 ∗

Σk0(t)
0



dν
cν

kν−1

qν−1
...
k1
q1

k0
q0

,



B11(t) B12(t)
Σcν (t) 0

0 0
0 0
...

...
0 0
0 0
0 0
0 0



dν
cν
kν−1
qν−1
...
k1
q1

k0
q0

.

The columns of E,A have sizes dν , `− kν−1 − · · · − k0, kν−1, . . . , k0.
We now split the second block row and column further so that we obtain a square

diagonal block of size vν = min(cν , ` − kν−1 − · · · − k0) in the (2,2) position. Set
urν := `−kν−1−· · ·−k0− vν , and ulν := cν − vν . The final form is then obtained by a
block permutation which moves the new third block column to the end and permutes
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the block rows in the order 1, 2, 3, 5, . . . , 4, 6, . . .. It is as follows:

P (t)E(t)Q(t) =



Σdν 0 ∗ ∗ . . . ∗ 0
0 0 0 ∗ . . . ∗ 0

0 ∗ . . . ∗ 0

0
. . .

... 0
. . . ∗ 0

0 0
∗ ∗ . . . ∗ 0
0 ∗ . . . ∗ 0

0
. . .

... 0
. . . ∗ 0

0 0



dν
vν
kν−1

kν−2
...
k0

ũlν
qν−1
...
q1
q0

,

P (t)A(t)Q(t)− P (t)E(t)Q̇(t)

=



A11(t) A12(t) ∗ ∗ . . . ∗ ∗
A21(t) A22(t) ∗ ∗ . . . ∗ 0

Σkν−1(t) ∗ . . . ∗ 0
. . . . . .

...
...

Σk1(t) ∗ 0
Σk0(t) 0

∗ ∗ ∗ . . . . . . ∗ ∗
0 ∗ . . . ∗ 0

0
. . .

...
...

0 ∗ 0
0 0



dν
vν

kν−1

kν−2
...
k0

ũlν
qν−1
...
q1
q0

,

P (t)B(t)W (t) =



∗ ∗ ∗
Σvν (t) 0 0

0 0 0
...

...
...

...
...

...
0 0 0
0 Σũlν 0
0 0 0
...

...
...

...
...

...
0 0 0



dν
vν
kν−1
kν−2
...
k0

ũlν
qν−1
...
q1
q0

,

where the widths of the block columns in the transformed E,A are dν , vν , kν−1,
. . ., k0, urν and vν , ũlν , m − vν − ũlν in the transformed B. We then combine all the
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kj-blocks and the qj-blocks to make blocks of sizes sν =
∑ν
j=0 kj , u

r
ν =

∑ν
j=0 qj ,

respectively.
Note again that the analyticity assumption on the coefficient matrices can be

relaxed to the condition that all smooth singular value decompositions exist and that
rank changes in the factored matrices occur only at isolated points; see Remark 2. If
only one step of the procedure given in the proof of Theorem 3.2 needs to be performed,
i.e., ν = 0, then the invariant quantities can be obtain via local rank computations.

Remark 4. Like Theorem 2.3, the condensed form of Theorem 3.2 is not a canon-
ical form, but it does display the relevant information. The corresponding canonical
form, using nonunitary transformations has subsequently been developed by Rath
[29].

In this section we have determined invariants of the system under global equiv-
alence transformations. We will apply these results in the next section to analyze
system properties.

4. The square subsystem. We will now analyze the system (1) after transfor-
mation to the condensed form (16).

dν
vν
sν

ũlν
ulν


Σdν (t) 0 E13(t) 0

0 0 E23(t) 0
0 0 E33(t) 0
0 0 E43(t) 0
0 0 E54(t) 0


˙
x1
x2

x3

x4



=


A11(t) A12(t) A13(t) A14(t)
A21(t) A22(t) A23(t) A24(t)

0 0 A33(t) 0
A41(t) A42(t) A43(t) A44(t)

0 0 A53(t) 0



x1
x2

x3

x4

+


B11(t) B12(t) B13(t)
Σvν (t) 0 0

0 0 0
0 Σũlν (t) 0
0 0 0


 u1
u2
u3

,
(18)

with columns of sizes dν , vν , sν , uνr in E,A and columns of sizes vν , ũlν , m− uν − ũlν
in B. We immediately make the following observations:

(1) From the third block equation we obtain by recursive substitution that x3(t) =
0 almost everywhere, and since we want a smooth solution, we obtain x3(t) ≡ 0.

(2) Since x3(t) ≡ 0, the equations given by the last block row are fulfilled trivially.
So we might leave these equations off altogether.

Thus we may consider the subsystem

dν
vν

ũlν

 Σdν (t) 0 0
0 0 0
0 0 0

 ˙ x1
x2

x4


=

 A11(t) A12(t) A14(t)
A21(t) A22(t) A24(t)
A41(t) A42(t) A44(t)

 x1
x2

x4

+

 B11(t) B12(t) B13(t)
Σvν (t) 0 0

0 Σũlν (t) 0

 u1
u2
u3

 ,
(19)

with columns of sizes dν , vν , uνr in E,A and columns of sizes vν , ũlν , m − uν − ũlν
in B.

If in this reduced form uνr = ũνl then this pencil is square and if we would
compute the condensed form for this subsystem via Theorem 3.2, we would obtain
ν = 0, s0 = 0, ũlν = ulν .
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If uνr 6= ũνl , then we have many possibilities to reconsider this system. Solution
component x4(t) can be chosen arbitrarily and hence could be viewed as an extra
input to the system. Compare this with the results concerning generalized inverses
of differential algebraic operators in [19]. Also, if Σũlν

is pointwise nonsingular, we
could use a nonunitary equivalence transformation to eliminate the block B12(t) in
B. If we do this and choose some x4, u1, u3, then the first two equations form a
subsystem independent from the rest and if its solution is computed, then u2 is fixed.
Thus we could interpret u2 as an extra state variable rather than a control variable.
Combining these ideas we could replace (18) with the system

dν
vν
sν
ũlν


Σdν 0 E13 0

0 0 E23 0
0 0 E33 0
0 0 E43 0


˙
x1
x2
x3
u2



=


A11 A12 A13 B12
A21 A22 A23 0
0 0 A33 0
A41 A42 A43 Σũlν



x1
x2
x3
u2

+


B11 A14 B13
Σvν A24 0

0 0 0
0 A44 0


 u1
x4
u3

 ,
(20)

where we have left out the dependence on t for convenience. This is now a square
system.

But it is clear that we can extract a square subsystem in many different ways by
reinterpreting states as inputs or vice versa. A suitable choice will certainly depend
on the application. In any case we wish to have a unique solution for suitably chosen
inputs, thus we cannot allow the pencil to have more columns than rows. On the
other hand, if there are more rows than columns, then the set of controls that will
lead to continuous solutions is restricted by these extra algebraic equations.

The previous observations suggest that the design of a practical control problem
should be done in such a way, that components which are identically zero should
be left off already in the model and the reinterpretation of components as states or
controls should be done beforehand.

Thus we will assume in the following that the system has been reordered so that
it has square matrices E(t), A(t) with ν = 0, s0 = 0, ũlν = ulν if we transform it to
the condensed form of Theorem 3.2. We call such a subsystem an underlying square
subsystem.

Observe that although all the transformations that we used are unitary transfor-
mations which can in principle be carried out in a numerically stable way, the rank
decisions are still an ill-conditioned problem and small perturbations can change the
picture completely. See the remarks for constant coefficient systems in [5], which hold
here, too.

5. Regularization by feedback. For constant coefficient systems regulariz-
ability, i.e., the question whether there exist proportional and/or derivative feedbacks
such that the closed loop system has a regular pencil, i.e. is solvable for all consistent
initial vectors, has been studied by several authors; see, for example, [13, 26, 3, 5].
We now generalize these results to the variable coefficient case. We introduce the
following concepts.

DEFINITION 5.1.
(a) The descriptor system (1) is called regularizable by proportional feedback if

there exists a (proportional state) feedback u(t) = F (t)x(t) +w(t) such that the closed
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loop system

E(t)ẋ(t) = (A(t) +B(t)F (t))x(t) +B(t)w(t), x(t0) = x0,(21)

is uniquely solvable for every consistent initial vector x0 and any given control w(t).
(b) The descriptor system (1) is called regularizable by derivative feedback if there

exists a (derivative) feedback u(t) = G(t)ẋ(t) + w(t) such that the closed loop system

(E(t) +B(t)G(t))ẋ(t) = A(t)x(t) +B(t)w(t), x(t0) = x0,(22)

is uniquely solvable for all consistent initial vectors x0 and any given control w(t).
It is clear from the discussion in the previous section that we need ũlν = urν in

order to obtain regularizability, otherwise we cannot expect a unique solution or we
have to reinterpret certain variables. If ũlν > urν , then we cannot apply arbitrary
controls, and if urν > ũlν , then the solution will not be unique.

As the following theorem shows, this gives a necessary and sufficient condition if
the matrices Σdν , Σvν occurring in the condensed form are invertible everywhere in
the given interval; i.e., no rank drops occur, not even at isolated points.

THEOREM 5.2. Consider system (1) in the condensed form (16), and assume that
the diagonal matrices Σdν (t), Σvν (t), Σũlν (t) are pointwise nonsingular in the whole
interval [t0, t1].

System (1) can be regularized by proportional state feedback if and only if ũlν = urν .
System (1) can be regularized by derivative feedback if and only if ũlν = urν .
Proof. We have already observed that ũlν = urν is a necessary condition. In order

to show that this is also sufficient observe that in this case the system can be permuted
(by exchanging the last two block rows and columns) to the form

dν
vν

ũlν = urν
sν


Σdν 0 0 E13

0 0 0 E23
0 0 0 E43
0 0 0 E33


˙
x1
x2
x4
x3



=


A11 A12 A14 A13
A21 A22 A24 A23
A41 A42 A44 A43
0 0 0 A33



x1
x2
x4
x3

+


B11 B12 B13
Σvν 0 0

0 Σũlν 0
0 0 0


 u1
u2
u3

 .
Since Σdν and Σũlν are nonsingular in the whole interval, we can choose the propor-
tional feedback u1(t)

u2(t)
u3(t)

 =

 F11(t) F12(t) 0 0
F21(t) F22(t) F23(t) 0

0 0 0 0



x1(t)
x2(t)
x4(t)
x3(t)

+ w(t)

such that

Σvν (t)
[
F11(t) F12(t)

]
=
[
−A21(t) I −A22(t)

]
and

Σũlν (t)
[
F21(t) F22(t) F23(t)

]
=
[
−A41(t) −A42(t) I −A44(t)

]
.
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This choice gives a closed loop system

dν
vν

ũlν = urν
sν


Σdν 0 0 E13

0 0 0 E23
0 0 0 E43
0 0 0 E33


˙
x1
x2
x4
x3



=


A11 A12 A14 A13
0 I A24 A23
0 0 I A43
0 0 0 A33



x1
x2
x4
x3

+


B11 B12 B13
Σvν 0 0

0 Σũlν 0
0 0 0


 w1
w2
w3

 .
Recall that the solutions components x3 are constrained to be zero. If we remove these
equations, then the remaining system has strangeness index µ = 0, i.e., is uniquely
solvable for all consistent initial values.

Similarly, in the case of derivative feedback we choose the derivative feedback

 u1(t)
u2(t)
u3(t)

 =

 0 F12(t) 0 0
0 0 F13(t) 0
0 0 0 0


˙

x1(t)
x2(t)
x4(t)
x3(t)

+ w(t)

such that ΣvνF12 = −I and ΣũlνF23 = −I.
This choice gives a closed loop system

dν
vν

ũlν = urν
sν


Σdν 0 0 E13

0 I 0 E23
0 0 I E43
0 0 0 E33


˙
x1
x2
x4
x3



=


A11 A12 A14 A13
A21 A22 A24 A23
A43 A42 A44 A43
0 0 0 A33



x1
x2
x4
x3

+


B11 B12 B13
Σvν 0 0

0 Σũlν 0
0 0 0


 w1
w2
w3

 ,
which is as required.

It is clear that weaker assumptions can be considered in Theorem 5.2 by allowing
rank jumps in the matrices Σdν , Σvν at isolated points and using a weak solvability
concept. This topic is currently under investigation.

Note further that there is still quite a lot of freedom in the choice of the feedback,
and the freedom may be used to improve the robustness of the system as was done
for constant coefficient systems in [3, 4, 12]. Unfortunately, so far it is not really clear
what robustness means for variable coefficient systems of the type considered.

6. Conclusion. We have shown that under some smoothness assumptions ev-
ery linear time-varying descriptor system can be transformed to a condensed form
which displays free state components which can be interpreted as inputs, fixed con-
trols which can be interpreted as states and form a regularizable subsystem, solution
components which are constrained to be zero coming from higher index components
that are unchanged by feedback, plus equations which hold trivially. In principle this
structure can be obtained from a sequence of smooth singular value decompositions
for which numerical methods are available. From a practical point of view, however,
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the uncontrollable higher index part and the other removable parts are very sensi-
tive to perturbations which may change the whole system structure. In view of this,
modeling or linearization which leads to such components should be avoided.
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Abstract. A limit of attainability sets is found for a linear two-scale stochastic system for
the case when the diffusion coefficient of the fast variable is of order ε1/2. The attainability set is
defined as the set of distributions of attainable terminal values of solutions of stochastic differential
equations. As a corollary we calculate a limit of the optimal value of the terminal cost in the stochastic
Mayer problem.
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Introduction. In mathematical modeling of complex systems with processes
having two essentially different “velocities,” fast variables are usually described by
singularly perturbed differential equations, i.e., by equations having a small param-
eter ε on the left-hand side. In general, there is a hope that the reduced limiting
model (when the parameter is equal to zero) is more simple and can be used as an
approximation of the original one which may be rather complicated. This idea seems
to be fruitful also in the set-up of controlled systems. However, here an additional
difficulty arises since the optimal value of the cost function which depends smoothly
on ε ∈]0, 1] may have a discontinuity at the most interesting point ε = 0.

To overcome this difficulty in the deterministic setting, an approach based on a
study of the convergence of the attainability sets in the Hausdorff metric has been
developed; see, e.g., recent work [10]. In the linear case it is possible to find a limit of
the attainability sets in a rather explicit way which has been done by Dontchev and
Veliov [8]; see also the book [7]. Their result is as follows.

Let us consider the controlled system

ẋt = A1(t)xt +A2(t)yt +B1(t)ut, x0 = 0,(0.1)

εẏt = A3(t)xt +A4(t)yt +B2(t)ut, y0 = 0,(0.2)

where ε is a small positive number; u is any measurable function with values in a
convex compact subset of Rd; matrix-valued functions Ai, Bi are continuous; and
the eigenvalues of A4(t) have strictly negative real parts.

Let Kε(t) be the attainability set of the system (0.1), (0.2), i.e., the set of all end
points (xT , yT ) corresponding to various admissible controls, and let Kx

0 (T ) be the
attainability set of the reduced system

ẋt = A0(t)xt +B0(t)ut, x0 = 0,

with the coefficients A0 := A1 −A2A
−1
4 A3, B0 := B1 −A2A

−1
4 B2.
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Let us define the set K0(T ) := {(x, y) : x ∈ Kx
0 (T ), y ∈ R(T, x)}, where

R(T, x) := −A−1
4 (T )A3(T )x+ Y ,

Y :=
∫ ∞

0
exp{A4(T )s}B2(T )Uds =

{
y : y =

∫ ∞
0

exp{A4(T )s}B2(T )vsds, vs ∈ VU
}
.

VU is the set of all U -valued Borel functions. In other words, if we put F (x, y) =
(x,−A−1

4 (T )A3(T )x+ y), then K0(T ) is the image of Kx
0 (T )× Y under the mapping

F .
THEOREM (see [8], [7]). The sets Kε(T ) tend to K0(T ) in the Hausdorff metric

as ε→ 0.
Let us consider for the system (0.1), (0.2) the Mayer problem

g(xT , yT )→ min,

where g is a continuous function. Then the optimal value for the perturbed problem
is

J∗ε = min
Kε(T )

g(x, y).

From the above theorem it follows immediately that

lim
ε→0

J∗ε = min
K0(T )

g(x, y).

In the paper [13] the authors extended the theorem on the convergence of the attain-
ability sets to stochastic differential equations of the form

dxt = (A1(t)xt +A2(t)yt +B1(t)ut)dt+ dwxt , x0 = 0,(0.3)

εdyt = (A3(t)xt +A4(t)yt +B2(t)ut)dt+ σ(ε)dwyt , y0 = 0,(0.4)

where wx, wy are independent Wiener processes and σ(ε) = O(ε1/2+δ), δ > 0. In
the stochastic setting it is natural to define the attainability set as the set of dis-
tributions of all terminal random variables (xT , yT ) when u runs through the set of
admissible controls. There are several possible choices for the latter. It seems that
the most adequate one is to consider all nonanticipating functions of the trajectories
as admissible controls. This implies the need to understand the system (0.3), (0.4) in
the weak sense; i.e., the Wiener processes are not given in advance and the solution is
actually a probability measure P ε,u in the space of continuous functions C[0, T ]. Such
a solution can be constructed by the Girsanov theorem. In this case the attainability
set Kε(T ) is a compact convex set in the space of probability measures equipped with
the Prohorov metric. In [13] it was shown that Kε(T ) → K0(T ) in the Hausdorff
metric, where K0(T ) is the set of probability measures µF−1 where µ = µ(dx, dy) is
such that µ(dx,Rn) belongs to the attainable set Kx0 (T ) of the reduced system and
µ(Rk, dy) belongs to the set P(Y ) of probability measures on Y . The reduced system
is given by

(0.5) dxt = (A0(t)xt +B0(t)ut)dt+ dwxt , x0 = 0,

where, as in the deterministic case, the coefficients A0 and B0 can be obtained if we
substitute in (0.3) the expression for yt which is a formal solution of (0.4) with ε = 0.
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Notice that the condition δ > 0 provides a limiting degeneracy of the stochastic
equation (0.4) (with a fixed control) to an algebraic one.

In the present paper we prove the convergence result for σ(ε) = ε1/2. In this
case K0(T ) is the set of all measures µF−1 such that µ(dx,Rn) ∈ Kx0 (T ) and µ(x, dy)
belong to the convex closure of the set of probability distributions of random variables

ξ0 +
∫ ∞

0
exp{A4(T )s}B2(T )vsds,

where ξ is the stationary Gaussian Markov process (called also Ornstein–Uhlenbeck)
with the zero mean and covariance

K(s, t) := Ξ exp{A′4(T )(t− s)}, s ≤ t,

Ξ :=
∫ ∞

0
exp{A4(T )s} exp{A′4(T )s}ds,

v is any measurable process with values in U such that for any t the random variable
vt is measurable with respect to the σ-algebra Fξ≥t := σ{ξs, s ≥ t}, and prime
denotes the matrix transpose. As a corollary of the theorem on convergence of the
attainability sets we calculate a limit of the optimal value in the Mayer problem
Eg(xε,uT , yε,uT )→ min when ε tends to zero.

In the last few years singularly perturbed controlled stochastic differential equa-
tions have been intensively studied by various methods, mainly based on the theory of
weak convergence in the functional spaces or the Bellman–Hamilton–Jacobi equation;
see monographs [3], [4], [20] and papers [2], [5] (and the collection [17] for early re-
sults). However, almost all studies concern models where the controlled fast variable
does not affect the terminal cost. Harold Kushner wrote in his book [20, p. 64]:

It is hard to deal in any general way with the case where the fast
system is also controlled. The main difficulty is due to the fact that
the ‘stationary measures’ which are used to average out the fast vari-
able depend on the control which is used in the fast system. This
makes it hard to define the ‘averaged problem.’. . . Similar problems
occur in the deterministic case, and it is commonly dealt with there
by supposing that the choice of control for the fast system does not
alter the steady state value of that system, for each value of the fast
variable, i.e., that the fast system is asymptotically stable and the
control chosen in a class such that the limit point of that fast system
does not depend on the control when x is fixed. This assumption es-
sentially ‘decouples’ the fast and slow system. The assumption seems
reasonable and yields good results. Unfortunately, it does not seem
possible to find a stochastic analog of this approach which works in
any generality.

It worth noticing that the result presented here is nontrivial even for a system
with only fast variables. In this case it is clear that the limit of the attainability sets
shows to what extent optimal controls (acting on the drift of the process) can follow
the change in the scale parameter near the point zero.

The structure of the paper is the following. In section 1 we give the formal
description of the problem. Section 2 contains some preliminary explanations and
the proof of the result for the simplest one-dimensional model with the fast variable
only. The proof of Theorem 1.1 is given in sections 3 and 4. Section 5 is devoted to
measure-theoretical aspects which may have some independent interest.
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1. Formulations of the results. We consider here the linear stochastic con-
trolled system given by

dxt = (A1(t)xt +A2(t)yt +B1(t)ut)dt+ dwxt , x0 = 0,(1.1)

εdyt = (A3(t)xt +A4(t)yt +B2(t)ut)dt+
√
εdwyt , y0 = 0,(1.2)

where wx and wy are standard independent Wiener processes with values in Rk and
Rn, 0 ≤ t ≤ T <∞, ε ∈]0, 1].

We shall understand (1.1), (1.2) as a symbolic notation for the stochastic differ-
ential equation in a weak sense when a Wiener process W = (wx, wy) is not given in
advance and u is a feedback control. Actually, in the following rigorous formulation we
could avoid the above representation (which is, in fact, a bit ambiguous) altogether.

We consider as a phase space Rm = Rk ×Rn. (Rk corresponds to the slow and
Rn to the fast variables.) The phase space of control will be a compact convex set
U ⊆ Rd. In our matrix notations vectors are column vectors.

The path space of the system is the space C[0, T ] of continuous functions W :
[0, T ] → Rm. Let CT be the Borel σ-algebra on C[0, T ], Cot := σ{Ws, s ≤ t},
Ct := Cot+. Let P be the predictable σ-algebra in C[0, T ]× [0, T ] corresponding to the
filtration C = (Ct).

The class of admissible controls U is defined as the set of all predictable processes
u = (ut)t∈[0,T ] with values in U .

Let Ai = Ai(t), Bi = Bi(t) be matrix-valued continuous functions of dimensions
compatible with (1.1), (1.2); i.e., A1(t) is a k × k matrix, A4(t) is n× n, etc.

We introduce the following notation:

fε(W, t, u) =
(

A1(t) A2(t)
ε−1A3(t) ε−1/2A4(t)

)
Wt +

(
B1(t)

ε−1B2(t)

)
ut,(1.3)

Dε :=
(
Ik 0
0 ε−1In(t)

)
,(1.4)

where Ik, In are the identity matrices of corresponding dimensions.
Consider on (C[0, T ], CT ) the probability measure P ε such that with respect to

P ε the coordinate process W is the Wiener process with the correlation matrix DεD
′

ε.
For any admissible control u we define the measure P ε,u := ρεT (u)P ε with

(1.5) ρεT (u) = exp

{∫ T

0
fε(W, s, us)

′
dWs −

1
2

∫ T

0
|fε(W, s, us)

′
Dε|2ds

}
.

It is well known (see [1] or [16]) that P ε,u is a probability measure. By the
Girsanov theorem the process

Wt −
∫ t

0
fε(W, s, us)ds

with respect to P ε,u is the Wiener process with the correlation matrix DεD
′

ε. Thus,
we can write that

dWt = fε(W, t, ut)dt+DεdBt, W0 = 0,

where B is the standard Wiener process.
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If we denote the first k components of W and B by x and wx and the remaining
n components by y and wy, the above representation formally coincides with the
system (1.1), (1.2) and the control u will be a nonanticipating functional of the phase
trajectory. This explains the terminology where P ε,u is called a weak solution of
(1.1), (1.2) and the model itself usually is referred to as the model with the feedback
control.

Let Kε := {P ε,u : u ∈ U}, where ε > 0 is fixed. The set Kε is an analog of the
“tube” of trajectories for deterministic systems. Correspondingly, the attainability
set Kε(T ) := {P ε,uW−1

T : u ∈ U} is the set of all probability measures on Rm which
are the images of elements of Kε under the mapping W 7→ WT . It was proved in [1]
that Kε is a convex set, hence Kε(T ) is also convex. In [1] it was also shown that the
set {ρεT (u) : u ∈ U} of the attainable densities is sequentially compact in the weak
topology of L1(P ε). It follows immediately that Kε and Kε(T ) are compact subsets
of the corresponding spaces of probability measures P(C[0, T ]) and P(Rm) equipped
with the Prohorov metric.

To formulate the convergence result we need the following assumption.
(A) For all t the real parts of the eigenvalues of A4(t) have strictly negative real

parts:

(1.6) Reλ(A4(t)) ≤ −2κ < 0.

Let Kx0 (T ) be the attainability set of the stochastic differential equation

(1.7) dxt = (A0(t)xt +B0(t)ut)dt+ dwxt , x0 = 0,

where A0 := A1 −A2A
−1
4 A3, B0 := B1 −A2A

−1
4 B2.

Let ξ be the (strong) solution of the following stochastic differential equation with
constant coefficients on some filtered probability space (Ω,F ,F = (Ft), P ):

(1.8) dξt = A4(T )ξtdt+ dbt, ξ0 = ξo,

where b is a standard Wiener process in Rn and ξo is an independent Gaussian random
variable with the zero mean and covariance matrix

(1.9) Ξ :=
∫ ∞

0
exp{A4(T )s} exp{A′4(T )s}ds.

In other words, ξ is the stationary Gaussian Markov process with zero mean and
covariance function

(1.10) K(s, t) := Eξsxi
′

t = Ξ exp{A′4(T )(t− s)};

see, e.g., [16].
Let VU be the set of all U -valued processes v = (vt)t≥0 such that v1/t is a pre-

dictable process with respect to the filtration generated by the process ξ1/t, SoY :=
{L(ξ0 + I(v)) : v ∈ VU}, where

(1.11) I(v) :=
∫ ∞

0
exp{A4(T )s}B2(T )vsds.

Here and in what follows we use the notation L(η) := Pη−1 for the distribution of
the random variable η. The set SoY is compact in P(Rn); see Lemma 5.5.

Put SY := conv SoY , the convex closure of SoY in P(Rn).
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Let S be the set of all probability measures µ = µ(dx, dy) on Rm = Rk × Rn

such that
(1) µ(x, dy) ∈ SY ;
(2) µ(dx,Rn) ∈ Kx0 (T ).
From the Proposition 5.2 it follows that S is compact in P(Rm).
Define a linear mapping F (x, y) := (x,−A−1

4 (T )A3(T )x + y) of Rm into itself.
Put K0(T ) := {µF−1 : µ ∈ S}.

Our main result is the following theorem.
THEOREM 1.1. The set ∪ε∈]0,1]Kε(T ) is compact, and as ε → 0, Kε(T ) tend to

K0(T ) in the Hausdorff metric in the space of compact subsets of P(Rm).
For the model (1.1), (1.2) we consider now the Mayer problem, which can be

rigorously formulated as the problem to determine the minimal value of the functional

(1.12) J∗ε := inf
u∈U

Eε,ug(WT ) = inf
µ∈Kε(T )

∫
g(x, y)µ(dx, dy),

where g is a function on Rm which is integrable with respect to the measures µ from
Kε(T ).

COROLLARY 1.1. Assume that g is continuous and bounded. Then

(1.13) lim
ε→0

J∗ε = inf
µ∈K0(T )

∫
g(x, y)µ(dx, dy).

Remark 1.1. The definition of the set VU seems rather complicated. Essentially,
VU contains measurable processes v such that for any t the random variable vt is
measurable with respect to the σ-algebra Fξ≥t := σ{ξs, s ≥ t}. To avoid a discussion
of the measurable structures related to a decreasing family of σ-algebras we prefer to
consider the processes in reversed time.

Remark 1.2. There is an alternative description of the set SY . Let α be a random
variable independent of ξ with values in some Polish space and with a nonatomic
distribution. Define the set VαU as the set of all U -valued processes v = (vt)t≥0 such
that v1/t is a predictable process with respect to the filtration generated by the process
ξ1/t and the random variable α. Then SY = {L(ξ0 + I(v)) : v ∈ VαU}; see section 5.

Remark 1.3. Evidently, Theorem 1.1 can be applied to the more general opti-
mization problem Jε(u) = F (P ε,u) → min, where F is any continuous function on
P(Rm).

We also use in our proof another possible model based on a different (and more
traditional) interpretation of the equations (1.1), (1.2). To describe this alternative
approach we consider the standard Wiener measure P on (C[0, T ], CT ). Let wx be
the notation for the first k coordinates of the function W and wy be the notation for
the remaining n coordinates. Then for any u ∈ U we can find the strong solution
Xε,u = (xε,u, yε,u) of (1.1), (1.2). This model is referred to as the model with the
open loop controls (since in this case u is a nonanticipating functional of the “noise”).

Let P ε,uX := P (Xε,u)−1 be the distribution in C[0, T ] of the process Xε,u. Cer-
tainly, the measure P ε,uX need not be equal to P ε,u. Let us consider the sets K̃ε :=
{P ε,uX : u ∈ U} ⊆ P(C[0, T ]) and K̃ε(T ) := {P (Xε,u

T )−1 : u ∈ U} ⊆ P(Rm). We
do not know whether the attainability set K̃ε(T ) coincides with the attainability set
Kε(T ). However, in our paper [13] it has been shown that there are dense embeddings
K̃ε ⊆ Kε and K̃ε(T ) ⊆ Kε(T ) in the sense of total variation convergence (thus, in the
weak topology) and that the inclusion K̃ε ⊆ Kε is strict even in the simplest cases.
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This fact, certainly, does not exclude the coincidence of K̃ε(T ) and Kε(T ). Neverthe-
less, the result that there is a dense embedding K̃ε(T ) ⊆ Kε(T ) is very helpful since
it permits us to apply pathwise techniques similar to that of the deterministic theory.

2. Main ideas and the proof of Theorem 1.1 in the simplest case. We
recall some basic facts concerning the Hausdorff metric and convergence of compact
sets (for details see, e.g., [11]).

Let (X, d) be a metric space and let KX be the class of all its nonempty compact
subsets. For A, B ∈ KX put l(A,B) := supz∈A d(z,B). The Hausdorff distance
between A and B is defined by the equality

dH(A,B) := l(A,B) ∨ l(B,A).

If Am ∈ KX , m ∈ Z+, and all Am are contained in some compact set, then
lim dH(Am, A0) = 0 if and only if the following two much more tractable conditions
are satisfied for any subsequences of indices (n):

(1) For any convergent sequence zn ∈ An its limit is a point in A0.
(2) For any point z ∈ A0 there exists a subsequence znk ∈ Ank converging to z.
Notice that if An are not subsets of some compact set, the above equivalence fails

in general. For the subsets of the real line An := [0, 1] ∪ {n}, conditions (1) and (2)
are satisfied but An do not tend to A0 in the Hausdorff metric.

The strategy of the proof of Theorem 1.1 is the following. In the first stage
we show that for any µε ∈ Kε(T ), ε ∈]0, 1], there exists µ̄ε ∈ K0(T ) such that
d(µ̄ε, µε) → 0 (d here is the Prohorov metric). Since all Kε(T ) are compact this
implies that ∪ε≥0Kε(T ) is compact and all limit points of {µε} belongs to K0(T ); i.e.,
(1) is fulfilled. Since K̃ε(T ) is dense in Kε(T ) it is sufficient to consider only the case
when µε ∈ K̃ε(T ). Thus, we can argue with terminal random variables (xε,uT , yε,uT )
with the distributions µε and approximate them in probability (or in Lp) by random
variables (x̄ε,uT , ȳε,uT ) with distributions from K0(T ).

In the second step of the proof we should find for a given measure µ ∈ K0(T ) the
sequence of measures µn which are elements of K̃εn(T ) converging to µ. Again we
shall argue with suitably chosen random variables with distributions corresponding
to the measures for which we are looking.

Since the proof for the general multidimensional two-scale system requires rather
long arguments, we clarify main ideas on the example of a one-dimensional model
with constant coefficients and containing only the fast variable.

Let us consider the controlled stochastic differential equation

(2.1) εdyε,ut = (−γyε,ut + ut)dt+ ε1/2dwyt , y0 = 0,

where u is a predictable process which takes values in U = [0, 1]. In this case the set
K0(T ) is the convex closure of the set {L(ξ0 + I(v)), v ∈ VU}, where

I(v) :=
∫ ∞

0
e−γsvsds,

ξ is an Ornstein–Uhlenbeck process on some probability space (Ω,F , P ) with correla-
tion function K(s, t) = (2γ)−1e−γ|t−s|, and VU is the set of all U -valued processes v
such that v1/t is a predictable process with respect to the filtration generated by the
process ξ1/t. For our purpose it is more convenient to use the alternative description
of K0(T ) as the set {L(ξ0 +I(v)), v ∈ VαU}, where α is a random variable independent
of ξ with values in a Polish space and nonatomic distribution and VαU is the set of



CONVERGENCE OF ATTAINABILITY SETS 141

all U -valued processes v such that v1/t is a predictable process with respect to the
filtration generated by the process ξ1/t and the random variable α. We understand
the equation (2.1) in the strong sense. Its solution can be represented in the following
way:

(2.2) yε,ut = ε−1
∫ t

0
e−γ(t−s)/εusds+ ηεt ,

where

(2.3) ηεt := ε−1/2
∫ t

0
e−γ(t−s)/εdwys .

Put Tε := T (1 − ε1/2). Let us consider on the interval [Tε, T ] the Gaussian
stationary process

ξ̃εt := (2γ)−1/2 exp{−γ(t− Tε)/ε}β + ε−1/2
∫ t

Tε

e−γ(t−s)/εdwys ,

where β is a standard normal random variable independent of the Wiener process wy

(to define β we can extend our canonical coordinate probability space). The process
ξ̃ε is the solution of the linear equation

εdξ̃εt = −γξ̃εt dt+ ε1/2dwyt , ξ̃εTε = (2γ)−1/2β.

Let us consider the Ornstein–Uhlenbeck process ξεt = ξ̃εT−εt, t ∈ [0, T/
√
ε].

Evidently, ηεT − ξε0 = ηεT − ξ̃εT → 0 in L2 as ε→ 0.
For u ∈ U we define the process vs = vεs := uT−εsI[0,T/

√
ε[.

Now we can write that

yε,uT = ηεT +
∫ T/

√
ε

0
e−γsuT−εsds+

∫ T/ε

T/
√
ε

e−γsuT−εsds = ȳε,uT +Rε(u),

where ȳε,uT = ξε0 + I(v),

Rε(u) :=
∫ T/ε

T/
√
ε

e−γsuT−εsds+ ηεT − ξε0.

Since supu∈U |Rε(u)| → 0 in probability, to accomplish the first step we need to check
only that L(ξε0 +I(v)) ∈ K0(T ). Indeed, let us take for ξ the process ξε defined above.
For any s ≤ T/

√
ε the random variable vs is measurable with respect to the σ-algebra

CT−εs. But

CT−εs = σ{wr, r ≤ Tε} ∨ σ{wr, Tε ≤ r ≤ s} ⊆ σ{wr, r ≤ Tε} ∨ σ{ξ̃εr , Tε ≤ r ≤ s}
= σ{wr, r ≤ Tε} ∨ σ{ξεr , s ≤ r ≤ T/

√
ε},

and we see that v ∈ VαU where the random variable α is defined as the projection
mapping of C[0, T ] onto C[0, Tε]. The above considerations show that the limit of any
convergent sequence µn ∈ K̃εn(T ) is an element of K0(T ).

Now we introduce the set Vα′U consisting of all processes

(2.4) vs =
N∑
i=1

ϕiI]si,si+1](s) + u0I]sN+1,∞[(s),
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where 0 = s1 < · · · < sN+1, u
0 ∈ U , and the U -valued random variables ϕi have the

form

(2.5) ϕi = fi(α, ξ(ri1), . . . , ξ(riMi
)), si+1 < rij ≤ sN .

Let K′0(T ) := {L(ξ0 + I(v)), v ∈ Vα′U }. It is easy to show that the set {I(v), v ∈
Vα′U } is dense in {I(v), v ∈ VU} in probability. Thus, K′(T ) is dense in K0(T ) in
P(R).

Let µ ∈ K′(T ). This means that µ is the distribution of a random variable
χ := ξ0 + I(v) where v is of the form (2.4). The result will be proved if we construct
a random variable χε and a control uε such that L(χε) = L(χ) and χε − yu

ε,ε
T → 0 in

probability. To this aim it is enough to find on the coordinate probability space
(C[0, T ], C, P ) a stationary Gaussian Markov process ξε with correlation function
K(s, t), a standard normal random variable αε independent on ξε, and an admis-
sible control uε ∈ U such that ξε0 − ηεT → 0 in probability (ηεT is defined by (2.3)),
and ∫ ∞

0
e−γsvεsds− ε−1

∫ T

0
e−γ(T−s)/εuεsds→ 0,

where vε is the process given by the formula (2.4) if we substitute ξε, ϕε, and αε for
ξ, ϕ, and α. Indeed, in this case the random variable χε := ξε0 + I(vε) meets the
required properties.

The process ξε can be constructed in the following way. For sufficiently small ε
let T kε := T (1− kε1/2), k = 1, 2, 3. Put

αε := (wT 2
ε
− wT 3

ε
)/(T 2

ε − T 3
ε )1/2,

βε := (2γ)−1/2(wT 1
ε
− wT 2

ε
)/(T 1

ε − T 2
ε )1/2,

ξ̃εt := exp{(t− T 1
ε )/ε}βε + ε−1/2

∫ t

T 1
ε

e−γ(t−s)/εdws, t ≥ T 1
ε .

Define the process ξε on [0, ε−1/2T ] by the equality ξεt := ξ̃εT−εt.
Evidently,

ξε0 − ηεT = exp{(T − T 1
ε )/ε}βε − ε−1/2

∫ T 1
ε

0
e−γ(T−s)/εdws → 0 in L2.

For sufficiently small ε we put

uε := u0I[0,tN+1[ +
N+1∑
i=1

ϕεi I[ti+1,ti[,

where ti := T − εsi, i ≤ N + 1.
The random variables ϕεi are Cti+1 -measurable. Thus, uε ∈ U . It follows that∫ ∞
0

e−γsvεsds− ε−1
∫ T

0
e−γ(T−s)/εuεsds =

∫ ∞
0

e−γsvεsds−
∫ T/ε

0
e−γsuεT−εsds

=
∫ ∞
T/ε

e−γsvεsds→ 0.

The proof of the result for this particular case is finished.
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3. Proof of Theorem 1.1. Part 1. We use the notation ‖ f ‖t:= sups≤t |fs|
(omitting the subscript t = T ) and denote by C different constants which do not
depend on ε and u.

In the following statements the solution of (1.1), (1.2) (as well as that of (3.1)) is
understood in the strong sense as given on the probability space (C[0, T ], CT , P ).

PROPOSITION 3.1. Let (xε,uT , yε,uT ) be the solution of (1.1), (1.2) corresponding to
some u ∈ U , and let x̄u be the solution of the reduced equation

(3.1) dx̄ut = (A0(t)x̄ut +B0(t)ut)dt+ dwxt , x̄u0 = 0.

Then for any p ∈ [1,∞[

sup
ε

sup
u∈U

E ‖ xε,u ‖p<∞,(3.2)

lim
ε→0

sup
u∈U

E ‖ xε,u − x̄u ‖p= 0,(3.3)

sup
ε

sup
u∈U

sup
t≤T

E|yε,ut |p <∞.(3.4)

Proof. Let us introduce for ε−1A4(t) the fundamental matrix Ψε(t, s), which is
the solution of the linear matrix equation

(3.5).
∂Ψε(t, s)

∂t
= ε−1A4(t)Ψε(t, s), Ψε(s, s) = In.

Since A4 is continuous and the eigenvalues satisfy (1.6), there exists a constant L such
that

(3.6) |Ψε(t, s)| ≤ Le−κ(t−s)/ε

for all s ≤ t ≤ T and ε ∈]0, 1]; see, e.g., [18]. In particular, from the above bound it
follows that for all t ≤ T and ε ∈]0, 1]

(3.7)
1
ε

∫ t

0
|Ψε(t, s)|ds ≤ L/κ.

Using the fundamental matrix, the equation (1.2) can be solved with respect to
y = yε,u and we get the representation

(3.8) yε,ut =
1
ε

∫ t

0
Ψε(t, s)[A3(s)xε,us +B2(s)us]ds+ ηεt ,

where

(3.9) ηεt :=
1√
ε

∫ t

0
Ψε(t, s)dwys .

The process ηε is the solution of the linear stochastic equation

(3.10) dηεt = ε−1A4(t)ηεt dt+ ε−1/2dwyt , ηε0 = 0.

We shall use the following properties of ηε following, e.g., from Theorem 3.1 in [14]:
there exists a constant Cp such that

(3.11) sup
t≥0

E|ηεt |p ≤ Cp
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for any p ∈ [1,∞[ and

(3.12) E ‖ ηε ‖p≤ Cpε−1/4

for any p ∈ [4,∞[.
Substituting (3.8) in the equation (1.1) written in the integral form we come to

the following representation for the slow variable:

xε,ut =
∫ t

0
[A1(s)xε,us +B1(s)us]ds

+
∫ t

0

{
A2(s)

1
ε

∫ s

0
Ψε(s, r)[A3(r)xε,ur +B2(r)ur]dr

}
ds+ ζεt + wxt ,(3.13)

where

(3.14) ζεt :=
∫ t

0
A2(s)ηεsds.

LEMMA 3.1. For any p ∈ [1,∞[ there exists a constant cp such that for all ε ∈]0, 1]
it holds that

E ‖ ζε ‖p≤ cp,(3.15)

lim
ε→0

E ‖ ζε ‖p= 0.(3.16)

Proof. Since A2 is bounded, (3.15) follows immediately from the Jensen inequality
and (3.11). To prove (3.16) we consider the approximation of D := A2A

−1
4 by the

step functions

DN :=
N∑
i=1

DtiI]ti−1 ,ti] ,

where ti := iT/N . Using (3.10) we have

ζεt =
∫ t

0
DN
s A4(s)ηεsds+

∫ t

0
(Ds −DN

s )A4(s)ηεsds

= ε
N∑
i=1

Dti [η
ε
ti∧t − η

ε
ti−1∧t − ε

1/2(wyti∧t − w
y
ti−1∧t)] +

∫ t

0
(Ds −DN

s )A4(s)ηεsds.

This implies the bound

(3.17) ‖ ζε ‖≤ 2ε1/2(ε1/2 ‖ ηε ‖ + ‖ wy ‖) + CδN

∫ T

0
|ηεs |ds,

where δN :=‖ D −DN ‖→ 0 as N →∞ due to continuity of α.
Notice that (3.12) implies that the family of random variables {ε1/2 ‖ ηε ‖, ε ∈

]0, 1]} is bounded in Lp (for any finite p). It follows from (3.11) that the family of
integrals on the right-hand side of (3.17) is also bounded in Lp. Thus,

lim sup
ε→0

‖ ζε ‖≤ CδN

and (3.16) holds.
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From the representation (3.13) and bounds (3.6), (3.15) it is easy to deduce that

E ‖ xε,u ‖2pt ≤ C
(

1 +
∫ t

0
E ‖ xε,u ‖2ps ds

)
,

and the standard application of the Gronwall–Bellman lemma gives (3.2).
Put ∆̄x,ε,u

t := xε,ut − x̄ut . The relations (3.1), (3.13) imply that

(3.18) ∆̄x,ε,u
t =

∫ t

0
A0(s)∆̄x,ε,u

t ds+Rε,ut ,

where

Rε,ut :=
∫ t

0
A2(s)

[
1
ε

∫ s

0
Ψε(s, r)A3(r)xε,ur dr +A−1

4 (r)A3(r)xε,ur

]
ds

+
∫ t

0
A2(s)

[
1
ε

∫ s

0
Ψε(s, r)B2(r)urdr +A−1

4 (r)B2(r)ur

]
ds+ ζεt .(3.19)

It follows from (3.18) that

E ‖ ∆̄x,ε,u ‖pt≤ C
(∫ t

0
E ‖ ∆̄x,ε,u ‖ps ds+ E ‖ Rε,u ‖p

)
,

and by the Gronwall–Bellman lemma we have

E ‖ ∆̄x,ε,u ‖pt≤ CE ‖ Rε,u ‖p eCT .

Thus, to prove (3.3) we need to show that

lim
ε→0

sup
u∈U

E ‖ Rε,u ‖p= 0.

But this relation follows from (3.2), (3.16) and the following statement (see [15,
Lemma 3.1] or [13, Lemma 3.2]).

LEMMA 3.2. For any ε ∈]0, 1], η > 0, and bounded measurable function h the
following holds: ∥∥∥∥∫ .

0
A2(s)

[
1
ε

∫ s

0
Ψε(s, r)hrdr +A2(s)A−1

4 (s)hs

]
ds

∥∥∥∥
≤‖ h ‖ T (C1η + εC2(η)),(3.20)

where C1, C2(η) depend on A2 and A4.
At last, the property (3.4) of uniform boundedness in Lp of values of the fast

variables for the fixed time follows from the representation (3.8) and (3.2), (3.7),
and (3.11).

PROPOSITION 3.2. Let (xε,u, yε,u) be the solution of (1.1), (1.2) corresponding to
some u ∈ U , and let x̄u be the solution of the reduced equation (3.1). Let the random
variable ȳε,uT be defined by

(3.21) ȳε,uT := −A−1
4 (T )A3(T )x̄uT +

∫ ∞
0

exp{A4(T )r}B2(T )vεrdr + ξ̃εT ,
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where vεr := uT−rεI[0,T/
√
ε](r) + u0I]T/

√
ε,∞[(r), u0 is an arbitrary point in U ,

(3.22) ξ̃εT := exp{ε−1A4(T )(T − T ε}β +
1√
ε

∫ T

Tε

exp{ε−1A4(T )(T − s)}dwys ,

Tε := (1−
√
ε)T, β is a Gaussian random variable with the zero mean and covariance

Ξ, and the matrix Ξ is defined in (1.9).
Then for any p ∈ [1,∞[

(3.23) lim
ε→0

sup
u∈U

E|yε,uT − ȳε,uT |p = 0.

Proof. Let ỹε,u be the solution of the stochastic differential equation

(3.24) εdỹε,ut = (A3(T )x̄uT +A4(T )ỹε,ut +B2(T )ut)dt+
√
εdwyt ỹε,u0 = 0.

Put

∆̃y,ε,u
t := yε,ut − ỹε,ut , x̂ε,ut := xε,ut − x

ε,u
T ,

Âi(t) := Ai(t)−Ai(T ), B̂i(t) := Bi(t)−Bi(T ).
The process ∆̃y,ε,u is the solution of the ordinary differential equation

d∆̃y,ε,u
t = (A4(T )∆̃y,ε,u

t + ϕε,ut )dt, ∆̃y,ε,u
0 = 0,

where

ϕε,ut := Â4(t)yε,ut + Â3(t)xε,ut +A3(T )x̂ε,ut +A3(T )∆̄x,ε,u
T + B̂2(t)ut.

Thus,

(3.25) ∆̃y,ε,u
T =

1
ε

∫ T

0
exp{ε−1A4(T )(T − s)}ϕε,us ds.

By virtue of (1.6) for all t ≥ 0 we have that

(3.26) | exp{ε−1A4(T )t}| ≤ Ce−2κt/ε.

Taking into account (3.2), (3.4) and the boundedness of U , we get from (3.25)
that the Lp-norm of ∆̃y,ε,u

T is bounded by

(3.27) C
1
ε

∫ T

0
e−2κ(T−s)/ε(|Â4(s)|+ |Â3(s)|+ fεs + ḡε + |B̂2(s)|)ds,

where

fεs := sup
u∈U

(E|xε,us − x
ε,u
T |p)1/p, ḡε := sup

u∈U
(E|∆̄x,ε,u

T |p)1/p.

Let f̄s be the function similar to fεs but defined for x̄u. It follows from (3.3) that for
any δ > 0 we have fεs ≤ f̄s + δ for all sufficiently small ε. But it is clear from the
equation (3.1) that lims→T f̄s = 0. Taking into account the above remarks we check
easily that the expression (3.27) tends to zero as ε→ 0 and, hence,

(3.28) lim
ε→0

sup
u∈U

E|yε,uT − ỹε,uT |p = 0.
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Now we show that

(3.29) lim
ε→0

sup
u∈U

E|ȳε,uT − ỹε,uT |p = 0.

Indeed,

ȳε,uT − ỹε,uT =

(
−A−1

4 (T )− 1
ε

∫ T

0
exp{ε−1A4(T )(T − s)}ds

)
A3(T )x̄uT

+
∫ ∞
T/ε

exp{A4(T )r}B2(T )u0
rdr −

∫ T/ε

T/
√
ε

exp{A4(T )r}B2(T )uT−εrdr

+ exp{ε−1/2A4(T )T}β − 1√
ε

∫ Tε

0
exp{ε−1A4(T )(T − s)}dwys .

Evidently, Lp-norms of all terms on the right-hand side of this identity tend to zero
and the convergence of the first one is uniform in u ∈ U by virtue of (3.2) and (3.3).
Thus, (3.29) holds. The relations (3.28), (3.29) imply (3.23).

Proposition 3.2 is proved.
Assume that sequence L(xεn,unT , yεn,unT ) converges in P(Rm) to some µ. Choose

in the representation (3.22) the random variable β independent of W . It follows from
Propositions 3.1, 3.2 that the sequence L(x̄unT , ȳεn,unT ) converges to the same limit.
Let us introduce the modified controls ûn = unI[0,Tεn ] +u0I]Tεn ,T ], where u0 is a fixed
point from U . Since x̄unT −x̄

ûn
T tends to zero in probability, the sequence L(x̄ûnT , ȳεn,unT )

converges to µ and we need to check only that L(x̄ûnT , ȳεn,unT ) ∈ K0(T ). To show this
notice that x̄ûnT is a function of the natural projection

iεn : {wxt , w
y
t , t ∈ [0, T ]} 7→ ({wxt , t ∈ [0, T ]}, {wyt , t ∈ [0, Tεn ]}).

As in section 2 it can be shown that the regular conditional distribution of the random
variable ξεn0 + I(vεn) for a fixed value iεn belongs to S. Since S is a convex closed
set and x̄ûnT is a measurable function on iεn , it follows from Lemma 5.6 that the
regular conditional distribution of ξεn0 + I(vεn) for a fixed value x̄ûnT also belongs to
S, implying the result.

4. Proof of Theorem 1.1. Part 2. Now we must show that for any measure
µF−1 ∈ K0(T ) there exists a sequence µn ∈ Kεn(T ) which converges to µF−1 in
P(Rn). It is sufficient to find such a sequence for an arbitrary µF−1 from the set
K̃0(T ) which is dense in K0(T ) in the total variation topology. The latter property
holds since the attainability set K̃x0 corresponding to the strong solutions of (2.1)
is dense in Kx0 in the total variation topology. Thus, there are dense embeddings
K̃0 ⊆ K0 and K̃0(T ) ⊆ K0(T ).

Let us fix δ > 0 and a measure µ = m(x, dy)ν(dx) such that µF−1K0(T ). By def-
inition ν = L(x̄uT ), where x̄u is a solution of the reduced equation (2.1) corresponding
to some admissible control u. Let νh := L(x̄uT−h), µh(dx, dy) := m(x, dy)νh(dx), h ∈
[0, T ]. Then there exists h0 > 0 such that

(4.1) d(µF−1, µhF
−1) ≤ δ

for all h ∈]0, h0].
To prove (4.1) we use the following.
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LEMMA 4.1. Let x̄u be the solution of (3.1). Then

(4.2) lim
s→0

sup
u∈U

Var(L(x̄uT−s)− L(x̄uT )) = 0.

Proof. For any u ∈ U let ur := uI[0,T−r] + u0I]T−r,T ], where u0 is an arbitrary
point in U . It follows from the bound for the total variation distance in terms of the
Hellinger process ht (see [12, Theorems 2.2 and 5.1]) that

(4.3) Var(L(x̄u)− L(x̄u
r

)) ≤ Cr1/2.

(Notice that in the considered situation the Hellinger process for the pair (L(x̄u),L(x̄u
r

))
has the form

ht =
∫ t

0
I[r,T ](τ)|B0(τ)(ûτ − u0)|2dτ,

where ûs takes values in U .)
Fix γ > 0 and r > 0 such that Cr1/2 ≤ γ. For any s ∈ [0, r] we have

L(x̄u
r

T−s) = L(x̄uT−r) ∗ N (as,Ks),

where ∗ denotes the convolution, N (as,Ks) is the nondegenerate Gaussian distribu-
tion with the mean

as :=
∫ T−s

T−r
B0(τ)u0dτ

and covariance

Ks :=
∫ T−s

T−r
Φ0(T − s, τ)Φ

′

0(T − s, τ)dτ,

and Φ0(T − s, τ) is the fundamental matrix corresponding to A0(t). In particular,

L(x̄u
r

T ) = L(x̄uT−r) ∗ N (a0,K0).

The well-known inequality

Var(F ∗G− F ∗ G̃) ≤ Var(G− G̃)

implies that

Var(L(x̄u
r

T−s)− L(x̄u
r

T )) ≤ Var(N (as,Ks)−N (a0,K0)),

where the right-hand side tends to zero as s→ 0.
Thus, for sufficiently small s we have

(4.4) sup
u∈U

Var(L(x̄u
r

T−s)− L(x̄u
r

T )) ≤ γ.

It follows from (4.3) and (4.4) that

sup
u∈U

Var(L(x̄uT−s)− L(x̄uT )) ≤ 3γ

and the lemma is proved.
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Since

Var(µF−1 − µhF−1) = Var(µ− µh) = Var(ν − νh)→ 0

by virtue of the above lemma, the relation (4.1) holds.
Furthermore, there exists h1 > 0

(4.5) sup
ε

sup
z∈Uh(u)

d(L(xε,zT−h, y
ε,z
T ),L(xε,zT , yε,zT )) ≤ δ,

where Uh(u) is the set consisting of all z ∈ U such that

(4.6) zI[0,T−h] = uI[0,T−h].

The relation (4.5) is an evident corollary of Proposition 3.1 and the following.
LEMMA 4.2. Let (ξ(i)

ι,h), ι ∈ I(h), h ∈ [0, T ], i = 1, 2, be two families of random
variables with values in Rm such that

sup
h

sup
ι∈I(h)

E|ξ(i)
ι,h|p <∞, i = 1, 2,

lim
h→0

sup
ι∈I(h)

E|ξ(1)
ι,h − ξ

(2)
ι,h |p = 0

for some p > 0. Then for any bounded continuous function f on Rm

lim
h→0

sup
ι∈I(h)

|Ef(ξ(1)
ι,h )− f(ξ(2)

ι,h )| = 0.

The proof of Lemma 4.2 is easy and is omitted.
Lemma 4.2 implies also the existence of h2 > 0 such that

(4.7) sup
ι
d(L(x̄uT−h,−A4(T )A3(T )x̄uT−h + ηι),L(x̄uT−h,−A4(T )A3(T )x̄uT + ηι)) ≤ δ,

where the family (ηι) consists of all random variables with distribution from SY .
Let us consider some h ≤ h0 ∧ h1 ∧ h2. The desired result will be proved if we

find for any sufficiently small ε an admissible control z = zε satisfying (4.6) such that

(4.8) d(L(xε,zT−h, y
ε,z
T ), µhF−1) ≤ 2δ.

Indeed, it follows from (4.1), (4.5), and (4.8) that

d(L(xε,zT , yε,zT ), µhF−1) ≤ 4δ,

and this means that any point in K0(T ) can be approximated by points from Kε(T ).
Let (Ω,F , P ) be a probability space with a countably generated σ-algebra. As-

sume that on this space we have independent random elements ζ, α, ξ, where ζ has
the distribution νh, i.e., the same distribution as x̄uT−h; α has the standard normal
distribution; ξ is a stationary Gaussian Markov process with zero mean and covariance
function given by (1.8), (1.9). Let us consider the set VαU of all U -valued processes
which are predictable with respect to the filtration generated by ξ1/t and α (we denote
by P the corresponding predictable σ-algebra in Ω×R+).

LEMMA 4.3. There is a function v : Ω×R+×Rm → U which is measurable with
respect to P ⊗ B(Rm) such that v(., x) ∈ Vα for all x ∈ Rm and L(ξ0 + I(v(., x))) is
equal to µ(x, dy) for νh almost all x ∈ Rm.
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Proof. Evidently, v 7→ L(ξ0 + I(v)) is a continuous, hence measurable, mapping
from the space V := L1(Ω×R+,P, ρ)d into P(Rn), where ρ(dω, dt) = e−2κtP (dω)dt.
Thus, the multivalued mapping

Γ : x 7→ {v ∈ V : v(ω, t) ∈ U ρ a.e., L(ξ0 + I(v)) = µ(x, .)}

has a measurable graph. Hence, it admits a measurable selector x 7→ V (x). Notice
that V (x) as an element of V is a class of ρ-equivalent functions. To choose from V (x)
a representative in a measurable way we proceed as follows. Let (vi) be a sequence
of elements from VαU which is dense in VαU ∩V, j(x, l) := min{i : ‖ v(x)− vi ‖≤ 1/l}.
Then vj(l) = vj(x,l)(ω, t) is a P ⊗ B(Rm)-measurable function with values in U . The
sequence vj(x,l) converges to V (x) in V. Since U is bounded, the sequence vj(l)

converges to V in L1(Ω × R+ × Rm,P ⊗ B(Rm), ρ × νh)d. Hence, there exists a
subsequence which converges ρ × νh a.e. to some P ⊗ B(Rm)-measurable function
v = v(ω, t, x). For νh almost all x we have the inclusion v(., x) ∈ V (x) implying that
L(ξ0 + I(v(., x))) = µ(x, dy) for such x.

It follows from the above lemma that the measure µh is the distribution of the
random variable (ζ, ξ0 + I(v(., ζ))), i.e.,

(4.9) µh = L(ζ, ξ0 + I(v(., ζ))).

Generalizing the arguments of section 2 we introduce a set V(α,ζ)
U ′ consisting of all

functions

(4.10) v(s, x) =
N∑
i=1

ϕi(x)I]si,si+1](s) + u0I]sN+1,∞[(s),

where 0 = s1 < · · · < sN+1, u
0 ∈ U , and ϕi(x) have the form

(4.11) ϕi(x) = fi(α, ξ(ri1), . . . , ξ(riMi
), x), si+1 < rij ≤ sN ,

and the functions fi are measurable with respect to their arguments and take values
in U .

Assume that the representation (4.9) holds with v ∈ V(α,ζ)
U ′. There is a freedom

in the choice of ζ, α, and ξ which we use in the following constructions.
Put T kε := T (1− kε1/2), k = 1, 2, 3, ζ := x̄uT−h.
Define

αε := (wy,1T 2
ε
− wy,1T 3

ε
)/(T 2

ε − T 3
ε )1/2,

where wy,1 is the first component of the vector process wy,

βε := Ξ1/2(wyT 1
ε
− wyT 2

ε
)/(T 1

ε − T 2
ε )1/2.

Let us consider on [T 1
ε , T ] the linear stochastic differential equation

εdξ̃εt = A4(T )ξ̃εt dt+ ε1/2dwyt , ξ̃εT 1
ε

= βε.

Put ξεt := ξ̃εT−εt, t ∈ [0, ε−1/2T ]. For sufficiently small ε we define the admissible
control

zε := uI[0,tN+1[ +
N+1∑
i=1

ϕεi (x̄
u
T−h)I[ti+1,ti[,

where ti := T − εsi, i ≤ N + 1, and ϕεi is constructed in accordance with (4.11).
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It follows from Propositions 3.1 and 3.2 that

(xε,z
ε

T−h, y
ε,zε

T )− (x̄uT−h,−A4(T )A3(T )x̄uT + ξε0 + I(v(., x̄uT−h)))→ 0

in probability as ε→ 0. Thus,

(4.12) d(L(xε,z
ε

T−h, y
ε,zε

T ),L(x̄uT−h,−A4(T )A3(T )x̄uT + ξε0 + I(v(., x̄uT−h)))) ≤ δ
for all sufficiently small ε. Taking into account (4.7) we get from here the desired
inequality (4.8).

Part 2 of Theorem 1.1 is proved now for the case when µh is given by (4.9) with
v ∈ V(α,ζ)

U ′. Since the set {I(v) : v ∈ V(α,ζ
U ′} is dense in probability in the set

{I(v) : v ∈ Vα,ζU }, the result holds for the general case as well.

5. On a compactness of some subsets in the space of probability
measures.

5.1. Notations and preliminaries. Let X be a Polish space with the Borel
σ-algebra X and P(X) be a space of all probability measures on X with the topology
of weak convergence. It is well known that P(X) equipped by the Prohorov metric is
again a Polish space. The relative compactness of a subset A ⊆ P(X) is equivalent
to its tightness. The last means that for any ε > 0 there exists a compact set K ⊆ X
such that m(K) ≥ 1− ε for all m ∈ A.

We shall use the notation m(f) =
∫
X
f(x)m(dx). We denote by L(ξ) the distri-

bution of a random variable ξ.
Let (X,X ) and (Y,Y) be two Polish spaces. We denote by M(X,Y ) the set of

stochastic kernels from (X,X ) to (Y,Y) that is mappings µ : X ×Y → ([0, 1],B[0, 1])
such that x 7→ µ(x,Γ) is X -measurable for any Γ ∈ Y and µ(x, .) ∈ P(Y ) for any
x ∈ X.

It is easy to check that the mapping µ : X ×Y → ([0, 1],B[0, 1]) is inM(X,Y ) if
and only if one of the following equivalent conditions is satisfied:

(1) The mapping x 7→ µ(x, .) is X -measurable (i.e., µ(x, .) is a P(Y )-valued
random variable).

(2) For any f ∈ Cb(Y ) (the set of all bounded continuous functions on Y ) the
mapping x 7→ µ(x, f) is X -measurable (i.e., µ(x, f) is a real-valued random variable).

THE SKOROHOD REPRESENTATION THEOREM. Let Y be a Polish space and mn ∈
P(Y ) be a sequence converging in P(Y ) to some m. Then on the probability space
([0, 1],B[0, 1], dx) there exist Y -valued random variables ξ̃n and ξ̃ such that L(ξ̃n) =
mn, L(ξ̃) = m, and ξ̃n → ξ̃ pointwise.

THE MEASURABLE ISOMORPHISM THEOREM. Let (X,X be an uncountable Polish
space. Then there is a one-to-one mapping i : X → [0, 1] such that i(Γ) ∈ B[0, 1] for
any Γ ∈ X and i−1(A) ∈ X for any A ∈ B[0, 1].

Another useful result is that any Polish space X is homeomorphic to a Gδ-subset
of the Hilbert cube [0, 1]N. For further information see, e.g., [6], [9].

5.2. For µ ∈ M(X,Y ), m ∈ P(X), and Γ ∈ Y, the integral
∫
X
µ(x,Γ)m(dx)

defines a probability measure on (Y,Y) which we shall denote by
∫
X
µ(x, .)m(dx).

LEMMA 5.1. Let (X,X ) be a Polish space with nonatomic measure ν on it, let S
be a compact set in P(Y ), and let M) be the set consisting of all stochastic kernels µ
from (X,X to (Y,Y) such that µ(x, .) ∈ S for all x ∈ X. Then the set

K =
{
m ∈ P(Y ) : m(.) =

∫
X

µ(x, .)ν(dx), µ ∈M
}

is a convex compact subset in P(Y ) coinciding with convS.
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Proof. By virtue of the measurable isomorphism theorem we can consider only
the case when (X,X ) = ([0, 1],B[0, 1]). Assume at first that ν(dx) = dx, i.e., ν is the
Lebesgue measure. Convexity of M is clear: if measures mi(.) =

∫
X
µi(x, .)dx, i =

1, 2, belong to K, α > 0, β > 0, α + β = 1, then the measure αm1(.) + βm2(.) =∫
X
µ(x, .)dx with

µ(x, .) = I[0,α](x)µ1(α−1x, .) + I]1−β,1](x)m2(β−1(x− 1 + β), .)

also belonging to K. The tightness of K follows easily from the tightness of S.
To prove that K is closed, let us consider the sequence mn(.) =

∫
µn(x, .)dx ∈ K

converging to some m(.) in P(Y ). Notice that elements of M are random variables
with values in the compact subset S of a Polish space. Thus, the set of distributions
of these random variables {L(µ) : µ ∈M} is relatively compact in P(P(Y )). Taking,
if necessary, a subsequence we can assume that L(µn) tend to some L in P(P(Y )).
By the Skorohod representation theorem on the probability space ([0, 1],B[0, 1], dx)
there exist S-valued random variables µ̃n and µ̃ such that µ̃n(x, .)→ µ̃(x, .) for all x
when n→∞ and L(µ̃) = m, L(µ̃n) = L(µn) for all n.

The last equality means that for any f ∈ Cb(Y ) the distribution of the random
variable µ̃n(f) coincides with the distribution of µn(f). It follows that for any f ∈
Cb(Y )

m(f) = lim
n→∞

mn(f) = lim
n→∞

∫
µn(x, f)dx = lim

n→∞

∫
µ̃n(x, f)dx =

∫
µ̃(x, f)dx.

Thus, m(.) =
∫
µ̃(x, .)dx ∈ K.

The general case when ν is any nonatomic measure on [0, 1],B[0, 1] is easily re-
duced to the considered one by the quantile transformation. Indeed, let F (t) :=
ν([0, t], C(t) := inf{s : F (s) > t}. Then we have the identities∫

µ(x, .)dx =
∫
µ(F (x), .)ν(dx),

∫
µ(x, .)ν(dx) =

∫
µ(C(x), .)dx

which show that K does not depend on the measure ν.
Evidently, S ⊆ K. Hence, convS ⊆ K. Let m0(.) =

∫
µ(t, .)dt be a point in K

which does not belong to convS. By the separation theorem a convex compact set
and a point outside it can be strictly separated by a continuous linear functional. This
means that there exists f ∈ Cb(Y ) such that infm∈convSm(f) < m0(f). It follows
that

∫
µ(t, f)dt < m0(f) in contradiction with the assumption that m0 ∈ K.

Remark 5.1. If ν has atoms, then we can assert only that K is a subset of convS,
even when S is compact.

5.3. Convergence of measure-valued martingales.
PROPOSITION 5.1. Let (Ω,F , P ) be a probability space with an increasing family

of σ-algebras (Fn) such that F = σ{Fn, n ∈ N}. Let µn(ω, .) be a stochastic kernel
from (Ω,Fn) to (Y,Y) such that for any f ∈ Cb(Y ) the sequence (µn(f),Fn) is a
martingale. Assume that for almost all ω the sequence µn(ω, .) is tight. Then for
almost all ω there exists a limit µ(.) of µn(ω, .) in P(Y ) and E(µ(f) | Fn) = µn(f)
for all f ∈ Cb(Y ) and n ∈ N.

Proof. To clarify ideas we start from the case when Y = R. Let Mn(ω, y) =
µn(ω, ] − ∞, y]) be the distribution function of µn(ω, .). Evidently, (Mn(y),Fn) is
a bounded martingale for all y ∈ R and by the Doob theorem it converges almost
surely (a.s.) to M0(y). There is a set Ω1 with P (Ω1) = 1 such that for all ω ∈ Ω1
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and all rationals r we have convergence of Mn(ω, r) to M0(ω, r). Put M(ω, y) =
inf{M0(ω, r) : r ∈ Q, r > y} for ω ∈ Ω1. Let M(ω, .) be equal to any distribution
function outside Ω1. The assumption on tightness implies that M(ω, .) is a probability
distribution function and for any ω ∈ Ω1 we have that Mn(ω, y) tends to M(ω, y) at
any point y where the function M(ω, .) is continuous.

As any Polish space is homeomorphic to a Gδ-subset of H = [0, 1]N we can assume
in general case that Y is the intersection of open subsets Gn in H. The closure Ȳ of Y
is a compact subset of H. Thus, Cb(Ȳ ) is separable. Let A be a countable dense subset
of Cb(Ȳ ) closed under finite sums and multiplication by rationals. For any f ∈ A the
sequence µn(ω, f) converges to some µf (ω) for all ω from a set Ωf with P (Ωf ) = 1.
It is possible to find a set Ω1 with P (Ω1) = 1 such that for all ω ∈ Ω1, f, g ∈ A, and
rational a and b

µaf+bg(ω) = aµf (ω) + bµg(ω).

Evidently,

| µf (ω)− µg(ω) |≤‖ f − g ‖, ω ∈ Ω1,

where ‖ . ‖ is a uniform norm in Cb(Ȳ ), and the function f 7→ µf (ω) can be extended
uniquely to the continuous positive linear functional on Cb(Ȳ ) which by the Riesz
theorem has the form µf (ω) = µ(ω, f) for some measure µ(ω, .) on Ȳ . For ω ∈ Ω1 we
put µ(ω, .) equal to any fixed probability measure on Y . We show that µ is the kernel
we are seeking. Notice that µ(ω, Y ) = 1. Fix ω ∈ Ω1. By the assumption there exists
a subsequence µn′(ω, .) which converges in P(Y ) to a measure µ′(ω, .) on Y . We can
extend µn′(ω, .) and µ′(ω, .) to Ȳ in a trivial way. Then for f ∈ A we have∫

Ȳ

f(y)µ′(ω, dy) =
∫
Y

f(y)µ′(ω, dy) = lim
n→∞

∫
Y

f(y)µn′(ω, dy)

= lim
n→∞

∫
Ȳ

f(y)µn′(ω, dy) =
∫
Ȳ

f(y)µ(ω, dy).

It follows that the probability measures µ′(ω, .) and µ(ω, .) coincide, and, since any
convergent subsequence has the same limit, the whole sequence µn(ω, .) converges in
P(Y ) to µn(ω, .).

The result is proved.

5.4. Let X and Y be Polish spaces. Any measure m ∈ P(X × Y ) can be
desintegrated, that is, can be represented as m(dx, dy) = µ(x, dy)ν(dx), where ν is
the image of m under the projection mapping X × Y onto X and µ is an element of
M(X,Y ) (regular conditional probability) defined ν a.s. uniquely.

LEMMA 5.2. Let SY be a convex compact subset in P(Y ), and let S be the set
of all m ∈ P([0, 1] × Y ) such that m(dx, dy) = µ(x, dy)dx with µ(x, .) ∈ SY for all
t ∈ [0, 1]. Then S is a convex compact set.

Proof. The problem is to prove that S is closed. Let us consider for any ∆ =
[a, b] ⊆ [0, 1], b > a, the set

K∆ =
{
m ∈ P(Y ) : m(.) =

1
b− a

∫
∆
µ(x, .)dx, µ(x, .) ∈ SY for all x ∈ ∆

}
,

which is, by Lemma 5.1, a convex compact set in P(Y ). Let L be the set of all
m ∈ P([0, 1] × Y ) such that the image of m under the projection mapping X × Y
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onto X is the Lebesgue measure (this means that m(dx, dy) = µ(x, dy)dx without
any restriction on µ). Evidently, L is a closed convex set in P([0, 1]× Y ).

Define the continuous affine mapping f∆ : L → P(Y ) by the formula f∆ : m 7→
m∆ where m∆(Γ) = m(∆ × Γ)/(b − a). The result will be proved if we show that
S = ∩∆f

−1
∆ (K∆). The inclusion S ⊆ ∩∆f

−1
∆ (K∆) is evident. To prove the opposite

inclusion let us consider the measure m from L which belongs to ∩∆f
−1
∆ (K∆). Let

us define the dyadic σ-algebras Fl = σ{∆k,l, k = 1, . . . , 2l}, where ∆0,l = [0, 2−l],
∆k,l =](k − 1)2−l, k2−l], k ≥ 1. Using Lemma 5.1 it is easy to show that for any l
there exists a stochastic kernel µl such that µl(x, .) ∈ SY for all t ∈ [0, 1] and

m(A× .) =
∫
A

µl(x, .)dx

for all A ∈ Fl. Put

ml(t, .) =
2l∑
k=1

I∆k,l
(t)ml,k(.)

where

ml,k(.) = 2l
∫

∆l

µl(x, .)dx ∈ S

according to Lemma 5.1. By Proposition 5.1 on convergence of measure-valued mar-
tingales, the sequence µl(x, .) tends to µ(x, .) in P(Y ) for almost all x and∫

A

µl(x, .)dx =
∫
A

µ(x, .)dx

for all A ∈ Fl. Thus, we find a stochastic kernel µ such that µ(x, .) ∈ SY for all
x ∈ [0, 1] and m(A × Γ) =

∫
A
µ(x,Γ)dx for all A ∈ Bl, l ∈ N, and Γ ∈ Y. It follows

that m(dx, dy) = µ(x, dy)dt. Hence, m ∈ S and the lemma is proved.

5.5.
LEMMA 5.3. Let (X,X ) be any uncountable Polish space with a probability measure

ν on it. Then there exists an increasing family of σ-algebras (Xl), l ∈ N, such that
(1) Xl is generated by a finite partition of X to the sets Ak,l, k = 1, . . . , rl;
(2) X = σ{Xl, l ∈ N};
(3) ν(∂Ak,l) = 0 for any k and l (∂A denotes the boundary of A).
Proof. Since a Polish space is homeomorphic to Gδ-subsets of H = [0, 1]N, we

can assume without loss of generality that X is a Borel subset of H. Moreover,
it is sufficient to construct the family (Xl) for the space H (then the σ-algebras
Xl ∩X = {A ∩X, X ∈ Xl} will have the desired properties for X). Let ε ∈ [0, 1/2[.
Let us define the partitions of the interval [0, 1] by points aεk2−l , k = 0, . . . , 2l, in
the following recurrent way. Let aε0 = 0, aε1 = 1, aε2−l = 2−1 + ε. Starting from the
lth partition we define for k even the point aεk2−l−1 = (aεk2−l + aε(k+1)2−l)/2; i.e., we
construct the ordinary dyadic partitions on both intervals [0, 2−1 + ε] and ]2−1 + ε, 1].

Evidently, diameters of the partitions tend to zero as l→∞.
Put

∆ε
1,l = [0, aε2−l ], ∆ε

k,l =]aε(k−1)2−l , a
ε
k2−l ], k = 1, . . . , 2l,

Γε = {aεk2−l , k = 1, . . . , 2l, l ∈ N}.
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Let ∆ε
k1,...,kl,l

= {x : x1 ∈ ∆ε
kl,l
, . . . , xl ∈ ∆ε

k1,1}, X
ε
l = σ{∆ε

k1,...kl,l
, ki ≤ 2l}. Notice

that the set Nd of superscripts ε ∈ [0, 1/2[ such that Γε are disjoint is uncountable
(this follows from the observation that Γε ∩ Γη = � if Qε + Q 6= Qη + Q and there
are uncountably many different sets Qε + Q). Let’s consider the countable subset
Np of Nd containing all superscripts ε such that at least one of the probabilities
ν(x : xk ∈ Γε), k ∈ N, is positive. Thus, Nd \Np is uncountable. It is clear that for
any ε ∈ Nd \Np the sequence of σ-algebras X εl has the needed properties.

5.6. The following assertion is a generalization of Lemma 5.2.
PROPOSITION 5.2. Let SX be a compact subset in P(X), and let SY be a convex

compact subset in P(Y ). Assume that all elements of SX are nonatomic. Let S be
the set of all m ∈ P(X × Y ) such that m(dx, dy) = µ(x, dy)ν(dx) with µ(x, .) ∈ SY
for all x and ν(.) ∈ SX . Then S is a compact set.

Proof. Since the relative compactness is evident, we need to show only that S
is closed. Let us consider the sequence mn ∈ S with mn(dx, dy) = µn(x, dy)νn(dx)
which tends in P(X × Y ) to m(dx, dy) = µ(x, dy)ν(dx). As νn tends to ν in P(X)
and SX is a compact, ν ∈ S.

To prove that m ∈ S for all x, we construct a sequence of stochastic kernels
µ̃l such that µ̃l(x, .) ∈ SY for any x, µ̃l(x, .) converges ν-a.s. to some µ̃(x, .), and
µ̃(x, dy)ν(dx) = µ(x, dy)ν(dx).

Let us consider the σ-algebras Xl = σ{Ak,l, k = 1, . . . , rl}, l ∈ N, defined in
Lemma 5.3. Since ν(∂Ak,l) = 0, the sequence of measures mn(Ak,l × .) converges in
P(Y ) to the measure m(Ak,l× .) for any set Ak,l. From Lemma 5.1 it follows that for
any l ∈ N there exists a stochastic kernel µl such that µl(t, .) ∈ SY for all t ∈ [0, 1]
and

m(A× .) =
∫
A

µl(x, .)ν(dx)

for all A ∈ Xl. Let

µ̃l(x, .) =
2l∑
k=1

IAk,l(x)ml,k(.),

where

ml,k(.) =
1

ν(Ak,l)

∫
Ak,l

µl(x, .)ν(dx) ∈ SY

according to Lemma 5.1 (if ν(Ak,l) = 0 we can put ml,k(.) to be equal to any point
of SY ). By Proposition 5.1 on the convergence of measure-valued martingales the
sequence µ̃l(x, .) tends to µ̃(x, ) in P(Y ) for almost all x and∫

A

µ̃l(x, .)ν(dx) =
∫
A

µ̃(x, .)ν(dx)

for all A ∈ Xl. Thus, we found a stochastic kernel µ such that µ̃(x, .) ∈ SY for all
x ∈ [0, 1] and m(A×Γ) =

∫
A
µ̃(x,Γ)ν(dx) for all A ∈ Xl, l ∈ N, and Γ ∈ Y. It follows

that m(dx, dy) = µ̃(x, dy)ν(dx). Hence, m ∈ S.
Remark 5.2. Walter Schachermayer suggested the following simpler proof of the

above result without the assumption that measures from SX are nonatomic. At first,
notice that SY = ∪nj=1Γj , where Γj := {µ : µ(fj) ≤ βj}, fj ∈ Cb(Y ), βj ∈ R.
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Indeed, from the Hahn–Banach theorem it follows that SY is an intersection of sets of
this type. Their complements form an open covering of the open set P(Y )\SY . Since
a Polish space is Lindelöf it contains a countable covering Γ̄j , j ∈ N. Assume now
that for the limiting measure m(dx, dy) = µ(x, dy)ν(dx) there exists a set of positive
ν-measure where µ(x, .) 6∈ SY . The above representation for SY implies that there
exists a set B = {x : µ(x, f) > β} with ν(B) > 0. Let gk ∈ Cb(X) be a sequence
converging in L1(ν) to IB . Since µn(x, .) ∈ SY we have that µn(x, f) ≤ β. Thus,

lim
k→∞

lim
n→∞

∫ ∫
gk(x)f(y)mn(dx, dy) = lim

k→∞
lim
n→∞

∫
gk(x)µn(x, f)νn(dx)

≤ lim
k→∞

β

∫
gk(x)ν(dx) = βν(B).

From the other side,

lim
k→∞

lim
n→∞

∫ ∫
gk(x)f(y)mn(dx, dy) = lim

k→∞
lim
n→∞

∫ ∫
gk(x)f(y)m(dx, dy)

= lim
k→∞

∫
gk(x)µ(dx, f)ν(dx) =

∫
B

µ(dx, f)ν(dx) > βν(B),

and we get a contradiction to the assumption that µ(x, .) does not belong to SY ν-a.s.

5.7. Now we consider the following problem.
Let (Ω,F , P ) be a probability space, P be a σ-algebra in the product Ω×R+ such

that P ⊆ F⊗B(R+), Γ is a measurable set-valued mapping from (R+,B(R+)) to Rq.
Measurability means that the graph Gr Γ = {(t, x) : x ∈ Γ(t)} is a B(R+)⊗ B(Rq)-
measurable set. We shall assume that Γ(t) are closed sets and there exists a function
r ∈ L1(R,dt) such that |Γ(t)| ≤ rt for all t. Let V be a set of all P-measurable
functions f on Ω×R+ such that f(ω, t) ∈ Γ(t). Define the set K in P(Rq) as

K :=
{
L(φ) : φ =

∫ ∞
0

f(t)dt, f ∈ V
}
.

The question is if K is a compact set. We give here only a partial answer to this
question imposing some specific assumption on the structure of the σ-algebra P.

Let w = (wt) be a d-dimensional Wiener process on (Ω,F , P ), Fo,wt = σ{ws, s ≤
t}, Fwt = Fo,wt+ ∨ N , where N is a family of all sets from F of zero probability. In
other words, Fw = (Fwt ) is the minimal filtration generated by the Wiener process
and satisfying the usual assumptions.

LEMMA 5.4. Assume that P is the predictable σ-algebra generated by Fw and Γ(t)
is a convex set for all t. Then K is a compact set.

Proof. Since random variables φ are bounded by some constant, K is relatively
compact and it remains to show that K is closed.

Let us consider the sequence fn ∈ V such that the corresponding sequence of
distribution L(φn) converges in P(Rq). Define the random processes

φnt =
∫ t

0
fn(ω, s)ds.

Using the criteria of relative compactness in P(Cq+d(R+)) (the space Cq+d(R+) is
equipped with the metric

∑
j 2−j ‖ x ‖j (1+ ‖ x ‖j)−1), we can assume without loss
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of generality that the sequence L((φn, w)) converges to some L in P(Cq+d(R+)). The
Skorohod theorem asserts that on some probability space (Ω̃, F̃ , P̃ ) (actually, on the
standard unit interval) there are processes (φ̃n, w̃n), n ∈ N, and (φ̃, w̃) such that
L(φ̃n, w̃n) = L(φn, w), L(φ̃, w̃) = L, and (φ̃n, w̃n) converges to (φ̃, w̃) in Cq+d(R+)
pointwise.

It is easy to show that the following properties hold:
(1) The process φ̃n is adapted with respect to (F̃nt ), where F̃nt := σ{w̃ns , s ≤ t}

and

(5.1) φ̃nt (ω̃) =
∫ t

0
f̃n(ω̃, s)ds

with P̃n-measurable f̃n such that f̃n(ω̃, s) ∈ Γ(s) for (ω̃, s) (where P̃n is the pre-
dictable σ-algebra generated by (F̃nt )).

(2) The process φ̃ is adapted with respect to (F̃t), where F̃t := σ{w̃s, s ≤ t} and

(5.2) φ̃t(ω̃) =
∫ t

0
f̃(ω̃, s)ds

with P̃-measurable f̃ such that f̃(ω̃, s) ∈ Γ(s) for (ω̃, s) (where P̃ is the predictable
σ-algebra generated by the minimal filtration with the usual assumptions for w̃).

Let us prove that φ̃n is adapted with respect to (F̃nt ). Fix t ∈ R+ and define the
Wiener process ŵns = w̃ns+t− w̃nt , s ∈ R+, which is independent of F̃nt . It is sufficient
to show that Ẽ(φ̃nt | F̃nt ) = φ̃nt (P̃ -a.s.) or, equivalently, that

ẼẼ(φ̃nt | F̃nt )h(w̃n)g(ŵn) = Ẽφ̃th(w̃n)g(ŵn)

for any bounded continuous functions h : Cd[0, t] → R and g : Cd(R+) → R (the
argument of h, in fact, is the restriction of w̃n to [0, t]). Since h(w̃n) is F̃nt -measurable,
it follows from properties of the conditional expectations that the above equality holds
if and only if

(5.3) Ẽφ̃nt h(w̃n)Ẽg(ŵn) = Ẽφ̃nt h(w̃n)g(ŵn).

But L(φ̃n, w̃n) = L(φn, w), and the last identity is equivalent to the following one:

Eφnt h(w)Eg(w) = Eφnt h(w)g(w
′
),

where w
′

s = ws+t − wt, s ∈ R+, which holds because φn is adapted with respect to
(Fnt ).

Taking a limit in (5.3) we get that

Ẽφ̃th(w̃)Ẽg(w̃) = Ẽφ̃th(w̃)g(ŵ),

where ŵs = w̃s+t − w̃t, s ∈ R+. As above, this means that φ̃t = Ẽ(φ̃t | F̃t); i.e., φ̃
is adapted with respect to (F̃t). The representation (5.1) follows from the definition
of φn and coincidence of L(φ̃n, w̃n) and L(φn, w). To obtain the representation (5.2)
we notice that by the Komloś theorem [19] for the bounded sequence f̃n, there exists
a subsequence (nj) such that (f̃n1 + · · · + f̃nk)/k converge to some function f̃0 for
almost all (ω̃, t). It follows that

(5.4) φ̃t(ω̃) =
∫ t

0
f̃0(ω̃, s)ds.
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The convexity assumption implies that f̃0(ω̃, s) ∈ Γ(s) for almost all (ω̃, s), and we
can assume without loss of generality that f̃0(ω̃, s) ∈ Γ(s) for all (ω̃, s). This means
that the trajectories of φ̃ are absolutely continuous functions. Let

f̃
′
(ω̃, s) = lim sup

m→∞

m∑
i=2

I∆i(s)2
m(φ̃ti−1(ω̃)− φ̃ti−2(ω̃)),

where ti = i2−m, ∆i = ti− ti−1. Clearly, f̃
′
(ω̃, s) is a P̃-measurable function, and for

all ω̃ and almost all s it coincides with f̃0(ω̃, s) ∈ Γ(s). Thus, the following function
gives the representation (5.2) with the required properties:

f̃(ω̃, s) = f̃
′
(ω̃, s)IA + x(s)IĀ,

where A = {(ω̃, s) : f̃
′
(ω̃, s) ∈ Γ(s)}, x(s) is any Borel function such that x(s) ∈ Γ(s).

Properties (1) and (2) imply the result. Indeed, it follows from (2) and Lemma
2.1 in [13] that there exists a predictable function a(x, s) : Cd(R+) × R+ → Rq

such that f̃(ω̃, s) = a(w̃(ω̃), s). Evidently, we can modify a(x, s) in such a way that
a(x, s) ∈ Γ(s) for all (x, s). Let us define on the original probability space (Ω,F , P )
the process

φt(ω) =
∫ t

0
f(ω, s)ds

with f(ω, s) = a(w(ω), s). Since f ∈ V and L(φ) = L(φ̃) = L it follows that the limit
of L(φn) belongs to K and the lemma is proved.

5.8. Now we apply the previous result to our specific setting.
LEMMA 5.5. The set S0

Y := {L(ξ0 + I(v) : v ∈ VU )} is compact in P(Rn).
Proof. Reversing the time and taking into account the notations of the previous

subsection we can reduce the problem to the question of whether the set

K :=
{
L(φ) : φ =

∫ ∞
0

f(t)dt, f ∈ V
}

is compact. Here Γ(t) = −s−2 exp{A4(T )/s}B2(T )U and the σ-algebra P is generated
by the time reverse of the Ornstein–Uhlenbeck process ξ1/t, or, equivalently, by the
process ηt := tξ1/t. The process η (as well as ξ) is defined in the present context
only up to the distribution. For example, we can take as η the process defined by the
stochastic differential equations

(5.5) dηt = t−2(tI −A)ηtdt+ dwt, η0 = 0,

where I is the unit matrix and w is the Wiener process. This representation can be
deduced from the differential equation for the Ornstein–Uhlenbeck process by the Ito
formula. But from equation (5.5) it follows that Fo,wt = σ{ηs, s ≤ t} and the needed
result is a corollary of Lemma 5.4.

5.9. Let ηi be random variables with values in Polish spaces (Xi,Xi), i = 1, 2, 3,
let νi be the distribution of ηi, and let µij(xj , dxi) be the regular conditional distri-
bution of ηi given ηj .

LEMMA 5.6. Let η3 = f(η2) for some measurable function f : X2 → X3, and let
S1 be a compact convex set in P(X1). Assume that µ12(x2, dx1) ∈ S1 for all x2. Then
µ13(x3, dx1) ∈ S1 for ν3-almost all x3.
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Proof. The assertion follows from the relation

µ13(x3, dx1) =
∫
X2

µ12(x2, dx1)µ23(x3, dx2) (ν3-a.e.)

and Remark 5.1.

Acknowledgment. The authors express their thanks to Walter Schachermayer
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Abstract. In this paper, the problem of determining the worst-case H2 performance of a control
system subject to linear time-invariant uncertainties is considered. A set of upper bounds on the
performance is derived, based on the theory of stability multipliers and the solution of an original
optimal control problem. The numerical issues raised by the resulting computational problems are
discussed; in particular, newly developed interior-point convex optimization methods, combined with
linear matrix inequalities, apply very well to the fast and accurate solution of these problems. The
new results compare favorably with prior ones. The method can be extended to other types of
perturbations.
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1. Introduction. Among all performance indices known to control engineering,
the H2 performance index holds a special place for historical and practical reasons.
The historical reasons are that minimizing the H2 norm of a linear control system
via feedback, better known as the LQG problem, is among the first optimal control
problems to have been solved analytically. (For an extensive presentation and bibliog-
raphy, see [1].) The practical reason is that this problem can be solved using reliable
and fast computational procedures [2, 20, 39].

It is, however, well known that the performance of the LQG-optimal controller
can be very sensitive to perturbations on the nominal system [11]. In view of this
fact, devising analysis and synthesis tools that will respectively evaluate and minimize
worst-case H2 norms of control systems is especially relevant.

In this paper, we consider the following specific problem: given a linear control
system perturbed by linear time-invariant (LTI) perturbations, what is its worst-case
H2 norm? This question has remained open until recently when some attempts have
been made at its solution. Packard and Doyle [26] and Bernstein and Haddad [4, 5, 6]
are among the first to consider the problem of robust H2 performance in the face
of dynamic and parametric uncertainty. Stoorvogel [37, 38], Petersen, Rotea, and
McFarlane [30, 31] find bounds on the worst-case H2 norm of a system subject to
norm-bounded, noncausal, possibly nonlinear, and time-varying uncertainties. Peres,
Geromel, and Souza [28, 29] find upper bounds on the H2 norm of linear time-varying
and uncertain LTI systems based on quadratic Lyapunov functions. The book and
papers by Boyd, El Ghaoui, Feron, and Balakrishnan [9, 14, 7, 13] show that the com-
putation of all these bounds on H2 performance can be reduced to convex optimization
problems involving linear matrix inequalities, which can be solved via efficient convex
optimization techniques. In [9, 13], attempts are made to refine the upper bounds
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on H2 performance when dealing with particular classes of perturbations such as
static nonlinearities and parametric uncertainties, using Lur’e Lyapunov functions
and causal multipliers. Other attempts at obtaining reliable upper bounds on robust
H2 performance include the recent paper by Paganini, Doyle, and D’Andrea [27].

In this paper, we propose to extend the results presented in [9, 13] by using non-
causal multipliers to evaluate the worst-case H2 norm of linear systems perturbed by
LTI perturbations. Using noncausal multipliers is a well-known technique to deter-
mine the stability of uncertain systems (see [10, 40] and references therein) and has
proved to yield effective computational procedures [36, 34]. We believe this paper is
the first attempt to use them to determine robust H2-performance of linear systems
subject to linear perturbations. It is organized as follows.

The first part is devoted to a few definitions and notations. In particular, we
recall the notions of boundedness, positivity, and passivity of operators.

In the second part, we formulate the robust H2 analysis problem and sketch our
line of attack to get upper bounds on worst-case H2 performance. We present a
new upper bound on robust H2 performance, based on the use of certain dynamic
Lagrange multipliers.

In the third part of this paper, we present a way to compute the upper bound
on robust performance using convex optimization and linear matrix inequalities. In
particular, we exhibit convenient linear families of finite-dimensional multipliers to
perform this computation.

In the fourth part, we discuss the obtained results: in particular, we study condi-
tions for the obtained upper bound to be finite. We also study special cases and show
they correspond to results having already appeared in the literature. A numerical
example that illustrates the usefulness of dynamic multipliers to determine accurate
upper bounds on robust performance is provided.

2. Notation. In this paper, R (resp., C) denotes the set of real (resp., complex)
numbers. R+ denotes the set of nonnegative real numbers. Rn×p (resp., Cn×p) is the
vector space of n× p real (resp., complex) matrices. Rn×1 (Cn×1) is abbreviated Rn

(Cn). For the random variable x, Ex denotes the expected value of x. For any matrix
X, XT denotes its transpose and X∗ denotes its complex conjugate transposed. The
identity matrix is noted I. If X is invertible, then its inverse is noted X−1. When X is
not invertible, its Moore–Penrose inverse is notedX†. WhenX ∈ Rn×n, TrX denotes
the trace of X. A square matrix X is said stable if all its eigenvalues lie in the open
left complex half-plane. Given a set of matrices X1 ∈ Rn1×p1 , . . . , XN ∈ RnN×pN

and defining n =
∑N
i=1 ni, p =

∑N
i=1 pi, diag(X1, . . . , XN ) denotes the n× p matrix
X1 0 · · · 0

0 X2
. . .

...
...

. . . . . . 0
0 · · · 0 XN

 .

Note that the Xis need not be square. From time to time, when no ambiguity is
possible, diag(X1, . . . , XN ) is noted diagLi=1(Xi), or diagi(Xi).

For any two matrices X and Y ∈ Rn×n, the inequality X ≤ Y means that X and
Y are symmetric and that the difference Y − X is positive. The inequality X < Y
means that X and Y are symmetric and that the difference Y −X is positive definite.
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L2(R) denotes the Hilbert space of functions h mapping R into Rn×p which
satisfy ∫ ∞

−∞
Trh(t)Th(t)dt <∞.

It is equipped with the standard scalar product

∀g, h ∈ L2(R), 〈g, h〉 ∆=
∫ ∞
−∞

Tr g(t)Th(t)dt,

and for all h ∈ L2(R), the Euclidean norm 〈h, h〉1/2 of h is denoted ‖h‖2. L2(R+)
denotes the subspace of L2(R) made of the functions h satisfying h(t) = 0 when t < 0.
L2e denotes the space of functions h mapping R into Rn×p satisfying h(t) = 0 for
t < 0 and

∀t ≥ 0,
∫ t

−∞
Trh(t)Th(t)dt <∞.

Following the usage of Francis [16], we suppress the dependence of these spaces on
the integers n and p.

For a given operator ∆ and a function p mapping R into Rn, (∆p)(t) denotes the
value taken by the image function ∆p at time t. An operator ∆ is said to be causal
if for any function p and any time t, (∆p)(t) depends only on the past values of p up
to time t. It is said anticausal if (∆p)(t) depends only on the future values of p from
time t. In any other case, ∆ is said noncausal .

Given a set of operators ∆1, . . . ,∆L, diag(∆1, . . .∆L) stands for the operator
which maps the function taking the value

[
u1(t)T . . . uL(t)T

]T at time t to the

function taking the value
[
(∆1u1)(t)T . . . (∆LuL)(t)T

]T at time t.
Let H map L2(R) into L2(R) and be linear. The adjoint of H, denoted H∗, is

the unique linear operator satisfying

〈x,Hy〉 = 〈H∗x, y〉 ∀x, y ∈ L2(R).

Defining s as the usual Laplace variable, the transfer function of H is denoted H(s)
whenever it exists.

Let us now introduce the notions of finite gain, positivity, and passivity that we
will use throughout this paper.

DEFINITION 2.1 (see [32]). An operator F mapping L2(R) into L2(R) has finite
gain (or, equivalently, is bounded) if there exists a positive δ such that for any u ∈ L2

‖Fu‖2 ≤ δ ‖u‖2 .

The smallest such δ is called the gain of F and denoted ‖F‖∞.
DEFINITION 2.2 (see [10]). A linear operator G mapping L2(R) into L2(R) is

said to be positive if for any u ∈ L2(R)

〈Gu, u〉 ≥ 0.

G is said to be strictly positive if there exists δ > 0 such that for any u ∈ L2(R)

〈Gu, u〉 ≥ δ ‖u‖22 .
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DEFINITION 2.3 (see [10]). A linear, causal operator G mapping L2e into L2e is
said to be passive if for any u ∈ L2e and T ≥ 0∫ T

0
(Gu)Tu dt ≥ 0.

3. Problem statement and line of attack. Consider the system

d

dt
x(t) = Ax(t) +Bpp(t) +Bww(t), x(0) = x0,

q(t) = Cqx(t) +Dqpp(t),

z(t) = Czx(t),

p(t) = (∆q)(t),

(1)

where x : R → Rn, p : R → Rnp , q : R → Rnp , z : R → Rnz , and w : R → Rnw

and all quantities are equal to 0 for t < 0. Assume that the matrix A is stable. ∆ is
a perturbation that satisfies the following set of assumptions:

∆ = diag(∆1, . . . ,∆np),

∀u ∈ L2(R), (∆iu)(t) =
∫ ∞

0
δi(τ)u(t− τ) dτ,∫ ∞

0
|δi(τ)| dτ <∞,

∆i is passive, i = 1, . . . , np.

(2)

In the literature, the passivity assumption on ∆ is often replaced by a finite-gain
assumption [12]. Standard loop-transformations allow us to move almost freely from
one framework to the other (see [10, p. 215] and the end of this paper for a more
detailed discussion).

Much of the existing literature is devoted to studying the robust stability of the
system (1) against the uncertainty ∆ in the following sense: Assume w = 0 and any
initial condition x0; then the signals x, p, q, and z belong to L2(R+).

In this paper, we assume the system (1) to be robustly stable, and we are inter-
ested in evaluating its worst-case H2 performance against the uncertainty ∆: Let

H∆(s) = Hzw(s) +Hzp(s)∆(s)(I −Hqp(s)∆(s))−1Hqw(s),

where

Hzw(s) = Cz(sI −A)−1Bw,

Hzp(s) = Cz(sI −A)−1Bp,

Hqp(s) = Cq(sI −A)−1Bp +Dqp,

Hqw(s) = Cq(sI −A)−1Bw.

(3)

The H2 norm of the system (1) is defined as

‖H∆‖2 =
(

1
2π

∫ ∞
−∞

TrH∆(jω)∗H∆(jω) dω
)1/2

.
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Equivalently, using Parseval’s theorem, ‖H∆‖2 may also be expressed as ‖h∆‖2, where
h∆ is the impulse matrix of H∆. In the subsequent developments of this paper, it will
also be very convenient to express it as

‖H∆‖2 =
(
E ‖z‖22

)1/2
,(4)

where z is the output of the system (1) with the following assumptions: the input
w is identically 0 and the initial condition x0 is equal to Bwu, where u is a random
variable satisfying EuuT = I. (The expectation appearing in (4) is therefore to be
taken with respect to u.)

The robust H2 analysis problem is to compute the worst-case H2 norm of the
system (1) over all possible values of ∆ that satisfy (2). This computation is in general
quite a complicated problem. Thus, we propose to replace it by the computation of
upper bounds on robust H2 norm, using a technique similar to the classical technique
of Lagrange multipliers: Consider any familyM of operators M mapping L2(R) into
L2(R) such that the operator M∗∆ is positive for any ∆ satisfying (2). The following
lemma gives us an upper bound on the worst-case H2 norm of the system (1).

LEMMA 3.1. We have the inequality

max
∆

E ‖z‖22 ≤ min
M∈M

E max
p̃∈L2(R+)

‖z̃‖22 + 2〈p̃,Mq̃〉,(5)

where p̃, q̃, and z̃ are the inputs and outputs of the system

d

dt
x̃(t) = Ax̃(t) +Bpp̃(t), x̃(0) = Bwu,

q̃(t) = Cqx̃(t) +Dqpp̃(t),

z̃(t) = Czx̃(t),

(6)

where all variables belong to L2(R+), and u is a random variable satisfying EuuT = I.
Proof. Consider the system (1). For any M ∈M, we have 〈p,Mq〉 = 〈∆q,Mq〉 =

〈M∗∆q, q〉 ≥ 0, since M∗∆ is positive. Therefore, for any ∆ satisfying (2), any initial
condition x0, and any M ∈ M, we have ‖z‖22 ≤ ‖z‖

2
2 + 2〈p,Mq〉. Since p ∈ L2(R+),

we furthermore have

‖z‖22 + 2〈p,Mq〉 ≤ max
p̃∈L2(R+)

‖z̃‖22 + 2〈p̃,Mq̃〉,

where the right-hand side of the inequality may be infinite. Taking expected values
(with respect to the random variable u) on both sides of these inequalities, we conclude
that

E ‖z‖22 ≤ E max
p̃∈L2(R+)

‖z̃‖22 + 2〈p̃,Mq̃〉.

This ends the proof of our lemma.
Note that the multiplier M can indeed be seen as a Lagrange multiplier. Such an

approach is not unlike the one encountered in the papers by Yakubovich [43, 15, 44]
and Megretsky [21, 22, 23], where it is named the S-procedure. In the remainder of
this paper, we will show that a suitable choice of the family of multipliers M allows
the right-hand side of (5) to be easily computed.
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4. Upper bound computation via linear families of finite-dimensional
multipliers.

4.1. Linear families of finite-dimensional operators. Following an idea
arising in [8, 33, 9], we consider finite-dimensional, noncausal operators M ∈ M,
where

M =



M = diag(M1, . . . ,Mnp),

Mi(s) = mi0 +
N∑
j=1

mij

(s+ 1)j
+

mij

(−s+ 1)j
,

Mi(jω) ≥ 0 ∀ω ∈ R,

mi,j ∈ R, 1 ≤ i ≤ np, 0 ≤ j ≤ N


.

(We refer the reader to [16] for a complete discussion of the representation of non-
causal operators via transfer functions with unstable poles.) Thus, the set M is
parameterized by the real numbers mij , i = 1, . . . , np, j = 0, . . . , N . Each transfer
function Mi(s) may alternatively be written as Mi(s) = CMi

(sI−AMi
)−1BMi

+DMi
,

where

AMi =
[
Acai 0

0 −Aaci

]
, BMi =

[
Bcai
−Baci

]
,

CMi =
[
Ccai Caci

]
, DMi = mi0,

(7)

and

Acai =



−1 1 0 · · · 0

0 −1 1
. . .

...
...

. . . . . . . . . 0
...

. . . −1 1
0 · · · · · · 0 −1


, Aaci = Acai, Acai ∈ RN×N ,

Bcai =
[

0 · · · 0 1
]T
, Baci = Bcai,

Ccai =
[
miN · · · mi1

]
, Caci = Ccai, i = 1, . . . , np.

(8)

Likewise, the transfer function M(s) may also be written as M(s) = CM (sI −
AM )−1BM +DM , with

AM =
[
Aca 0
0 −Aac

]
, BM =

[
Bca
−Bac

]
,

CM =
[
Cca Cac

]
, DM = diagi(mi0),

(9)

and

Aca = diagi(Acai), Aac = diagi(Aaci),

Bca = diagi(Bcai), Bac = diagi(Baci),

Cca = diagi(Ccai), Cac = diagi(Caci),

i = 1, . . . , np.

(10)
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To check that M is indeed an admissible set, we must check that for any M ∈ M
and any ∆ satisfying (2), M∗∆ is positive. Since M∗∆ is a diagonal operator, we just
need to check that M∗i ∆i is positive for i = 1, . . . , np. From [10, p. 174], passivity of
∆i is equivalent to the inequality

∆i(jω)∗ + ∆i(jω) ≥ 0 ∀ω ∈ R.(11)

By hypothesis, Mi(jω) is real and nonnegative. Thus, the inequality (11) implies

∆i(jω)∗Mi(jω) +Mi(jω)∆i(jω) ≥ 0.(12)

Thus, positivity of M∗i ∆i holds, since by Parseval’s theorem, we have

〈u,M∗∆iu〉

=
1

2π

∫ ∞
−∞

u(jω)∗(∆i(jω)∗Mi(jω) +Mi(jω)∆i(jω))u(jω)dω ∀u ∈ L2(R).

The inequality Mi(jω) + Mi(jω)∗ ≥ 0 for all ω ∈ R can be expressed in a conve-
nient form via a straightforward application of Theorems 3 and 4 of Willems [41],
subsequently corrected in [42].

LEMMA 4.1. The inequality

Mi(jω) +Mi(jω)∗ ≥ 0 ∀ω ∈ R

is satisfied if and only if there exists a symmetric matrix Pi satisfying AM
T
i Pi + PiAMi PiBMi − CMT

i

BM
T
i Pi − CMi −(DMi +DM

T
i )

 ≤ 0.(13)

Note that this lemma requires controllability of (AMi
, BMi

) to hold and that this
assumption is indeed satisfied.

When q̃ ∈ L2(R+), a simple state-space representation of Mq̃ can be given that
will be useful in the subsequent developments in this paper.

LEMMA 4.2. For any q̃ ∈ L2(R+), we can write Mq̃ as the output of the system

d

dt
xM = AMxM +BM q̃, xM (0) =

[
0 xTac0

]T
,

Mq̃ = CMxM +DM q̃,

(14)

where xac0 is the unique initial condition such that limt→∞ xM = 0, given by

xac0 =
∫ ∞

0
eAacτBacq̃(τ)dτ.(15)

A proof of this lemma may be found in Appendix A.

4.2. Upper bound computation. Having identified an appropriate family of
multipliers M, we can now describe a numerical implementation of the upper bound
on worst-case H2 norm given in Lemma 3.1.

We first proceed to compute E maxp̃∈L2(R+) ‖z̃‖2 + 〈p̃,Mq̃〉 for a given operator
M , where p̃, q̃, and z̃ satisfy (6) and x̃(0) = Bwu, where EuuT = I. Introduce the
augmented system
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d

dt
x̄(t) = AMH x̄(t) +BMH p̃(t), x̄(0) =

[
x̃(0)T 0 xTac0

]T
,

(Mq̃)(t) = CMH x̄(t) +DMH p̃(t),

z̃(t) = CMHzx̄(t),

(16)

where AMH , BMH , CMH , DMH , and CMHz are given by

AMH =

[
A 0

BMCq AM

]
, BMH =

[
Bp

BMDqp

]
,

CMH =
[
DMCq CM

]
, DMH = DMDqp,

CMHz =
[
Cz 0 0

]
,

and xac0 is given by (15). From Lemma 4.2, computing maxp̃∈L2(R+) ‖z̃‖22 + 2〈p̃,Mq̃〉
is equivalent to computing

max
p̃∈L2(R+)

∫ ∞
0

[
x̄(t)
p̃(t)

]T [
CTMHzCMHz CTMH

CMH DMH +DT
MH

][
x̄(t)
p̃(t)

]
dt,(17)

where p̃ and x̄ satisfy (16). If the initial condition x̄(0) was constant, the solution to
this quadratic optimal control problem could be obtained by standard methods such
as the ones described in [41]. Unfortunately, this is not the case, because the noncausal
multiplier M is involved, which makes x̄(0) depend on p̃ through the relation (15).
In fact, assuming that (AMH , BMH) is controllable (we will make this technical as-
sumption from now on), xac0 spans all of RNnp as p̃ spans all of L2(R+). Therefore,
in order to compute (17) subject to the constraints (16) and (15), we propose the
following two-step strategy:

(i) Fix xac0. Compute (17) subject to the constraints (16) and∫ ∞
0

eAacτBacq̃(τ)dτ = xac0.

(ii) Maximize the resulting solution over xac0 ∈ RNnp .
From Lemma 4.2, step (i) is equivalent to computing (17) subject to the constraints (16)
and limt→∞ x̄(t) = 0. This is a well-known problem whose solution is given by Willems
or Yakubovich, for example.

LEMMA 4.3 (see [41, Theorem 3]; [44, Theorem 3]). Assume that (AMH , BMH) is
controllable. The value of (17) subject to the constraints (16) and limt→∞ x̄(t) = 0 is
finite if and only if there exists a symmetric matrix P satisfying the matrix inequality[

ATMHP + PAMH + CTMHzCMHz PBMH + CTMH

BTMHP + CMH DMH +DT
MH

]
≤ 0.(18)

It is then given by x̄(0)TP−x̄(0), where P− is the smallest (in the sense of the partial
ordering of symmetric matrices) among all matrices P satisfying (18).

A proof of this lemma may be found in Appendix B.
In particular, we see that P− is independent from the initial condition x̄(0).

Therefore, step (ii) is simply done by maximizing[
xT0 0 xTac0

]
P−

[
xT0 0 xTac0

]T
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over xac0. Partitioning P− as

P− =


P−11 P−12 P−13

P−12
T

P−22 P−23

P−13
T

P−23
T

P−33

 ,
this problem is equivalent to maximizing

φ(xac0) = xT0 P
−
11x0 + 2xT0 P

−
13xac0 + xac

T
0 P
−
33xac0.

The function φ is quadratic in xac0. Thus, it has a maximum if and only if P−33 ≤ 0
and it has a stationary point xac0, solution to the equation P−13

T
x0 = −P−33xac0. In

this case, the maximum value of φ is given by

xT0 (P−11 − P−13P
−
33
†
P−13

T
)x0.(19)

Assume now that x0 = Bwu, where u is a random variable satisfying EuuT = I.
Then

E max
p̃∈L2(R+)

‖z̃‖22 + 2〈p̃,Mq̃〉(20)

is finite if and only if

P−33 ≤ 0,

∀u ∈ Rnw , ∃xac0 such that P−13
T
Bwu = −P−33xac0.

(21)

Then, from (19), the value of (20) is

EuTBTw(P−11 − P−13P
−
33
†
P−13

T
)Bwu

= TrBTw(P−11 − P−13P
−
33
†
P−13

T
)Bw.

(22)

It is possible to write the second condition in (21) in a more compact manner by
remarking that it is equivalent to the requirement that P−13

T
Bw lie in the range of P−33

or, equivalently, in the nullspace of I − P−33P
−
33
†

= I − P−33
†
P−33. Thus, this condition

may also be written (I − P−33
†
P−33)P−13

T
Bw = 0.

Introducing the symmetric matrix Γ ∈ Rnw×nw as a slack variable, we can also
write the value of (22) together with the condition (21) as the minimum value of Tr Γ
subject to the conditions

BTw(P−11 − P−13P
−
33
†
P−13

T
)Bw ≤ Γ,

P−33 ≤ 0,

(I − P−33
†
P−33)P−13

T
Bw = 0.

(23)

Using Schur complements (see [9, p. 28] for details), it is also the minimum value of
Tr Γ subject to the single constraint[

BTwP
−
11Bw − Γ BTwP

−
13

P−13
T
Bw P−33

]
≤ 0.
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We now remark that for a general symmetric matrix P partitioned as

P =


P11 P12 P13

PT12 P22 P23

PT13 PT23 P33

 ,
the matrix

X(P ) =

[
BTwP11Bw BTwP13

PT13Bw P33

]
varies monotonically with P , meaning that if P1 ≤ P2, then X(P1) ≤ X(P2). Thus,
given P− as defined in Lemma 4.3, we compute the value of E maxp̃∈L2(R+) ‖z̃‖22 +
2〈p̃,Mq̃〉 by minimizing Tr Γ over the variables P and Γ subject to the matrix con-
straints (18) and [

BTwPBw − Γ BTwP13

PT13Bw P33

]
≤ 0.(24)

Thus the value of minM∈ME maxp̃∈L2 ‖z̃‖
2
2 + 2〈p̃,Mq̃〉 is obtained by minimizing

Tr Γ over the variables P , Γ, and M ∈ M subject to the matrix constraints (18)
and (24). Remarking that M ∈ M if and only if the inequality (13) holds, we can
now summarize the computation of the upper bound on robust H2 performance in
the following theorem.

THEOREM 4.4. Consider system (6). The quantity

min
M∈M

E max
p̃∈L2(R+)

‖z̃‖22 + 2〈p̃,Mq̃〉,

where z̃, p̃, and q̃ satisfy (6), is computed as the minimum of Tr Γ over the variables
Γ, P , P1, . . . , Pnp , mij, i = 1, . . . , np, j = 0, . . . , N , satisfying the constraints[

ATMiPi + PiAMi PiBMi − CTMi

BTMiPi − CMi −(DMi +DT
Mi)

]
≤ 0, i = 1, . . . , np,(25)

[
ATMHP + PAMH + CTMHzCMHz PBMH + CTMH

BTMHP + CMH DMH +DT
MH

]
≤ 0,(26)

and [
BTwP11Bw − Γ BTwP13

PT13Bw P33

]
≤ 0,(27)

where

P =


P11 P12 P13

PT12 P22 P23

PT13 PT23 P33

(28)

has been partitioned conformally with the dimensions of A, Aca, and Aac (where Aca
and Aac are given by (10)).
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5. Discussion. In this section, we discuss the main result of this paper and
compare it with some previous approaches.

5.1. Computational issues. We see that Theorem 4.4 gives us effective means
to compute the upper bound on the worst-case H2 norm of the system (1): indeed, we
have to minimize the linear objective Tr Γ over the variables Γ, P , P1, . . . , Pn0 , mij ,
i = 1, . . . , np, j = 0, . . . , N, which appear linearly in the matrix constraints (25)–(27).
In particular, new interior-point convex optimization algorithms will solve this prob-
lem very efficiently [25, 9]. Note also that the size of the optimization problem grows
with the dimension N of the family of multipliers used. Note finally that the solution
of the optimization problem in Theorem 4.4 via interior-point methods requires that
all soft inequality signs of the form ≤ appearing in the constraints (25)–(27) be re-
placed by strict inequality signs. This does not present significant problems in most
practical cases. (For a detailed discussion, we refer the reader to [9, section 2.5]).

5.2. When the obtained bound is finite. Theorem 4.4 provides an upper
bound for the worst-case H2 norm of the system (1). However, it does not guarantee
that this upper bounds is finite. Thus, it is interesting to examine cases for which
this bound is guaranteed to be finite.

One such case arises when there exists M ∈ M such that −MHqp is strictly
positive, where Hqp is the operator whose transfer function is given in (3). Then
there exists a positive δ such that

∀p ∈ L2(R), 〈p,MHqpp〉 ≤ −δ〈p, p〉.

Define the impulse matrices

hzw(t) =

{
Cze

AtBw for t ≥ 0,

0 otherwise

and

hqw(t) =

{
Cqe

AtBw for t ≥ 0,

0 otherwise.

Then, for any λ > 0, any initial condition x̃(0) = Bwu and any p̃ ∈ L2(R+) in the
system (6), we have

‖z̃‖22 + 2λ〈p̃,Mq̃〉

= ‖hzwu+Hzpp̃‖22 + 2λ〈p̃,MHqpp̃+Mhqwu〉

≤ ‖hzwu‖22 + 2(‖hzwu‖2 ‖Hzp‖∞ + λ ‖hqwu‖2 ‖M‖∞) ‖p̃‖2 + (‖Hzp‖2∞ − 2λδ) ‖p̃‖22 .

Choosing λ = (‖Hzp‖2∞ + 1)/2δ, we therefore have

‖z̃‖22 + 2λ〈p̃,Mq̃〉

≤ ‖hzwu‖22 + 2(‖hzwu‖2 ‖Hzp‖∞ + λ ‖hqwu‖2 ‖M‖∞) ‖p̃‖2 − ‖p̃‖
2
2

≤ ‖hzwu‖22 + (‖hzwu‖2 ‖Hzp‖∞ + λ ‖hqwu‖2 ‖M‖∞)2

≤ ‖hzwu‖22 + 2(‖hzwu‖22 ‖Hzp‖2∞ + λ2 ‖hqwu‖22 ‖M‖
2
∞).
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(Note that the quantities ‖M‖∞ and ‖Hzp‖∞ are well defined, since the corresponding
transfer functions have no poles on the imaginary axis.) Taking expected values with
respect to the random variable u, we have

E maxp̃∈L2(R+) ‖z̃‖22 + 2λ〈p̃,Mq̃〉

≤ ‖hzw‖22 + 2(‖hzw‖22 ‖Hzp‖2∞ + λ2 ‖hqw‖22 ‖M‖
2
∞).

Noting that M ∈M implies λM ∈M, we conclude our upper bound is finite.
It is interesting to remark that the strict positivity of −MHqp is one of the

conditions used in the classical theory of stability multipliers to prove stability of the
system (1) as described in [10, p. 203]. Thus, whenever stability of the system (1) can
be proven via stability multipliers, then we can provide finite bounds on its worst-case
H2 performance. Note that numerical methods involving linear matrix inequalities
to prove robust stability of the system (1) using linear families of finite-dimensional
multipliers may be found in [3, 35].

5.3. Special cases and comparison with earlier results. In this section, we
investigate what happens when considering special cases of the system (1) and of the
multiplier M .

Consider first the case when the system (1) is perfectly known, that is, Bp =
0, Cq = 0, Dqp = 0. The optimization problem in Theorem 4.4 is solved by choosing
mij = 0 for all i and j; Pi = 0 for all i;

P =

 P11 0 0
0 0 0
0 0 0

 ,
where P11 satisfies ATP11 + P11A+ CTz Cz = 0; and Γ = BTwPBw. P11 is the observ-
ability Gramian, and the obtained bound is then exact.

Second, consider the case when N = 0 and np = 1, that is, when the multiplier
M = m10 = m is simply a nonnegative scalar. Then, applying Theorem 4.4 leads to
the computation of

min
m≥0

E max
p∈L2(R+)

‖z̃‖2 + 2m〈p̃, q̃〉(29)

via convex programming and linear matrix inequalities.
This special case in which scalar, memoryless multipliers are used has already

appeared in the literature—for example, in the papers by Stoorvogel [37, 38], although
in a different format: in these papers, the problem under consideration is to compute
the worst-case H2 norm of the system

d

dt
x(t) = Âx(t) + B̂pp̂(t) +Bww(t), x(0) = x0,

q̂(t) = Ĉqx(t) + D̂qpp̂(t),

z(t) = Czx(t),

(30)

when p̂ and q̂ ∈ L2(R+) are subject to the constraint

‖p̂‖22 ≤ ‖q̂‖
2
2 .(31)
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Stoorvogel obtains an upper bound on the worst-case H2 norm for this system by
relaxing the constraint (31) and by computing

min
m≥0

E max
p̂∈L2(R+)

‖z‖22 + 2m(‖q̂‖22 − ‖p̂‖
2
2),(32)

where z, p̂, and q̂ satisfy (30), subject to the boundary conditions x(0) = Bwu, w(t) =
0, and u is a random variable satisfying EuuT = I. This formulation can be cast in
our framework the following way: Introduce the scattering variables q = (p̂+ q̂)/2 and
p = −(p̂− q̂)/2. Then, following the same reasoning as in [10, p. 215], the system (30)
and the constraint (31) can also be written as

d

dt
x(t) = Ax(t) +Bpp(t) +Bww(t), x(0) = x0,

q(t) = Cqx(t) +Dqpp(t),

z(t) = Czx(t),

(33)

and

〈p, q〉 ≥ 0,(34)

where A, Bp, Cq, and Dqp are determined from Â, B̂p, Ĉq, and D̂qp via the relations

A = Â+ B̂p(I − D̂qp)−1Ĉq, Bp = −2B̂p(I − D̂qp)−1,

Cq = (I − D̂qp)−1Ĉq, Dqp = −(I + D̂qp)(I − D̂qp)−1.
(35)

(These relations are valid if and only if I − D̂qp is invertible.) The upper bound (32)
can then be written as

min
m≥0

E max
p∈L2(R+)

‖z‖22 + 2m〈p, q〉,(36)

where z, p, and q satisfy (33), subject to the boundary conditions x(0) = Bwu,
w(t) = 0, and u is a random variable satisfying EuuT = I. But then the quan-
tity (36) is the same as the special case (29). Note that the only difference between
Stoorvogel’s system as given by (33) and (34) and the system (1) is that the un-
certainty relationship p(t) = (∆q)(t), where ∆ is a passive, LTI operator, has been
replaced by the uncertainty relationship 〈p, q〉 ≥ 0. The latter relationship describes
a larger class of uncertainties than the former relationship, since whenever p = ∆q
for ∆ LTI and passive, then 〈p, q〉 ≥ 0. Similar comments may be made about the
results presented in [30, 9, 13, 19].

6. Example. In this section, we present an example to illustrate the developed
method, and compare it with earlier results. We consider the system (1) with

A =


−0.1 −0.1 0 0 0

0.1 0 0 0 0
0 0 −0.2 −0.2 0
0 0 0.1 0 0
0 0 0 0 −2

 , Bp =


0.1
0
0.1
0
0.001

 , Bw =


0
0
0
0
1

 ,
Cq =

[
11.98 0 0.01 0 20

]
, Dqp = −12,

Cz =
[

0 0 0 2 0
]
,
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TABLE 1
Upper bound on square of H2 performance as a function of multiplier order.

N 0 1 2 3 4 5 6
Upper bound 341.17 137.87 99.03 83.59 75.81 71.39 68.69

and the perturbation ∆ is any passive, LTI, and single-input, single-output system. It
is easy to check (via a Nyquist plot, for example) that the transfer function −H(s) =
−Cq(sI − A)−1Bp − Dqp has positive dissipation such that by application of the
passivity theorem [10], the system (1) is stable. Using the software described in [18,
24, 17], we have recorded in Table 1 the obtained bounds on the square of its worst-
case H2 norm as a function of N . (2N is the order of the noncausal multiplier which
is used.) Thus, N = 0 corresponds to the use of simple constant-gain, memoryless
multipliers. As can be seen, the use of dynamic, noncausal multipliers improves the
estimate on the square of the worst-case H2 norm by a factor of 5. Note also that
the best upper bound converges to a steady state value quite fast with the size of the
multiplier. This result is indeed obtained at the expense of increased computations.

7. Conclusion and extensions. In this paper, we have considered the problem
of determining an upper bound for the worst-case H2 norm of linear systems subject
to LTI uncertainties, by extending the theory of stability multipliers to handle H2
performance.

We have shown this bound appears as the solution of a convex optimization
problem involving linear matrix inequalities. Thus there exist algorithms that will
compute it fast and accurately.

We have shown this bound is always sharper than the ones devised earlier for
larger classes of uncertainties. One example shows that this improvement can be
significant.

This work can be extended in many directions. For example, the theory of stability
multipliers has proved to be effective not only on LTI perturbations but also on
other classes of uncertainties, including memoryless, sector-bounded, and monotonic
nonlinearities and constant, unknown linear gains (parametric uncertainties). Thus,
this paper could be easily extended to these cases (with the restriction that H2 norms
of nonlinear systems require careful definition). The set of allowable multipliers M
would then be different.

Appendix A: Proof of Lemma 4.2. Using inverse Fourier transforms, it is
easy to show that for any q̃ ∈ L2(R), we have

(Mq̃)(t) =
∫ t

−∞
Ccae

Aca(t−τ)Bcaq̃(τ)dτ +DM q̃(t) +
∫ ∞
t

Cace
Aac(τ−t)Bacq̃(τ)dτ.(37)

Thus, (Mq̃)(t) is the sum of three parts: the first integral accounts for the causal
part ofH, the midterm represents a possible feedthrough term, and the second integral
accounts for the anticausal part of M . (This is the reason for using the subscripts
“ca” and “ac,” which stand for “causal” and “anticausal,” respectively.)

When q̃ ∈ L2(R+), the first integral in (37) is easily computed as rca(t), the
output of the system

d

dt
xca(t) = Acaxca(t) +Bcaq̃(t), xca(0) = 0,

rca(t) = Ccaxca(t).
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The second integral can be transformed the following way:∫ ∞
t

Cace
Aac(τ−t)Bacq̃(τ)dτ

=
∫ ∞

0
Cace

Aac(τ−t)Bacq̃(τ)dτ −
∫ t

0
Cace

Aac(τ−t)Bacq̃(τ)dτ

= Cac

[
e−Aact

∫ ∞
0

eAacτBacq̃(τ)dτ −
∫ t

0
e−Aac(t−τ)Bacq̃(τ)dτ

]
.

Therefore, defining

xac0 =
∫ ∞

0
eAacτBacq̃(τ)dτ

(xac0 is always defined and finite, since q̃ ∈ L2(R+) and Aac is stable), the second
integral term in (37) can be written as rac(t), the output of the system

d

dt
xac(t) = −Aacxac(t)−Bacq̃(t), xac(0) = xac0,

rac(t) = Cacxac(t).

Thus we obtain the expression (14) for (Mq̃)(t). The fact that limt→∞ xca(t) = 0 is
a direct consequence of the fact that Aca is stable; the fact that limt→∞ xac(t) = 0
follows from the identity

xac(t) =
∫ ∞
t

eAac(τ−t)Bacq̃(τ)dτ.

Conversely, consider the system (14), and let xac0 be such that limt→∞ xac(t) = 0.
Then

xac(t) = e−Aactxac0 −
∫ t

0
e−Aac(t−τ)q̃(τ)dτ.

If limt→∞ xac(t) = 0, then limt→∞ eAactxac(t) = 0. Therefore, from the above equal-
ity, we must have

lim
t→∞

∫ t

0
eAacτ q̃(τ)dτ = xac0,

which proves that xac0 is indeed unique.

Appendix B: Proof of Lemma 4.3. From the literature on linear quadratic
control, it is well known that the value of (17) subject to the constraint limt→∞ x̄ = 0
is a quadratic function of x̄(0) whenever it is finite. See for example [1, p. 21].
Denote this quadratic form as x̄(0)TP−x̄(0). We first prove that P− must satisfy the
inequality (18). This is done by first noting that for any input p̃ and corresponding
trajectory x̄, the dissipation inequality

d

dt
(x̄(t)TP−x̄(t)) ≤ −w(x̄(t), p̃(t))(38)

must be satisfied, where

w(x̄(t), p̃(t)) =
[
x̄(t)
p̃(t)

]T [
CTMHzCMHz CTMH

CMH DMH +DT
MH

] [
x̄(t)
p̃(t)

]
.
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Indeed, for any initial condition x̄(t) and any input p̃1 defined over the time interval
[t t+ dt], standard dynamic programming arguments yield the inequality∫ t+dt

t

w(x̄, p̃1)dt+ max
p̃∈L2

∫ ∞
t+dt

w(x̄, p̃)dt ≤ max
p̃∈L2

∫ ∞
t

w(x̄, p̃)dt.

Letting dt tend toward 0 yields the equivalent differential form

w(x̄(t), p̃(t)) ≤ − d

dt
max
p̃∈L2

∫ ∞
t

w(x̄, p̃)dt,

which yields (38). Noting that this quadratic inequality must hold for any x̄ and p̃
and that

d

dt
x̄(t)TP−x̄(t) = 2x̄(t)TP−(AMH x̄(t) +BMH p̃(t))

yields the equivalent inequality (18).
Conversely, consider any feasible solution P to the matrix inequality (18). Then,

the inequality (38) is automatically satisfied. Integrating this inequality from zero to
infinity with any p̃ ∈ L2 such that limt→∞ x̄(t) = 0 implies

x̄(0)TPx̄(0) ≥
∫ ∞

0
w(x̄, p̃)dt.

Thus, whenever P− exists, we have

P− satisfies (18) and
x̄(0)TP−x̄(0) ≤ x̄(0)TPx̄(0) ∀(x̄(0), P ),
where P satisfies (18).

Thus, P− must be the smallest feasible solution to the inequality (18).
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Abstract. Based on Fischer’s function, a new nonsmooth equations approach is presented
for solving nonlinear complementarity problems. Under some suitable assumptions, a local and
Q-quadratic convergence result is established for the generalized Newton method applied to the
system of nonsmooth equations, which is a reformulation of nonlinear complementarity problems.
To globalize the generalized Newton method, a hybrid method combining the generalized Newton
method with the steepest descent method is proposed. Global and Q-quadratic convergence is
established for this hybrid method. Some numerical results are also reported.

Key words. nonlinear complementarity problems, nonsmooth equations, semismoothness, uni-
form P-functions
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1. Introduction. Consider the following nonlinear complementarity problem
(denoted the NCP):

find x ∈ Rn such that x ≥ 0, F (x) ≥ 0, and xTF (x) = 0,(1)

where F : Rn → Rn is continuously differentiable and the superscript T denotes the
transpose operator.

The NCP has been used as a general framework for quadratic programming,
linear complementarity problems, mathematical programming and some equilibrium
problems. Designing algorithms for solving the NCP became extremely popular in the
last decade, although it has a relatively long history. Many different approaches such
as fixed point, homotopy, projection, Newton, smooth or nonsmooth optimization,
smooth or nonsmooth equations, and many other methods have appeared. For an
extensive survey of the NCP, we refer the reader to [34] and references therein; see
also [13].

Josephy [17] presented a generalized Newton method for solving variational in-
equalities which contain the NCP as a special case. The Josephy–Newton method
was shown to be convergent locally as well as Q-quadratically. However, this method
does not converge globally. Therefore, the design of good global methods for solving
the NCP becomes a challenging endeavor.

Based on the above motivation, Pang [33] reformulated the NCP as a system of
nonsmooth equations. This makes it possible to extend the classical damped Newton
method for solving smooth equations to the nonsmooth case. Harker and Xiao [14] also
converted the NCP into a system of nonsmooth equations in a different way. Pang and
Gabriel [35] further combined the nonsmooth equations reformulation with sequential
quadratic programming, resulting in a so-called NE/SQP method. They established
that the NE/SQP method converges both globally and locally Q-quadratically. The
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idea of reformulating the NCP as a system of equations is not new. Actually, Man-
gasarian [25] reformulated the NCP as a system of smooth equations (see also [41]).
But the singularity of the system confines the application of Mangasarian’s method.
Kanzow [19] further established many ways for reformulating the NCP. Chen and
Mangasarian [4] proposed smoothing methods where a class of smooth functions ap-
proximate certain nonsmooth functions arising in the reformulations of the NCP. The
further study of those methods has been done by Chen and Harker [3].

Another approach is to reformulate the NCP as a smooth unconstrained mini-
mization problem. Mangasarian and Solodov [26] introduced a smooth function in
such a way that any global minimizer of the unconstrained minimization problem
with this function as the objective function is a solution of the NCP. Yamashita
and Fukushima [43] proved that any stationary point of the unconstrained minimiza-
tion problem proposed by Mangasarian and Solodov is a solution of the NCP if F
is continuously differentiable and strongly monotone in Rn. This shows that any
method for solving unconstrained minimization problems is applicable for the NCP
in this special case. Kanzow [18] gave some more approaches to characterize the NCP
as unconstrained minimization problems. Geiger and Kanzow [12] proved that one
of these approaches has a good property as Yamashita and Fukushima observed for
the Mangasarian–Solodov function, but with a weaker assumption. Reformulating the
NCP as a smooth constrained minimization problem is also a direction to follow. This
approach is due to Fukushima’s [11] and Auchmuty’s [1] remarkable work; see [11, 1]
for more details. Recently, Moré [30] formulated the NCP as a bound-constrained non-
linear least squares problem which may be classified as part of the smooth constrained
minimization reformulation approach. For nonsmooth constrained minimization re-
formulations of the NCP, we refer the reader to [27].

Other methods for solving the NCP include homotopy or continuation methods.
The idea is also based on the equivalence between the NCP and a system of equations;
see [2, 20, 21, 22, 42].

The discussion above shows that the approaches of reformulating the NCP into
smooth or nonsmooth equations, smooth or nonsmooth minimization problems are
very promising. It generates a new future for the designing of computational methods
for solving the NCP.

In this paper, we shall propose a new nonsmooth equations–based method for the
NCP. This work is more related to nonsmooth equations and smooth unconstrained
minimization based methods. We first transform the NCP into a system of non-
smooth equations in the next section by employing a function introduced by Fischer
[8]. In section 3, we establish locally Q-quadratic convergence of the generalized
Newton method for solving the NCP under some suitable conditions. Unlike other
nonsmooth equations–based methods, we solve a system of linear equations instead
of a mixed complementarity problem or a quadratic programming problem for each
inner iteration. To globalize the generalized Newton method, we propose in section 4
a hybrid method by combining the generalized Newton method with a minimization
technique. This hybrid method enjoys not only global convergence but also locally Q-
quadratic convergence under some assumptions. In section 5, some numerical results
are reported for both the generalized Newton and the hybrid methods.

2. The nonsmooth equations reformulation. Let φ : R2 → R be defined by

φ(a, b) =
√
a2 + b2 − a− b.(2)
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Fischer [8] first introduced this function to reformulate the Karush–Kuhn–Tucker
(KKT) optimality conditions of nonlinear programming problems as systems of non-
smooth equations. Kanzow [18, 19] used this same function to reformulate linear
and nonlinear complementarity problems as smooth nonlinear programs or systems of
smooth equations. Jiang [16] studied sensitivity properties of nonsmooth variational
inequalities by employing nonsmooth analysis to the function φ.

One basic property of this function is that

φ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0.(3)

From the above characterization, (1) can be recast as a system of nonsmooth equations
defined by

H(x) =

 H1(x)
...

Hn(x)

 =

 φ(x1, F1(x))
...

φ(xn, Fn(x))

 = 0(4)

in the sense that x solves (1) if and only if x solves (4).
Note that H is locally Lipschitz on Rn and Fréchet differentiable only on the set

Ω, where

Ω = {x ∈ Rn|x2
i + (Fi(x))2 > 0, i = 1, ..., n}.

Let G : Rn → Rn be locally Lipschitz on Rn. Then Clarke’s generalized Jacobian
of G at x, denoted by ∂G(x), can be defined as the convex hull of the set

{ lim
xk→x

5G(xk) | G is differentiable at xk ∈ Rn}.

As an analogue to Fischer’s analysis [8], we study Clarke’s generalized Jacobian of H
at all points on Rn. For x ∈ Ω, we have

5H(x) = diag(γi(x))5 F (x) + diag(µi(x)),

where diag(αi) denotes a diagonal matrix with diagonal elements α1, α2, ..., αn, and

γi(x) = Fi(x)((Fi(x))2 + x2
i )
−1/2 − 1,

µi(x) = xi((Fi(x))2 + x2
i )
−1/2 − 1.

Clearly, for i = 1, ..., n,

(γi(x) + 1)2 + (µi(x) + 1)2 = 1.(5)

It also follows that

µi(x) = −1, γi(x) = 0⇐⇒ Fi(x) > 0, xi = 0,

µi(x) = 0, γi(x) = −1⇐⇒ Fi(x) = 0, xi > 0.

For x /∈ Ω, by the definition of Clarke’s generalized Jacobian and some simple calcu-
lations, any V ∈ ∂H(x) can be represented as follows

V = diag(γi)5 F (x) + diag(µi),(6)
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where

(γi + 1)2 + (µi + 1)2 ≤ 1, i = 1, 2, ..., n.(7)

Remark. The reverse of the above assertion is not true in general. However,
one can find a matrix V ∈ ∂H(x) for any x ∈ Rn. For any given x ∈ Rn, let
I = {i|xi = Fi(x) = 0} and u be a vector of Rn with ui 6= 0 for i ∈ I. Define

γi =

{
Fi(x)((Fi(x))2 + x2

i )
−1/2 − 1, i /∈ I,

∇Fi(x)Tu((∇Fi(x)Tu)2 + u2
i )
−1/2 − 1, i ∈ I,

and

µi =

{
xi((Fi(x))2 + x2

i )
−1/2 − 1, i /∈ I,

ui((∇Fi(x)Tu)2 + u2
i )
−1/2 − 1, i ∈ I.

It is not hard to prove that diag(γi)∇F (x) + diag(µi) is a Clarke generalized Jacobian
of H at x. This technique is also used by De Luca, Facchinei, and Kanzow [5].

3. The algorithm and its local convergence. Since Robinson’s and Pang’s
pioneering works [40], [32], numerical methods for solving nonsmooth equations have
been developed quite extensively. In particular, the generalized Newton method was
proved to be convergent locally and superlinearly under the key assumption that the
considered function is semismooth at solution points; see Qi and Sun [38] and Qi [37]
for more details. Kojima and Shindo [23], Kummer [24], Pang [33], Pang and Qi [36],
Ralph [39], and many more studied nonsmooth equations from different perspectives.
Our goal here is to establish a local and superlinear convergence result when the
generalized Newton method is applied to (4).

We now present our generalized Newton method for solving the system (4).
ALGORITHM A.
Step 1. Choose initial point x0 ∈ Rn and Let k = 0.
Step 2. Choose V k ∈ ∂H(xk) and solve the following Newton equations for the

direction dk ∈ Rn:

H(xk) + V kdk = 0.(8)

Step 3. Set xk+1 = xk + dk. If xk+1 solves H(x) = 0, stop. Otherwise, let
k := k + 1 and go to Step 2.

Note that dk is not unique in (8) if V k is not nonsingular. Moreover, it is not
known if (8) is solvable or not. We shall provide conditions to ensure the solvability
of (8).

Recall that a function G : Rn → Rn is said to be monotone if

(y − x)T (G(y)−G(x)) ≥ 0 for all x, y ∈ Rn.

Furthermore, G is called a uniform P-function [29] if there is α > 0 such that

max
1≤i≤n

(yi − xi)(Gi(y)−Gi(x)) ≥ α||y − x||2 for all x, y ∈ Rn.

Both monotone functions and uniform P-functions are very broad and have very fine
properties. It is known [31] that a smooth function is monotone on Rn if and only
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if its Jacobian function is positive semidefinite on Rn. The following lemma shows a
similar relation to the above characterization for uniform P-functions.

LEMMA 3.1. Suppose that G : Rn → Rn is a smooth uniform P-function with
modulus α > 0. Then for any x ∈ Rn and 0 6= d ∈ Rn

max
1≤i≤n

di 5Gi(x)T d ≥ α||d||2.

Proof. Let y = x + td for t > 0. Then the result follows from the mean value
theorem.

PROPOSITION 3.2. Suppose F : Rn → Rn is continuously differentiable. If F is
a uniform P-function, then V is nonsingular for any V ∈ ∂H(x) and x ∈ Rn.

Proof. Let V ∈ ∂H(x) for x ∈ Rn. Let d solve the equations V d = 0. By (6),
there exist constants γ1, . . . , γn, µ1, . . . , µn satisfying (7) such that

diag(γi)5 F (x)d+ diag(µi)d = 0,

namely, 
µ1d1 + γ1 5 F1(x)d = 0,

...
µndn + γn 5 Fn(x)d = 0.

Multiplying the ith equation by di, we have
µ1d

2
1 + d1γ1 5 F1(x)d = 0,

...
µnd

2
n + dnγn 5 Fn(x)d = 0.

By (7), if γi = 0 then di = 0. Consequently,

max
1≤i≤n

di 5 Fi(x)d ≤ max
1≤i≤n,γi 6=0

{0,−µi/γid2
i } ≤ 0.

But the uniform P-function property of F implies that d = 0. Thus the nonsingularity
of V follows.

By a similar argument with some minor modifications, one can prove the following
result.

PROPOSITION 3.3. Suppose F : Rn → Rn is continuously differentiable. If
5F (x) is positive definite for all x ∈ Rn, then V is nonsingular for any V ∈ ∂H(x)
and x ∈ Rn.

Remarks. (1) The positive definiteness assumption of Proposition 3.3 cannot
be weakened to the condition that F is strictly monotone on Rn. This is shown
by the following example. Let F (x) = x3. Then F is strictly monotone on R and
H(x) =

√
x2 + x6−x−x3. An easy calculation shows that ∂H(0) = [−2, 0]. Therefore,

0 ∈ ∂H(0) is singular. (2) Clearly, for the nonsingularity of the generalized Jacobian
of H at a given point, say x in Propositions 3.2 and 3.3, it is sufficient to impose
the uniform P-function property or the positive definiteness of the Jacobian of the
function F only in an open neighborhood of x.

It is known [37] that the semismooth condition imposed on the function at the
solution point plays a key role in establishing the superlinear convergence of the
generalized Newton method for nonsmooth equations. We now verify this property
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for H. Denote y →d x if y → x, y 6= x and (y − x)/||y − x|| → d/||d|| for some
d ∈ Rn \ {0}. A function G : Rn → Rn is said to be semismooth at x ∈ Rn if G is
Lipschitz continuous in an open neighborhood of x and the following limit exists:

lim
V ∈∂G(y),y→dx

V d.

Furthermore, the function G is said to be semismooth in a given domain if it is
semismooth at each point of the domain. A semismooth function has many fine
properties. We introduce some of them in the following lemma taken from [37, 38].

LEMMA 3.4. If G is semismooth at x, then it is directionally differentiable at x;
i.e., G′(x, d) exists for any d ∈ Rn and

lim
‖d‖→0

G(x+ d)−G(x)−G′(x, d)
‖ d ‖ = 0,(9)

lim
V ∈∂G(x+d),‖d‖→0

V d−G′(x, d)
‖ d ‖ = 0.(10)

Qi and Sun [38] also introduced 1-order semismoothness. A function G is called
1-order semismooth at x if G is semismooth at x and for any d ∈ Rn:

G(x+ d)−G(x)−G′(x, d) = O(‖ d ‖2).(11)

We are now ready to establish the semismooth property for H.
PROPOSITION 3.5. Suppose that F : Rn → Rn is twice continuously differentiable.

Then H defined by (4) is 1-order semismooth on Rn.
Proof. Clearly, we only need to prove that H is 1-order semismooth at points

on which H is not differentiable, i.e., x /∈ Ω. Note that H is 1-order semismooth
at a point x if and only if Hi is 1-order semismooth at x for all i. Without loss of
generality, we prove only H1 is 1-order semismooth at the point x such that x1 = 0
and F1(x) = 0. A quick calculation yields for any d ∈ Rn

H ′1(x, d) =
√
d2

1 + (5F1(x)T d)2 − d1 −5F1(x)T d.

Similarly, if d2
1 + (5F1(x)T d)2 > 0, then

H1(x+ d)−H1(x)−H ′1(x, d)

=
√
d2

1 + (5F1(x)T d+O(||d||2))2 −
√
d2

1 + (5F1(x)T d)2 +O(||d||2)

=
O(||d||2)(25 F1(x)T d+O(||d||2))√

d2
1 + (5F1(x)T d)2 +O(||d||2) +

√
d2

1 + (5F1(x)T d)2
+O(||d||2)

= O(||d||2),

which shows the 1-order semismoothness of H1 at x. If d2
1 + (5F1(x)T d)2 = 0, then

d1 = 0 = 5F1(x)T d. Hence the above estimate still holds:

H1(x+ d)−H1(x)−H ′1(x, d) = O(||d||2).

The desired result follows.
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THEOREM 3.6. Let F : Rn → Rn be twice continuously differentiable. Suppose
that F is a uniform P-function on Rn. Suppose that x∗ is a solution of (1). Then the
sequence {xk} generated by Algorithm A is Q-quadratically convergent to x∗ if x0 is
sufficiently to x∗.

Proof. The result follows from the application of Theorem 3.2 of [38].
Remark. The above convergence result still holds if we only assume that any

V ∈ ∂H(x∗) is nonsingular where x∗ is the solution point. The latter is guaranteed
by a condition presented in the remark after Proposition 3.3.

4. A globally convergent algorithm. It is well known that the Newton method
for solving a system of smooth equations does not necessarily converge if the initial
point is chosen arbitrarily. Traditionally, the Gauss–Newton method is a remedy to
achieve both global and local superlinear convergence; namely, a globalization conver-
gence strategy is applied to the merit function defined by the 2-norm operator. Un-
fortunately, this method cannot be applied directly to the nonsmooth case, although
some special Gauss–Newton methods do work; see [33, 14]. These methods solve ei-
ther a mixed linear complementarity problem or a quadratic programming problem
at each inner iteration. Therefore, it is highly desirable to solve some simpler prob-
lems rather than mixed linear complementarity problems or quadratic programming
problems in some cases. This is our goal in this section.

Define a merit function θ : Rn → R by

θ(x) =
1
2

n∑
i=1

φ(xi, Fi(x))2 =
1
2
||H(x)||2.

Geiger and Kanzow [12] used this function to reformulate nonlinear complementarity
problems. They showed that solving (1) is equivalent to finding stationary points of
the unconstrained optimization problem

minx∈Rn θ(x),(12)

whenever the continuously differentiable function F is monotone and (1) is solvable.
Note that θ is continuously differentiable on the whole space Rn. This suggests

that it is possible to invoke any global convergence algorithm for solving (12). Clearly,
the Newton method combined with a line search or a trust region strategy is one op-
tion. However, the singularity of the second-order derivative of θ at the solution point
makes it doubtful to obtain superlinear convergence. Moreover, much computational
work is needed to get the second-order derivative of θ. For this reason, using the
Newton method combined with a line search or a trust region strategy is not recom-
mended for solving (12). It is known that the steepest descent method can guarantee
the global convergence of (12). But one of the disadvantages of this method is that it
usually performs poorly, particularly when the solution point is close.

Based on the above discussion, we propose a hybrid method which combines the
steepest descent method for solving (12) and the generalized Newton method for
solving (4). The idea is simple. We first check if the Newton step gives a sufficient
decrease to θ. If it does, another point is obtained. Otherwise, the steepest descent
method is applied to the minimization (12). It also provides a new iteration point.
Moreover, when the iterated point is close enough to the solution point of (1), the
algorithm never requires any steepest descent step. Then the superlinear convergence
result follows directly, provided that the generalized Newton method possesses this
property locally.
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Define a function Φ : R2 → R,

Φ(a, b) =
1
2

(φ(a, b))2.

Geiger and Kanzow [12] have established the following lemma.
LEMMA 4.1.
(1) Φ is continuously differentiable for all a, b ∈ R, in particular 5Φ(0, 0) =

(0, 0)T .
(2) 5aΦ(a, b)5b Φ(a, b) ≥ 0 for a, b ∈ R.
(3) 5aΦ(a, b)5b Φ(a, b) = 0 implies Φ(a, b) = 0.
Remark. The inverse of (3) in Lemma 4.1 is also true by a simple argument.
We are now ready to present the hybrid algorithm.
ALGORITHM B.
Step 1. Choose initial point x0 ∈ Rn, parameters σ ∈ (0, 1/2), ρ ∈ (0, 1), and

β ∈ (0, 1). Let k = 0.
Step 2. Choose V k ∈ ∂H(xk) and solve the following Newton equations for the

direction dk ∈ Rn:

H(xk) + V kdk = 0.(13)

Step 3. If (13) is solvable and θ(xk + dk) ≤ βθ(xk), go to Step 5. Otherwise, go
to Step 4.

Step 4. Let d̄k = −5 θ(xk). Find a minimum nonnegative integer, say m, such
that

θ(xk + ρmd̄k) ≤ θ(xk) + σρm 5 θ(xk)T d̄k.(14)

Let dk = ρmd̄k, and go to Step 5.
Step 5. Set xk+1 = xk + dk. If xk+1 solves H(x) = 0, stop. Otherwise, let

k := k + 1 and go to Step 2.
To prove the existence of a cluster point of the sequence {xk} generated by Algo-

rithm B, we need the following result. It is a generalization of Theorem 3.2 of Geiger
and Kanzow [12]. The technique of the proof is also due to [12].

PROPOSITION 4.2. Suppose that F : Rn → Rn is a continuous and uniform
P-function. Let L(x0) = {x ∈ Rn|θ(x) ≤ θ(x0)}, where x0 ∈ Rn. Then L(x0) is
compact.

Proof. Clearly, L(x0) is closed. Suppose that L(x0) is not compact for a given
x0 ∈ Rn; namely, there exists a sequence of {xk} ⊆ L(x0) such that limk→∞ ||xk|| =
∞. Let

I = {1 ≤ i ≤ n |{xki } is unbounded}.

Clearly, I 6= ∅ due to our assumption. Define a new sequence {yk} associated with
{xk} by

yki =
{

0 if i ∈ I,
xki otherwise.
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Since F is a uniform P-function, there exists α > 0 such that

α
∑
i∈I(x

k
i )2 = α||xk − yk||2

≤ max1≤i≤n(xki − yki )(Fi(xk)− Fi(yk))

= max {0,maxi∈I xki (Fi(xk)− Fi(yk))}

≤
√∑

i∈I(x
k
i )2 maxi∈I |Fi(xk)− Fi(yk)|

≤
√∑

i∈I(x
k
i )2
∑
i∈I |Fi(xk)− Fi(yk)|.

Consequently, by the definition of I there exists a subset K such that for k ∈ K

α

√∑
i∈I

(xki )2 ≤
∑
i∈I
|Fi(xk)− Fi(yk)|.

From the continuity of F , the boundedness of {yk}, the definition of I, and the
fact that I contains only a finite number of elements, the above inequality implies
that there exists i0 ∈ I such that {|Fi0(xk)|, k ∈ K} is unbounded. Since i0 ∈ I,
it follows from the definition of I that {xki0} is also unbounded. By Lemma 3.1 of
[12], {φ(xki0 , Fi0(xk)), k ∈ K} is unbounded. Thus, {θ(xk)} is unbounded, which is a
contradiction.

It is well known that some local minimum points of an unconstrained optimiza-
tion problem are not global minimum points in general. This shows that some cluster
points generated by the above algorithm are not solutions of (12) in general. Fortu-
nately, under some assumptions, the local minimum points of (12) coincide with its
global minimum points. We present this in the following proposition.

PROPOSITION 4.3. Suppose that F : Rn → Rn is continuously differentiable, that
F is a uniform P-function. Then x∗ is a global minimum point of (12) if and only if
x∗ is a stationary point of (12), i.e., 5θ(x∗) = 0; moreover, such a point x∗ must be
a solution of (1).

Proof. The “only if” part is obvious. Now we suppose x∗ is a stationary point of
(12), namely, 5θ(x∗) = 0. Some simple calculations show that

5θ(x) =

 5aΦ(x1, F1(x))
...

5aΦ(xn, Fn(x))

+5F (x)T

 5bΦ(x1, F1(x))
...

5bΦ(xn, Fn(x))

 .

Denote Φa = (5aΦ(x∗1, F1(x∗)), . . . ,5aΦ(x∗n, Fn(x∗)))T , and Φb = (5bΦ(x∗1, F1(x∗)),
. . . ,5bΦ(x∗n, Fn(x∗)))T . Hence,

0 = 5θ(x∗) =

 5aΦ(x∗1, F1(x∗)) + (5F (x∗)TΦb)1
...

5aΦ(x∗n, Fn(x∗)) + (5F (x∗)TΦb)n

 ,

where (∇F (x∗)TΦb)i denotes the ith element of the column vector ∇F (x∗)TΦb. Mul-
tiplying the ith equation above by 5bΦ(x∗i , Fi(x

∗)), we have for i = 1, 2, . . . , n,

5bΦ(x∗i , Fi(x
∗))5a Φ(x∗i , Fi(x

∗)) +5bΦ(x∗i , Fi(x
∗))(5F (x∗)TΦb)i = 0.
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This implies

max
1≤i≤n

5bΦ(x∗i , Fi(x
∗))(5F (x∗)TΦb)i = − min

1≤i≤n
5bΦ(x∗i , Fi(x

∗))5aΦ(x∗i , Fi(x
∗)) ≤ 0,

where the inequality is due to (2) of Lemma 4.1. By the uniform P-function property
of F , both ∇F (x∗) and ∇F (x∗)T are P-matrices. It follows from the definition of
P-matrix that Φb = 0, which shows that x∗ is a global solution of (12) by (3) of
Lemma 4.1. This completes the proof.

It is clear that if Algorithm B stops after a finite number of steps, then a solution
to (1) is obtained. In what follows, we assume that Algorithm B generates a sequence
{xk}. We now establish global convergence for Algorithm B.

THEOREM 4.4. Suppose that F : Rn → Rn is twice continuously differentiable,
and {xk} is a sequence generated by Algorithm B. Then

(1) {xk} converges to the unique solution x∗ of (1) if F is a uniform P-function
on Rn. Furthermore, {xk} converges quadratically to x∗.

(2) x∗ is a solution of (1) if F is monotone on Rn and if x∗ is an accumulation
point of {xk}. Moreover, {xk} converges quadratically to x∗ if 5F (x∗) is
positive definite.

Proof. (1) Suppose that there are an infinite number of Newton steps, say k ∈ K
in Algorithm B. Then limk→∞,k∈K ||H(xk)|| = 0. Since F is a uniform P-function
on Rn, Proposition 4.2 shows that {xk, k ∈ K} is bounded. Assume that x∗∗ is an
accumulation point of {xk, k ∈ K}. Then x∗∗ is a solution to (1). But x∗∗ should be
the unique solution x∗ of (1) by the uniform P-function property of F .

Suppose that there are only a finite number of Newton steps taken in Algorithm
B. Then Algorithm B eventually reduces to the steepest descent algorithm for solving
the unconstrained optimization problem (12). Proposition 4.2 shows that {xk} is
bounded. Assuming that x∗∗ is an accumulation point of {xk}, we have that x∗∗ is
a stationary point of (12) by the optimization literature of [10]. By Proposition 4.3,
x∗∗ is a solution of (1). Clearly, it follows that x∗ = x∗∗ by the uniform P-function
property of F .

Thus we have proved that xk converges to x∗. Next we show that Step 3 of
Algorithm B is always successful eventually. Suppose xk is sufficiently close to the
solution point x∗. Then the generalized Newton method gives

||H(xk)|| = ||V kdk||,(15)

||xk + dk − x∗|| = o(||xk − x∗||) = o(||dk||).(16)

By the semismoothness of H, (15), and (16), we have

||H(xk + dk)|| = ||H(x∗) + V̄ (xk + dk − x∗) + o(||xk + dk − x∗||)||
= ||V̄ (xk + dk − x∗) + o(||xk + dk − x∗||)||,

where V̄ ∈ ∂H(xk + dk). By Proposition 3.2, any generalized Jacobian of H at x∗ is
nonsingular. Moreover, there exists a constant c > 0 such that for any V ∈ ∂H(x),
d ∈ Rn, and x sufficiently close to x∗ we have

||V d||/||d|| ≥ c.

Consequently,

||H(xk + dk)||
||H(xk)|| =

||V̄ (xk + dk − x∗) + o(||xk + dk − x∗||)||
||V kdk|| = o(1).
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TABLE 1
Number of iterations for Example 1.

n 8 16 32 64 128 256
Algorithm A 4 4 4 4 4 4
Algorithm B 4 4 4 4 4 4
Steepest descent method 37 31 30 32 32 31

The above argument means that Algorithm B always implements the Newton step
after a finite number of iterations. The remaining results follow from Theorem 3.6.

(2) The proof is analogous to that of (1). We omit the detail.
Remarks. (1) Algorithm B does not use the second-order derivative of the merit

function but still achieves the second-order convergence results. (2) From a numerical
point of view, the steepest descent method is not a good option. One may propose
other algorithms for solving the NCP by combining the generalized Newton method
and other global methods of unconstrained optimization.

5. Numerical results. In this section, we present some numerical experiments
for three algorithms, i.e., the generalized Newton method (Algorithm A), the hybrid
algorithm (Algorithm B), and the steepest descent method to θ(x). For Algorithm
A we used θ(x) < ε as the stopping criteria. Algorithm B stops if either θ(x) < ε or
|| 5 θ(x)|| < ε1. When F is not a uniform P-function, the stationary point of θ may
not be a solution of the NCP. In this case, Algorithm B may converge to a stationary
point of θ but which is not a solution of the NCP. Thus, the second stopping rule
|| 5 θ(x)|| < ε1 can be necessary for some cases.

Throughout the computational experiments, the parameters used in the algo-
rithms were set as ε = 10−6, ε1 = 10−5, σ = 10−4, ρ = 0.5, β = 0.95. All computa-
tional results were undertaken on a DEC 5000 workstation by MATLAB.

Example 1. This example was used by Geiger and Kanzow [12]. Let F (x) =
Mx+ q, where

M =



4 −1 0 · · · 0
−1 4 −1 · · · 0
0 −1 4 · · · 0
...

...
...

...
...

0 0 0 · · · −1
0 0 0 · · · 4


, q = (−1, . . . ,−1)T .

Since F is strongly monotone on Rn, the corresponding NCP has a unique solution.
Table 1 lists the results for this example with initial point x = (0, . . . , 0) for different
dimensions n.

Example 2. This example is also taken from Geiger and Kanzow [12]. Define
F (x) = Mx+ q, where

M = diag(1/n, 2/n, . . . , 1), q = (−1, . . . ,−1)T .

Again F is strongly monotone on Rn. The corresponding strong monotonicity mod-
ulus depends on the dimension n and approaches zero when n tends to infinity.
Table 2 gives the results for this example with starting point x = (0, . . . , 0) for different
dimensions n.

From Tables 1 and 2, one observes that both the generalized Newton and the
hybrid methods work quite well for Examples 1 and 2, respectively. However, the



A NONSMOOTH EQUATIONS APPROACH FOR NCP 189

TABLE 2
Number of iterations for Example 2.

n 8 16 32 64 128 256
Algorithm A 4 4 4 4 4 4
Algorithm B 4 4 4 4 4 4
Steepest descent method 384 1586 6465 > 104 > 104 > 104

TABLE 3
Number of iterations for Example 3.

Starting point Algorithm A Algorithm B
(0, 0, 0, 0) 13∗ 20∗

(1, 1, 1, 1) 8∗ 8
(100, 100, 100, 100) 11∗ 7∗

(105, 105, 105, 105) 11∗ 7∗

(−105, −105, −105, −105) 11∗ 7∗

(1234, 2345, 3456, 4567) 17∗ 53∗

steepest descent method demonstrates very poor performance, especially for Example
2, in which the problem becomes ill conditioned as n increases. For this reason, we
choose not to test the steepest descent method for the remaining examples.

Example 3. This example was used by Pang and Gabriel [35], Mangasarian and
Solodov [26], and Kanzow [19] with four variables. Let

F1(x) = 3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 − 6,
F2(x) = 2x2

1 + x1 + x2
2 + 10x3 + 2x4 − 2,

F3(x) = 3x2
1 + x1x2 + 2x2

2 + 2x3 + 9x4 − 9,
F4(x) = x2

1 + 3x2
2 + 2x3 + 3x4 − 3.

This example has one degenerate solution (
√

6
2 , 0, 0,

1
2 ) and one nondegenerate solution

(1, 0, 3, 0). This result is summarized in Table 3 using different starting points. The
asterisk (*) denotes that the limit point generated by the algorithms is the degenerate
solution, otherwise it is the nondegenerate solution.

Example 4. This example was tested by Kanzow [19] with five variables defined
by

Fi(x) = 2 exp

(
5∑
i=1

(xi − i+ 2)2

)
(xi − i+ 2), 1 ≤ i ≤ 5.

This example has one degenerate solution, namely, (0, 0, 1, 2, 3). The results are listed
in Table 4 using different starting points. The asterisk denotes that the algorithm
does not converge due to the inability of the computer to deal with very large number
overflow.

Example 5. This example is a modification of Mathiesen [28] tested in [19]. Let

F1(x) = −x2 + x3 + x4,

F2(x) = x1 − (4.5x3 + 2.7x4)/(x2 + 1),
F3(x) = 5− x1 − (0.5x3 + 0.3x4)/(x3 + 1),
F4(x) = 3− x1.
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TABLE 4
Number of iterations for Example 4.

Starting point Algorithm A Algorithm B
(0, 0, 0, 0, 0) 20 20
(1, 1, 1, 1, 1) 18 *
(−1, −1, −1, −1, −1) 37 37
(2, 2, 2, 2, 2) 85 *
(−2, −2, −2, −2, −2) 61 61
(10, 10, 10, 10, 10) * *
(3, 2, 1, 2, 3) 1 1
(1, 0, 1, 3, 5) 20 6

TABLE 5
Number of iterations for Example 5.

Starting point Algorithm A Algorithm B
(1, 1, 1, 1) 3 3
(2, 2, 2, 2) 4 6
(−2 , −2, −2, −2) 4 4
(10, 10, 10, 10) 5 5
(− 10, −10, −10, −10) 6 *
(1234, 2345, 3456, 4567) 6 6

This example has infinitely many solutions (λ, 0, 0, 0), where λ ∈ [0, 3]. For λ = 1, 3,
the solutions are degenerate, and for λ ∈ (0, 3) nondegenerate. The test results for
Example 5 are listed in Table 5 using different starting points. For all starting points,
the limit points generated by both the generalized Newton method and the hybrid
method are the degenerate solutions if the algorithms converge. The asterisk denotes
the algorithm fails due to discontinuity of F when x2 = −1 or x3 = −1.

Example 6. This example is problem 35 of Hock and Schittkowski [15] and was
tested by Geiger and Kanzow [12]. The problem is defined by

min f(x) = 9− 8x1 − 6x2 − 4x3 + 2x2
1 + 2x2

2 + x2
3 + 2x1x2 + 2x1x3

s.t. 3− x1 − x2 − x3 ≥ 0,
0 ≤ xi, i = 1, 2, 3.

The original problem is a convex programming problem. Its KKT optimality condi-
tions lead to a monotone complementarity problem with four variables. This example
has one optimal solution x = (4/3, 7/9, 4/9). The test results for Example 6 are listed
in Table 6 using different initial starting points.

We next test some economic equilibrium problems with larger sizes, but with only
standard starting points.

Example 7. This is a problem arising in a spatial equilibrium model with dimen-
sion 42; see [4, 5, 35] for more details. The numerical results for Example 7 are listed
in Table 7 using the starting point (0, . . . , 0).

Example 8. This is a 50-variable traffic equilibrium problem with elastic demand;
see [4, 5, 35] for more details. The numerical results for Example 8 are listed in Table 7
using the standard starting point defined below. x1, x2, x3, x10, x11, x20, x21, x22, x29,
x30, x40, x45 are all ones; x39, x42, x43, x46 are equal to 7; x41, x47, x48, x50 are equal
to 6; x44 and x49 are equal to 10; and all other elements are zeros.
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TABLE 6
Number of iterations for Example 6.

Starting point Algorithm A Algorithm B
(0, 0, 0, 0) 4 4
(1, 1, 1, 1) 5 93
(−1, −1, −1, −1) 4 4
(10, 10, 10, 10) 5 5
(−10, −10, −10, −10) 4 4
(100, 100, 100, 100) 5 5
(−100, −100, −100, −100) 4 4
(105, 105, 105, 105) 5 5

TABLE 7
Number of iterations for Examples 7 and 8.

Problem Starting point Algorithm A Algorithm B
Spatial eq. (0, . . . , 0) 14 14
Traffic eq. as in Example 8 11 28

6. Conclusions. In this paper, we have presented an equivalent reformulation
of the NCP as a system of nonsmooth equations. The generalized Newton method
applied to the system of nonsmooth equations has been shown to be locally and
Q-quadratically convergent. The hybrid method, which is a combination of the gen-
eralized Newton method and a minimization technique for solving the NCP, enjoys
both global convergence and local Q-quadratic convergence under some conditions.
From a numerical point of view, the steepest descent direction method used in the
hybrid method is not a good option. However, the numerical results reported still
show that the approaches presented in this paper are promising. Therefore, for global
methods, numerical results should appear better than those in this paper if a better
unconstrained minimization method is used combining with the generalized Newton
method.

Very recently, De Luca, Facchinei, and Kanzow [5] proposed a global convergent
algorithm for solving the NCP. They use the same local approach as our generalized
Newton method. However, their global approach is quite different from ours. It
appears that their global strategy is better than ours from the robustness point of
view. In particular, it was pointed out [5] that the solution dk of (8) is always a
descent direction of the merit function θ if xk is not a solution of the NCP. Regarding
the nonsingularity of the generalized Jacobians of H, De Luca, Facchinei, and Kanzow
[5] provided more general conditions which are weaker than uniform P-functions. As
for the equivalence between the stationary point set of the merit function θ and the
solution set of the NCP, the condition presented in Proposition 4.3 can be weakened
substantially; see [5, 6, 7, 9] for more details. Tseng [42] proved that the R0-function
property, which is weaker than the uniform P-function property, of F is a sufficient
condition for ensuring the compactness of the level set in Proposition 4.2. For some
further refinements and more discussions, we refer the reader to [5, 9]. All those
improvements show that the combination of nonsmooth equation and unconstrained
optimization approaches for the solution of the NCP is very encouraging.

Acknowledgments. The authors are grateful to F. Facchinei, A. Fischer, C.
Kanzow, and two anonymous referees for their helpful and detailed comments.
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Abstract. The J. C. Willems–Coppel–Shayman geometric characterization of solutions of the
algebraic Riccati equation (ARE) is extended to asymmetric Riccati differential equations with time-
varying coefficients. The coefficients do not need to satisfy any definiteness, periodicity, or system-
theoretic condition. More precisely, given any two solutions X1(t) and X2(t) of such equation on a
given interval [t0, t1], we show how to construct a family of solutions of the same equation of the
form X(t) = (I − π(t))X1(t) + π(t)X2(t), where π is a suitable matrix-valued function. Even when
specialized to the case of X1 and X2 equilibrium solutions of a symmetric equation with constant
coefficients, our results considerably extend the classical ones, as no further assumption is made on
the pair X1, X2 and on the coefficient matrices.
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1. Families of solutions of the RDE. Consider the asymmetric Riccati dif-
ferential equation (RDE)

Ẋ = AX +XB +XPX +Q,(1.1)

where X is m × n and A,B, P,Q are continuous, matrix-valued functions with real
entries on [t0, t1] of dimension m×m,n×n, n×m, and m×n, respectively. As is well
known, the symmetric version of (1.1), i.e., when n = m, B = AT , P = PT , Q = QT ,
plays a central role in many fields of applied mathematics, including optimal control
and estimation, and has therefore been intensively studied. General Riccati equations
such as (1.1) arise in the theory of differential games [3], in state-space solutions to
H∞ problems [10], in polynomial factorization [5], in problems of feedback control [1],
and in the singular perturbation of boundary value problems [4]; see the introductions
of [17, 3, 12] for further information. A further example is provided by equation (1.7)
below, which is asymmetric even when (1.1) is symmetric.

All through this paper, X1 and X2 denote two fixed but arbitrary solutions of
(1.1) on the time interval [t0, t1]. Moreover, let ∆12 := X2 −X1. There exists a one-
to-one correspondence between solutions of (1.1) and solutions of the homogeneous
Riccati equation

∆̇ = AX1∆ + ∆BX1 + ∆P∆,(1.2)

where AX1 := A+X1P and BX1 := B+PX1, given by X ↔ ∆ = X −X1. Thus, all
results below concerning solutions of (1.1) may also be viewed as results concerning
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solutions of (1.2), where the roles of X1 and X2 are played by the zero solution and
∆12, respectively.

Jan Willems’ classification of solutions of the ARE [23] was used in [14] to classify
all output-induced minimal stochastic realizations of a given process. In [2, Theorem
8.3], this classification was extended to the nonstationary case. Its implications for the
RDE, however, were not pursued there. Jan Willems’ original derivation of the geo-
metric parametrization of solutions of the ARE relied on first establishing a similarity
relation involving two “extreme” closed-loop matrices [23, Lemma 8]. The latter re-
sult was generalized to the symmetric, nonsingular (i.e., ∆12 invertible), time-varying
situation in [18, Theorem 5.5]. It can indeed be extended to our very general setting,
and its consequences are far reaching.

LEMMA 1.1. Let X be any solution of (1.1) on [t0, t1] and let ∆i := X − Xi,
i = 1, 2. Let φ(·, ·) and ψ(·, ·) be the transition matrices corresponding to AX :=
A + XP and −BX := −(B + PX), respectively. Let φi(·, ·) and ψi(·, ·), i = 1, 2, be
the transition matrices corresponding to AXi := A+XiP and −BXi := −(B+PXi),
respectively. Then, for i = 1, 2 and for all s and t in [t0, t1], we have

∆i(t)ψi(t, s) = φ(t, s)∆i(s),(1.3)
∆i(t)ψ(t, s) = φi(t, s)∆i(s).(1.4)

Proof. Notice that ∆i satisfies

∆̇i = AXi∆i + ∆iBXi + ∆iP∆i(1.5)
= AX∆i + ∆iBXi = AXi∆i + ∆iBX .

From (1.5) it follows that

∂(∆i(t)ψi(t, s))
∂t

= ∆̇i(t)ψi(t, s) + ∆i(t)
∂ψi(t, s)

∂t

= ∆̇i(t)ψi(t, s)−∆i(t)BXiψi(t, s) = AX(t)∆i(t)ψi(t, s).

Hence, both sides of (1.3) satisfy

∂W (t, s)
∂t

= AX(t)W (t, s).

Since they coincide for s = t, they coincide everywhere. Exchanging the roles of X
and Xi, we get (1.4) from (1.3).

COROLLARY 1.2. ∆i(t), i = 1, 2, has constant rank on [t0, t1].
Proof. By (1.3), ∆i(t) = φ(t, t0)∆i(t0)ψi(t0, t).
COROLLARY 1.3. Let X be any solution of (1.1) on [t0, t1], and let i = 1, 2.

Suppose that ker ∆12(t0) ⊆ ker ∆i(t0). Then ker ∆12(t) ⊆ ker ∆i(t) for all t ∈ [t0, t1].
Proof. Let x ∈ Rn be such that ∆12(t)x = 0. By (1.3), we get ∆12(t0)ψi(t0, t)x =

0. Thus, ψi(t0, t)x is in the kernel of ∆12(t0). By hypothesis, ∆i(t0)ψi(t0, t)x = 0.
The latter implies φ(t, t0)∆i(t0)ψi(t0, t)x = 0. Using equation (1.3) again, we get
∆i(t)x = 0.

Obviously, the above result holds true if t0 is replaced by any other time s in
[t0, t1]. Let us agree that all through the paper π(t) denotes an m×m matrix function
on [t0, t1].

THEOREM 1.4. The matrix function X(t) = (I − π(t))X1(t) + π(t)X2(t) is a
solution of (1.1) on [t0, t1] if and only if π(t) is a C1 function satisfying

π̇∆12 = [AX1π − πAX1 − π∆12P (I − π)]∆12.(1.6)
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Conversely, let X(t) be a solution of (1.1) on [t0, t1] with ker ∆12(t0) ⊆ ker ∆1(t0)
where ∆1 = X −X1. Then there exists a C1 function π(t) satisfying (1.6) such that
X(t) = (I − π(t))X1(t) + π(t)X2(t). Moreover, if Rank∆12(t0) = m, (1.6) may be
replaced by the auxiliary Riccati differential equation (ARDE)

π̇ = AX1π − πAX1 − π∆12P (I − π),(1.7)

and there is a one-to-one correspondence between solutions of (1.1) and solutions of
(1.7).

Proof. Let R(X) := AX+XB+XPX+Q. If X(t) = (I−π(t))X1(t)+π(t)X2(t),
we get

R(X) = A[(I − π)X1 + πX2] + [(I − π)X1 + πX2]B
+[(I − π)X1 + πX2]P [(I − π)X1 + πX2] +Q

= (I − π)R(X1) + πR(X2)− (I − π)AX1 − (I − π)X1PX1 − πAX2

−πX2PX2 +A(I − π)X1 +AπX2 + [(I − π)X1 + πX2]P [(I − π)X1 + πX2]
= (I − π)R(X1) + πR(X2)− πA∆12 +Aπ∆12

−(I − π)X1PπX1 − πX2P (I − π)X2 + πX2P (I − π)X1 + (I − π)X1PπX2

= (I − π)R(X1) + πR(X2) + [−πA+Aπ + (I − π)X1Pπ − πX2P (I − π)]∆12

= (I − π)R(X1) + πR(X2)
+[−πA+Aπ + (I − π)X1Pπ − π∆12P (I − π)− πX1P (I − π)]∆12

= (I − π)R(X1) + πR(X2) + [AX1π − πAX1 − π∆12P (I − π)]∆12.

If π is of class C1, it then follows that X is a solution of (1.1) if and only if (1.6) holds.
Conversely, suppose that X is a solution of (1.1) on [t0, t1] such that ker ∆12(t0) ⊆
ker ∆1(t0). By Corollary 1.3, the inclusion ker ∆12(t) ⊆ ker ∆i(t) holds for all t ∈
[t0, t1]. Then there exist m×m-valued matrix functions Z(t) such that

∆1(t) = Z(t)∆12(t)(1.8)

for all t ∈ [t0, t1]. Notice that (1.8) already implies that X(t) = (I − Z(t))X1(t) +
Z(t)X2(t). Thus, the proof of the converse will be complete if we can show that
among the functions Z satisfying (1.8) there is at least one Z̃ of class C1. In that
case, we can take π = Z̃. To this end, notice that, in view of Lemma 1.1, any function
Z satisfying (1.8) also satisfies

∆1(t)ψ2(t, t0) = Z(t)φ1(t, t0)∆12(t0).(1.9)

This leads us to introduce the function Z̃ defined by

Z̃(t) = ∆1(t)ψ2(t, t0)∆#
12(t0)φ1(t0, t),

where ∆#
12(t0) denotes the Moore–Penrose pseudoinverse of ∆12(t0). The function Z̃

is clearly continuously differentiable. We show next that indeed Z̃ satisfies ∆1(t) =
Z̃(t)∆12(t). Observe that the latter is equivalent to

∆1(t)[I − ψ2(t, t0)∆#
12(t0)φ1(t0, t)∆12(t)] = 0.(1.10)

Now let Z be any function satisfying (1.8). Using (1.9) in (1.10), we see that the
latter is equivalent to

Z(t)φ1(t, t0)∆12(t0)ψ2(t0, t)[I − ψ2(t, t0)∆#
12(t0)φ1(t0, t)∆12(t)] = 0.
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Obtaining ∆12(t) from Lemma 1.1 and using properties of transition matrices, it can
be verified that the latter equation is in turn equivalent to

Z(t)φ1(t, t0)∆12(t0)[I −∆#
12(t0)∆12(t0)]ψ2(t0, t) = 0.(1.11)

Because of ∆(I −∆#∆) = 0, the preceding identity (1.11) is valid. Finally, suppose
that Rank∆12(t0) = m. By Corollary 1.2 the same is true for ∆12(t), t ∈ [t0, t1].
The one-to-one map between the solution sets of (1.1) and (1.7) is then given by
π(t) := [X(t)−X1(t)]∆−R12 (t), where ∆−R12 denotes any right inverse of ∆12.

Remark 1.5. Obviously, in Theorem 1.4 (and in the following), we could have con-
sidered combinations of the form X(t) = X1(t)(I−σ(t))+X2(t)σ(t). The assumption
for the converse part would then read ker ∆12(t0)T ⊆ ker ∆1(t0)T . Equation (1.6)
would be replaced by the equation

∆12σ̇ = ∆12[σBX1 −BX1σ − (I − σ)P∆12σ].

Remark 1.6. Notice that if π1 and π2 are two C1 functions generating the same
solution X of (1.1) on [t0, t1], i.e., X(t) = X1(t) + π1(t)∆12(t) = X1(t) + π2(t)∆12(t),
then necessarily [π1(t)− π2(t)]∆12(t) = 0 for all t in [t0, t1]. If ∆12(t0) admits a right
inverse, then π1 = π2.

At first sight, the correspondence between solutions of (1.1) and solutions of (1.6)
or (1.7) established by Theorem 1.4 appears rather disappointing. Indeed, in the
best case, we still have to deal with an asymmetric Riccati equation, the ARDE,
with the only apparent advantage that π, AX1 , and ∆12P are all square m × m-
dimensional. Notice that solutions X1 and X2 of (1.1) correspond to the equilibrium
solutions zero and identity, respectively, of (1.6) and (1.7). Nevertheless, the power
of this connection will shortly be apparent. Indeed, (1.6) and (1.7) lend themselves
naturally to a geometric characterization of a subclass of their solutions; see Theorems
2.3 and 2.5 below.

We conclude this section with a result relating different φ transition matrices.
This result, which will not be needed in what follows, appears to be of interest for
nonstationary stochastic realization [2]. Indeed, it extends a result for feedback ma-
trices corresponding to different solutions of the symmetric ARE that was applied to
stationary stochastic realization in [11, Lemma 4.1].

PROPOSITION 1.7. Let X be any solution of (1.1) on [t0, t1]. If X(t) −X1(t) =
∆1(t) = π(t)∆12(t) on [t0, t1] for some function π, we have, in the notation of Lemma
1.1,

{φ(t, s)π(s)− π(t)φ2(t, s)}∆12(s) = 0,(1.12)
{φ(t, s)(I − π(s))− (I − π(t))φ1(t, s)}∆12(s) = 0.(1.13)

If π is projection valued, it follows that

(I − π(t))φ(t, s)π(s)∆12(s) = 0,(1.14)
π(t)φ(t, s)(I − π(s))∆12(s) = 0.(1.15)

If, moreover, π is C1, the latter gives

(I − π)(π̇ −AXπ)∆12 = 0,(1.16)
π(π̇ +AX(I − π))∆12 = 0.(1.17)
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Proof. Employing (1.3) twice, once for X and once for X2, we get

φ(t, s)π(s)∆12(s) = φ(t, s)∆1(s) = ∆1(t)ψ1(t, s)

= π(t)∆12(t)ψ1(t, s) = π(t)φ2(t, s)∆12(s),

which is (1.12). Similarly, (1.13) is established. If π is a C1, projection-valued func-
tion, differentiating (1.14) and the equation π(t) = π(t)2 with respect to t, we get
[(I−π(t))AX − π̇(t)]φ(t, s)π(s)∆12(s) = 0 and π̇(t)π(t) = (I−π(t))π̇(t), respectively.
Evaluating the first at s = t and then using the second, we get (1.16). Similarly, we
get (1.17) from (1.15).

2. Geometric results. The first step in establishing a geometric characteri-
zation of certain families of solutions of (1.1) consists of rewriting (1.6) and (1.7).
Simply rearranging terms, we get that these equations are equivalent to

[π̇ − (I − π)AX1π + πAX2(I − π)]∆12 = 0,(2.1)
π̇ − (I − π)AX1π + πAX2(I − π) = 0,(2.2)

where AX2 := A+X2P = AX1 + ∆12P .
LEMMA 2.1. If π is a projection for all times, i.e., π(t) = π(t)2 for t in [t0, t1],

then it satisfies (2.1) if and only if it satisfies the system of equations

(I − π)[π̇ −AX1π]∆12 = 0,(2.3)
π[(I − π̇)−AX2(I − π)]∆12 = 0.(2.4)

Proof. Multiplying (2.1) on the left first by (I − π) and then by π, we get (2.3)
and (2.4), respectively. Conversely, obtaining ππ̇∆12 from (2.4) and plugging it into
(2.3), we get (2.1).

Remark 2.2. Equations (2.3), (2.4) can be obtained from (1.16), (1.17), observing
that

(I − π)AX1 = (I − π)AX ,
πAX2 = πAX .

Equations (2.1), (2.2), (2.3), (2.4) enjoy a certain symmetry. Indeed, they are invariant
under the permutation π ↔ (I−π), X1 ↔ X2. Lemma 2.1 above singles out a subclass
of solutions of (2.1) and, by Theorem 1.4, of (1.1). This subclass may also be described
as the solutions on [t0, t1] of the following implicit system:

[0, I − π, π]π̇∆12 = [π − π2, (I − π)AX1π∆12,−πAX2(I − π)∆12].(2.5)

The following result provides a geometric characterization of the projection-valued
solutions of (2.1). The question of existence of such solutions will be addressed in
Theorem 2.7 below.

THEOREM 2.3. Let X(t) = (I − π(t))X1(t) + π(t)X2(t) be a solution of (1.1) on
[t0, t1]. Let M(t) := π(t)∆12(t)Rn and N(t) := (I − π(t))∆12(t)Rn. Then, for s and
t in [t0, t1],we have

M(t) = φ1(t, s)M(s),(2.6)
N(t) = φ2(t, s)N(s).(2.7)
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Moreover, we also have

M(t) = φ(t, s)M(s),(2.8)
N(t) = φ(t, s)N(s).(2.9)

Conversely, Let {M(t)} and {N(t)}, t ∈ [t0, t1], be two families of subspaces of Rm

providing a direct sum decomposition of ∆12(t)Rn. Let π be a C1 function such that
π(t)x = x ∀x ∈ M(t) and π(t)y = 0 ∀y ∈ N(t). If (2.6), (2.7) hold for all s and t
in [t0, t1], then X(t) = (I − π(t))X1(t) + π(t)X2(t) is a solution of the RDE (1.1) on
[t0, t1].

Proof. By Lemma 1.1, ∆1(t) = φ1(t, s)∆1(s)ψ(s, t). Replacing ∆1(t) with
π(t)∆12(t), we get π(t)∆12(t)Rn = φ1(t, s)π(s)∆12(s)Rn, namely (2.6) holds. For-
mula (2.7) is proven similarly. Lemma 1.1 also gives ∆1(t) = φ(t, s)∆1(s)ψ1(s, t). The
same argument as above then gives (2.8). Similarly, (2.9) is established. To prove the
converse, notice that (2.6), (2.7) imply

[I − π(t)]φ1(t, s)π(s)∆12(s) = 0,(2.10)
π(t)φ2(t, s)[I − π(s)]∆12(s) = 0.(2.11)

Evaluating the derivatives of (2.10) and (2.11) with respect to t on the diagonal t = s,
we get (2.3) and (2.4). The latter imply that (1.6) holds, and consequently X is a
solution of (1.1).

Remark 2.4. Notice that the first half of the theorem holds for any solution X
of (1.1) of the form X(t) = (I − π(t))X1(t) + π(t)X2(t), namely even when π is not
projection valued. In that case, however, the spaces M(t) and N(t) do not need to
form a direct sum. Observing once more thatX−X1 = π∆12 andX2−X = (I−π)∆12,
we also see that the spaces M(t) and N(t) are uniquely determined by the solution X
and do not depend on the particular projection π used in the definition.

In the important case where ∆12 has full row rank, Theorem 2.3 reads as follows.
THEOREM 2.5. Assume that ∆12(t0) has full row rank. Let X(t) = (I−π(t))X1(t)+

π(t)X2(t) be a solution of (1.1) on [t0, t1]. Let M(t) and N(t) denote the range of
π(t) and the range of (I − π(t)), respectively. Then, for s and t in [t0, t1], relations
(2.6), (2.7), (2.8) and (2.9) hold true. Conversely, let π(·) be a C1, projection-valued
function on [t0, t1], and let M(t) and N(t) denote the range of π(t) and the range of
(I − π(t)), respectively. If the propagation relations (2.6) and (2.7) hold for all s and
t in [t0, t1], then X(t) = (I − π(t))X1(t) + π(t)X2(t) is a solution of the RDE (1.1)
on the same time interval.

Theorems 2.3 and 2.5 provide the desired geometric characterization of a subclass
of solutions of the ARDE (2.2) and, consequently, of the RDE (1.1). Notice that, in
the case m = n, Remark 2.4 gives that the first half of Theorem 2.5 applies to any
solution of (1.1) on [t0, t1]. Indeed, in this case, ∆12(t) is invertible at all times,
and ker ∆12(t) ⊆ ker ∆1(t) is trivially satisfied. Hence, any solution X of (1.1) can
be expressed as X(t) = (I − π(t))X1(t) + π(t)X2(t). For the purpose of immediate
comparison, we state below Jan Willems’ classical result; cf. also [6, 19, 20, 21, 13]
(the latter should also be compared with Theorems 3.3 and 4.2 below).

THEOREM 2.6. In equation (1.1), let n = m, B = AT , P = PT , Q = QT .
Suppose moreover that P is negative semidefinite and that the pair (A,P ) is reachable.
Let X− and X+ denote two symmetric equilibrium solutions of (1.1) such that the
corresponding closed-loop matrices A− := A + X−P and A+ := A + X+P have all
their eigenvalues in the closed right and left half-planes, respectively. Suppose that
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∆ := X+−X− is positive definite. Then X is another symmetric equilibrium solution
of (1.1) if and only if it can be expressed as

X = (I − π)X− + πX+

where π projects onto an A−-invariant subspace and I − π projects onto an A+-
invariant subspace.

We now turn to the question of existence of projection-valued solutions of (2.2)
((1.7)) (equivalently, of solutions of the implicit system (2.5) if ∆12(t0) has full row
rank). The following remarkable result basically says that (2.2) is a projection-
preserving differential equation.

THEOREM 2.7. Let π be a solution of (2.2) on [t0, t1]. Suppose that π(t0) is a
projection. Then π(t) is a projection for all t in [t0, t1].

Proof. Let us rewrite (2.2) as

π̇ = AX1π − πAX2 + π∆12Pπ.

Then

dπ2

dt
= π̇π + ππ̇ = [AX1π − πAX2 + π∆12Pπ]π + π[AX1π − πAX2 + π∆12Pπ]

= AX1π
2 − πAX2π + π∆12Pπ

2 + πAX1π − π2AX2 + π2∆12Pπ.

Hence,

d(π2 − π)
dt

= AX1(π2−π)−(π2−π)AX2−(π2−π)∆12P (π2−π)+π2∆12Pπ
2−π∆12Pπ.

Adding and subtracting the quantity π2∆12Pπ in the right-hand side and rearranging
terms, we finally get

d(π2 − π)
dt

= (AX1 +π2∆12P )(π2−π)−(π2−π)(AX2−∆12Pπ)−(π2−π)∆12P (π2−π).

Let F1 := AX1 +π2∆12P and F2 := AX2−∆12Pπ. It follows that, if π(t) is a solution
of (2.2), then, on the same time interval, π2 − π is a solution of the homogeneous
Riccati equation

Ẋ = F1X −XF2 −X∆12PX,(2.12)

and F1 and F2 are there bounded. Since π2(t0) − π(t0) = 0, by uniqueness of the
solution of equation (2.12) starting at zero, it follows that π2(t) − π(t) = 0 on all of
[t0, t1].

The above proof actually establishes an amplification of Theorem 2.7. We record
it below because it is of interest on its own.

PROPOSITION 2.8. Let A1 and A2 be m × m continuous matrix functions on
[t0, t1]. Let Y be an m×m matrix function solving the homogeneous Riccati equation

Ẏ = A1Y − Y A2 + Y (A2 −A1)Y(2.13)

on [t0, t1]. If there exists a time t̄ ∈ [t0, t1] such that Y (t̄) = Y (t̄)2, then Y (t) = Y (t)2

on all of [t0, t1].
Remark 2.9. Notice that Y1 ≡ 0 and Y2 ≡ I are two equilibrium solutions of (2.13).

Also notice that the corresponding closed-loop matrices are A1 + 0(A2 − A1) = A1
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and A1 + I(A2 − A1) = A2. Now let Y be as in the proposition above—namely, a
projection-valued solution of (2.13)—and let M(t) and N(t) be the range spaces of
Y (t) and I − Y (t), respectively. Then, by Theorem 2.5, the propagation properties
(2.6) and (2.7) hold true, where φ1 and φ2 are the transition matrices corresponding
to A1 and A2, respectively. Finally, if A1 and A2 are constant and Y = Y 2 is an
equilibrium solution of (2.13), Y projects onto a subspace invariant for A1 along a
subspace invariant for A2.

Remark 2.10. The geometric results of this section provide a procedure to produce
new solutions of (1.1). For instance, in the full-rank case, let π0 be any projection, and
let M0 and N0 be the ranges of π0 and I−π0, respectively. Define M(t) := φ1(t, t0)M0
and N(t) := φ2(t, t0)N0. Let t̄ be the largest time such that for t0 ≤ t < t̄, M(t) and
N(t) give a direct sum decomposition of Rm (by continuity, t̄ > 0). Let π(t) be the
projection such that M(t) and N(t) are the ranges of π(t) and I − π(t), respectively.
Then π solves (2.2) and X = (I−π)X1 +πX2 solves (1.1) on [t0, t̄). Using an explicit
expression for π in terms of bases for its range and the range of I −π, it is easily seen
that π(t) becomes unbounded as t tends to t̄. If ∆12(t0) has full row rank, it follows
that the corresponding solution X(·) has a finite escape time (see, e.g., [16, 7, 8]) at
t = t̄.

We conclude the section with an example that illustrates Remark 2.10 as well as
Proposition 2.8 and Remark 2.9.

Example 2.11. Consider equation (2.13) with m = 2 and

A1 =
(

1 0
0 0

)
, A2 =

(
0 1
0 0

)
.

Choose as reference solutions Y1 = 0 and Y2 = I, and let π0 be given by

π0 =
(

1 0
0 0

)
.

Clearly π0 is a projection, in fact an orthogonal projection. We have that M0 =
(
R
0

)
and N0 =

(0
R

)
. Next notice that the transition matrices φ1(t, s) and φ2(t, s) are given

here by

φ1(t, s) = eA1(t−s) =
(
et−s 0

0 1

)
, φ2(t, s) = eA2(t−s) =

(
1 t− s
0 1

)
.

Hence, M(t) = φ1(t, t0)M0 is the span of the vector
(1

0

)
and N(t) = φ2(t, t0)N0

is the span of the vector
(
t−t0

1

)
. Notice that M(t) and N(t) provide a direct sum

decomposition of R2 for all t ≥ t0. The projection π(t) with range M(t) and kernel
N(t) is given by

π(t) =
(

1 t0 − t
0 0

)
.

The corresponding solution of (2.13) is Y (t) = 0 + π(t)(I − 0) = π(t), namely π(t)
itself. This is no surprise. Since Y (t0) = 0 + π0(I − 0) = π0 is a projection, Theorem
2.7 implies that Y (t) has to be a projection for all t. Notice that π(t) is unbounded
as t tends to infinity. This is possible because π(t) for t > 0 is not an orthogonal
projection, although π0 is orthogonal.
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3. Geometric results: The case where X1 and X2 are equilibrium solu-
tions. All through this section we assume that X1 and X2 are equilibrium solutions
of (1.1). The coefficients A, B, P , and Q may still be time varying.

PROPOSITION 3.1. Let X be an equilibrium solution of (1.1) and let ∆i = X−Xi,
i = 1, 2. Then for all t in [t0, t1],

AX(t)∆i = −∆iBXi(t),(3.1)
AXi∆i = −∆iBX(t).(3.2)

It follows that if (ξ(t), λ(t)) is an eigenvector-eigenvalue pair for BXi(t) so that
BXi(t)ξ(t) = λ(t)ξ(t), then either ∆iξ(t) = 0 or (∆iξ(t),−λ(t)) is an eigenvector-
eigenvalue pair for AX(t). Similarly, it follows for AXi(t) and BX(t). If ∆i admits
a right inverse, we get the relations

AX(t) = −∆iBXi(t)∆
−R
i ,

AXi(t) = −∆iBX(t)∆−Ri .

In particular, if m = n and ∆12 is invertible, we have

AX2(t) = −∆12BX1(t)∆−1
12 .(3.3)

Proof. Relations (3.1) and (3.2) are a consequence of (1.5).
Once more, we compare (3.3) with the corresponding classical result. In the

notation of Theorem 2.6, let X1 = X− and X2 = X+. Then (3.3) reads A+ =
−∆AT−∆−1 which is precisely [23, Lemma 8]. Let us now assume that the coefficients
of (1.1) are constant. Theorems 1.4 and 2.3 yield the following result.

THEOREM 3.2. Let X = (I − π)X1 + πX2 be an equilibrium solution of the
RDE (1.1). Let M := π∆12R

n and N := (I − π)∆12R
n. Then M is an invariant

subspace for AX1 and N is an invariant subspace for AX2 . Moreover, M and N are
both invariant for AX . Conversely, let M and N be two subspaces of Rm providing
a direct sum decomposition of ∆12R

n. Let π be an m ×m matrix such that πx = x
for any x in M and πy = 0 for any y in N . If M is an invariant subspace for AX1

and N is an invariant subspace for AX2 , then X = (I−π)X1 +πX2 is an equilibrium
solution of the RDE (1.1).

Once more, we state independently the result in the case when ∆12 has full row
rank.

THEOREM 3.3. Suppose ∆12 has full row rank and let X be an equilibrium solution
of (1.1). Assume that ker ∆12 ⊆ ker ∆1. Then there exists an m ×m matrix π such
that X = (I −π)X1 +πX2. Moreover, the range M of π is invariant for AX1 and for
AX , and the range N of I − π is invariant for AX2 and for AX . Conversely, if π is
any oblique projection onto a subspace invariant for AX1 along a subspace invariant
for AX2 , then X = (I − π)X1 + πX2 satisfies (1.1).

In order to compare this result with Theorem 2.6, notice that if m = n and
∆12 has full rank, the condition ker ∆12 ⊆ ker ∆1 is always satisfied. The additional
assumptions of Theorem 2.6 permit us to conclude that if X = (I − π)X1 + πX2 is
an equilibrium solution of (1.1), π is always a projection.

4. The symmetric Riccati equation. We finally consider the symmetric case
where n = m, B = AT , P = PT , Q = QT but return to the nonequilibrium situation.
Equation (1.1) is now

Ẋ = AX +XAT +XPX +Q.(4.1)
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We also assume that the two reference solutions X1 and X2 take values in the sym-
metric matrices. Hence, ∆12(t) is also symmetric at all times. It is then natural to
restrict our attention to symmetric solutions of (4.1).

LEMMA 4.1. φ2(t, s)∆12(s) = ∆12(t)φ1(s, t)T .
Proof. By Lemma 1.1, φ2(t, s)∆12(s) = ∆12(t)ψ1(t, s). The conclusion now fol-

lows observing that BX1 = ATX1
implies that ψ1(t, s) = φ1(s, t)T .

For the sake of simplicity, we only give the main result in the case where ∆12 is
nonsingular.

THEOREM 4.2. Let X1 and X2 be any two symmetric solutions of (4.1) on [t0, t1]
such that ∆12(t0) is invertible. Let X(t) = (I−π(t))X1(t)+π(t)X2(t) be a symmetric
solution of (4.1) on [t0, t1]. Let M(t) and N(t) denote the range of π(t) and the range
of (I−π(t)), respectively. Then for s and t in [t0, t1] the following relations hold true:

π(t)∆12(t) = ∆12(t)π(t)T ,(4.2)
(I − π(t))φ1(t, s)π(s) = 0.(4.3)

Conversely, let π be a C1, projection-valued function satisfying for all s and t in [t0, t1]
(4.2), (4.3). Then X(t) = (I − π(t))X1(t) + π(t)X2(t) is also a symmetric solution of
the RDE (4.1) on [t0, t1].

Proof. Let X(t) = (I−π(t))X1(t)+π(t)X2(t) = X1(t)+π(t)∆12(t) be a symmetric
solution of (4.1) on [t0, t1]. The symmetry of X(t) implies that (4.2) must hold. Let
M(t) and N(t) denote the range of π(t) and of I − π(t), respectively. By Theorem
2.5, we have M(t) = φ1(t, s)M(s) from which (4.3) follows. Conversely, suppose that
(4.2) and (4.3) are verified. From (4.3) we get φ1(t, s)M(s) ⊆M(t). Exchanging the
roles of s and t, we see that equality, i.e., equation (2.6), must hold. Now, multiplying
equation (4.3) (with s and t exchanged) by ∆12(s)−1 on the left and by ∆12(t) on the
right we get

∆12(s)−1(I − π(s))φ1(s, t)π(t)∆12(t) = 0.(4.4)

Transposing (4.4) and using (4.2) twice, we get

π(t)∆12(t)φ1(s, t)T∆12(s)−1(I − π(s)) = 0.

The latter equation, together with Lemma 4.1, now gives equation (2.7). The conclu-
sion now follows from Theorem 2.5.

5. Closing comments. As is well known, the Riccati differential equation may
be viewed as the description in local coordinates of the restriction to a subset of
the Lagrangian Grassmannian manifold L of a vector field on L; see [15, 19]. Our
results may then be readily interpreted in that setting. In fact, some may be also
directly derived in that setting; see [8], where the case of l ≥ 2 reference solutions
X1, X2, . . . , Xl, is also considered (see also [17, Theorem 4]). Similar results may also
be derived in the discrete-time setting [9]. Alternative representation formulas for
solutions of (1.1) have been proposed in [22] and references therein.

The classification of the solutions of the ARE via invariant subspaces of the
Hamiltonian matrix has the disadvantage, when compared with the J. C. Willems
classification, that the invariant subspaces need to be J-neutral and complementary
to the subspace Span

(0
I

)
; see [13, pp. 67–68]. In [19] it was observed that the dis-

advantages of Jan Willems method are that, contrary to the Hamiltonian matrix
method, it does not lead naturally to a concept of solution at infinity (phenomenon of
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the finite escape time; see, e.g., [16, 7]) and it does not have an obvious generalization
to the nonsymmetric Riccati equation. Whereas the first disadvantage persists, we
observe that this paper has completely removed the second.

Acknowledgment. This paper has considerably profited from the detailed com-
ments of an anonymous reviewer who went so far as to produce a more elegant proof
of Theorem 1.4. His or her help is gratefully acknowledged.
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Abstract. Strong second-order sufficient optimality conditions (SSC) are derived for optimal
control problems of systems described by nonlinear ODEs subject to mixed control-state and pure
state constraints. The obtained SSC are expressed in terms of a modified Legendre–Clebsch condition
and the associated Riccati equation. The role of SSC in stability analysis of solutions to parametric
optimal control problems is briefly discussed.
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1. Introduction. The concept of second-order sufficient optimality conditions
in mathematical programming has been developed for many years. The well-known
condition in finite-dimensional programs requires that the Hessian of Lagrangian is
positive definite on the critical cone.

However, it was shown by Maurer and Zowe [18] that, in general, this condition
is no longer sufficient in infinite-dimensional situations. Instead, Maurer and Zowe
derived a stronger coercivity condition (cf. Theorem 5.6 in [18]), which provides some
“margin of freedom” and ensures sufficiency of optimality. This concept has been
extended by Maurer in [16] to optimization problems with the so-called two-norm
discrepancy typical for nonlinear optimal control.

Recently, in Dontchev and Hager [1] and in Dontchev et al. [2] this approach has
been further developed using three different norms and applied to control constrained
optimal control problems.

Along with the second-order sufficient optimality conditions, the concept of strong
second-order sufficient optimality conditions (SSC) has been introduced and analyzed.
For finite-dimensional mathematical programs, SSC require that the Hessian of La-
grangian is positive definite on the affine hull of the critical cone (cf. [26]). It turnes
out that SSC play an important role in stability analysis of solutions to parametric
programming problems (cf. [8, 9, 25, 26]).

Also in optimal control problems, SSC require that the Hessian of Lagrangian
is coercive on the subspace orthogonal to the gradients of some active constraints.
Certainly, it is desirable that this subspace is narrow, so in its construction we would
like to include as many constraints as possible.

Attempts have been made to express the coercivity condition in the form similar
to that known in calculus of variations, which involves the so-called strengthened
Legendre–Clebsch condition and strengthened Jacobi condition (cf., e.g., [4]). This
last condition can be expressed in terms of the existence of a bounded solution to a
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certain Riccati equation (cf. [24]). The difficulties with extending these conditions to
optimal control problems are connected to the presence of inequality-type constraints
and the associated lack of smoothness of the solutions.

The first result in this direction was obtained by Maurer in [16], where only
equality-type constraints (the state equation) were used in the construction of the
relevant subspace.

Later, some attempts have been made to weaken this condition by including active
inequality constraints (cf. [17, 20, 22, 23, 28, 29, 30]). In the last paper by Zeidan
[30] she considers both necessary and sufficient second-order optimality conditions for
optimal control problems subject to mixed control-state constraints and gives a weak
version of SSC.

The main contributions of the present paper is the derivation of weak SSC for
optimal control problems, where, along with the mixed, pure state constraints of first
order also are present and used in the construction of the relevant subspace. That can
be viewed as a direct generalization of Zeidan’s result.

It should be stressed that the presence of pure state-space constraints complicates
the analysis very much since it necessitates the additional discussion of regularity of
the solutions and Lagrange multipliers, which is not needed if these constraints are
void.

The organization of the paper is as follows: In section 2 we derive SSC for cone-
constrained optimization problems in Banach spaces, using the same formalism as in
[12]. This result is only a slight reformulation of that due to Dontchev et al. [2].

In sections 3 and 4 the abstract SSC are used to obtain SSC for nonlinear optimal
control problems subject to both mixed control-state and pure state constraints. In
these conditions active constraints of both types are taken into account.

One of the important applications of SSC is stability analysis of solutions to
parametric optimization problems (cf. [1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 25, 26]). In
section 5 the possibility of application of the derived SSC to stability analysis of the
solutions to parametric optimal control problems is briefly discussed. It turns out that
SSC involving active state constraints are too weak to repeat the proof of stability of
the solutions given in [13].

Some notation used: X,Y, Z, . . . denote Banach spaces and X̂, Ŷ , Ẑ, . . . , Hilbert
spaces. Asterisks denote dual spaces. L(X,Y ) is the Banach space of linear continuous
operators from X into Y .

The norms in Banach and Hilbert spaces are denoted by [] · [] and ‖·‖, respectively,
with a subscript refering to the space.

For f : X × Y 7→ Z, Dxf(x, y), Dyf(x, y), D2
xyf(x, y), . . . denote the respective

Fréchet derivatives in the corresponding arguments.
Rn is the n-dimensional Euclidean space with the inner product denoted by 〈x, y〉

and the norm |x| = 〈x, x〉 1
2 .

L2(0, T ;Rn) is the Hilbert space of square integrable vector functions, with the
inner product

(x, y) =
∫ T

0
〈x(t), y(t)〉dt and the norm ‖x‖2 = (x, x)

1
2 .

L∞(0, T ;Rn) is the Banach space of essentially bounded vector functions with the
norm

‖x‖∞ = max
i

ess sup
t∈[0,T ]

|xi(t)|.
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C0(0, T ;Rn) and C1(0, T ;Rn) are the spaces of continuous and continuously dif-
ferentiable vector functions, respectively, equipped with the usual norms.

W 1,p(0, T ;Rn) = {x ∈ Lp(0, T ;Rn) | ẋ ∈ Lp(0, T ;Rn)} , p = 2,∞,

denote Sobolev spaces of absolutely continuous functions with the norms ‖x‖1,2 =
{|x(0)|2 + ‖ẋ‖22}

1
2 and ‖x‖1,∞ = max{|x(0)|, ‖ẋ‖∞}, respectively.

2. SSC for abstract optimization problems. In this section we discuss SSC
for cone-constrained optimization problems with two-norm discrepancy in Banach
spaces.

Let Z and Y be two Banach spaces, the space of arguments and constraints,
respectively. Moreover, two Hilbert spaces Ẑ and Ŷ are given such that Z ⊂ Ẑ and
Y ⊂ Ŷ with dense and continuous embeddings. The duality pairing between Ẑ∗ and
Ẑ or Z∗ and Z is denoted by (·, ·)Ẑ . We put Ŷ ∗ = Ŷ , and by (·, ·)Ŷ we denote the
inner product in Ŷ , extended by continuity to Y ∗ × Y. We denote

X = Z × Y, X̂ = Ẑ × Ŷ .

In Y there is given a closed convex cone K with vertex at the origin, which induces
a partial order in Y . By K̂ we denote the closure of K in Ŷ , and by

K+ = {λ ∈ Y ∗ | (λ, y)Ŷ ≥ 0 for all y ∈ K},(2.1)

the positive polar cone to K.
We consider the following optimization problem:

(P) min
z∈Z

F (z) subject to ϕ(z) ∈ K.

We assume the following.
(I.1) The functions F : Z 7→ R1 and ϕ : Z 7→ Y are twice Fréchet differentiable,

and the following compatibility conditions are satisfied:

DzF (z) ∈ Ẑ∗, D2
zzF (z) ∈ L(Ẑ, Ẑ∗),

Dzϕ(z) ∈ L(Ẑ, Ŷ ), Dzϕ
∗(z)λ ∈ Ẑ∗, D2

zzϕ
∗(z)λ ∈ L(Ẑ, Ẑ∗)

(2.2)

for all z ∈ Z and λ ∈ Y.
Moreover

lim ‖D2
zzF (z1)−D2

zzF (z2)‖Ẑ 7→Ẑ∗ = 0,

lim ‖Dzϕ(z1)−Dzϕ(z2)‖Ẑ 7→Ŷ = 0,

lim ‖D2
zzϕ
∗(z1)λ1 −D2

zzϕ
∗(z2)λ2‖Ẑ 7→Ẑ∗ = 0

(2.3)

for []z1 − z2[]Z → 0 and []λ1 − λ2[]Y → 0.
Let z0 ∈ Z be a given point feasible for (P). We will find sufficient conditions

under which z0 is a locally unique minimizer of (P).
Let us start with the constraint qualifications, which will be formulated in the

same way as in [12]. To this end, for any y ∈ K we define the following subspace of
Y :

My = (K + [y]) ∩ (−K + [y]),(2.4)

and denote M0 := My0 , where y0 = ϕ(z0) and [y] is the one-dimensional subspace
generated by the element y. We assume that
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(I.2) there exists a subspace M ⊂M0, closed in Y -topology, and a linear contin-
uous mapping

Π ∈ L(Y, Y ) ∪ L(Ŷ , Ŷ ), Π : Y 7→M

such that

Dzϕ(z0)Z + ΠY = Y, Dzϕ(z0)Ẑ + ΠŶ = Ŷ .(2.5)

Moreover, there exists a neighborhood Y0 ⊂ Y of y0 = ϕ(z0) such that

M ⊂My for all y ∈ Y0 ∩K.(2.6)

If we define

S0 ∈ L(X,Y ) ∩ L(X̂, Ŷ ), S0

(
z
y

)
:= Dzϕ(z0)z + Πy,(2.7)

then condition (2.5) amounts to that S0 ∈ L(X,Y ) ∪ L(X̂, Ŷ ) is surjective.
Let us introduce the following Lagrangian associated with (P):

L : Z × Y ∗ 7→ R1, L(z, λ) = F (z)− ϕ∗(z)λ.(2.8)

We assume that
(I.3) there exists a Lagrange multiplier λ0 ∈ Y ∗ associated with z0 such that the

following Kuhn–Tucker conditions hold:

DzL(z0, λ0) := DzF (z0)−Dzϕ
∗(z0)λ0 = 0,

(λ0, ϕ(z0))Ŷ = 0, λ0 ∈ K+.
(2.9)

It follows from (I.2) (cf. Lemma 3.1 and Theorem 4.8 in [12]) that λ0 is defined
uniquely and it belongs to Ŷ . We assume that λ0 is more regular. Namely,

(I.4) λ0 ∈ Y.
By (I.2) and (I.4) we have D2

zzL(z0, λ0) ∈ L(Ẑ, Ẑ∗) and

|(D2
ZZL(z0, λ0)x, z)Ẑ | ≤ c‖x‖Ẑ‖z‖Ẑ for all x, z ∈ Ẑ.(2.10)

In a way similar to (2.4), for λ ∈ K+ we define

Nλ = (K+ + [λ]) ∩ (−K+ + [λ]),(2.11)

denote N0 := Nλ0 , and assume that
(I.5) there exist a subspace N ⊂ N0 ⊂ Y ∗ and a constant γ > 0 such that

(D2
zzL(z0, λ0)z, z)Ẑ ≥ γ‖z‖2Ẑ

for all z ∈ E0 := {z ∈ Ẑ | Dzϕ(z0)z ∈ N̂⊥},
(2.12)

where N̂⊥ is the closure in Ŷ of the subspace {y ∈ Y | (λ, y)Ŷ = 0 for all λ ∈ N}.
Moreover, there exists σ > 0 such that

Λ0 ∩ (K+ +N) ⊂ K+,(2.13)

where Λ0 = {λ ∈ Y | []λ− λ0[]Y ≤ σ}. We also require that

[]y⊥[]Y ≤ c[]y[]Y for all y ∈ Y,(2.14)
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where y⊥ denotes the projection of y onto N̂⊥ orthogonal in Ŷ . Note that it follows
from (2.9) that

M ⊂ N̂⊥.(2.15)

Remark 2.1. Condition (I.5) is a counterpart of the SSC in finite-dimensional
mathematical programs (cf., e.g., [8, 9, 26]), since we require that coercivity is satisfied
on a whole subspace. We are interested in this type of condition, having in mind
further applications in stability analysis. A counterpart of the second-order sufficient
optimality condition for finite-dimensional mathematical programs (cf., e.g., [3]) is
used in [2], where in our terminology it is assumed that coercivity condition (2.12) is
satisfied on the more narrow set

{z ∈ Z | ϕ(z0) +Dzϕ(z0)z ∈ N̂⊥ ∩K, []z − z0[]Z ≤ β for some β > 0}.

In this context we should mention another similar but not identical sufficient opti-
mality condition, which was introduced in pioneering papers by Maurer and Zowe
[18] and Maurer [16] and later used in [27]. In [16] it is assumed that the coercivity
condition (2.12) is satisfied on the set

{z ∈ Z | Dzϕ(z0)z ∈ K + [ϕ(z0)], (Dzϕ
∗(z0)λ0, z)Ẑ ≤ β‖z‖Ẑ for some β > 0}.

Remark 2.2. A condition similar to (2.12) was introduced in [11]. However, in
that case only the one-norm situation was considered, whereas (2.12) constitutes the
essence of the so called two-norm discrepancy for (P). Namely, the problem is well
defined and differentiable in the stronger topology of space Y , whereas the coercivity
condition (2.12) is satisfied only in the weaker norm Ŷ , in which problem (P) is not
differentiable.

In assumption (I.5) the additional condition (I.4) on regularity of the Lagrange
multiplier is crucial. It allows us to formulate stability condition (2.13) for a neigh-
borhood Λ0 in the stronger topology of Y , rather than in the topology of the dual
space Y ∗, as was done in [11].

The following theorem is actually a weakened version of Theorem 1 in [2]. For
the sake of completeness, the proof of the theorem based on that in [2] is given in
Appendix A. Later, some elements of this proof will be used in the proof of Proposition
4.5.

THEOREM 2.3. If assumptions (I.1)–(I.5) hold, then there exist constants ρ1 > 0
and γ1 > 0 such that

F (z) ≥ F (z0) + γ1‖z − z0‖2Ẑ
for all feasible z ∈ Oρ1

0 := {z ∈ Z | []z − z0[]Z < ρ1};
(2.16)

i.e., z0 is a locally unique minimizer of (P).
To illustrate the nature of the abstract assumptions (I.1)–(I.5), let us consider

the following simple example:

(E) min
z∈L∞(0,1)

F (z) :=
∫ 1

0
f(z(t))dt subject to ϕ(z(t)) ≥ 0 for all t ∈ [0, 1],

where f(·) and ϕ(·) are twice continuously differentiable.
To put (E) in the framework of (P) we define Z = Y = L∞(0, 1), Ẑ = Ŷ =

L2(0, 1), and K = {y ∈ L∞(0, 1) | y(t) ≥ 0 for all t ∈ [0, 1]}. It is easy to see that
conditions (I.1) are satisfied.
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Let z0 ∈ L∞(0, 1) be a feasible element. For α ≥ 0 introduce the set Ωα = {t ∈
[0, 1] | z0(t) < α} and define the set M in (I.2) as

M = {y ∈ L∞(0, 1) | y(t) = 0 for all t ∈ [0, 1] \ Ωᾱ},
where ᾱ > 0 is an arbitrary number.

It is easy to see that condition (I.2) is satisfied if

Dzϕ(z0(t)) 6= 0 for all t ∈ Ωᾱ.(2.17)

Let us introduce the following Lagrangian:

L(z, λ) =
∫ 1

0
`(z(t), λ(t))dt =

∫ 1

0
[f(z(t))− λ(t)ϕ(z(t))] dt.

Conditions (I.3) and (I.4) amounts to the existence of a Lagrange multiplier λ0 ∈
L∞(0, 1) such that the Kuhn–Tucker conditions are satisfied:

DzL(z0, λ0) = 0,
λ0(t)z0(t) = 0, λ0(0) ≥ 0 for all t ∈ [0, 1].

By (2.17) the Lagrange multiplier λ0 is defined uniquely.
For σ ≥ 0 introduce the set Ξσ = {t ∈ [0, 1] | λ0(t) > σ}, and define the set N in

(I.5) as

N = {λ ∈ L∞(0, 1) | λ(t) = 0 for all t ∈ [0, 1] \ Ξσ̄},
where σ̄ > 0 is an arbitrary number.

Condition (I.5) is satisfied if γ > 0 exists such that

(DzzL(z0, λ0)z, z) ≥ γ for all z ∈ {z ∈ L2(0, 1) | (λ, z) = 0 for all λ ∈ N}, i.e.,

Dzz`(z0(t), λ0(t)) ≥ γ > 0 for all t ∈ [0, 1] \ Ξσ̄.(2.18)

It should be stressed that, except some technicalities, the nature of assumptions (I.2)
and (I.5) for optimal control problems is the same as (2.17) and (2.18).

3. Optimal control problems: Constraint qualifications. In this section
we consider a class of optimal control problems for nonlinear ordinary differential equa-
tions and discuss conditions under which constraint qualifications (I.2) of the abstract
problem (P) are satisfied. The problems considered are quite general. They are sub-
ject to mixed initial-terminal constraints as well as to pointwise inequality constraints,
both mixed control-state and pure state. Hence they include problems considered in
[1, 2, 12] (pure control constraints), in [15, 17, 22, 30] (mixed constraints), and in
[11, 13, 23] (state constraints).

Our model optimal control problem is the following:

(O) Find (x0, u0) ∈W 1,∞(0, T ;Rn)× L∞(0, T ;Rm) such that

F (x0, u0) = min

{
F (x, u) :=

∫ T

0
f0(x(t), u(t))dt+ g(x(T ))

}
(3.1)

subject to
ẋ(t)− f(x(t), u(t)) = 0 for a.a. t ∈ [0, T ],(3.2)
ξ(x(0), x(T )) = 0,(3.3)
θ(x(t), u(t)) ≤ 0 for a.a. t ∈ [0, T ],(3.4)
ϑ(x(t)) ≤ 0 for all t ∈ [0, T ],(3.5)

where ξ : Rn × Rn 7→ Rd, θ : Rn × Rm 7→ Rk, ϑ : Rn 7→ Rl.
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Denote by I = {1, ..., k} and J = {1, ..., l} the sets of indices of constraints.
It is assumed that
(II.1) functions f0(·, ·), g(·), f(·, ·), ξ(·, ·), θ(·, ·), ϑ(·) and Dxϑ(·) are twice Fréchet

differentiable in all arguments, and the respective derivatives are locally Lipschitz
continuous.
We assume that for a fixed feasible point (x0, u0), at which we will find sufficient
optimality conditions, the following regularity condition is satisfied:

(II.2) u0 is a piecewise continuous function with finite number of discontinuity
points tk.

In order to represent (O) in form (P) we put

Z = W 1,∞(0, T ;Rn)× L∞(0, T ;Rm), Ẑ = W 1,2(0, T ;Rn)× L2(0, T ;Rm).

For z = (x, u) belonging to Z or Ẑ we define the norms

[]z[]Z = max{‖x‖1,∞, ‖u‖∞} and ‖z‖Ẑ = {‖x‖21,2 + ‖u‖22}
1
2 .

Moreover we put

F (z) = F (x, u), ϕ(z) = (ẋ− f(x, u), ξ(x(0), x(T )),−θ(x, u),−ϑ(x)).

Hence it is natural to choose

Y = L∞(0, T ;Rn)× Rd × L∞(0, T ;Rk)×W 1,∞(0, T ;Rl),
Ŷ = L2(0, T ;Rn)× Rd × L2(0, T ;Rk)×W 1,2(0, T ;Rl),

with

K = K1 ×K2 ×K3 ×K4,(3.6)

where

K1 = {0}, K2 = {0},

K3 = {u ∈ L∞(0, T ;Rk) | ui(t) ≥ 0, i = 1, . . . , k, for a.a. t ∈ [0, T ]},

K4 = {x ∈W 1,∞(0, T ;Rl) | xj(t) ≥ 0, j = 1, . . . , l, for all t ∈ [0, T ]}.

The cone K̂ is defined as in (3.6) but with Y substituted by Ŷ .
For y = (p, q, r, s) belonging to Y or Ŷ we define the norms

[]y[]Y = max{‖p‖∞, |q|, ‖r‖∞, ‖s‖1,∞} and ‖y‖Ŷ = {‖p‖22 + |q|2 + ‖r‖22 + ‖s‖21,2}
1
2 .

As in section 2, we denote X = Z × Y and X̂ = Ẑ × Ŷ .
Note that by (II.1) conditions (I.1) are satisfied. Now we will formulate conditions

under which (I.2) holds.
To simplify notation we put

A(t) := Dxf(x0(t), u0(t)), B(t) := Duf(x0(t), u0(t)),
Ξ0 := Dx(0)ξ(x0(0), x0(T )), ΞT := Dx(T )ξ(x(0), x0(T )),
Θx(t) := Dxθ(x0(t), u0(t)), Θu(t) := Duθ(x0(t), u0(t)),
Υ(t) := Dxϑ(x0(t)).

(3.7)
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Moreover denote by

Ia(t) = {i ∈ I | θi(x0(t), u0(t)) = 0}, Ja(t) = {j ∈ J | ϑj(x0(t)) = 0}

the sets of indices of active constraints.
For α ≥ 0 we introduce the sets

Ψi
α :=

{
t ∈ [0, T ] | θi(x0(t), u0(t)) < −α

}
, i = 1, ..., k,

Ωjα :=
{
t ∈ [0, T ] | ϑj(x0(t)) < −α

}
, j = 1, ..., l,

(3.8)

and define the following functions

ψiα(t) =
{
θi(x0(t), u0(t)) + α if t ∈ Ψi

α,
0 if t 6∈ Ψi

α
(3.9)

and

ωjα(t) =
{
ϑj(x0(t)) + α if t ∈ Ωjα,
0 if t 6∈ Ωjα.

(3.10)

We introduce the (k × k) and (l × l) diagonal matrices

Uα(t) = diag ψiα(t), Tα(t) = diag ωjα(t)(3.11)

and define (k + l)× (m+ k + l) matrices

Vα(t) =
[

Θu(t) Uα(t) 0
Υ(t)B(t) 0 Tα(t)

]
.(3.12)

Let us choose any α ≥ 0 and define the subspace Mα ⊂ Y by

Mα = Mα
1 ×Mα

2 ×Mα
3 ×Mα

4 ,(3.13)

where

Mα
1 = 0, Mα

2 = 0,
Mα

3 =
{
u ∈ L∞(0, T ;Rk) | ui(t) = 0 for all t ∈ [0, T ] \Ψi

α, i = 1, ..., k
}
,

Mα
4 =

{
x ∈W 1,∞(0, T ;Rl) | xj(t) = 0 for all t ∈ [0, T ] \ Ωjα, j = 1, ..., l

}
.

It is easy to see that for any α > 0, Mα ⊂M0, where M0 is defined in (2.4). Moreover,
if we choose as Yα0 ⊂ Y the open ball of radius α/2 about y0 = ϕ(z0), then (2.6) is
satisfied.

Define the mapping Πα := (Πα
1 ,Π

α
2 ,Π

α
3 ,Π

α
4 ) : Y 7→Mα by

Πα
1 = 0, Πα

2 = 0,
(Πα

3 y)(t) = Uα(t)y(t), (Πα
4 y)(t) = Tα(t)y(t).(3.14)

Condition (I.2) will be fully satisfied if we are able to show that there exists α > 0
such that for Π := Πα surjectivity conditions (2.5) hold. We assume that

(II.3) there exists β > 0 such that

|V0(t)V0(t)∗χ| ≥ β|χ|(3.15)

for all χ ∈ Rk+l and all t ∈ [0, T ].
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(II.4) For any q̃ ∈ Rd+l an element (η, υ) ∈W 1,∞(0, T ;Rn+l)×L∞(0, T ;Rm+k+l)
exists such that the following equations hold (the complete controllability condition
is satisfied):

η̇(t)− Ã(t)η(t)− B̃(t)υ(t) = 0,
P̃0η(0) + P̃T η(T ) = q̃,

(3.16)

where

Ã(t) =

[
Ã11(t) Ã12(t)
Ã21(t) Ã22(t)

]
,

Ã11(t) = A(t)−B(t)
[

Θu(t)∗ B(t)∗Υ(t)∗
]

[V0(t)V0(t)∗]−1

×
[

Θx(t)
Υ(t)A(t) + Υ̇(t)

]
,

Ã12(t) = −B(t)
[

Θu(t)∗ B(t)∗Υ(t)∗
]

[V0(t)V0(t)∗]−1
[

0
Ṫ0(t)

]
,

Ã21(t) =
[

0 T0(t)∗
]

[V0(t)V0(t)∗]−1
[

Θx(t)
Υ(t)A(t) + Υ̇(t)

]
,

Ã22(t) =
[

0 T0(t)∗
]

[V0(t)V0(t)∗]−1
[

0
Ṫ0(t)

]
,

B̃(t) =
[
B(t) 0 0

0 0 I

]
−
[
B(t)Θu(t)∗ B(t)B(t)∗Υ(t)∗

0 T0(t)∗

]
× [V0(t)V0(t)∗]−1

V0(t),

P̃0 =
[

Ξ0 0
Υ(0) T0(0)

]
, P̃T =

[
ΞT 0
0 0

]
.

Remark 3.1. Condition (II.3) means that all gradients Duθ
i(x0(t), u0(t)), i ∈

Ia(t), of the active mixed constraints and all gradients Dxϑ
j(x0(t)), j ∈ Ja(t), of

the active state constraints, transformed into the space Rm by means of the mapping
B∗(t) : Rn 7→ Rm, are jointly linearly independent, uniformly on [0, T ]. This condition
implies that we restrict ourselves to the first-order state constraints (cf. [6]).

Remark 3.2. By a standard argument we find that system (3.16) is completely
controllable if and only if the following rank condition is satisfied:

rank

{
[P̃0 + P̃TΦ(T )][P̃0 + P̃TΦ(T )]∗ +

∫ T

0
G(t)G(t)∗dt

}
= d+ l,(3.17)

where Φ is the solution of the homogeneous matrix equation

Φ̇(t) = Ã(t)Φ(t), Φ(0) = I,

and G(t) = P̃TΦ(T )Φ(t)−1B̃(t).
LEMMA 3.3. If assumptions (II.3) and (II.4) are satisfied, then there exists α > 0

such that the mapping Π := Πα defined by (3.14) satisfies conditions (I.2).
Proof. Condition (2.6) is satisfied by construction of Πα, so it remains to check

(2.5). We will prove the first equation in (2.5). The proof of the second one is the
same.
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We have to show that there exist α > 0 such that, for any

p ∈ L∞(0, T ;Rn), q ∈ Rd,
r ∈ L∞(0, T ;Rk), s ∈W 1,∞(0, T ;Rl),

there exists a solution

σ ∈ L∞(0, T ;Rm), ζ ∈W 1,∞(0, T ;Rn),
ρ ∈ L∞(0, T ;Rk), τ ∈W 1,∞(0, T ;Rl)

of the following system of equations:

ζ̇(t)−A(t)ζ(t)−B(t)σ(t) = p(t),(3.18)

Ξ0ζ(0) + ΞT ζ(T ) = q,(3.19)

Θx(t)ζ(t) + Θu(t)σ(t) + Uα(t)ρ(t) = r(t),(3.20)

Υ(t)ζ(t) + Tα(t)τ(t) = s(t).(3.21)

First we will show that (3.18)–(3.21) have a solution for α = 0. From the proof it will
follow that it also has a solution for a sufficiently small α > 0.

Note that (3.21) is equivalent to

Υ(0)ζ(0) + T0τ(0) = s(0),(3.22)

Υ̇(t)ζ(t) + Υ(t)ζ̇(t) + Ṫ0(t)τ(t) + T0(t)τ̇(t) = ṡ(t).(3.23)

Multiplying (3.18) by Υ(t) and using (3.23) we obtain

Υ(t)B(t)σ(t) + T0(t)τ̇(t)

= (ṡ(t)−Υ(t)p(t))− (Υ(t)A(t) + Υ̇(t))ζ(t)− Ṫ0(t)τ(t).
(3.24)

Combining (3.20) and (3.24) yields

V0

 σ(t)
ρ(t)
τ̇(t)

 :=
[

Θu(t)σ(t) + U0(t)ρ(t)
Υ(t)B(t)σ(t) + T0(t)τ̇(t)

]

=
[
r(t)−Θx(t)ζ(t)
(ṡ(t)−Υ(t)p(t))− (Υ(t)A(t) + Υ̇(t))ζ(t)− Ṫ0(t)τ(t)

]
.

(3.25)

By (II.3), any solution of (3.25) can be expressed in the form σ(t)
ρ(t)
τ̇(t)

 = V0(t)∗[V0(t)V0(t)∗]−1

×
[
r(t)−Θx(t)ζ(t)
(ṡ(t)−Υ(t)p(t))− (Υ(t)A(t) + Υ̇(t))ζ(t)− Ṫ0(t)τ(t)

]
+
(
I − V0(t)∗[V0(t)V0(t)∗]−1V0(t)

)
υ(t),

(3.26)

where υ(t) ∈ Rm+k+l is an arbitrary vector.
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Combining (3.18) with the first and the third row of (3.26) we obtain[
ζ̇(t)
τ̇(t)

]
−
[
Ã11(t) Ã12(t)

Ã21(t) Ã22(t)

] [
ζ(t)
τ(t)

]
−
[
B̃1(t)
B̃2(t)

]
υ(t) =

[
C̃1(t)
C̃2(t)

]
,(3.27)

where Ãij and B̃(t) = [ B̃1(t)
B̃2(t)

] are given in (3.16) and

[
C̃1(t)
C̃2(t)

]
=
[
B(t)Θu(t)∗ B(t)B(t)∗Υ(t)∗

0 T0(t)∗

]

× [V0(t)V0(t)∗]−1
[

r(t)
ṡ(t)−Υ(t)p(t)

]
+
[
p(t)

0

]
.

On the other hand from (3.19) and (3.22) we obtain

P̃0

[
ζ(0)
τ(0)

]
+ P̃T

[
ζ(T )
τ(T )

]
=
[

q
s(0)

]
.(3.28)

It is easy to see that for any (p, q, r, s) there exists a control function υ as well as
functions ζ and τ such that (3.27) along with (3.28) is satisfied if and only if (II.4)
holds. Having (ζ, τ, υ) we find σ and ρ from the first two rows of (3.26).

Thus, we have proved that (3.18)–(3.21) are satisfied for α = 0. Now we will
briefly show that these equations are also satisfied for sufficiently small α > 0.

By (II.2), (II.3), and slight modification of Lemma 7.2 in [12], we find that for
α > 0 sufficiently small

|Vα(t)Vα(t)∗χ| ≥ 1
2
β|χ|

for all χ ∈ Rk+l and all t ∈ [0, T ].
Hence we can repeat the above argument with 0 substituted by α > 0 to obtain

(3.27) and (3.28), where all data are functions of α. The matrix on the left-hand side
of (3.17) becomes a continuous function of α, so shrinking α, if necessary, we find that
the rank condition is satisfied. This completes the proof of the lemma.

Remark 3.4. Note that Lemma 3.3 assures that conditions (II.3) and (II.4), orig-
inally assumed at α = 0, actually are satisfied with some “margin of freedom” α > 0.
This result was proven using the assumption (II.2) of piecewise continuity of u0. It
allows us to verify the abstract assumption (I.2), and in section 5 it will play a crucial
role in stability analysis.

4. SSC for optimal control problems. This section is devoted to deriving
SSC.

Let us introduce the following Lagrangian associated with (O):

L : W 1,∞(0, T ;Rn)× L∞(0, T ;Rm)× (L∞(0, T ;Rn))∗ × Rd

×
(
L∞(0, T ;Rk)

)∗ × (W 1,∞(0, T ;Rl)
)∗ 7→ R1,

L(x, u, q, ρ, κ, µ) = F (x, u) + (q, ẋ− f(x, u)) + 〈ρ, ξ(x(0), x(T ))〉

+(κ, θ(x, u)) + 〈µ(0), ϑ(x(0))〉+ (µ̇,Dxϑ(x)f(x, u)).

(4.1)
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Note that the Lagrangian is in the so-called Pontryagin form with absolutely continu-
ous adjoint function q (cf. section 7 in [6] as well as [5] and [19]). The state constraints
are considered in W 1,∞(0, T ;Rl), where the general form of a linear functional is given
by 〈µ(0), y(0)〉+ (µ̇, ẏ). Accordingly, the terms of Lagrangian (4.1) corresponding to
the state constraints (3.5) are obtained as follows:

〈µ(0), ϑ(x(0))〉+
(
µ̇0,

d

dt
ϑ(x)

)
= 〈µ(0), ϑ(x(0))〉+ (µ̇0, Dxϑ(x)ẋ)

= 〈µ(0), ϑ(x(0))〉+ (µ̇0, Dxϑ(x)f(x, u)).

As in (I.3) we assume that
(II.5) there exist Lagrange multipliers (q0, ρ0, κ0, µ0) ∈ Y ∗ associated with (x0, u0)

such that the following Kuhn–Tucker conditions are satisfied:

DxL(x0, u0, q0, κ0, ρ0, µ0) = 0,(4.2)
DuL(x0, u0, q0, κ0, ρ0, µ0) = 0,(4.3)
(κ0, θ(x0, u0)) = 0, κ0 ∈ K+

3 ,(4.4)
〈µ0(0), ϑ(x0(0))〉+ (µ̇0, Dxϑ(x0)f(x0, u0)) = 0, µ0 ∈ K+

4 .(4.5)

By Lemma 3.3 the multipliers (q0, ρ0, κ0, µ0) are defined uniquely and belong to
Ŷ .

Recall (cf. [21]) that

K̂+
4 = {µ ∈W 1,2(0, T : Rn) | µj(t) ≥ 0, µ̇j(t) is nonincreasing

and 0 ≤ µ̇j(t) ≤ µj(t), j ∈ J}.(4.6)

Let us introduce the following augmented Hamiltonian:

H(t) = f0(x0(t), u0(t))− 〈q0(t), f(x0(t), u0(t)〉

+〈κ0(t), θ(x0(t), u0(t))〉+ 〈µ̇0(t), Dxϑ(x0(t))f(x0(t), u0(t)〉.
(4.7)

Condition (4.2) takes on the form of the adjoint equation

q̇0(t)−DxH(t) = 0,

along with the boundary conditions

−q0(0) +Dx(0)ξ(x0(0), x0(T ))∗ρ0 +Dxϑ(x0(0))∗µ0(0) = 0,

q0(T ) +Dx(T )ξ(x0(0), x0(T ))∗ρ0 +Dxg(x0(T )) = 0,

while (4.3) can be expressed as

DuH(t) = 0 for a.a. t ∈ [0, T ].

The Hessian of Lagrangian (4.1), evaluated at the reference point, can be expressed
in terms of Hamiltonian (4.7) as follows:(

(y, v),
(
D2
xxL0 D2

xuL0
D2
uxL0 D2

uuL0

)
(y, v)

)
=
∫ T

0

[
y(t)
v(t)

]∗ [
D2
xxH(t) D2

xuH(t)
D2
uxH(t) D2

uuH(t)

] [
y(t)
v(t)

]
dt

+
[
y(0)
y(T )

]∗ [ R11 R12
R21 R22

] [
y(0)
y(T )

]
,

(4.8)
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where L0 := L(x0, u0, q0, ρ0, κ0, µ0) and

R11 = D2
x(0)x(0)ξ(x0(0), x0(T ))ρ0 +D2

xxϑ(x0(0))∗µ0(0),

R12 = R∗21 = D2
x(0)x(T )ξ(x0(0), x0(T ))ρ0,

R22 = D2
x(T )x(T )ξ(x0(0), x0(T ))ρ0 +D2

xxg(x0(T )).

We have to show that (4.8) is positive definite on the subspace defined in (I.5). We are
going to construct this subspace. To this end we need several technical results. Let us
start with the discussion of the regularity of primal and dual optimal variables. Using
the same argument as in [5] we obtain the following regularity of the multipliers.

LEMMA 4.1. If (II.1)–(II.5) are satisfied, then q̇0, κ0, and µ̇0 are continuous and
uniformly bounded on all subintervals (tk, tk+1) ⊂ [0, T ].

Assume that the following modified Legendre–Clebsch condition is satisfied:

〈u,D2
uuH(t)u〉 ≥ γ|u|2, γ > 0,(4.9)

for all

u ∈ {u ∈ Rm |〈Duθ
i(x0(t), u0(t), h0), u〉 = 0 for all i ∈ I0(t),

〈Dxϑ
j(x0(t), h0)Duf(x0(t), u0(t), h0), u〉 = 0 for all j ∈ J0(t)}

and for all t ∈ [0, T ].
Using the same argument as in [5] (cf. also [13]) we obtain the following regularity

result.
LEMMA 4.2. If (II.1)–(II.5) and (4.9) are satisfied, then (u0, q̇0, κ0, µ̇0) are uni-

formly Lipschitz continuous functions on all subintervals (tk, tk+1) ⊂ [0, T ].
Note that strict complementarity condition for state constraints at some t amounts

to −µ̈0(t) > 0. In order to construct the subspace N needed in (I.5) we introduce
the sets of indices I+

α (t) and J+
α (t) of those constraints active at t for which strict

complementarity condition is satisfied with the margin α ≥ 0 :

I+
α (t) = {i ∈ Ia(t) | κi0(t) > α}, J+

α (t) = {j ∈ Ja(t) | − µ̈j0(t) > α}.(4.10)

Let us define the following subspaces of Rm:

Dα(t) = {u ∈ Rm | 〈Duθ
i(x0(t), u0(t)), u〉 = 0 for i ∈ I+

α (t)},
Eα(t) = {u ∈ Rm | 〈Dxϑ

j(x0(t))Duf(x0(t), u0(t)), u〉 = 0
for j ∈ J+

α (t)},
Gα(t) = Dα(t) ∩ Eα(t).

(4.11)

Now we are in a position to introduce subspace N needed in (I.5). We put

N = N1 ×N2 ×N3 ×N4,

N1 = L∞(0, T ;Rn), N2 = Rd,
N3 = {θ ∈ L∞(0, T ;Rk) | θi(t) = 0 for i 6∈ I+

α (t)},
N4 = {µ ∈W 2,∞(tk, tk+1;Rl) | µ̈j(t) = 0 for j 6∈ J+

α (t)},

(4.12)

where α > 0, and W 2,∞(tk, tk+1;Rl) is the space of absolutely continuous functions
that are of class W 2,∞ on each subinterval (tk, tk+1), supplied with the norm

‖x‖2,∞ = max{|x(0)|, |ẋ(0)|, |ẋ(tk)|, ‖ẍ‖∞}.
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The subspace N defined in (4.12) does not fully correspond to that defined in (I.5),
since N4 is a closed subspace in W 2,∞(tk, tk+1;Rl) rather than in W 1,∞(0, T ;Rl).
Accordingly, Λ0 in (2.13) is the ball of radius α/2 in the space

Ỹ = L∞(0, T ;Rn)× Rd × L∞(0, T ;Rk)×W 2,∞(tk, tk+1;Rl).

Note that for j ∈ J+
0 (t) we have

d

dt
ϑj(x0(t)) = Dxϑ

j(x0(t))ẋ0(t) = Dxϑ
j(x0(t))f(x0(t), u0(t)) = 0.(4.13)

Hence we can use the mixed constraints (4.13), rather than the pure state constraints
(3.5), to define the subspace E0 in (2.12). Namely E0 is defined as the set of all pairs
(y, v) ∈W 1,2(0, T ;Rn)× L2(0, T ;Rm) such that

ẏ(t)−A(t)y(t)−B(t)v(t) = 0,(4.14)

Ξ0y(0) + ΞT y(T ) = 0,(4.15)

Θα
x (t)y(t) + Θα

u(t)v(t) = 0,(4.16)

Cα(t)y(t) + Υα(t)B(t)v(t) = 0,(4.17)

where Θα
x (t) (respectively, Θα

u(t)) is the matrix whose rows are the functionsDxθ
i(x0(t),

u0(t)) (respectively, Duθ
i(x0(t), u0(t))) for i ∈ I+

α (t). The rows of matrices Cα(t) and
Υα(t) are given by

Cj(t) = D2
xxϑ

j(x0(t))f(x0(t), u0(t)) +Dxϑ
j(x0(t))Dxf(x0(t), u0(t))

and Dxϑ
j(x0(t)), respectively, for j ∈ J+

α (t).
We have to find conditions under which the quadratic form (4.8) is positive definite

on the subspace of pairs satisfying (4.14)–(4.17).
We will need a coercivity condition stronger than (4.9), satisfied with some “mar-

gin of freedom.” Namely, we assume that
(II.6) there exists a constant ᾱ > 0 such that

〈u,D2
uuH(t)u〉 ≥ γ|u|2 for all u ∈ Gᾱ(t) and all t ∈ [0, T ].(4.18)

Remark 4.3. We are not going to discuss here conditions under which (4.18)
satisfied for ᾱ = 0 is satisfied also for some ᾱ > 0. The reader can find such a
discussion in section 4 of [2].

For any α > 0, let us define the matrix

Kα(t) =

 D2
uuH(t) Θα

u(t)∗ B(t)∗Υα(t)∗

Θα
u(t) 0 0

Υα(t)B(t) 0 0

 .(4.19)

By (II.3) matrix [ Θα
u(t)∗ B(t)∗Υα(t)∗ ] has the full row rank, whereas by (II.6)

matrix D2
uuH(t) is positive definite on the subspace generated by the columns of

[ Θα
u(t)∗ B(t)∗Υα(t)∗ ] for any α ≤ ᾱ. Hence for any α ≤ ᾱ, matrix Kα(t) is non-

singular (cf., e.g., Lemma 3.2 in [5]).
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Let us introduce the following matrix Riccati equation for a symmetric (n × n)-
matrix function Q (cf. [15]):

Q̇(t) = Rᾱ(Q(t)) := −Q(t)A(t)−A(t)∗Q(t)−D2
xxH(t)

+


 D2

uxH(t)
Θᾱ
x (t)

Cᾱ(t)

∗ +Q(t)

 B(t)∗

0
0

∗
× Kᾱ(t)−1


 B(t)∗

0
0

Q(t) +

 D2
uxH(t)
Θᾱ
x (t)

Cᾱ(t)

 .

(4.20)

The following assumption is crucial for obtaining coercivity of (4.8).
(II.7) The Riccati equation (4.20) has a solution Q bounded on [0, T ], which

satisfies the following boundary condition:

[
y(0)
y(T )

]∗ [ R11 +Q(0) R12

R21 R22 −Q(T )

] [
y(0)
y(T )

]
> 0

for all (y(0), y(T )) such that Ξ0y(0) + ΞT y(T ) = 0.

(4.21)

LEMMA 4.4. If (II.1)–(II.7) are satisfied, then there exists γ̄ > 0 such that

(
(y, v),

(
D2
xxL0 D2

xuL0

D2
uxL0 D2

uuL0

)
(y, v)

)
≥ γ̄(‖y‖22 + ‖v‖22)

for all (y, v) satisfying (4.14)–(4.17) with α = ᾱ.

(4.22)

Proof. We will follow the idea of the proof of Lemma 4.2 in [15].
Let Q : [0, T ] 7→ Rn×n be any Lipschitz continuous symmetric matrix function.

By a direct computation, using integration by parts, we find that for any pair (y, v)
satisfying (4.14) we have

∫ T

0

[
y(t)
v(t)

]∗ [
D2
xxH(t) D2

xuH(t)
D2
uxH(t) D2

uuH(t)

] [
y(t)
v(t)

]
dt

=
∫ T

0

[
y(t)
v(t)

]∗

×
[
Q̇(t) +Q(t)A(t) +A(t)∗Q(t) +D2

xxH(t) D2
xuH(t) +Q(t)B(t)

D2
uxH(t) +B(t)∗Q(t) D2

uuH(t)

]

×
[
y(t)
v(t)

]
dt+ y(0)∗Q(0)y(0)− y(T )∗Q(T )y(T ).
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Hence, using (4.8) we obtain(
(y, v),

(
D2
xxL0 D2

xuL0
D2
uxL0 D2

uuL0

)
(y, v)

)

=
∫ T

0

[
y(t)
v(t)

]∗

×
[
Q̇(t) +Q(t)A(t) +A(t)∗Q(t) +D2

xxH(t) D2
xuH(t) +Q(t)B(t)

D2
uxH(t) +B(t)∗Q(t) D2

uuH(t)

]

×
[
y(t)
v(t)

]
dt+

[
y(0)
y(T )

]∗ [ R11 +Q(0) R12
R21 R22 −Q(T )

] [
y(0)
y(T )

]
,

(4.23)

and if Q is such that (4.21) is satisfied, then to show (4.22) it is enough to prove that
the integral term in (4.23) is coercive for (y, v) satisfying (4.14)–(4.17).

To this end, let us introduce slack variables w ∈ Ri(t) and z ∈ Rj(t), where
i(t) = card I+

ᾱ (t), j(t) = card J+
ᾱ (t). Define the following quadratic form, which is the

augmented integrant in (4.23):
y
v
w
z


∗

P ᾱ(t)


y
v
w
z


=
[
y
v

]∗ [
Q̇(t) +Q(t)A(t) +A(t)∗Q(t) +D2

xxH(t) D2
xuH(t) +Q(t)B(t)

D2
uxH(t) +B(t)∗Q(t) D2

uuH(t)

]
×
[
y
v

]
+ 2w∗[Θᾱ

x (t)y + Θᾱ
u(t)v] + 2z∗[Cᾱ(t)y + Υᾱ(t)B(t)v)],

(4.24)
where P ᾱ(t) is (n+m+ i(t) + j(t))-dimensional square matrix given by

P ᾱ(t) =
[
M(t) N ᾱ(t)∗

N ᾱ(t) Kᾱ(t)

]
,

with

M(t) = Q̇(t) +Q(t)A(t) +A(t)∗Q(t) +D2
xxH(t),

N ᾱ(t) =

 B(t)∗

0
0

Q(t) +

 D2
uxH(t)
Θᾱ
x (t)

Cᾱ(t)

 .
Consider the subspace V(t) ⊂ Rn+m+i(t)+j(t) on which P ᾱ(t) is positive definite. Let
π(S) denote the number of positive eigenvalues of a symmetric matrix S. By Theorem
1 in [7], it follows that

π(P ᾱ(t)) = π(Kᾱ(t)) + π(M(t)−N ᾱ(t)∗Kᾱ(t)−1N ᾱ(t)).

If (II.7) holds, then by stability results for ODEs there exist ε > 0 and a Lipschitz
continuous matrix function Q̃ such that the Riccati equation

˙̃
Q(t) = Rᾱ(Q̃(t)) + εIn
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is satisfied along with (4.21), where Rᾱ(·) is given by the right-hand side of the Riccati
equation (4.20). Putting the matrix Q̃(t) into (4.24) we obtain

M(t)−N ᾱ(t)∗Kᾱ(t)−1N ᾱ(t) = εIn, i.e., π(M(t)−N ᾱ(t)∗Kᾱ(t)−1N ᾱ(t)) = n.

On the other hand, (II.3) and (II.6) yield

π(Kᾱ(t)) ≥ m− i(t)− j(t).

Hence we get

π(P ᾱ(t)) ≥ n+m− i(t)− j(t);(4.25)

i.e., there exists a subspace

V(t) ⊂ Rn+m+i(t)+j(t), dim V(t) ≥ n+m− i(t)− j(t),

which is generated by appropriate eigenvectors of P ᾱ(t), such that the quadratic form
(4.24) is positive definite on V(t). The right-hand side of (4.24) shows that on V(t)
we must have

either wi = 0 or Θi
x(t)y + Θi

u(t)v = 0 for all i ∈ I+
ᾱ (t)

and either zj = 0 or Cj(t)y + Υj(t)B(t)v) = 0 for all j ∈ J+
ᾱ (t).

(4.26)

Let λ̄ 6= 0 be any nonzero eigenvalue of P ᾱ(t) and (ȳ∗, v̄∗, w̄∗, z̄∗) be the corresponding
eigenvector, i.e.,

P ᾱ(t)


ȳ
v̄
w̄
z̄

 = λ̄


ȳ
v̄
w̄
z̄

 .
By definition of P ᾱ(t), the last i(t) + j(t) rows of this equation take on the form

Θᾱ
x (t)ȳ + Θᾱ

u(t)v̄ = λ̄w̄, Cᾱ(t)ȳ + Υᾱ(t)B(t)v̄ = λ̄z̄.

In view of (4.26), it implies

Θᾱ
x (t)ȳ + Θᾱ

u(t)v̄ = 0 and w̄ = 0,

Cᾱ(t)ȳ + Υᾱ(t)B(t)v̄ = 0 and z̄ = 0.
(4.27)

Therefore, all eigenvectors corresponding to nonzero eigenvalues belong to (n + m −
i(t)−j(t))-dimensional subspace of (n+m+ i(t)+j(t))-dimensional vectors satisfying
(4.27). In view of (4.25), this subspace coincides with V(t), which means that all
(n+m− i(t)− j(t)) nonzero eigenvalues λ̄ 6= 0 of P ᾱ(t) are positive. Moreover, since
the lower bounds in (II.3) and (II.6) are uniform with respect to t ∈ [0, T ], we can find
a uniform on [0, T ] lower bound γ̄ > 0 for all positive eigenvalues of P ᾱ(t). Hence,
using (4.21), (4.24), and (4.27) we obtain (4.22) from (4.23).

PROPOSITION 4.5. If assumptions (II.1)–(II.7) hold, then there exist constants
ρ1 > 0 and γ1 > 0 such that

F (x, u) ≥ F (x, u) + γ1(‖x− x0‖22 + ‖u− u0‖22)(4.28)
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for all (x, u) satisfying (3.2)–(3.5) and such that

max{‖x− x0‖∞, ‖u− u0‖∞} ≤ ρ1.

Proof. We will follow the idea of the proof of Theorem 2.3.
Note that, for feasible (x, u) the components of the term (κ0, θ(x, u)) in La-

grangian (4.1) can be estimated as follows:

−
∫ T

0
κi0(t)θi(x(t), u(t))dt ≥ −

∫
Liᾱ

κi0(t)θi(x(t), u(t))dt

≥ ᾱ
∫
Liᾱ

|θi(x(t), u(t))|dt,
(4.29)

where

Liα = {t ∈ [0, T ] | i ∈ I+
α (t)} := {t ∈ [0, T ] | κi0(t) > α}.

Similarly, by the regularity of µ0 (cf. Lemma 4.2) and by (4.6), for any feasible (x, u)
and for any component of the last two terms in (4.1) we have

−µj0(0)ϑj(x(0))−
∫ T

0
µ̇j0(t)Dxϑ

j(x(t))f(x(t)), u(t))dt

= −µj0(0)ϑj(x(0))−
∫ T

0
µ̇j0(t)

d

dt
ϑj(x(t))dt

= −(µj0(0)− µ̇j0(0))ϑj(x(0)) + Σk(µ̇(tk+)− µ̇(tk+1−))ϑ(x(tk)

−µ̇j0(T )ϑj(x(T )) +
∫ T

0
µ̈j0(t)ϑj(x(t))dt

≥
∫
P jᾱ

µ̈j0(t)ϑj(x(t))dt ≥ ᾱ
∫
P jᾱ

|ϑj(x(t))|dt,

(4.30)

where

P jα = {t ∈ [0, T ] | j ∈ J+
α (t)} := {t ∈ [0, T ] | − µ̈j0(t) > α}.

Estimates (4.29) and (4.30) show that condition (A.2) in the proof of Theorem 2.3
is satisfied with the norm of Y ∗ substituted by that of L1(0, T ;Rk) × L1(0, T ;Rl).
Hence, using (4.22) we can repeat the further steps of that proof and arrive at (4.28).

Note that it follows from (3.2) that for any feasible (x, u) we have

‖ẋ− ẋ0‖2 ≤ c(‖x− x0‖2 + ‖u− u0‖2), ‖ẋ− ẋ0‖∞ ≤ c(‖x− x0‖∞ + ‖u− u0‖∞).

Hence, from Proposition 4.5 we obtain the following SSC result for (O).
THEOREM 4.6. If assumptions (II.1)–(II.7) hold, then there exist constants ρ > 0

and γ > 0 such that

F (x, u) ≥ F (x0, u0) + γ(‖x− x0‖21,2 + ‖u− u0‖22)(4.31)

for all (x, u) satisfying (3.2)–(3.5) and such that

max{‖x− x0‖1,∞, ‖u− u0‖∞} ≤ ρ.
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Remark 4.7 Theorem 4.6 can be viewed as a generalization of the results due
to Dontchev et al. [2], Maurer and Pickenhain [17], and Zeidan [30] to the optimal
control problems involving pure state-space constraints of order 1. This generalization
is not trivial, since it requires the analysis of regularity of the solutions and Lagrange
multipliers, which is not needed if these constraints are not present.

Without state-space constraints, Theorem 4.6 reduces to the SSC derived in [30],
where a Riccati equation in the form different from but equivalent to (4.20) was used.
In case with pure control constraints only, the result stronger than Theorem 4.6 was
obtained in [2], but without characterization of the coercivity condition (4.22) by a
Riccati equation.

5. Application to stability analysis. In this section the role of second-order
sufficient optimality conditions in stability analysis of solutions to parametric optimal
control problems is briefly discussed. Only the main results are presented. For the
relevant proofs, the reader is refered to the technical report [14].

Let us introduce a Banach space H of parameters and an open set G ⊂ H of
feasible parameters.

Problem (O) is embedded in a family of parametric problems (Oh) depending
upon h ∈ G:

(Oh) Find(xh, uh) ∈W 1,∞(0, T ;Rn)× L∞(0, T ;Rm) such that
F (xh, uh, h) = min{F (x, u, h)

:=
∫ T

0
f0(x(t), u(t), h)dt+ g(x(T ), h)}

subject to
ẋ(t)− f(x(t), u(t), h) = 0 for a.a. t ∈ [0, T ],
ξ(x(0), x(T ), h) = 0,
θ(x(t), u(t), h) ≤ 0 for a.a. t ∈ [0, T ],
ϑ(x(t), h) ≤ 0 for all t ∈ [0, T ].

We assume that
(III.1) functions f0(·, ·, ·), g(·, ·), f(·, ·, ·), ξ(·, ·, ·), θ(·, ·, ·), ϑ(·, ·), and Dxϑ(·, ·) are

twice Fréchet differentiable in all arguments, and the respective derivatives are locally
Lipschitz continuous in u, x.

(III.2) The space H is independent of t.
(III.3) There exists a possibly local solution (xh0 , uh0) := (x0, u0) of the reference

problem (Ph0), where u0 is a piecewise continuous function with the finite set of
discontinuity points denoted by {tk}.

In stability analysis we are interested in sufficient conditions under which a neigh-
borhood G0 ⊂ G of h0 exists such that for each h ∈ G0 there is a locally unique
solution (xh, uh) of (Ph), which is a Lipschitz continuous function of h.

Such an analysis for a class of optimal control problems very similar to (Oh) was
performed in [13]. The main tool of this analysis was a modification of Robinson’s
implicit function theorem for generalized equations [25] developed in [12]. In this
modification additional information on regularity of the solutions and the Lagrange
multipliers, as functions of time, is used to overcome the difficulty connected with
two-norm discrepancy.

In Theorem 7.1 of [13] conditions are formulated under which the solutions to
(Oh) are locally Lipschitz continuous functions of h. These conditions consist of con-
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straint qualifications, virtually identical to (II.3) and (II.4), and second-order sufficient
optimality conditions.

The second-order sufficient optimality condition used therein is much stronger
than the SSC derived in section 4. Namely, it is required that the coercivity condition
(4.22) is satisfied on the subspace of all pairs (y, v) ∈ W 1,2(0, T ;Rn) × L2(0, T ;Rm)
satisfying equations (4.14) and (4.15). This is the subspace orthogonal to linearization
of equality-type constraints only, and the active inequality type constraints are not
taken into account.

It is natural to ask the question, can the same stability results be obtained under
the weaker coercivity condition given in (4.22)?

This problem is analyzed in part II of [14], where it is shown that (4.22) is too weak
to repeat the proof of the local stability of the solutions to (Ph) given in [13]. More
precisely, equation (4.16) corresponding to the active mixed control-state constraints
can be included in the needed coercivity condition; however, it is not possible for
equality (4.17) corresponding to the active pure state-space constraints.

This phenomenon is connected with different properties of the Lagrange multi-
pliers associated with those two types of constraints.

Thus, the second-order sufficient optimality condition needed in stability analysis
based on Robinson’s implicit function theorem takes on the following form:

(S̃SC) There exist constants ᾱ > 0 and γ̄ > 0 such that(
(y, v),

(
D2
xxL0 D2

xuL0
D2
uxL0 D2

uuL0

)
(y, v)

)
≥ γ̄(‖y‖22 + ‖v‖22)

for all (y, v) ∈W 1,2(0, T ;Rn)× L2(0, T ;Rm) satisfying
ẏ(t)−A(t)y(t)−B(t)v(t) = 0,
Ξ0y(0) + ΞT y(T ) = 0,
Θᾱ
x (t)y(t) + Θᾱ

u(t)v(t) = 0,
(5.1)

where the notation is the same as in section 4.
Remark 5.1. Condition (S̃SC) is stronger than (4.22), but it is weaker than the

condition used in [13], where the last equation in (5.1) was void.
Note that in the same way as in section 4, condition (S̃SC) can be expressed in

terms of the modified Legendre–Clebsch condition analogous to (II.6) as well as the
Riccati equation analogous to (II.7). The main stability result of [14] (Theorem 3.7
in part II) can be formulated as follows.

THEOREM 5.2. If (III.1)–(III.3), (II.4), (II.5), and (S̃SC) are satisfied, then there
exist a neighborhood G0 ⊂ G of h0 and a neighborhood Z0 ⊂ Z of z0 such that for
all h ∈ G0 there exist a unique in Z0 solution (xh, uh) of (Oh) and unique associated
Lagrange multipliers (qh, ρh, κh, µh).

Moreover, there exists a constant c > 0 such that

‖zh1 − zh2‖1,2, ‖uh1 − uh2‖2, ‖qh1 − qh2‖1,2, |ρh1 − ρh2 |,

‖κh1 − κh2‖2, ‖µh1 − µh2‖1,2 ≤ c []h1 − h2[]H for all h1, h2 ∈ G0.

Appendix A. Proof of Theorem 2.3. Let z be feasible for (P), i.e., ϕ(z) ∈ K.
Expanding L(·, λ0) into Taylor’s series at z0 and using (I.1) and (2.9) we obtain

F (z)− F (z0) = (λ0, ϕ(z))Ŷ +
1
2

(D2
zzL(z0, λ0)(z − z0), (z − z0))Ẑ + ξ(z, z0),(A.1)

where |ξ(z,z0)|
‖z−z0‖2

Ẑ

→ 0 as []z − z0[]Z → 0.
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To estimate the term (λ0, ϕ(z))Ŷ let us represent any y ∈ K in the form y =
y⊥+y‖, where y⊥ and y‖ are orthogonal projections onto N̂⊥ and onto its orthogonal
complement N̂ ∈ Ŷ , respectively.

By (2.13) we have

(λ0 − k, y)Ŷ ≥ 0 for all k ∈ (Λ0 − λ0) ∩N.

Hence

(λ0, y)Ŷ ≥ sup
k∈(Λ0−λ0)∩N

(k, y⊥ + y‖)Ŷ = sup
k∈(Λ0−λ0)∩N

(k, y‖)Ŷ = σ[]y‖[]Y ∗ .

Thus we obtain

(λ0, ϕ(z))Ŷ ≥ σ[]ϕ(z)‖[]Y ∗ .(A.2)

Note that by (2.9) and (A.2), we get

ϕ(z0)‖ = 0.(A.3)

On the other hand, by (I.1) we have

ϕ(z) = ϕ(z0) +Dzϕ(z0)(z − z0) + ζ(z, z0),(A.4)

where ‖ζ(z,z0)‖Y
‖z−z0‖Ẑ

→ 0 as []z − z0[]Z → 0.

By (2.5) and (2.13) there exists a solution (z − z0)‖ of the equation

Dzϕ(z0)(z − z0)‖ = (ϕ(z)− ϕ(z0)− ζ(z, z0))‖ = ϕ(z)‖ − ζ(z, z0)‖(A.5)

such that

‖(z − z0)‖‖Ŷ ≤ c
(
‖ϕ(z)‖‖Ŷ + ‖ζ(z, z0)‖‖Ŷ

)
≤ c

(
‖ϕ(z)‖‖Ŷ + ‖ζ(z, z0)‖Ŷ

)
.

(A.6)

Let us define

(z − z0)⊥ = (z − z0)− (z − z0)‖.

In view of (A.3), (A.4), and (A.5) we have

Dzϕ(z0)(z − z0)⊥ ∈ N̂⊥.(A.7)

By (I.5), (2.10), and (A.2) we obtain from (A.1)

F (z)− F (z0) ≥ σ[]ϕ(z)‖[]Y ∗ + γ
2 ‖(z − z0)⊥‖2

Ẑ

− c‖(z − z0)⊥‖Ẑ‖(z − z0)‖‖Ẑ −
c
2‖(z − z0)‖‖2

Ẑ
− |ξ(z, z0)|.

(A.8)

It follows from (A.1), (A.4), and (A.6) that for each ε > 0 there exists ρ(ε) > 0 such
that for all []z − z0[]Z ≤ ρ(ε) we have

|ξ(z, z0)| ≤ ε‖z − z0‖2Ẑ ,

‖(z − z0)‖‖Ẑ ≤ c
(
‖ϕ(z)‖‖Ŷ + ε‖(z − z0)⊥‖Ẑ

)
.

(A.9)
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Substituting these estimates into (A.8), using Young’s inequality, and performing
some elementary calculations, for sufficiently small ρ(ε) we obtain

F (z)− F (z0) ≥ σ[]ϕ(z)‖[]Y ∗ + γ′‖(z − z0)⊥‖2
Ẑ
− c′‖ϕ(z)‖‖2

Ŷ
.(A.10)

On the other hand, for any y ∈ Y we have

‖y‖2
Ŷ

= (y, y)Ŷ ≤ []y[]Y ∗ []y[]Y , i.e.,
‖y‖2

Ŷ

[]y[]Y ∗
≤ []y[]Y .

Note that by (2.14), (A.3), and continuity of ϕ(z) we have []ϕ(z)‖[]Y → 0 as []z −
z0[]Z → 0. Hence, shrinking ρ(ε) if necessary, we obtain from (A.10)

F (z)− F (z0) ≥ σ′[]ϕ(z)‖[]Y ∗ + γ′′‖(z − z0)⊥‖2
Ẑ
.

Using (A.9) again we arrive at (2.16).
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PARAMETRIZATIONS: THE STABLE SISO CASE∗
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Abstract. The balanced canonical form and parametrization of Ober for the case of SISO
stable systems are extended to block-balanced canonical forms and related input-normal forms and
parametrizations. They form an overlapping atlas of parametrizations of the manifold of stable
SISO systems of given order. This extends the usefulness of these parametrizations, e.g., in gradient
algorithms for system identification. As an implication of our construction it follows that each
of the subsets of the parametrization of [R. Ober, Internat. J. Control, 46 (1987), pp. 643–670]
corresponding to a choice for the structural indices is in fact an imbedded submanifold of the manifold
of stable SISO systems of fixed order.

Key words. linear dynamical systems, differentiable manifolds, stable systems, canonical forms,
atlas, system identification
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1. Introduction. In [18], [19] a canonical state-space form was presented for
the set of asymptotically stable linear systems, with the property that it is balanced;
i.e., for each system represented in canonical form, the corresponding observability
and controllability Gramians are equal and diagonal (and positive definite). One
motivation for studying balanced realizations and balanced canonical forms is their
close relation to model reduction (see [19] and the references given there), which is in
turn closely related to robust control theory (see, e.g., [20], [3]). Another motivation
mentioned in [19] is the potential usefulness of balanced realizations for system iden-
tification, as indicated by [15]. In many cases, in system identification as well as in
related areas, one can reduce the problem at hand to an optimization problem in which
some criterion function is optimized over a set of systems. Very often one cannot solve
the optimization problem analytically and has to use search algorithms (e.g., gradi-
ent algorithms), in which an initial point in the set of systems is adapted iteratively
to give, ideally, a good approximation of the optimal system. In such search algo-
rithms one often uses a parametrization of the set of relevant systems. The balanced
parametrization of [19] has the advantage that by construction, problems of identifi-
ability are to a large extent avoided in such a search algorithm. The parametrization
has the property that it contains structural indices (i.e., discrete-valued parameters),
and to each possible choice of values for these indices corresponds a particular subset
of systems, for which a parametrization in terms of real-valued parameters is given.
(In fact it will be shown in section 6 that these subsets are in fact submanifolds.)
To each system corresponds a unique set of structural indices. Since the structural
indices can take a large number of values, even for rather low order systems (the num-
ber of possibilities increases fast with increasing order of the system), this means that
in a search algorithm one has either to identify the structural indices by other means
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or to apply the search algorithm to a large number of parametrized submanifolds of
systems. This is due to the fact that the parametrizations are disjoint.

Several authors (e.g. [4, 2, 10, 11, 20, 5, 6, 21, 22]) have investigated the possibility
of using so-called overlapping parametrizations (in differential geometric terms: an
atlas of coordinate charts). If one uses overlapping parametrizations, one does not
have to search through each and every of the submanifolds but instead can search
through the manifold as a whole, using the parametrizations to describe the manifold
locally and changing from one parametrization to another when required. In case the
search algorithm is of the gradient type, one can make sure that the decision rule for
changing from one parametrization to another has little effect on the search algorithm
by using a Riemannian gradient with respect to some suitable Riemannian metric on
the manifold (cf. [7, 6, 8, 22, 9, 21]).

In view of this it would be very desirable if the balanced parametrization of
[19] could be extended to give a set of overlapping parametrizations. In this paper
such an extension, will be presented for the case of SISO stable systems. In the
extension, balancedness of the realization no longer holds for all realizations. In-
stead block-balanced realizations and the corresponding input-normal realizations are
used. A block-balanced canonical form is a canonical form for which the observabil-
ity and controllability Gramians are equal and block-diagonal (and of course positive
definite).

In section 2 some basic definitions are presented, including the concept of block-
balanced realizations. In section 3 we present a Schwarz-like canonical form which
will be a building block in the block-balanced canonical forms and the corresponding
input-normal canonical forms that are treated in section 4. In section 5 it is shown how
this leads to a set of overlapping block-balanced canonical forms and a corresponding
atlas for the manifold of stable SISO input-output systems of a fixed order, and
remarks are made as to how this atlas can be used if one wants to work with balanced
and “almost balanced” realizations in search algorithms in system identification, for
example. In section 6 the imbedded submanifolds structure of the original balanced
parametrization is analyzed, using the atlas of the previous section.

2. Canonical forms, balanced realizations, and block-balanced realiza-
tions. In this section to a large extent the setup of [19] is followed. Let us consider
continuous-time SISO systems of the form

ẋt = Axt + but,(1)
yt = cxt,(2)

with t ∈ R, ut ∈ R, xt ∈ Rn, yt ∈ R, A ∈ Rn×n, b ∈ R1×n, c ∈ Rn×1, and (A, b, c) a
minimal triple.

For each n ∈ {1, 2, 3, . . .} let the set Cn be given by Cn = {(A, b, c) ∈ Rn×n ×
Rn×1 × R1×n|(A, b, c) minimal and the spectrum of A is contained in the open left
half plane}.

As is well known, two minimal system representations (A1, b1, c1) and (A2, b2, c2)
have the same transfer function, g(s) = c1(sI − A1)−1b1 = c2(sI − A2)−1b2, and
therefore describe the same input-output behavior iff there exists an n × n matrix
T ∈ Gln(R) such that A1 = TA2T

−1, b1 = Tb2, c1 = c2T
−1. In that case we say that

(A1, b1, c1) and (A2, b2, c2) are i/o-equivalent. This is clearly an equivalence relation;
write (A1, b1, c1) ∼ (A2, b2, c2). A unique representation of a linear system can be
obtained by deriving a canonical form.
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DEFINITION 2.1. A canonical form for an equivalence relation ∼ on a set X is a
map

Γ : X → X

which satisfies, for all x, y ∈ X,
(i) Γ(x) ∼ x;
(ii) x ∼ y =⇒ Γ(x) = Γ(y).

Equivalently a canonical form can be given by the image set Γ(X); a subset B ⊆ X
describes a canonical form if for each x ∈ X there is precisely one element b ∈ B such
that b ∼ x. The mapping X → B, x 7→ b then describes a canonical form.

Let (A, b, c) ∈ Cn. The controllability Gramian Wc is the positive definite matrix
that is given by the integral

Wc =
∫ ∞

0
exp(At)bbT exp(AT t)dt.

As is well known, Wc can be obtained as the unique solution of the following Lyapunov
equation:

AWc +WcA
T = −bbT .(3)

In a dual fashion, the observability Gramian Wo is the positive definite matrix that
is given by the integral

Wo =
∫ ∞

0
exp(AT t)cT c exp(At)dt.

This matrix is the unique solution of the following Lyapunov equation:

ATWo +WoA = −cT c.(4)

DEFINITION 2.2. Let (A, b, c) ∈ Cn. Then (A, b, c) is called balanced if the
corresponding observability and controllability Gramians are equal and diagonal; i.e.,
there exist positive numbers σ1, σ2, . . . , σn such that

Wo = Wc = diag(σ1, . . . , σn) =: Σ.(5)

The numbers σ1, . . . , σn are called the (Hankel) singular values of the system.
The singular values are known to be uniquely determined by the input-output

behavior of the system.
THEOREM 2.3 (see [17]). Let (A, b, c) ∈ Cn with

Σ = diag(σ1In(1), . . . , σkIn(k)), σ1 > σ2 > . . . σk > 0, and
k∑
i=1

n(i) = n.

Then (A, b, c) is unique within its i/o-equivalence class up to an orthogonal state-space
transformation of the form

Q = diag(Q1, Q2, . . . , Qk)

with orthogonal Qi ∈ Rn(i)×n(i), i = 1, . . . , k.
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DEFINITION 2.4. Let (A, b, c) ∈ Cn. Then (A, b, c) is called input-normal if Wc =
In and will be called σ-input-normal if Wc = σIn.

Similarly (A, b, c) is called output-normal if Wo = In and σ-output-normal if
Wo = σIn.

It is not difficult to show that an input-normal realization is unique up to an
arbitrary orthogonal state-space transformation.

The following definition is basic to our considerations in this paper.
DEFINITION 2.5. Let (A, b, c) ∈ Cn. Then (A, b, c) will be called block-balanced,

with indices n(i) ∈ N, i = 1, . . . , k, adding up to n, if the observability Gramian and
the controllability Gramian are equal and block-diagonal; i.e., there exist n(i) × n(i)
positive definite matrices Σi, i = 1, . . . , k, such that

Wo = Wc = diag(Σ1, . . . ,Σk).

It will be convenient to call an arbitrary system representation (A, b, c) ∈ Rn×n ×
Rn×1 ×R1×n block-balanced if the pair of Lyapunov equations AΣ + ΣAT = −bbT ,
ATΣ + ΣA = −cT c has a positive definite solution of the form Σ = diag(Σ1, . . . ,Σk)
(assuming neither asymptotic stability nor minimality).

Remark. The matrices Σi, i = 1, . . . , k, are in general not uniquely determined by
the input-output behavior of the system. However, the eigenvalues λ1(Σi) ≥ λ2(Σi) ≥
· · · ≥ λn(i)(Σi) of the matrices Σi, i = 1, . . . , k, together form the set of Hankel singular
values of the system, which are uniquely determined by the input-output behavior of
the system, as remarked before.

THEOREM 2.6. Suppose that (A, b, c) ∈ Cn is block-balanced with indices n(j) ∈
N, j = 1, . . . , k,

∑k
j=1 n(j) = n, and the additional property λ1(Σ1) ≥ λn(1)(Σ1) >

λ1(Σ2) ≥ λn(2)(Σ2) > · · · > λ1(Σk) ≥ λn(k)(Σk) > 0.
This uniquely determines (A, b, c) within its i/o-equivalence class up to an orthog-

onal state-space transformation of the form

Q = diag(Q1, . . . , Qk)

with orthogonal Qi ∈ Rn(i)×n(i), i = 1, . . . , k.
Proof. First note that if an orthogonal state-space transformation Q is applied

to the system representation, then both Gramians transform in the same way, and
therefore if they were equal before the orthogonal state-space transformation, then
they will also be equal after the transformation.

Now consider two i/o-equivalent systems (A1, b1, c1), (A2, b2, c2), which are both
block-balanced with the same indices n(j), j = 1, . . . , k, and with Gramians W (i)

o =
W

(i)
c = diag(Σ(i)

1 , . . . ,Σ(i)
k ), i = 1, 2, with the property that λ1(Σ(i)

1 ) ≥ λn(1)(Σ
(i)
1 ) >

λ1(Σ(i)
2 ) ≥ λn(2)(Σ

(i)
2 ) > · · · > λ1(Σ(i)

k ) ≥ λn(k)(Σ
(i)
k ) > 0, i = 1, 2.

Because Σ(i)
j is symmetric positive definite for any i = 1, 2, j = 1, . . . , k, there ex-

ists an orthogonal matrix Q(i)
j such that Q(i)

j Σ(i)
j (Q(i)

j )T = diag(λ1(Σ(i)
j ), λ2(Σ(i)

j ), . . . ,

λn(j)(Σ
(i)
j )). Therefore, the state-space transformation Q(i) := diag(Q(i)

1 , . . . , Q
(i)
k )

applied to the system representation (Ai, bi, ci) brings it into balanced form with non-
increasing singular values, i = 1, 2. We can therefore apply Theorem 2.3 to the trans-
formed system representations, and it follows that there exists an orthogonal state-
space transformation of the form Q = diag(Q1, . . . , Qk) with Qi ∈ Rn(i)×n(i), i =
1, 2, . . . , k, that transforms (A1, b1, c1) into (A2, b2, c2) (and vice
versa).

The following theorem will be fundamental for our results.
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THEOREM 2.7 (Pernebo and Silverman [24], Kabamba [12]). Let
(A, b, c)∈ Rn×n ×Rn×1 ×R1×n be conformally partitioned as

A =
(
A11 A12
A21 A22

)
, b =

(
b1
b2

)
, c =

(
c1 c2

)
,

with Aii ∈ Rn(i)×n(i), i = 1, 2, and let (A, b, c) be block-balanced with indices n(1), n(2)
such that Σ1,Σ2 > 0 have no eigenvalues in common.

Then (A, b, c) ∈ Cn ⇔ (Aii, bi, ci) ∈ Cn(i), i = 1, 2.

3. The case k=1: A Schwarz-like canonical form for stable SISO sys-
tems in continuous time.

THEOREM 3.1. Consider the set Bn of all (A, b, c) ∈ Cn of the following form:

A =


a11 −α1 0

α1 0
. . .

. . . . . . −αn−1
0 αn−1 0

 , a11 = −b
2
1

2
< 0,

αi > 0, i = 1, . . . , n− 1,

b =


b1
0
...
0

 , b1 > 0,

c =
(
c1 γ1 . . . γn−1

)
, c1 ∈ R, γj ∈ R, j = 1, . . . , n− 1.

Each triple (A, b, c) ∈ Bn is input-normal.
Let Sn be the set of values of the vector of parameters (b1, α1, . . . , αn−1, c1, γ1, . . . ,

γn−1) such that the corresponding triple (A, b, c) ∈ Bn, i.e., such that b1 > 0, αi >
0, i = 1, . . . , n, and c1, γ1, . . . , γn−1 such that the pair (c, A) is observable.

The set Bn describes a real analytic (hence continuous) canonical form, and the
parametrization mapping Sn −→ Bn, which maps each parameter vector to the corre-
sponding triple (A, b, c), is a real analytic diffeomorphism (hence a homeomorphism).

If (γ1, . . . , γn−1) 6= 0 ∈ Rn−1, n ≥ 2, then the system has several different singular
values.

Proof. The requirement that a realization is input-normal reduces the freedom of
choosing a basis of the state space to the freedom of choosing an orthonormal basis,
i.e., to the freedom of choosing an element from the orthogonal group.

Now consider the controllability matrix of a triple (A, b, c) ∈ Bn. It is easily
seen to be positive upper triangular. According to [19] there is a unique element
in the orthogonal group that transforms a controllability matrix to a positive upper
triangular matrix. Therefore the form presented here is canonical indeed.

Next let us show the smoothness properties. The mapping Sn −→ Bn, which
maps a parameter vector from Sn to its corresponding triple (A, b, c), is polynomial,
hence real analytic.

Now consider the mapping Cn −→ Sn, which maps any triple (Ã, b̃, c̃) ∈ Cn to the
corresponding parameter vector describing the canonical form of the system. Clearly
the coefficients of the characteristic polynomial of Ã depend polynomially on Ã, and
therefore the parameters a11, α1, . . . , αn−1 depend real analytically on Ã, as they are
rational functions of these characteristic polynomial coefficients (cf. [18]).
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It remains to show that the parameter vector c = (c1, γ1, . . . , γn−1) depends real
analytically on the entries of (Ã, b̃, c̃). Let (A, b, c) denote the canonical form of the
system and g(z) := p(z)

q(z) := c(zI−A)−1b = c̃(zI−Ã)−1b̃ denote the (rational) transfer
function of the system, with monic polynomial denominator q(z) := det(zI − A) =
det(zI−Ã) and polynomial numerator p(z). It is easy to see that the coefficients of p(z)
depend real analytically on the entries of (Ã, b̃, c̃). Let M(z) denote the polynomial
matrix of cofactors of (zI −A). Then one has

p(z) = cM(z)T b.(6)

Consider m1i(z), which is (−1)1+i times the determinant of the matrix that is obtained
from zI −A by leaving out the first row and ith column, i ∈ {1, . . . , n} :

m1i(z) = (−1)1+i

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1 ∗ . . . ∗ ∗ . . . . . . . . . . . . ∗

0
. . .

...
...

...
...

. . . ∗
...

...
0 . . . 0 αi−1 ∗ . . . . . . . . . . . . ∗
0 . . . . . . 0 z −αi+1 0 . . . . . . 0
...

... αi+1 z −αi+2 0 . . . 0
...

... 0
. . . . . . . . . . . .

...
...

...
...

. . . . . . . . . . . . 0
...

...
...

. . . . . . . . . −αn−1
0 . . . . . . 0 0 0 . . . 0 αn−1 z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)1+i ×

i−1∏
j=1

αj

 zn−i + terms of lower degree in z,

where i ∈ {1, . . . , n}; if i = 1, the product
∏i−1
j=1 αj is taken to be equal to one

by convention. Because
∏i−1
j=1 αj is unequal to zero (and in fact positive) for each

i ∈ {1, . . . , n} the polynomials m11(z), . . . ,m1n(z) form a basis of the linear vector
space of polynomials of degree < n over R. Therefore (6), which can be rewritten as

c1m11(z) + γ1m12(z) + · · ·+ γn−1m1n(z) =
p(z)
b1

,(7)

has a unique solution c = (c1, γ1, γ2, . . . , γn−1), which depends real analytically on
the entries of (Ã, b̃, c̃) and the parameters b1, α1, . . . , αn−1. Since these parameters
themselves depend real analytically on the entries of (Ã, b̃, c̃), the real analyticity of
all parameters on the entries of (Ã, b̃, c̃) follows. This completes the proof of the
smoothness properties.

The remaining statements follow from the fact that for γ = 0, the form is a
canonical form for systems with only one positive Hankel singular value (i.e., all
nonzero Hankel singular values coincide); cf. [19], [18].

Remarks. (i) The fact that if the asymptotically stable matrix A can be brought
into the presented form by a basis change of the state space, then the resulting matrix
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is unique, also follows from the fact mentioned in the proof that for γ = 0, c1 6= 0
the form is a canonical form for systems with only one positive Hankel singular value;
cf. [19], [18]. Note that here we use a different sign convention for the off-diagonal
elements of the matrix A than in those papers. This corresponds to consideration of
the dual state-space representation.

(ii) If c1 6= 0, we define σ := | c1b1 | > 0, which we will call a pseudosingular value. If
the vector γ = (γ1, . . . , γn−1) is close enough to zero, the pseudosingular value will be
close to the true singular values of the system, because of continuity of the singular
values as a function of γ and the fact that if γ = 0, the system has only one singular
value and its value is σ. If c1 6= 0, the system can be brought simply into σ-input-
normal form by multiplying c by σ−

1
2 and b by σ

1
2 . The resulting σ-input-normal form

is a canonical form locally around γ = 0, but not globally because the systems which
have c1 = 0 in the previous canonical form cannot be represented in this way. (It
would lead to σ = 0, and therefore one cannot transform back to the input-normal
case, etc.) Locally around γ = 0 it takes the following form:

A =


a11 −α1 0

α1 0
. . .

. . . . . . −αn−1
0 αn−1 0

 ,

a11 = − b
2
1

2σ
< 0,

αi > 0, i = 1, . . . , n− 1,

b =


b1
0
...
0

 , b1 > 0

c =
(
sb1 γ1 . . . γn−1

)
, s ∈ {−1, 1}, γj ∈ R, j = 1, . . . , n− 1.

(iii) Because the canonical form is input-normal, if one starts with an arbitrary
input-normal realization (Ã, b̃, c̃) of the system, it takes an orthogonal state-space
transformation Q in order to obtain the canonical form of the system involved. The
same holds for the (local) σ-input-normal canonical form.

(iv) Clearly the canonical forms presented are controllable (because they are
input-normal; resp., σ-input-normal), but observability will fail for certain choices
of c; the observability Gramian will be singular for such a choice of c. If γ = 0, c1 6= 0,
the system is observable, because the observability Gramian will be σ2I (resp., σI).
(In that case the system representation is σ2-output-normal; resp., σ-output-normal.)
Therefore, also in some open neighborhood around such a system, observability will
still hold. (This follows from the continuity of the determinant of the observability
Gramian as a function of the parameters.)

(v) This canonical form is closely related to the so-called Schwarz canonical form;
cf. [13], [14], [25].

(vi) A canonical form can be interpreted as a choice of basis of the state space
for each system. In this case the basis can be obtained as follows. Define an inner
product on the state space by the inverse of the reachability Gramian. Take the first n
columns of the reachability matrix, and apply the Gram–Schmidt orthogonalization
procedure to it, with respect to the inner product. With respect to the resulting
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set of n vectors as the basis of the state space the system has the canonical form.
This observation can in fact be used to obtain an alternative proof of the smoothness
properties stated in the theorem.

4. An input-normal and a block-balanced canonical form. Let n(1), . . . ,
n(k) ∈ {1, 2, . . . , n},

∑k
j=1 n(j) = n, denote a partition of n as before. Let

Cn(1),n(2),...,n(k) denote the subset of all systems in Cn, with the property that their n
Hankel singular values (multiplicities included) σ(1) ≥ σ(2) ≥ · · · ≥ σ(n) > 0 can be
partitioned into k disjoint sets of singular values (again with multiplicities included)
in the following way:

σ(1) ≥ · · · ≥ σ(n(1)) > σ(n(1) + 1)
≥ · · · ≥ σ(n(1) + n(2)) > σ(n(1) + n(2) + 1)

≥ · · · ≥ σ

 l∑
j=1

n(j)

 > σ

 l∑
j=1

n(j)

+ 1


≥ · · · > 0.(8)

So we require that σ(
∑l
j=1 n(j)) > σ((

∑l
j=1 n(j)) + 1) for l = 1, 2, . . . , k − 1 and

σ(n) > 0, of course. Note that the notation is consistent with the fact that Cn
denotes the set of stable systems which have as their only “restriction” that there are
n positive singular values (multiplicities included), i.e., that the order of the system
is n.

The other extreme is C1,1,...,1, which denotes the set of nth-order stable systems
with n distinct singular values. For this set of systems a balanced canonical form was
derived in [12].

Remark. The set Cn(1),...,n(k) should not be confused with the subset of Cn
consisting of the systems which have k distinct singular values σ1 > · · · > σk > 0
with multiplicities n(1), . . . , n(k). Of course these systems are included in Cn(1),...,n(k),
but they generally form only a (thin) subset.

Next we will present a canonical form on Cn(1),...,n(k).
THEOREM 4.1. Consider the set Bn(1),...,n(k) of triples (A, b, c) of the following

form:

A = (A(i, j))1≤i,j≤k ,

A(i, j) ∈ Rn(i)×n(j), i, j ∈ {1, . . . , k},

b =


b(1)
b(2)

...
b(k)

 , b(i) ∈ Rn(i), i = 1, . . . , k,

c = (c(1), . . . , c(k)) , c(j)T ∈ Rn(j), j = 1, . . . , k,

A(i, i) =



a(i, i)11 −α(i)1 0 . . . 0

α(i)1 0 −α(i)2
. . .

...

0 α(i)2
. . . 0

...
. . . . . . −α(i)n(i)−1

0 . . . 0 α(i)n(i)−1 0


,
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a(i, i)11 = −b
2
i

2
,

α(i)j > 0, j = 1, . . . , n(i)− 1,

b(i) =


bi
0
...
0

 , bi > 0,

c(i) =
(
ci, γ(i)1, . . . , γ(i)n(i)−1

)
, i = 1, . . . , k,

where the parameters are to be taken such that the corresponding observability Grami-
ans Σ2

i , i = 1, . . . , k, which satisfy the observability Lyapunov equations

Σ2
iA(i, i) +A(i, i)TΣ2

i = −c(i)T c(i)(9)

are fulfilling the following inequalities:

λ1(Σ2
1) ≥ λn(1)(Σ2

1) > λ1(Σ2
2) ≥ λn(2)(Σ2

2) > · · · > λ1(Σ2
k) ≥ λn(k)(Σ2

k) > 0.(10)

For each pair (i, j), i 6= j, the matrices A(i, j), A(j, i) are determined (uniquely!) from
the following pair of linear matrix equations:

A(i, j) +A(j, i)T = −b(i)b(j)T ,

Σ2
iA(i, j) +A(j, i)TΣ2

j = −c(i)T c(j).(11)

The set Bn(1),...,n(k) describes a real analytic (hence continuous) canonical form on
Cn(1),...,n(k). The 2n “free” parameters of the canonical form are

bi, α(i)1, . . . , α(i)n(i)−1, ci, γ(i)1, . . . , γ(i)n(i)−1, i = 1, . . . , k.

Let Sn(1),...,n(k) ⊂ R2n be the set of all values of the parameter vector for which the
corresponding triple (A, b, c) ∈ Bn(1),...,n(k), i.e., for all i ∈ {1, . . . , k} bi > 0, α(i)j >
0, j = 1, . . . , n(i) − 1, and ci, γ(i)1, . . . , γ(i)n(i)−1 such that the matrices Σi, i =
1, . . . , k, found in (9) satisfy the inequalities (10). The mapping Sn(1),...,n(k) −→
Bn(1),...,n(k) which maps a parameter vector to the corresponding triple (A, b, c) is a
real analytic diffeomorphism.

The form is input-normal, i.e.,

A+AT = −bbT ,(12)

and has block-diagonal observability Gramian Σ2 := diag(Σ2
1, . . . ,Σ

2
k) > 0.

Let σ(1) ≥ σ(2) ≥ · · · ≥ σ(n) > 0 denote the n positive Hankel singular values of
the system (with their multiplicities). If for some i ∈ {1, . . . , k} the vector γ(i) = 0,
then Σ2

i is a scalar matrix

Σ2
i = σ2

1 +
i−1∑
j=1

n(j)

× In(i),(13)
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and

σ

i−1∑
j=1

n(j)


> σ

1 +
i−1∑
j=1

n(j)

 = σ

2 +
i−1∑
j=1

n(j)

 = · · · = σ

 i∑
j=1

n(j)


> σ

1 +
i∑

j=1

n(j)

 .

The observability Gramian is diagonal if and only if for all i ∈ {1, . . . , k}, γ(i) = 0.
Remark. A block-balanced realization can be obtained from the presented canon-

ical form by applying a state-space transformation

T := Σ
1
2 = diag

(
Σ

1
2
1 , . . . ,Σ

1
2
k

)
> 0.(14)

The corresponding controllability and observability Gramians will both be equal to

Σ = diag (Σ1, . . . ,Σk) > 0.

Proof. (i) To start we will show that the form presented is canonical onCn(1),...,n(k).
Consider a system which can be represented by a triple in Cn(1),...,n(k). A balanced
realization of the system is also in block-balanced form with partitioning indices
n(1), . . . , n(k). So one can find a block-balanced realization (A, b, c) of the system
with these partitioning indices. It follows from Theorem 2.6 that the requirement that
(A, b, c) is block-balanced with these partitioning indices uniquely determines (A, b, c)
up to an orthogonal state-space transformation of the formQ = diag (Q1, Q2, . . . , Qk) ,
with orthogonal matrices Qi ∈ Rn(i)×n(i). If (A, b, c) is in block-balanced form, it can
be brought into input-normal form with block-diagonal observability Gramian by the
state-space transformation T−1, where T is as defined in (14). It follows easily that
if (A, b, c) is in input-normal form with block-diagonal controllability Gramian Σ2 =
diag

(
Σ2

1, . . . ,Σ
2
k

)
, with λ1(Σ2

1) ≥ λn(1)(Σ2
1) > λ1(Σ2

2) ≥ λn(2)(Σ2
2) > · · · > λ1(Σ2

k) ≥
λn(k)(Σ2

k) > 0, Σ2
i ∈ Rn(i)×n(i), then (A, b, c) is uniquely determined up to an orthogo-

nal state-space transformation of the form Q = diag (Q1, Q2, . . . , Qk) . If such a trans-
formation is applied, then (A(i, i), b(i), c(i)) is transformed to

(
QiA(i, i)QTi , Qib(i),

c(i)QTi
)
. Note that (A(i, i), b(i), c(i)) ∈ Cn(i) because of Theorem 2.7, and there-

fore it follows from Theorem 3.1 that there is a unique choice for Qi which brings(
QiA(i, i)QTi , Qib(i), c(i)Q

T
i

)
into the required canonical form.

We need only to check that by using the solutions A(i, j), A(j, i) of (11) the
Gramians indeed have the required block structure, which is straightforward and left
to the reader.

(ii) Second, we will show the smoothness properties. Clearly the mapping
Sn(1),...,n(k) −→ Bn(1),...,n(k), which maps any parameter vector in Sn(1),...,n(k) to
the corresponding triple (A, b, c) ∈ Bn(1),...,n(k), is real analytic.

Now consider the mapping Cn(1),...,n(k) −→ Sn(1),...,n(k), which maps a triple
(Ã, b̃, c̃) to the parameter vector of the corresponding canonical form.

The map which assigns to (Ã, b̃, c̃) the coefficients of the characteristic polynomial
of the product of the Gramians is real analytic. The zeroes of this polynomial are the
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squared singular values. Now consider the polynomial

a(z) =
n∏

j=n(1)+1

(z − σ(j)2).

Because on Cn(1),...,n(k) the inequality σ(n(1)) > σ(n(1) + 1) holds, the coefficients of
a(z) depend real analytically on those of the characteristic polynomial of the product
of the Gramians (see, e.g., [16]).

Let Σ2 = W
1
2
c WoW

1
2
c , where Wc and Wo are the controllability and observability

Gramians, respectively, of (Ã, b̃, c̃); Wc and Wo depend real analytically on (Ã, b̃, c̃).
The matrix a(Σ2) has as its range space an n(1)-dimensional linear subspace of Rn

which clearly depends real analytically on (Ã, b̃, c̃). The corresponding orthogonal
projection matrix Π1, which maps an arbitrary vector x ∈ Rn to its orthogonal
projection in the linear subspace spanned by the columns of a(Σ2) (i.e., the linear
subspace which is obtained by taking the direct sum of the eigenspaces of the largest
n(1) eigenvalues σ(1)2, . . . , σ(n(1))2 of Σ2), depends real analytically on a(Σ2).

Now consider (Π1W
− 1

2
c ÃW

1
2
c Π1,Π1W

− 1
2

c b̃, c̃W
1
2
c Π1) with corresponding controlla-

bility Gramian Π1 and observability Gramian Π1Σ2Π1 = Π1Σ2 = Σ2Π1. (Because of
the way Π1 is constructed, it commutes with Σ2.) We can now apply the canonical
form of Theorem 3.1 to find a basis for the range space of Π1 (which corresponds to
the state space there) depending real analytically on (Ã, b̃, c̃). The first basis vector
is

Π1W
− 1

2
c b̃

‖Π1W
− 1

2
c b̃‖

;

the second one (Gram–Schmidt orthonormalization) is obtained by normalization of
the vector

Π1W
− 1

2
c ÃW

1
2
c Π1W

− 1
2

c b̃

−

(
b̃TW

− 1
2

c Π1W
1
2
c ÃTW

− 1
2

c Π1W
− 1

2
c b̃

)
(
b̃TW

− 1
2

c Π1W
− 1

2
c b̃

) ×Π1W
− 1

2
c b̃;

and so on. Clearly this choice of basis of the range space of Π1 is real analytic. With
respect to the resulting basis of the n(1)-dimensional state space the triple(

Π1W
− 1

2
c ÃW

1
2
c Π1,Π1W

− 1
2

c b̃, c̃W
1
2
c Π1

)
takes the form (Ã(1, 1), b̃(1), c̃(1)), as described in Theorem 3.1:

Ã(1, 1) =



a(1, 1)11 −α(1)1 0 . . . 0

α(1)1 0 −α(1)2
. . .

...

0 α(1)2
. . . 0

...
. . . . . . −α(1)n(1)−1

0 . . . 0 α(1)n(1)−1 0


,
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a(1, 1)11 = −b
2
1

2
,

α(1)j > 0, j = 1, . . . , n(1)− 1,

b̃(1) =


b1
0
...
0

 , b1 > 0,

c̃(1) =
(
c1, γ(1)1, . . . , γ(1)n(1)−1

)
,

and therefore this triple and the parameters describing it depend real analytically
on (Ã, b̃, c̃). Similarly for any i ∈ {1, . . . , k} the matrix triple and the parameters
describing it depend real analytically on (Ã, b̃, c̃). This proves the real analyticity of
the mapping which maps (Ã, b̃, c̃) to the parameters of the canonical form.

(iii) The remaining statements follow from the results in [19].

5. An atlas of overlapping block-balanced canonical forms.
THEOREM 5.1. Let the state-space dimension n be fixed. The canonical forms

Cn(1),...,n(k) −→ Bn(1),...,n(k), n(j) ∈ {1, . . . , n}, j = 1, . . . , k,
∑k
j=1 n(j) = n, k ∈

{1, . . . , n}, form an overlapping set of real analytic (hence continuous) canonical forms
covering Cn. Each of the sets Cn(1),...,n(k),

∑k
j=1 n(j) = n, is an open subset of Cn,

and together they cover Cn.
Proof. Let P (n; k) := {(n(1), . . . , n(k))|n(j) ∈ {1, . . . , n}; j = 1, . . . , k;∑k

j=1 n(j) = n}, the set of partitions of n into k parts. It is trivial to show that

n⋃
k=1

⋃
(n(1),...,n(k))∈P (n;k)

Cn(1),...,n(k) = Cn,(15)

because Cn(1),...,n(k) ⊂ Cn for each partition (n(1), . . . , n(k)) of n and for k = 1 one
has n(1) = n and Cn(1) = Cn. Clearly for each partition (n(1), . . . , n(k)) of n the set
Cn(1),...,n(k) is an open subset of Cn. The remaining properties follow from Theorem
4.1.

COROLLARY 5.2. The set of mappings

φ : Cn(1),...,n(k)/ ∼−→ Sn(1),...,n(k) ⊂ R2n,

(n(1), . . . , n(k)) ∈ P (n; k), k = 1, . . . , n,

which map each equivalence class of triples to the corresponding parameter vector
in the canonical form, forms an atlas for the real analytic manifold of stable SISO
input-output systems of order n.

Proof. Any input-output system has a minimal state-space realization which is
unique up to choice of basis of the state space. Therefore, the equivalence classes of
(minimal!) triples in Cn can be identified with stable SISO input-output systems, and
the result follows from the theorem.

Remark. A motivation for using this atlas rather than, for example, just the
Schwarz-like canonical form Bn is the following. Suppose one wants to use balanced
realizations. Then one can use the balanced parametrization of [19]. However, this
parametrization is discontinuous at all points of Cn \C1,...,1, i.e., in all triples (Ã, b̃, c̃)
which have two or more coinciding singular values. Also, the complement C1,...,1, of
the set of discontinuity points consists of 2n topological components, one component
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for each sign pattern of the vector c (which cannot have zero components in this case;
cf. (9), (10) with n(i) = 1, i = 1, 2, . . . , k); this should be compared to Cn, which
has only n + 1 topological components (the Brockett components). It appears that
this is a serious disadvantage if one wants to use balanced realizations and balanced
parametrizations in, for example, search algorithms for system identification, because
one has to find out first which is the right “cell” of the parametrization. Another
difficulty is that the balanced parametrization will tend to become numerically ill
behaved if two or more of the Hankel singular values of the system are close to each
other. For example, for the class of second-order systems, the determinant of the L2-
induced Riemannian metric tensor of the balanced parametrization can be calculated
(e.g., using a computer algebra package) to be

b21b
2
2

(
s1σ1 − s2σ2

s1σ1 + s2σ2

)2

in the notation of [19]. Here the s1 and s2 are the sign parameters, which are either
+1 or −1. It follows that if two Hankel singular values come close, for given values of
b1 and b2, then the parametrization becomes ill conditioned in the sense that a small
parameter change may lead to a large change in the system (in the L2-sense) and/or
a large parameter change may lead to only a small change in the system (again in the
L2-sense).

In order to overcome these difficulties one could use the overlapping block-balanced
canonical forms as follows. If (Ã, b̃, c̃) has k distinct Hankel singular values σ1 > σ2 >
· · · > σk > 0 with respective multiplicities n(1), . . . , n(k), then one can use the block-
balanced continuous canonical form on Cn(1),...,n(k) locally around (Ã, b̃, c̃). If one
is moving away from (Ã, b̃, c̃) in a search algorithm, for example, one has to decide
whether the canonical form corresponding to a different partition should be used: if
the largest n(1) singular values differ sufficiently from each other, one could use, e.g.,
C1,...,1,n(2),...,n(k) (where there are n(1) ones in the subindex before n(2)), etc. In this
way one would use balanced realizations and “almost-balanced” realizations while
moving around in the set of nth-order systems, without encountering discontinuity
points.

6. On the imbedded submanifolds structure of the balanced canonical
form. Consider the balanced canonical form for Cn of [19]. For each k ∈ {1, . . . , n}
and each partition (n1, n2, . . . , nk) ∈ P (n; k) let Kn1,...,nk denote the subset of Cn of
systems with k distinct singular values σ1 > σ2 > · · · > σk, which have multiplicities
n1, n2, . . . , nk, respectively. Clearly Kn1,...,nk ⊂ Cn1,...,nk and equality holds only if
k = n, ni = 1, i = 1, . . . , n. The mapping Kn1,...,nk −→ Bn1,...,nk ∩ Kn1,...,nk is
a canonical form on Kn1,...,nk , the restriction of the canonical form Cn1,...,nk −→
Bn1,...,nk to Kn1,...,nk . This canonical form on Kn1,...,nk is input-normal with diagonal
observability Gramian Wo. If one applies the state-space transformation (14) (which
is diagonal here), then one obtains the balanced canonical form of [19] restricted to
Kn1,...,nk . Clearly on Kn1,...,nk the balanced canonical form is smooth (real analytic),
while it is of course not even continuous on Cn. Both the balanced canonical form
and the corresponding input-normal form parametrize Kn1,...,nk/ ∼ by the parameters
bi > 0, α(i)j > 0, j = 1, . . . , ni − 1, ci 6= 0, i = 1, . . . , k. Because (c1, . . . , ck) has 2k

possible sign patterns, it follows thatKn1,...,nk/ ∼ has 2k topological components, each
real analytically diffeomorphic to Rn+k. It follows clearly that Kn1,...,nk/ ∼ is a real
analytic manifold. The question arises whether it is a regular submanifold of Cn/ ∼
in the sense of [1] and therefore an imbedded submanifold (cf. [1], esp. Lemma 5.2).
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The answer is affirmative and is a direct consequence of the construction developed
in the previous sections.

THEOREM 6.1. For each k ∈ {1, . . . , n} and each partition (n1, . . . , nk) ∈ P (n; k)
the subset Kn1,...,nk/ ∼ is a regular submanifold of Cn/ ∼ and therefore an imbedded
submanifold with the inclusion as the imbedding map.

Proof. It follows from [1, Chapter III, section 5] that it suffices to show the socalled
n+ k-submanifold property for Kn1,...,nk/ ∼ . This property is said to hold if for each
point p ∈ Kn1,...,nk/ ∼ there exists a coordinate neighborhood U,ϕ on Cn/ ∼ with lo-
cal coordinates ξ1, . . . , ξ2n such that (i) ϕ(p) = (0, . . . , 0), (ii) ϕ(U) = {(ξ1, . . . , ξ2n)|−
ε < ξi < ε, i = 1, . . . , 2n}, and (iii) ϕ(U ∩ Kn1,...,nk/ ∼) = {ξ ∈ ϕ(U)|ξn+k+1 =
· · · = ξ2n = 0}. The n + k-submanifold property can be shown to hold as follows.
Suppose that the parameter values of point p ∈ Kn1,...,nk/ ∼ are b0i , α(i)0

j > 0, j =
1, . . . , ni−1, c0i 6= 0; of course at p, γ(i)1 = · · · = γ(i)ni−1 = 0. Now choose the local co-
ordinates ξ1, . . . , ξ2n, as follows: (ξ1, . . . , ξn+k) = (b1−b01, α(1)1−α(1)0

1, . . . , α(1)n1−1−
α(1)0

n1−1, c1 − c01; b2 − b02, α(2)1 − α(2)0
1, . . . , α(2)n2−1 − α(2)0

n2−1, c2 − c02; . . . ; bk −
b0k, α(k)1 − α(k)0

1, . . . , α(k)nk−1 − α(k)0
nk−1, ck − c0k), (ξn+k+1, . . . , ξ2n) = (γ(1)1, . . . ,

γ(1)n1−1, . . . , γ(k)1, . . . , γ(k)nk−1). Clearly (i) holds. It follows from Theorem 4.1 that
there exists a neighborhood U of p such that (ii) holds, and from Theorem 4.1, (iii)
follows.

Acknowledgment. Discussions with Dr. J. M. Maciejowski are gratefully ac-
knowledged.

Note added in proof. In a forthcoming article by the present authors in Linear
Algebra and its Applications, the results presented here are extended to various classes
of SISO and multivariable systems.
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Abstract. This paper studies controlled systems governed by Ito’s stochastic differential equa-
tions in which control variables are allowed to enter both drift and diffusion terms. A new verification
theorem is derived within the framework of viscosity solutions without involving any derivatives of
the value functions. This theorem is shown to have wider applicability than the restrictive classical
verification theorems, which require the associated dynamic programming equations to have smooth
solutions. Based on the new verification result, optimal stochastic feedback controls are obtained by
maximizing the generalized Hamiltonians over both the control regions and the superdifferentials of
the value functions.
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1. Introduction. We consider in this paper stochastic optimal control problems
of the following kind. For a given s ∈ [0, 1], by the set of admissible controls Uad[s, 1]
we mean the collection of (i) standard probability spaces (Ω,F , P ) along with l-
dimensional Brownian motions B = {B(t) : s ≤ t ≤ 1} with B(s) = 0 and (ii)
Γ-valued Fst -adapted measurable processes u(·) = {u(t) : s ≤ t ≤ 1}, where Fst =
σ{B(r) : s ≤ r ≤ t} and Γ is a given closed set in some Euclidean space Rm. We
denote (Ω,F , P,B;u(·)) ∈ Uad[s, 1], but occasionally we will write only u(·) ∈ Uad[s, 1]
if no ambiguity arises. Let (s, y) ∈ [0, 1)× Rd be given. For each (Ω,F , P,B;u(·)) ∈
Uad[s, 1], the corresponding cost is

J(s, y;u(·)) = E

[∫ 1

s

L(t, x(t), u(t))dt+ h(x(1))
]
,(1.1)

where x(·) = {x(t) : s ≤ t ≤ 1} is the solution of the following Ito stochastic differen-
tial equation (SDE) on the filtered space (Ω,F , P ;Fst ):{

dx(t) = f(t, x(t), u(t))dt+ σ(t, x(t), u(t))dB(t),
x(s) = y.

(1.2)

The solution x(·) of the above SDE is called the response of the control u(·) ∈ Uad[s, 1],
and (x(·), u(·)) is called an admissible pair. The objective of the optimal control
problem is to minimize the cost function J(s, y;u(·)), for a given (s, y) ∈ [0, 1)× Rd,
over all u(·) ∈ Uad[s, 1]. We denote the above problem by Cs,y to recall the dependence
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on the initial time s and the initial state y. The value function is defined as

V (s, y) = inf
u(·)∈Uad[s,1]

J(s, y;u(·)).(1.3)

An admissible pair (x∗(·), u∗(·)) is called optimal for Cs,y if u∗(·) achieves the minimum
of J(s, y;u(·)) over Uad[s, 1].

As a part of the dynamic programming approach, the so-called verification tech-
nique plays an important role in testing for optimality of a given admissible pair and
(more importantly) in constructing optimal feedback controls. The classical verifica-
tion theorem is as follows (see Fleming and Rishel [5, Theorem VI.4.1]):

THEOREM 1.1. Let W ∈ C1,2([0, 1]×Rd) be a solution of the following Hamilton–
Jacobi–Bellman (HJB) equation:{

−vt(t, x) + supu∈ΓG(t, x, u, vx(t, x), vxx(t, x)) = 0, (t, x) ∈ [0, 1)×Rd,
v(1, x) = h(x)

(1.4)

where the function G is defined as

G(t, x, u, q,Q) = −1
2

tr(σT (t, x, u)Qσ(t, x, u))− q · f(t, x, u)− L(t, x, u)(1.5)

for (t, x, u, q,Q) ∈ [0, 1]×Rd × Γ×Rd ×Rd×d. Then
(a) W (s, y) ≤ J(s, y;u(·)) for any (s, y) ∈ [0, 1)×Rd and any u(·) ∈ Uad[s, 1].
(b) Suppose that a given admissible pair (x∗(·), u∗(·)) for the problem Cs,y satisfies

−Wt(t, x∗(t)) +G(t, x∗(t), u∗(t),Wx(t, x∗(t)),Wxx(t, x∗(t))) = 0, P -a.s., a.e.t ∈ [s, 1];
(1.6)

then (x∗(·), u∗(·)) is an optimal pair for the problem Cs,y.
Remark 1.1. The function G is called the generalized Hamiltonian [17]. By the

HJB equation, (1.6) is equivalent to a more familiar form:

G(t, x∗(t), u∗(t),Wx(t, x∗(t)),Wxx(t, x∗(t)))
= maxu∈ΓG(t, x∗(t), u,Wx(t, x∗(t)),Wxx(t, x∗(t))).

Then, an optimal feedback control u∗(t, x) can be constructed by minimizing G(t, x, u,
Wx(t, x),Wxx(t, x)) over u ∈ Γ. For details, see [5].

When practically applying Theorem 1.1, one usually takes the verification func-
tion W to be the value function V , as V satisfies the HJB equation if V ∈ C1,2([0, 1]×
Rd). Unfortunately, it is well known that the HJB equation (1.4) does not necessar-
ily admit smooth solutions in general. This makes the applicability of the classical
verification theorems very restrictive and is a major deficiency in dynamic program-
ming theory. In recent years, the viscosity solution theory of general nonlinear PDEs,
which was launched by Crandall and Lions [4], has been significantly developed. In
this theory, all the derivatives involved are replaced by the so-called superdifferentials
and subdifferentials, and the solutions in the viscosity sense can be merely continuous
functions. The existence and uniqueness of viscosity solutions of the HJB can be guar-
anteed under very mild and reasonable assumptions, which are satisfied in the great
majority of cases arising in optimal control problems. For example, the value function
turns out to be the unique viscosity solution of the HJB equation [14]. Since the ver-
ification theorems have been playing primary roles in constructing optimal feedback
controls, and in many practical problems HJB equations do not have smooth solutions
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at all, a natural question arises: do verification theorems still hold, with the solutions
of the HJB equation in the classical sense replaced by the ones in the viscosity sense
and the derivatives involved replaced by the superdifferentials and/or subdifferentials?
For the deterministic case (σ = 0), the answer to the above question is “yes” [18].
Moreover, based on the new, nonsmooth versions of the verification theorems obtained,
a scheme of obtaining feedback controls is proposed in [18], which does not involve
any derivative of the value function. For some related works, see [2], [6], and [15].

The present paper proceeds to answer the above question for stochastic systems.
It should be noted that verification technique is particularly important for stochastic
systems because only feedback controls perform well in the uncertain environment.
However, the approach for the deterministic case [18] relies heavily on the value func-
tion being Lipschitz continuous in both time and spatial variables, which is no longer
true for stochastic systems of Ito’s type. Indeed, since

∫ t
0 σdB is only of order t

1
2 ,

the value function in the stochastic case is Hölder continuous of order 1
2 . This causes

a great difficulty in the analysis. In this paper, we shall overcome the difficulty by
delicate stochastic analysis.

The paper is organized as follows. In section 2, some preliminary results about
viscosity solutions and the associated superdifferentials and subdifferentials will be
introduced. In section 3, a new verification theorem in terms of viscosity solutions
and the superdifferentials is established. In addition, an example is presented showing
that the obtained theorem can test for the optimality of a given control while the
classical verification theorems cannot. Section 4 discusses the construction of optimal
stochastic feedback controls based on the new verification theorem. Finally, section 5
gives some concluding remarks.

2. Superdifferentials, subdifferentials, and viscosity solutions. We shall
use the following basic notation throughout the paper:

AT : the transpose of any vector or matrix A,
|A| : the maximum of the elements of any vector or matrix A,
Rn×k: the set of all n× k matrices,
Sn×n : the set of all n× n symmetric matrices.
Given a probability space (Ω,F , P ) with a filtration {Ft : a ≤ t ≤ b} (−∞ ≤

a < b ≤ +∞), a Hilbert space X with the norm ‖ · ‖X , and p, 1 ≤ p ≤ +∞, define
the set LpF (a, b;X) = {φ(·) = {φ(t, ω) : a ≤ t ≤ b}| φ(·) is an Ft-adapted, X-valued
measurable process on [a, b], and E

∫ b
a
‖ φ(t, ω) ‖pX dt < +∞}.

DEFINITION 2.1. Let v ∈ C([0, 1]×Rn). The right superdifferential (resp., subdif-
ferential) of v at (t0, x0) ∈ [0, 1)×Rn, denoted by D+

t+,xv(t0, x0) (resp., D−t+,xv(t0, x0)),
is a set defined by

D+
t+,xv(t0, x0) = {(p, q,Q) ∈ R1 ×Rn × Sn×n|

limt→t0+,x→x0

v(t,x)−v(t0,x0)−p(t−t0)−q·(x−x0)− 1
2 (x−x0)TQ(x−x0)

|t−t0|+|x−x0|2 ≤ 0}

(resp.,

D−t+,xv(t0, x0) = {(p, q,Q) ∈ R1 ×Rn × Sn×n| lim{· · ·} ≥ 0}).

Remark 2.1. To study stochastic control problems, many authors make use of the
superdifferential D+

t,xv(t0, x0) and subdifferential D−t,xv(t0, x0) obtained by replacing
the right-sided limit t → t0+ in the above definition by the two-sided limit t → t0
(e.g., [13, 14, 3]). The right-sided differentials have been studied extensively in [17] and
proved to be more useful than the two-sided differential in treating some stochastic
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control problems (see, e.g., [17, Remark 4.1] and [7]). On the other hand, the following
inclusions are clear:

D+
t,xv(t0, x0) ⊆ D+

t+,xv(t0, x0), D−t,xv(t0, x0) ⊆ D−t+,xv(t0, x0).

DEFINITION 2.2. A function v ∈ C([0, 1] × Rn) is called a viscosity solution of
the HJB equation (1.4) if

−p+ supu∈ΓG(t, x, u, q,Q) ≤ 0 ∀(p, q,Q) ∈ D+
t+,xv(t, x) ∀(t, x) ∈ [0, 1)×Rd,

−p+ supu∈ΓG(t, x, u, q,Q) ≥ 0 ∀(p, q,Q) ∈ D−t+,xv(t, x) ∀(t, x) ∈ [0, 1)×Rd,

and v(1, x) = h(x).
Remark 2.2. The notion of a viscosity solution in the sense specified in Definition

2.2 is more general than those which involve two-sided differentials in t (cf. [3, 13, 14])
in view of the set inclusions in Remark 2.1. Moreover, the uniqueness of viscosity
solutions in our sense holds if the uniqueness holds in the “two-sided” sense.

Now let us turn to the control problem formulated in section 1. We impose the
following assumptions throughout this paper.

(A1) f , σ, and L are continuous mappings from [0, 1]×Rd × Γ to Rd, Rd×l, and
R1, respectively; moreover, they are continuous with respect to (t, x), uniformly in
u ∈ Γ.

(A2) There exists a constant K > 0 which is independent of (t, u) such that

|f(t, x, u)− f(t, y, u)|+ |σ(t, x, u)− σ(t, y, u)|
+ |L(t, x, u)− L(t, y, u)|+ |h(x)− h(y)| ≤ K|x− y| ∀x, y ∈ Rd,
|f(t, x, u)|+ |σ(t, x, u)|+ |L(t, x, u)|+ |h(x)| ≤ K(1 + |x|) ∀x ∈ Rd.

The following result can be found in [16, 17].
LEMMA 2.1. The value function V satisfies

|V (t, x)− V (t′, x′)| ≤ C(|t− t′| 12 + |x− x′|).

Moreover, V is a unique viscosity solution of the HJB equation (1.4).
An immediate consequence of Lemma 2.1 is the following.
COROLLARY 2.1. We have

inf
(p,q,Q,u)∈D+

t+,xV (t,x)×Γ
[p−G(t, x, u, q,Q)] ≥ 0 ∀(t, x) ∈ [0, 1)×Rd.

We need some technical lemmas.
LEMMA 2.2. Let v ∈ C([0, 1]×Rn) be a given function that satisfies

|v(t, x)− v(t′, x′)| ≤ C1(|t− t′| 12 + |x− x′|).

For any (t0, x0) ∈ [0, 1)×Rn, if (p, q,Q) ∈ D+
t+,xv(t0, x0) (resp., (p, q,Q) ∈ D−t+,xv(t0,

x0)), then there exists a function φ : [t0, 1]×Rn → R1 satisfying
(i) φ ∈ C([t0, 1]×Rn) ∩ C1,2((t0, 1]×Rn),
(ii) φ(t0, x0) = v(t0, x0) and φ(t, x) > v(t, x) (resp., φ(t, x) < v(t, x)) for any

(t, x) 6= (t0, x0),
(iii) lim

t→t0+,x→x0,|x−x0|≤N |t−t0|
1
2
φt(t, x) = p for any fixed N > 0, φx(t0, x0) = q

and φxx(t0, x0) = Q,
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(iv)

|φt(t, x)| ≤ C2(1 + |x−x0|
|t−t0|

1
2

) ∀(t, x) ∈ (t0, 1]×Rn,

|φx(t, x)|+ |φxx(t, x)| ≤ C2(1 + |x|+ |x|2 + |x|3) ∀(t, x) ∈ [t0, 1]×Rn.
Proof. This lemma was presented and proved in Zhou [17] except that for (iii)

the statement there was

lim
t→t0+,x→x0

φx(t, x) = q, lim
t→t0+,x→x0

φxx(t, x) = Q.

However, it is easily seen by the proof in [17] that

φx(t0, x0) = q and φxx(t0, x0) = Q

hold as well.
LEMMA 2.3. Let g ∈ C[0, 1]. Suppose that there is ρ ∈ L1[0, 1] such that for

sufficiently small h > 0,

g(t+ h)− g(t)
h

≤ ρ(t), a.e. t ∈ [0, 1].(2.1)

Then

g(t)− g(0) ≤
∫ t

0
lim
h→0+

g(r + h)− g(r)
h

dr ∀t ∈ [0, 1].(2.2)

Proof. First fix t ∈ [0, 1). By (2.1), we can apply Fatou’s lemma to get∫ t
0 limh→0+

g(r+h)−g(r)
h dr ≥ limh→0+

∫ t
0
g(r+h)−g(r)

h dr

= limh→0+

∫ t+h
h

g(r)dr−
∫ t
0 g(r)dr

h

= limh→0+

∫ t+h
t

g(r)dr−
∫ h
0 g(r)dr

h

= g(t)− g(0).

This proves (2.2) ∀t ∈ [0, 1). Finally, the t = 1 case is obtained by continuity.

3. Verification theorems.
THEOREM 3.1. Let W ∈ C([0, 1]×Rd) be a viscosity solution of the HJB equation

(1.4). Then
(a) W (s, y) ≤ J(s, y;u(·)) for any (s, y) ∈ [0, 1)×Rd and any u(·) ∈ Uad[s, 1].
(b) Let (x∗(·), u∗(·)) be a given admissible pair for the problem Cs,y. Suppose

that there exists (p∗, q∗, Q∗) ∈ L2
F (s, 1;R1)×L2

F (s, 1;Rd)×L2
F (s, 1;Sd×d) (where the

filtration Ft = Fst ) such that for a.e. t ∈ [s, 1],

(p∗(t), q∗(t), Q∗(t)) ∈ D+
t+,xW (t, x∗(t)), P -a.s.(3.1)

and

−p∗(t) +G(t, x∗(t), u∗(t), q∗(t), Q∗(t)) = 0, P -a.s.;(3.2)

then (x∗(·), u∗(·)) is an optimal pair for the problem Cs,y.
Proof. Part (a) is trivial since W = V in view of the uniqueness of the viscosity

solutions. (Note that we state our results in the present form purposely in order to
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compare with the classical verification theorem.) We prove only part (b) of the the-
orem. Set f∗(t) = f(t, x∗(t), u∗(t)), etc., to simplify the notation. Fix t ∈ [s, 1) such
that (3.1) and (3.2) hold. Choose a test function φ ∈ C([t, 1]×Rd)∩C1,2((t, 1]×Rd)
as determined by (p∗(t), q∗(t), Q∗(t)) ∈ D+

t+,xW (t, x∗(t)) and Lemma 2.2. Applying
Ito’s formula to φ, we have for any h > 0,

W (t+ h, x∗(t+ h))−W (t, x∗(t))

≤ φ(t+ h, x∗(t+ h))− φ(t, x∗(t))

=
∫ t+h
t

[φt(r, x∗(r)) + φx(r, x∗(r)) · f∗(r) + 1
2 tr(σ∗T (r)φxx(r, x∗(r))σ∗(r))]dr.

(3.3)
It is well known by the martingale property of stochastic integrals that there are
constants C3, C4(α) > 0, independent of t, such that

E|x∗(r)− x∗(t)|2 ≤ C3|r − t| ∀r ≥ t,
E sups≤r≤1 |x∗(r)|α ≤ C4(α) ∀α ≥ 1.

(3.4)

Hence, in view of Lemma 2.2 (iv), we have

sup
t<r≤1

E|φt(r, x∗(r))|2 ≤ C2
2 sup
t<r≤1

E

[
1 +
|x∗(r)− x∗(t)|2

r − t

]
≤ C5,(3.5)

or

sup
t<r≤1

E|φt(r, x∗(r))| ≤
√
C5.

Moreover, by Lemma 2.2 (iv) and assumption (A2), one can show that

sup
t≤r≤1

E|φx(r, x∗(r)) · f∗(r) +
1
2

tr(σ∗T (r)φxx(r, x∗(r))σ∗(r))| ≤ C6.

It then follows from (3.3) that for sufficiently small h > 0,

EW (t+ h, x∗(t+ h))− EW (t, x∗(t))
h

≤
√
C5 + C6.(3.6)

Now we calculate, for any fixed N > 0,

1
h

∫ t+h
t

E[φt(r, x∗(r))− p∗(t)]dr

= 1
h

∫ t+h
t

E[(φt(r, x∗(r))− p∗(t))χ|x∗(r)−x∗(t)|>N |r−t| 12 ]dr

+ 1
h

∫ t+h
t

E[(φt(r, x∗(r))− p∗(t))χ|x∗(r)−x∗(t)|≤N |r−t| 12 ]dr

= I1(N,h) + I2(N,h).

By virtue of (3.4) and (3.5), we have

I1(N,h) ≤ 1
h

∫ t+h
t

[E|φt(r, x∗(r))− p∗(t)|2]
1
2 [P (|x∗(r)− x∗(t)| > N |r − t| 12 )]

1
2 dr

≤ C
N → 0 uniformly in h > 0 as N →∞.

On the other hand, for fixed N > 0, we apply Lemma 2.2 (iii) to get

sup
t<r≤t+h

[
(φt(r, x∗(r))− p∗(t))χ|x∗(r)−x∗(t)|≤N |r−t| 12

]
→ 0 as h→ 0+, P -a.s.

Thus we conclude by the dominated convergence theorem that

I2(N,h)→ 0 as h→ 0 + for each fixed N.
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Therefore, we have proved that 1
h

∫ t+h
t

Eφt(r, x∗(r))dr → Ep∗(t) as h → 0+. Simi-
larly (in fact, more easily), we can show that

1
h

∫ t+h
t

E[φx(r, x∗(r)) · f∗(r)]dr → E[φx(t, x∗(t)) · f∗(t)] = E[q∗(t) · f∗(t)]
and

1
h

∫ t+h
t

E[ 1
2 tr(σ∗T (r)φxx(r, x∗(r))σ∗(r))]dr → E[ 1

2 tr(σ∗T (t)φxx(t, x∗(t))σ∗(t))]

= E[ 1
2 tr(σ∗T (t)Q∗(t)σ∗(t))]

as h→ 0+. Consequently, (3.3) gives

limh→0+
EW (t+h,x∗(t+h))−EW (t,x∗(t))

h

≤ E[p∗(t) + q∗(t) · f∗(t) + 1
2 tr(σ∗T (t)Q∗(t)σ∗(t))]

= −EL∗(t),

where the last equality is due to (3.2). Noting (3.6) and applying Lemma 2.3 to
g(t) = EW (t, x∗(t)), we arrive at

EW (1, x∗(1))− EW (s, y) ≤
∫ 1

s

−EL∗(t)dt,

which leads to W (s, y) ≥ J(s, y;u∗(·)). It follows from (a) that (x∗(·), u∗(·)) is an
optimal pair for Cs,y.

Remark 3.1. In view of Corollary 2.1, the condition (3.2) implies that (p∗(t), q∗(t),
Q∗(t), u∗(t)) achieves the infimum of p−G(t, x∗(t), u, q,Q) over D+

t+,xV (t, x∗(t))×Γ.
Meanwhile, it also shows that (3.2) is equivalent to

p∗(t) ≤ G(t, x∗(t), u∗(t), q∗(t), Q∗(t)).

Remark 3.2. The condition (3.2) implies that

max
u∈Γ

G(t, x∗(t), u, q∗(t), Q∗(t)) = G(t, x∗(t), u∗(t), q∗(t), Q∗(t)).(3.7)

This is easily seen by recalling the fact that V is the viscosity solution of (1.4):

−p∗(t) + sup
u∈Γ

G(t, x∗(t), u, q∗(t), Q∗(t)) ≤ 0,

which yields (3.7) under (3.2).
Remark 3.3. By Remark 2.1, the new verification theorem holds if the right su-

perdifferentialD+
t+,xW (t, x∗(t)) is replaced by the (smaller) two-sided superdifferential

D+
t,xW (t, x∗(t)).

Theorem 3.1 is a generalization of the classical verification theorem (Theorem
1.1). On the other hand, we do have examples showing that the classical verification
theorem may not be able to verify the optimality of a given control, whereas Theorem
3.1 can.

Example 3.1. Consider the following optimal control problem:

minimize E[−x(1)],

subject to

{
dx(t) = [x(t)(u(t) + 1)− etu(t)]dt+ |x(t)− et|dB(t),
x(s) = y ∈ R1,

control u(·) : [0, 1]→ {r ∈ R1|0 ≤ r ≤ 1}.
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The HJB equation is{
−vt(t, x) + sup0≤u≤1[vx(t, x)(et − x)u]− 1

2 (x− et)2vxx(t, x)− xvx(t, x) = 0,
v(1, x) = −x.

It is not difficult to verify that the following function is a viscosity solution of the
HJB equation

V (t, x) =

{
−e1−tx if x ≤ et,
(e1−t − e1−2tx− 1)e if x > et,

which, by the uniqueness of the viscosity solutions, turns out to be the value function
of the control problem. Let us consider an admissible control u∗(·) ≡ 0 for initial time
s = 0 and initial state y = 1. The trajectory under u∗(·) is easily seen to be x∗(t) = et.
Now we want to see if the pair (x∗(·), u∗(·)) is optimal. Theorem 1.1 cannot tell us
anything, because Vx(t, x∗(t)) does not exist on the whole trajectory x∗(·). However,
we have D+

t+,xV (t, x∗(t)) = [e,+∞) × [−e2−2t,−e1−t] × {Q ∈ Sd×d : Q ≥ 0}. Now
if we take (p∗(t), q∗(t), Q∗(t)) = (e,−e1−t, 0) ∈ D+

t+,xV (t, x∗(t)) for each t, then (3.2)
is satisfied. This implies that the pair (x∗(·), u∗(·)) is indeed optimal by virtue of
Theorem 3.1.

4. Optimal feedback controls. This section describes how to construct op-
timal feedback controls by the verification theorem obtained. First we recall the
definition of admissible feedback controls.

DEFINITION 4.1. A measurable function u from [0, 1] × Rd to Γ is called an
admissible feedback control if for any (s, y) ∈ [0, 1) × Rd there is a weak solution
x(·; s, y) of the following equation:{

dx(t) = f(t, x(t),u(t, x(t)))dt+ σ(t, x(t),u(t, x(t)))dB(t),
x(s) = y.

(4.1)

An admissible feedback control u∗ is called optimal if (x∗(·; s, y),u∗(·, x∗(·; s, y))) is
optimal for the problem Cs,y for each (s, y), where x∗(·; s, y) is a solution of (4.1)
corresponding to u∗.

THEOREM 4.1. Let u∗ be an admissible feedback control and p∗, q∗, and Q∗

be measurable functions satisfying (p∗(t, x),q∗(t, x),Q∗(t, x)) ∈ D+
t+,xV (t, x) for all

(t, x). If

p∗(t, x)−G(t, x,u∗(t, x),q∗(t, x),Q∗(t, x))

= inf(p,q,Q,u)∈D+
t+,xV (t,x)×Γ[p−G(t, x, u, q,Q)]

= 0

(4.2)

for all (t, x) ∈ [0, 1]×Rd, then u∗ is optimal.
Proof. The result follows readily from (b) of Theorem 3.1.
By Theorem 4.1, we see that under proper conditions, one can obtain an optimal

feedback control by minimizing p−G(t, x, u, q,Q) over (p, q,Q, u) ∈ D+
t+,xV (t, x)×Γ

for each (t, x). Let us investigate the conditions imposed in Theorem 4.1. First of all,
(4.2) requires that

inf(p,q,Q,u)∈D+
t+,xV (t,x)×Γ[p−G(t, x, u, q,Q)] = 0,(4.3)



STOCHASTIC VERIFICATION THEOREM 251

and in addition the infimum can be achieved. This condition in fact partially char-
acterizes the existence of an optimal feedback control, although rather implicitly in
the sense that the value function is involved. In particular, this condition is satisfied
automatically if V is smooth. Next, in order to apply Filippov’s lemma to obtain a
measurable selector of (p∗(t, x),q∗(t, x),Q∗(t, x),u∗(t, x)) which achieves the infimum
in (4.2), we must study the measurability of the multifunction (t, x) 7→ D+

t+,xV (t, x).
To do this, let us first recall the measurability of the multifunctions (see, e.g., [12],
[1], and [8] for details).

DEFINITION 4.2. Let X ⊂ Rn be a Lebesgue measurable set, Y be a metric space,
and Λ : X → 2Y be a multifunction. We say that Λ is measurable if for any closed
set F ⊂ Y the set

Λ−1(F ) ∆=
{
x ∈ X | Λ(x)

⋂
F 6= ∅

}
is Lebesgue measurable.

Note that in the above we do not need Λ to be closed set valued. It is clear that
when Y is a Polish space (i.e., a separable complete metric space), the closed set F
in the above definition can be replaced by any open set. Consequently, we have the
following simple result.

LEMMA 4.1. Let X ⊂ Rn be a Lebesgue measurable set, Y be a Polish space, and
Λ : X → 2Y be a multifunction. Then, Λ is measurable if and only if the multifunction
x 7→ Λ(x) ∆= Λ(x) is measurable.

Proof. We note that for any open set U ⊂ Y and x ∈ X,

Λ(x)
⋂
U 6= φ ⇐⇒ Λ(x)

⋂
U 6= φ.

Hence,

Λ−1(U) = Λ
−1

(U) ∀ open set U ⊂ Y.

Then, by the above observation, we obtain our conclusion.
PROPOSITION 4.1. Both the multifunctions (t, x) 7→ D+

t+,xV (t, x) and (t, x) 7→
D+
t+,xV (t, x) are convex set valued and are measurable.

Proof. For any (s, y) ∈ (0, 1]×Rd, we define

W (t, x, p, q,Q; s, y) =

{
V (s,y)−V (t,x)−p(s−t)−q·(y−x)− 1

2 (y−x)TQ(y−x)
|s−t|+|y−x|2 if t ∈ [0, s),

0 if t ∈ [s, 1].

Then, (s, y) being regarded as parameters, the function (t, x, p, q,Q) 7→W (t, x, p, q,Q;
s, y) is Borel measurable. Hence, the function

lim
s→t+,y→x

W (t, x, p, q,Q; s, y) ∆= W̃ (t, x, p, q,Q)

is also Borel measurable. Then, by [12, Theorem III.2.20], we know that the multi-
function

D+
t+,xV (t, x) ≡ {(p, q,Q) | W̃ (t, x, p, q,Q) ≤ 0}

is measurable. By Lemma 4.1, we obtain the measurability of the multifunction
(t, x) 7→ D+

t+,xV (t, x). The convexity of these two multifunctions is obvious.
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Filippov’s lemma (see, e.g., [12], [1], and [8]) says that if Λ is a measurable mul-
tifunction defined on some Lebesgue measurable set taking closed set values in a
Polish space, then it admits a measurable selection. Therefore, if we assume that
D+
t+,xV (t, x) is closed and that the infimum in (4.2) can be achieved, then by Propo-

sition 4.1 and Filippov’s lemma, we can find a measurable selection (p∗(t, x),q∗(t, x),
Q∗(t, x),u∗(t, x)) ∈ D+

t+,xV (t, x) that minimizes p−G(t, x, u, q,Q).
Suppose now we have selected a measurable function u∗(t, x). It may not be an ad-

missible feedback control. The reason is because the coefficients f̃(t, x) ∆= f(t, x,u∗(t, x))
and σ̃(t, x) ∆=σ(t, x,u∗(t, x)) of the SDE (4.1) are only measurable in (t, x), which does
not guarantee the existence of a solution. This difficulty occurs in the deterministic
case as well. However, for the stochastic case, there are some elegant existence and
uniqueness results for SDEs with measurable coefficients. Let us briefly discuss two
situations.

Case 1. Assume that σ(t, x, u) is a d× d matrix and is uniformly elliptic, i.e.,

λTσ(t, x, u)λ ≥ δ|λ|2(4.4)

for some constant δ > 0 for all (t, x, u). Then by Krylov [10, Theorem II.6.1], there
exists a solution to SDE (4.1) under u∗(t, x). By Theorem 4.1, u∗(t, x) is an optimal
feedback control.

Case 2. Assume that σ is a nonsingular d× d matrix and does not depend on u.
Moreover,

sup
t,x
|σ−1(t, x)| < +∞.(4.5)

Then under u∗(t, x), the existence and uniqueness (in law) of the solutions to (4.1) are
obtained by Girsanov’s transformation (see, e.g., [9, Theorem IV.4.2]). Once again,
u∗(t, x) is an optimal feedback control by Theorem 4.1.

To summarize the above discussion, we have the following theorem.
THEOREM 4.2. Assume that
(i) inf(p,q,Q,u)∈D+

t+,xV (t,x)×Γ[p−G(t, x, u, q,Q)] = 0.

(ii) D+
t+,xV (t, x) is closed and the infimum above can be achieved.

(iii) Either (4.4) or (4.5) holds.
Then, there is a measurable selector (p∗(t, x),q∗(t, x),Q∗(t, x),u∗(t, x)) that min-

imizes p − G(t, x, u, q,Q). Moreover, the fourth component u∗(t, x) is an optimal
feedback control.

Remark 4.1. In the presence of the uniform ellipticity of σσT , Krylov proved
the existence of classical solutions to the HJB equation under additional regularity
and strong boundness assumptions on the coefficients f, σ, L, h (see [11, Chapter 6,
p. 301]). Under the mild assumptions in this paper, one does not know the existence
of classical solutions to the HJB equation even with (4.4).

5. Concluding remarks. In this paper we have derived a new verification the-
orem in the language of viscosity solutions and the associated superdifferentials. The
conditions under which the theorem is valid are very mild and reasonable, compared
with the restrictive classical verification theorem. We have also discussed the con-
struction of optimal feedback controls based on the verification theorem obtained in
this paper. Basically, the verification theorem reduces the original stochastic con-
trol problem into a two-phase problem. In the first phase, one has to solve the HJB
equations which are fully nonlinear second-order PDEs. In most cases one has to
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rely on numerical methods to solve the equations, whereas only in some exceptional
cases one may obtain analytical solutions (like the one in Example 3.1). In the second
phase, one finds the optimal feedback u∗ by minimizing p−G(t, x, u, q,Q) over both
superdifferential of V and the control region. The second phase is relatively easy
because the superdifferential of V is explicitly known once V is known. However,
if V is approximated by numerical solutions Vn, then a natural problem is under
what conditions the feedback controls obtained by applying our verification theorem
to Vn are good enough. We then need to study the asymptotic behavior of the su-
perdifferentials/subdifferentials of the approximating solutions Vn. These remain very
challenging problems.

It should be noted that the results of this paper were derived when there was no
state constraint in the optimal control problem. We do not know how to treat the
state constraint problems. Indeed, the presence of state constraints causes great diffi-
culty to the analysis; they bring some particular boundary conditions (depending on
the particular features of the state constraints imposed) to the associated HJB equa-
tions, while the existing viscosity solutions theory on nonlinear PDEs with boundary
conditions is far from satisfactory and complete.
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Abstract. In this paper we will prove that the system described by the delay-differential
equation R(d/dt,∆)w = 0 (with ∆ the unit delay operator) is controllable if and only if the rank of
R(λ, e−λ) is constant for all λ ∈ C. This condition is compared with the existing results obtained
both by the analytic approach and by the algebraic approach to delay-differential systems.
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1. Introduction. The aim of this paper is to analyze controllability for delay-
differential (d-d) systems. We will derive a concrete necessary and sufficient condition
for controllability of d-d systems in kernel representation. We will use the behavioral
approach to dynamical systems [12]. Thus a continuous-time dynamical system is a
triple Σ = (R,Rq,B) with behavior B being a set of trajectories w : R→ Rq. We will
assume that B is shift invariant, i.e., that (w(.) ∈ B)⇒ (w(t+ .) ∈ B ∀t ∈ R). Since
the behavior is the most intrinsic feature of a system, it is logical to define the system
properties in terms of the set B, i.e., at an external level. This applies in particular
for the notion of controllability.

DEFINITION 1.1. The system Σ is said to be controllable if for all w1, w2 ∈ B
there exist a w ∈ B and a T ≥ 0 such that

w(t) =
{
w1(t) for t < 0,
w2(t− T ) for t ≥ T.

Note that for shift-invariant behaviors the controllability condition of Definition
1.1 is equivalent to the following property. For all w1, w2 ∈ B, w1 is B-compatible with
w2, i.e., for all t1 ∈ R there exist t2 ≥ t1 and w ∈ B such that w∗ = w1∧t1w∧t2w2 ∈ B.
Here w∗ = w1 ∧t1 w ∧t2 w2 stands for the successive concatenation of w1, w, and
w2, respectively, at times t1 and t2 and is defined as follows: w∗(t) = w1(t) for
t < t1, w∗(t) = w(t) for t1 ≤ t < t2, and w∗(t) = w2(t) for t ≥ t2. In other words,
controllability requires that every past trajectory can be transferred to any future
trajectory. In order to distinguish this property from the classical state controllability
and to emphasize the fact that it concerns the system behavior we will refer to it as
behavioral controllability.

Behavioral controllability has been widely studied for both continuous- and dis-
crete-time systems, respectively, described by differential and difference equations, see
[12, 8]. In this paper we consider continuous-time systems described by differential
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equations with delays, i.e., d-d systems. More concretely, we will be concerned with
systems whose behavior B can be described as the kernel of a d-d operator R(d/dt,∆)
(where R(z1, z2) is a two-dimensional (2D) polynomial matrix in z1 and z2 and ∆ is
the delay). This is a very general description which can comprise both the polynomial
input-output equations and the pseudostate representations considered in the litera-
ture [11], [3]. We will show that B = kerR(d/dt,∆) is controllable if and only if (iff)
R(λ, e−λ) has constant rank for all λ ∈ C. It turns out that this condition reduces to
spectral controllability if one considers pseudostate representations as in [3], [6], and
[9].

This characterization of behavioral controllability has also been independently
obtained in [1], where the author develops an elegant theory for d-d systems in a be-
havioral framework based on the properties of a suitable ring of entire functions. Here
we follow a different approach based on the analysis of the exponential-polynomial
trajectories in the system.

2. Delay-differential systems. Let R(z1, z2) be a 2D polynomial matrix hav-
ing g rows and q columns. Now consider the equation

R

(
d

dt
,∆
)
w = 0,(1)

where ∆ denotes the unit delay operator: (∆f)(t) := f(t − 1). Equation (1) defines
the dynamical system (R,Rq,B) with B = ker(R(d/dt,∆)) and R(d/dt,∆) viewed as
a map from C∞(R,Rq) into C∞(R,Rg). In other words, the behavior consists of the
C∞-solutions of (1). We will call (1) a d-d system (even though it would be more
appropriate to refer to it as a d-d system in kernel representation).

Note that this kernel representation is more general than the polynomial input-
output descriptions considered in [11], as well as than the pseudostate descriptions
of [3]. Indeed, any polynomial input-output d-d equation Py = Qu can be regarded
as a kernel representation with R(d/dt,∆) = [P (d/dt,∆) | −Q(d/dt,∆)] and with
w = col(y, u). In turn, the pseudostate description {dx/dt = A(∆)x + Bu y = Cx}
can also be viewed as a kernel representation with w = col(x, y, u) and R(d/dt,∆) =
col([d/dt−A(∆) | 0 | −B], [−C | I | 0]). Observe, however, that (1) is a broader class
of systems than those mentioned. For example, both the systems defined by

w1 =
d

dt
∆w2

and by

∆w1 = (1 + ∆2)w2

fit (1) but not the classical input/state/output frameworks.

3. Behavioral controllability of d-d systems. Our problem is to find con-
ditions on the 2D polynomial matrix R(z1, z2) such that (1) defines a system which
is controllable in the sense of Definition 1.1. The following is the main result of this
paper.

THEOREM 3.1. (1) defines a controllable d-d system iff the rank of the complex
matrix R(λ, e−λ) is constant for λ ∈ C.

The above theorem is a natural generalization of the well-known identical result
for differential systems R(d/dt)w = 0. However, the proof will show that from a
mathematical point of view Theorem 3.1 is a much deeper result.
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As an alternative to systems (1), consider the following d-d systems. LetM(z1, z2)
be a 2D polynomial matrix with q rows and l columns. Consider the equation

w = M

(
d

dt
,∆
)
a,(2)

where a ∈ C∞(R,Rl) corresponds to an auxiliary variable. Equation (2) defines a
dynamical system (R,Rq, im(M(d/dt,∆))) with M(d/dt,∆) viewed as an operator
from C∞(R,Rl) into C∞(R,Rq). We will call (2) a d-d system in image representa-
tion. It is easy to prove that (2) defines a dynamical system which is automatically
controllable. For differential systems, a system is controllable if and only if it admits
an image representation. This is, in fact, also the case for d-d systems (1).

THEOREM 3.2. A d-d system (1) is a controllable system iff there exists a 2D
polynomial matrix M(z1, z2) such that

kerR
(
d

dt
,∆
)

= imM
(
d

dt
,∆
)
.(3)

In order to give a further insight, it is useful to compare our result with the
existing results on state controllability for d-d systems. We will first focus on the
class of retarded d-d systems Σ considered in [3] which have a pseudostate description
of the form {

dx/dt = A(∆)x+Bu,
y = Cx,

where x is the (n-dimensional) pseudostate, u is the input, y is the output, and
A(z) = ANz

N + · · · + A1z + A0 is a polynomial matrix in z. For the system Σ, the
state at time t is defined in [3] as being z(t) = col(x(t), xt), where xt ∈ L2[(−N, 0],Rn]
is given by xt(τ) = x(t + τ) for all τ ∈ (−N, 0]. This yields the infinite-dimensional
state space Z = Rn × L2[(−N, 0),Rn]. Define, in this state space, the set Kt of all
attainable states in time t, and let K∞ := ∪t>0Kt. Then Σ is said to be approximately
controllable if K∞ is dense in Z. The next theorem, providing a characterization of
approximate controllability, has been derived in [3].

THEOREM 3.3. Σ is approximately controllable iff (1) rank[(λI − A(e−λ) | B] =
n ∀λ ∈ C and (2) rank[AN | B] = n.

The first condition of the theorem is known as spectral controllability.
Note that the pseudostate description that we have considered here can be re-

garded as a kernel representation with R(d/dt,∆) = col([d/dt−A(∆) | 0 | −B], [−C |
I | 0]) if Σ is viewed as a system with external variable vector w = col(x, y, u) and
with smooth signals. It turns out from Theorem 3.1 that the behavior of Σ is control-
lable iff rank[(λI −A(e−λ) | B] = n for all λ ∈ C. So behavioral controllability seems
to correspond to spectral rather than to approximate controllability. The situation
can be illustrated by the following example.

EXAMPLE 3.4. Let A(z) = A0 + A1z with A0 = col([0 | 1], [0 | 0]), A1 = col([0 |
0], [−1 | 0]), and B = col(0,−1). Then the corresponding system Σ is not approx-
imately controllable since rank[A1 | B] = 1 < 2. However, it is easy to check that
[λI − A(e−λ) | B] has rank 2 ∀λ ∈ C and hence the behavior of Σ is controllable.
What happens in this case is that the pseudostate components x1 and x2 are related
by dx1/dt = x2. This holds in particular in the interval [−1, 0); therefore, not all the
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elements in the state space R2 × L2([−1, 0),R2) are feasible, which prevents approx-
imate controllability. This obstacle does not arise for behavioral controllability since
this property exclusively regards admissible system signals (and hence one does not
take into account the signals which do not satisfy dx1/dt = x2).

The characterization of approximate controllability has been extended to neu-
tral d-d systems in [6] and [9] and later generalized in [13] to the case of (possibly)
noncommensurable delays. For systems with a pseudostate description of the form{

dx/dt = A(∆1, . . . ,∆N , D)x+Bu,
y = Cx

(4)

(where A(z1, . . . , zN , zN+1) = A0 +
∑N
i=1Ai(zN+1)zi, Ai(zN+1)zi = Ei + FizN+1,

and ∆i represents the delay by hi units of time, i = 1, . . . , N), the following result
has been derived (and formulated in slightly different terms).

THEOREM 3.5 (see [13]). The system described by (4) is approximately controllable
iff (a) rank[A(eh1λ, . . . , ehNλ, λ), B] = n ∀λ ∈ C and (b) rank[AN (λ), B] = n for some
λ ∈ C.

As before, the first condition corresponds to spectral controllability and coincides
with our characterization of behavioral controllability if the delays are commensurable.

Another interesting issue is the comparison of our notion of controllability with
the ones which have been studied in [5] and [2] within an algebraic approach. Here
the authors consider systems Σ with pseudostate-space representations of the form{

dx/dt = A(∆)x+B(∆)u,
y = C(∆)x+D(∆)u,(5)

where A(z2), B(z2), C(z2), D(z2) are polynomial matrices in z2. For such systems
the following two notions of controllability are introduced. Let R(z2) := [B(z2) |
A(z2)B(z2) | . . . | (A(z2))n−1B(z2)], where n is the size of A(z2). Σ is said to be
weakly controllable if R(z2) has full row rank over the field of fractions R(z2). If
R(λ2) has full row rank ∀λ2 ∈ C, Σ is said to be strictly controllable. Theorem 3.6 is
shown in [2].

THEOREM 3.6. With the previous notation, (1) Σ is weakly controllable iff [z1 −
A(z2) | B(z2)] is left prime, and (2) Σ is strictly controllable iff rank[λ1 − A(λ2) |
B(λ2)] = n ∀(λ1, λ2) ∈ C× C.

Regarding the pseudostate representation (5) as a kernel representation, it follows
from Theorem 3.1 that the behavior of Σ is controllable iff rank[λ−A(e−λ) | B(e−λ)] =
n ∀λ ∈ C. Thus strict controllability implies behavioral controllability. On the other
hand, if [z1 − A(z2) | B(z2)] has a left factor Φ(z1, z2) with nontrivial determinant
f(z1, z2), then Φ(λ, e−λ) will be a left factor of [λ− A(e−λ) | B(e−λ)], implying that
this matrix drops in rank when λ is a zero of f(λ, e−λ). Therefore we can conclude
that behavioral controllability implies weak controllability.

Summarizing the preceding considerations, we have that strict controllability im-
plies behavioral controllability, which in its turn implies weak controllability. The
next examples show that the converse implications do not hold true.

EXAMPLE 3.7. Consider the delay-differential system Σ described by{
dx/dt = (−∆ + 1)x+ (2−∆)u,
y = x.

Letting w := col(u, y, x) and R(z1, z2) := col([z2−2 | 0 | z1 +(z2−1)], [0 | 1 | −1])
this description becomes R(d/dt,∆)w = 0. Since R(λ, e−λ) = col([e−λ − 2 | 0 |
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λ + (e−λ − 1)], [0 | 1 | −1]) has rank 2 ∀λ ∈ C, the behavior of Σ is controllable.
However, [λ1− (1−λ2) | 2−λ2] clearly drops in rank for (λ1, λ2) = (−1, 2), and hence
Σ is not strictly controllable.

EXAMPLE 3.8. Let Σ be described by the following equations:{
dx/dt = (−∆ + 1)u,
y = x.

Proceeding as in the previous example, we have that R(λ, e−λ) = col([1 − e−λ |
0 | λ], [0 | 1 | −1]), which drops in rank for λ = 0. So the behavior of Σ is not
controllable. However [z1 | z2 − 1] is left prime and hence Σ is weakly controllable.

EXAMPLE 3.9. Consider the system described in image representation by[
w1
w2

]
=
[

1−∆
d
dt

]
a.(6)

This is a system with transfer function w2 → w1:

ŵ1

ŵ2
=

1− e−s
s

.(7)

Obviously, since it is an image representation, it defines a controllable system.
The logical candidate for the kernel representation is

d

dt
w1 = (1−∆)w2.(8)

However, (8) is not controllable and hence not a faithful representation of (6). This
shows that the d-d system (6) cannot, in fact, be represented as a kernel representation
(1). In particular, this implies that what we call the latent variable elimination
theorem [12] does not hold for d-d systems!

4. Proofs. We will show Theorems 3.1 and 3.2 in three main steps, respectively,
corresponding to Propositions 4.1, 4.5, and 4.6 below. In the first step we prove
that the rank constancy of R(λ, e−λ) implies that (1) has an image representation.
In the second step we prove that the existence of an image representation implies
controllability. Finally, in the third step we show that if (1) defines a controllable
system then R(λ, e−λ) must have constant rank over C. For a question of simplicity
in the notation, in this section we will write D = d/dt for the differentiator.

PROPOSITION 4.1. With the previous notation, if rankR(λ, e−λ) = r ∀λ ∈ C
then there exists a 2D polynomial matrix M(z1, z2) such that B := kerR(D,∆) =
imM(D,∆), with the operator M(D,∆) acting on C∞(R,Rl) for a certain integer l.

Proof. Under the hypothesis, the 2D polynomial matrix R(z1, z2) has rank r (over
the field of fractions R(z1, z2)). Suppose first that R(z1, z2) has q = r columns. Then
R(λ, e−λ) has full column rank ∀λ ∈ C, and hence kerR(D,∆) does not contain any
element with components of the form tkeλt. By [10, Theorem 5] this implies that
kerR(D,∆) = {0}, and the equality kerR(D,∆) = imM(D,∆) is trivially satisfied
with M(z1, z2) being the q × 1 zero matrix. Suppose now that R(z1, z2) has q > r
columns. Then Lemma 4.2 follows.

LEMMA 4.2. R(z1, z2) can be factored as F (z1, z2)R̄(z1, z2), where F and R̄ are
2D polynomial matrices of sizes g × r and r × q, respectively, such that F (z1, z2) has
full column rank (over R(z1, z2)) and R(z1, z2) is left prime (i.e., R̄ has full row rank
and all its left factors are invertible in Rr×r[z1, z2]).
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Proof. Without loss of generality we may assume that R(z1, z2) = [−Q(z1, z2) |
P (z1, z2)], where P (z1, z2) is a full rank matrix with r columns. Moreover, there
exists a rational matrix G(z1, z2) such that PG = Q. Let G = Q̂P̂−1 and G = P̄−1Q̄
be, respectively, a right coprime and a left coprime factorization of G [4]. Then the
matrix R̄ = [−Q̄ | P̄ ] is a minimal left annihilator of H := col(P̂ , Q̂) (cf. [7]); i.e.,
R̄H = 0 and for every 2D polynomial matrix S(z1, z2) such that SH = 0 there exists
a 2D polynomial matrix L(z1, z2) satisfying S = LR̄. Since, obviously, also RH = 0,
there exists a polynomial matrix F (z1, z2) such that R = FR̄. Further, since R̄ is a
full rank polynomial matrix with r rows, F must have column rank.

Let then F and R̄ be as in the previous lemma. Note that due to the fact that
rankR(λ, e−λ) = r ∀λ ∈ C neither F (z1, z2) nor R̄(z1, z2) can have zeros of the form
(z1, z2) = (λ, e−λ). Now, since R̄ is left prime, there exists a polynomial matrix W
such that

R̄(z1, z2)W (z1, z2) = N(z1),

with N(z1) = diag(d(z1), . . . , d(z1)) for a suitable (nonzero) 1D polynomial d(z1). Let
M(z1, z2) be a right-prime 2D polynomial matrix such that R̄M = 0 (we can take
M = H as in Lemma 4.2) and define the matrix U(z1, z2) := [W (z1, z2) |M(z1, z2)].

LEMMA 4.3. The operator U(D,∆) : C∞(R,Rq)→ C∞(R,Rq) is surjective.
Proof. We start by showing that detU = detN = dr(z1) =: n(z1). Without

loss of generality we may assume that R̄(z1, z2) can be partitioned as R̄(z1, z2) =
[P (z1, z2) | −Q(z1, z2)], with P (z1, z2) square and nonsingular. Consider the corre-
sponding partitions [ X

Y ] =: W and [ Q̄
P̄ ] =: M of W and M . It is well known (see

[4]) that det P̄ (z1, z2) = detP (z1, z2). Now,

detU = det
[
X Q̄
Y P̄

]
= det

([
X Q̄
Y P̄

] [
I 0

−P̄−1Y I

])

= det
[
X − Q̄P̄−1Y Q̄

0 P̄

]
= det P̄ · det(X − Q̄P̄−1Y )

= det P̄ · det(X − P−1QY ),

since Q̄P̄−1 = P−1Q (due to the fact that M is a dual basis of R̄). Thus,

detU = det P̄ · det(P−1(PX −QY )
= det P̄ . detP−1 · det(PX −QY )
= det P̄ .(detP )−1 · det(PX −QY )
= det(PX −QY ),

and as N = PX −QY , we conclude that

detU = detN = det(diag(d(z1), . . . , d(z1))) = dr(z1) =: n(z1).

Consider now the equation

U(D,∆)α = β.

Given β ∈ C∞(R,Rq), define ᾱ such that

N̄(D)ᾱ = β,
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with N̄(z1) := diag(n(z1), . . . , n(z1)). Note that N̄(D) is a surjective operator in
C∞(R,Rq). Define α := V̄ (D,∆)ᾱ ∈ C∞(R,Rq), where V̄ (z1, z2) is such that

U(z1, z2)V̄ (z1, z2) = N̄(z1).

Then

U(D,∆)α = U(D,∆)V̄ (D,∆)ᾱ = N̄(D)ᾱ = β,

showing that U(D,∆) is a surjective operator in C∞(R,Rq).
This implies that ∀w ∈ B = kerR(D,∆) there exists w̄ such that w = U(D,∆)w̄

and hence R(D,∆)U(D,∆)w̄ = 0, i.e., w̄ ∈ kerR(D,∆)U(D,∆). So,

B ⊆ U(D,∆) ker(R(D,∆)U(D,∆)).

On the other hand, if w = U(D,∆)w̄ and R(D,∆)U(D,∆)w̄ = 0, then R(D,∆)w = 0,
i.e.,

B ⊇ U(D,∆) ker(R(D,∆)U(D,∆)).

Therefore B = U(D,∆) ker(R(D,∆)U(D,∆)). Taking into account that U = [W |M ]
and that RU = [FN | 0], this yields B = [W (D,∆) |M(D,∆)](ker[F (D,∆)N(D,∆) |
0]). Thus

B = W (D,∆) ker(F (D,∆)N(D,∆)) + imM(D,∆).

Finally, it turns out that Lemma 4.4 follows.
LEMMA 4.4. W (kerFN) ⊆ imM .
Proof. Recall that F (λ, e−λ) has full column rank ∀λ ∈ C. This implies that

kerF (D,∆) = {0}, and hence kerFN = kerN . Therefore, in order to prove the
lemma we will show that W (kerN) ⊆ imM . As is well known,

kerN(D) = span{tjeλitek : i = 1, . . . , p, j = 0, . . . , µ(λi)− 1, k = 1, . . . , r},

where λ1, . . . , λp are the distinct roots of d(z1), µ(λi)(i = 1, . . . , p) are the corre-
sponding multiplicities, and ek is the kth vector in the canonical basis of Rr. So,
W (kerN) ⊆ imM iff for every root λ of d(z1), for every m subject to 0 ≤ m ≤ µ(λ)−1,
and for every k ∈ {1, . . . , r}, W (tmeλtek) ∈ imM ; i.e., there is a C∞ trajectory x such
that

Mx(t) = W (tmeλtek).(9)

Let then λ be a root of d(z1) and let m be a positive integer not greater than
µ(λ)−1. Without loss of generality we may assume that R̄ = [P | −Q] with P (λ, e−λ)
invertible. Consider the corresponding partitions of M and W as defined in the proof
of Lemma 4.3. Note that in this case, P̄ (λ, e−λ) is also invertible. Now, (9) can be
rewritten as

Q̄ x = X(tmeλtek),(10)
P̄ x = Y (tmeλtek).(11)

It is not difficult to see that

Y (D,∆)(tmeλtek) = Y (λ, e−λ)ektmeλt + (Ym−1t
m−1 + · · ·+ Y0)ekeλt
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for some suitable matrices Ym−1, . . . , Y0. Take x to be of the form x(t) = (ξmtm +
· · ·+ ξ0)eλt. Then

(P̄ (D,∆)x)(t) = {P̄ (λ, e−λ)ξmtm + [P̄ (λ, e−λ)ξm−1 +Gm−1
m ξm]tm−1

+ · · ·+ [P̄ (λ, e−λ)ξ0 +G0
1ξ1 + · · ·+G0

mξm]}eλt,

and x satisfies (11) iff
P̄ (λ, e−λ)ξm = Y (λ, e−λ)ek,
P̄ (λ, e−λ)ξm−1 = Ym−1ek −Gm−1

m ,
...
P̄ (λ, e−λ)ξ0 = Y0ek − (G0

1ξ1 + · · ·+G0
1ξ1).

(12)

As P̄ (λ, e−λ) is invertible, there is a (unique) solution (ξm, . . . , ξ0) to (12), showing
that (11) has a C∞ solution x(t) = (ξmtm + · · ·+ ξ0)eλt. It remains to prove that this
solution x(t) also satisfies (10). It follows from (11) that

QP̄x = QY (tmeλtek) ⇔
PQ̄x = QY (tmeλtek) ⇔
PQ̄x = (PX −N)(tmeλtek) ⇔

0 = P (Q̄x−Xtmeλtek),(13)

since QP̄ = PQ̄, PX + QY = N , and tmeλtek ∈ kerN . Note that Q̄(D,∆)x −
X(D,∆)tmeλtek = E(t)eλt, where E(t) is a polynomial column in t containing powers
of t of order not greater than m. Assume that E(t) = Em̄t

m̄ + · · ·+E0, where Em̄ is
a nonzero column and m̄ ≤ m. Then (13) becomes

[P (λ, e−λ)Em̄tm̄ + (Gm̄−1t
m−1 + · · ·+G0)]eλt = 0,

which implies that P (λ, e−λ)Em̄ = 0. This is absurd, since P (λ, e−λ) is an invertible
matrix and Em̄ is assumed to be nonzero. Thus, E(t) must be zero, i.e.,

Q̄x−Xtmeλtek = 0,

which shows that x satisfies equation (10) and hence also (9).
As a consequence of this lemma we have that B = imM(D,∆), i.e., (1) has an

image representation, proving the proposition.
Now, it is not difficult to come to the following conclusion.
PROPOSITION 4.5. If (1) has an image representation, then it defines a control-

lable system.
Proof. Suppose that (1) has an image representation, i.e., B = imM(D,∆), and

let w1 and w2 be two arbitrary signals in B. Then, there exist a1 and a2 in C∞(R,Rl)
such that wi = Mai, (i = 1, 2). Now, it is possible to construct a smooth signal a∗

which coincides with a1 in the past and with a2 in the (sufficiently far) future. Such
signal yields an element w∗ = Ma∗ in B which coincides with w1 in the past and
with w2 in the future. Thus w1 is B-compatible, with w2 showing that B is control-
lable.

Finally, if R(z1, z2) is a 2D polynomial matrix of rank r and rankR(λ, e−λ) < r
for some λ0 ∈ C we can show that there exists a signal associated with the frequency
λ0 which is not B-compatible with the identical zero signal and hence B is not con-
trollable.
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PROPOSITION 4.6. Let B := kerR(D,∆), where R(z1, z2) is a 2D polynomial
matrix of rank r. If B is controllable then rankR(λ, e−λ) = r ∀λ ∈ C.

Proof. We start by noting that, formally, e−z1 =
∑+∞
k=0

(−1)k

k! zk1 . Thus, if z2 =
e−z1 , R(z1, z2) = Π̃(z1), where Π̃(z1) is a matrix over the ring R[[z1]] of formal power
series in z1. Suppose now that rankR(λ, e−λ) < rankR(z1, z2) = rankR(z1, e

−z1) = r
for a certain λ0 ∈ C. We consider first the case where λ0 = 0; so rankR(0, 1) <
rankR(z1, e

−z1). This means that rankΠ̃(0) < rankΠ̃(z1) = r, and therefore we may
assume without loss of generality that

Π̃(z1) = diag(zk1
1 , . . . , zkr1 , z

kr+1
1 , . . . , zks1 )Γ̃(z1),

where k1, . . . , ks are integers, k1 ≥ 1, and

Γ̃(0) =
[
Ir×r 0

0 0

]
(with the zero rows possibly void).

Let

Γ(z1) =
[
Ir×r 0

0 0

]
+ z1Γ1 + z2

1Γ2 + · · ·+ zk1−1
1 Γk1−1

be such that

Γ̃(z1) = Γ(z1) + higher-order terms.

Then, using the same kind of arguments as in the proof of Lemma 4.4, it is possible
to show that there exists a trajectory w∗(t) = αk1−1t

k1−1 + · · ·+ α0 such that

Γ(D)w∗(t) =


1
0
...
0

 tk1−1

(k1 − 1)!
.

Now, this trajectory w∗ is clearly such that

R(D,∆)w∗ = diag(Dk1 , . . . , Dks)Γ(D)w = Dk1tk1−1 = 0,

and hence it belongs to B.
LEMMA 4.7. With the previous notation, w∗ is not B-compatible with the zero

trajectory.
Proof. Suppose that w∗ is B-compatible with the zero trajectory, yielding a

trajectory v∗ ∈ B such that v∗|(−∞,τ1) = w∗|(−∞,τ1) and v∗|[τ2,+∞) = 0|[τ2,+∞) for
some τ1 < τ2. Since v∗ ∈ B, R(D,∆)v∗ = 0 and therefore also∫ T2+1

T1

[R(D,∆)v∗]dt = 0.

In particular, if r(z1, z2) denotes the first row of R(z1, z2), we have that∫ T2+1

T1

[r(D,∆)v∗]dt = 0.(14)
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Note further that r(λ, e−λ) becomes zero for λ = 0, and hence r(z1, z2) = r(z1, e
−z1)

must be of the form

r(z1, z2) = r(z1, e
−z1) = z1r0(z1) + (e−z1 − 1)r1(z1, e

−z1),

where r0(z1) and r1(z1, z2), respectively, are 1D and 2D polynomial rows. So equation
(14) is of the form ∫ T2+1

T1

[(∆− 1)r1(D,∆) +Dr0(D)]v∗dt = 0.

This is equivalent to∫ T1

T1−1
r1(D,∆)v∗dt+

∫ T2+1

T2

r1(D,∆)v∗dt+ [r0(D)v∗]

∣∣∣∣∣
T2+1

T1

= 0,

which is still equivalent to∫ T1

T1−1
r1(D,∆)w∗dt+

∫ T2+1

T2

r1(D,∆)0dt

+(r0(D)0)(T2 + 1)− (r0(D)w∗)(T1) = 0

if T2 + 1 � τ2 and T1 � τ1 so that in a sufficiently big interval around T2 + 1,
v∗ coincides with the zero trajectory, and in a sufficiently big interval around T1, it
coincides with w∗. This yields∫ T1

T1−1
r1(D,∆)w∗dt− (r0(D)w∗)(T1) = 0.(15)

Let η = col(η1, . . . , ηq) be a trajectory such that η(t) = αk1−1

k1
tk1 + · · ·+α0t; then

Dη = w∗ and we may write (15) as∫ T1

T1−1
r1(D,∆)Dη dt− (r0(D)Dη)(T1) = 0,

which is equivalent to having

[((∆− 1)r1(D,∆) + r0(D)D)η](T1) = 0

or still

(r(D,∆)η)(T1) = 0.

Now, it follows from our previous considerations that

r(D,∆)η)(T1) = (Dk1 [1 0 . . . 0]η)(T1) = [1 0 . . . 0]αk1−1(k1 − 1)! = 1,

since [1 0 . . . 0]Γ(D)w∗ = tk1−1

(k1−1)! . In this way we obtain that 0 = 1, which
is absurd. Consequently the hypothesis that w∗ is B-concatenable with the zero
trajectory cannot hold true.

It follows from this result that if R(λ, e−λ) drops in rank for λ = 0, then B is not
controllable. It remains to show that if rankR(λ, e−λ) < rankR(z1, z2) for λ = λ∗ 6= 0
then B is not controllable.
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Assume now that R(λ, e−λ) drops in rank for λ = λ∗ 6= 0, and consider the system
Σ∗ with behavior B∗ := expλ∗ B, where expλ∗ is defined by expλ∗(t) = e−λ

∗t ∀t ∈ R.
Then B∗ is described by a polynomial matrix R∗(z1, z2) such that R∗(λ, e−λ) = R(λ+
λ∗, e−(λ+λ∗)). As rankR(λ, e−λ) drops for λ = λ∗, R∗(λ, e−λ) drops for λ = 0. Thus,
by the foregoing arguments, B∗ is not controllable. This implies that B is also not
controllable, completing the proof of the proposition.

5. Conclusion. We have presented a necessary and sufficient condition for the
controllability of the behavior of d-d systems with kernel representations. Moreover,
we have compared the notion of behavioral controllability with the notions of approx-
imate and spectral controllability considered in [3] as well as with other controllability
properties (namely, weak and strict controllability) that have been introduced within
an algebraic approach to d-d systems [5]. Contrary to what happens with the results
of [3], [6], [9], and [5], our results hold for all types of systems with commensurable
delays and not only for retarded or neutral systems in pseudostate form.
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Abstract. We present a setting in which we derive a new Farkas lemma for the system {Ax =
b, x ∈ S} without the standard closure condition on A(S). Further characterization in Hilbert spaces
is also presented.
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vector spaces, Hilbert spaces
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1. Introduction. The celebrated Farkas lemma is a fundamental tool in opti-
mization to characterize existence of solutions for a system {Ax = b, x ∈ S}, where A
is a linear mapping and S a positive convex cone. It is also the basis of many duality
results such as first-order optimality conditions. There have been a great number of
papers devoted to various asymptotic and nonasymptotic, linear and nonlinear ver-
sions of Farkas’ lemma. The asymptotic version is a weaker notion that replaces
feasibility with versions of asymptotic feasibility. For instance, the interested reader
is referred to [10] for various Farkas lemmas in arbitrary dual pairs of vector spaces,
using weak topologies [4], [3], [12], [13], [14], [16], [18], [19] for linear and nonlinear
versions with various applications; the discussion in [11]; and all the references in the
above papers as well as the references in [1].

In this paper we are concerned with the linear nonasymptotic version. In this
case, Farkas’ lemma holds only under a crucial closure assumption in some appropriate
topology. The closure assumption is concerned with A(S), the image of the positive
cone S, and holds for example when the cone S is a polyhedral cone in some finite-
dimensional space. In general, this closure assumption is very restrictive, and some
specific properties of A and S must be invoked. (For example, sufficient conditions are
given in [15].) The reader is referred to [3] for simple examples in finite-dimensional
spaces where this closure assumption does not hold and only an asymptotic version
of Farkas’ lemma holds.

The purpose of this paper is to provide a setting in which, by introducing another
appropriate convex cone (indexed by a scalar parameter and some vector), one may
derive a (nonasymptotic) Farkas lemma without this (strong) closure assumption. The
underlying idea is that if a solution exists, it must be in this cone for some sufficiently
large value of the parameter and also must satisfy some linear constraint related to
the vector used in the definition of the new cone. Doing so permits us to use a weak*
sequential compactness argument and yields the desired result. The Farkas lemma is
stated in terms of the dual of the cone introduced. A more precise characterization is
given in Hilbert spaces. This new Farkas lemma is also illustrated for linear systems
of matrix equalities involving the cone of positive semidefinite matrices.
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Finally, thanks to an anonymous referee, we also give a different Farkas lemma
that reveals what lies behind the previous one, namely, the existence of an appropriate,
compactly generated, convex cone.

2. Notation and definitions. We use notation similar to [10]. Let X and Y
be two real vector spaces with a bilinear form 〈, 〉 defined on X × Y . We also assume
that

(i) for each x 6= 0 in X, ∃y ∈ Y with 〈x, y〉 6= 0,
(ii) for each y 6= 0 in Y, ∃x ∈ X with 〈x, y〉 6= 0,

so that (X,Y ) is a dual pair. We also equip X with the weak topology σ(X,Y ) so
that all the elements of Y are continuous when regarded as linear forms on X. We
are also given a convex cone S ⊂ X. Similarly, Y is equipped with the σ(Y,X) weak
topology and S+ ⊂ Y denotes the anticone of S, i.e.,

S+ := {y ∈ Y | 〈y, x〉 ≥ 0 ∀x ∈ S}.

When Y ≡ X∗, where X∗ is the topological dual of X, S+ is called the dual cone of
S and is denoted by S∗.

Let (Z,W ) be some other real dual pair where Z (resp., W ) is also equipped with
the σ(Z,W ) (resp., σ(W,Z)) weak topology. Let A be a linear mapping A : X → Z.
A necessary and sufficient condition for A to be weakly continuous is A∗(W ) ⊂ Y .
The restriction A+ of A∗ to W is then weakly continuous and is called the adjoint of
A with respect to the dual pairs (X,Y ) and (Z,W ) (see [10]).

Weak convergence of xn to x will be denoted by xn
w→ x. Note that with the

weak topology, all the vector spaces are locally convex [17].
We are interested in existence of solutions to the system

Ax = b, x ∈ S,

where b is some vector in Z. We first briefly recall a standard Farkas lemma [10] that
addresses this issue.

THEOREM 2.1 (see [10, p. 987]). Let (X,Y ), (Z,W ) be real dual pairs, S be a
convex cone in X, and A : X → Z be a weakly continuous linear mapping. If A(S)
is weakly closed, then the following are equivalent:

(a) The system Ax = b has a solution x ∈ S.
(b) A+w ∈ S+ ⇒ 〈b, w〉 ≥ 0.

Conversely, the equivalence of (a) and (b) implies that A(S) is weakly closed.
As may be noted from the last assertion, the condition “A(S) weakly closed” is

crucial. Indeed, without such a condition, only asymptotic existence can sometimes
be asserted when (b) holds (see [3]). However, in many practical examples, the closure
assumption on A(S) is not satisfied.

The purpose of this paper is to provide a setting in which a Farkas lemma holds
with no closure assumption on A(S).

3. The main result. In the following discussion, the spaces X,Y, Z, and W are
all assumed to be Banach spaces. In addition, we make the following assumption.

Assumption H.
(i) (X, ‖ . ‖) is the topological dual of a separable Banach space Y .
(ii) ∃y0 ∈ S+ such that x ∈ S, 〈y0, x〉 = 0, ⇒ x = 0.
Remark. H (ii) obviously implies that the cone S is pointed, i.e., S ∩ −S = {0}.

Actually, H (ii) merely asserts that the cone S admits a positive linear functional
y0 ∈ S+ (which implies that S has a base). When Y = X∗, in which case S+ = S∗,
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the dual cone of S, then it is equivalent to assuming that S has a base (see, e.g., [5]).
In some cases (e.g., when X is a normed separable space and Y = X∗), pointedness
and existence of a positive functional are equivalent for closed convex cones.

Examples where H holds:
• X is the vector space of (n, n) real symmetric matrices with y0 the identity

matrix, S the cone of positive semidefinite matrices, and 〈x, y〉 := trace(x.y).
• Let (K,B, µ) be a σ-finite measure space. X := Lp(K,B, µ) with 1 < p ≤ ∞. S

is the usual positive cone in X. y0 is any strictly positive function in Y := Lq(K,B, µ)
with 1/p+ 1/q = 1 and q = 1 if p =∞.
• X :=M(K), the Banach space of bounded Borel signed measures on K, with

K a locally compact separable metric space. S is again the usual positive cone in X,
and Y := C0(K) the space of continuous functions that vanish at infinity. y0 is any
strictly positive function in C0(K).
• X := lp, 1 < p ≤ ∞, with S the usual positive cone in X and y0 any strictly

positive sequence in Y := lq, with 1/p+ 1/q = 1.
• X := l1 with S the usual positive cone and Y := c0 the space of sequences that

vanish at infinity. y0 is any strictly positive sequence in c0.
For λ > 0, let Sλy0 be the set {x ∈ S| ‖ x ‖≤ λ〈y0, x〉}. Obviously, Sλy0 is a

convex cone. We then have the following result.
THEOREM 3.1. Let (X,Y ), (Z,W ) be real dual pairs, S be a weakly closed convex

cone in X, and A : X → Z be a weakly continuous linear mapping. Assume also that
H holds for some given y0 ∈ Y . Then the following are equivalent:

(i) The system Ax = b has a solution x ∈ S
(ii) There exists some positive (λ, δ) such that

A+w + γy0 ∈ S+
λy0

, γ ≥ 0⇒ 〈b, w〉+ γδ ≥ 0.

(iii) There exists some positive (λ, δ) such that

A+w ∈ S+
λy0
⇒ 〈b, w〉 ≥ 0 and A+w + y0 ∈ S+

λy0
⇒ 〈b, w〉 ≥ −δ.

Proof. Consider the linear mapping

T : X ×R→ Z ×R, T (x, z) :=

[
Ax

〈y0, x〉+ z

]
.

Its adjoint T+ : W × R → Y × R is given by T+(w, γ) := (A+w + γy0, γ). Let R+

denote the nonnegative real numbers. We first prove that T (Sλy0 × R+) is weakly
closed.

For some directed set {D, �}, let {(xα, zα)} (where α ∈ D) be a net in Sλy0×R+

such that w-lim T (xα, zα) = (a1, a2), where w-lim denotes the (σ(Z × R,W × R))
weak limit. In particular, lim 〈y0, xα〉+ zα = a2 and a2 ≥ 0.

If a2 = 0, then lim 〈y0, xα〉 = 0 and lim zα = 0 so that since xα ∈ Sλy0 , lim
||xα|| = 0, which in turn implies w-lim xα = 0, where the latter w-lim denotes
the σ(X,Y ) weak limit. Thus by continuity of A, we must have a1 = 0. Hence,
T (0, 0) = (0, 0) = (a1, a2).

If a2 6= 0, then for some α0 ∈ D and all α � α0, zα ≤ 2a2, and 〈y0, xα〉 ≤ 2a2,
which in turn implies ‖ xα ‖≤ 2λa2. Let ξα := xα

2λa2
. Then, ξα ∈ S ∩ B(0, 1), where

B(0, 1) is the unit ball in (X, ‖ . ‖), compact in the weak∗ topology, which in our
setting is precisely the σ(X,Y ) (weak) topology. (See Alaoglu’s theorem in, e.g.,
[17].) From H (i), B(0, 1) is also weakly sequentially compact (see [17]) so that from
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the net {(xα, zα)} we can extract a countable family and therefore a sequence {zn}
that converges to some z ≥ 0 and a sequence {ξn} that converges weakly to some
ξ ∈ S (ξn

w→ ξ) since S is weakly closed.
The weak convergence yields

〈y0, ξn〉+
zn

2λa2
→ 〈y0, ξ〉+

z

2λa2
=

1
2λ

as n ↑ ∞

so that 〈y0, 2λa2ξ〉 + z = a2. By weak continuity of A, Aξn
w→ a1/2λa2 = Aξ or

equivalently A(2λa2ξ) = a1. Hence, T (2λa2ξ, z) = (a1, a2).
It remains to prove that x := 2λa2ξ ∈ Sλy0 . Observe that x ∈ S since ξ ∈ S.

Moreover, as xn
w→ x we have lim infn↑∞ ‖ xn ‖≥ ‖ x ‖ (see, e.g., [9]). Therefore, from

‖ xn ‖≤ λ〈y0, xn〉 and xn
w→ x we conclude that ‖ x ‖≤ λ〈y0, x〉, i.e., x ∈ Sλy0 , which

in turn implies (x, z) ∈ Sλy0 ×R+ so that, finally, T (Sλy0 ×R+) is weakly closed.
Now the system Ax = b has a solution in S if and only if the system T (x, z) = (b, δ)

has a solution in Sλy0 for some λ sufficiently large and some δ > 0. Indeed, by H (ii),
given any x ∈ S, x ∈ Sλy0 for all λ sufficiently large.

Therefore, we now can apply the generalized Farkas lemma (cf. Theorem 2.1) to
the latter system since T (Sλy0 × R+) is weakly closed. (Indeed, the weak continuity
of T follows easily from the weak continuity of A.) Thus, T (x, z) has a solution in
Sλy0 ×R+ if and only if

T+(w, γ) ∈ S+
λy0
×R+ ⇒ 〈b, w〉+ γδ ≥ 0

or equivalently

A+w + γy0 ∈ S+
λy0

, γ ≥ 0⇒ 〈b, w〉+ γδ ≥ 0,

which is the desired result.
(ii) ⇔ (iii) is trivial.
We have stated (iii) to express the two cases γ > 0 and γ = 0. Indeed, the

case γ = 0 covers the standard Farkas lemma so that the case γ > 0 (eliminated by
dividing w by γ) describes the additional condition required in Farkas’ lemma when
A(S) is not weakly closed.

Also note that if X is a reflexive Banach space, the weak topology σ(X,Y ) is also
the standard weak topology so that the assumption S weakly closed can be replaced
by S closed since strongly closed and weakly closed convex sets coincide in locally
convex topological vector spaces.

Particular case. It may happen that when x ∈ S, 〈y0, x〉 =‖ x ‖1 for some norm
‖ . ‖1 and some appropriate y0. If this norm is equivalent to ‖ . ‖, then S ≡ Sλy0

for all λ sufficiently large so that one may replace S+
λy0

by S+ in Theorem 3.1. An
example is the space of (n, n) symmetric matrices with norm ||x||1 :=

∑
i |σi(x)|,

where the {σi(x)} are the eigenvalues of x. If S is the cone of positive semidefinite
matrices, then σi(x) ≥ 0 ∀i when x ∈ S so that ||x||1 = 〈I, x〉, where I is the identity
matrix.

Actually, the same conclusion holds if 〈y0, x〉 ≥ ||x|| when x ∈ S, for some well-
chosen y0.

Similarly to [10] we also can derive a dual version of Theorem 3.1 for a linear
system {Cy = b, y ∈ S∗}, where now C is a linear mapping X∗ (:= Y ∗∗) :→ Z and
S∗ ⊂ X∗ is the dual cone of S ⊂ X. The σ(X∗, X) topology on X∗ is the weak*
topology. Moreover, if S is a convex cone in X, then S∗ is (σ(X∗, X)) weakly closed,
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FIG. 1. Cones Tλy0 and T ∗λy0
.

i.e., weak* closed. Hence it is also closed, and with the natural embedding of X
in the bidual X∗∗, (S∗)+ = S∗∗ ∩ X = S (see [10]). We also define Sλx0 := {y ∈
S∗| ||y|| ≤ λ〈y, x0〉} for some given x0 ∈ S such that y ∈ S∗ and 〈y, x0〉 = 0⇒ y = 0.
S+
λx0

= S∗λx0
∩X. The dual version of Theorem 3.1 now reads as follows.

THEOREM 3.2. Let (X∗, X), (Z,W ) be real dual pairs, S be a convex cone in X,
and C : X∗ → Z be a weakly continuous linear mapping. Assume also that X is
separable and there is some x0 ∈ S such that y ∈ S∗ and 〈y, x0〉 = 0 ⇒ y = 0. Then
the following are equivalent:

(i) The system Cy = b has a solution y ∈ S∗.
(ii) There exists some positive (λ, δ) such that

C+w + γx0 ∈ S+
λx0

, γ ≥ 0⇒ 〈b, w〉+ γδ ≥ 0.

(iii) There exists some positive (λ, δ) such that

C+w ∈ S+
λx0
⇒ 〈b, w〉 ≥ 0 and C+x+ x0 ∈ S+

λx0
⇒ 〈b, w〉 ≥ −δ.

The proof is along the same lines as for Theorem 3.1.

Hilbert spaces. In the case where (X, ‖ . ‖) is a Hilbert space, the assumption
that S is weakly closed is equivalent to S (strongly) closed and one may further
characterize the cone S+

λy0
.

S+ and S+
λy0

coincide with the dual cones S∗ and S∗λy0
. We can write Sλy0 =

S ∩ Tλy0 with Tλy0 := {x ∈ X| ‖ x ‖≤ λ〈y0, x〉} and Tλy0 a convex cone. As soon as
‖ λy0 ‖> 1, Tλy0 may be interpreted as the cone of vectors x such that their angle θ
with y0 satisfies tan(θ) ≤ (‖ λy0 ‖2 −1)1/2, i.e., θ ≤ θ0 (see Figure 1).

LEMMA 3.3. Assume that S is closed and 0 ∈ int (S − Tλy0) (for the strong
topology). Then, S∗λy0

= S∗ + T ∗λy0
. In addition, if y0 ∈ int (S∗) (for the strong

topology), then S∗λy0
= S∗ for λ sufficiently large.

Proof. First note that Tλy0 is (strongly) closed and so is S by hypothesis. There-
fore, as 0 ∈ int (S − Tλy0), then from, e.g., [2],

S∗λy0
= (S ∩ Tλy0)∗ = S∗ + T ∗λy0

.
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Thus, under the assumptions of the above lemma, one may replace S∗λy0
with

S∗ + T ∗λy0
in Theorem 3.1. In addition,

T ∗λy0
=

{
p ∈ X | ‖ p ‖≤ λ√

‖ λy0 ‖2 −1
〈p, y0〉

}
.

T ∗λy0
is the cone of vectors whose angle θ with y0 satisfies tan(θ) ≤ (‖ λy0 ‖2

−1)−1/2, i.e., θ ≤ π/2 − θ0. Therefore, if y0 ∈ int(S∗), then for λ sufficiently large,
T ∗λy0

⊂ S∗ so that S∗λy0
= S∗.

4. Illustrative example. As a simple illustrative example, consider the case of
a linear system involving positive semidefinite matrices (see [4], [3]).

In this case, X ≡ Y is the vector space Rn of (N,N) real symmetric matrices
identified as a vector in Rn with n = N(N + 1)/2. X is a finite-dimensional Hilbert
space with norm induced from the bracket 〈x, y〉 := trace(x.y), where x.y denotes the
standard (N,N)-matrix product. S is the closed convex cone of positive semidefinite
matrices. We want to check existence of solutions to the system {Ax = b; x ∈ S},
where A is a linear mapping A : X → Z and Z ≡ Rm with the usual scalar product.

Choose y0 := I the identity matrix in X. Assumption H trivially holds. Then, if
{σi(x)} denotes the eigenvalues of x, all nonnegative when x ∈ S,

0 = 〈I, x〉 = trace(x) =
N∑
i=1

σi(x)⇒ σi(x) = 0 ∀i ⇒ x = 0.

Moreover (see last paragraph in the previous section), S ≡ SλI for all λ ≥ 1. Indeed,
when x ∈ S,

〈I, x〉 :=
N∑
i=1

σi(x) ≥

√√√√ N∑
i=1

σ2
i (x) = ||x||.

Thus, one may derive a Farkas lemma for existence of solutions to systems of
matrix equalities with no closure assumption on A(S). In general, without very
specific properties of the mapping A, A(S) is not closed and the standard Farkas
lemma states only a property of asymptotic consistency (see [3], [4]). In this context,
our theorem specializes to the following.

THEOREM 4.1. Consider X, the Hilbert space of (n, n) symmetric real matrices
with norm ||x||2 := 〈x, x〉 := trace(x2). Let Z be Rm and A : X → Z be a linear
mapping.

The system Ax = b has a solution x ∈ S if and only if there is some δ > 0 such
that

A∗u ∈ S∗ ⇒ 〈b, u〉 ≥ 0 and A∗u+ I ∈ S∗ ⇒ 〈b, u〉 ≥ −δ.

In the example given in [3, p. 378] the system {Ax = b, x ∈ S} is inconsistent
whereas A∗u ∈ S∗ ⇒ 〈b, u〉 ≥ 0. However, as indicated in the theorem, one may check
that A∗u+ y0 ∈ S∗ ⇒ 〈b, u〉 ≥ −δ does not hold for any positive δ.

5. Another approach. In this section we present another Farkas theorem with
a short proof kindly provided by a referee. This theorem (Theorem 5.1 below) reveals
what lies behind Theorem 3.1, which appears as a simple corollary.

THEOREM 5.1. Let X,Y, Z,W, S, and A be as in Theorem 3.1. Then the following
are equivalent:
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(1) The system Ax = b has a solution x ∈ S.
(2) There exists a compact, convex set 0 6∈ B ⊂ S and a δ > 0 such that for

K := cone B, y0 ∈ int K+, we have

A+w + y0 ∈ K+ ⇒ 〈b, w〉 ≥ −δ.

Proof. (1) ⇒ (2). Suppose that x ∈ S and Ax = b, x 6= 0. (The case b = 0 is
trivial.) Choose an appropriate B such that it is convex and compact and 0 6∈ B ⊂ S,
with x ∈ B (e.g., B := {x}). Therefore, the generated dual cone K+ has nonempty
interior. Choose any y0 ∈ int K+. Then, the program

(P ) µ = {inf 〈b, w〉 | A+w + y0 ∈ K+}

satisfies Slater’s condition with w := 0. The dual program

(D) ν = {sup 〈y0, x〉 | Ax = b, x ∈ K}

is consistent. Therefore, by weak duality, µ ≥ ν > −∞; i.e., we can choose δ = −µ.
Therefore, (2) holds.

(2) ⇒ (1). Conversely, if (2) holds, then Slater’s condition holds for (P ) and
µ > −∞. Therefore, by strong duality, (D) must be consistent.

This theorem can also be derived from closely related results in [6], [7], [8]. Theo-
rem 3.1 is a corollary of Theorem 5.1. This follows from the Banach–Alaoglu theorem;
i.e., we can choose λ in the definition of Sλy0 so that this cone contains the x from
the consistent system. A compact and convex base for the cone is obtained by taking
the intersection with the set {x| 〈y0, x〉 = 1}. The definition of the cone implies that
this set is norm bounded and thus w∗-compact.

Finally, note that Theorem 4.1 can be proved directly and trivially, since Slater’s
condition holds for (P ) with y0 = I and K = S.

6. Conclusion. We have presented a new nonasymptotic Farkas lemma in Ba-
nach spaces for a linear system Ax = b, x ∈ S, where S is some positive cone. Under
some assumptions on the spaces involved, this Farkas lemma holds without the usual
restrictive closure assumption on A(S). The assumptions are rather weak and concern
many examples. Theorem 5.1 reveals what lies behind Theorem 3.1, i.e., the existence
of an appropriate, compactly generated, convex cone. Using this new Farkas lemma
to develop first-order optimality conditions in mathematical programming is a topic
for further research.

Acknowledgment. The author wishes to thank the anonymous referees for very
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Abstract. New merit functions for variational inequality problems are constructed through
the Moreau–Yosida regularization of some gap functions. The proposed merit functions constitute
unconstrained optimization problems equivalent to the original variational inequality problem under
suitable assumptions. Conditions are studied for those merit functions to be differentiable and for
any stationary point of those functions to be a solution of the original variational inequality problem.
Moreover, those functions are shown to provide global error bounds for general variational inequality
problems under the strong monotonicity assumption only.

Key words. variational inequality problem, merit function, unconstrained optimization prob-
lem, global error bounds
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1. Introduction. Merit functions for variational inequality and complementar-
ity problems have recently drawn much attention (see [8] for a survey). Such a function
naturally constitutes an equivalent optimization formulation and has turned out to be
very useful in designing new globally convergent algorithms and analyzing the rate of
convergence of some algorithms [2, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 20, 21, 22, 19, 28,
26, 27, 31, 29, 30, 32, 33]. For nonlinear complementarity problems, both constrained
and unconstrained differentiable optimization formulations are already known and
various interesting results on iterative methods and error bounds have been estab-
lished [9, 12, 17, 19, 31, 30, 33]. For variational inequality problems, constrained
differentiable optimization formulations have been proposed [6, 7, 13, 20, 28, 32]. To
the authors’ knowledge, however, an unconstrained differentiable optimization formu-
lation has yet to be discussed in the literature. (During the review of this paper, Peng
proposed an unconstrained optimization formulation in a technical report [23], which
is based on the regularized gap function [7] and the implicit Lagrangian [19]. His ap-
proach is, however, quite different from the one adopted in this paper.) The purpose
of this paper is to present unconstrained differentiable optimization formulations for
general variational inequality problems and to give some error bound results based
on them.

The variational inequality problem (VIP) is to find a vector x in a closed convex
subset S of Rn such that

〈F (x), y − x〉 ≥ 0 for all y ∈ S,

where F is a mapping from Rn into itself and 〈·, ·〉 denotes the inner product in Rn.
Throughout the paper, we shall assume that the mapping F is continuous.
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First, we review some well-known merit functions for VIP. Let Ψ : Rn ×Rn → R
be defined by

Ψ(x, y) = 〈F (x), x− y〉.(1)

Using Ψ, define the class of functions f( · ;α) : Rn → R ∪ {+∞} by

f(x;α) = sup
y∈S

{
Ψ(x, y)− α‖x− y‖2

}
,(2)

where α is a nonnegative parameter. This function was first introduced by Auslender
[2] for α = 0 (see also [11]) and by Fukushima [7] for α > 0. The latter case was
also considered by Auchmuty [1] independently in a general form (see also [13]). The
function f( · ; 0) is commonly called the gap function, while the function f( · ;α) with
α > 0 is called the regularized gap function. For each α ≥ 0, the function f( · ;α)
is nonnegative on S and becomes zero at any solution of VIP [11, 7]. Hence, VIP is
equivalent to finding a global minimizer of f( · ;α) on S. If F is a continuous mapping,
then f( · ;α) is lower semicontinuous for α = 0 [5, Lemma 4.1] and continuous for
α > 0 [7, Theorem 3.1]. The gap function f( · ; 0) has the serious drawback, however,
that it is in general nondifferentiable even if F is differentiable, and, even worse, it
may not be finite valued. On the other hand, the regularized gap function f( · ;α)
with α > 0 has such desirable properties that it is finite valued everywhere and is
differentiable whenever F is differentiable [7, Theorem 3.1]. (See [7, 13] for further
properties of the regularized gap function.) A modification of the regularized gap
function has recently been proposed in [26, 27].

Closely related to the functions f( · ;α) is the class of functions h( · ;β) : Rn →
R ∪ {+∞} given by

h(x;β) = sup
y∈S

{
−Ψ(y, x) + β‖x− y‖2

}
,(3)

where β is a nonnegative parameter. This function has been studied in [20] for the
case β = 0. In particular, if F is pseudomonotone on S [4, 25], i.e.,

〈F (y), x− y〉 ≥ 0 =⇒ 〈F (x), x− y〉 ≥ 0 for all x, y ∈ S,

then the function h( · ; 0) is nonnegative on S and vanishes at any solution of VIP,
implying that VIP is equivalent to minimizing h( · ; 0) over S [20, Proposition 1]. We
will see that this property is extended to the case β > 0. It is easily seen that, for
any β ≥ 0, the function h( · ;β) is convex. Moreover, if F is continuous, then h( · ;β)
is lower semicontinuous, as shown in the next section.

It should be noted that the above-mentioned merit functions all constitute con-
strained optimization problems equivalent to VIP. In this paper, we explore the possi-
bility of constructing unconstrained differentiable optimization problems equivalent to
VIP. Specifically, we consider the following functions derived from the Moreau–Yosida
regularization:

φf (x;α, λ) = inf
z∈S

{
f(z;α) + λ‖x− z‖2

}
(4)

and

φh(x;β, λ) = inf
z∈S

{
h(z;β) + λ‖x− z‖2

}
,(5)

where λ is a positive parameter and f( · ;α) and h( · ;β) are defined by (2) and (3),
respectively. In general, the functions φf ( · ;α, λ) and φh( · ;β, λ) may not be easy to
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evaluate in practice unless VIP has a certain special structure. (In section 3, we show
that the function φf ( · ;α, λ) is actually computable for monotone affine VIP with
polyhedral convex set S.) Nevertheless these functions enjoy some nice theoretical
properties that existing merit functions for VIP do not have. Under some assumptions,
the functions φf ( · ;α, λ) and φh( · ;β, λ) are shown to be differentiable even if F is
not differentiable. We shall investigate conditions under which any stationary point of
these functions solves the original VIP. We also discuss how the foregoing results are
specialized to affine VIP and illustrate how the function φf ( · ;α, λ) is calculated for
the monotone affine VIP with linear constraints. Finally, we will show that φf ( · ;α, λ)
and φh( · ;β, λ) provide global error bounds for the strongly monotone VIP. We
remark that those results are valid for problems with general convex constraints S
and do not rely on the Lipschitz continuity of F , while the well-known error bound
for VIP obtained by Pang [21] assumes that the set S is polyhedral and F is both
strongly monotone and Lipschitz continuous.

2. VIP as unconstrained minimization. In this section, we show that the
unconstrained minimization of the function φf ( · ;α, λ) defined by (4) is equivalent to
VIP, and that, under some additional assumptions, the unconstrained minimization
of the function φh( · ;β, λ) defined by (5) is also equivalent to VIP. Further, we shall
investigate the differentiability and the convexity of these functions. Recall that the
mapping F : Rn → Rn is said to be monotone on S if

〈F (x)− F (y), x− y〉 ≥ 0 for all x, y ∈ S,

and strongly monotone with modulus µ > 0 on S if

〈F (x)− F (y), x− y〉 ≥ µ‖x− y‖2 for all x, y ∈ S.

First, we state some lemmas which will be useful in proving the subsequent the-
orems.

LEMMA 2.1. For any α ≥ 0, f( · ;α) is nonnegative on S. Moreover, f(x;α) = 0
if and only if x is a solution of VIP.

Proof. See [11] for the case α = 0 and [7, Theorem 3.1] for the case α > 0.
LEMMA 2.2. For any β ≥ 0, the function h( · ;β) is a closed convex function.
Proof. The convexity of h( · ;β) follows from the definition (3) directly, since

−Ψ(y, · )+β‖ · −y‖2 is convex for every y. The closedness of h( · ;β) follows from the
fact that a pointwise supremum of continuous functions yields a lower semicontinuous
function.

LEMMA 2.3.
(a) For any β ≥ 0, h( · ;β) is nonnegative on S.
(b) Suppose that F is pseudomonotone on S. Then x is a solution of VIP if and

only if h(x; 0) = 0 and x ∈ S.
(c) Suppose that F is strongly monotone on S with modulus µ and that β is

chosen to satisfy 0 ≤ β ≤ µ. Then x is a solution of VIP if and only if
h(x;β) = 0 and x ∈ S.

Proof. (a) This is obvious from the definition (3) of h( · ;β). (b) See [20, Propo-
sition 1].

(c) By the definition (1) of Ψ, we have

Ψ(x, y) ≥ −Ψ(y, x) + µ‖x− y‖2

≥ −Ψ(y, x) + β‖x− y‖2

≥ −Ψ(y, x) for all x, y ∈ S,
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implying that

f(x; 0) ≥ h(x;β) ≥ h(x; 0) for all x ∈ S.(6)

Let x∗ be a solution of VIP. Then, since f(x∗; 0) = 0 by Lemma 2.1 and h(x∗; 0) = 0 by
part (b) of this lemma, we have h(x∗;β) = 0 by (6). Conversely, let h(x;β) = 0. Then,
since h( · ; 0) is nonnegative on S by part (a), it follows from (6) that h(x; 0) = 0.
Thus, x is a solution of VIP by part (b).

Using these lemmas, we establish the equivalence between VIP and the uncon-
strained minimization of φf ( · ;α, λ) and φh( · ;β, λ). The next theorem shows that
these functions are nonnegative on Rn and that, under suitable conditions, the sets
of unconstrained minima of these functions coincide with the set of solutions of VIP.

THEOREM 2.4.
(a) For any α ≥ 0, β ≥ 0, and λ > 0, the functions φf ( · ;α, λ) and φh( · ;β, λ)

are nonnegative on Rn.
(b) For any α ≥ 0 and λ > 0, x∗ is a solution of VIP if and only if φf ( · ;α, λ)

attains its global minimum at x∗ and the minimum value is zero.
(c) Suppose that F is pseudomonotone on S. Then, for any λ > 0, x∗ is a

solution of VIP if and only if φh( · ; 0, λ) attains its global minimum at x∗

and the minimum value is zero.
(d) Suppose that F is strongly monotone on S with modulus µ and that β is

chosen to satisfy 0 ≤ β ≤ µ. Then, for any λ > 0, x∗ is a solution of VIP
if and only if φh( · ;β, λ) attains its global minimum at x∗ and the minimum
value is zero.

Proof. We consider the function φf ( · ;α, λ). (a) Since f( · ;α) is nonnegative
on S by Lemma 2.1, we can easily deduce from the definition (4) of φf ( · ;α, λ) that
φf (x;α, λ) is nonnegative for all x ∈ Rn. (b) Suppose that x∗ is a solution of VIP.
Then, we have

φf (x∗;α, λ) = inf
z∈S

{
f(z;α) + λ‖x∗ − z‖2

}
≤ f(x∗;α) + λ‖x∗ − x∗‖2

= 0,

where the last equality follows from f(x∗;α) = 0. Since φf (x;α, λ) ≥ 0 for all x as
shown above, we obtain φf (x∗;α, λ) = 0. Conversely, suppose φf (x∗;α, λ) = 0. Then
since f(z;α) ≥ 0 for all z ∈ S, it follows from the definition (4) of φf ( · ;α, λ) that
there exists a sequence {zk} in S such that f(zk;α) → 0 and ‖zk − x∗‖ → 0. Since
S is closed, zk → x∗ and zk ∈ S imply x∗ ∈ S. Moreover, since f( · ;α) is lower
semicontinuous for α = 0 [5, 13] and continuous for α > 0 [7], we have

0 ≤ f(x∗;α) ≤ lim
k→∞

f(zk;α) = 0.

Thus, x∗ must be a solution of VIP.
By using Lemmas 2.2 and 2.3, the proof for the function φh( · ;β, λ) can be done

analogously.
By this theorem, the unconstrained minimization problem

min
x∈Rn

φf (x;α, λ)(7)

is equivalent to VIP, and the unconstrained minimization problem

min
x∈Rn

φh(x;β, λ)(8)

is equivalent to VIP under suitable assumptions on F and the parameters involved.
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In order for these minimization problems to be practically useful, it is desirable
that the objective functions φf ( · ;α, λ) and φh( · ;β, λ) are everywhere differen-
tiable. For the discussions to follow, it will be convenient to define the functions
Φf ( · , · ;α, λ) : R2n → R ∪ {+∞} and Φh( · , · ;β, λ) : R2n → R ∪ {+∞} by

Φf (x, z;α, λ) = f(z;α) + λ‖x− z‖2

and

Φh(x, z;β, λ) = h(z;β) + λ‖x− z‖2,

respectively. By (4) and (5), we have

φf (x;α, λ) = inf
z∈S

Φf (x, z;α, λ)

and

φh(x;β, λ) = inf
z∈S

Φh(x, z;β, λ).

Whenever the functions Φf (x, · ;α, λ) and Φh(x, · ;β, λ) are assumed to attain
their minima uniquely in the set S, we shall denote those minima by zf (x;α, λ) and
zh(x;β, λ), respectively. The following propositions are consequences of [2, Chapter
4, Theorem 1.7]. Note that these propositions do not rely upon the differentiability
of F .

PROPOSITION 2.5. Let α ≥ 0 and λ > 0. If the function Φf (x, · ;α, λ) attains its
unique minimum zf (x;α, λ) on S for each x ∈ Rn, then φf ( · ;α, λ) is differentiable
on Rn and

∇φf (x;α, λ) = 2λ (x− zf (x;α, λ)) .

Proof. This follows immediately from Theorem 1.7 in [2, Chapter 4].
PROPOSITION 2.6. For any β ≥ 0 and λ > 0, the function Φh(x, · ;β, λ) attains

its minimum zh(x;β, λ) uniquely. Moreover, φh( · ;β, λ) is a differentiable convex
function on Rn and

∇φh(x;β, λ) = 2λ (x− zh(x;β, λ)) .

Proof. By Lemma 2.2, h( · ;β) is a closed convex function. Thus, by Theorem
31.5 in [24], Φh(x, · ;β, λ) uniquely attains its minimum on S for any x and hence,
by Theorem 1.7 in [2, Chapter 4], φh( · ;β, λ) is differentiable and its gradient is
represented as indicated in the proposition. Moreover, it follows from the convex-
ity of h( · ;β) that φh( · ;β, λ) is also convex (see the proof of Proposition 4.1 in
[3]).

Theorem 2.4 is concerned with the equivalence between VIP and global minimiza-
tion of φf ( · ;α, λ) and φh( · ;β, λ). In general, however, there may exist local minima
or stationary points which do not solve VIP. In the remainder of the section, we study
conditions under which any stationary point of problems (7) and (8) is a solution of
VIP.

The following proposition gives a condition for φf ( · ;α, λ) to be convex.
PROPOSITION 2.7. Suppose that Ψ( · , y) is convex for each fixed y ∈ S. Then, for

any λ > 0, φf ( · ; 0, λ) is a differentiable convex function on Rn. Moreover, suppose
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that Ψ( · , y) is strongly convex with modulus µ for each fixed y ∈ S. Then, for any
λ > 0 and any α such that 0 ≤ α ≤ µ, φf ( · ;α, λ) is a differentiable convex function
on Rn.

Proof. We prove the first half only; the latter half can be proved by a similar
argument. Since Ψ( · , y) is finite valued and convex for each fixed y ∈ S, f( · ; 0)
is a closed proper convex function. So we can prove the convexity of φf ( · ; 0, λ) in
a way similar to the proof of Proposition 4.1 in [3]. Moreover, since Φf (x, · ; 0, λ)
uniquely attains its minimum on S for any x by Theorem 31.5 in [24], φf ( · ; 0, λ) is
differentiable by Proposition 2.5.

Note that, as shown in [11], if S is polyhedral convex, 〈F (x), x〉 is convex on S
and each component of F is concave on S, then f( · ; 0) is convex. Thus it follows
that, under these assumptions, φf ( · ; 0, λ) is a differentiable convex function.

The following result is a consequence of Proposition 2.7.
THEOREM 2.8. Assume that VIP has a solution. If Ψ( · , y) is convex for each

fixed y ∈ S, then for each λ > 0 any stationary point of φf ( · ; 0, λ) is a solution of
VIP. Moreover, if Ψ( · , y) is strongly convex with modulus µ for each fixed y ∈ S,
then for each λ > 0 and α such that 0 ≤ α ≤ µ any stationary point of φf ( · ;α, λ) is
a solution of VIP.

Proof. Under given assumptions, φf ( · ;α, λ) is a differentiable convex function for
each α ≥ 0 by Proposition 2.5. Therefore ∇φf (x;α, λ) = 0 if and only if φf ( · ;α, λ)
attains its global minimum at x. The desired results then follow from Theorem
2.4.

Next we restrict our attention to the function φf ( · ;α, λ) with α > 0. The
following theorem gives conditions under which any stationary point of φf ( · ;α, λ) is
a solution of VIP.

THEOREM 2.9. Assume that VIP has a solution. Let α > 0 and λ > 0. Suppose
that the function Φf (x, · ;α, λ) attains its unique minimum zf (x;α, λ) on S for any
fixed x ∈ Rn. If F is differentiable and ∇F (x) is positive definite on S, then any
stationary point of φf ( · ;α, λ) is a solution of VIP.

Proof. Let x̂ be an arbitrary stationary point of φf ( · ;α, λ). Then by Proposition
2.5 it satisfies

∇φf (x̂;α, λ) = 2λ (x̂− zf (x̂;α, λ)) = 0.

Hence, we have x̂ = zf (x̂;α, λ) ∈ S. On the other hand, since zf (x;α, λ) is the
minimizer of Φf (x, · ;α, λ) on S and since f( · ;α) is differentiable [7], the first-order
optimality condition yields

〈∇zΦf (x, zf (x;α, λ);α, λ), y − zf (x;α, λ)〉 ≥ 0 for all y ∈ S;

that is,

〈∇f(zf (x;α, λ);α) + 2λ(zf (x;α, λ)− x), y − zf (x;α, λ)〉 ≥ 0 for all y ∈ S.(9)

Substituting x̂ for x in (9) and using x̂ = zf (x̂;α, λ), we have

〈∇f(x̂;α), y − x̂〉 ≥ 0 for all y ∈ S.

Namely, x̂ is a stationary point of f( · ;α) on S. Then, by Theorem 3.3 in [7], the
positive definiteness of ∇F (x) ensures that x̂ is a solution of VIP.

Finally, we consider the function φh( · ;β, λ). Proposition 2.6 and Theorem 2.4
immediately yield the following theorem.
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THEOREM 2.10. Assume that VIP has a solution. Let λ > 0. If F is pseudomono-
tone on S, then any stationary point of φh( · ; 0, λ) is a solution of VIP. Moreover, if
F is strongly monotone on S with modulus µ and if β is chosen to satisfy 0 ≤ β ≤ µ,
then any stationary point of φh( · ;β, λ) is a solution of VIP.

Proof. First note that for each β ≥ 0 and λ > 0, φh( · ;β, λ) is a differentiable
convex function by Proposition 2.6. Thus, ∇φh(x;β, λ) = 0 if and only if φh( · ;β, λ)
attains its global minimum at x. The theorem then follows from Theorem 2.4 (c) and
(d).

3. Monotone affine VIP. In this section, we consider the special case of VIP
where F is the affine mapping

F (x) = Mx+ a.

Here the n×n matrix M is assumed to be positive semidefinite, that is, the mapping
F is monotone. The next two theorems show some properties of φf ( · ;α, λ) and
φh( · ;β, λ) for the monotone affine VIP.

THEOREM 3.1. Let µ be a nonnegative constant such that

〈x,Mx〉 ≥ µ‖x‖2 for all x ∈ Rn.

Then for any λ > 0 and α ≥ 0 such that α ≤ µ, φf ( · ;α, λ) is a differentiable convex
function. Moreover, any stationary point of φf ( · ;α, λ) is a solution of the affine
VIP.

Proof. If 0 ≤ α ≤ µ, then the function

Ψ(z, y)− α‖z − y‖2 = 〈Mz + a, z − y〉 − α‖z − y‖2

is convex in z for each fixed y. Hence, by the definition (2), f( · ;α) is a closed convex
function. So it follows from the proof of Proposition 4.1 in [3] that φf ( · ;α, λ) is a
closed convex function. Moreover, by Theorem 31.5 in [24], Φf (x, · ;α, λ) uniquely
attains its minimum on S for any x. Hence, by Proposition 2.5, φf ( · ;α, λ) is
differentiable. This proves the first half of the theorem. Since ∇φf (x;α, λ) = 0 if and
only if x is a global minimizer of φf ( · ;α, λ), the last half of the theorem follows from
Theorem 2.4 (b).

THEOREM 3.2. Let µ be a nonnegative constant such that

〈x,Mx〉 ≥ µ‖x‖2 for all x ∈ Rn.

Then, for any λ > 0 and β ≥ 0 such that β ≤ µ, φh( · ;β, λ) is a differentiable convex
function and any stationary point of φh( · ;β, λ) is a solution of the affine VIP.

Proof. By Proposition 2.6 and Theorem 2.10, we get the desired results using a
similar argument to the proof of Theorem 3.1.

Note that if M is not positive definite but simply positive semidefinite, then the
constant µ in Theorems 3.1 and 3.2 is zero, and hence α and β must be zero, too.
Namely, the theorems then apply to the functions φf ( · ; 0, λ) and φh( · ; 0, λ).

In the rest of this section, we show that the function φf ( · ;α, λ) can be practically
computed for the monotone affine VIP with linear constraints: Find x ∈ S such that

〈Mx+ a, y − x〉 ≥ 0 for all y ∈ S,(10)

where S = {x ∈ Rn | x ≥ 0, Ax ≥ b} with m× n matrix A and m-vector b.
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To evaluate the function φf ( · ;α, λ), we need to solve the minimization problem

min
z∈S

f(z;α) + λ‖x− z‖2,(11)

where f(z;α) is given by

f(z;α) = sup
y∈S

{
〈Mz + a, z − y〉 − α‖z − y‖2

}
.

Since

∇f(z;α) = Mz + a+ (MT − 2αI)(z − [z − 1
2α (Mz + a)]+S ),

where [ · ]+S denotes the orthogonal projection onto S, the Karush–Kuhn–Tucker
conditions for the minimization problem (11) are written as

Mz + a+ (MT − 2αI)(z − [z − 1
2α (Mz + a)]+S ) + 2λ(z − x)− u−AT v = 0,
s = Az − b,

z ≥ 0, s ≥ 0, u ≥ 0, v ≥ 0,
〈z, u〉 = 0, 〈s, v〉 = 0,

(12)

where u ∈ Rn and v ∈ Rm are the vectors of Lagrange multipliers and s ∈ Rm is the
vector of slack variables. Moreover, the vector [z − 1

2α (Mz + a)]+S is a solution of the
linear complementarity problem (LCP) of finding y ∈ Rn such that

y − z + 1
2α (Mz + a)− p−AT q = 0,

t = Ay − b,
y ≥ 0, t ≥ 0, p ≥ 0, q ≥ 0,
〈y, p〉 = 0, 〈t, q〉 = 0.

Hence, the Karush–Kuhn–Tucker conditions (12) can be rewritten as the following
LCP: find (z, v, y, q) ∈ R2m+2n such that

u
s
p
t

 =


Mz + a+ (MT − 2αI)(z − y) + 2λ(z − x)−AT v
Az − b
y − z + 1

2α (Mz + a)−AT q
Ay − b

 ,

z ≥ 0, s ≥ 0, y ≥ 0, t ≥ 0, u ≥ 0, v ≥ 0, p ≥ 0, q ≥ 0,
〈z, u〉 = 0, 〈s, v〉 = 0, 〈y, p〉 = 0, 〈t, q〉 = 0.

(13)

Now let us put α = 1
2 . Then the LCP (13) becomes

u
s
p
t

 =


N −AT −MT + I 0
A 0 0 0

M − I 0 I −AT
0 0 A 0




z
v
y
q

+


a− 2λx
−b
a
−b

 ,

z ≥ 0, s ≥ 0, y ≥ 0, t ≥ 0, u ≥ 0, v ≥ 0, p ≥ 0, q ≥ 0,
〈z, u〉 = 0, 〈s, v〉 = 0, 〈y, p〉 = 0, 〈t, q〉 = 0,

(14)

where N = M +MT + (2λ− 1)I. If 2λ ≥ 1, then the positive semidefiniteness of M
ensures that (14) is a monotone LCP. Thus, the function φf (x;α, λ) for the monotone
affine VIP (10) can be computed by solving the monotone LCP (14), provided that
α and λ are chosen such that α = 1

2 and λ ≥ 1
2 .
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4. Global error bounds. Error bounds play an important role in analyzing the
convergence rate of iterative algorithms [16, 29]. In particular, the natural residual
r : Rn → R, which is defined by

r(x) = ‖x− [x− F (x)]+S ‖,(15)

is known to provide a global error bound for linearly constrained VIP under the
Lipschitz continuity and strong monotonicity of F [21]. In this section, we show that
φf ( · ;α, λ) and φh( · ;β, λ) provide global error bounds for VIP under the strong
monotonicity of F .

To begin with, we point out that, when F is strongly monotone, the functions
f( · ;α) and h( · ;β) provide error bounds on S, provided that the parameters α and
β are small enough. Note that the strong monotonicity of F guarantees the existence
of a unique solution to VIP.

LEMMA 4.1. If F is strongly monotone on S with modulus µ and if α is chosen
to satisfy 0 ≤ α < µ, then we have f(x∗;α) = 0 and

f(x;α) ≥ (µ− α) ‖x− x∗‖2 for all x ∈ S,
where x∗ is the unique solution of VIP.

Proof. For this proof see Proposition 3.4 in [28] and Theorem 4.5 in [13].
LEMMA 4.2. If F is strongly monotone on S with modulus µ and if β is chosen

to satisfy 0 < β ≤ µ, then we have h(x∗;β) = 0 and

h(x;β) ≥ β‖x− x∗‖2 for all x ∈ S,
where x∗ is the unique solution of VIP.

Proof. By Lemma 2.3, we have h(x∗, β) = 0. Let x ∈ S be arbitrary. Then, we
have

h(x;β) = sup
y∈S

{
〈F (y), x− y〉+ β‖x− y‖2

}
≥ 〈F (x∗), x− x∗〉+ β‖x− x∗‖2

≥ β‖x− x∗‖2,
where the last inequality follows from the fact that x∗ is a solution of VIP.

Note that the error bounds given in the above lemmas are valid on the constraint
set S. Using these lemmas, we prove below that φf ( · ;α, λ) and φh( · ;β, λ) provide
global error bounds for VIP on the whole space Rn, whenever F is strongly monotone.

The next theorem shows that the growth rate of φf ( · ;α, λ) is in the order of
the squared distance to the unique solution of VIP, provided that the parameter α is
chosen sufficiently small.

THEOREM 4.3. If F is strongly monotone on S with modulus µ and if α is chosen
to satisfy 0 ≤ α < µ, then for each λ > 0,

1
2

min {µ− α, λ} ‖x− x∗‖2 ≤ φf (x;α, λ) ≤ λ‖x− x∗‖2 for all x ∈ Rn,

where x∗ is the unique solution of VIP.
Proof. First we consider the right-hand inequality. Since x∗ ∈ S and f(x∗;α) = 0

by Lemma 2.1, we have

φf (x;α, λ) = inf
z∈S

{
f(z;α) + λ‖z − x‖2

}
≤ f(x∗;α) + λ‖x− x∗‖2

= λ‖x− x∗‖2.
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Next, we prove the left-hand inequality. It follows from Lemma 4.1 that

φf (x;α, λ) = inf
z∈S

{
f(z;α) + λ‖z − x‖2

}
≥ inf
z∈S

{
(µ− α) ‖z − x∗‖2 + λ‖z − x‖2

}
≥ min {µ− α, λ} inf

z∈S

{
‖z − x∗‖2 + ‖z − x‖2

}
= min {µ− α, λ}

∥∥∥∥∥
[
x+ x∗

2

]+

S

− x∗
∥∥∥∥∥

2

+

∥∥∥∥∥
[
x+ x∗

2

]+

S

− x
∥∥∥∥∥

2


≥ 1
2

min {µ− α, λ} ‖x− x∗‖2,

where the last inequality follows from the inequality

‖a‖2 + ‖b‖2 ≥ ‖a− b‖
2

2
for all a, b ∈ Rn.

Now we turn our attention to the function φh( · ;β, λ). The next theorem shows
that the quadratic growth rate of φh( · ;β, λ) is ensured, provided that the parameter
β is chosen sufficiently small.

THEOREM 4.4. If F is strongly monotone on S with modulus µ and if β is chosen
to satisfy 0 < β ≤ µ, then for each λ > 0,

1
2

min {β, λ} ‖x− x∗‖2 ≤ φh(x;β, λ) ≤ λ‖x− x∗‖2 for all x ∈ Rn,

where x∗ is the unique solution of VIP.
Proof. Noting that x∗ ∈ S and h(x∗;β) = 0, the right-hand inequality can be

proved in a way similar to the first part of the proof of Theorem 4.3. Moreover, by
using Lemma 4.2, we can prove the left-hand inequality analogously to the last part
of the proof of Theorem 4.3.

Theorems 4.3 and 4.4 demonstrate that φf ( · ;α, λ) and φh( · ;β, λ) provide
global error bounds for VIP without the Lipschitz continuity of F . Recall that for the
natural residual r defined by (15) to provide a global error bound not only the strong
monotonicity but also the Lipschitz continuity of F is required [21]. In this respect,
φf ( · ;α, λ) and φh( · ;β, λ) are more favorable than the natural residual r.

5. Concluding remarks. When S is given by

S = {x ∈ Rn+ | gi(x) ≤ 0, i = 1, . . . ,m},(16)

where Rn+ denotes the nonnegative orthant in Rn and gi : Rn → R are twice dif-
ferentiable convex functions, the Karush–Kuhn–Tucker conditions for VIP yield the
nonlinear complementarity problem: find (x, ν) ∈ Rn+ ×Rm+ such that

〈(x, ν), H(x, ν)〉 = 0, H(x, ν) ≥ 0,(17)

where

H(x, ν) =
[
F (x) +∇g(x)ν
−g(x)

]
with g(x) = (g1(x), g2(x), . . . , gm(x))T . For nonlinear complementarity problems vari-
ous equivalent formulations as a system of equations or an unconstrained optimization
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problem have been proposed and studied extensively [9, 12, 18, 19, 31, 29, 33]. So
we might first reformulate VIP with the inequality constraints (16) as the nonlinear
complementarity problem (17) and then convert it into one of the known equivalent
unconstrained optimization problems. However, such a transformation into the non-
linear complementarity problem (17) is not necessarily a panacea for dealing with
the inequality-constrained VIP. For instance, global error bounds for nonlinear com-
plementarity problems are obtained under the strong monotonicity of the mapping
involved [21, 33]. Unfortunately, it is unlikely that the nonlinear complementarity
problem (17) satisfies the strong monotonicity condition, because the Jacobian

∇H(x, ν) =
[
∇F (x) +

∑m
i=1 νi∇2gi(x) ∇g(x)

−∇g(x)T 0

]
is never positive definite for any (x, ν), even if F is strongly monotone. On the other
hand, as shown in the preceding sections, the functions φf ( · ;α, λ) and φh( · ;β, λ)
enjoy various favorable properties, particularly when F is strongly monotone.
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Abstract. This paper deals with effective characterizations of stability and regularity properties
of set-valued mappings in infinite dimensions, which are of great importance for applications to many
aspects in optimization and control. The main purpose is to obtain verifiable necessary and sufficient
conditions for these properties that are expressed in terms of constructive generalized differential
structures at reference points and are convenient for applications. Based on advanced techniques
in nonsmooth analysis, new dual criteria are proven in this direction under minimal assumptions.
Applications of such point conditions are given to sensitivity analysis for parametric constraint and
variational systems which describe sets of feasible and optimal solutions to various optimization and
related problems.
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1. Introduction. It has long been recognized that many principal aspects in
optimization and control (e.g., optimality conditions, controllability, sensitivity, nu-
merical methods, and so on) are related to studying stability/regularity properties
of corresponding set-valued mappings (multifunctions). Such properties are known
under different names (metric regularity, openness, covering, surjection, Lipschitzian
stability, etc.), which are often equivalent to each other. We refer the reader to [1, 2,
3, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 25, 26, 27, 28, 29, 30, 31, 32, 37, 38,
40, 41, 42] and bibliographies therein for various results in this direction as well as
for applications of the mentioned properties to optimization and control.

The main goal of the paper is to obtain effective characteristics and applications of
such stability properties by means of appropriate generalized derivatives in nonsmooth
analysis. In finite dimensions, complete dual characterizations of openness, metric
regularity, and Lipschitzian behavior for closed-graph multifunctions were established
by Mordukhovich [25, 26] on the basis of nonconvex generalized derivativelike objects
developed in [24, 25]. Various applications of those results to optimization, sensitivity,
and optimal control can be found in [27, 28, 29, 30, 31]. However, using only finite-
dimensional characteristics, one cannot cover a broad range of significant problems
arising, e.g., in optimization and sensitivity analysis of constrained control systems
governed by ordinary and partial differential equations/inclusions as well as variational
inequalities. This is one of our primary motivations: to develop proper infinite-
dimensional extensions of the previous theory.

We have been already concerned with this topic in [32], where dual differential
characterizations of stability and associated properties of multifunctions have been
obtained in Banach spaces. In contrast to [26], corresponding criteria and constants
in [32] are expressed not in terms of generalized differential constructions at reference
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points but in terms of their perturbations in neigborhoods. Some results in this
direction are related to those in Ioffe [15] and Kruger [20]; see [32] for more details.
Note that such neighborhood conditions are rather complicated and generally are not
very convenient for applications.

In this paper we establish effective differential point conditions for the fundamen-
tal properties considered under appropriate assumptions on multifunctions and spaces
in question. For this purpose we use generalized differential constructions introduced
by Kruger and Mordukhovich on the base of sequential limits of the so-called Fréchet
ε-normals [21]. These simply defined nonconvex objects are infinite-dimensional ex-
tensions of the corresponding constructions [24] in finite dimensions and possess some
useful properties in general Banach space settings; see [33]. However, full calculus (at
the same level of perfection as in finite dimensions) is available for them in the class
of Asplund spaces; see [34, 35, 36] and section 2 below for more details. The latter
subclass of Banach spaces is sufficiently broad and includes, in particular, all spaces
with Fréchet differentiable renorms (therefore, all reflexive spaces) as well as those
with separable duals; see, e.g., [39].

We employ the sequential differential constructions to obtain effective point crite-
ria for openness, stability, and related properties of infinite dimensional multifunctions
under partial normal compactness (p.n.c.) assumptions on their graphs introduced in
this paper. These assumptions support the limiting procedure to prove point criteria
in terms of the sequential constructions in general settings when the latter may not
even be closed. In section 3 we discuss the p.n.c. assumptions in detail and compare
them with previous results in this direction.

Employing the p.n.c. assumptions, we establish a number of sufficient point condi-
tions for openness, metric regularity, and stability properties of nonsmooth mappings
and multifunctions between Asplund spaces with point estimates of the exact bounds
for corresponding moduli. Moreover, those conditions are proven to be also necessary
for the fundamental properties under consideration even without p.n.c. and Asplun-
dity assumptions. The conditions obtained completely cover the finite-dimensional
case in [26] and turn out to be useful in many infinite-dimensional settings important
for applications to optimization, sensitivity, control, etc. In particular, in the last
section we provide some effective applications of the main point criteria to sensitivity
analysis of constraint and variational systems.

One of the principal results in the paper is a sufficient point condition for both
openness and metric regularity properties of p.n.c. multifunctions Φ : X ⇒ Y between
Asplund spaces, which is obtained in the form

[(0, y?) ∈ N((x̄, ȳ); gph Φ)] =⇒ y? = 0,(1.1)

where N((x̄, ȳ); gph Φ) is our basic sequential normal cone in Definition 2.1(ii) to the
graph

gph Φ := {(x, y) ∈ X × Y | y ∈ Φ(x)}

at (x̄, ȳ); see Theorem 4.2. We also establish the necessity of (1.1) for the mentioned
properties and provide two-sided point estimates for corresponding moduli.

These results were first obtained and presented at the workshop “Convexity,
Monotonicity, and Differentiability” (Waterloo, Ontario, Canada, March 1993) un-
der the assumption that the graph of Φ is compactly epi-Lipschitzian [5]. Then we
received the paper [18] by Jourani and Thibault, which contains another proof of the
fact that an analogue of (1.1) is a sufficient condition for metric regularity of Φ in
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general Banach spaces under the less restrictive “partial compact epi-Lipschitzian”
assumption. The latter one implies the p.n.c. assumption imposed here and actually
has a different nature: primal vs. dual; see section 3.

Note that, in contrast to (1.1), the point condition in [18] is expressed in terms of
an approximate normal cone defined by Ioffe, who proved a similar sufficient condition
for the case of dim Y <∞ [15]. The latter construction is also an infinite-dimensional
generalization of that in [24], which is well defined in any Banach space [16]. On the
other hand, it is more complicated and may be bigger (but never smaller) than the
Kruger–Mordukhovich sequential extension in infinite dimensions (see [35, section 9]
for more details). Moreover, in the case of Asplund spaces, approximate normals used
in [16, 18] can be obtained by adding points of the weak-star topological closure to
the sequential normal cone in (1.1). One can observe that such a procedure may
substantially enlarge the set in the left-hand side of (1.1).

The rest of the paper is organized as follows. Section 2 contains basic definitions
and preliminaries in nonsmooth analysis needed in later discussion. Section 3 is
concerned with normal compactness conditions important for limiting procedures. In
section 4 we obtain the main point characterizations of openness properties for set-
valued mappings with corresponding modulus estimates. Section 5 is devoted to point
criteria for metric regularity and Lipschitzian stability. In section 6 we present some
applications of the main criteria to sensitivity analysis of constraint and variational
systems.

Throughout the paper we use standard notation, with some special symbols in-
troduced where they are defined. Unless otherwise stated, all spaces considered are
Banach whose norms are always denoted by ‖·‖. For any space X we consider its dual
space X? equipped with the weak-star topology w?, where 〈·, ·〉 means the canonical
pairing. Recall that cl Ω stands for the closure of Ω ⊂ X, while cl? is used for the
weak-star topological closure in X?. The distance function to the set Ω is denoted by

dist(x,Ω) := inf{‖x− ω‖ s.t. ω ∈ Ω}.

In contrast to the case of single-valued mappings f : X → Y , the symbol Φ : X ⇒
Y stands for a multifunction from X into Y with the domain and kernel denoted,
respectively, by

Dom Φ := {x ∈ X| Φ(x) 6= ∅} and Ker Φ := {x ∈ X| 0 ∈ Φ(x)}.

The inverse multifunction Φ−1 : Y ⇒ X to Φ satisfies the relationships

x ∈ Φ−1(y)⇐⇒ y ∈ Φ(x)⇐⇒ (x, y) ∈ gph Φ,

and the norm of any positive homogeneous multifunction is defined by

‖Φ‖ := sup{‖y‖ s.t. y ∈ Φ(x) and ‖x‖ ≤ 1}.(1.2)

For multifunctions Φ : X ⇒ X?, the expression

lim sup
x→x̄

Φ(x) := {x? ∈ X?| ∃ sequences xk → x̄ and x?k
w?→ x?

with x?k ∈ Φ(xk) for all k = 1, 2, . . .}

always means the sequential Kuratowski–Painlevé upper limit with respect to the
norm topology in X and the weak-star topology in X?.
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As usual, we denote by B and B? the unit closed balls in the space and dual
space in question; A? stands for the adjoint operator to a linear bounded operator
A : X → Y . The symbol Br(x) means the closed ball with center x and radius r,
while

Br(Φ(x)) :=
⋃

y∈Φ(x)

Br(y) and Φ(Br(x)) :=
⋃

z∈Br(x)

Φ(z)

for any multifunction Φ : X ⇒ Y .
If ϕ : X → R̄ := [−∞,∞] is an extended-real-valued function, then

dom ϕ := {x ∈ X with |ϕ(x)| <∞} and epi ϕ := {(x, µ) ∈ X ×R| µ ≥ ϕ(x)}.

In this case, limsup ϕ(x) and liminf ϕ(x) denote the upper and lower limits in the
classical (scalar) sense. Depending on context, the symbols x

ϕ→ x̄ and x
Ω→ x̄ mean,

respectively, that x → x̄ with ϕ(x) → ϕ(x̄) and x → x̄ with x ∈ Ω. Thoughout
the paper we use the convention that inf ∅ = ∞, sup ∅ = −∞, ‖∅‖ = ∞, and
a+ ∅ = ∅+ b = ∅ for any elements a and b.

2. Basic definitions and preliminaries. This section is mostly concerned with
preliminary material on the basic generalized differential constructions used in the
paper. Let us begin with the definitions of normal elements to arbitrary sets in
Banach spaces, as appeared in [21].

DEFINITION 2.1. (i) Let Ω ⊂ X and ε ≥ 0. Given x ∈ cl Ω, the nonempty set

N̂ε(x; Ω) :=

{
x? ∈ X?| lim sup

u
Ω→x

〈x?, u− x〉
‖u− x‖ ≤ ε

}
(2.1)

is called the set of (Fréchet) ε-normals to Ω at x. When ε = 0, the set (2.1) is a cone
which is called the prenormal cone or Fréchet normal cone to Ω at x and is denoted
by N̂(x; Ω). If x /∈ cl Ω, we set N̂ε(x; Ω) = ∅ for all ε ≥ 0.

(ii) Let x̄ ∈ cl Ω. The nonempty cone

N(x̄; Ω) := lim sup
x→x̄, ε↓0

N̂ε(x; Ω)(2.2)

is called the normal cone to Ω at x̄. We set N(x̄; Ω) = ∅ for x̄ /∈ cl Ω.
(iii) The set Ω is called regular at x̄ if N(x̄; Ω) = N̂(x̄; Ω).
The reader may consult with the recent papers [33, 35] and their references for

basic properties of the normal cone (2.2) and related subdifferential constructions. It
is shown in [35] that for Asplund spaces X one can always let ε = 0 in (2.2); i.e., the
normal cone is represented by

N(x̄; Ω) = lim sup
x→x̄

N̂(x; Ω).(2.3)

Let us mention [35] that, for the case of Asplund spaces, the weak-star topological
closure in X? of the sequential normal cone (2.2) coincides with the G-normal cone
in Ioffe [16], while the weak-star closure of its convexification gives Clarke’s normal
cone [9]. Note also that the normal cone (2.2) coincides with the cone of “limiting
proximal normals” when X is Hilbert; cf. [23].

Now we consider a derivativelike object for multifunctions which is used for for-
mulations and proofs of the main results in the paper.
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DEFINITION 2.2. Let Φ : X ⇒ Y be a multifunction between Banach spaces and
(x̄, ȳ) ∈ cl gph Φ. The multifunction D?Φ(x̄, ȳ) from Y ? into X? defined by

D?Φ(x̄, ȳ)(y?) := {x? ∈ X?| (x?,−y?) ∈ N((x̄, ȳ); gph Φ)}(2.4)

is called the coderivative of Φ at (x̄, ȳ). We let D?Φ(x̄, ȳ)(y?) := ∅ if (x̄, ȳ) /∈ cl gph Φ.
The symbol D?Φ(x̄)(y?) is used in (2.4) when Φ is single valued at x̄ and ȳ = Φ(x̄).

The coderivative introduced can be treated as a generalized concept of adjoint
mapping that coincides with the adjoint operator to the derivative in the classical
framework. Indeed, let Φ = f : X → Y be strictly differentiable at x̄ with the
derivative f ′(x̄), i.e.,

lim
x→x̄,u→x̄

f(x)− f(u)− f ′(x̄)(x− u)
‖x− u‖ = 0.

Then it is easy to show (see [36]) that for any Banach spaces X and Y one has

D?f(x̄)(y?) = (f ′(x̄))?y?.(2.5)

In general, the coderivative (2.4) is a positive homogeneous multifunction with respect
to y? whose values may be nonconvex and even not closed in X?. Nevertheless,
this construction possesses a rich calculus, especially in the Asplund space setting.
We refer the reader to our paper [36], which contains complete infinite-dimensional
extensions of the previous finite-dimensional results in [28].

Now let us consider subdifferential constructions for extended-real-valued functions
related to the normal and prenormal cones in Definition 2.1.

DEFINITION 2.3. Let ϕ : X → R̄ and x̄ ∈ dom ϕ. The set

∂ϕ(x̄) := {x? ∈ X?| (x?,−1) ∈ N((x̄, ϕ(x̄)); epi ϕ)}(2.6)

is called the subdifferential of ϕ at x̄, while the set

∂̂ϕ(x̄) := {x? ∈ X?| (x?,−1) ∈ N̂(x̄, ϕ(x̄)); epi ϕ)}(2.7)

is called the presubdifferential or Fréchet subdifferential of ϕ at this point. We let
∂ϕ(x̄) = ∂̂ϕ(x̄) := ∅ when x̄ /∈ dom ϕ.

When ϕ is convex, both the subdifferential and the presubdifferential coincide
with the subdifferential of convex analysis. In general, the set (2.7) is always convex
but is frequently empty (as, e.g., for ϕ(x) = −|x| at 0 ∈ R), while the subdifferential
(2.6) is nonempty at least for locally Lipschitzian functions but may be nonconvex in
common situations (as in the example above). Note that when ϕ is lower semicon-
tinuous (l.s.c.) around x̄ ∈ dom ϕ, one has

∂̂ϕ(x̄) =
{
x? ∈ X?| lim inf

x→x̄

ϕ(x)− ϕ(x̄)− 〈x?, x− x̄〉
‖x− x̄‖ ≥ 0

}
for any Banach space X and

∂ϕ(x̄) = lim sup
x
ϕ→x̄

∂̂ϕ(x)(2.8)

if X is Asplund; see [35]. One can easily check that

∂̂δ(x̄,Ω) = N̂(x̄; Ω) and ∂δ(x̄,Ω) = N(x̄; Ω)(2.9)

for x̄ ∈ Ω, where δ(·,Ω) is the indicator function of Ω.
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The next “zero fuzzy calculus” result for Fréchet subdifferentials in Asplund
spaces follows from Fabian [12]. We prove in [34] that such a calculus rule is equivalent
to the extremal principle (generalized Euler equation for extremal points) [21, 25].

PROPOSITION 2.4. Let X be an Asplund space and ϕi : X → R̄, i = 1, . . . , n (n ≥
2), be a collection of l.s.c. functions, all but one of which are Lipschitz continuous
around x̄. Assume that x̄ is a local minimum point for the sum ϕ1 + · · ·+ ϕn. Then
for any positive numbers ε and γ one has

0 ∈
⋃
{∂̂ϕ1(x1) + · · ·+ ∂̂ϕn(xn)| xi ∈ Bγ(x̄), |ϕi(xi)− ϕi(x̄)| ≤ γ, i = 1, . . . , n}+ εB?.

In conclusion of this section we discuss relations between the coderivative (2.4)
and the subdifferential (2.6). It follows from the definitions that

∂ϕ(x̄) = D?Eϕ(x̄, ϕ(x̄))(1), where Eϕ(x) := {µ ∈ R| µ ≥ ϕ(x)}(2.10)

for any ϕ : X → R̄ and x̄ ∈ dom ϕ. Moreover, ∂ϕ(x̄) = D?ϕ(x̄)(1) if ϕ is continuous
around x̄. On the other hand, for some classes of single-valued mappings f between
Banach spaces, the coderivative of f can be expressed in terms of the subdifferential
of its Lagrange scalarization 〈y?, f〉(x) := 〈y?, f(x)〉.

Recall that a mapping f : X → Y Lipschitz continuous around x̄ is said to be
strictly Lipschitzian at x̄ [35] if there exists a neighborhood V of the origin in X such
that the sequence

[f(xk + tkv)− f(xk)]/tk, k = 1, 2, . . . ,

has a convergent subsequence in the norm topology of Y for each v ∈ V, xk → x̄, and
tk ↓ 0 as k →∞. (As we were recently informed by Lionel Thibault, this definition is
equivalent to a variant of his concept of compactly Lipschitzian mappings [43].)

Obviously, every mapping strictly differentiable at x̄ is strictly Lipschitzian at
this point. When dim Y < ∞, there is no difference between locally Lipschitzian
and strictly Lipschitzian mappings. Furthermore, any locally Lipschitzian mapping
between Banach spaces is strictly Lipschitzian at x̄ if it has a norm-compact-valued
“strict prederivative” in the sense of Ioffe [16] that includes many important applica-
tions, particularly in optimal control [13]. The following scalarization result is proven
in [35].

PROPOSITION 2.5. Let X and Y be Asplund and Banach spaces, respectively, and
let f : X → Y be strictly Lipschitzian at x̄. Then one has

D?f(x̄)(y?) = ∂〈y?, f〉(x̄) 6= ∅ ∀y? ∈ Y ?.

3. Normal compactness conditions. In this section we study effective con-
ditions on sets and multifunctions that are widely used to justify limiting procedures
in proving the main results of the paper.

Let us start with arbitrary closed sets Ω in a Banach space Z, which will be mainly
considered in the form X×Y later on. When Z is finite dimensional, the normal cone
(2.2) at z̄ ∈ Ω has closed values, and moreover, its graph is closed. (It is the so-called
robustness or upper semicontinuity property.) In infinite dimensions, these facts are
no longer true both in topological and in sequential senses. This appears because the
normal cone is defined sequentially, while the weak-star topology of Z? is not always
sequential; see [4, 22, 23] for more discussions. To overcome these difficulties, Loewen
introduced in [22] a local compactness condition of the following kind, which we call
here normal compactness of a set around a given point.
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DEFINITION 3.1. A closed set Ω ⊂ Z is said to be normally compact around z̄ ∈ Ω
if there exist positive numbers γ, σ, and a compact subset C of Z such that

N̂(z; Ω) ⊂ Kσ(C) :=
{
z? ∈ Z? s.t. σ‖z?‖ ≤ max

c∈C
|〈z?, c〉|

}
∀z ∈ Bγ(z̄) ∩ Ω.(3.1)

Note that condition (3.1) is always valid if Z is finite dimensional. When Z is
Asplund, the prenormal cone N̂(z; Ω) in Definition 3.1 can be equivalently replaced
by the normal cone (2.2). This follows from (2.3) and the fact that the cone Kσ(C)
in (3.1) is weak-star closed in Z?; see the proof of Proposition 3.4 below.

Let us observe that condition (3.1) is dual in the sense that it is expressed in the
dual space setting. Loewen shows [22] that (3.1) always holds when Ω is compactly
epi-Lipschitzian around x̄ in the sense of Borwein and Strojwas [5]. The latter is a
primal condition on the set Ω that generalizes Rockafellar’s original concept of epi-
Lipschitzian sets; see [5, 22].

In [22], Loewen demonstrates that the graph of the normal-cone multifunction
N(·; Ω) is closed near z̄ in the norm×weak-star topology of Z × Z? if Ω satisfies the
normal compactness condition (3.1) around z̄. He establishes this fact for the case
of reflexive spaces Z that is essential in his proof. Let us obtain this robustness
property of (2.2) in a more general setting based on recent developments in Borwein
and Fitzpatrick [4].

Recall that a Banach space Z is weakly compactly generated (WCG), provided
that there is a weakly compact set K such that Z = cl(span K). This class of spaces
includes, in particular, all reflexive spaces as well as all separable Banach spaces; see
[39]. We will use the following result proven in [4].

PROPOSITION 3.2. Let Z be a WCG space and {Ak} be a sequence of subsets of
Z? such that Ak+1 ⊂ Ak for all k = 1, 2, . . . . Then one has

∞⋃
m=1

∞⋂
k=1

cl?(Ak ∩mB?) =
{

lim
k→∞

z?k| z?k ∈ Ak for all k
}
,(3.2)

where lim z?k is taken in the weak-star topology of Z?.
Now we can establish extensions of Loewen’s main results in [22]. Say that a set

K ⊂ Z? is weak-star locally bounded, provided that each point of K has a weak-star
neighborhood U such that U ∩K is norm bounded in Z?.

PROPOSITION 3.3. Let (M, ρ) be a metric space, Z be a WCG space, and Φ :
M ⇒ Z? be an arbitrary multifunction. Equip M×Z? with the ρ×weak-star topology,
and assume that there exists a weak-star locally bounded, weak-star closed subset K
of Z? such that

Φ(z) ⊂ K for any z ∈M.(3.3)

Then (z̄, z?) ∈ cl gph Φ if and only if z? = limk→∞ z?k for some sequence z?k ∈ Φ(zk)
with zk → z̄ as k →∞.

Proof. Let {(zα, z?α)}α∈Λ ⊂M ×Z? be a net such that zα → z̄ and z?α
w?→ z? with

z?α ∈ Φ(zα) for all α ∈ Λ. The weak-star closedness of K and condition (3.3) ensure
z? ∈ K. Now taking into account the weak-star local boundedness of K, we find a
natural number m and a subnet {(zβ , z?β)}β∈Λ̃ (Λ̃ ⊂ Λ) of {(zα, z?α)}α∈Λ such that
‖z?β‖ ≤ m for all β ∈ Λ̃. Letting

Ak =
⋃
{Φ(z)| ρ(z, z̄) ≤ 1/k}, k = 1, 2, . . . ,
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one concludes that z? belongs to the left-hand side set in (3.2). Finally employing
Proposition 3.2, we finish the proof.

The result obtained ensures the following robustness property of the normal cone
(2.2).

PROPOSITION 3.4. Let Z be a WCG Asplund space and Ω be a closed subset
of Z satisfying the normal compactness condition (3.1) around z̄ ∈ Ω. Then the
multifunction N(·; Ω) has closed graph near z̄; i.e., for some γ > 0 the set

(gph N(·; Ω)) ∩ ((z̄ + γB)× Z?)(3.4)

is closed in the norm×weak-star topology of Z ×Z?. In particular, for any sequences
zk → z̄ and z?k

w?→ z? with z?k ∈ N(zk; Ω), k = 1, 2, . . ., one has z? ∈ N(z̄; Ω).
Proof. Following the proof in [22, Proposition 3.5], one can conclude that the

cone Kσ(C) in (3.1) is both weak-star closed and weak-star locally bounded in Z?.
The only change we need to do is to observe that the set

{z? ∈ Z?| σ‖z?‖ − |〈z?, c〉| ≤ 0}

is weak-star closed in Z? for any c ∈ Z. The latter follows directly from the well-
known lower semicontinuity of the norm function ‖z?‖ and continuity of the function
|〈z?, c〉| in the weak-star topology of Z?.

Now applying Proposition 3.3 with (M,ρ) = (Ω∩Bγ(z̄), ‖·‖Z) and Φ(·) = N̂(·; Ω),
we conclude that the topological closure of gph N̂(·; Ω) in M × Z? coinsides with
its sequential closure. Due to (2.3) the latter set is equal to the graph of N(·; Ω) near
z̄. This proves the closedness of the set (3.4) in the norm×weak-star topology of
Z × Z?.

Remarks 3.5. (i) The robustness property in Proposition 3.4 does not hold, and
moreover, values of the normal cone N(·; Ω) may not be closed in the weak-star
topology of Z? if one has all the assumptions of the theorem except that Z is a WCG
space. This happens, in particular, for epigraphical sets Ω = epi ϕ ⊂ X×R generated
by Lipschitz continuous functions ϕ on spaces X with Fréchet differentiable renorms;
see examples in Borwein and Fitzpatrick [4].

(ii) Recently Fitzpatrick showed (personal communication) that the normal cone
(2.2) may not be closed even in the norm topology of the Hilbert space l2.

(iii) It is worth mentioning that the normal compactness assumption (3.1) has
been employed in [35] to establish important calculus results for the normal cone
(2.2) to general closed sets in arbitrary Asplund (not just WCG) spaces. What turns
out to be essential for those purposes is not robustness of (2.2) but the following
limiting property, which is easily implied by (3.1): for any sequences

z?k ∈ N̂(zk; Ω) with zk → z̄ and z?k
w?→ 0 as k →∞

one has z?k → 0 in the norm topology of Z?.
Now let us consider normal compactness conditions for multifunctions Φ : X ⇒ Y

between Banach spaces. It is clear that the case of multifunctions can be reduced to
the case of sets in the space Z = X×Y taking Ω = gph Φ. According to Definition 3.1,
a closed-graph multifunction Φ is said to be normally compact around (x̄, ȳ) ∈ gph Φ
if there are positive numbers γ and σ as well as compact sets P ⊂ X and S ⊂ Y such
that

σ(‖x?‖+ ‖y?‖) ≤ max
p∈P
|〈x?, p〉|+ max

s∈S
|〈y?, s〉|(3.5)
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for any (x?, y?) ∈ X? × Y ? satisfying

(x?, y?) ∈ N̂((x, y); gph Φ) with (x, y) ∈ [Bγ(x̄)×Bγ(ȳ)] ∩ gph Φ.(3.6)

It follows from the previous discussions that the normal compactness of Φ around
(x̄, ȳ) implies that for any sequence (xk, yk, x?k, y

?
k) with

(x?k, y
?
k) ∈ N̂((xk, yk); gph Φ), (xk, yk)→ (x̄, ȳ), and (x?k, y

?
k) w

?

→ (0, 0)(3.7)

one has ‖x?k‖ → 0 and ‖y?k‖ → 0 as k →∞.
One can observe that for many applications including those in this paper, it is

sufficient that (3.7) implies the norm convergence of only one component (depending
on the context). This allows us to weaken the normal compactness condition (3.5)
in the following way (considering for definiteness the case of the y-component): there
exist positive numbers γ, σ and compact sets P ⊂ X, S ⊂ Y such that

σ‖y?‖ ≤ max
p∈P
|〈x?, p〉|+ max

s∈S
|〈y?, s〉|(3.8)

for any (x?, y?) satisfying (3.6). Moreover, requirement (3.7) can be also relaxed
to achieve our purposes in this paper. Namely, we need ‖y?k‖ → 0 not for all

(x?k, y
?
k) w?→ (0, 0) satisfying the inclusion in (3.7) but only for those with ‖x?k‖ → 0.

Let us introduce an intrinsic dual condition on Φ that generalizes the above normal
compactness and ensures the required limiting behavior (see Proposition 3.8).

DEFINITION 3.6. (i) A multifunction Φ : X ⇒ Y of closed graph is called partially
normally compact (p.n.c.) with respect to y (image) around (x̄, ȳ) ∈ gph Φ if there
exist a weak-star closed subspace L? ⊂ Y ? of finite codimension, positive numbers γ
and σ, and a compact set S ⊂ Y such that

‖x?‖+ max
s∈S
|〈y?, s〉| ≥ σ(3.9)

for any (x?, y?) satisfying (3.6) with

‖y?‖ = 1 and dist(y?, L?) ≤ γ.(3.10)

(ii) Φ is said to be p.n.c. with respect to x (domain) around (x̄, ȳ) if the inverse
multifunction Φ−1 : Y ⇒ X is p.n.c. with respect to its image.

Remark 3.7. In contrast of the normal compactness conditions discussed previ-
ously, the p.n.c. conditions in Definition 3.6 may become stronger (even in the case
of Asplund spaces) if the prenormal cone in (3.6) is replaced by the basic normal cone
N((x, y); gph Φ) related to the coderivative (2.4). However, an important advantage
of the latter modification is a rich calculus available for this coderivative in infinite
dimensions; see [36]. Based on such a calculus, one can employ the p.n.c. conditions
for various combinations of nonsmooth mappings and multifunctions.

In the rest of this section we deal with the p.n.c. condition for Φ with respect to
its image. The next proposition establishes the mentioned sequential limiting property
of p.n.c. multifunctions, which is what we need to prove the main results of the paper.

PROPOSITION 3.8. Let Φ : X ⇒ Y be p.n.c. with respect to y around (x̄, ȳ). Then
any sequence (xk, yk, x?k, y

?
k) satisfying

(x?k, y
?
k) ∈ N̂((xk, yk); gph Φ), (xk, yk)→ (x̄, ȳ), ‖x?k‖ → 0, and y?k

w?→ 0(3.11)

as k →∞ contains a subsequence with ‖y?km‖ → 0 as m→∞.
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Proof. Let E? ⊂ Y ? be a finite-dimensional subspace complementary to L? from
Definition 3.6(i). Taking y?k in (3.11), we have the unique representation

y?k = l?k + e?k with l?k ∈ L? and e?k ∈ E? ∀k = 1, 2, . . . .

Since y?k
w?→ 0 and dim E? <∞, one gets l?k

w?→ 0 and ‖e?k‖ → 0 as k →∞.
Proving by contradiction, we assume that the result of the proposition does not

hold. In this case there is α > 0 such that ‖y?k‖ ≥ α for all k. Then taking γ > 0 in
Definition 3.6(i), one derives from the inclusion in (3.11) that

(x̃?k, ỹ
?
k) ∈ N̂((xk, yk); gph Φ) with ‖ỹ?k‖ = 1 and (xk, yk) ∈ [Bγ(x̄)×Bγ(ȳ)] ∩ gph Φ,

where x̃?k := x?k/‖y?k‖ and ỹ?k := y?k/‖y?k‖ for all k. It follows from

dist(ỹ?k, L
?) ≤ ‖y?k‖−1‖e?k‖ ≤ ‖e?k‖/α→ 0 as k →∞

that dist(ỹ?k, L
?) ≤ γ for k sufficiently large. Employing (3.9), we arrive at

‖x̃?k‖+ max
s∈S
|〈ỹ?k, s〉| ≥ σ,

which implies the estimate

‖y?k‖ ≤ σ−1
(
‖x?k‖+ max

s∈S
|〈y?k, s〉|

)
.(3.12)

Using the compactness of the set S in (3.12), we conclude that 〈y?k, s〉 → 0 uniformly
in s ∈ S. Therefore, (3.12) implies that ‖y?k‖ → 0 as k → ∞. The contradiction
obtained ends the proof of the proposition.

Now we present some sufficient conditions ensuring the p.n.c. property of Φ in
Definition 3.6(i). First let us observe that this property always holds (with L? =
{0}) when Y is finite dimensional. One can also check that the previously discussed
condition (3.8) implies the p.n.c. property with L? = Y ?.

Next let us consider an important class of multifunctions generated by a single-
valued mapping f : X → Y and closed sets Λ, Ω in the form

Φ(x) :=

{
f(x) + Λ if x ∈ Ω,
∅ otherwise,

(3.13)

which frequently appears in applications to optimization and related problems. The
following result provides the p.n.c. condition for (3.13) in the general case of Banach
spaces X and Y .

PROPOSITION 3.9. Let f : X → Y be Lipschitz continuous around x̄ ∈ Ω and
Λ ⊂ Y be normally compact around ȳ := −f(x̄) ∈ Λ. Then multifunction (3.13) is
p.n.c. with respect to the image around (x̄, 0).

Proof. According to Definition 3.1 we can find positive numbers σ, γ and a
compact set S ⊂ Y such that

σ‖y?‖ ≤ max
s∈S
|〈y?, s〉| ∀y? ∈ N̂(v; Λ) with v ∈ Bγ(ȳ) ∩ Λ.(3.14)

Let l ≥ 0 be a Lipschitz modulus of f in some (fixed) neighborhood of x̄. Consider
any pair (x?, y?) satisfying

(x?, y?) ∈ N̂((x, y); gph Φ) with ‖x− x̄‖ ≤ γ/(l + 1), ‖y‖ ≤ γ/(l + 1)(3.15)
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for Φ defined in (3.13). We are going to show that (3.15) implies the existence of
v ∈ Bγ(y) ∩ Λ such that y? ∈ N̂(v; Λ). In this way we obtain condition (3.8) for
multifunction (3.13) around (x̄, 0) with the given compact set S ⊂ Y and P = {0}.
The latter automatically ensures the p.n.c. property of Φ under consideration.

To justify the mentioned fact, let us employ the definition of the prenormal cone
in (3.15). For any ε > 0 we find η > 0 such that B2η(x̄) lies in the given neighborhood
of x̄ where f is locally Lipschitzian, and moreover,

〈x?, u− x〉+ 〈y?, w − y〉 ≤ ε(‖u− x‖+ ‖w − y‖)

when ‖u− x‖ ≤ η and ‖w − y‖ ≤ η with w ∈ Φ(u) and u ∈ Ω. Letting u = x in the
latter formula and taking (3.13) into account, one has

〈y?, w − y〉 ≤ ε‖w − y‖ ∀w ∈ Bη(y) ∩ [f(x) + Λ](3.16)

with x ∈ Bγ/(l+1)(x̄) ∩ Ω and ‖y‖ ≤ γ/(l + 1). Now for any such (x, y) we consider
v := y − f(x) ∈ Λ which satisfies

‖v − ȳ‖ ≤ ‖y‖+ l‖x− x̄‖ ≤ γ,

i.e., v ∈ Bγ(ȳ) ∩ Λ. Letting w = f(x) + ϑ in (3.16), we get from here that

〈y?, ϑ− v〉 ≤ ε‖ϑ− v‖ ∀ϑ ∈ Bη(v) ∩ Λ.

The latter implies that y? ∈ N̂(v; Λ) and σ‖y?‖ ≤ maxs∈S〈y?, s〉 due to (3.14). This
completes the proof of the proposition.

An important special case of multifunctions (3.13) occurs when Λ = {0}; i.e.,
one considers in fact a single-valued mapping defined on a closed set. It turns out
that Proposition 3.9 cannot be employed in this case for dim Y = ∞ since the set
Λ = {0} is not normally compact in infinite dimensions. The case of (3.13) with
Λ = {0} was studied in Ioffe [15] and Ginsburg and Ioffe [13] on the base of the so-
called finite codimension property for f with respect to Ω. Such a property provides
sufficient amounts of compactness to obtain point criteria in the case considered.
Moreover, it appears to be inherent in a broad class of Fredholm operators important
for applications in optimal control; see [13, 15] for more details and discussions.

Two versions of the finite codimension property were introduced in [13, 15] in
terms of topologically closed approximate subdifferentials and normal cones. Now we
consider a sequential version of this property in terms of the basic constructions in
section 2.

DEFINITION 3.10. Let Ω be a closed subset of X with x̄ ∈ Ω and f : X → Y be a
single-valued mapping continuous around x̄. We say that f has the finite codimension
property with respect to Ω around x̄ if there exist a weak-star closed subspace L? ⊂ Y ?
of finite codimension and positive numbers γ, σ such that for any x ∈ Bγ(x̄), u? ∈
N(x; Ω), and x? ∈ D?f(x)(y?) with y? satisfying (3.10), one has ‖x? + u?‖ ≥ σ.

Let us show that, in the case of Asplund spaces X and Y , this finite codimension
property implies the p.n.c. condition in Definition 3.6(i) for multifunctions defined in
(3.13) when Λ = {0}. Moreover, in this case one always has S = {0} in (3.9).

PROPOSITION 3.11. Let both X and Y be Asplund and f : X → Y be Lipschitz
continuous around x̄ ∈ Ω. If f has the finite codimension property with respect to Ω
around x̄ and Λ = {0} in (3.13), then the latter multifunction is p.n.c. with respect
to y around (x̄, f(x̄)) when S = {0} in (3.9).
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Proof. According to Thibault [44, Proposition 2.7], for any closed-graph mul-
tifunction Φ : X ⇒ Y between Banach spaces and any point (x̄, ȳ) ∈ gph Φ one
has

N(x̄, ȳ); gph Φ) =
⋃
λ>0

λ∂dist(·,Φ(·))(x̄, ȳ).(3.17)

For the multifunction Φ defined in (3.13) with Λ = {0}, we easily get the representa-
tion

dist(v,Φ(u)) = ‖v − f(u)‖+ δ((u, v),Ω× Y ) ∀(u, v) ∈ X × Y,(3.18)

where the first function is Lipschitz continuous. Then employing in (3.17), (3.18) the
subdifferential sum and chain rules in Asplund spaces [35], we arrive at the inclusion

N(x, f(x)); gph Φ) ⊂
⋃
λ>0

⋃
v?∈B?

[D?f(x)(λv?)× {−λv?}] +N((x; Ω)× {0} ∀x ∈ Ω.

The latter yields

D?Φ(x, f(x))(y?) ⊂ D?f(x)(y?) +N(x; Ω) ∀x ∈ Ω and y? ∈ Y ?.(3.19)

According to (3.19), for any (x?, y?) ∈ N((x, f(x)); gph Φ) with x ∈ Ω there exist
x?1 ∈ D?f(x)(−y?) and x?2 ∈ N(x; Ω) such that x? = x?1 + x?2. Therefore, the finite
codimension property in Definition 3.10 implies the p.n.c. condition in Definition
3.6(i) with S = {0} in (3.9).

Now let us compare the (dual) p.n.c. property of multifunctions with their (pri-
mal) epi-Lipschitzian kind of behavior discussed in the beginning of this section. Note
that the notion of compactly epi-Lipschitzian sets mentioned above immediately in-
duces the corresponding notion for multifunctions being applied to their graphs. In
[18], Jourani and Thibault introduce a useful generalization of the latter property in
the following way: A closed-graph multifunction Φ : X ⇒ Y is said to be partially
compactly epi-Lipschitzian (with respect to y) around (x̄, ȳ) ∈ gph Φ if there exist
neighborhoods U of x̄, V of ȳ, and O of the origin in Y as well as a number r > 0
and compact sets P ⊂ X and S ⊂ Y such that

(gph) ∩ (U × V ) + λ({0} ×O) ⊂ gph Φ + λ(P × S) ∀λ ∈ (0, r).(3.20)

When P = {0} and S is a singleton in (3.20), this property corresponds to that
considered by Kruger [20] under the name “uniformly epi-Lipschitzian” multifunc-
tions. In [18, 20] one can find useful examples of multifunctions with such a behavior.
Let us show that (3.20) always implies estimate (3.8) and, therefore, the p.n.c. prop-
erty in Definition 3.6(i). One may observe that this result can be derived from [18,
Proposition 3.5], taking into account that the normal cone (2.2) is always included in
the so-called nucleus of the G-normal cone [16].

PROPOSITION 3.12. Let Φ : X ⇒ Y be a multifunction between Banach spaces
that is partially compactly epi-Lipschitzian around (x̄, ȳ). Then Φ is p.n.c. with
respect to y around this point.

Proof. Let us use (3.20) with Bγ(x̄) ⊂ U, Bγ(ȳ) ⊂ V , and σB ⊂ O for some
positive numbers γ and σ. Then for any (x, y) ∈ (gph Φ) ∩ [Bγ(x̄) × Bγ(ȳ)], e ∈ B,
and a sequence λk ∈ (0, r) with λk ↓ 0 as k → ∞, there are pk ∈ P and sk ∈ S such
that

(x, y) + λkσ(0, e)− λk(pk, sk) ∈ gph Φ ∀k = 1, 2, . . . .
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Due to compactness of P and S one can select a subsequence of {(pk, sk)} which
converges to some (p, s) ∈ P × S. This implies that the difference σ(0, e) − (p, s)
belongs to the (Bouligand) contingent cone K((x, y); gph Φ); see [2]. It is well known
that the Fréchet normal cone is always contained in the polar to the contingent cone.
Therefore,

min
(p,s)∈P×S

〈(x?, y?), σ(0, e)− (p, s)〉 ≤ 0 ∀(x?, y?) ∈ N̂((x, y); gph Φ)

with (x, y) ∈ (gph Φ) ∩ [Bγ(x̄) × Bγ(ȳ)]. The latter implies (3.8) and completes the
proof of the proposition.

4. Point criteria and estimates for openness properties of multifunc-
tions. In the rest of the paper Φ : X ⇒ Y is a closed-graph multifunction between
Banach spaces. In this section we pay the most attention to the following openness
property of Φ in a neighborhood of a given point from its graph.

DEFINITION 4.1. A multifunction Φ is said to be open at a linear rate around
(x̄, ȳ) ∈ gph Φ if there exist neighborhoods U of x̄ and V of ȳ as well as a positive
number a such that

Bar(Φ(x) ∩ V ) ⊂ Φ(Br(x)) for any (x, r) with Br(x) ⊂ U.

Each of such numbers a (corresponding to different neighborhoods) is called an open-
ness modulus for Φ around (x̄, ȳ). The supremum of all openness moduli is called the
openness bound for Φ around (x̄, ȳ) and is denoted by ( ope Φ)(x̄, ȳ).

Note that, for the case of linear bounded operators, this property goes back to the
classical (Banach) open mapping principle. Let us emphasize two essential features of
the given definition: linear rate of openness and uniformity of the openness property
around the point under consideration; see [26, 32] for more discussion and references.

Using the coderivative (2.4) of Φ at (x̄, ȳ), we introduce the main openness con-
stant in the general setting,

a(Φ, x̄, ȳ) := inf{‖x?‖ s.t. x? ∈ D?Φ(x̄, ȳ)(y?) and ‖y?‖ = 1},(4.1)

and formulate the principal result of the paper.
THEOREM 4.2. For any multifunction Φ : X ⇒ Y and point (x̄, ȳ) ∈ gph Φ, let

us consider the properties:
(a) Φ is open at a linear rate around (x̄, ȳ);
(b) a(Φ, x̄, ȳ) > 0 for the openness constant (4.1);
(c) the coderivative (2.4) is injective at (x̄, ȳ), i.e.,

Ker D?Φ(x̄, ȳ) = {0}.

Then (b)=⇒(c) and the following results hold.
(I) When Φ is p.n.c. with respect to y around (x̄, ȳ) and both spaces X and Y are

Asplund, one has

(c) =⇒ (a);(4.2)

i.e., each of the conditions (b) and (c) is sufficient for Φ to be open at a linear rate
around (x̄, ȳ). Moreover,

(ope Φ)(x̄, ȳ) ≥ a(Φ, x̄, ȳ)(4.3)

if Y is finite dimensional.
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(II) When Φ is an arbitrary multifunction from a finite-dimensional space X into
a Banach space Y , one has

(a) =⇒ (b);(4.4)

i.e., both conditions (b) and (c) are necessary for Φ to be open at a linear rate around
(x̄, ȳ). Moreover, in this case

(ope Φ)(x̄, ȳ) ≤ a(Φ, x̄, ȳ).(4.5)

Proof. Implication (b)=⇒(c) is obvious. Let us establish assertion (I) and first
justify (4.2) under the assumptions made. Proving by contradiction, we suppose that
Φ is not open at a linear rate around (x̄, ȳ). Therefore, for any ak ↓ 0 one can find
sequences {xk}, {yk}, {rk}, and {zk} such that

xk → x̄, yk → ȳ, rk ↓ 0 as k →∞ with yk ∈ Φ(xk) ∩Bak(ȳ),(4.6)

‖zk − yk‖ ≤ akrk, and zk /∈ Φ(x) ∀x ∈ Brk(xk), k = 1, 2, . . . .(4.7)

Now let us employ the Ekeland variational principle that has become a conven-
tional tool for this kind of study; see, e.g., [3, 14, 18, 20, 25]. For each k we consider
an l.s.c. function fk : Ek → R defined by

fk(x, y) := ‖y − zk‖ on Ek := (gph Φ) ∩Brk((xk, yk))(4.8)

with the metric on Ek induced by the norm ‖(x, y)‖ := ‖x‖+ ‖y‖ on X × Y . Due to
(4.6) and (4.7) one has

fk(xk, yk) ≤ akrk and fk(x, y) > 0 ∀(x, y) ∈ Ek.

Applying Ekeland’s principle to the function fk on the metric space Ek, we obtain the
following: for the given numbers εk := akrk, λk := (1/2)rk and point (xk, yk) there
exists (x̃k, ỹk) ∈ gph Φ ∩B(1/2)rk((xk, yk)) such that

0 < ‖ỹk − zk‖ ≤ ‖yk − zk‖ ≤ εk and

‖ỹk − zk‖ ≤ ‖y − zk‖+ (εk/λk)‖(x, y)− (x̃k, ỹk)‖ ∀(x, y) ∈ Ek.

The latter means that (x̃k, ỹk) is a local minimizer of the function

ϕk(x, y) := ‖y − zk‖+ 2ak‖(x, y)− (x̃k, ỹk)‖+ δ((x, y), gph Φ)(4.9)

defined on X×Y . It is well known that the Cartesian product of two Asplund spaces
is also Asplund, so one can apply Proposition 2.4 to the sum of three functions in
(4.9) at (x̃k, ỹk). Using this result with ε = γ < min{ak, ‖zk − ỹk‖} and taking into
account the first formula in (2.9), we find (xik, yik) ∈ gph Φ such that ‖xik − x̃k‖ ≤
ak, ‖yik − ỹk‖ ≤ ak, yik 6= zk, i = 1, 2, 3, and

0 ∈ ∂̂(‖ · −zk‖)(x1k, y1k) + ∂̂(2ak‖(·, ·)− (x̃k, ỹk)‖)(x2k, y2k)

+ N̂((x3k, y3k); gph Φ) + ak(B? ×B?).

Employing the well-known convex subdifferential formula for the norm function
and taking into account that yik 6= zk, we obtain a triple (x̃?k, ỹ

?
k, z̃

?
k) ∈ X?× Y ?× Y ?

with

(x̃?k,−ỹ?k) ∈ N̂((x3k, y3k); gph Φ), ‖z̃?k‖ = 1, and ‖z̃?k − ỹ?k‖ ≤ 3ak.
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The latter yields ‖ỹ?k‖ ≥ 1 − 3ak > 1/2 for all big k. Then letting xk := x3k, yk :=
y3k, x

?
k := x̃?k/‖ỹ?k‖, and y?k := ỹ?k/‖ỹ?k‖, we conclude that xk → x̄ and yk → ȳ as

k →∞ while

(x?k,−y?k) ∈ N̂((xk, yk); gph Φ) with ‖y?k‖ = 1 and ‖x?k‖ ≤ 6ak.(4.10)

Since Y is Asplund, the unit ball of the dual space Y ? is sequentially weak-
star compact. Taking into account the boundedness of {y?k}, one may assume that

y?k
w?→ ỹ? as k →∞ for some ỹ? ∈ Y ?. On the other hand, relationships (4.10) imply

that x?k → 0 as k →∞ in the norm topology of X? and 0 ∈ D?Φ(x̄, ȳ)(ỹ?) by virtue
of Definition 2.2. Moreover, due to the p.n.c. property of Φ with respect to y around
(x̄, ȳ) one can conclude that ỹ? 6= 0. Indeed, otherwise we employ Proposition 3.8 and
arrive at the contradiction with ‖y?k‖ = 1 for all k. Finally letting y? := ỹ?/‖ỹ?‖, one
has

0 ∈ D?Φ(x̄, ȳ)(y?) with ‖y?‖ = 1.

This contradicts condition (c) in the theorem and completes the proof of implication
(4.2).

Now let us establish estimate (4.3) assuming that Y is finite dimensional. To
furnish this, we make some changes in the previous procedure similarly to the related
proof of [32, Theorem 3.2] in a somewhat different situation.

Suppose that (4.3) is not true; i.e., there exist a positive number a < a(Φ, x̄, ȳ)
as well as sequences {xk}, {yk}, {rk}, and {zk} such that

xk → x̄, yk → ȳ, rk ↓ 0 as k →∞, and

yk ∈ Φ(xk), ‖zk − yk‖ ≤ ark, zk /∈ Φ(x) ∀x ∈ Brk(xk).(4.11)

For any ε > a we take some α ∈ (a/ε, 1) and pick a sequence {ηk} with

0 < ηk < min
{
rk,

1
2(εα+ 1)

,
ε(1− α)

1 + ε(εα+ 1)

}
∀k = 1, 2, . . . .(4.12)

For each fixed k, let us consider function (4.8) on the space Ek whose metric is
induced by the norm ‖(x, y)‖ηk := ‖x‖+ ηk‖y‖ on X × Y , in contrast to the proof of
(4.2). Now we again apply the Ekeland variational principle to this function fk at the
point (xk, yk), but with different parameters, namely, εk := ark and λk := ark/εα.
Noting that fk(xk, yk) ≤ εk due to (4.11), we find a point (x̃k, ỹk) ∈ Ek such that the
function

ψk(x, y) := ‖y − zk‖+ εα‖(x, y)− (x̃k, ỹk)‖ηk + δ((x, y), gph Φ)(4.13)

attains its unconditional local minimum on X × Y at the point (x̃k, ỹk).
Letting ρk := ‖ỹk − zk‖, we apply Proposition 2.4 with ε = ηk and γ = ρkηk/2

to the sum of three functions in (4.13) at (x̃k, ỹk). In this way we find three pairs
(xik, yik) such that

‖(xik, yik)− (x̃k, ỹk)‖ ≤ ρkηk/2 with yik 6= zk for i = 1, 2, 3 and

0 ∈ ∂̂(‖ · −zk‖)(x1k, y1k) + ∂̂(εα‖(·, ·)− (x̃k, ỹk)‖ηk)(x2k, y2k)(4.14)

+ N̂((x3k, y3k); gph Φ) + ηk(B? ×B?).
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Now computing subdifferentials of the norm functions in (4.14) and taking into ac-
count (4.12), we get a pair (x?k, y

?
k) ∈ X? × Y ? satisfying

(x?k,−y?k) ∈ N̂((x3k, y3k); gph Φ), ‖y?k‖ = 1, ‖x?k‖ ≤
εα+ ηk

1− ηk(εα+ 1)
< ε.(4.15)

By the constructions above we have x3k → x̄ and y3k → ȳ as k →∞. Moreover, due
to Asplundity of X and dim Y <∞ one can select a subsequence of {k} along which

x?k
w?→ x? ∈ X? and y?k → y? with ‖y?‖ = 1. Finally passing to the limit in (4.15) when

k → ∞ and using (2.3), (2.4), (4.1) as well as the l.s.c. of the norm function in the
weak-star topology of X?, we conclude that a(Φ, x̄, ȳ) ≤ ε. Since ε > a was chosen
arbitrary, the latter yields a(Φ, x̄, ȳ) ≤ a that contradicts the choice of a. Therefore,
one arrives at (4.3), which completes the proof of assertion (I).

Let us prove assertion (II) under the assumptions made therein. We are going
to show that if Φ possesses the openness property with a modulus a > 0, then one
always has a ≤ a(Φ, x̄, ȳ). The latter implies both (4.4) and (4.5).

Proving by contradiction, we assume that a > a(Φ, x̄, ȳ). Then there is a number
α > 0 such that a(Φ, x̄, ȳ) < a− α, i.e.,

‖x?‖ < a− α for some x? ∈ D?Φ(x̄, ȳ)(y?) and y? ∈ Y ? with ‖y?‖ = 1.

Now using the basic definitions (2.4) and (2.2) as well as dim X < ∞, one gets
sequences {(xk, yk)} ⊂ gph Φ, {x?k} ⊂ X?, {y?k} ⊂ Y ?, and {εk} ⊂ R+ such that

‖x?k‖ < a− α and (x?k,−y?k) ∈ N̂εk((xk, yk); gph Φ) ∀k = 1, 2, . . . ,(4.16)

where xk → x̄, yk → ȳ, εk ↓ 0, x?k → x? and y?k
w?→ y? as k → ∞. Due to (2.1) and

the inclusion in (4.16), we find a sequence γk ↓ 0 with

〈y?k, y − yk〉+ 2εk(‖x− xk‖+ ‖y − yk‖) ≥ 〈x?k, x− xk〉(4.17)

for all (x, y) ∈ gph Φ satisfying ‖x− xk‖ ≤ γk and ‖y − yk‖ ≤ γk as k = 1, 2, . . ..
Next let us choose a positive number β, a sequence of positive numbers {rk}, and

the sequence {εk} in (4.17) such that

β ≤ min{a, α/2}, rk ≤ min{γk, γk/a}, and εk ≤ (α− β)/2(1 + a)(4.18)

for all k. Due to y?k
w?→ y? with ‖y?‖ = 1 and the l.s.c. of ‖·‖ in the weak-star topology

of Y ?, one can assume that

‖y?k‖ > 1− β/a ∀k = 1, 2, . . . .

Therefore, there is vk ∈ Y such that

‖vk‖ = 1 and 〈y?k, vk〉 > 1− β/a ∀k = 1, 2, . . . .(4.19)

Let us define zk := yk − arkvk for each k = 1, 2, . . .. Using (4.18) and (4.19), we
have ‖zk − yk‖ = ark ≤ γk and the chain of estimates

〈y?k, zk − yk〉+ 2εk(‖x− xk‖+ ‖zk − yk‖)

< −ark + βrk +
α− β
1 + a

(‖x− xk‖+ ark) ≤ −(a− α)rk < 〈x?k, x− xk〉,
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which are valid for any x ∈ Brk(xk). By virtue of (4.17) the latter means that zk /∈
Φ(x) whatever x ∈ Brk(xk). Therefore, we have sequences xk → x̄, yk → ȳ, zk → ȳ,
and rk ↓ 0 as k → ∞ such that (4.11) holds. Due to Definition 4.1 this contradicts
the assumption that the number a is an openness modulus for Φ around (x̄, ȳ). The
contradiction obtained shows that a ≤ a(Φ, x̄, ȳ) and completes the proof of the
theorem.

COROLLARY 4.3. Let Φ : X ⇒ Y be a multifunction from a finite-dimensional
space X into an Asplund space Y . Assume that Φ is p.n.c. with respect to y around
(x̄, ȳ) ∈ gph Φ. Then each of the conditions (b) and (c) in Theorem 4.2 is necessary
and sufficient for Φ to be open at a linear rate around (x̄, ȳ).

Proof. This follows directly from the comparison of assertions (I) and (II) in
Theorem 4.2.

Remark 4.4. Another approach to prove the results in Theorem 4.2 consists
of directly using neighborhood criteria established in our paper [32] in terms of the
Fréchet coderivative of Φ and then employing the limiting arguments developed above.
Following these arguments, one can observe that when Y is finite dimensional, a
sufficient condition for the openness property of Φ around (x̄, ȳ) can be expressed in
the form

Ker D?
sΦ(x̄, ȳ) = {0},(4.20)

where D?
sΦ(x̄, ȳ) is an analogue of the coderivative (2.4) corresponding to the strong

upper limit (with respect to the norm topology on X? × Y ?) in the normal cone
definition (2.2); cf. Penot [38, section 5]. Although the coderivative object in (4.20)
may be smaller than the basic construction (2.4), no useful calculus rules are available
for the former one in contrast to (2.4). Note also that the necessity of condition (4.20)
for the openness of Φ is a weaker result in comparison with (II) in Theorem 4.2, but
it does not need the assumption about dim X <∞; see [38, Remark 4.5].

Now employing Theorem 4.2 and the robustness property in Proposition 3.4, we
obtain a useful neighborhood criterion for openness of multifunctions that is expressed
in terms of the coderivative (2.4). Note that this criterion and its inverse counterpart
(d) in Theorem 5.4 are important for applications in optimal control; cf. [25, 31].

COROLLARY 4.5. Let both X and Y be WCG Asplund spaces and Φ : X ⇒ Y be a
multifunction normally compact around (x̄, ȳ) ∈ gph Φ. Then each of the conditions
(b) and (c) in Theorem 4.2 is equivalent to the following one:

(d) There exist positive numbers µ, γ, and η such that

‖y?‖ ≤ µ‖x?‖ ∀x? ∈ D?Φ(x, y)(y?), x ∈ Bγ(x̄), y ∈ Φ(x) ∩Bη(ȳ).

Therefore, condition (d) is sufficient for the openness property of Φ around (x̄, ȳ) and
is also necessary for this property when dim X <∞.

Proof. Since implications (d)=⇒(b)=⇒(c) are always true, it remains to establish
that (c)=⇒(d).

Proving by contradiction, let us assume that (d) fails. Then one has sequences
{(xk, yk)} ⊂ gph Φ and {(x?k, y?k)} ⊂ X? × Y ? such that

x?k ∈ D?Φ(xk, yk)(y?k), ‖y?k‖ > k‖x?k‖ ∀k = 1, 2, . . .

and (xk, yk)→ (x̄, ȳ) as k →∞. Since ‖y?k‖ > 0, we set ỹ?k := y?k/‖y?k‖, x̃?k := x?k/‖y?k‖
and get

x̃?k ∈ D?Φ(xk, yk)(ỹ?k), with ‖ỹ?k‖ = 1 and ‖x̃?k‖ < 1/k ∀k = 1, 2, . . . .(4.21)
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Taking into account the sequential weak-star compactness of the unit ball in Y ? (since

Y is Asplund), one may assume that ỹ?k
w?→ ỹ? as k → ∞ for some ỹ? ∈ Y ?. On the

other hand, (4.21) implies that x̃?k → 0 as k →∞ in the norm topology of X?. Since
Φ is normally compact around (x̄, ȳ) and both X and Y are Asplund, we can use the
limiting property (3.7) with the normal cone N((x, y); gph Φ) replacing the prenormal
one. This yields ỹ? 6= 0. Moreover, Proposition 3.4 ensures that 0 ∈ D?Φ(x̄, ȳ)(ỹ?).
Denoting y? := ỹ?/‖ỹ?‖, we arrive at

0 ∈ D?Φ(x̄, ȳ)(y?) with ‖y?‖ = 1.(4.22)

This contradicts condition (c) in Theorem 4.2 and completes the proof of the
corollary.

The next corollary contains effective characteristics for the openness property of
multifunctions belonging to class (3.13), which is important for applications in opti-
mization and optimal control. In particular, results in this vein directly induce neces-
sary optimality conditions in various problems of scalar and/or vector optimization;
cf. [17, 18, 25].

COROLLARY 4.6. Assume that both spaces X and Y are Asplund, the sets Ω ⊂ X
and Λ ⊂ Y are closed, and the function f : X → Y is strictly Lipschitzian around
x̄ ∈ X with ȳ := −f(x̄) ∈ Λ. In addition, let Λ be normally compact around ȳ. Then
the multifunction Φ defined by (3.13) is open at a linear rate around (x̄, 0) if

[y? ∈ ∂dist(·,Λ)(ȳ) and 0 ∈ ∂〈y?, f〉(x̄) +N(x̄; Ω)] =⇒ y? = 0.(4.23)

Proof. Following the proof of Proposition 3.11, we get the respresentation

N((x̄, 0); gph Φ) =
⋃
λ>0

λ∂ϕ(x̄, 0),(4.24)

where the distance function ϕ(x, y) := dist(y,Φ(x)) is expressed in the form

ϕ(x, y) = dist(y − f(x),Λ) + δ((x, y),Ω× Y ) ∀(x, y) ∈ X × Y.(4.25)

One can easily observe that the mapping (x, y) → y − f(x) is strictly Lipschitzian
around (x̄, 0). Now employing subdifferential calculus rules [35] and Proposition 2.5
in (4.24) and (4.25), we find a number λ > 0 such that

N((x̄, 0); gph Φ) ⊂
⋃
λ>0

⋃
y?∈∂dist(·,Λ)(ȳ)

[∂〈λy?, f〉(x̄)× {−λy?}] +N(x̄; Ω)× {0}.(4.26)

Therefore, condition (4.23) implies criterion (c) in Theorem 4.2 due to (4.26) and
the coderivative construction (2.4). Moreover, Proposition 3.9 ensures that the mul-
tifunction Φ in (3.13) is p.n.c. with respect to y around (x̄, 0) under the assumptions
made. In this way we deduce the corollary from assertion (I) of Theorem 4.2.

In conclusion of this section let us consider a global (relative to the image) coun-
terpart of the openness property for closed-graph multifunctions.

DEFINITION 4.7. We say that Φ enjoys the covering property around x̄ ∈ Dom Φ
if there exist a number a > 0 and a neighborhood U of x̄ such that for any (x, r) with
Br(x) ⊂ U one has

Bar(Φ(x)) ⊂ Φ(Br(x)).
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Each of such numbers a is called the covering modulus for Φ around x̄. The supremum
of all covering moduli is called the covering bound for Φ around x̄ and is denoted by
(cov Φ)(x̄).

Let us consider the covering constant

a(Φ, x̄) := inf{‖x?‖ s.t. x? ∈ D?Φ(x̄, ȳ)(y?), ‖y?‖ = 1, and ȳ ∈ Φ(x̄)}(4.27)

related to (4.1) and formulate the covering characterization result that follows from
Theorem 4.2 and Corollary 4.5. Recall that a multifunction Φ : X ⇒ Y between
Banach spaces is said to be locally compact around x̄ if there are a neighborhood U
of x̄ and a compact set V ⊂ Y such that Φ(U) ⊂ V .

THEOREM 4.8. Let the multifunction Φ : X ⇒ Y be locally compact around
x̄ ∈ Dom Φ. Consider the following statements:

(a) Φ enjoys the covering property around x̄;
(b) a(Φ, x̄) > 0 for the covering constant (4.27);
(c) the coderivative (2.4) at (x̄, ȳ) is injective for all ȳ ∈ Φ(x̄), i.e.,

Ker D?Φ(x̄, ȳ) = {0} ∀ȳ ∈ Φ(x̄);

(d) there exist positive numbers µ and γ such that

‖y?‖ ≤ µ‖x?‖ ∀x? ∈ D?Φ(x, y)(y?), x ∈ Bγ(x̄), y ∈ Φ(x).

Then (d) =⇒ (b) =⇒ (c) and the following results hold:
(I) When Φ is p.n.c. with respect to y around (x̄, ȳ) for any ȳ ∈ Φ(x̄) and both

spaces X and Y are Asplund, one has (c)=⇒(a); i.e., each of the conditions (b), (c),
and (d) is sufficient for Φ to enjoy the covering property around x̄. Moreover,

(cov Φ)(x̄) ≥ a(Φ, x̄)

when Y is finite dimensional.
(II) When Φ is an arbitrary multifunction from a finite-dimensional space X into

a Banach space Y , one has (a)=⇒(b); i.e., both conditions (b) and (c) are necessary
for Φ to enjoy the covering property around x̄. Moreover, in this case

(cov Φ)(x̄) ≤ a(Φ, x̄).

(III) Each of the conditions (b) and (c) is equivalent to (d) when both spaces X
and Y are WCG Asplund and the multifunction Φ is normally compact around x̄ for
any ȳ ∈ Φ(x̄).

Proof. Using the local compactness of Φ around x̄ and the compactness arguments
in [26, Theorem 3.9] (cf. also [42, Theorem 2.2]), one can establish that the covering
property of Φ around x̄ is equivalent in this case to the openness property of Φ around
(x̄, ȳ) for every ȳ ∈ Φ(x̄). Moreover,

a(Φ, x̄) = inf{a(Φ, x̄, ȳ)| ȳ ∈ Φ(x̄)} and (cov Φ)(x̄) = inf{(ope Φ)(x̄, ȳ)| ȳ ∈ Φ(x̄)}.

In this way one can also check that properties (b)–(d) in the theorem are equivalent
to the fulfilment of the corresponding properties in Theorem 4.2 and Corollary 4.5
for all ȳ ∈ Φ(x̄) (respectively, all y ∈ Φ(x) in (d)). Therefore, the results formulated
follow from the corresponding results of Theorem 4.2 and Corollary 4.5.
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5. Point characterizations of metric regularity and Lipschitzian stabil-
ity. This section is concerned with other significant properties of closed-graph mul-
tifunctions Φ : X ⇒ Y related to the openness and covering considered above. We
start with definitions of the (local) metric regularity and pseudo-Lipschitzian proper-
ties initiated, respectively, by Robinson [40] and Aubin [1].

DEFINITION 5.1. (i) Φ is said to be local-metrically regular around (x̄, ȳ) ∈ gph Φ
with modulus c > 0 if there exist a neighborhood U of x̄, a neighborhood V of ȳ, and
a number α > 0 such that

dist(x,Φ−1(y)) ≤ c dist(y,Φ(x))

for any x ∈ U and y ∈ V satisfying dist(y,Φ(x)) ≤ α. The infimum of all regularity
moduli c is called the bound of local-metric regularity for Φ around (x̄, ȳ) and is
denoted by (lreg Φ)(x̄, ȳ).

(ii) Φ is said to be pseudo-Lipschitzian around (x̄, ȳ) ∈ gph Φ with modulus l > 0
if there exist a neighborhood U of x̄ and a neighborhood V of ȳ such that

Φ(x1) ∩ V ⊂ Φ(x2) + l‖x1 − x2‖B ∀x1, x2 ∈ U.(5.1)

The infimum of all such moduli l is called the bound of pseudo-Lipschitzness for Φ
around (x̄, ȳ) and is denoted by (plip Φ)(x̄, ȳ).

The interrelations between the properties in Definitions 4.1 and 5.1 can be ob-
tained from Borwein and Zhuang [7] and Penot [37]; cf. also [26].

PROPOSITION 5.2. (I) Φ is local-metrically regular around (x̄, ȳ) if and only if Φ
is open at a linear rate around (x̄, ȳ). Moreover, (lreg Φ)(x̄, ȳ) = 1/(ope Φ)(x̄, ȳ).

(II) Φ is pseudo-Lipschitzian around (x̄, ȳ) ∈ gph Φ with modulus l if and only if
Φ−1 is local-metrically regular around (ȳ, x̄) with the same modulus c = l.

Following [26], let us introduce the regularity constant

c(Φ, x̄, ȳ) := inf{c > 0 s.t. ‖y?‖ ≤ c‖x?‖ when x? ∈ D?Φ(x̄, ȳ)(y?)}(5.2)

and observe the relationships between constants (5.2), (4.1), and the norm (1.2) of
the coderivative (2.4):

c(Φ, x̄, ȳ) = 1/a(Φ, x̄, ȳ) when a(Φ, x̄, ȳ) > 0;(5.3)

c(Φ−1, ȳ, x̄) = ‖D?Φ(x̄, ȳ)‖.(5.4)

Now using Proposition 5.2 and relationships (5.3) and (5.4), one can deduce ef-
fective characterizations of the metric regularity and Lipschitzian behavior of multi-
functions from our main results in Theorem 4.2 and Corollary 4.5.

THEOREM 5.3. (I) Let both spaces X and Y be Asplund and the multifunction
Φ : X ⇒ Y be p.n.c. with respect to y around (x̄, ȳ) ∈ gph Φ. Then each of the
conditions

c(Φ, x̄, ȳ) <∞(5.5)

and (c) in Theorem 4.2 is sufficient for Φ to be local-metrically regular around (x̄, ȳ).
Moreover, one has

(lreg Φ)(x̄, ȳ) ≤ c(Φ, x̄, ȳ)

when Y is finite dimensional.
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(II) Let Φ be an arbitrary closed-graph multifunction from a finite-dimensional
space X into a Banach space Y . Then both conditions (5.5) and (c) in Theorem 4.2
are necessary for Φ to be local-metrically regular around (x̄, ȳ). In this case one has

(lreg Φ)(x̄, ȳ) ≥ c(Φ, x̄, ȳ).

One can observe that in the classical cases where Φ either is strictly differen-
tiable at x̄ or has convex graph, the coderivative criteria of Theorems 4.2 and 5.3
are reduced to the corresponding surjectivity and interiority conditions of the cele-
brated Ljusternik–Graves and Robinson–Ursescu theorems; see, e.g., [2] and references
therein. Note that those conditions turn out to be necessary and sufficient for the
metric regularity/openness (at a linear rate) properties under the assumptions made.
The latter fact holds in more general infinite-dimensional settings; cf. [10, 11, 32].
Let us emphasize that we also get effective modulus estimates.

Next we formulate results on the pseudo-Lipschitzian property that are inverse to
criteria in Theorem 4.2 and Corollary 4.5. One can easily observe from the definitions
that

D?Φ−1(ȳ, x̄)(x?) = {y? ∈ Y ?| x? ∈ −D?Φ(x̄, ȳ)(−y?)}(5.6)

for any multifunction Φ : X ⇒ Y between Banach spaces.
THEOREM 5.4. Let Φ : X ⇒ Y be a closed-graph multifunction with (x̄, ȳ) ∈

gph Φ. Consider the following properties:
(a) Φ is pseudo-Lipschitzian around (x̄, ȳ);
(b) the coderivative D?Φ(x̄, ȳ)(·) is bounded, i.e., ‖D?Φ(x̄, ȳ)‖ <∞;
(c) the coderivative satisfies the null-condition at (x̄, ȳ):

D?Φ(x̄, ȳ)(0) = {0};(5.7)

(d) there are numbers γ > 0, η > 0, and l > 0 such that the coderivative satisfies
the uniform linear estimate around (x̄, ȳ):

sup{‖x?‖ s.t. x? ∈ D?Φ(x, y)(y?)} ≤ l‖y?‖ ∀x ∈ Bγ(x̄), y ∈ Φ(x) ∩Bη(ȳ), and y? ∈ Y ?.

Then (d)=⇒(b)=⇒ (c) and the following assertions hold:
(I) One has (c)=⇒(a) when Φ is p.n.c. with respect to x around (x̄, ȳ) and both

spaces X and Y are Asplund. Thus in this case each of the conditions (b), (c), and
(d) is sufficient for Φ to be pseudo-Lipschitzian around (x̄, ȳ). Moreover,

(plip Φ)(x̄, ȳ) ≤ ‖D?Φ(x̄, ȳ)‖(5.8)

when X is finite dimensional.
(II) One has (a)=⇒(b) when Φ is an arbitrary multifunction from a Banach space

X into a finite-dimensional space Y . Thus in this case both conditions (b) and (c)
are necessary for Φ to be pseudo-Lipschitzian around (x̄, ȳ) and, in addition,

(plip Φ)(x̄, ȳ) ≥ ‖D?Φ(x̄, ȳ)‖.

(III) Conditions (b), (c), and (d) are equivalent when both X and Y are WCG
Asplund spaces and Φ is normally compact around (x̄, ȳ).

COROLLARY 5.5. Let X be Asplund, let dim Y <∞, and let Φ : X ⇒ Y be p.n.c.
with respect to x around (x̄, ȳ). Then each of the conditions (b) and (c) in Theorem
5.4 is necessary and sufficient for Φ to be pseudo-Lipschitzian around (x̄, ȳ).
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In the next section we present some applications of Theorem 5.4 to Lipschitzian
stability of parametric constraint and variational systems. Now let us show how the
results obtained allow one to characterize Lipschitzian behavior of an extended-real-
valued function ϕ : X → R̄ in terms of its singular subdifferential

∂∞ϕ(x̄) := {x? ∈ X?| (x?, 0) ∈ N((x̄, ϕ(x̄)); epi ϕ)}(5.9)

at x̄ ∈ dom ϕ. Along with ϕ we consider the epigraphical multifunction Eϕ associated
with ϕ by virtue of (2.10). We say that ϕ is normally epi-compact around x̄ if the
set Ω := epi ϕ (or the multifunction Eϕ) is normally compact around (x̄, ϕ(x̄)). The
latter property always holds if ϕ is compactly epi-Lipschitzian (in particular, Lipschitz
continuous or directionally Lipschitzian) around x̄; see [22, 35] for more details.

COROLLARY 5.6. Let X be a Banach space and ϕ : X → R̄ be l.s.c. around
x̄ ∈ dom ϕ. Consider the following properties:

(a) ϕ is Lipschitz continuous around x̄;
(b) Eϕ is pseudo-Lipschitzian around (x̄, ϕ(x̄));
(c) ∂∞ϕ(x̄) = {0}.

Then one always has (a)⇐⇒(b)=⇒(c). Moreover, (c) is equivalent to (a) and (b)
when X is Asplund and ϕ is normally epi-compact around x̄.

Proof. It follows directly from the definitions that (a)=⇒(b) and, conversely,
(b)=⇒(a) if ϕ is continuous around x̄. On the other hand, it is easy to show by
contradiction that the pseudo-Lipschitzian property of Eϕ around (x̄, ϕ(x̄)) automat-
ically implies the upper semicontinuity of ϕ around x̄. This yields the equivalence
between (a) and (b) in general Banach spaces. Further taking (2.4), (2.10), and (5.9)
into account, we observe that

D?Eϕ(x̄, ϕ(x̄))(0) = ∂∞ϕ(x̄).

Therefore, the implication (b)=⇒(c) follows from Theorem 5.4(II) with Φ = Eϕ.
It remains to prove that (c)=⇒(b) when X is Asplund and ϕ is normally epi-

compact around x̄. But this is a direct corollary of Theorem 5.4(I) since the normal
epi-compactness of ϕ around x̄ obviously implies the partial normal compactness of
the multifunction Eϕ with respect to x around (x̄, ϕ(x̄)).

Remark 5.7. Following the line of [26], one may consider the so-called global-
metric regularity property of a multifunction Φ around x̄ ∈ Dom Φ that is a global
counterpart of the regularity property in Definition 5.1. (A local condition y ∈ V
for a neighborhood V of ȳ is replaced by y ∈ Y .) Similarly to Theorem 4.8 we can
derive the corresponding characteristics of global-metric regularity from their local
analogues in Theorem 5.3. Moreover, these results follow directly from Theorem 4.8
due to the equivalence between the covering and global-metric regularity properties
established in [32, Proposition 5.2] for the case of general Banach spaces.

In the same way we get effective characteristics for the (Hausdorff) local Lipschitz
continuity of Φ around x̄ which corresponds to V = Y in (5.1). Indeed, when Φ is
locally compact around x̄, its local Lipschitz continuity around this point is equiva-
lent to the pseudo-Lipschitzian property of Φ around (x̄, ȳ) for every ȳ ∈ Φ(x̄). This
allows us to obtain analogues of the results in Theorem 5.4 for such a local Lipschitz
continuity where one should take every ȳ ∈ Φ(x̄) in all the criteria and replace Bη(ȳ)
with Y in (d); cf. the proof of Theorem 4.8 above and [27, Theorem 3.5]. When Φ
happens to be locally single valued around x̄, the results obtained provide dual crite-
ria for the classical local Lipschitzian property of continuous mappings with effective
modulus estimates.
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Remark 5.8. It immediately follows from the proofs given above that the p.n.c.
property in Theorems 4.2, 4.8, 5.3, and 5.4 and their corollaries can be replaced
with the weaker sequential limiting property established in Proposition 3.8 and called
partial sequential normal compactness in [36].

6. Applications to sensitivity analysis for constraint and variational
systems. In this section we consider a class of multifunctions Φ : X ⇒ Y given in
the form

Φ(x) = {y ∈ Y | g(x, y) ∈ Λ, (x, y) ∈ Ω},(6.1)

where g : X × Y → Z is a mapping between Banach spaces and Λ and Ω are subsets
of the spaces Z and X × Y , respectively. Following Rockafellar [42], we call (6.1)
constraint systems depending on a parameter x ∈ X. One can treat (6.1) as, e.g., a
natural generalization of the feasible solution sets to perturbed problems in nonlinear
programming with equality and inequality constraints described by

Φ(x) = {y| ϕi(x, y) ≤ 0 for i = 1, . . . , r and ϕi(x, y) = 0 for i = r + 1, . . . , q},(6.2)

which corresponds to (6.1) when g = (ϕ1, . . . , ϕq), Ω = X × Y, Z = Rq, and

Λ = {(µ1, . . . , µq)| µi ≤ 0 for i = 1, . . . , r and µi = 0 for i = r + 1, . . . , q}.(6.3)

A special case of (6.1) with Λ = {0} and Ω = X × Y is addressed by the classical
implicit function theorem when the mapping (6.1) is single valued and smooth. In
general we have an implicit multifunction in this case and are interested in properties
of Lipschitz continuity.

Another important class of multifunctions described by (6.1) is related to solution
sets for parametrized generalized equations

Φ(x) = {y ∈ Y | 0 ∈ f(x, y) +Q(y)},(6.4)

where f : X × Y → W and Q : Y ⇒ W . One can see that (6.4) corresponds to (6.1)
with

g(x, y) = (y,−f(x, y)), Λ = gph Q, Ω = X × Y, Z = Y ×W.(6.5)

Generalized equations were introduced by Robinson [41] and turned out to be a very
convenient model for developing sensitivity analysis and numerical methods in prob-
lems of optimization, control, complementarity, mathematical economics, equilibrium,
etc.; see, e.g., [11, 19, 30, 41] and references therein. When Q(y) = N(y; Ω) is the
normal-cone operator for a convex set Ω, the generalized equation in (6.4) is reduced
to the parametric variational inequality

find y ∈ Ω s.t. 〈f(x, y), ω − y〉 ≥ 0 ∀ω ∈ Ω,

which is of particular interest for applications. As an important special case, gen-
eralized equations/variational inequalities include sets of all optimal solutions with
associated Lagrange multipliers satisfying first-order necessary optimality conditions
in nonlinear programming and optimal control.

In what follows we obtain point conditions ensuring the pseudo-Lipschitzian prop-
erty for parametric constraint systems (6.1) and generalized equations (6.4) in infinite
dimensions. To furnish this, we develop the approach and results in Mordukhovich
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[27, 30] where such conditions were obtained in the case of finite dimensional spaces
X, Y, Z, and W . This approach is based on using the null-condition (5.7) in Theorem
5.4 valid for arbitrary closed-graph multifunctions and then on effective calculus rules
available for our basic generalized differential constructions. In this way we are able
to express sufficient as well as necessary and sufficient conditions for Lipschitzian
stability of parametric systems under consideration in terms of their initial data.
Moreover, we provide lower and upper estimates for the exact bounds of associated
Lipschitz moduli that appears to be even more practical in some situations.

THEOREM 6.1. Let Φ be defined by (6.1), where g : X × Y → Z is a continuous
function and Λ ⊂ Z and Ω ⊂ X × Y are closed sets with z̄ := g(x̄, ȳ) ∈ Λ and
(x̄, ȳ) ∈ Ω. Then one has the following results:

(I) Assume that dim X <∞, Ω is normally compact around (x̄, ȳ), and either
(h1) both Y and Z are Asplund while Λ is normally compact around z̄, or
(h2) both Y and Z are Banach while g is strictly differentiable at (x̄, ȳ) with

g′(x̄, ȳ) invertible.
Then Φ is pseudo-Lipschitzian around x̄ if the following three conditions are fulfilled
simultaneously:

[(x?, 0) ∈ D?g(x̄, ȳ)(z?) +N((x̄, ȳ); Ω) and z? ∈ N(z̄; Λ)] =⇒ x? = 0,(6.6)

D?g(x̄, ȳ)(z?) ∩ (−N((x̄, ȳ); Ω)) = {0} ∀z? ∈ N(z̄; Λ),(6.7)

Ker D?g(x̄, ȳ) ∩N(g(x̄, ȳ); Λ) = {0}.(6.8)

Moreover, under these assumptions one has the upper estimate

(plip Φ)(x̄, ȳ) ≤ l̄ := sup
{
‖x?‖ s.t. (x?,−y?) ∈

⋃
[D?g(x̄, ȳ)(z?) with(6.9)

z? ∈ N(z̄; Λ)] +N((x̄, ȳ); Ω), ‖y?‖ ≤ 1
}
.

(II) Let dim Y <∞, and let one of the following groups of hypotheses hold:
(h3) the spaces X and Z are Asplund; the sets Ω and Λ are regular at the points

(x̄, ȳ) and z̄, respectively; the qualification conditions (6.7) and (6.8) are fulfilled; and
either g is strictly differentiable at (x̄, ȳ) or dim Z <∞ and g is Lipschitz continuous
at this point with gph g regular at (x̄, ȳ, z̄);

(h4) both X and Z are Banach, Ω = X × Y , and g is strictly differentiable at
(x̄, ȳ) with g′(x̄, ȳ) invertible.
Then condition (6.6) is necessary for the pseudo-Lipschitzian property of Φ around
(x̄, ȳ). Moreover, under these assumptions one has the lower estimate ( plip Φ)(x̄, ȳ) ≥
l̄, where the number l̄ is defined in (6.9).

Proof. Let us observe that gph Φ = g−1(Λ) ∩ Ω for the multifunction Φ in (6.1).
Therefore, its coderivative (2.4) is represented in the form

D?Φ(x̄, ȳ)(y?) = {x? ∈ X?| (x?,−y?) ∈ N((x̄, ȳ); g−1(Λ) ∩ Ω)}.(6.10)

Using the calculus of normal cones [35, Corollary 4.5], we obtain the inclusion

N((x̄, ȳ); g−1(Λ) ∩ Ω) ⊂ N((x̄, ȳ); g−1(Λ)) +N((x̄, ȳ); Ω),(6.11)

provided that Ω is normally compact around (x̄, ȳ) and the qualification condition

N((x̄, ȳ); g−1(Λ)) ∩ (−N((x̄, ȳ); Ω)) = {0}(6.12)
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is fulfilled. Moreover, equality holds in (6.11) when either Ω = X × Y or both sets Ω
and g−1(Λ) are regular at (x̄, ȳ).

Next let us use [35, Corollary 6.9] for representing the normal cone to g−1(Λ) at
(x̄, ȳ). According to this result the qualification condition (6.8), Asplundity of X, and
assumptions (h1) in the theorem ensure the inclusion

N((x̄, ȳ); g−1(Λ)) ⊂
⋃

[D?g(x̄, ȳ)(z?)| z? ∈ N(z̄; Λ)],(6.13)

where, in addition, equality holds and g−1(Λ) is regular at (x̄, ȳ) under assumptions
(h3) concerning g, Λ, and Z. Moreover, equality also holds in (6.13) (but no regularity
of g−1(Λ) is guaranteed) under assumptions (h2) with a Banach space X; see [33,
Corollary 4.4]. Thus (6.12) follows from (6.7) under the assumptions made in (I).

Now substituting (6.13) into (6.10)–(6.12), we arrive at the inclusion

D?Φ(x̄, ȳ)(y?) ⊂
{
x? ∈ X?| (x?,−y?) ∈

⋃
[D?g(x̄, ȳ)(z?) with(6.14)

z? ∈ N(z̄; Λ)] +N((x̄, ȳ); Ω)
}
,

which is valid when Ω is normally compact around (x̄, ȳ), the qualification conditions
(6.7) and (6.8) are fulfilled, and either X is Asplund and assumptions (h1) hold or X
is Banach and one has assumptions (h2). (Note that (6.8) is automatic in the latter
case.) Therefore, (6.6) implies the null-condition (5.7) in Theorem 5.4(I), while the
upper estimate (6.9) follows from (5.8) and (1.2). This proves the sufficiency assertion
(I) of the theorem.

To establish the necessity part (II), we use the assumptions above ensuring equal-
ity in the coderivative formula (6.14). Finally employing Theorem 5.4(II), we come
to all the conclusions (II) of the theorem under the assumptions made therein.

COROLLARY 6.2. Let Φ be defined in (6.1), where dim X < ∞, Y and Z are
Asplund, g is strictly Lipschitzian at (x̄, ȳ), and the sets Ω and Λ are normally compact
around (x̄, ȳ) and z̄, respectively. Then the condition

[(x?, 0) ∈ ∂〈z?, g〉(x̄, ȳ) +N((x̄, ȳ); Ω) and z? ∈ N(z̄; Λ)] =⇒ z? = 0, x? = 0,(6.15)

is sufficient for Φ to be pseudo-Lipschitzian around (x̄, ȳ), and one can replace
D?g(x̄, ȳ)(z?) with ∂〈z?, g〉(x̄, ȳ) in the upper estimate (6.9).

Proof. First we observe that Proposition 2.5 allows us to replace D?g(x̄, ȳ)(z?)
with ∂〈z?, g〉(x̄, ȳ) in all conditions (6.6)–(6.9) when g is strictly Lipschitzian at (x̄, ȳ)
and both X and Y are Asplund. Then following [27, Corollary 4.2], one can show
that in this case the simultaneous fulfillment of conditions (6.6)–(6.8) is equiva-
lent to (6.15). Thus we obtain all the conclusions of the corollary from Theorem
6.1(I).

Following [27, 30], one can derive various consequences of Theorem 6.1 and Corol-
lary 6.2 for special parametric constraint systems. Let us present effective results for
the classical constraint system (6.2) in nonlinear programming that seem to be new
in infinite dimensions.

COROLLARY 6.3. Let Φ be given by (6.2), where real-valued functions ϕi are
strictly differentiable at (x̄, ȳ) for all i = 1, . . . , q. Then the following hold:

(I) The Mangasarian–Fromovitz condition

[λ1(ϕ1)′y(x̄, ȳ) + · · ·+ λq(ϕq)′y(x̄, ȳ) = 0] =⇒ λi = 0 for i = 1, . . . , q

if λi ≥ 0 and λiϕi(x̄, ȳ) = 0 for i = 1, . . . , r
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is sufficient for Φ to be pseudo-Lipschitzian around (x̄, ȳ) when dim X < ∞ and Y
is Asplund. Moreover, in this case one has the upper modulus estimate

(plip Φ)(x̄, ȳ) ≤ sup

{∣∣∣∣∣
q∑
i=1

λi(ϕi)′x(x̄, ȳ)

∣∣∣∣∣ s.t.

∣∣∣∣∣
q∑
i=1

λi(ϕi)′y(x̄, ȳ)

∣∣∣∣∣ ≤ 1,

λi ≥ 0, and λiϕi(x̄, ȳ) = 0 for i = 1, . . . , r

}
.

(II) Let X be Asplund and let dim Y <∞. Then the condition[
q∑
i=1

λi(ϕi)′y(x̄, ȳ) = 0

]
=⇒

[
q∑
i=1

λi(ϕi)′x(x̄, ȳ) = 0

]
if λi ≥ 0 and λiϕi(x̄, ȳ) = 0 for i = 1, . . . , r

is necessary for the pseudo-Lipschitzian property of Φ around (x̄, ȳ) provided that

[λ1ϕ
′
1(x̄, ȳ) + · · ·+ λqϕ

′
q(x̄, ȳ)] =⇒ λi = 0 for i = 1, . . . , q

if λi ≥ 0 and λiϕi(x̄, ȳ) = 0 for i = 1, . . . , r.

Proof. This follows from Theorem 6.1 with g = (ϕ1, . . . , ϕq) : X × Y → Rq, Ω =
X × Y , and Λ defined in (6.3) by taking into account representations (2.5) and

N(g(x̄, ȳ); Λ) = {(λ1, . . . , λq) ∈ Rq| λi ≥ 0 with λiϕi(x̄, ȳ) = 0 for i = 1, . . . , r}.

Next we provide a local sensitivity analysis for generalized equations and find effec-
tive conditions ensuring the pseudo-Lipschitzian property of the parametric solution
sets (6.4).

THEOREM 6.4. Let Φ be defined by (6.4), where f : X × Y → W is continuous
around (x̄, ȳ) ∈ gph Φ and where Q : Y ⇒ W has closed graph around (ȳ, w̄) with
w̄ := −f(x̄, ȳ). Assume that both Y and W are Asplund, that dim X <∞, and that
Q is normally compact around (ȳ, w̄). Then the condition

[(x?,−y?) ∈ D?f(x̄, ȳ)(w?) and y? ∈ D?Q(ȳ, w̄)(w?)](6.16)

=⇒ x? = 0, y? = 0, w? = 0

is sufficient for Φ to be pseudo-Lipschitzian around (x̄, ȳ). Moreover, in this case one
has the upper modulus estimate

(plip Φ)(x̄, ȳ) ≤ sup{‖x?‖ s.t. (x?,−y?) ∈ D?f(x̄, ȳ)(y?)(6.17)

+ (0, D?Q(ȳ, w̄)(w?)) with (y?, w?) ∈ Y ? ×W ?, ‖y?‖ ≤ 1}.

Proof. Let us represent (6.4) in form (6.1) with data (6.5) and evaluate the
coderivative of this Φ using inclusion (6.14). In order to do it, we first compute the
coderivative of g in (6.5). For this g one obviously has

g(x, y) = g1(x, y) + g2(x, y),(6.18)

where g1(x, y) := (y, 0) and g2(x, y) := (0,−f(x, y)). It is easy to see that

D?g1(x̄, ȳ)(u?,−w?) = (0, u?) and D?g2(x̄, ȳ)(u?,−w?) = D?f(x̄, ȳ)(w?)
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for all (u?, w?) ∈ Y ? ×W ?. Now applying the coderivative sum rule [36, Theorem
3.6] in (6.18), we get

D?g(x̄, ȳ)(u?,−w?) = (0, u?) +D?f(x̄, ȳ)(w?).

According to (6.14) this yields the inclusion

D?Φ(x̄, ȳ)(y?) ⊂ {x? ∈ X?| (x?,−y?) ∈ D?f(x̄, ȳ)(w?) + (0, D?Q(ȳ, w̄)(w?))}(6.19)

for the coderivative of (6.4). Finally substituting (6.19) into (5.7) and (5.8), we
derive conclusions (6.16) and (6.17) of the theorem from the corresponding results of
Theorem 5.4(I).

COROLLARY 6.5. Let f be strictly Lipschitzian at (x̄, ȳ), in addition to the other
assumptions in Theorem 6.4. Then the solution map (6.4) is pseudo-Lipschitzian
around (x̄, ȳ) if one has

[0 ∈ projy∂〈w?, f〉(x̄, ȳ) +D?Q(ȳ, w̄)(w?)] =⇒ w? = 0,(6.20)

where projy∂〈w?, f〉(x̄, ȳ) denotes the projection of the set ∂〈w?, f〉(x̄, ȳ) ⊂ X? × Y ?
on the space Y ?.

Proof. When f is strictly Lipschitzian at (x̄, ȳ), condition (6.20) is equivalent to
(6.16) due to Proposition 2.5.

Finally let us consider the generalized equation in (6.4), where f is strictly differ-
entiable at (x̄, ȳ). In this case we introduce the adjoint relationship of the same (but
linearized/homogenized and unperturbed) form

0 ∈ (f ′y(x̄, ȳ))?w? +D?Q(ȳ, w̄)(w?),(6.21)

which is called the adjoint generalized equation to (6.4) at (x̄, ȳ). Now we are able to
obtain sufficient as well as necessary conditions for the pseudo-Lipschitzian property
of the original solution map (6.4) in the form of Fredholm’s alternative.

THEOREM 6.6. Let Φ be given by (6.4), where f is strictly differentiable at (x̄, ȳ)
in the framework of Theorem 6.4. Then the following hold:

(I) Assume that dim X <∞ and either
(h1) both Y and W are Asplund while Q is normally compact around (ȳ, w̄), or
(h2) Y is Banach and the operator f ′x(x̄, ȳ) : X → W is invertible (hence dim

W <∞).
Then Φ is pseudo-Lipschitzian around (x̄, ȳ) if the adjoint generalized equation (6.21)
has only the trivial solution, i.e.,

[0 ∈ (f ′y(x̄, ȳ))?w? +D?Q(ȳ, w̄)(w?)] =⇒ w? = 0.(6.22)

Moreover, under these assumptions one has the upper modulus estimate

(plip Φ)(x̄, ȳ) ≤ sup{‖(f ′x(x̄, ȳ))?w?‖ s.t. ∃y? ∈ D?Q(ȳ, w̄)(w?)(6.23)

with ‖(f ′y(x̄, ȳ))?w? + y?‖ ≤ 1}.

(II) Assume that dim Y <∞ and either
(h3) both X and W are Asplund, Ker(f ′x(x̄, ȳ))? = {0} while the graph of Q is

regular at (ȳ, w̄), or
(h4) both X and W are Banach while the operator f ′x(x̄, ȳ) is invertible.
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Then condition (6.22) is necessary for Φ to be pseudo-Lipschitzian around (x̄, ȳ), and
one has the opposite inequality in (6.23).

Proof. It is easy to see that the sufficiency part (I) of the theorem follows from
Corollary 6.5 under assumptions (h1). To establish (I) under assumptions (h2), we
observe that the operator g : X×Y → Y ×W defined in (6.5) has the invertible strict
derivative at (x̄, ȳ) if the linear operator f ′x(x̄, ȳ) : X × Y → W is invertible. In this
case conditions (6.7) and (6.8) are automatic while (6.6) is equivalent to (6.22) and
yields the pseudo-Lipschitzian property of (6.4) due to Theorem 6.1(I). The upper
estimate (6.23) follows from (6.17) due to formula (2.5). This ends the proof of (I).

The necessity part (II) of the theorem follows from Theorem 6.1(II) for the special
structure (6.5).

COROLLARY 6.7. Condition (6.22) is necessary and sufficient for the pseudo-
Lipschitzian property of the solution map (6.4) around (x̄, ȳ) when spaces X and Y
are finite dimensional and one of the following groups of hypotheses is fulfilled:

(h1) W is Asplund, Ker(f ′x(x̄, ȳ))? = {0}, Q is normally compact around (ȳ, w̄)
while the graph of Q is regular at this point;

(h2) dim W <∞ and f ′x(x̄, ȳ) is invertible.
In both cases (h1) and (h2) equality holds in (6.23), where the supremum is attained.

Proof. This follows directly from Theorem 6.6, combining assertions (I) and (II)
therein. We can conclude that the supremum is attained in (6.23) because both spaces
X and Y are finite dimensional; cf. [30].

Remark 6.8. Similarly to [27, 29, 30] in the finite-dimensional case, we can con-
sider various concretizations and refinements of the results obtained when the multi-
function Q admits some special representations. In particular, let Q : Y ⇒ Y ? be a
subdifferential mapping, i.e.,

Q(y) =

{
∂ϕ(y) if |ϕ(y)| <∞,
∅ otherwise,

(6.24)

in terms of the subdifferential (2.6) of an extended-real-valued function. Then the
pseudo-Lipschitzian property of the solution map (6.4) generated by (6.24) can be
characterized by the second-order subdifferential of ϕ at (ȳ, w̄) ∈ gph ∂ϕ defined as

∂2ϕ(ȳ, w̄)(w?) := (D?∂ϕ)(ȳ, w̄)(w?).

Note that subdifferential mappings (6.24) cover the case of variational inequalities
and complementarity problems in (6.4) when ϕ is the indicator function of a convex
set. Note also that another approach [29] can be developed to obtain refined sufficient
conditions for Lipschitzian stability of infinite-dimensional variational systems like
(6.4).

Remark 6.9. Results of this paper related to sufficient conditions for openness,
metric regularity, and Lipschitzian stability of set-valued mappings as well as their
applications to sensitivity analysis can be obtained in broader classes of Banach spaces
using different subdifferential structures. Indeed, one can observe that the proof of the
main Theorem 4.2(I) holds true for sequential limits of any subdifferentials satisfying
the “zero fuzzy calculus” rule of Proposition 2.4 in appropriate Banach spaces. Such a
rule appears to be important for all reasonable subdifferentials, and now it is known for
most subdifferential constructions used in applications; see, e.g., the recent paper [6]
and its references. In this connection let us note that, for an arbitrary Banach space,
our basic subdifferential (2.6) is included in the sequential closure of any subdifferential
satisfying the “zero fuzzy calculus” rule mentioned above; see [35, Theorem 9.7].
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Abstract. We study L1-local optimality of a given control ũ(·) in the time-optimal control prob-
lem for an affine control system. We start with the necessary optimality condition—the Pontryagin
maximum principle, which selects the candidates for minimizers, the extremal controls. Generally
the corresponding Pontryagin extremals consist of bang-bang and singular subarcs, separated by
switching points. In the present paper we treat only pure bang-bang extremals. We introduce ex-
tended first and second variations along a bang-bang extremal and establish first- and second-order
sufficient optimality conditions for the bang-bang extremal controls.

Key words. optimal control problem, Pontryagin maximum principle, bang-bang extremals,
sufficient optimality conditions
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1. Introduction. We consider a nonlinear time-optimal control problem:

t→ min,(1.1)

q̇ = f(q) +G(q)u(τ), q(0) = q0, q ∈M, u ∈ U,(1.2)

q(t) = q1,(1.3)

for an affine control system (1.2) with end-point condition (1.3) on a C∞-smooth
n-dimensional manifold M . Here G(q) = (g1(q), . . . , gr(q)) and f(q), g1(q), . . . , gr(q)
are C∞-smooth vector fields on M ; admissible controls u(τ) = (u1(τ), . . . , ur(τ)) are
measurable and take their values in a convex compact polyhedron U ⊂ Rr.

We set the problem of L1-local optimality according to the following definition.
DEFINITION 1.1. A pair (ũ(·), q̃(·)) meeting (1.2)–(1.3) for t = T is called L1

locally optimal if there exist ∆ > 0 and a ball U ⊃ ũ(·) in Lr1[0, T ] such that no admis-
sible control from U can steer the system (1.2) from q0 to q1 in time T ′ ∈ [T −∆, T ).

A first-order optimality condition for the problem (1.1)–(1.3) is provided by the
Pontryagin maximum principle (see [7]). If a pair (ũ(·), q̃(·)) meets this principle for
some covector function (Hamiltonian multiplier) ζ̃(·), then the triple (ũ(·), q̃(·), ζ̃(·))
is called a Pontryagin extremal and ũ(·) is called the extremal control. There can exist
different Pontryagin extremals with different ζ̃(·) corresponding to the same extremal
control ũ(·).

In what follows we assume that the extremal control ũ(·) is a piecewise C1-smooth
function of τ . Then due to the Pontryagin maximum principle the domain [0, T ] of
ũ(·) can be subdivided into subintervals 0 = τ0 < τ1 < · · · < τm < τm+1 = T in such
way that for each τ ∈ (τi, τi+1) the maximality condition of the Pontryagin maximum
principle is fulfilled on a ki-dimensional (ki ≥ 0) face Wi of the polyhedron U . The
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subinterval (τi, τi+1) is called bang-bang if ki = 0; i.e., the maximum is achieved at a
vertex of U and is called singular if ki is positive. The points τi (i = 1, . . . ,m) are
called switching points.

As is well known, the extremality of control ũ(·) does not imply its optimality. To
ascertain optimality one should at least investigate the second variation of the con-
trol system (1.2) on singular subintervals. But even bang-bang Pontryagin extremals,
which have no singular arcs, may happen to be nonoptimal. Corresponding examples,
as well as some high-order necessary optimality conditions for bang-bang extremals,
can be found in [4, 15, 16, 17].

One should note a characteristic feature of bang-bang Pontryagin extremals: the
first variation of the system (1.2) along these extremals cannot be nontrivially nullified.
Due to this fact the traditional approach of the calculus of variations and optimal
control theory is no longer valid in the bang-bang case, since the first-order conditions
do not guarantee optimality, while high-order variations, which according to this
approach are to be defined on the kernel of the first variation, simply do not exist
because this kernel is trivial.

To overcome the difficulties we shall introduce below an extension of the first
variation by adding to the space of admissible variations of the extremal control ũ(·)
some finite-dimensional space of Dirac measures, located at the switching points of
the extremal. This extension gives new addends for the first and the second varia-
tions, which are called first and second variations of the system at switching points of
extremal.

Studying the first variation at switching points we derive a first-order sufficient
condition of L1-local optimality for bang-bang Pontryagin extremals (Theorem 6.1).
When this condition is not met for a bang-bang extremal, we bring into consideration a
corresponding second variation at switching points. It is a finite-dimensional quadratic
form and its negative definiteness is the crucial point for setting second-order sufficient
conditions of optimality for bang-bang Pontryagin extremals (Theorems 7.1 and 7.2).

In a forthcoming paper we are going to present a Legendre–Jacobi–Morse-type
theory of the second variation for Pontryagin extremals, containing both bang-bang
and singular arcs, and establish for these extremals second-order sufficient optimality
conditions. Most of these results has been published in the preprint [13]; part of the
formulations have been presented in [12, 14].

2. Preliminaries. Below we introduce some notation of chronological calculus
developed by Agrachev and Gamkrelidze. The details are to be found in [1, 3].

Let C∞(M) be an algebra of infinitely differentiable or smooth functions on M .
The value of ϕ ∈ C∞(M) at a point q ∈M is denoted by q ◦ ϕ. The correspondence
ϕ 7→ q ◦ ϕ defines a multiplicative functional on M . A diffeomorphism P : M → M
is identified with the corresponding automorphism of C∞(M): ϕ(·) 7→ P ◦ ϕ(·) =
ϕ(P (·)). The group of diffeomorphisms P : M →M is denoted by DiffM . The value of
P ∈ DiffM at a point q ∈M is denoted q◦P . Smooth vector fields on M are arbitrary
derivations of the algebra C∞(M), or R-linear mappings Y : C∞(M) → C∞(M)
satisfying the Leibnitz rule: Y (ϕψ) = (Y ϕ)ψ + ϕ(Y ψ). The value of a vector field Y
at a point q ∈M is denoted q ◦Y ; it belongs to the tangent space TqM to M at point
q. We denote by [Y, Z] the commutator or Lie bracket of vector fields Y, Z. In local
coordinates on M this Lie bracket is calculated as

[Y, Z] =

[
m∑
i=1

Yi∂/∂xi,
m∑
i=1

Zi∂/∂xi

]
=

m∑
i=1

(∂Zi/∂xY − ∂Yi/∂xZ)∂/∂xi.
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The Lie algebra of smooth vector fields on M is denoted by VectM . Let us note that
defining diffeomorphisms and vector fields as operators of C∞(M) we embed them in
some linear space of linear operators L(C∞(M), C∞(M)).

For P ∈ DiffM the symbol AdP denotes the following inner automorphism of the
Lie algebra. VectM : AdPY = P ◦Y ◦P−1 = (∂P−1/∂xY )(P (·)) = P−1

∗ Y . (We denote
by P−1

∗ Y the result of translation of the vector field Y by the diffeomorphism P−1.)
For Y ∈ VectM the inner derivation adY of VectM is defined as (adY )Z = [Y, Z] ∀Z ∈
VectM .

The Whitney topology in C∞(M) is introduced by means of a family of seminorms
‖·‖s,K , where s ≥ 0, K is a compact set (K ⊂M), and the seminorm ‖·‖s,K introduces
the topology of uniform convergence of all derivatives of order ≤ s on the compact
set K. The Whitney topology in the space of vector fields is defined by means of the
family of seminorms

‖Y ‖s,K = sup{‖Y ϕ‖s,K : ‖ϕ‖s+1,K = 1} ∀Y ∈ VectM.

The Whitney topology introduces the structure of a Frechet space in VectM .
A flow on M is an absolutely continuous curve τ 7→ Pτ in DiffM (P0 = I—the

identical isomorphism) such that ϕ(Pτ (·)) is absolutely continuous with respect to τ
for every ϕ ∈ C∞(M). A time-dependent vector field on M is a locally integrable
curve τ 7→ Yτ in VectM such that ∀ϕ ∈ C∞(M), the function (Yτϕ)(q) is measurable
with respect to τ for every q ∈M and∫ t2

t1

‖Yτϕ‖s,Kdτ < +∞ ∀t1 ≤ t2, ∀s,K.

A time-dependent vector field τ 7→ Yτ defines the ordinary differential equation
q̇(τ) = q(τ) ◦ Yτ on the manifold M ; if every solution of the differential equation is
defined ∀τ ∈ R, then the vector field Yτ is called complete. A complete vector field
Yτ defines a flow Pτ (τ ∈ R) on M , the unique solution of the operator differential
equation

dPτ/dτ = Pτ ◦ Yτ , P0 = I.(2.1)

This solution can be represented (see [1, 3]) as right chronological exponential
in Yτ , denoted by Pt =

−→
exp

∫ t
0 Yτdτ . If the vector field Yτ is time independent, i.e.,

Yτ ≡ Y , then the corresponding flow is denoted by Pt = etY .
Let us also introduce the Volterra expansion, or Volterra series, for the chrono-

logical exponential
−→
exp

∫ t
0 Yτdτ . It is expressed as follows (see [1, 3]):

−→
exp

∫ t

0
Yτdτ � I +

∞∑
i=1

∫ t

0
dτ1

∫ τ1

0
dτ2. . .

∫ τi−1

0
dτi(Yτi ◦ · · · ◦ Yτ1) = I +

∫ t

0
Yτ1dτ1

+
∫ t

0

∫ τ1

0
(Yτ2 ◦ Yτ1)dτ2dτ1 +

∫ t

0

∫ τ1

0

∫ τ2

0
(Yτ3 ◦ Yτ2 ◦ Yτ1)dτ3dτ2dτ1 + · · · .(2.2)

One can prove that the Volterra series (2.2) provides an asymptotic approximation
for

−→
exp

∫ t
0 Yτdτ . Namely, according to [1], ∀ϕ ∈ C∞(M)∥∥∥∥∥−→exp
∫ t

0
Yτdτ −

(
I +

`−1∑
i=1

∫ t

0
dτ1

∫ τ1

0
dτ2 . . .

∫ τi−1

0
dτi(Yτi ◦ · · · ◦ Yτ1)

)
ϕ

∥∥∥∥∥
s,K

≤ Ce(c2
∫ t
0 ‖Yτ‖s,K̃dτ)

(∫ t

0
‖Yτ‖s+`−1,K̃dτ

)`
‖ϕ‖s+`,K̃ ,(2.3)
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where K̃ is some compact neighborhood of the compact set K. Since further on we
deal with some neighborhood of a continuous curve q̃(·) : [0, T ] → M , then without
lack of generality we may assume M to be compact or, all the same, ignore dependence
of ‖ · ‖s,K on K.

It follows also from the results of [1] that∥∥∥∥(∫ t

0
dτ1

∫ τ1

0
dτ2 . . .

∫ τ`−1

0
dτ`(Yτ` ◦ · · · ◦ Yτ1)

)
ϕ

∥∥∥∥
s

≤ C
(∫ t

0
‖Yτ‖s+`−1dτ

)`
‖ϕ‖s+`.

We put ∥∥∥∥(∫ t

0
dτ1

∫ τ1

0
dτ2 . . .

∫ τ`−1

0
dτ`(Yτ` ◦ · · · ◦ Yτ1)

)∥∥∥∥
= sup

{∥∥∥∥∫ t

0
dτ1

∫ τ1

0
dτ2 . . .

∫ τ`−1

0
dτ`(Yτ` ◦ · · · ◦ Yτ1)ϕ)

∥∥∥∥
0

: ‖ϕ‖` = 1
}

and ∥∥∥∥q0 ◦
(∫ t

0
dτ1

∫ τ1

0
dτ2 . . .

∫ τ`−1

0
dτ`(Yτ` ◦ · · · ◦ Yτ1)

)∥∥∥∥
= inf
V

sup
{∥∥∥∥∫ t

0
dτ1

∫ τ1

0
dτ2 . . .

∫ τ`−1

0
dτ`(Yτ` ◦ · · · ◦ Yτ1)ϕ)

∥∥∥∥
0
|(2.4)

suppϕ ⊂ V, ‖ϕ‖` = 1
}

with the infimum taken over the set of all neighborhoods V of the point q0 ∈M .
Finally, if ζ ∈ T ∗q0M is a covector, then we put∥∥∥∥〈ζ, q0 ◦

(∫ t

0
dτ1

∫ τ1

0
dτ2 . . .

∫ τ`−1

0
dτ`(Yτ` ◦ · · · ◦ Yτ1)

)〉∥∥∥∥
= inf
V

sup
{∥∥∥∥∫ t

0
dτ1

∫ τ1

0
dτ2 . . .

∫ τ`−1

0
dτ`(Yτ` ◦ · · · ◦ Yτ1)ϕ)

∥∥∥∥
0
|(2.5)

suppϕ ⊂ V, dϕ|q0 = ζ, ‖ϕ‖` = 1
}
.

If one considers a family of operators AdPt produced by a flow
−→
exp

∫ t
0 Yτdτ , then

differentiating AdPtZ = Pt ◦ Z ◦ P−1
t with respect to t, one obtains

d(AdPtZ)/dt = AdPt ◦ adYtZ ∀Z ∈ VectM,

or after omission of Z : d(AdPt)/dt = AdPt ◦ adYt. This means, that AdPt satisfies
an operator differential equation similar to (2.1) and justifies the notation

Ad
(
−→
exp

∫ t

0
Yτdτ

)
=
−→
exp

∫ t

0
adYτdτ.

This last chronological exponential also admits the Volterra expansion

−→
exp

∫ t

0
adYτdτ � I +

∞∑
i=1

∫ t

0
dτ1

∫ τ1

0
dτ2 . . .

∫ τi−1

0
dτi(adYτi ◦ · · · ◦ adYτ1).
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Let us assume for the moment that time-dependent vector fields Yτ and Yτ + Zτ
are complete. The following variant of the variation of constants formula appeared in
[1]; it represents the flow

−→
exp

∫ t
0 (Yτ +Zτ )dτ as a perturbation of the flow

−→
exp

∫ t
0 Yτdτ :

−→
exp

∫ t

0
(Yτ + Zτ )dτ =

−→
exp

∫ t

0
Ad
(
−→
exp

∫ τ

0
Yθdθ

)
Zτdτ◦

−→
exp

∫ t

0
Yτdτ.

By virtue of the aforesaid one may also write

−→
exp

∫ t

0
(Yτ + Zτ )dτ =

−→
exp

∫ t

0

−→
exp

∫ τ

0
adYθdθZτdτ◦

−→
exp

∫ t

0
Yτdτ.(2.6)

3. Local properties of end-point mapping and optimality. Let ũ(τ) be
an admissible control which steers the system (1.2) from q0 to q1 in time T . In
what follows we always assume that the final moment T is a generic (Lebesgue)
point of τ 7→ ũ(τ) (a non-Lebesgue point would require minor modifications to the
transversality condition of the Pontryagin maximum principle and of the high-order
conditions which are presented below).

Let us put f̃τ (q) = f(q) + G(q)ũ(τ) and denote by P̃t =
−→
exp

∫ t
0 f̃τdτ (t ∈ [0, T ])

the solution of ordinary differential equation

∂Pτ/dτ = Pτ ◦ f̃τ , τ ∈ [0, T ], P0 = I.

Let u(·) be an admissible variation of ũ(·), i.e., ũ(τ)+u(τ) ∈ U for every τ ∈ [0, T ].
We consider a family of mappings Ft : Lr∞ → M defined on the space of admissible
variations. For a given t the mapping Ft maps u(·)|[0,t] into the point

q(t) = q0◦
−→
exp

∫ t

0
(f̃τ +Gu(τ))dτ

of the trajectory q(·) of the system (1.2) driven by ũ(·) + u(·). When t = T we will
call FT an end-point mapping.

It is known (see [1, 3]) that Ft is C∞-smooth with respect to u(·) in some neigh-
borhood of the origin of Lr∞[0, T ]. By virtue of the variation of constants formula
(2.6) one can represent Ft as

Ft(u(·)) = q0◦
−→
exp

∫ t

0
(f̃τ +Gu(τ))dτ

= q0◦
−→
exp

∫ t

0

(
−→
exp

∫ τ

0
adf̃θdθ

)
Gu(τ)dτ◦ −→exp

∫ t

0
f̃τdτ.(3.1)

It is often more suitable to use a family of mappings Φ(u(·)) = Ft(u(·)) ◦ P̃−1
t in

place of Ft. To calculate Φt one should map u(·) into q(t) by means of Ft and then
pull the result back by P̃−1

t = (
−→
exp

∫ t
0 f̃τdτ)−1. It follows from (3.1) that Φt can be

represented as

Φt(u(·)) = q0◦
−→
exp

∫ t

0
Xτuτdτ,(3.2)

where

Xτ = (X1
τ , . . . , X

r
τ ), Xi

τ =
−→
exp

∫ τ

0
adf̃θdθgi (i = 1, . . . , r).(3.3)
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This means that Φt is determined by a time-dependent differential equation

q̇(τ) = q(τ) ◦Xτu(τ), q(0) = q0,(3.4)

which is linear (homogeneous) with respect to the control u.
Obviously Φt(0) = q0 for any t. We call ΦT the pulled-back end-point mapping

(below the words pulled-back are omitted for the sake of brevity).
Taking the Volterra expansion (see (2.2) for the chronological exponential (3.2)

(with t = T ), we obtain Taylor expansion for ΦT :

ΦT (u(·)) = q0 + q0 ◦
∫ T

0
Xτdτ + q0 ◦

∫ T

0

∫ τ

0
Xξu(ξ)dξ ◦Xτu(τ)dτ

+ q0 ◦
∫ T

0

∫ τ

0

∫ ξ

0
Xθu(θ)dθ ◦Xξu(ξ)dξ ◦Xτu(τ)dτ + · · · .(3.5)

(Let us recall that the vector fields and their compositions, appearing in this formula,
belong to the linear space of operators over C∞(M).)

We are going to establish the relations between the optimality of ũ(·) and the
properties of the end-point mappings FT and ΦT . We shall present some (almost
trivial) results which provide sufficient optimality conditions for ũ(·) in terms of local
properties of FT and ΦT . In fact one can hardly apply these results directly, but they
are useful as auxiliary tools. To prove optimality we shall verify the conditions of one
of these auxiliary propositions.

Let us for a moment consider Ft(u(·)) as the mapping defined on the pairs (t, u(·)).
Define a small (semi)neighborhoodW∆ of (T, ũ(·)) as W×(T−∆, T ], where W is small
in terms of the L1-metric neighborhood of ũ(·) in the space of admissible controls.

For a subset A ⊂ M let us define a set of tangent vectors to A at a point a ∈ Ā
as a set of tangent vectors to the C1-curves γ : [0, ε) → M , starting at γ(0) = a and
such that γ(τ) ∈ A for τ ∈ (0, ε).

PROPOSITION 3.1. Let FT (ũ(·)) = q1. If for some small (in terms of the metric
of R×Lr1[0, T ]) neighborhood W∆ of (T, ũ(·)) the vector q1 ◦ f̃T does not belong to the
set of tangent vectors (at the point q1) to the image F.(W∆), then the control ũ(·) is
optimal for the problem (1.1)–(1.3).

Proof. Indeed, if ũ(·) is nonoptimal, this means that for some ε ∈ (0,∆],

q1 ∈ FT−ε(W ) ⊆ F.(Wε) ⊆ F.(W∆).

Let us consider the trajectory of the control system (1.2), starting at q1, which is
driven by the constant control u = ũ(T ) (or, equivalently, the trajectory of the vector
field f̃T ). It follows from the definition of Ft that q1 ◦ eηf̃T ∈ FT−ε+η(W ) ⊆ F.(W∆)
for η ∈ [0, ε]. Therefore the tangent vector q1 ◦ f̃T to the curve q1 ◦ eηf̃T at q1 belongs
to the set of tangent vectors, and we get a contradiction.

In what follows we proceed from a stronger hypothesis than that of Proposi-
tion 3.1. Namely we will assume the existence of a nonzero covector ζ1 ∈ Tq1M , such
that the tangent vectors to the image F.(W∆) belong to the semispace {y : 〈ζ1, y〉 ≤ 0}
of Tq1M , while 〈ζ1, q1 ◦ f̃T 〉 > 0. When the first-order (with respect to the variation of
the final moment T ) tangent vector dFT−ε(ũ(·))/dε|ε=0 = −q1◦f̃T belongs to the open
semispace {y : 〈ζ1, y〉 < 0}, one can easily prove that whenever the tangent vectors
to the image FT (W ) (with fixed T !) belong to the semispace {y : 〈ζ1, y〉 ≤ 0}, then
the same holds for the tangent vectors to F.(W∆). So in this case one can dispense
with the variation of the final moment T . This gives the following.
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PROPOSITION 3.2. If there exists a neighborhood (in terms of L1-metric) W of
the control ũ(·) in the space of admissible controls such that the vector q1 ◦ f̃T can be
strictly separated by a nonzero covector ζ1 ∈ T ∗q1M from the set of tangent vectors to
the image FT (W ) at the point q1, then ũ(·) is optimal for the problem (1.1)–(1.3).

Finally we will reformulate the Proposition 3.2 by passing from FT to ΦT and
pulling back the whole consideration from q1 to q0.

PROPOSITION 3.3 (auxiliary lemma on optimality). If there exists a neighborhood
(in terms of the L1-metric) W of the control ũ(·) in the space of admissible controls
such that the vector YT = q0◦Ad(

−→
exp

∫ T
0 f̃τdτ)f̃T can be strictly separated by a nonzero

covector ζ0 ∈ T ∗q0M from the set of tangent vectors to the image ΦT (W ) at the point
q0, then ũ(·) is optimal for the problem (1.1)–(1.3).

4. First and second variations of control system. Pontryagin maximum
principle. In the previous section we have established the relation between optimal-
ity of ũ(·) and local properties of the end-point mappings FT and ΦT . These local
properties are essentially determined by Taylor expansions of FT and ΦT . In this
section we define first and second variations of the control system (1.2) which corre-
spond to the first and second differentials of ΦT . We also formulate the Pontryagin
maximum principle, which provides first-order necessary optimality condition for ũ(·).

From the Volterra expansion (3.5) of ΦT one derives an expression

Φ′Tu(·) =
∫ T

0
q0 ◦Xτu(τ)dτ(4.1)

for the (first) differential of ΦT at the origin of Lr∞[0, T ]; here Xτ is defined according
to (3.3). Obviously (4.1) defines linear mapping from Lr∞[0, T ] into Tq0M .

Let ũ(·) ∈ U , where U is the set of admissible controls of the system (1.2). A
cone of admissible variations of ũ(·) is by definition the (convex) conic hull of the set
U − ũ(·). We denote this cone by KũU .

DEFINITION 4.1. The restriction of the first differential Φ′T to the cone KũU is
called the first variation of the system (1.2) on [0, T ] along the control ũ(·). The image
Φ′T (KũU) is called the first variational cone along ũ(·).

It is clear, that (for any ε > 0) the first variational cone along ũ(·) is a subset of the
set of tangent vectors to the image ΦT (Uε), where Uε = {u(·) ∈ U : ‖u− ũ‖L1 < ε}.
The auxiliary lemma on optimality implies that the strict separability of the vector
YT = q0◦Ad(

−→
exp

∫ T
0 f̃τdτ)f̃T from the set of tangent vectors is sufficient for optimality

of ũ(·). The Pontryagin maximum principle implies (see [7]) that separability of YT
from the first variational cone along ũ(·) is necessary for optimality of ũ(·).

DEFINITION 4.2. A control ũ(·) is called an extremal control for the problem (1.1)–
(1.3) if the vector YT = q0 ◦ Ad(

−→
exp

∫ T
0 (f + Gũ(τ))dτ)(f + Gũ(T )) can be separated

from the first variational cone along ũ(·).
According to the definition and the Pontryagin maximum principle, any optimal

control for the problem (1.1)–(1.3) must be an extremal one.
The separability of the vector YT from the first variational cone means the ex-

istence of a (possibly nonunique) covector ζ0 ∈ T ∗q0M such that ∀u(·) ∈ KũU the
following inequalities hold: ∫ T

0
〈ζ0, q0 ◦Xτu(τ)〉dτ ≤ 0,(4.2)

〈ζ0, YT 〉 ≥ 0.(4.3)
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The last inequality is the so called transversality condition of Pontryagin maxi-
mum principle. We call its strengthened form,

〈ζ0, YT 〉 > 0,(4.4)

the strong transversality condition.
The inequality (4.2) implies the inequalities

〈ζ0, q0 ◦Xτ (u− ũ(τ))〉 ≤ 0 ∀u ∈ U for almost every τ ∈ [0, T ],

so that for almost every τ ∈ [0, T ] we have

ũ(τ) ∈ Argmaxu∈U 〈ζ0, q0 ◦Xτu〉.(4.5)

Introducing linear operator Ξτ : Rr → Tq0M , which maps u ∈ Rr to q0 ◦ Xτu, we
consider its adjoint operator Ξ∗τ : T ∗q0M → Rr

∗
, and denoting by χτ = Ξ∗τ ζ0, we

transform (4.5) into

ũ(τ) ∈ Argmaxu∈U 〈χτ , u〉.(4.6)

The covector function χτ is called the switching function.
The conditions (4.3) and (4.6) can be easily transformed into a standard form

of Pontryagin maximum principle. Indeed by the definition of Xτ , the switching
function χτ can be represented as χτ = ζ̃(τ)G(q̃(τ)), where the covector function ζ̃(·)
is a solution of the adjoint equation of the Hamiltonian system with the Hamiltonian

H(q, ζ, u) = 〈ζ, f(q) +G(q)u〉.(4.7)

In local coordinates this (linear) adjoint equation has the form

ζ̇ = −∂H/∂q(q̃(τ), ζ, ũ(τ)).(4.8)

The initial condition for ζ̃(·) is ζ(0) = ζ0.
Now we formulate the following.
THEOREM 4.1 (Pontryagin maximum principle [5, 7]). If (q̃(·), ũ(·), T ) is a solu-

tion of the optimal control problem (1.1)–(1.3), then there exists a nonzero absolutely
continuous covector function ζ̃ : R → T ∗M meeting the condition ζ̃(t) ∈ Tq̃(t)M and
satisfying in local coordinates the adjoint equation (4.8) with the Hamiltonian (4.7)
such that for (q̃(·), ũ(·), ζ̃(·), T ) the following conditions hold:

(i) maximality condition (equivalent to (4.6)):

H(q̃(t), ζ̃(t), ũ(t)) = max{H(q̃(t), ζ̃(t), u) : u ∈ U} a.e. on [0, T ];(4.9)

(ii) transversality condition (equivalent to (4.3)):

H(q̃(T ), ζ̃(T ), ũ(T )) ≥ 0.(4.10)

We shall call the strong transversality condition the strengthened version of (4.10):

H(q̃(T ), ζ̃(T ), ũ(T )) > 0.(4.11)

Remark 4.1. Since variations of ũ(·) on subsets Ω ⊂ [0, T ] of zero measure have no
effect, then without loss of generality we may assume that the maximality condition
(4.9) is satisfied at all points of [0, T ].
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It is evident that for any τ ∈ [0, T ] maximum is attained at some (perhaps 0-
dimensional) face Wτ of the polyhedron U . We will denote by Vτ a directing subspace
of this face; Vτ = span{Wτ − w}, where w ∈ W can be chosen arbitrarily. Evidently
∀v ∈ Vτ , τ ∈ [0, T ] : 〈χτ , v〉 = 0.

In what follows we assume the mapping τ → Vτ to be piecewise constant with
0 = τ0 < τ1 < · · · < τm < τm+1 = T determining the intervals of constancy. We
will call (τi, τi+1] a bang-bang interval of the extremal control ũ(·) if dimVτ = 0,
or equivalently Wτ is a vertex of U for τ ∈ (τi, τi+1), and a singular interval if
dimVτ > 0 on (τi, τi+1). The points τi are called switching points; if τi separates two
bang-bang intervals, then we shall call it a bang-bang switching point. It is obvious
that Wτi±0 ⊆Wτi for any τi and dimWτi ≥ 1. The face Wτi is called face of switching
at τi.

In what follows the extremal (ũ(·), q̃(·), ζ̃(·)) (with its switching points) is fixed
and we will simplify the notation, putting Xi,Wi, Vi, Xi±0,Wi±0, Vi±0 instead of
Xτi ,Wτi , Vτi , Xτi±0,Wτi±0, Vτi±0.

Let us consider two faces W ⊆ W ′ of the polyhedron U ⊂ Rr. Obviously, for all
points w ∈ relintW the conic hulls of the sets W ′ − w coincide. We shall call any of
them the tangent cone to W ′ at W and denote this cone by KWW ′. These tangent
cones are closed.

Any of these cones is naturally imbedded into the directing linear space V ′ of the
face W ′. The cone KWW ′ is pointed if and only if W is a vertex of U ; otherwise
the directing space V of the face W is the maximal linear subspace of KWW ′ : V =
KWW ′ ∩ (−KWW ′).

Now we introduce certain genericity assumptions, which will be involved in the
optimality conditions.

Strong genericity assumption for bang-bang switchings. For every bang-bang
switching point τi the maximum max{H(q̃(t), ζ̃(t), u) : u ∈ U} is achieved on an
edge (= 1-dimensional face) of U ; the left and right derivatives χ̇τj±0 of the switching
function χτ are not orthogonal to this edge of switching.

The nonorthogonality of χ̇τi±0 to the edge of switching means that the Pontryagin
maximum principle definitely forces the switching. It can be better visualized in the
case of scalar u’s, when the segment U (for example, U = [−1, 1]) is the edge itself.
Then by virtue of the Pontryagin maximum principle the sign of extremal control ũ(τ)
must coincide with the sign of the (scalar-valued) function χτ . The nonorthogonality
turns out in this case to be χ̇τi±0 6= 0, and it implies the transversality of the graph
τ 7→ χτ to the τ -axis at the point (τi, 0).

Weak genericity assumption for bang-bang switchings. For every switching point
τi the maximum max{H(q̃(t), ζ̃(t), u) : u ∈ U} is achieved on a face Wi of U . For
the cones K−i = KWi−0Wi, K

+
i = KWi+0Wi and the switching function χτ we have

χ̇τi−0ξ 6= 0 ∀ξ ∈ K−i ; χ̇τi+0ξ 6= 0 ∀ξ ∈ K+
i .(4.12)

Remark 4.2. Actually the inequalities (4.12) together with the maximality condi-
tion (4.9) imply more

χ̇τi−0ξ > 0 ∀ξ ∈ K−i ; χ̇τi+0ξ < 0 ∀ξ ∈ K+
i .(4.13)

Remark 4.3. For a bang-bang switching point τi the cones K−i ,K
+
i are the tangent

cones to the face Wj at the vertices ũ(τi − 0) and ũ(τi + 0), correspondingly.
Remark 4.4. It is clear that for bang-bang switchings the strong genericity as-

sumption is a particular case of the weak one.
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In what follows we assume both the weak genericity assumption and the strong
transversality condition to hold for any extremal under consideration.

To introduce the second variation of the system (1.2) along an extremal (ũ(·), q̃(·),
ζ̃(·)) on [0, T ] we denote by ker Φ′T the kernel of the first variation along ũ(·), i.e., the
set of u(·) ∈ KũU such that ∫ T

0
q0 ◦Xτu(τ)dτ = 0.(4.14)

Note that the conditions (4.2) and (4.14) imply an inclusion

u(τ) ∈ Vτ a.e. on [0, T ]

for any control u(·) ∈ ker Φ′T ; in particular, u(τ) must vanish on the bang-bang
intervals of ũ(·). Obviously ker Φ′T is linear subspace of Lr∞, which is trivial if ũ(·) is
a bang-bang extremal control.

Returning to the Taylor expansion (3.5) of the mapping ΦT let us consider its
quadratic term. We denote by Φ′′T the restriction of this vector-valued quadratic form
to ker Φ′T . It is known (see [1, 3, 8]) that Φ′′T can be represented as

Φ′′T (u(·)) =
∫ T

0
q0 ◦

[∫ τ

0
Xθu(θ)dθ,Xτu(τ)

]
dτ, u(·) ∈ ker Φ′T .

DEFINITION 4.3. The second variation of the system (1.2) along the extremal
(ũ(·), q̃(·), ζ̃(·)) on [0, T ] is the projection of Φ′′T on the covector ζ0 = ζ̃(0), i.e., the
scalar valued quadratic form

ζ0Φ′′T (u(·)) =
∫ T

0

〈
ζ0, q0 ◦

[∫ τ

0
Xθu(θ)dθ,Xτu(τ)

]〉
dτ, u(·) ∈ ker Φ′T .(4.15)

5. Extended first and second variations of the control system. From
now on we deal with a fixed bang-bang Pontryagin extremal (ũ(·), q̃(·), ζ̃(·)). As was
already shown, the first variation of the system (1.2) along the bang-bang control
ũ(·) has trivial kernel. This fact on one hand obstructs the construction of high-order
variations while on the other hand does not guarantee optimality of ũ(·). Our idea
is to define first variation with extended domain in such a way that the triviality of
the kernel of the extended first variation along the bang-bang extremal control ũ(·)
implies L1-local optimality of ũ(·). If the extended first variation can be nullified, then
we will define on its kernel an extended second variation and formulate second-order
sufficient conditions of L1-local optimality for the bang-bang extremal control ũ(·).

The extended first and second variations are to be defined via the end-point
mapping ΦT . Let us recall that ΦT can be represented via chronological exponential
ΦT (u(·) = q0◦

−→
exp

∫ t
0 Xτu(τ)dτ , which is in turn defined by the control system

q̇ = q(τ) ◦Xτu(τ), q(0) = q0,(5.1)

Xτ = (X1
τ , . . . , X

r
τ ), Xi

τ =
−→
exp

∫ τ

0
adf̃θdθgi (i = 1, . . . , r),

with admissible controls being admissible variations of ũ(·).
Let us extend the domain of ΦT by adding some Dirac measures located at the

switching points of the bang-bang extremal. To introduce them let us consider the
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directing subspaces Vj = Vτj of the switching faces Wj = Wτj (j = 1, . . . ,m) and
consider the generalized functions of the form

ω =
m∑
j=1

ωjδ(τ − τj), ωj ∈ Vj (j = 1, . . . ,m),(5.2)

where τj (j = 1, . . . ,m) are the switching points of the extremal. We will denote by
∆{τj , Vj} the set of the generalized controls (5.2).

A natural way to construct extended first and second variations would be by
extending the end-point mapping ΦT onto the extended domain, which includes the
Dirac measures (5.2), and then calculating first and second differentials of the exten-
sion. To realize this scheme one has to define the generalized trajectories of the control
system (5.1), driven by the generalized controls (5.2). These trajectories cannot be
constructed in the classical way. Indeed, it is evident that the trajectories should have
discontinuities at the points τj (j = 1, . . . ,m). Therefore when substituting (5.2) into
(5.1) and transforming the differential equation into an integral one, we obtain an
integral of a discontinous function with respect to the measure (5.2), which has atoms
just at the points of discontinuity.

An approach to constructing generalized trajectories for a class of generalized
controls, which is much wider than (5.2), has been developed in [9, 10, 11]. (See
especially [9, Section 4] and [10, Section 5], where the trajectory of the control system
(5.1), driven by a generalized control (5.2), has been calculated explicitly.) Here we
do not go into details of the topic, only introducing the definitions of extended first
and second variations along the extremal.

DEFINITION 5.1. Let ∆{τj , Vj} be the set of Dirac measures (5.2). The linear
operator Φe

′

T : KũU ⊕∆{τj , Vj} → Tq0M , defined by

Φe
′

T (u(·)⊕ ω) = q0 ◦

∫ T

0
Xτu(τ)dτ +

m∑
j=1

Xjωj

 ,(5.3)

is called an extended first variation along the extremal. The summand q0 ◦
∑m
j=1Xjωj

is called the first variation at the switching points of the extremal.
This definition is justified by the following proposition.
LEMMA 5.1. For every j = 1, . . . ,m let a δ-sequence of controls wjk(·) (k = 1, . . .)

tend weakly to the Dirac measure ωjδ(τ − τj). Put wk(·) =
∑m
j=1 w

j
k(·). Then as

k →∞ the values of the first variation

Φ′T (u(·) + wk(·)) = q0 ◦
(∫ T

0
Xτ (u(τ) + wk(τ))

)
dτ

tend to the value of the extended first variation (5.3).
(Note that we are not able to approximate Dirac measures by admissible controls,

since the latter are bounded.)
In the next section we will prove that if the extended first variation along the

bang-bang extremal has trivial kernel, then the bang-bang extremal control ũ(·) is
optimal.

If the extended first variation along ũ(·) can be nullified, then we define on its
kernel an extended second variation along the extremal.
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DEFINITION 5.2. The extended second variation of the system (1.2) along the
Pontryagin extremal (ũ(·), q̃(·), ζ̃(·)) is the quadratic form

ζ0Φe
′′

T =
1
2

〈
ζ0,

∫ T

0
q0 ◦

∫ τ

0
Xξu(ξ)dξ +

∑
τj≤τ

Xjωj , Xτu(τ)

 dτ
+

m∑
i=1

q0 ◦

∫ τi

0
Xξu(ξ)dξ +

i∑
j=1

Xjωj , Xiωi

〉 ,(5.4)

where u(·)⊕ ω ∈ ker Φe
′

T , i.e., u(·)⊕ ω ∈ KũU ⊕∆{τj , Vj} and

q0 ◦

∫ T

0
Xτu(τ)dτ +

m∑
j=1

Xjωj

 = 0.(5.5)

Putting u(·) ≡ 0 in (5.4) and (5.5), one obtains the quadratic form

1
2

〈
ζ0, q0 ◦

 i∑
j=1

Xjωj , Xiωi

〉(5.6)

defined on the kernel of the first variation at the switching points, which is a finite-
dimensional subspace:ω = (ω1, . . . , ωm) ∈ ⊕mj=1Vj : q0 ◦

m∑
j=1

Xjωj = 0

 .(5.7)

DEFINITION 5.3. The quadratic form (5.6) defined on the subspace (5.7) is called
the second variation of the system (1.2) at the switching points of the extremal
(ũ(·), q̃(·), ζ̃(·)).

Agrachev and Gamkrelidze introduced in [2] a different type of second variation
which corresponds to the variation of the moments of switchings. Using this form they
established necessary second-order optimality condition for a bang-bang extremal.

6. First-order sufficient optimality condition for bang-bang Pontryagin
extremals. As has been already established, the first variation along a bang-bang
Pontryagin extremal has trivial kernel; at the same time a bang-bang Pontryagin
extremal is not necessarily optimal. We have introduced above the extended first and
second variations along a Pontryagin extremal. In this section we shall establish that
if the kernel of the extended first variation is also trivial or, equivalently, if the kernel
of the first variation at the switching points is trivial, then the Pontryagin extremal
is optimal (under few additional assumptions).

DEFINITION 6.1. We say that second-order horizontality conditions for switchings
of the Pontryagin extremal (ũ(·), q̃(·), ζ̃(·)) hold if

〈ζ̃(τj), q̃(τj) ◦ [Gv,Gv′]〉 = 0 ∀v, v′ ∈ Vj , ∀j = 1, . . . ,m,(6.1)

or, equivalently,

〈ζ0, q0 ◦ [Xjv,Xjv
′]〉 = 0 ∀v, v′ ∈ Vj , ∀j = 1, . . . ,m(6.2)

for all its switching points τj (j = 1, . . . ,m).
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Remark 6.1. If the equality 〈ζ̃(τj), y〉 = 0 defines a “horizontal hyperplane” in
Tq̃(τj)M (correspondingly, 〈ζ̃0, y〉 = 0 defines a horizontal hyperplane in Tq0M), then
the equalities (6.1), (6.2) mean that for those controlled vector fields whose values are
horizontal, their second-order Lie brackets also have horizontal values. Everywhere
below we assume this condition to hold.

Remark 6.2. Goh has established [6] that the fulfillment of the second-order
horizontality condition along a singular subarc of extremal is necessary for optimality
of this subarc. We require this condition to hold along the degenerate singular subarcs,
which are the switching points.

Remark 6.3. If the strong genericity assumption holds, then dimVj = 1 (j =
1, . . . ,m), and the second-order horizontality condition (6.1) for switchings holds au-
tomatically.

THEOREM 6.1 (first-order sufficient optimality condition for bang-bang extremals).
Let the bang-bang Pontryagin extremal (ũ(·), q̃(·), ζ̃(·)) meet the strong transversality
condition (4.11), the weak genericity assumption (4.12), and the second-order hori-
zontality condition for switchings (6.1). If the first variation at the switching points
of the bang-bang extremal has a trivial kernel, i.e.,

q0 ◦
m∑
i=1

Xivi = 0, vi ∈ Vi (i = 1, . . . ,m)⇒ vi = 0 (i = 1, . . . ,m),(6.3)

then the bang-bang extremal control ũ(·) is optimal for the problem (1.1)–(1.3).
Remark 6.4. The triviality of the kernel of the first variation at switching points

can be better visualized when the controls u are scalar. Then it amounts to the linear
independence of the values of the vector fields q0 ◦ Xτj computed for the switching
points τj (j = 1, . . . ,m). Recall that q0 ◦ Xτj (see (5.1) and (3.3)) is the result of
pulling back the value of the (unique) controlled vector field g from q̃(τj) to q0 by
means of P̃−1

τj . Obviously the triviality of the kernel limits the number of switchings
by n = dimM .

Proof of Theorem 6.1. To establish optimality of ũ(·) we shall verify the conditions
of the auxiliary lemma on optimality (section 4).

Let us choose some positive ∆ < 1 in such a way that the intervals [τj −∆, τj + ∆]
(j = 1, . . . ,m) are mutually nonintersecting. Consider an arbitrary admissible vari-
ation u(·) of the bang-bang control ũ(·), and take the restriction of u(·) to a subin-
terval [τj −∆, τj). Since ũ(·) is constant on [τj −∆, τj) and takes its value at some
vertex η−j of the polyhedron U , the admissible variations of ũ(·) on this interval
must take their values in the polyhedral tangent cone Kη−j

to U at η−j (the convex

conic hull of the set U − η−j ). Let us consider the tangent cone K−j to the face of
switching Wj at the point ũ(τj − 0) = η−j (see (4.12)). Obviously K−j is one of
the faces of the cone Kη−j

. Let us denote by K−\j the convex conic hull of those

edges of Kη−j
which do not belong to K−j . The admissible variation u(·)|[τj−∆,τj)

can be represented (nonuniquely!) as a sum u(τ) = ū(τ) + v(τ), with v(τ) ∈ K−j
and ū(τ) ∈ K−\j . We can repeat a similar procedure for u(·)|(τj ,τj+∆] and for all
j = 1, . . . ,m. Taking the concatenation of all ū(·)’s and v(·)’s constructed on the
intervals [τj −∆, τj + ∆], we obtain the functions ū(·), v(·), whose support is located
in the set I∆ = ∪mj=1[τj − ∆, τj + ∆]; u(τ) = ū(τ) + v(τ) ∀τ ∈ I∆. Finally we will
put ū(τ) = u(τ), v(τ) = 0 on [0, T ] \ I∆. Then u(τ) = ū(τ) + v(τ) ∀τ ∈ [0, T ].
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Setting vj =
∫ τj+∆
τj−∆ v(τ)dτ for j = 1, . . . ,m, we put v = (v1, . . . , vm) and de-

note by vs(t) the piecewise constant function which equals vj/2∆ on [τj −∆, τj + ∆]
and vanishes outside I∆. We put |v| =

∑m
j=1 |vj |. Obviously |v| = ‖vs(·)‖L1 . Fi-

nally define the function w(·) = v(·)− vs(·). Evidently w(·) vanishes outside I∆ and∫ τj+∆
τj−∆ w(τ)dτ = 0. We put the triple (ū(·), v, w(·)) into correspondence with an ad-

missible variation u(·) and consider it as a (nonuniquely defined) “coordinatization”
of u(·).

Let us introduce the vertical direction in Tq0M , a vector z ∈ Tq0M such that
〈ζ0, z〉 = 1. Let us put V1(u(·)) = q0◦

∫ T
0 Xτu(τ)dτ and denote by V1

v (u(·)) its vertical
projection 〈ζ0,V1(u(·))〉z and by V1

h(u(·)) = V1(u(·)) − V1
v (u(·)) its projection onto

the horizontal hyperplane {y | 〈ζ0, y〉 = 0}. Let us denote by V2(u(·)) = ΦT (u(·)) −
V1(u(·)) the first-order remainder term of the Taylor expansion for ΦT and introduce
by analogy its vertical and horizontal components V2

v (u(·)) and V2
h(u(·)).

Now we shall derive a lower estimate for the length of V1(u(·))+V2
h(u(·)) ∈ Tq0M .

LEMMA 6.2. If the weak genericity assumption holds for the bang-bang Pontryagin
extremal (ũ(·), q̃(·), ζ̃(·)), then there exists a positive constant α and for any sufficiently
small ∆ > 0 there exists a neighborhood U∆ of the origin by the L1-norm, such that
for all admissible variations u(·) ∈ U∆ ∩ Lr∞[0, T ] and all possible coordinatizations
the inequality

|V1(u(·)) + V2
h(u(·))| ≥ α(‖ū(·)‖L1 + ∆−2|v|2 + ‖w(·)‖2L1

)(6.4)

holds.
The proof of this lemma will be presented below together with the proof of an-

other technical lemma, which provides an upper estimate for the vertical component
|V2
v (u(·))| of the first-order remainder term.

LEMMA 6.3. Provided that the second-order horizontality condition for switchings
holds, there exists a positive constant A and for any sufficiently small ∆ > 0 there
exists a neighborhood U∆ of the origin by the L1-norm such that for any admissible
variation u(·) ∈ U∆ ∩ Lr∞[0, T ] and all possible coordinatizations the inequality

|V2
v (u(·))| ≤ A∆(‖ū(·)‖L1 + ∆−2|v|2 + ‖w(·)‖2L1

)(6.5)

holds.
On the basis of these lemmas one can prove Theorem 6.1 easily. First let us

fix some ∆0 > 0 meeting the condition 1 − ∆0A/α > 0 and denote by U∆0 the
neighborhood of the origin by L1-metric for which the conclusions of the Lemmas
6.2 and 6.3 hold. Let us denote A/α by κ; 0 < κ∆0 < 1. Then (6.4)–(6.5) imply
∀u(·) ∈ U∆0

‖V2
v (u(·))‖ ≤ κ∆0‖V1(u(·)) + V2

h(u(·))‖

and

‖ΦT (u(·))‖ = ‖V1(u(·)) + V2
h(u(·)) + V2

v (u(·))‖
≥ (1− κ∆0)α(‖ū(·)‖L1 + ∆−2

0 |v|2 + ‖w(·)‖2L1
).

This means that

{um(·)} ∈ U∆0 , ΦT (um(·)) m→+∞−→ 0 =⇒ ‖um(·)‖L1

m→+∞−→ 0(6.6)
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and also

ΦT (u(·)) = 0, u(·) ∈ U∆0 =⇒ u(·) = 0.

The bang-bang extremality of ũ(·) (see the Pontryagin maximum principle) im-
plies that the vector V1(u(·)), and hence also the vector V1(u(·)) + V2

h(u(·)), belongs
to the open “lower” semispace of Tq0M , defined by the inequality 〈ζ0, y〉 < 0.

Therefore for any ∆ < ∆0 ∀u(·) ∈ U∆ :

|〈ζ0, (V1+V2)(u(·))〉| = |〈ζ0,ΦT (u)〉| ≤ |V2
v (u(·))| ≤ A(∆‖ū(·)‖L1+∆−1|v|2+∆‖w(·)‖2L1

)

and

‖ΦT (u(·))‖ ≥ (1− κ∆)α(‖ū(·)‖L1 + ∆−2|v|2 + ‖w(·)‖2L1
).

Hence

〈ζ0,ΦT (u)〉/‖ΦT (u(·))‖ ≤ A∆/(1− κ∆)α = κ∆/(1− κ∆)(6.7)

for u(·) which are sufficiently close to the origin in the L1-metric.
Let us consider an arbitrary C1-smooth curve τ → γ(τ) (τ ∈ [0, t]) starting at

q0 = γ(0) and belonging to ΦT (U∆0). By virtue of (6.6)–(6.7) its tangent vector at
q0 = γ(0) belongs to the nonconvex subcone of Tq0M defined by the inequality

〈ζ0, y〉 ≤
κ∆

1− κ∆
‖y‖.(6.8)

Recall that ∆ > 0 in (6.8) can be chosen arbitrarily small. When ∆ → +0, the
right-hand side of this inequality tends to +0 and we may conclude that the tangent
vectors to the set ΦT (U∆0) belong to the closed lower semispace of Tq0M determined
by the inequality 〈ζ0, y〉 ≤ 0. Applying the auxiliary lemma on optimality we establish
L1-local optimality of ũ(·).

Proof of Lemma 6.2. Using the coordinatization (ū(·), v, w(·)) of the arbitrary
admissible variation u(·) of the extremal control ũ(·) we represent the first variation∫ T

0 q0 ◦Xτu(τ)dτ as

q0 ◦
∫ T

0
Xτu(τ)dτ = q0 ◦

(∫ T

0
Xτ ū(τ)dτ

+
m∑
i=1

(∫ τi+∆

τi−∆
Xτdτ

)
vi/2∆ +

m∑
i=1

∫ τi+∆

τi−∆
Xτw(τ)dτ

)
(6.9)

= q0 ◦
(∫ T

0
Xτ ū(τ)dτ +

m∑
i=1

Xivi +
m∑
i=1

∫ τi+∆

τi−∆
(Xτ −Xi)(vi/2∆ + w(τ))dτ

)
.

Recall that the notation Xi is for Xτi (i = 1, . . . ,m).
The first and the third summands in the right-hand side of (6.9) belong to the open

lower semispace, while the second summand belongs to the horizontal hyperplane.
In accordance with the definition of the coordinatization u(·) 7→ (ū(·), v, w(·)) of

the admissible variations of ũ(·), the values ū(τ) belong to K\
ũ(τ)U . By virtue of the

maximality condition (4.2) of the Pontryagin maximum principle there exists a1 > 0
such that

max
u∈K\

ũ(τ)U
〈ζ0, q0 ◦Xτ ū(τ)〉 ≤ −a1|ū(τ)| ∀τ ∈ [0, T ].
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This gives the estimate for the projection on ζ0 of the first summand in the right-hand
side of (6.9): 〈

ζ0, q0 ◦
∫ T

0
Xτ ū(τ)dτ

〉
≤ −a1‖ū(·)‖L1 .(6.10)

Since the first variation at the switching points of the extremal control ũ(·) has a
trivial kernel, then the second addend of (6.9) admits a lower estimate:∣∣∣∣∣

m∑
i=1

q0 ◦Xivi

∣∣∣∣∣ ≥ b3|v|.(6.11)

Since Ẋτ is continuous with regard to τ on [τi −∆, τi) and on (τi, τi + ∆], then
we may assume by virtue of the weak genericity assumption (and decreasing ∆, if
necessary), that for some c1 > 0,

〈ζ0, q0 ◦ Ẋτv〉 ≥ c1|v| ∀τ ∈ [τi −∆, τi), ∀v ∈ K−i , ∀i = 1, . . . ,m,
〈ζ0, q0 ◦ Ẋτv〉 ≤ −c1|v| ∀τ ∈ (τi, τi + ∆], ∀v ∈ K+

i , ∀i = 1, . . . ,m.(6.12)

Therefore, since v(τ) ∈ K−i for τ ∈ [τi − ∆, τi), v(τ) ∈ K+
i for τ ∈ (τi, τi + ∆],

then 〈
ζ0, q0 ◦

m∑
i=1

∫ τi+∆

τi−∆
(Xτ −Xi)v(τ)dτ

〉
≤ −c1

m∑
i=1

∫ τi+∆

τi−∆
|τ − τi||v(τ)|dτ.(6.13)

To estimate the integral
∫ τi+∆
τi

(τ − τi)|v(τ)|dτ we integrate it by parts obtaining

∫ τi+∆

τi

(V (τi + ∆)− V (τ))dτ, where V (τ) =
∫ τ

τi

|v(ξ)|dξ.

As long as |v(τ)| ≤M, V (τi) = 0, and dV (τ) = |v(τ)|dτ , we have∫ τi+∆

τi

(V (τi + ∆)− V (τ))dτ ≥ (1/M)
∫ τi+∆

τi

(V (τi + ∆)− V (τ))|v(τ)|dτ

= (−1/2M)(V (τi + ∆)− V (τ))2|τi+∆
τi(6.14)

= (V (τi + ∆))2/2M = ‖v(·)|[τi,τi+∆]‖2L1
/2M.

Deriving a similar estimate for
∫ τi
τi−∆ |τ − τi||v(τ)|dτ and repeating it for all

i ∈ {1, . . . ,m} we may conclude that for some c2 > 0,〈
ζ0, q0 ◦

m∑
i=1

∫ τi+∆

τi−∆
(Xτ −Xi)v(τ)dτ

〉
≤ −c2‖v(·)‖2L1

.(6.15)

Obviously ‖vs(·)‖L1 = |v| =
∑m
i=1 |

∫ τi+∆
τi−∆ v(τ)dτ | ≤ ‖v(·)‖L1 . Since w(·) =

v(·)− vs(·), we conclude that

‖w(·)‖L1 ≤ ‖v(·)‖L1 + ‖vs(·)‖L1 ≤ 2‖v(·)‖L1 .
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Therefore ‖v(·)‖2L1
≥ (|v|2 + ‖w(·)‖2L1

)/5, and we may change the estimate (6.15) to〈
ζ0, q0 ◦

m∑
i=1

∫ τi+∆

τi−∆
(Xτ −Xi)v(τ)dτ

〉
≤ −c3(|v|2 + ‖w(·)‖2L1

).(6.16)

The projections of the first and the third summands in the right-hand side of (6.9)
on the horizontal hyperplane admit upper estimates β‖ū(·)‖L1 and k∆(|v|+‖w(·)‖L1)
correspondingly.

We shall prove now that |V2(u(·))| = O(‖u(·)‖2L1
). To this end let us introduce

the notation Pt =
−→
exp

∫ t
0 Xτu(τ)dτ and recall that d

dtPt = Pt ◦ Xtu(t), P0 = I, and
ΦT (u(·)) = q0 ◦ PT . Then

ΦT (u(·))−V1(u(·)) = q0 ◦
∫ T

0
(Pt−I)Xtu(t)dt = q0 ◦

∫ T

0

∫ t

0
Pτ ◦Xτu(τ)dτ ◦Xtu(t)dt,

and the required estimate is now obvious.
This implies an upper estimate |V2

h(u(·))| ≤ C(‖ū(·)‖2L1
+ |v|2 + ‖w(·)‖2L1

). As-
suming the neighborhood U∆ to be such that max(‖u(·)‖L1 , |v|,∆−1‖w(·)‖L1) ≤ ε <
b3/2C we may change this estimate to

|V2
h(u(·))| ≤ Cε(‖ū(·)‖L1 + |v|+ ∆‖w(·)‖L1).(6.17)

The estimates for the summands of the right-hand side of (6.9) imply a lower
estimate for the vector V1(u(·)):

|V1(u(·))|
≥ a1‖ū(·)‖L1 + c3(|v|2 + ‖w(·)‖2L1

) + max(0, b3|v| − β3‖ū(·)‖L1 − k∆‖w(·)‖L1).

By virtue of the upper estimate (6.17) a similar lower estimate (possibly with different
constants b3, β3, k > 0) holds for |V1(u(·)) + V2

h(u(·))|:

|V1(u(·)) + V2
h(u(·))| ≥ a1‖ū(·)‖L1 + c3(|v|2 + ‖w(·)‖2L1

)
+ max(0, b3|v| − β3‖ū(·)‖L1 − k∆‖w(·)‖L1)
≥ a1‖ū(·)‖L1 + c3‖w(·)‖2L1

+ max(0, b3|v| − β3‖ū(·)‖L1 − k∆‖w(·)‖L1).(6.18)

To establish the estimate (6.4) let us assume first that

b3|v|/2 ≥ β3‖ū(·)‖L1 + k∆‖w‖L1 .

Then max(0, b3|v|−β3‖ū(·)‖L1−k∆‖w‖L1) ≥ b3|v|/2 and we come to a lower estimate

|V1(u(·)) + V2
h(u(·))| ≥ a1‖ū‖L1 + b3|v|/2 + c3‖w‖2L1

.

Evidently b3|v|/2 ≥ γ∆−2|v|2 for all small enough |v| > 0, and we derive the lower
estimate (6.4).

Assume now, on the contrary, that

b3|v|/2 ≤ β3‖ū(·)‖L1 + k∆‖w‖L1 .(6.19)

If β3‖ū(·)‖L1 ≥ k∆‖w‖L1 , then b3|v|/2 ≤ 2β3‖ū(·)‖L1 , and we derive

a1‖ū(·)‖L1 ≥
a1

2
‖ū(·)‖L1 + a1k∆‖w‖L1/4β3 + a1b3|v|/16β3.
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The sum of the last two terms is bounded below by γ∆−2|v|2 +µ‖w‖2L1
for sufficiently

small |v|, ‖w‖L1 > 0.
If β3‖ū(·)‖L1 ≤ k∆‖w‖L1 , then (6.19) implies b3|v| ≤ 4k∆‖w‖L1 and hence in

(6.18)

c3‖w‖2L1
≥ c3

2
‖w‖2L1

+
c3b

2
3

32k2 ∆−2|v|2.

Proof of Lemma 6.3. As has been already established,

ΦT (u(·))−V1(u(·)) = q0 ◦
∫ T

0
(Pt − I)Xtu(t)dt = q0 ◦

∫ T

0

∫ t

0
PτXτu(τ)dτ ◦Xtu(t)dt.

Substituting Pτ = I + (Pτ − I) into the last expression we transform it into

ΦT (u(·))− V1(u(·)) = q0 ◦
∫ T

0

∫ t

0
Xτu(τ)dτ ◦Xtu(t)dt

+ q0 ◦
∫ T

0

∫ t

0
(Pτ − I)Xτu(τ)dτ ◦Xtu(t)dt.(6.20)

Since Pτ − I =
∫ τ

0 Xξu(ξ)dξ, then (see [7]) ‖Pτ − I‖s,K ≤ c(s,K)‖u(·)‖L1 and
therefore the second summand at the right-hand side of (6.20) admits an estimate
O(‖u(·)‖3L1

) which implies the upper estimate (6.5), if ‖u(·)‖L1 is sufficiently small.
Obviously the same estimate holds for the vertical component of this summand.

To estimate the term q0 ◦
∫ T

0

∫ t
0Xτu(τ)dτ ◦Xtu(t)dt we represent it as a sum

q0 ◦
(∫ T

0

∫ t

0
Xτu(τ)dτ ◦Xtū(t)dt+

m∑
i=1

∫ τi+∆

τi−∆

∫ t

0
Xτu(τ)dτ ◦Xt(vi/2∆)dt

+
m∑
i=1

∫ τi+∆

τi−∆

∫ t

0
Xτu(τ)dτ ◦Xtw(t)dt

)
.(6.21)

The first summand of the right-hand side admits an upper estimate c‖u(·)‖L1‖ū(·)‖L1 ,
which is majorized by A∆‖ū(·)‖L1 , if ‖u(·)‖L1 is small enough. The second summand
admits an upper estimate

c(|v|2 + ‖ū(·)‖2L1
+ ‖w(·)‖L1 |v|) ≤ A(∆−1|v|2 + ∆‖w(·)‖2L1

+ ‖ū(·)‖2L1
),

which implies the estimate (6.5) if ‖u(·)‖L1 is small enough.
Now we shall transform the third summand of (6.21) by representing it as a sum:

m∑
i=1

∫ τi+∆

τi−∆

∫ t

0
Xτ ū(τ)dτ ◦Xtw(t)dt+

m∑
i=1

∫ τi+∆

τi−∆

∫ t

0
Xτv

s(τ)dτ ◦Xtw(t)dt

+
m∑
i=1

∫ τi+∆

τi−∆

∫ t

0
Xτw(τ)dτ ◦Xtw(t)dt.(6.22)

The first summand admits an upper estimate c‖ū(·)‖L1‖w(·)‖L1 , which can be sub-
stituted by A∆‖ū(·)‖L1 , if ‖u(·)‖L1 is small enough. The second summand admits an
upper estimate

c|v|‖w(·)‖L1 ≤ (c/2)(∆−1|v|2 + ∆‖w(·)‖2L1
).
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To estimate the third summand let us represent it as

m∑
i=1

∫ τi+∆

τi−∆
Xtw(t) ◦

i−1∑
j=1

∫ τj+∆

τj−∆
Xτw(τ)dτ +

∫ t

τi−∆
Xτw(τ)dτ

 dt.

Taking into account that
∫ τj+∆
τj−∆ w(τ)dτ = 0 (j = 0, . . . ,m), we may rewrite it as

m∑
i=1

∫ τi+∆

τi−∆
Xtw(t) ◦

i−1∑
j=1

∫ τj+∆

τj−∆
(Xτ −Xj)w(τ)dτ +

∫ t

τi−∆
Xτw(τ)dτ

 dt.

Since for any i, j,

∆−1

∣∣∣∣∣
∫ τi+∆

τi−∆
Xtw(t) ◦

∫ τj+∆

τj−∆
(Xτ −Xj)w(τ)dτ dt

∣∣∣∣∣ = O(‖w(·)‖2L1
),

then we only have to estimate
∫ τi+∆
τi−∆ Xtw(t) ◦

∫ t
τi−∆Xτw(τ)dτdt (i = 1, . . . ,m).

Substituting Xi in place of Xt and Xτ (t, τ ∈ [τi−∆, τi + ∆]) in this integral, we
change its value by O(1)∆‖w(·)‖2L1

. Integrating by parts we derive∫ τi+∆

τi−∆
Xiw(t) ◦Xi

∫ t

τi−∆
w(τ)dτdt

= Xi

∫ τi+∆

τi−∆
w(t)dt ◦Xi

∫ τi+∆

τi−∆
w(τ)dτ −

∫ τi+∆

τi−∆
Xi

∫ t

τi−∆
w(τ)dτ ◦Xiw(t)dt.

The first summand vanishes and hence∫ τi+∆

τi−∆
Xiw(t) ◦Xi

∫ t

τi−∆
w(τ)dτdt =

1
2

∫ τi+∆

τi−∆

[
Xiw(t), Xi

∫ t

τi−∆
w(τ)dτ

]
dt.

The projection of the last term on ζ0 vanishes, provided that the second-order hori-
zontality condition for switchings holds. Therefore

∆−1

〈
ζ0,

∫ τi+∆

τi−∆
Xtw(t) ◦

∫ t

τi−∆
Xτw(τ)dτdt

〉
= O(‖w(·)‖2L1

).

7. Second-order sufficient optimality conditions for bang-bang Pon-
tryagin extremals. It has been established (Theorem 6.1) that the triviality of the
kernel of the first variation at switching points of the bang-bang Pontryagin extremal
(ũ(·), q̃(·), ζ̃(·)) implies optimality of the extremal control ũ(·). In this section we
study what happens if the first variation at the switching points possesses a nontriv-
ial kernel. We establish in this case the second-order sufficient optimality condition
(Theorem 7.1) involving the second variation at switching points. Regrettably this
condition is not as sharp as one could wish. Below we shall provide some comments
and also a sharper form of the sufficient condition for the case where the strong gene-
ricity assumption holds (Theorem 7.2).

THEOREM 7.1 (second-order sufficient optimality condition for bang-bang extre-
mals). Let the strong transversality condition (4.11), the weak genericity assumption
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and the second-order horizontality condition for switchings (6.2) hold for the bang-
bang Pontryagin extremal (ũ(·), q̃(·), ζ̃(·)). If the second variation at the switching
points τj (j = 1, . . . ,m) of the Pontryagin extremal, i.e., the quadratic form

Q(v) =
m∑
i=1

〈
ζ0, q0 ◦

∑
j<i

Xjvj , Xivi

〉 ,(7.1)

is nonpositive (negative semidefinite) on the kernel of the first variation at switching
points {

v = (v1, . . . , vm) ∈ ⊕mi=1Vi |
m∑
i=1

q0 ◦Xivi = 0

}
,(7.2)

then ũ(·) is optimal for the problem (1.1)–(1.3).
As one can see, the formulation of the sufficient condition is somewhat un-

usual, since it involves negative semidefiniteness of the second variation, while usually
second-order sufficient optimality conditions involve strict definiteness of the second
variation. We should also emphasize that negative semidefiniteness of the second vari-
ation at the switching points is not necessary for the optimality of ũ(·). The reason is
that the first and the second variations at switching points have been constructed on
the basis of Dirac measures (located at swiching points) used as generalized variations
of ũ(·). Were it possible to approximate these Dirac measures by ordinary controls,
this construction would be quite adequate. Since the admissible controls are bounded
we cannot arrange such approximations, and this is why asking for negative definite-
ness of the second variation at switching points means asking too much; i.e., it provides
stronger optimality than the one we investigate. Technically speaking it results in the
following phenomenon: provided that the weak genericity assumption holds, there is
some term of the first variation, which has the same order of smallness as the second
variation. Due to the Pontryagin maximum principle the vertical component of this
term takes negative values for any admissible variation of ũ(·). Therefore a more ad-
equate sufficient condition would be the negative definiteness of the sum of this part
of the first variation with the second variation at switching points. Unfortunately
this part of the first variation does not admit reasonable representation. The case
where one can achieve more progress is the one where the strong genericity assump-
tion holds. In this case the faces Vi of switching are one-dimensional edges and the
above-mentioned term of the first variation admits a rather simple quadratic upper
estimate which, when added to the second variation, provides us with a sharper suf-
ficient optimality condition. The second-order horizontality condition for switchings
holds in this case automatically.

To introduce this additional term let us consider the unit directing vectors `i (i =
1, . . . ,m) of the switching edges Vi (i = 1, . . . ,m); `i = (η+

i − η−i )/|η+
i − η−i |, where

η−i = ũ(τi − 0), η+
i = ũ(τi + 0). Let Mi = |η+

i − η−i | (i = 1, . . . ,m) be the lengths
of the switching edges. The variables vi (i = 1, . . . ,m) involved in the expression
for the second variation are in this case scalar. Let us introduce the quadratic form1

1
2

∑m
i=1〈ζ0, Ẋi`i〉v2

i /2Mi (by virtue of the Pontryagin maximum principle 〈ζ0, Ẋi`i〉 >
0, i = 1, . . . ,m). Subtracting this quadratic form from the second variation at the

1Under the strong genericity assumption Ẋτ `i is continuous at the switching point τi.
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switching points we obtain the quadratic form

−1
2

m∑
i=1

〈ζ0, q0 ◦ Ẋi`i〉v2
i /2Mi +

m∑
i=1

〈
ζ0, q0 ◦

∑
j<i

Xjvj , Xivi

〉(7.3)

with the domain (7.2); obviously its values are less than the values of the quadratic
form (7.1)–(7.2).

THEOREM 7.2 (second-order sufficient optimality condition under the strong gene-
ricity assumption). Let the strong transversality condition (4.11) and the strong gene-
ricity assumption hold for the bang-bang Pontryagin extremal (ũ(·), q̃(·), ζ̃(·)). If the
quadratic form (7.3) with the domain (7.2) is negative definite, then ũ(·) is optimal
for the problem (1.1)–(1.3).

Proof of Theorem 7.1. We are going to verify the conditions of the auxiliary
lemma on optimality and to this end will derive estimates similar to (6.4)–(6.5).

First we slightly modify the coordinatization u(·) 7→ (ū(·), v, w(·)), splitting⊕mi=1Vi
into the sum of the subspace (7.2) and a complementary linear subspace. Therefore
any v ∈ ⊕mi=1Vi can now be represented as v = v0 + v] with v0 coordinatizing the
subspace (7.2) and v] coordinatizing the complementary subspace. The new coordi-
natization is u(·) 7→ (ū(·), v], v0, w(·)). The formula (6.9) changes to

q0 ◦
∫ T

0
Xτu(τ)dτ

= q0 ◦
(∫ T

0
Xτ ū(τ)dτ +

m∑
i=1

(∫ τi+∆

τi−∆
Xτdτ

)
vi/2∆ +

m∑
i=1

∫ τi+∆

τi−∆
Xτw(τ)dτ

)
(7.4)

= q0 ◦
(∫ T

0
Xτ ū(τ)dτ +

m∑
i=1

Xiv
]
i +

m∑
i=1

∫ τi+∆

τi−∆
(Xτ −Xi)(vi/2∆ + w(τ))dτ

)
.

The estimate (6.11) changes to∣∣∣∣∣
m∑
i=1

q0 ◦Xiv
]
i

∣∣∣∣∣ ≥ b3|v]|.(7.5)

The estimate (6.18) changes to

|V1(u(·)) + V2
h(u(·))| ≥ a1‖ū(·)‖L1 + c3(|v]|2 + |v0|2 + ‖w(·)‖2L1

)

+ max(0, b3|v]| −β3‖ū(·)‖L1 −k∆‖w(·)‖L1 − k∆|v0|) ≥ a1‖ū(·)‖L1(7.6)
+c3(|v0|2 + ‖w(·)‖2L1

) + max(0, b3|v]| −β3‖ū(·)‖L1 −k∆‖w(·)‖L1 − k∆|v0|),

from which one derives as in the previous section

|V1(u(·)) + V2
h(u(·))| ≥ α(‖ū(·)‖L1 + ∆−2|v]|2 + |v0|2 + ‖w(·)‖2L1

).(7.7)

For the estimate of the vertical component of the remainder term we formulate
the following lemma, which is the analogue of Lemma 6.3.

LEMMA 7.3. Provided that the second-order horizontality condition for switchings
holds, there exists a positive constant A and for any sufficiently small ∆ > 0 there
exists a neighborhood U∆ of the origin in the L1-metric, such that for any admissible
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variation u(·) ∈ U∆ ∩ Lr∞[0, T ] and all possible coordinatizations the inequality

〈ζ0,V2(u(·))〉 ≤ 1
2

m∑
i=1

〈
ζ0, q0 ◦

∑
j<i

Xjv
0
j , X

0
i v

0
i

〉
+A(∆‖ū(·)‖L1 + ∆−1|v]|2 + ∆(|v0|2 + ‖w(·)‖2L1

))(7.8)

holds.
Providing the proof of the lemma below we finish now the proof of Theorem 7.1.
If the second variation (7.1)–(7.2) at the switching points of the extremal is non-

positive, then the estimate (7.8) implies the estimate

〈ζ0,V2(u(·))〉 ≤ A(∆‖ū(·)‖L1 + ∆−1|v]|2 + ∆(|v0|2 + ‖w(·)‖2L1
)).(7.9)

The conditions of the auxiliary lemma on optimality are then derived from the
estimates (7.7)–(7.9) in the same way as in the proof of Theorem 6.1. Theorem 7.1 is
proved.

Proof of Theorem 7.2. To prove the theorem we shall slightly modify the estimates
(7.6), (7.7), and (7.9). First, we shall add to V1 +V2

h the vector-valued quadratic form

V2
v (v0) =

1
2

 m∑
i=1

〈
ζ0, q0 ◦

∑
j<i

Xjv
0
j , Xiv

0
i

〉 z.

Evidently the projection of this form onto the covector ζ0 coincides with the second
variation at the switching points. The proof of the theorem can be completed by
invoking the following technical lemma.

LEMMA 7.4. If the strong genericity assumption holds for the bang-bang Pon-
tryagin extremal (ũ(·), q̃(·), ζ̃(·)), and the quadratic form (7.3) is negative definite on
its domain (7.2), then the values of V1(u(·)) + V2

h(u(·)) + V2
v (v0) belong to the lower

semispace and there exists both a positive constant α and for any sufficiently small
∆ > 0 a neighborhood U∆ of the origin in the L1-norm such that for all admissible
variations u(·) ∈ U∆ ∩ Lr∞[0, T ] and all possible coordinatizations the inequality

|V1(u(·)) + V2
h(u(·)) + V2

v (v0)|≥α(‖ū(·)‖L1 + |v0|2 + ∆−2|v]|2 + ‖w(·)‖2L1
)(7.10)

holds.
Postponing the proof of this lemma we finish the proof of the Theorem 7.2. It

follows from (7.8) that

|V2
v (u(·))− V2

v (v0)| ≤ A(∆‖ū(·)‖L1 + ∆−1|v]|2 + ∆(|v0|2 + ‖w(·)‖2L1
)).(7.11)

The conditions of the auxiliary lemma on optimality are to be derived from the es-
timates (7.10)–(7.11) in the same way as in the proof of the Theorem 6.1. Theorem 7.2
is proved.

Proof of Lemma 7.3. As in the proof of the Lemma 6.5 we may restrict our
consideration to the vertical component of the term q0 ◦

∫ T
0

∫ t
0Xτu(τ)dτ ◦Xtu(t)dt of

the Volterra expansion. First we represent this term as a sum:∫ T

0

∫ t

0
Xτu(τ)dτ ◦Xtū(t)dt+

m∑
i=1

∫ τi+∆

τi−∆

∫ t

0
Xτu(τ)dτ ◦Xt(w(t) + vi/2∆)dt.
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The first summand of the right-hand side admits an upper estimate c‖u(·)‖L1‖ū(·)‖L1 ,
which is majorized by A∆‖ū(·)‖L1 , provided that ‖u(·)‖L1 is small enough. Substi-
tuting ū(t) + vs(t) + w(t) in place of u(t) in the second summand we transform it
into

m∑
i=1

∫ τi+∆

τi−∆

∫ t

0
Xτ ū(τ)dτ ◦Xt(w(t) + vi/2∆)dt

+
m∑
i=1

∫ τi+∆

τi−∆

∫ t

0
Xτ (vs(τ) + w(τ))dτ ◦Xt(w(t) + vi/2∆)dt.

Again the first summand admits an upper estimate c‖u(·)‖L1‖ū(·)‖L1 , majorized
by A∆‖ū(·)‖L1 , provided that ‖u(·)‖L1 is small enough. The second summand can
be represented as

m∑
i=1

∫ τi+∆

τi−∆

i−1∑
j=1

∫ τj+∆

τj−∆
Xτ (w(τ) + vj/2∆)dτ ◦Xt(w(t) + vi/2∆)dt

+
m∑
i=1

∫ τi+∆

τi−∆

∫ t

τi−∆
Xτ (w(τ) + vi/2∆)dτ ◦Xt(w(t) + vi/2∆)dt.

Changing Xτ to Xi on an interval [τi −∆, τi + ∆] in this last formula we change it
by O(1)∆(|v0|2 + |v]|2 + ‖w(·)‖2L1

), obtaining

m∑
i=1

i−1∑
j=1

Xjvj ◦Xivi +
1
2
Xivi ◦Xivi


+

m∑
i=1

∫ τi+∆

τi−∆
Xi

∫ t

τi−∆
w(τ)dτ ◦Xi(w(t) + vi/2∆)dt(7.12)

+
∫ τi+∆

τi−∆
Xi

∫ t

τi−∆
(vi/2∆)dτ ◦Xiw(t)dt.

Splitting v = (v1, . . . , vm) into the sum v] + v0, where v] = (v]1, . . . , v
]
m), v0 =

(v0
1 , . . . , v

0
m), we represent the first summand as

m∑
i=1

i−1∑
j=1

Xjv
0
j ◦Xiv

0
i +O(1)(|v]||v0|+ |v]|2).

Obviously O(1)(|v]||v0|+ |v]|2) is O(1)(∆|v0|2 + ∆−1|v]|2), as (|v]||v0|+ |v]|2)→ 0.
Since

∑m
j=1 q0 ◦Xjv

0
j = 0, then

0 =
m∑
i=1

m∑
j=1

q0 ◦Xjv
0
j ◦Xiv

0
i

=
m∑
i=1

∑
j<i

+
1
2

i∑
j=i

 q0 ◦Xjv
0
j ◦Xiv

0
i

+
m∑
i=1

∑
j<i

+
1
2

j∑
i=j

 q0 ◦Xiv
0
i ◦Xjv

0
j


and hence

m∑
i=1

i−1∑
j=1

Xjv
0
j ◦Xiv

0
i +

1
2
Xiv

0
i ◦Xiv

0
i

 =
1
2

m∑
i=1

∑
j<i

q0 ◦ [Xjv
0
j , Xiv

0
i ].
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Let us estimate other terms of (7.12), i.e., the sum

m∑
i=1

∫ τi+∆

τi−∆
Xi

∫ t

τi−∆
w(τ)dτ ◦Xiw(t)dt+

m∑
i=1

∫ τi+∆

τi−∆
Xi

∫ t

τi−∆
w(τ)dτ ◦Xivi/2∆dt

+
∫ τi+∆

τi−∆
Xi

∫ t

τi−∆
(vi/2∆)dτ ◦Xiw(t)dt.

Integration by parts gives us ∫ τi+∆

τi−∆
Xi

∫ t

τi−∆
w(τ)dτ ◦Xiw(t)dt

=
∫ τi+∆

τi−∆
Xi

∫ τi+∆

τi−∆
w(τ)dτ ◦Xiw(t)dt−

∫ τi+∆

τi−∆
Xiw(t) ◦Xi

∫ t

τi−∆
w(τ)dτdt.

Since the first summand of this last formula vanishes, we derive∫ τi+∆

τi−∆
Xi

∫ t

τi−∆
w(τ)dτ ◦Xiw(t)dt =

1
2

∫ τi+∆

τi−∆

[
Xi

∫ t

τi−∆
w(τ)dτ,Xiw(t)

]
dt;

its projection onto ζ0 vanishes by virtue of the second-order horizontality condition
for switchings.

Similarly ∫ τi+∆

τi−∆
Xi

∫ t

τi−∆
w(τ)dτ ◦Xi(vi/2∆)dt

=
∫ τi+∆

τi−∆
Xi

∫ τi+∆

τi−∆
w(τ)dτ ◦Xi(vi/2∆)dt−

∫ τi+∆

τi−∆
Xiw(t) ◦Xi

∫ t

τi−∆
(vi/2∆)dτdt.

The first summand in the right-hand side vanishes, and we obtain∫ τi+∆

τi−∆
Xi

∫ t

τi−∆
w(τ)dτ ◦Xi(vi/2∆)dt+

∫ τi+∆

τi−∆
Xi

∫ t

τi−∆
(vi/2∆)dτ ◦Xiw(t)dt

=
∫ τi+∆

τi−∆

[
Xi

∫ t

τi−∆
(vi/2∆)dτ,Xiw(t)

]
dt.

The projection of this last expression onto ζ0 vanishes by virtue of the second-order
horizontality condition for switchings, and therefore the Lemma 7.3 is proved.

Proof of Lemma 7.4. The estimate (7.10) is derived from the estimate

|V1(u(·)) + V2
h(u(·)) + V2

v (v0)| ≥ a1‖ū(·)‖L1 + c3(|v]|2 + |v0|2 + ‖w(·)‖2L1
)

+ max(0, b3|v]| −β3‖ū(·)‖L1 −k∆‖w(·)‖L1 − k∆|v0|),(7.13)

which is a modification of the estimate (7.6). To establish (7.13) and to prove that
V1(u(·))+V2

h(u(·))+V2
v (v0) belongs to the lower semispace we return to the estimates

(6.12) and note that under the strong genericity assumption K−i = R+`i, K
+
i =

R−`i ∀i = 1, . . . ,m, and there exists a constant B > 0 such that

|〈ζ0, q0 ◦ ((Xτ−Xi)v − Ẋi`i(τ − τi)|v|)〉| ≤ B∆|τ − τi||v|(7.14)

∀(τ, v) ∈ ([τi −∆, τi)×K−i ) ∪ ((τi, τi + ∆]×K+
i ).



SUFFICIENT OPTIMALITY CONDITIONS FOR BANG-BANG CONTROLS 339

Repeating the computation (6.14) we derive

m∑
i=1

〈ζ0, q0 ◦ Ẋi`i〉
(∫ τi

τi−∆
(τ − τi)|v(τ)|dτ −

∫ τi+∆

τi

(τ − τi)|v(τ)|dτ
)

≤ −
m∑
i=1

〈ζ0, q0 ◦ Ẋi`i〉

(∫ τi

τi−∆
v(τ)dτ

)2

+

(∫ τi+∆

τi

v(τ)dτ

)2
 /2Mi.(7.15)

Denoting v−i =
∫ τi
τi−∆ |v(τ)|dτ, v+

i = −
∫ τi+∆
τi

|v(τ)|dτ we note that

〈ζ0, q0 ◦ Ẋi`i〉 > 0, v−i ≥ 0, v+
i ≤ 0, and vi = v−i + v+

i .

To derive an upper estimate for the negative definite quadratic form (7.15) in terms
of vi we have to solve an elementary extremal problem

((v−i )2 + (v+
i )2)/2Mi → min, v−i + v+

i = vi, v
−
i ≥ 0, v+

i ≤ 0.

Using the Kuhn–Tucker theorem we obtain the value v2
i /2Mi for the minimum. There-

fore the negative definite quadratic form −
∑m
i=1〈ζ0, q0 ◦ Ẋi`i〉v2

i /2M provides the
upper estimate for (7.15). By virtue of (7.14) the negative definite quadratic form

−(1−B∆)
m∑
i=1

〈ζ0, q0 ◦ Ẋi`i〉v2
i /2M

provides the upper estimate for 〈ζ0, q0 ◦
∑m
i=1

∫ τi+∆
τi−∆(Xτ −Xi)v(τ)dτ〉.

Extracting the terms which are quadratic in v0 we represent it as

−(1−B∆)

(
m∑
i=1

〈ζ0, q0 ◦ Ẋi`i〉(v0
i )2/2Mi +

m∑
i=1

〈ζ0, q0 ◦ Ẋi`i〉(2v]iv0
i + (v]i )

2)

)
.

The second summand admits an estimate∣∣∣∣∣
m∑
i=1

〈ζ0, q0 ◦ Ẋi`i〉(2v]iv0
i + (v]i )

2)

∣∣∣∣∣ = O(1)(∆−1|v]|2 + ∆|v0|2).

Since

−1
2

m∑
i=1

〈ζ0, q0 ◦ Ẋi`i〉(v0
i )2/2Mi +

m∑
i=1

〈
ζ0, q0 ◦

∑
j<i

Xjv
0
j , Xiv

0
i

〉

is a negative definite quadratic form in v0, then for sufficiently small ∆ > 0 the
quadratic form

−1
2

(1−B∆)
m∑
i=1

〈ζ0, q0 ◦ Ẋi`i〉(v0
i )2/2Mi +

m∑
i=1

〈
ζ0, q0 ◦

∑
j<i

Xjv
0
j , Xiv

0
i

〉

admits an upper estimate −γ|v0|2 and we derive that V1(u(·)) + V2
h(u(·)) + V2

v (v0)
belongs to the lower semispace and satisfies the estimate (7.13), which implies the
estimate (7.10).
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Abstract. This paper considers the optimal control problem of minimizing control effort subject
to multiple performance constraints on output covariance matrices Yi of the form Yi ≤ Y i, where Y i is
given. The contributions of this paper are a set of conditions that characterize global optimality, and
an iterative algorithm for finding a solution to the optimality conditions. This iterative algorithm is
completely described up to a user-specified parameter. We show that, under suitable assumptions on
problem data, the iterative algorithm converges to a solution of the optimality conditions, provided
that this parameter is properly chosen. Both discrete- and continuous-time problems are considered.

Key words. covariance control, convergent algorithm
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1. Introduction. Consider the following linear time-invariant system:

ẋp(t) = Apxp(t) +Bpu(t) +Dpwp(t),
yp(t) = Cpxp(t),
z(t) = Mpxp(t) + v(t),

(1.1)

where xp is the state, u the control, wp represents process noise, and v is the mea-
surement noise. The vector yp contains all variables whose dynamic responses are of
interest. The vector z is a vector of noisy measurements.

Suppose that we apply to the plant (1.1) a full state feedback stabilizing control
law of the form

u(t) = Gxp(t)(1.2)

or a strictly proper output feedback stabilizing control law given by

ẋc(t) = Acxc(t) + Fz(t),
u(t) = Gxc(t).

(1.3)

Then the resulting closed-loop system is

ẋ(t) = Ax(t) +Dw(t),

y(t) =
[
yp(t)
u(t)

]
=
[
Cy
Cu

]
x(t) = Cx(t),

(1.4)
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where for the state feedback case we have x = xp and w = wp, while for the output
feedback case we have x = [xTp xTc ]T and w = [wTp vT ]T . Moreover, formulas for A,
C, and D are easy to obtain from (1.1) and (1.2) or (1.3).

Consider the closed-loop system (1.4). Let Wp and V denote positive definite
symmetric matrices with dimensions equal to the process noise wp and measurement
vector z, respectively. Define W = Wp, if the state feedback controller (1.2) is used in
(1.4) or W = block diag [Wp, V ] if (1.3) is used in (1.4). Let X denote the closed-
loop controllability Gramian from the (weighted) disturbance input W−1/2w. Since
A is stable, X satisfies

0 = AX +XAT +DWDT .(1.5)

Partition the performance output yp in (1.4) into yp := [yT1 , y
T
2 , . . . , y

T
m]T , where

yi = Cix ∈ Rmi for i = 1, 2, . . . ,m. In this paper we are interested in finding
controllers of the form (1.2) or (1.3) that minimize the (weighted) control energy
trace RCuXC

T
u with R > 0, and satisfy the constraints

Yi = CiXC
T
i ≤ Y i, i = 1, 2, . . . ,m,(1.6)

where Y i > 0 (i = 1, 2, . . . ,m) are given and X solves (1.5). This problem, which we
call the the output covariance constraint (OCC) problem, is defined as follows.

The OCC Problem. Find a static state feedback or full-order dynamic output
feedback controller for system (1.1) to minimize the OCC cost

JOCC = trace RCuXCTu , R > 0,(1.7)

subject to (1.5) and (1.6).
The OCC problem may be given several interesting interpretations. For instance,

assume first that wp and v are uncorrelated zero-mean white noises with intensity
matrices Wp > 0 and V > 0. That is, let E be an expectation operator, and

E [wp(t)] = 0, E [wp(t)wTp (t− τ)] = Wpδ(τ),
E [v(t)] = 0, E [v(t)vT (t− τ)] = V δ(τ).

(1.8)

Letting E∞[·] := limt→∞ E [·] and W = Wp for the case of state feedback or W =
block diag [Wp, V ] for the output feedback case, it is easy to see that the OCC is
the problem of minimizing E∞uTRu subject to the OCCs Yi := E∞yi(t)yTi (t) ≤ Y i.
As is well known, these constraints may be interpreted as constraints on the variance
of the performance variables or lower bounds on the residence time (in a given ball
around the origin of the output space) of the performance variables [10].

The OCC problem may also be interpreted from a deterministic point of view.
To see this, define the L∞ and L2 norms

‖ yi‖2∞ := supt≥0 yTi (t)yi(t),

‖ w‖22 :=
∫∞

0 wT (t)w(t)dt,
(1.9)

and define the (weighted) L2 disturbance set

W := {w : R→ Rnw and ‖W−1/2w‖22 ≤ 1},(1.10)

where W > 0 is a real symmetric matrix. Then, for any w ∈ W, we have [17, 18]

‖ yi‖2∞ ≤ σ[Yi], i = 1, 2, . . . ,m,(1.11)
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and

‖ui‖2∞ ≤ [CuXCTu ]ii, i = 1, 2, . . . , nu,(1.12)

where nu is the dimension of u. (Here, σ[·] denotes the maximum singular value and
[ ]ii is the ith diagonal entry.) Moreover, [17, 18] show that the bounds in (1.11) and
(1.12) are the least upper bounds that hold for an arbitrary signal w ∈ W.

Thus, if we define Y i := Imiε
2
i in (1.6) and R := diag [r1, r2, . . . , rnu ] in (1.7),

the OCC problem is the problem of minimizing the (weighted) sum of worst-case peak
values on the control signals given by

JOCC =
nu∑
i=1

ri

{
sup
w∈W

‖ui‖2∞
}

(1.13)

subject to constraints on the worst-case peak values of the performance variables of
the form

sup
w∈W

‖yi‖2∞ ≤ ε2i , i = 1, 2, . . . ,m.(1.14)

This interpretation is important in applications where hard constraints on responses
or actuator signals cannot be ignored, such as space telescope pointing and machine
tool control.

Control problems related to the OCC problem defined here have been considered
before by several authors. See, for example, [6, 9, 5, 1, 3, 15, 16] for work in multiob-
jective optimal control with quadratic cost functionals, [13, 14, 4, 19] for the so-called
variance constraint control problems, and [12] for the so-called generalized H2 control
problem.

In the above references, one may find two different approaches for solving this class
of optimal control problems: the approach based on solving the optimality conditions
corresponding to the optimization problem at hand [4, 16, 19] and the approach based
on reducing the given problem to a finite dimensional convex optimization problem
[1, 3, 12].

In this paper, we follow the approach initiated in [4, 19]. Here, we consider a
more general and realistic problem, i.e., the OCC problem, than the one studied in
[4, 16, 19], and provide an iterative algorithm for solving the optimality conditions
corresponding to this problem. Our main contribution is in the algorithm itself. This
iterative algorithm is completely described up to a user-specified parameter. We show
that the algorithm converges to a solution of the optimality conditions (assuming
that one exists), provided that the user-specified parameter is properly chosen. Both
discrete- and continuous-time problems are considered.

The paper is organized as follows. Section 2 provides optimality conditions for
the continuous-time OCC problem in the case of state feedback. These conditions
comprise one algebraic Riccati equation and one Lyapunov equation. The Riccati
equation has a forcing term depending on a matrix Q (which represents the Kuhn–
Tucker multipliers) that must be determined. An algorithm for finding this matrix
Q is given, and its convergence analyzed. Section 2 concludes with the extension of
the state feedback results to the output feedback case. Section 3 is the discrete-time
version of section 2. An example is presented in section 4 to illustrate the performance
of the algorithm. Section 5 gives the conclusions of this work.

The notation used in this paper is fairly standard. Given the continuous-time
algebraic Riccati equation

0 = ATpK +KAp −KBpR−1BTp K + CTp QCp,



344 G. ZHU, M. ROTEA, AND R. SKELTON

we say that K is the stabilizing solution if K = KT satisfies the Riccati equation and
Ap −BpR−1BTp K has all eigenvalues in the open left half plane. Similarly, given the
discrete-time algebraic Riccati equation

K = ATpKAp −ATpKBp(R+BTKBTp )−1BTp KAp + CTp QCp,

we say that K is the stabilizing solution if K = KT satisfies the Riccati equation and
Ap−Bp(R+BpKB

T
p )−1BTp KAp has all eigenvalues in the open unit disk. Note that

when the continuous (or discrete) stabilizing solution exists it is unique. Moreover, if
Q = QT ≥ 0, the stabilizing solution is positive semidefinite.

2. The OCC algorithm for continuous systems.

2.1. The OCC algorithm for state feedback. In this section we consider
the case of state feedback. With the state feedback controller (1.2) the closed-loop
system matrices in (1.4) are given by

A = Ap +BpG, D = Dp, Cy = Cp, Cu = G.(2.1)

The following theorem provides conditions for optimality in the state feedback case.
THEOREM 2.1. Suppose there exists a matrix

Q∗ = block diag [Q∗1, Q
∗
2, . . . , Q

∗
m] ≥ 0, Q∗i = Q∗i

T ∈ Rmi×mi , i = 1, 2, . . . ,m,
(2.2)

such that the algebraic Riccati equation

0 = ATpK +KAp −KBpR−1BTp K + CTp Q
∗Cp(2.3)

has the (unique) stabilizing solution K∗. Define

G∗ = −R−1BTp K
∗,(2.4)

and let X∗ denote the unique solution of the Lyapunov equation

0 = (Ap +BpG
∗)X +X(Ap +BpG

∗)T +DpWpD
T
p ,(2.5)

and define Yi = CiX
∗CTi (i = 1, 2, . . . ,m). Then if

0 = (Yi − Y i)Q∗i and Yi ≤ Y i(2.6)

for all i = 1, 2, . . . ,m, we have that G∗ given by (2.4) is an optimal solution to the
OCC problem defined in (1.7).

Proof. Let Q∗ be given by (2.1) and define the following LQ problem:

min
(G,X)

J(G,X) = trace RGXGT +
m∑
i=1

trace (CiXCTi − Y i)Q∗i(2.7)

subject to Ap +BpG stable and

0 = (Ap +BpG)X +X(Ap +BpG)T +DpWpD
T
p .(2.8)

Using a simple completion of square argument, it is easy to see from (2.3), (2.4), and
(2.5) that (G∗, X∗) solves (2.7).
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Now let G denote a feasible controller (arbitrary but fixed) for the OCC problem.
That is, (Ap + BpG) is stable and CiXC

T
i ≤ Y i (for all i = 1, 2, . . . ,m), where X is

the closed-loop Gramian corresponding to G. From the previous paragraph, we get
that

JOCC(G∗, X∗) = trace RG∗X∗(G∗)T +
m∑
i=1

trace (CiX∗CTi − Y i)Q∗i

≤ trace RGXGT +
m∑
i=1

trace (CiXCTi − Y i)Q∗i

≤ trace RGXGT .

(2.9)

Using the fact that 0 = (CiX∗CTi − Y i)Q∗i , from (2.9) we obtain

trace RG∗X∗(G∗)T ≤ trace RGXGT .(2.10)

This last inequality, together with the fact thatG∗ is also feasible for the OCC problem
because CiX∗CTi ≤ Y i (for all i = 1, 2, . . . ,m), implies that G∗ is a solution to the
OCC problem.

From (2.3) and (2.4), it follows that the solution of the OCC problem with static
state feedback is an LQ controller with a special choice of output-weighting matrix
Q. Therefore, our algorithm for solving the conditions in Theorem 2.1 needs only to
iterate on Q.

Before giving the algorithm we would like to mention that the existence of Q∗

satisfying the conditions of Theorem 2.1 is necessary in certain cases. For example,
from Theorem 5.8 of [5], it follows that, when the constraints in (1.6) are scalar and (for
example) the pairs (C1, Ap), . . . , (Cm, Ap) do not have imaginary axis unobservable
modes, then a diagonal Q∗ exists if a solution to the OCC problem exists. See also
[3]. The case of block diagonal matrices Q does not seem to appear in the published
literature. It should be noted that the emphasis of the present paper is an algorithm
for computing Q∗ (and thus a controller that solves the OCC problem) under the
assumption that a matrix Q∗ satisfying the conditions of Theorem 2.1 exists. This
algorithm is given next.

To give this algorithm we need to introduce the following operator. Let M denote
a real symmetric matrix, and suppose that

M = [U1 U2] block diag [Ep, En] [U1 U2]T(2.11)

is the (real) Schur decomposition of M , where Ep and En are diagonal matrices
containing the strictly positive and nonpositive eigenvalues of M in decreasing order,
respectively, and [U1 U2] is an orthogonal matrix. Define

P[M ] =
{

0 if M ≤ 0,
U1EpU

T
1 otherwise.(2.12)

Note that if M is a symmetric matrix with block diagonal structure, the operator P[·]
preserves the block structure; i.e., P[M ] has the block structure of M .

The following algorithm for solving the conditions in Theorem 2.1 is the main
contribution of this paper.
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THE OCC ALGORITHM.
(1) Given Ap, Bp, Dp, Cp, Wp, R, Y

b
= block diag [Y 1, Y 2, . . . , Y m], an initial

point Q(0) = block diag [Q1(0), Q2(0), . . . , Qm(0)] > 0, and constants
α > 0, 0 < β < 1, let j = 0 and go to 2).

(2) Compute K(j) ≥ 0 and G(j) by solving

0 = ATpK(j) +K(j)Ap −K(j)BpR−1BTp K(j) + CTp Q(j)Cp,
G(j) = −R−1BTp K(j).

(2.13)

(3) Compute X(j) by solving

0 = [Ap +BpG(j)]X(j) +X(j)[Ap +BpG(j)]T +DpWpD
T
p .(2.14)

(4) Set Yi(j) = CiX(j)CTi for i = 1, 2, . . . ,m.
(5) Let Y b(j) = block diag [Y1(Q(j)), Y2(Q(j)), . . . , Ym(Q(j))], and

Q(j + 1) = βQ(j) + (1− β)P[Q(j) + α{Y b(j)− Y b}] ,(2.15)

j = j + 1, go to 2).
Several stopping criteria may be used to guarantee that the OCC algorithm ter-

minates in a finite number of steps. In this paper, we propose stopping the algorithm
whenever the first equation in condition (2.6) is satisfied to a given numerical accuracy.
This can be achieved by checking if the inequality

m∑
i=1

||(Yi(j)− Y i)Qi(j)|| < ε(2.16)

holds, where ε > 0 is the specified tolerance. Inequality (2.16) must be tested after
step 4). If (2.16) holds, we stop the algorithm and declare G(j), Q1(j), Q2(j), and
Qm(j) to be a numerical solution to the OCC problem; if (2.16) does not hold, the
algorithm continues.

The rest of this section is devoted to showing that, under the assumption

(A1) (Ap, Bp) is stabilizable and Ap has no eigenvalues on the imaginary axis,

if there exists Q∗ satisfying the conditions in Theorem 2.1, then the OCC algorithm
will find it, provided that α is properly chosen. More specifically, under the assump-
tions mentioned, we will show that the sequence of matrices {Q(j)}∞j=0 generated by
the OCC algorithm (see (2.15)) has a limit Q̂ which satisfies all the conditions of
Theorem 2.1. Thus, the OCC algorithm converges to a globally optimal solution to
the OCC problem. Note that the existence of the limit Q̂ implies that, given any
ε > 0, there exists an integer j such that inequality (2.16) holds.

Note that the OCC algorithm is well posed in the sense that the unique positive
semidefinite solution K(j) to the Riccati equation (2.13) and the solution X(j) to the
Lyapunov equation (2.14) exist at each iteration. This follows from assumption (A1)
and the fact that, at each iteration, Q(j) ≥ 0. As is well known [7], since (Ap, Bp) is
stabilizable and the pair (Q(j)1/2Cp, Ap) has no imaginary axis unobservable modes,
K(j) ≥ 0 exists, is unique, and renders Ap −BpR−1BTp K(j) asymptotically stable.

To establish our results we need to introduce the following operators:

Tβ [Q] := βQ+ (1− β)T [Q],

T [Q] := P[Q+ α{Y b(Q)− Y b}],
(2.17)
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where α > 0 and β ∈ (0, 1) are parameters of the OCC algorithm. Note that, with
this notation, the sequence of matrices Q(j) generated by the OCC algorithm is
{T jβ [Q(0)]}∞j=0, where Q(0) ≥ 0 is block diagonal.

THEOREM 2.2. Consider the OCC algorithm, and suppose that α > 0, 0 < β <
1, and assumption (A1) holds. Suppose that the algorithm converges; that is, the
sequence {T jβ [Q(0)]}∞j=0 converges to Q∗. Then Q∗ := block diag [Q∗1, Q

∗
2, . . . , Q

∗
m]

satisfies the sufficient conditions in Theorem 2.1 for optimality. In other words, if the
OCC algorithm converges, the resulting controller u=−R−1BTp K

∗x, where K∗ solves
(2.3), is a global optimal solution to the given OCC problem, where Q∗ is the limit of
the convergent sequence {T jβ [Q(0)]}∞j=0.

The proof of Theorem 2.2 requires the following lemma.
LEMMA 2.3. For any symmetric matrices M = MT and N = NT of the same

dimensions, the following statements hold:
1. P[M +N ] = M if and only if M ≥ 0, N ≤ 0, and MN = 0.
2. ‖P[M ]− P[N ]‖ ≤ ‖M −N‖, where ‖ · ‖ denotes the Frobenius norm.
Proof. First, we shall show the necessity part of 1. The property M ≥ 0 is a

direct consequence of the definition of P[·] in (2.12). Next, we show that N ≤ 0 and
MN = 0. Let M +N have the Schur decomposition

M +N = [U1 U2] block diag [Ep , En][U1 U2]T

= U1EpU
T
1 + U2EnU

T
2 ,

(2.18)

where Ep > 0 and En ≤ 0. Thus, from (2.12) and P[M +N ] = M we obtain

P[M +N ] = U1EpU
T
1 = M.(2.19)

Subtracting this last equation from (2.18) we obtain

N = U2EnU
T
2 ≤ 0.(2.20)

Since UT1 U2 = 0, from (2.19) and (2.20) it follows that

MN = U1EpU
T
1 U2EnU

T
2 = 0.

Second, we shall show the sufficiency part of 1. Let M ≥ 0 andN ≤ 0 be given and
suppose that MN = 0. Note that if either M or N is zero, the sufficiency of property
1) is trivial. Now suppose that M 6= 0 and N 6= 0. The real Schur decompositions of
M and N are

M = U1EpU
T
1 , N = U2EnU

T
2 ,

where Ep > 0, En < 0, UT1 U1 = I, UT2 U2 = I, and UT1 U2 = 0. Then

P[M +N ] = P[U1EpU
T
1 + U2EnU

T
2 ] = U1EpU

T
1 = M.(2.21)

Finally, we show property 2. Let M and N have the following Schur decomposi-
tions:

M = [U1 U2] block diag [Ep , En][U1 U2]T , Ep > 0, En ≤ 0,

N = [Û1 Û2] block diag [Êp , Ên][Û1 Û2]T , Êp > 0, Ên ≤ 0.
(2.22)
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Let

M+ := P[M ] = U1EpU
T
1 > 0,

M− := U2EnU
T
2 ≤ 0,

N+ := P[N ] = Û1ÊpÛ
T
1 > 0,

N− := Û2ÊnÛ
T
2 ≤ 0.

Note that M = M+ +M−, N = N+ +N−, M+M− = 0, and N+N− = 0. Then

‖M −N‖2 = ‖(M+ −N+) + (M− −N−)‖2

= ‖M+ −N+‖2 + ‖M− −N−‖2

−2traceM−N+ − 2traceM+N−.

(2.23)

Since −traceM−N+ ≥ 0 and −traceM+N− ≥ 0, we obtain

‖M −N‖2 ≥ ‖M+ −N+‖2 = ‖P[M ]− P[N ]‖2,(2.24)

which completes the proof.
The following lemma, essentially due to [2], is also required for the proof of The-

orem 2.2.
LEMMA 2.4. Consider the plant defined in (1.1) and suppose that assumption

(A1) holds. Let K denote the unique stabilizing solution to the Riccati equation (2.3)
with Q = QT ≥ 0. Then K(Q) is a real analytic function of Q = QT ≥ 0.

Proof of Theorem 2.2. By Lemma 2.4, the state feedback control gain G(Q) in
(2.4) is a continuous function of Q = QT ≥ 0. Hence, the block output covariance
matrix Y b(Q) is continuous with respect to Q = QT ≥ 0. Since the operator P[·]
is continuous, we obtain that T [·] and Tβ [·] are well defined and continuous for any
Q = QT ≥ 0. Suppose that {T jβ [Q(0)]}∞j=0 converges to Q∗, i.e.,

lim
j→∞

T jβ [Q(0)] = Q∗.(2.25)

Since β ∈ (0, 1) and P[·] preserves the block structure, we may conclude that, for
each j, T jβ [Q(0)] has the correct block diagonal structure and is positive semidefinite.
Thus, Q∗ = block diag [Q∗1, Q

∗
2, . . . , Q

∗
m] and Q∗ ≥ 0.

From the continuity properties of Tβ , we obtain

Tβ [Q∗] = Tβ
{

lim
j→∞

T jβ [Q(0)]
}

= lim
j→∞

T j+1
β [Q(0)] = Q∗.(2.26)

That is, Q∗ is a fixed point of Tβ [·]. Since β 6= 1, from (2.17), we get

Q∗ = T [Q∗] = P[Q∗ + α{Y b(Q∗)− Y b}] .(2.27)

Let M = Q∗ and N = α[Y b(Q∗)− Y b]. From Lemma 2.3, we conclude that

α[Y b(Q∗)− Y b] ≤ 0 and αQ∗[Y b(Q∗)− Y b] = 0 .

Since α > 0, the above inequalities imply that Q∗ satisfies (2.6). Hence, Q∗ satisfies
the conditions in Theorem 2.1. This completes the proof.
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The following result shows that there is always a choice for the parameter α in
the OCC algorithm that will guarantee its convergence, provided that the conditions
in Theorem 2.1 admit one solution.

THEOREM 2.5. Suppose that assumption (A1) holds. Assume also that there exists
Q∗ satisfying the conditions in Theorem 2.1. Then, given any Q(0) ≥ 0 ∈ Rny×ny
with the appropriate block diagonal structure, there exists an α∗ > 0 such that if
0 < α ≤ α∗, the sequence {T nβ [Q(0)]}∞n=0 will converge to some Q̂ ≥ 0 satisfying
the conditions in Theorem 2.1. That is, the OCC algorithm will converge to a global
optimal solution of the given OCC problem.

In order to prove Theorem 2.5, we need a few intermediate results and definitions.
Let Q = QT ≥ 0 be given and K denote the (unique) stabilizing solution to

0 = ATpK +KAp −KBpR−1BTp K + CTp QCp.(2.28)

Then, with the state feedback gain G = −R−1BTp K, the lth output covariance of the
closed-loop system Yl (l = 1, 2, · · · ,m) is given by

Yl = ClXC
T
l ,

where X is the unique solution to

0 = (Ap +BpG)X +X(Ap +BpG)T +DpWpD
T
p .(2.29)

Now, let

Q = block diag[Q1, Q2, . . . , Qm], Ql := [qlij ] ∈ Rml×ml ,(2.30)

and

Y b = block diag[Y1, Y2, . . . , Ym] .(2.31)

Below, we compute the derivative of Y b with respect to the weighting matrix Q given
in (2.30). We do this using vector notation. Let Q be given by (2.30) and define the
operator svec by

svec[Q] =


q1

q2

...
qm

 ∈ Rn ,(2.32)

where

qi :=
√

2
[
qi11√

2
, qi12, . . . , q

i
1mi ,

qi22√
2
, qi23, . . . , q

i
2mi , . . . ,

qimimi√
2

]T
.(2.33)

Note also that the operator svec defined in (2.32) preserves the Frobenius norm; i.e.,
if Q is given by (2.30), we have

||Q|| = ||svec[Q]|| .(2.34)

Moreover, svec[·] is a linear operator.
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Let

y = svec[Y b] ,(2.35)

where Y b is given by (2.31). Define also the symmetric matrix

Ei = svec−1[ei] ,(2.36)

where ei ∈ Rn has a one in the ith row and zeros elsewhere, and svec−1 is the inverse
of the operator svec.

LEMMA 2.6. Consider the system defined in (1.1), and suppose that assumption
(A1) holds. Let Q = QT ≥ 0 be given by (2.30), and define q = svec[Q]. Let y be
given by (2.35). Then the partial derivative of y ∈ Rn with respect to q ∈ Rn is

∂y

∂q
= −[Hij ] = −[2trace(PiBpR−1BTp PjX)], i, j = 1, 2, . . . , n,(2.37)

where Pi is the unique solution to

0 = Pi(Ap +BpG) + (Ap +BpG)TPi + CTp EiCp(2.38)

with Ei given by (2.36). Moreover, if Q = QT ≥ 0, the matrix-valued function
H(Q) = [Hij ] is continuous and it satisfies H(Q) ≥ 0.

Proof. Let yi denote the ith component of y. From the definition of the operator
svec (see, for example, (2.32)) it follows that

yi = trace(EiCpXCTp ).(2.39)

Using the Lyapunov equations (2.29) and (2.38) it follows from (2.39) that

yi = trace(PiDpWpD
T
p ),(2.40)

where Pi is the solution to (2.38). Hence, from (2.40), we get

∂yi
∂qj

= trace(PijDpWpD
T
p ),(2.41)

where qj is the jth component of q and Pij = ∂Pi
∂qj

.
Now to generate Pij , differentiate equation (2.38) with respect to qj to obtain

0 = Pij(Ap +BpG) + (Ap +BpG)TPij

− PiBpR−1BTp
∂K

∂qj
− ∂K

∂qj
BpR

−1BTp Pi.(2.42)

From the Riccati equation (2.28) and the Lyapunov equation (2.38) we get

Pj =
∂K

∂qj
,

where Pj solves (2.38) with the “E-matrix” equal to Ej . Hence, from (2.42), we
obtain

Pij = −
∫ ∞

0
exp[(Ap +BpG)T t][PiBpR−1BTp Pj

+ PjBpR
−1BTp Pi] exp[(Ap +BpG)t]dt.(2.43)
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Finally, from (2.29), (2.41), and (2.43) we obtain

∂y

∂q
= −[Hij ] = −[2trace(PiBpR−1BTp PjX)] ,(2.44)

which gives (2.37).
The continuity of H(Q) follows from the fact that, on the set of positive semidef-

inite matrices Q, the matrix-valued functions Pi, Pj , and X are all continuous. Note
also that

Hij = trace (PiBpR−1BTp PjX)

= 〈X1/2PiBpR
−1/2, X1/2PjBpR

−1/2〉,

where 〈M,N〉 = traceMNT is the standard inner product on the space of matrices
Rnx×nu , where nx and nu are dimensions of the plant states and controls. Thus, H
is of the form

H = [〈X1/2PiBpR
−1/2, X1/2PjBpR

−1/2〉],(2.45)

which shows that H ≥ 0.
The following results may be found in [11]; see Propositions 3.2.3 and 12.3.7.
LEMMA 2.7. Assume that F : Rn → Rn is Fréchet differentiable on a convex set

D′0 ⊂ Rn. Then for any x and y ∈ D′0,

‖F(y)−F(x)‖ ≤ sup
0≤t≤1

σ{F ′[x+ t(y − x)]}‖x− y‖ ,(2.46)

where F ′(·) denotes the Fréchet derivative of F(·) and σ[·] denotes the maximum
singular value of [·].

LEMMA 2.8. Suppose that T : Rny×ny → Rny×ny is nonexpansive on the closed,
convex set D0. That is, for any x, y ∈ D0, we have

‖T (y)− T (x)‖ ≤ ‖y − x‖ .(2.47)

Assume, further, that T D0 ⊂ D0 and that D0 contains a fixed point of T . Then for
any β ∈ (0, 1) and x0 ∈ D0 the iteration

xk+1 = βxk + (1− β)T (xk), k = 0, 1, . . . ,(2.48)

converges to a fixed point of T in D0.
Proof of Theorem 2.5. The proof of Theorem 2.5 consists of two steps. First,

we show the nonexpansive property of operator T defined in (2.17). By assumption,
there exists Q∗ satisfying the conditions in Theorem 2.1. Define a subset of Rny×ny
as follows:

D0 := {Q ≥ 0 ∈ Rny×ny : Q = block diag[Q1, Q2, . . . , Qm]
and ‖Q−Q∗‖ ≤ ‖Q(0)−Q∗‖},(2.49)

where ny is the dimension of yp, and Q(0) is the initial output-weighting matrix for
the OCC algorithm. It is obvious that the set D0 is compact (i.e., closed and bounded)
and convex. Let D′0 be a set defined by

D′0 := {q = svec[Q] ∈ Rn : Q ∈ D0} .(2.50)
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It is clear that D′0 is convex, because svec[·] is a linear operator and D0 is convex.
Let q ∈ D′0 and define y(q) = svec[Y b(Q)], and

F [q] = q + αy(q).(2.51)

Note that F [·] is well defined and Fréchet differentiable, with respect to q, in D′0. In
fact, from Lemma 2.6, it follows that the Frechet derivative of F [·] is

F ′[q] = I − αH(q),(2.52)

where H(q) is defined in (2.37). (Here, we think of H as a function of q = svec[Q]
instead of a function Q.)

Now, let Qν and Qµ in D0 be given. Define qν = svec[Qν ] and qµ = svec[Qµ].
Then, since svec[·] preserves the Frobenius norm, we have

‖T [Qν ]− T [Qµ]‖ = ‖P[Qν − α{Y b(Qν)− Y b}]− P[Qµ − α{Y b(Qµ)− Y b}]‖
≤ ‖Qν −Qµ − α[Y b(Qν)− Y b(Qµ)]‖
= ‖qν − qµ − α[yν − yµ]‖,

(2.53)

where yν := svec[Y b(Qν)] and yµ := svec[Y b(Qµ)]. Since qν and qµ belong to D′0,
using Lemma 2.7, we have

‖qν − qµ − α[yν − yµ]‖ = ‖F [qν ]−F [qµ]‖

≤ sup
0≤t≤1

σ[F ′[tqν + (1− t)qµ]]‖qν − qµ‖

= sup
0≤t≤1

σ[I − αH{[tqν + (1− t)qµ]}]‖qν − qµ‖.(2.54)

Since H is a continuous function over the compact set D′0, there exists an α∗ > 0
such that for any qν ∈ D′0, qµ ∈ D′0, and 0 ≤ t ≤ 1, we have

σ{H[tqν + (1− t)qµ]} ≤ 2/α∗.(2.55)

Thus, since for any qν and qµ ∈ D′0 and any t ∈ [0, 1], H[tqν +(1− t)qµ] ≥ 0, we have

sup
0≤t≤1

σ{I − αH[tqν + (1− t)qµ]} ≤ 1(2.56)

for any α ≤ α∗. Therefore, using (2.53) and (2.54), for any α ≤ α∗ we obtain

‖T [Qν ]− T [Qµ]‖ ≤ ‖qν − qµ‖ = ‖Qν −Qµ‖.(2.57)

Hence, for any α ≤ α∗, the operator T is nonexpansive on D0. Replacing Qµ by Q∗

proves that for any Q ∈ D0

‖T [Q]− T [Q∗]‖ ≤ ‖Q−Q∗‖ ≤ ‖Q(0)−Q∗‖.(2.58)

Now, using Lemma 2.3 and the fact that Q∗ satisfies the conditions of Theorem 2.1,
we conclude that T [Q∗] = Q∗. This equation and (2.58) imply

‖T [Q]−Q∗‖ ≤ ‖Q(0)−Q∗‖;(2.59)

therefore, T [Q] ∈ D0.
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Second, we shall show the convergence of the OCC algorithm, that is, the con-
vergence of the sequence {T jβ [Q(0)]}∞j=0. Since T D0 ⊂ D0, D0 is convex and contains
a fixed point of T , from Lemma 2.8 we obtain that the sequence {T jβ [Q(0)]}∞j=0 gen-
erated by the iteration

Q(j + 1) = Tβ [Q(j)] = βQ(j) + (1− β)T [Q(j)](2.60)

converges to a fixed point of T in D0—say, Q̂. The fact that Q̂ satisfies the sufficient
conditions in Theorem 2.1 is the direct consequence of Theorem 2.2.

2.2. The OCC algorithm for full-order dynamic feedback. The extension
of the state feedback case to the full-order dynamic feedback case is straightforward.
In fact, the state feedback OCC algorithm can be applied to solve the full-order
dynamic feedback OCC problem. Here, for system (1.1), we assume that assumption
(A1) holds and that

(A2) (Mp, Ap) is detectable.

As is well known [7], under assumption (A2), there exists a unique matrix X̃ that
satisfies the Riccati equation

0 = ApX̃ + X̃ATp − X̃MT
p V
−1MpX̃ +DpWpD

T
p(2.61)

and Ap− X̃MT
p V
−1 is asymptotically stable. Moreover, X̃ ≥ 0. With this matrix X̃,

we define

F = X̃MT
p V
−1 .(2.62)

THEOREM 2.9. Consider the plant defined in (1.1). Let X̃ and F denote the
matrices in (2.61) and (2.62). Suppose that there exists a matrix

Q∗ = block diag[Q∗1, Q
∗
2, . . . , Q

∗
m] ≥ 0, Q∗i = Q∗i

T ∈ Rmi×mi , i = 1, 2, . . . ,m,
(2.63)

such that the algebraic Riccati equation

0 = ATpK +KAp −KBpR−1BTp K + CTp Q
∗Cp(2.64)

has the (unique) stabilizing solution K∗. Define

G = −R−1BTp K
∗,(2.65)

and let X∗ denote the unique solution to the Lyapunov equation

0 = (Ap +BpG)X +X(Ap +BpG)T + FV FT ,(2.66)

and define Yi = Ci(X̃ +X∗)CTi (i = 1, 2, . . . ,m). Then if

0 = (Yi − Y i)Q∗i and Yi ≤ Y i(2.67)

for all i = 1, 2, . . . ,m, the dynamic controller

ẋc(t) = (Ap +BpG− FMp)xc(t) + Fz(t),
u(t) = Gxc(t)

(2.68)

is an optimal solution to the OCC problem defined in (1.7).
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A proof of this theorem may be obtained by combining Theorem 2.1 in this paper
and Lemma 4.2 and Theorem 4.1 in [12]. The result in [12] shows how to reduce the
OCC problem (and other H2-like problems) with output feedback to an equivalent
problem with state feedback.

Note that the matrices X̃ and F in (2.61) and (2.62) do not depend on the
weighting matrix Q∗. To find a matrix Q∗ satisfying the conditions in Theorem 2.9,
we can use the OCC algorithm given in section 2. This requires that we replace Dp,
Wp, and Y i in the OCC algorithm F , V , and Y i − CiX̃CTi , respectively.

3. Discrete-time version. The discrete-time version of the OCC problem is
very much like the continuous-time case. Here, we give the definition of the OCC
problem and the main results.

Consider the following discrete system:

xp(k + 1) = Apxp(k) +Bpu(k) +Dpwp(k),
yp(k) = Cpxp(k),
z(k) = Mpxp(k) + v(k).

(3.1)

Suppose that we apply to the plant (3.1) a full state feedback stabilizing control, i.e.,

u(k) = Gx(k),(3.2)

or a strictly proper stabilizing control

xc(k + 1) = Acxc(k) + Fz(k),
u(k) = Gxc(k).

(3.3)

Then the closed-loop system has the following form:

x(k + 1) = Ax(k) +Dw(k),

y(k) =
[
yp(k)
u(k)

]
=
[
Cy
Cu

]
x(k) = Cx(k),

(3.4)

where the definitions of matrices A, B, and C and vectors x, w, and y are as in the
continuous-time case.

As in section 1, let Wp > 0 and V > 0 denote symmetric matrices with dimensions
equal to the dimensions of wp and z, respectively. Define W = Wp if (3.2) is used
in (3.4) or W = block diag[Wp, V ] if (3.3) is used. Let X denote the closed-loop
controllability Gramian from the input W−1/2w. Since A is stable, X is given by

X = AXAT +DWDT .(3.5)

As in the continuous-time case, we seek a solution to the following optimal control
problem.

The Discrete-Time OCC Problem. Find a state feedback stabilizing controller
(3.2) or a strictly proper output feedback stabilizing controller (3.3) for the system
(3.1) to minimize the OCC cost

JOCC = traceRCuXCTu , R > 0,(3.6)

subject to

Yi = CiXC
T
i ≤ Y i, i = 1, 2, . . . ,m,(3.7)

where X is given by (3.5).
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The discrete-time OCC problem has interpretations similar to the ones of the
continuous-time case. For example, the discrete-time OCC problem may be inter-
preted as the problem of minimizing a weighted sum of the worst-case peak values
of the control signals ui subject to constraints on the worst-case peak values of the
response yi, when the disturbance w is unknown but has bounded energy. This is
because, as in the continuous-time case, discrete-time gains from `2 to `∞ may also
be computed using controllability Gramians [18].

3.1. State feedback case. In this section we consider the case of state feedback.
The following theorem provides conditions for global optimality. Its proof is similar
to that of Theorem 2.1 and is omitted.

THEOREM 3.1. Suppose there exists a matrix

Q∗ = block diag[Q∗1, Q
∗
2, . . . , Q

∗
m] ≥ 0, Q∗i = Q∗i

T ∈ Rmi×mi , i = 1, 2, . . . ,m,
(3.8)

such that the algebraic Riccati equation

K = ATpKAp −ATpKBp(R+BTp KBp)
−1BTp KAp + CTp Q

∗Cp(3.9)

has the (unique) stabilizing solution K∗. Define

G∗ = −(R+BTp K
∗Bp)−1BTp K

∗Ap,(3.10)

let X∗ denote the unique solution of the Lyapunov equation

X = (Ap +BpG
∗)X(Ap +BpG

∗)T +DpWpD
T
p ,(3.11)

and define Yi = CiX
∗CTi (i = 1, 2, . . . ,m). Then, if

0 = (Yi − Y i)Q∗i and Yi ≤ Y i(3.12)

for all i = 1, 2, . . . ,m, we have that G∗ given by (3.10) is an optimal solution to the
OCC problem defined in (3.6).

The following algorithm may be used to find a matrix Q∗ and consequently a
matrix G∗ for the OCC problem satisfying the conditions in Theorem 3.1.

THE DISCRETE-TIME OCC ALGORITHM.
(1) Given Ap, Bp, Dp, Cp, Wp, R, Y i = block diag[Y 1, Y 2, . . . , Y m], an initial

point Q(0) = block diag[Q1(0), Q2(0), . . . , Qm(0)] > 0, and constants α > 0,
0 < β < 1, let j = 0 and go to 2).

(2) Compute K(j) ≥ 0 and G(j) by solving

K(j) = ATpK(j)Ap + CTp Q(j)Cp

−ATpK(j)Bp[R+BTp K(j)Bp]−1BTp K(j)Ap,

G(j) = −[R+BTp K(j)Bp]−1BTp K(j)Ap.

(3.13)

(3) Compute X(j) by solving

X(j) = [Ap +BpG(j)]X(j)[Ap +BpG(j)]T +DpWpD
T
p .(3.14)

(4) Set Yi(j) = CiX(j)CTi for i = 1, 2, . . . ,m.
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(5) Let Y b(j) = block diag[Y1(Q(j)), Y2(Q(j)), . . . , Ym(Q(j))], and

Q(j + 1) = βQ(j) + (1− β)P[Q(j) + α{Y b(j)− Y b}],(3.15)

j = j + 1, go to 2).
In (3.15), the operator P[·] is as defined in (2.12).

The same stop criterion as the continuous-time case is proposed for the discrete-
time OCC algorithm. That is, (2.16) needs to be tested after step 4) for a given
tolerance ε > 0. If (2.16) holds, G(j), Q1(j), Q2(j), and Qm(j) are numerical solutions
for the given OCC problem; otherwise, the algorithm continues.

In the rest of this section, we will assume the following:

(A3) (Ap, Bp) is stabilizable and Ap has no eigenvalues on the unit circle.

Note that the discrete-time OCC algorithm is well posed in the sense that the unique
positive semidefinite solution K(j) to the Riccati equation (3.13) and the solution
X(j) to the Lyapunov equation (3.14) exist at each iteration. This follows from
assumption (A3) and the fact that, at each iteration, Q(j) ≥ 0. As is well known
[8], since (Ap, Bp) is stabilizable and the pair (Q(j)1/2Cp, Ap) has no unobservable
modes on the unit circle, K(j) ≥ 0 exists, is unique, and renders Ap − Bp(R +
BTp K(j)Bp)−1BTp K(j)Ap asymptotically stable.

A close examination of the proofs of the continuous-time results given in Theorems
2.2 and 2.5 reveals that the convergence property of the continuous-time algorithm
follows from

(i) the properties of the operator P[·] given in Lemma 2.3,
(ii) the properties of the stabilizing solution to the continuous-time Riccati equa-

tion given in Lemma 2.4,
(iii) the formula for the derivatives of the output covariance matrices Y1(Q),

Y2(Q), . . ., Ym(Q), with respect to Q, given in Lemma 2.6.
Certainly, property (i) above holds in the discrete-time case because the operator

P[·] is the same. Also, it is relatively easy to show that, under assumption (A3),
property (ii) extends to the discrete-time setting. Finally, property (iii) above also
holds in the discrete-time case, provided that the Lyapunov equation (2.38) is replaced
by its discrete-time counterpart and the matrices R and X in (2.37) are replaced by
R+BTp KBp andX−DpWpD

T
p , respectively. Thus, we may now conclude the following

result.
THEOREM 3.2. Suppose that the assumption (A3) holds. Assume also that there

exists Q∗ satisfying the conditions in Theorem 3.1. Then, given any Q(0) ≥ 0 ∈
Rny×ny with the appropriate block diagonal structure, there exists an α∗ > 0 such that
if 0 < α ≤ α∗, the sequence {T jβ [Q(0)]}∞j=0 will converge to some Q̂ ≥ 0 satisfying the
conditions in Theorem 3.1. That is, the discrete-time OCC algorithm will converge to
a global optimal solution of the given OCC problem.

3.2. Full-order dynamic feedback. As in the continuous-time case, the discrete-
time state feedback results can be readily extended to solve the discrete-time OCC
problem with output feedback.

Consider the system (3.1) and suppose that

(A4) (Mp, Ap) is detectable.

Then there exists a unique matrix X̃ that satisfies the Riccati equation

X̃ = ApX̃A
T
p −ApX̃MT

p (V +MpX̃M
T
p )−1MpX̃A

T
p +DpWpD

T
p(3.16)
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and Ap−ApX̃MT
p (V +MpX̃M

T
p )−1Mp is asymptotically stable; see, for example, [8].

Moreover, X̃ ≥ 0. With this matrix X̃, we define

F = ApX̃M
T
p (V +MpX̃M

T
p )−1.(3.17)

The next result gives a solution to the OCC problem with strictly proper output
feedback controllers. The proof follows the continuous-time case and is omitted.

THEOREM 3.3. Consider the plant defined in (3.1). Let X̃ and F denote the
matrices in (3.16) and (3.17). Suppose that there exists a matrix

Q∗ = block diag[Q∗1, Q
∗
2, . . . , Q

∗
m] ≥ 0, Q∗i = Q∗i

T ∈ Rmi×mi , i = 1, 2, . . . ,m,
(3.18)

such that the algebraic Riccati equation

K = ATpKAp −ATpKBp(R+BTp KBp)
−1BTp KAp + CTp Q

∗Cp(3.19)

has the (unique) stabilizing solution K∗. Define

G = −(R+BTp K
∗Bp)−1BTp K

∗Ap,(3.20)

let X∗ denote the unique solution to the Lyapunov equation

X = (Ap +BpG)X(Ap +BpG)T + F (V +MpX̃M
T
p )FT ,(3.21)

and define Yi = Ci(X̃ +X∗)CTi (i = 1, 2, . . . ,m). Then, if

0 = (Yi − Y i)Q∗i and Yi ≤ Y i(3.22)

for all i = 1, 2, . . . ,m, the dynamic controller

xc(k + 1) = (Ap +BpG− FMp)xc(k) + Fz(k),
u(k) = Gxc(k)

(3.23)

is an optimal solution to the OCC problem defined in (3.6).
Note that, as in the continuous-time case, the computation of X̃ and F are

independent of the selection of the output-weighting matrix Q. Hence, we can apply
the discrete-time OCC algorithm with state feedback to solve the discrete-time full-
order output feedback OCC problem under the assumption that the optimal solutions
are strictly proper. This requires that in the algorithm given in section 3.1, we replace
Dp, Wp, and Y i with F , V +MpX̃M

T
p , and Y i − CiX̃CTi , respectively.

4. An example. We consider the continuous-time OCC problem defined in (1.7)
for the plant (1.1) with the following system matrices:

Ap =

 0 1 0
−1 −0.1 1
0 0 −10

 , Bp =

 0
0
1

 , Dp =

 0
0
1

 ,(4.1a)

Mp =
[

1 1 0
]
,(4.1b)

Cp =

 1 0.5 0
0 0 0.5
1 1 0

 .(4.1c)
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FIG. 4.1. Iteration number versus α.

Both the process noise wp and the measurement noise v are scalar variables, while
the performance variable yp has three components. The weighting matrices required
to define the OCC problem (1.7) are taken to be

Wp = 1, V = 0.01, and R = 1.(4.2)

Below, we consider two different OCC problems. These two problems differ in the
grouping of the performance variables yi used to define the constraints (1.6). For each
problem, we consider both state feedback and dynamic output feedback.

4.1. Problem 1. Here, the OCC problem has the performance constraints

Y1 ≤ 0.035, Y2 ≤ 0.050, Y3 ≤ 0.050,(4.3)

where Y1, Y2, and Y3 denote the output covariance (1×1) matrices introduced in (1.6),
corresponding to the first, second, and third performance variables, respectively. Note
that this OCC problem can be also solved by the ellipsoid algorithms given in [1, 3, 12]
or the quadratically convergent algorithms given in [16].

First, we consider the case of state feedback. We use the algorithm described in
section 2.1 with the following parameters:

Q(0) = I3, β = 0.1, ε = 10−6.(4.4)

To assess the effect of the user-specified parameter α, we ran the the algorithm
with 1.0 ≤ α ≤ 7.25. Figure 4.1 shows the number of iterations required to meet the
stopping criteria of the algorithm versus α. Clearly, as α approaches 1 or 7.25, the
iteration number increases. From Figure 4.1, it follows that there exists an optimal α
which uses the least number of iterations. Finding such an optimal α in terms of the
system and specification matrices remains an open problem.
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TABLE 4.1
Solution to Problem 1 with α = 4.5.

State feedback design
Iteration Constraints Optimal cost
number Spec. (Y i) Actual (Yi) JOCC Qi GT

0.0350 0.0314 0.0000 0.0237
9 0.0500 0.0123 0.0234 0.0000 −0.9522

0.0500 0.0500 1.4268 −0.0948
Output feedback design

Iteration Constraints Optimal cost
number Spec. (Y i) Actual (Yi) JOCC Qi GT

0.0350 0.0314 0.0000 0.0193
22 0.0500 0.0126 0.0340 0.0000 −1.3839

0.0500 0.0500 2.3765 −0.1374

Table 4.1 shows the results of running the algorithm with α = 4.5. Both state and
output feedback cases are computed. In the state feedback case, G denotes the state
feedback gain. In the output feedback case, G denotes the controller output matrix;
see (2.65) and (2.68). The controller input matrix F is precomputed according to
(2.62). In this case we have

F = [ 0.4412 0.7633 0.4796 ]T .(4.5)

From Table 4.1, we can see that both controllers are feasible, since Yi satisfies the
bound Yi ≤ Y i. The only active constraint is the third one, i.e., Y3 = Y 3; hence,
the corresponding output weight Q3 is nonzero. As expected, the optimal cost JOCC
with output feedback is bigger than that with state feedback.

4.2. Problem 2. Now, the OCC problem has the performance constraints

Y1 ≤ 0.035, Y2 ≤ 0.050× I2,(4.6)

where Y1 denotes the (1 × 1) output covariance matrix corresponding to the first
performance output and Y2 denotes the (2×2) output covariance matrix of the second
and third performance outputs grouped together.

Table 4.2 shows the results of running the algorithm with α = 30 for both state
and output feedback cases. The other parameters required by the algorithm are those
in (4.4). For the output feedback case the input gain matrix F of the controller given
in (4.5).

From Table 4.2, we can see that both controllers are feasible. As expected, the
optimal cost JOCC with output feedback is bigger than that with state feedback.
Also, note that the constraint on the second output group Y2 ≤ 0.05× I2 is sufficient
for the output covariance constraints of Problem 1 in (4.3), that is, Y2 ≤ 0.05 and
Y3 ≤ 0.05. As expected, the costs of Problem 2 for both state and output feedback
cases are bigger than those of Problem 1.

5. Conclusion. In this paper we have considered the so-called output covariance
constraint (OCC) control problem. This is the problem of minimizing control effort
subject to matrix inequality constraints on several closed-loop covariance matrices.
Optimality conditions for characterizing a global solution are provided. In the state
feedback case, these conditions comprise one algebraic Riccati equation, one Lyapunov
equation, and a coupling condition. The unknown in this system of equations is a
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TABLE 4.2
Solution to Problem 2 with α = 30.

State feedback design
Iteration Constraints Optimal cost
number Spec. (Y i) Actual (Yi) JOCC Qi GT

0.0300 0.0313 0.0000 0.0212

31 0.050×I2
[

0.0123 0.0014
0.0014 0.0499

]
0.0235

[
0.0019 0.0527
0.0527 1.4277

]
−0.9542
−0.0950

Output feedback design
Iteration Constraints Optimal cost
number Spec. (Y i) Actual (Yi) JOCC Qi GT

0.0350 0.0314 0.0000 0.0149

65 0.050×I2
[

0.0126 0.0014
0.0014 0.0499

]
0.0341

[
0.0035 0.0919
0.0919 2.3809

]
−1.3878
−0.1379

matrix Q which may be interpreted as a matrix of Kuhn–Tucker multipliers. We have
given an iterative algorithm to find such a matrix Q. Under the assumption that the
optimality conditions admit a solution Q, we have shown that the iterative algorithm
converges to one such solution, provided that the step size parameter α is properly
chosen. Using the separation property of a closed-loop covariance matrix given in
[12], we have shown how to modify the state feedback algorithm to solve the OCC
problem with output feedback. Both discrete- and continuous-time problems have
been solved. Finally, an example is presented to demonstrate the applicability of our
results.
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Abstract. In this paper we extend our earlier work on supervisory control of nondeterministic
systems using prioritized synchronization as the mechanism of control and trajectory model as the
modeling formalism by considering design of supervisors under partial observation. We introduce
the notion of observation-compatible systems and show that prioritized synchronous composition
(PSC) of observation-compatible systems can be used as a mechanism of control of nondeterministic
systems under partial observation in presence of driven events. Necessary and sufficient conditions
that depend on the trajectory model as opposed to the language model of the plant are obtained
for the existence of centralized as well as decentralized supervision. Our work on centralized control
shows that the results of the traditional supervisory control can be “extended” to the above setting,
provided that the supervisor is deterministic and the observation mask is projection type. On the
other hand, our work on decentralized control is based on a new relation between controllability,
observability, co-observability, and PSC that we derive in this paper.

Key words. discrete event systems, supervisory control, partial observation, nondeterministic
automata, driven events, prioritized synchronization, trajectory models, controllability, observability,
co-observability
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1. Introduction. Discrete event systems (DESs) are systems which involve
quantities that take a discrete set of values and which evolve according to occurrence
of certain discrete qualitative changes, called events, such as arrival of a customer in
a queue, termination of an algorithm in a computer program, loss of a message packet
in a communication network, breakdown of a machine in a manufacturing system,
and the like. The theory of supervisory control of DESs was introduced by Ramadge
and Wonham [26, 27] for designing controllers so that the controlled system satisfies
certain desired qualitative constraints, such as that a buffer in a manufacturing sys-
tem should never overflow, a message sequence in a communication network must be
received in the same order as it was transmitted, and so on.

Such qualitative behavior of a deterministic1 DES can be described by the set
of all possible event traces, called a language model, that the system can execute
starting from its initial state. However, due to partial observation and/or unmod-
eled dynamics, it is too restrictive to require determinism of a system. If a DES is
nondeterministic, then its language model may not adequately describe its qualita-
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tive behavior, and more detailed models are needed. Several models such as failures
model [10], refusal-trace model [25], ready-trace model [1], bisimulation model [23, 24],
etc. have been proposed in the literature for representing qualitative behavior of non-
deterministic DESs. A nice comparative study of such modeling formalisms can be
found in [2, 31]. As a designer, it is desirable to choose the least detailed modeling
formalism that is adequate for the design task at hand. As is argued below, this is the
reason for us to choose the trajectory model proposed by Heymann [8], also known as
refusal-trace model, for representing nondeterministic DESs.

Most of the prior work on supervisory control of DESs, such as [26, 16, 4], essen-
tially use strict synchronous composition (SSC) of plant DES and supervisor DES as
the mechanism of control. In SSC of systems, it is required that the common events
must occur synchronously. This is restrictive, because due to nondeterminism the
plant state is not uniquely known after the execution of a certain observed trace, and
the set of executable events in each such state may differ. If we require strict synchro-
nization, then the supervisor is restricted to enable those events that are executable in
each of those states, which imposes a severe restriction on the supervisor. Moreover,
there is no a priori reason for a supervisor to synchronously execute all the uncontrol-
lable events that the plant can execute. Similarly, it is restrictive to require that the
plant synchronously executes the so-called forcible [7] or command [4] or driven [8]
events that are initiated by the supervisor. The motivating example in [30, section 2,
Example 5] describes a nondeterministic plant that can be controlled only when the
requirement of strict synchronization is relaxed.

In this paper we study the control of qualitative behavior of nondeterministic
DESs using prioritized synchronous composition (PSC) as the mechanism of control.
PSC was originally proposed by Heymann [8, 9] and was later applied to supervisory
control in the deterministic setting by Balemi [3] and in the nondeterministic set-
ting by Shayman and Kumar [30]. PSC is a generalization of the SSC. The parallel
operator considered by Inan [12, 13], an extension of the parallel operator defined
in [14, 15], can be viewed as a generalization of PSC when applied to the so-called
improper systems. However, while studying supervisory control only proper systems
are considered; consequently the resulting operation is that of strict synchronization.

In PSC each system is associated with a certain priority set of events, and for
an event to occur in the composition of a pair of systems operating in prioritized
synchrony, each system having the priority over the event must participate. So if an
event belongs to the common priority set, then it occurs synchronously. On the other
hand, if a certain event belongs to the priority set of a single system, then it can occur
asynchronously without the participation of the second system. However, the second
system will participate whenever possible; such synchronization is called broadcast
synchronization. Thus PSC does not impose the unnecessarily restrictive requirement
of SSC that common events must always occur in synchrony. For supervisory control,
the priority set of a plant consists of the uncontrollable and the controllable events,
while the priority set of a supervisor consists of the controllable and the driven events.
Since controllable events are in the priority sets of plant as well as supervisor, they
always occur in synchrony in the controlled system, whereas the uncontrollable and
the driven events may occur asynchronously.

Heymann showed via an example [8, Example 7] that if PSC is admitted as a
mechanism of interconnection, then a modeling formalism which is more detailed
than the failures model (and consequently, more detailed than the language model) is
needed to adequately describe the behavior of nondeterministic DESs. For this reason,
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Heymann proposed the modeling formalism called trajectory model. A trajectory
model consists of generated and recognized trajectories, also called refusal-traces, of a
system. A refusal-trace is a sequence of alternating refusal sets and events, where a
refusal set consists of those events that the system “refuses” to execute when offered at
a certain execution point. The trajectory model is quite similar to the refusal-testing
model of Phillips [25] but differs in its treatment of silent or epsilon transitions.

In our previous work [30, 19] we showed that the trajectory model can be used for
adequately describing behaviors of nondeterministic DESs that may be interconnected
using PSC, and also that the operation of PSC is associative. Since an event that
belongs to the priority set of a single system can occur asynchronously if we augment
the other system by adding self-loops on such events, then the operation of PSC
can be reduced to the operation of SSC, provided that the priority sets of the two
systems exhaust the entire event set. Under this condition, we proved in [30, 19]
that the PSC of a pair of systems is equivalent to SSC of appropriately augmented
systems. In particular, if the plant is augmented with driven events and the supervisor
is augmented with uncontrollable events, then the PSC of plant and supervisor is
equivalent to SSC of augmented plant and augmented supervisor. Using these results
we obtained necessary and sufficient conditions for the existence of a supervisor so
that the language of the controlled plant equals a desired language.

In this paper we extend our earlier work on supervisory control of nondeterministic
systems using prioritized synchronization as the mechanism of control and trajectory
model as the modeling formalism by considering design of supervisors under partial
observation. Partial observation in the setting of supervisory control arises due to
lack of sufficient number of sensors. As in the work of Lin and Wonham [21], we
use a projection function, also called an observation mask, to represent such partial
observation. A supervisor under partial observation must take identical control action
following indistinguishable traces. We call this property of a supervisor observation-
compatibility, which captures physically realizable supervisors. Such supervisors make
control decisions based on only the observed event trace of the system and do not
require any “special” internal knowledge of the system.

We define the notion of observation-compatibility of a trajectory model and prove
that this property is preserved under augmentation whenever the system is determin-
istic. Using this result we obtain a necessary and sufficient condition for the existence
of an observation-compatible supervisor so that the language of the plant operating in
prioritized synchrony with the supervisor equals the desired one. This result is then
applied to obtain a supervisor which achieves mutually exclusive usage of a shared
channel in a communication system. We also obtain conditions for the existence of
nonblocking supervisors [27, 5].

Finally, we study the problem of decentralized supervision [29, 20, 22, 6, 32].
Decentralized supervision is inevitable when the plant is physically distributed for
example as in communication networks and manufacturing systems. A supervisor is
installed at each location of the “subplant.” In such a situation, a supervisor is able
to control a certain set of events, called local events, and is able to observe a partial
set of events. The problem of decentralized supervision requires design of supervi-
sors that are observation-compatible with respect to their own observation function,
and control events in their own priority sets. This problem is naturally formulated
in our framework. We show that the condition of controllability together with the
condition of co-observability is necessary and sufficient for decentralized supervision.
Our constructive proof is novel and is based on a nice relationship between control-
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lability, observability, co-observability, and PSC that we derive in this paper. These
conditions, however, are significantly different from the standard ones [21, 29], as they
depend on the trajectory model (rather than language model) of the plant.

The remainder of the paper is organized as follows: In section 2 we introduce the
relevant notation. In section 3, we define the notion of observation-compatibility and
study some of its properties. In section 4 we study the supervisory control problem
under partial observation in the proposed framework and apply it to achievement
of mutually exclusive usage of a shared communication channel in a communication
system. In section 5 we study the problem of decentralized supervision. Finally,
section 6 concludes the work presented here.

2. Notation and preliminaries. Given a finite event set Σ, Σ∗ is used to
denote the collection of all traces, i.e., finite sequences of events, including the zero-
length sequence, denoted ε. A subset of Σ∗ is called a language. Symbols H,K, etc.
are used to denote languages. For a language K ⊆ Σ∗, the notation pr(K) ⊆ Σ∗,
called the prefix-closure of K, is the set of all prefixes of traces from K. K is said to
be prefix-closed if K = pr(K).

The set 2Σ(Σ× 2Σ)∗ is used to denote the collection of all refusal-traces, i.e., finite
sequences of alternating refusals and events [9, 30] of the type

Σ0(σ1,Σ1) . . . (σn,Σn),

where n ∈ N . The sequence σ1 . . . σn ∈ Σ∗ is the trace, and for each i ≤ n, Σi ⊆ Σ is
a set of events refused (if offered) at the indicated point. Symbols P,Q,R, S, etc., are
used to denote sets of refusal-traces. Refusal-traces are also referred to as trajectories.

Given e ∈ 2Σ(Σ× 2Σ)∗, we use |e| to denote the length of e, and for each k ≤ |e|,
Σk(e) ⊆ Σ is used to denote the kth refusal in e and σk(e) ∈ Σ is used to denote the
kth event in e, i.e.,

e = Σ0(e)(σ1(e),Σ1(e)) . . . (σk(e),Σk(e)) . . . (σ|e|(e),Σ|e|(e)).

The trace of e, denoted tr(e) ∈ Σ∗, is defined as tr(e) := σ1(e) . . . σ|e|(e). Given a set
of refusal-traces P ⊆ 2Σ(Σ× 2Σ)∗, we use L(P ) := tr(P ) to denote its set of traces.

If f ∈ 2Σ(Σ× 2Σ)∗ is another refusal-trace such that |f | ≤ |e| and for each k ≤ |f |,
Σk(f) = Σk(e) and σk(f) = σk(e), then f is said to be a prefix of e, denoted by f ≤ e.
For each k ≤ |e|, the notation ek ≤ e is used to denote the prefix of length k of e.
The prefix-closure of e, denoted pr(e) ⊆ 2Σ(Σ× 2Σ)∗, is the set of all prefixes of
e. If f ∈ 2Σ(Σ× 2Σ)∗ is such that |f | = |e| and for each k ≤ |f |, Σk(f) ⊆ Σk(e)
and σk(f) = σk(e), then f is said to be dominated by e, denoted by f v e. The
dominance-closure of e, denoted dom(e) ⊆ 2Σ(Σ× 2Σ)∗, is the set of all refusal-traces
dominated by e.

Symbols P,Q,R, etc., are used to denote nondeterministic state machines (NSMs)
(with ε-moves). Let the 5-tuple

P := (XP ,Σ, δP , x0
P , X

m
P )

represent a DES modeled as an NSM, where XP is the state set, Σ is the finite event
set, δP : XP × (Σ ∪ {ε}) → 2XP denotes the nondeterministic transition function,2

x0
P ∈ XP is the initial state, and Xm

P ⊆ XP is the set of accepting or marked states.

2ε represents both an internal or unobservable event and an internal or nondeterministic choice
[10, 23].
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A triple (x1, σ, x2) ∈ XP × (Σ∪ {ε})×XP is said to be a transition if x2 ∈ δP(x1, σ).
A transition (x1, ε, x2) is referred to as a silent or hidden transition. We assume that
the plant cannot undergo an unbounded sequence of silent transitions.

The ε-closure of x ∈ XP , denoted ε∗P(x) ⊆ XP , is defined inductively as

x ∈ ε∗P(x) and x′ ∈ ε∗P(x)⇒ δP(x′, ε) ⊆ ε∗P(x),

and the set of refusal events at x ∈ XP , denoted <P(x) ⊆ Σ, is defined as

<P(x) := {σ ∈ Σ | δP(x′, σ) = ∅, ∀x′ ∈ ε∗P(x)}.

In other words, given x ∈ XP , ε∗P(x) is the set of states that can be reached from x
on zero or more ε-moves, and <P(x) is the set of events that are undefined at each
state in the ε-closure of x. Using the definitions of the ε-closure and refusal maps, the
transition function δP : XP × (Σ ∪ {ε}) → 2XP is extended (i) to the set of traces,
denoted δ∗P : XP × Σ∗ → 2XP , which is defined in the usual way [11], and (ii) to
the set of refusal-traces, denoted δTP : X × (2Σ(Σ× 2Σ)∗) → 2XP , which is defined
inductively as

∀x ∈ XP :


∀Σ′ ⊆ Σ : δTP(x,Σ′) := {x′ ∈ ε∗P(x) | Σ′ ⊆ <P(x′)},
∀e ∈ 2Σ(Σ× 2Σ)∗, σ ∈ Σ,Σ′ ⊆ Σ :

δTP(x, e(σ,Σ′)) := {x′ ∈ ε∗P(δP(δTP(x, e), σ)) | Σ′ ⊆ <P(x′)}.

These maps are then used to obtain the language models and the trajectory models
of P as follows:

L(P) := {s ∈ Σ∗ | δ∗P(x0
P , s) 6= ∅}, Lm(P) := {s ∈ L(P) | δ∗P(x0

P , s) ∩Xm
P 6= ∅},

T (P) := {e ∈ 2Σ(Σ× 2Σ)∗ | δTP(x0
P , e) 6= ∅}, Tm(P) := {e ∈ T (P) | δTP(x0

P , e)∩Xm
P 6= ∅}.

L(P), Lm(P), T (P), and Tm(P) are called the generated language, recognized lan-
guage, generated trajectory set, and recognized trajectory set, respectively, of P. The
pairs (Lm(P), L(P)) and (Tm(P), T (P)) are called the language model and the tra-
jectory model, respectively, of P. Two language models, (Km

1 ,K1) and (Km
2 ,K2), are

said to be equal, written (Km
1 ,K1) = (Km

2 ,K2), if Km
1 = Km

2 and K1 = K2; equality
of two trajectory models is defined analogously.

Given a trajectory model, the trace map can be used to obtain the associated
language model. On the other hand, given a language model (Km,K), the trajectory
map, trjK : K → 2Σ(Σ× 2Σ)∗ can be used to obtain the deterministic trajectory
model3 having the language model (Km,K), which is defined as follows:

trjK(s) := Σ0(s)(σ1(s),Σ1(s)) . . . (σ|s|(s),Σ|s|(s)) ∈ 2Σ(Σ× 2Σ)∗, where

Σk(s) := {σ ∈ Σ | skσ 6∈ K} ∀k ≤ |s|.

Define (detm(Km,K), det(K)) := (dom(trjK(Km)), dom(trjK(K))). Then it is
shown in [19, Proposition 1] that it is the unique deterministic trajectory model that
has the language model (Km,K).

3A trajectory model (Pm, P ) is said to be deterministic if there exists a deterministic state
machine P such that (Tm(P), T (P )) = (Pm, P ).
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In [8, 9, 30, 19] PSC of systems is used as the mechanism of control. In this setting,
associated with each system is a priority set of events, which endows the system with
the ability to prevent the occurrence of events belonging to its priority set; a system
must participate in the execution of an event belonging to its priority set for that
event to occur in the PSC with other system(s). Letting P A‖B Q denote the PSC
of NSMs P and Q with priority sets A,B ⊆ Σ, respectively, and Tm(P) A‖B Tm(Q),
T (P) A‖B T (Q) denote the PSC of corresponding trajectory models, it was proven in
[30, Theorem 2] and [19, Theorem 2] that

Tm(P) A‖B Tm(Q) = Tm(P A‖B Q); T (P) A‖B T (Q) = T (P A‖B Q).

Various properties of PSC of trajectory models were studied in [30, 19]. In particular,
associativity of PSC was proven [19, Proposition 2, Corollary 6], a language intersec-
tion result for the case when A = B = Σ was obtained [19, Corollary 4, Corollary 5],
and the notion of augmentation and its properties were studied.

We recall from [30, 19] that the augmentation of an NSM P by an event set D ⊂ Σ
is the NSM PD := P ∅‖∅ D, where D denotes the deterministic state machine with
one state, which is marked, and has self-loops labeled by every event in D. Thus the
augmented NSM PD can also be obtained by adding self-loops on each state of P on
those events in D that are refused at that state, i.e., PD := (XP ,Σ, δPD , x0

P , Xm),
where the transition function is defined as

∀x ∈ XP , σ ∈ Σ : δPD (x, σ) :=

{
{x} if σ ∈ D ∩ <P(x),

δP(x, σ) otherwise.

Refer to Example 1 for illustration. Since the trajectory model of D is (det(D∗),
det(D∗)), the augmented trajectory model is given by

((Tm(P))D, (T (P))D) := (Tm(PD), T (PD)) = (Tm(P) ∅‖∅ det(D∗), T (P) ∅‖∅ det(D∗)).

It was shown in [30, Proposition 4] and [19, Proposition 3] that whenever the pri-
ority sets of a given pair of systems exhaust the entire event set, then the operation of
PSC can be reduced to that of SSC of appropriately augmented systems. Specifically,
given a pair of trajectory models (Pm, P ) and (Qm, Q) with priority sets A,B ⊆ Σ,
respectively, if A ∪B = Σ, then

Pm A‖B Qm = (Pm)Σ−A
Σ‖Σ (Qm)Σ−B ; P A‖B Q = PΣ−A

Σ‖Σ QΣ−B .

Consequently we have the following identities:

L(Pm A‖B Qm) = L((Pm)Σ−A)∩L((Qm)Σ−B); L(P A‖B Q) = L(PΣ−A)∩L(QΣ−B).

Thus the technique of augmentation is useful in studying the behavior of a pair of
systems operating in prioritized synchrony if their priority sets jointly exhaust the
entire event set. In particular, we can apply the technique of augmentation in super-
visory control, as the event set Σ can be written as the union of the priority set of
plant, which is the set of uncontrollable and controllable events, and the priority set
of supervisor, which is the set of controllable and driven events.

3. Observation-compatible systems. In many control designs, it is not pos-
sible to completely observe the behavior of the uncontrolled plant due to lack of
sufficient number of sensors. Thus, certain events executed by the uncontrolled plant
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may be unobservable. In the setting of supervisory control, an observation mask—a
projection map defined from the set of events to the set of observable events—is used
to describe such partial observation. In such situations it is natural to require that the
control actions taken by a supervisor following indistinguishable traces be identical.
We call this property of a supervisor observation-compatibility. In this section, we
formally define the notion of observation-compatibility of the trajectory model of a
nondeterministic DES and study some of its properties.

Let Σo ⊆ Σ be the set of observable events, i.e., the events that can be sensed by
a supervisor. A projection function M : Σ → Σo ∪ {ε}, called an observation mask
[21, 6], is used to represent such a partial observation; it is defined as

∀σ ∈ Σ : M(σ) :=

{
σ if σ ∈ Σo,

ε otherwise.

Note that we assume that the observation mask is a projection function.
Recall from [26] that a language K ⊆ Σ∗ is said to be controllable with respect

to a given prefix-closed language H and the set of uncontrollable events Σ−B, called
(H,Σ−B)-controllable, if

pr(K)(Σ−B) ∩H ⊆ pr(K),

i.e., if the extension of a certain prefix of K by an uncontrollable event results in a
trace of H, then this extended trace should also be a prefix of K. Also, recall from
[21] that K is said to be observable with respect to H and a given observation mask
M(·), called (H,M)-observable, if

∀s, t ∈ pr(K), σ ∈ Σ : M(s) = M(t), sσ ∈ pr(K), tσ ∈ H ⇒ tσ ∈ pr(K).

In other words, K is said to be (H,M)-observable if given an indistinguishable pair
of traces in pr(K), the pair of traces resulting from appending a common event to
the given pair has identical membership in pr(K) whenever they have identical mem-
bership in H. It was shown in [21] that the observability of prefix-closed languages
is preserved under intersection so that the infimal prefix-closed and observable super-
language of a given language exists. Using the above notion of observability we next
define the concept of observation-compatibility.

DEFINITION 1. Given a trajectory model (Sm, S) and an observation mask M(·),
(Sm, S) is said to be observation compatible with respect to M(·) or simply M -
compatible if

∀s, t ∈ L(S), σ ∈ Σ : M(s) = M(t), sσ ∈ L(S)⇒ tσ ∈ L(S).

An NSM is said to beM -compatible if its associated trajectory model isM -compatible.
Thus a trajectory model is M -compatible if and only if its generated language is
(Σ∗,M)-observable. Note that the property of observation-compatibility captures
physically realizable supervisors. Such supervisors make control decisions based on
only the observed event trace of the system and do not require any “special” inter-
nal knowledge of the system. Next we show that M -compatibility of a deterministic
trajectory model is preserved under augmentation. We first need to establish two
lemmas.

DEFINITION 2. Given a nonempty prefix-closed language K, the projection of Σ∗

onto K is defined inductively by

πK(ε) := ε; ∀s ∈ Σ∗, σ ∈ Σ : πK(sσ) :=

{
πK(s)σ if πK(s)σ ∈ K,
πK(s) otherwise.
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When the choice of K is clear, we use the abbreviated notation s′ for πK(s).
The first lemma asserts that the state reached by the execution of a certain

trace in an augmented deterministic state machine is the same as that reached in the
unaugmented state machine by the execution of the trace projected onto its language.

LEMMA 1. Let P := (XP ,Σ, δP , x0
P , X

m
P ) be a deterministic state machine and

D ⊆ Σ. Then for each s ∈ L(PD), δ∗PD (x0
P , s) = δ∗P(x0

P , πL(P)(s)).
Proof. We use induction on length of s for proving the assertion. For notational

simplicity, define πL(P)(s) := s′. If |s| = 0, then s = s′ = ε. Hence δ∗PD (x0
P , s) =

δ∗P(x0
P , s
′) = x0

P , since P, and thus PD, are deterministic. Thus the base step trivially
holds. In order to prove the induction step, suppose s = s̄σ, where σ ∈ Σ. Define s̄′ :=
πL(P)(s̄). Then it follows from induction hypothesis that δ∗PD (x0

P , s̄) = δ∗P(x0
P , s̄
′) :=

xs̄. If σ 6∈ <P(xs̄), then δ∗PD (x0
P , s) = δ∗P(xs̄, σ) = δ∗P(x0

P , s
′). On the other hand, if

σ ∈ D∩<P(xs̄), then s′ = s̄′, and δ∗PD (x0
P , s) = xs̄, so δ∗P(x0

P , s
′) = δ∗P(x0

P , s̄
′) = xs̄ =

δ∗PD (x0
P , s). This proves the induction step and completes the proof.

The next lemma asserts that if a certain language is (Σ∗,M)-observable, then the
indistinguishability of a pair of traces implies indistinguishability of their projections
onto the language.

LEMMA 2. Consider an observation mask M(·), and a nonempty prefix-closed
language K ⊆ Σ∗. If K is (Σ∗,M)-observable, then

∀s, t ∈ Σ∗ : M(s) = M(t)⇒M(πK(s)) = M(πK(t)).

Proof. For notational simplicity, define s′ := πK(s) and t′ := πK(t). We prove
the assertion by induction on |s| + |t|. For the base step, if |s| = 0 or |t| = 0,
then M(s) = M(t) = ε, so M(s′) = M(t′) = ε. For the induction step, consider
s = s̄σs and t = t̄σt with s̄, t̄ ∈ Σ∗ and σs, σt ∈ Σ. Define s̄′ := πK(s̄) and t̄′ :=
πK(t̄). We have three possibilities: (i) M(σs) = ε, which implies that M(s̄) = M(t).
Then, M(s′) = M(s̄′) = M(t′), where the first equality follows trivially from the
unobservability of σs and the second equality follows by induction hypothesis. (ii)
M(σt) = ε. Then it follows from symmetry and case (i) above that M(s′) = M(t′).
(iii) M(σs) 6= ε, M(σt) 6= ε, which implies that σs = σt := σ and M(s̄) = M(t̄).
By the induction hypothesis, M(s̄′) = M(t̄′). Since K is (Σ∗,M)-observable, either
s̄′σ, t̄′σ ∈ K or s̄′σ, t̄′σ 6∈ K. In the first case, M(s′) = M(s̄′σ) = M(s̄′)σ = M(t̄′)σ =
M(t̄′σ) = M(t′). In the second case, M(s′) = M(s̄′) = M(t̄′) = M(t′).

The results of Lemma 1 and 2 are now used to prove that the observation-
compatibility of a deterministic system is preserved under augmentation.

THEOREM 1. Let (Sm, S) be a deterministic trajectory model, M(·) be an obser-
vation mask, and D ⊆ Σ. Suppose that (Sm, S) is M -compatible. Then ((Sm)D, SD)
is also M -compatible (and deterministic).

Proof. It suffices to show that L(SD) is (Σ∗,M)-observable. Pick s, t ∈ L(SD), σ ∈
Σ such that M(s) = M(t) and sσ ∈ L(SD). Then we need to show that tσ ∈ L(SD).
Since (Sm, S) is a deterministic trajectory model, there exists a deterministic state ma-
chine S := (XS ,Σ, δS , x0

S , X
m
S ) with trajectory model (Sm, S). Then ((Sm)D, SD) =

(Tm(SD), T (SD)). Define s′ := πL(S)(s) and t′ := πL(S)(t). Then it follows from
Lemma 1 that

δ∗SD (x0
S , s) = δ∗S(x0

S , s
′); δ∗SD (x0

S , t) = δ∗S(x0
S , t
′).(1)

Also, since M(s) = M(t), it follows from Lemma 2 that M(s′) = M(t′). Hence if
s′σ ∈ L(S), then it follows from (Σ∗,M)-observability of L(S) that t′σ ∈ L(S). Hence
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FIG. 1. Diagram illustrating Example 1.

(1) implies tσ ∈ L(SD). On the other hand, if s′σ 6∈ L(S), then σ ∈ D, so tσ ∈ L(SD)
trivially.

We show via the following example that the requirement of determinism cannot
be relaxed in Theorem 1.

Example 1. In order to see that the determinism is a necessary condition for
Theorem 1 to hold, consider the NSM P shown in Figure 1(a) with Σ = {a, b, c, d}
and M(·) such that M(a) = a,M(b) = b,M(c) = ε,M(d) = d. Then (i) ac∗ ∈ L(P),
and each trace in ac∗ has identical mask value. It can be checked that the set of
events enabled after each trace in ac∗ equals {b, c, d}. (ii) ac∗bc∗ ∈ L(P), and each
trace in ac∗bc∗ has identical mask value. It can also be checked that the set of events
enabled after each trace in ac∗bc∗ equals {c}. (iii) Finally, ac∗d ∈ L(P), and each
trace in ac∗d has identical mask value. One can verify that no event is enabled after
each such trace. Thus L(P) is (Σ∗,M)-observable, so the associated trajectory model
(Tm(P), T (P)) is M -compatible.

The augmented NSM P{b} is shown in Figure 1(b). Then ab, abc ∈ L(P{b})
with M(ab) = M(abc). However, the set of events enabled after ab equals {b, c},
whereas the set of events enabled after abc equals {b, c, d}. Thus L(P{b}) is not
(Σ∗,M)-observable, and so the associated trajectory model (Tm(P{b}), T (P{b}) is
not M -compatible.

4. Centralized control under partial observation. In a previous paper [30],
we showed that PSC can be used as a mechanism of control under the restriction that
all controllable events are observable to the supervisor. We show in this section that
PSC can be used as a mechanism of control without imposing this restriction on the
observation mask. As discussed in the previous section, whenever the observations of a
supervisor are filtered through a mask, the supervisor must be observation-compatible
with respect to its observation mask; i.e., a supervisor under partial observation must
satisfy the constraint that following each pair of traces that look alike under the
observation mask, it must take identical control action.
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Prior to establishing the main result of this section, we prove the following pre-
liminary result.

LEMMA 3. Let H ⊆ Σ∗ be prefix-closed, K ⊆ H, and M(·) be an observation
mask. If KM ⊆ Σ∗ denotes the infimal prefix-closed and (Σ∗,M)-observable super-
language of K, then KM ∩H equals the infimal prefix-closed and (H,M)-observable
superlanguage of K.

Proof. For simplicity of notation define K ′ := KM ∩ H. Let K̂ ⊆ Σ∗ denote
the infimal prefix-closed and (H,M)-observable superlanguage of K. We need to
show that K ′ = K̂. In order to show that K̂ ⊆ K ′, it suffices to show that K ′ is a
prefix-closed (H,M)-observable superlanguage of K. Since K ⊆ H, it follows that
K ′ = KM ∩ H is a superlanguage of K. Also, from the fact that prefix-closure is
preserved under intersection, it follows that K ′ is prefix-closed. Finally, since KM

is (Σ∗,M)-observable, clearly, it is (H,M)-observable. Then it follows from the fact
that observability of prefix-closed languages is preserved under intersection [21, 28]
that K ′ = KM ∩H is also (H,M)-observable.

It remains to show that K ′ ⊆ K̂. Suppose for contradiction that K̂ is a proper
sublanguage of K ′. Then there exists s ∈ K̂ and σ ∈ Σ such that sσ ∈ K ′− K̂. Since
K ′ ⊆ KM , it follows that sσ ∈ KM . Also, since K ⊆ K̂ ⊂ K ′ ⊆ KM , and KM is the
infimal prefix-closed and (Σ∗,M)-observable superlanguage of K, it follows that KM

is also the infimal prefix-closed and (Σ∗,M)-observable superlanguage of K̂. Finally,
since s ∈ K̂, sσ 6∈ K̂, and sσ ∈ KM , it follows from the fact that KM is the infimal
prefix-closed and (Σ∗,M)-observable superlanguage of K̂ that there exists t ∈ K̂ such
that M(t) = M(s) and tσ ∈ K̂. We also have that s ∈ K̂, and sσ ∈ K ′− K̂ ⊆ H− K̂.
Thus we arrive at a contradiction to the fact that K̂ is (H,M)-observable.

The following corollary is immediate from Lemma 3.
COROLLARY 1. Let H ⊆ Σ∗ be prefix-closed, M(·) be an observation function,

and K ⊆ H be prefix-closed and (H,M)-observable. If KM ⊆ Σ∗ denotes the infimal
prefix-closed and (Σ∗,M)-observable superlanguage of K, then KM ∩H = K.

Recall from [19] that a supervisor with trajectory model (Sm, S) is said to be
nonmarking if Sm = S. In the following theorem we obtain a necessary and sufficient
condition for the existence of a nonmarking and observation-compatible determinis-
tic supervisor. We need the following result from [30, Remark 11]: Given a plant
trajectory model (Pm, P ) with priority set A, if a language K satisfies the control-
lability condition of Theorem 2 below and H is any prefix-closed language satisfying
L(PΣ−A)∩H = K, then the nonmarking deterministic supervisor (S, S) := (det(H),
det(H)) with priority set B such that A∪B = Σ yields K as the closed-loop behavior
L(P A‖B S).

THEOREM 2. Let (Pm, P ) be the trajectory model of a plant, A,B ⊆ Σ, with
A∪B = Σ; M(·) be an observation mask; and K ⊆ L(PΣ−A) be a nonempty language.
Then there exists a deterministic, nonmarking, and M -compatible supervisor with
trajectory model (S, S) such that L(P A‖B S) = K if and only if all of the following
conditions are met:

Prefix-closure: pr(K) = K,
Controllability: pr(K)(Σ−B) ∩ L(PΣ−A) ⊆ pr(K),
Observability: ∀s, t ∈ pr(K), σ ∈ Σ : M(s) = M(t), sσ ∈ pr(K), tσ ∈ L(PΣ−A)

⇒ tσ ∈ pr(K).
In this case S can be chosen to be det(KM ), where KM is the infimal prefix-closed
and (Σ∗,M)-observable superlanguage of K.

Proof. In order to see the sufficiency part, consider the supervisor with S :=
det(KM ). Then L(S) = KM , so that S is M -compatible. Also, it follows from Corol-
lary 1 that KM ∩L(PΣ−A) = K. Using [30, Remark 11], we obtain L(P A‖B S) = K.
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In order to see the necessity part, suppose that (S, S) is the trajectory model of
a deterministic nonmarking and M -compatible supervisor such that L(P A‖B S) =
K. Then it follows from the necessity part of [30, Theorem 4] that K is prefix-
closed and controllable. It remains to show that K is (L(PΣ−A),M)-observable.
Since K = L(P A‖B S) = L(PΣ−A) ∩ L(SΣ−B), it suffices to show that L(SΣ−B)
is (Σ∗,M)-observable. This follows from the fact that (S, S) is a deterministic and
M -compatible trajectory model, and as shown in Theorem 1, M -compatibility of
deterministic trajectory models is preserved under augmentation.

Remark 1. In contrast to the standard controllability and observability condition
of the Ramadge–Wonham setting, the conditions of Theorem 2 refer to the language
of the augmented plant. This language depends on the trajectory model of the plant
and in general cannot be deduced from the language model of the plant. Readers are
referred to [30, Remark 9, Example 3] for further elaboration on this point.

Also, since the necessity part of Theorem 2 uses the result of Theorem 1, it follows
from Example 3 that the necessity part of Theorem 2 may not hold if the supervisor
is not required to be deterministic. In a recent paper Inan has studied the design of
nondeterministic supervisors under partial observation [13], where he has introduced
the notion of co-closure (a condition weaker than controllability and observability
combined) and has proved its necessity and sufficiency.

Finally, it may seem that the result of Theorem 2 is an immediate consequence
of our prior work on nondeterministic systems and the standard supervisory con-
trol results. However, this is not true as it is not clear at the outset whether our
results on nondeterministic systems under complete observations will immediately
“carry over” to the case of partial observations (with appropriate extensions as in the
standard supervisory control). In fact the result of Theorem 2 fails to hold if more
general nonprojection type observation masks are considered. This is because the
observation-compatibility of a deterministic system is not preserved under augmen-
tation if the observation mask is no longer the projection type. To see this consider
an observation mask that identifies the only events a and b of a deterministic system
which executes the event a in its initial state and deadlocks. Clearly, the system is
observation-compatible. However, its augmentation with the event b has a self-loop
on b in both its states. So, in the augmented system a as well as b can occur after
the occurrence of the initial b, whereas only b can occur after the occurrence of the
initial a, which violates the observation-compatibility since a and b are indistinguish-
able.

We next apply the result of Theorem 2 to the design of a supervisor that achieves
mutually exclusive usage of a shared communication channel in a communication
system.

Example 2. Consider the nondeterministic plant P depicted in Figure 2(a). In
this example, the plant represents a partial model of a multiuser communication
system. Only the portions of the model needed to illustrate the main result are
included. The communication system has two channels. The first user can transmit
messages using either channel and switches between the channels in a manner that
is unmodeled and hence nondeterministic. The second user can transmit only on
channel 2. The event a represents the commencement of transmission by user 1 and
results in a nondeterministic transition to one of two successor states depending on
which channel is used. The event b represents the commencement of transmission
by user 2. Both the commencement events are controllable but are unobservable to
the supervisor to be constructed. If both users are able to transmit their messages
without collision, then an uncontrollable completion event c occurs which returns the
plant to its initial state.
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FIG. 2. Plant P and augmented plant PΣ−A = P {d}.

In order to avoid collision of messages, user 1 may receive a signal that causes it
to vacate channel 2, provided that it has in fact chosen channel 2. This is represented
by the event d. It is a driven event because it must be initiated by a supervisor and
is executed synchronously by the plant only if able to do so, i.e., only if user 1 is
transmitting on channel 2. If user 1 has been transmitting on channel 2 and user 2
commences transmission without it being preceded by d, then there are two possibil-
ities: If user 1 has happened to finish before user 2 starts, then b is followed by the
completion event c; otherwise b is followed by the collision event h, an uncontrollable
event.

Thus, in this example,

Σ = {a, b, c, d, h}, A = {a, b, c, h}, B = {a, b, d},

since a and b are controllable, c and h are uncontrollable, and d is a driven event.
Note that a and b are the only events that are unobservable to the supervisor to
be constructed. The basic performance specification is that a collision-free service
should be provided. This can be represented by the prefix-closed sublanguage of the
augmented plant (shown in Figure 2(b)) given by

K0 := {s ∈ L(PΣ−A) | s does not contain h} = pr[(d∗ad∗bd∗c)∗].

However, since user 1 cannot vacate channel 2 unless it is using it, it is reasonable to
consider the desired behavior to be the sublanguage of K0 consisting of those traces
that do not contain any occurrence of d that is not immediately preceded by a. This
is given by

K1 := pr[(abc+ adbc)∗].

Since the uncontrollable event h can occur following the trace ab ∈ K1, it is not
controllable. The supremal prefix-closed and controllable sublanguage of K1 is given
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FIG. 3. Supervisor S1 and closed-loop system P A‖B S1.

by

K↑1 = pr[(adbc)∗].

However, this is not L(PΣ−A,M)-observable. In fact since ε, a ∈ K↑1 with M(ε) =
M(a) and d ∈ L(PΣ−A)−K↑1 , it follows that any prefix-closed sublanguage of K↑1 that
is (L(PΣ−A),M)-observable cannot contain ad. Thus, a prefix-closed (L(PΣ−A),M)-
observable sublanguage of K↑1 is contained in pr(a). By Theorem 2, it follows any
M -compatible supervisor that results in a closed-loop generated language contained
in the specification language K1 gives a closed-loop generated language contained in
pr(a). This is clearly unsatisfactory.

Thus, we must relax the specification given by K1 keeping in mind that the con-
straint given by K0 must be satisfied. The infimal prefix-closed and (L(PΣ−A),M)-
observable superlanguage of K↑1 is pr[(adbc)∗d], which is a sublanguage of K0. Since
pr[(adbc)∗d] is also controllable, and since its infimal prefix-closed and (Σ∗,M)-observ-
able superlanguage is pr[(a∗db∗c)∗d], it follows from Theorem 2 that the nonmarking
supervisor

S1 := det[(pr(a∗db∗c)∗d)] = det[(pr(a∗db∗c)∗)]

depicted in Figure 3(a) is M -compatible and yields pr[(adbc)∗d] as the closed-loop
generated language. The closed-loop system is shown in Figure 3(b).

The supervisor implements the following simple control strategy: Initially it allows
only user 1 to transmit. Before enabling transmission by user 2, it signals user 1 to
vacate channel 2. This command is synchronously executed in the plant only when
user 1 is transmitting on channel 2; otherwise, it is “refused” by the plant and occurs
asynchronously in the supervisor. The supervisor then allows user 2 to communicate
and returns to its initial state when the completion event c occurs. The ability of the
plant to refuse a driven event initiated by the supervisor is essential to our control
and is available because of the PSC-based control design. (Such a feature is certainly
unavailable in an SSC-based control design.)

This design is not entirely satisfactory since, as can be seen from Figure 3(b), the
closed-loop system deadlocks following the execution of any trace in (adbc)∗d.4 This
is because we did not require that the closed-loop behavior be live [17].5 So the next

4Note that although the closed-loop system is nonblocking in the sense that the prefix-closure of
the recognized refusal-traces is the same as the generated refusal-traces, it may deadlock.

5Informally, a language is said to be live if each of its trace has an extension in the language.
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FIG. 4. Supervisor S2 and closed-loop system P A‖B S2.

alternative is to consider a live superlanguage of the “nonlive” language pr[(adbc)∗d]
that is also controllable and observable and is contained in K0. Although control-
lability and observability of prefix-closed languages are preserved under intersection,
liveness is not. Similarly, although controllability and liveness of languages is pre-
served under union, observability is not. Hence, no unique solution can be identified.
So a “semiautomatic” design involving some human reasoning is unavoidable.

With a little insight into the problem, it is easy to see that a simple modification
of the supervisor in which a transition is added to permit the supervisor to return to
its initial state by execution of d achieves liveness of the closed-loop behavior. The
new supervisor, denoted S2, and the resulting closed-loop system are shown in Figure
4. The closed-loop system can no longer deadlock. The language of the closed-loop
system equals pr[(dd+ ad(dd)∗bd∗c)∗], which is a sublanguage of K0 as desired.

Note that both S1 and S2 do not change their state when either a or b occur,
showing that they are compatible with the unobservability of these events.

We conclude this section by extending the result of Theorem 2 to obtain conditions
for the existence of nonblocking supervisors. Recall from [19, Definition 6] that given
a plant (Pm, P ) with priority set A, a supervisor (Sm, S) with priority set B is said to
be language model nonblocking if pr(L(Pm A‖B Sm)) = L(P A‖B S); it is said to be
trajectory model nonblocking if pr(Pm A‖B Sm) = P A‖B S. In the following corollary
we provide a necessary and sufficient condition for the existence of an observation-
compatible and language model nonblocking supervisor.

COROLLARY 2. Let (Pm, P ) be the trajectory model of a plant, A,B ⊆ Σ, with
A ∪ B = Σ; M(·) be an observation mask; and Km ⊆ L((Pm)Σ−A) be a nonempty
language. Then there exists a deterministic, nonmarking, language model nonblocking,
and M -compatible supervisor with trajectory model (S, S) such that L(Pm A‖B Sm) =
Km if and only if all of the following conditions are met:

Relative-closure: pr(Km) ∩ L((Pm)Σ−A) = Km,
Controllability: pr(Km)(Σ−B) ∩ L(PΣ−A) ⊆ pr(Km),
Observability: ∀s, t ∈ pr(Km), σ ∈ Σ : M(s) = M(t), sσ ∈ pr(Km), tσ ∈

L(PΣ−A)⇒ tσ ∈ pr(Km).
In this case S can be chosen to be det((Km)M ), where (Km)M denotes the infimal
prefix-closed and (Σ∗,M)-observable superlanguage of Km.

Proof. First consider sufficiency. Since pr(Km) is nonempty, prefix-closed, con-
trollable, and (L(PΣ−A),M)-observable, it follows from the sufficiency part of
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Theorem 2 that the nonmarking supervisor with S := det((pr(Km))M ) = det((Km)M )
is M -compatible, and L(P A‖B S) = pr(Km). Hence, using the relative closure con-
dition we obtain the following series of equalities:

Km = pr(Km) ∩ L((Pm)Σ−A)
= L(P A‖B S) ∩ L((Pm)Σ−A)
= [L(PΣ−A) ∩ L(SΣ−B)] ∩ L((Pm)Σ−A)
= L((Pm)Σ−A) ∩ L(SΣ−B)
= L(Pm A‖B S).

Since pr(Km) = L(P A‖B S) and Km = L(Pm A‖B S), the supervisor is language
model nonblocking.

The necessity part follows from the necessity parts of Theorem 2 and [19, Theorem
5].

The result of Corollary 2 can be extended to obtain a necessary and sufficient
condition for the existence of an observation-compatible and trajectory model non-
blocking supervisor. We need the following result from [19, Proposition 4]: Given a
plant (Pm, P ) with priority set A and a nonempty language Km ⊆ L((Pm)Σ−A), if
there exists a deterministic, nonmarking, and language model nonblocking supervisor
(S, S) with priority set B such that A ∪B = Σ and L(Pm A‖B S) = Km, then

Pm A‖B det(pr(Km)) = Pm A‖B S; P A‖B det(pr(Km)) = P A‖B S.

COROLLARY 3. Let (Pm, P ) be the trajectory model of a plant, A,B ⊆ Σ, with
A∪B = Σ; M(·) be an observation mask; and Km ⊆ L((Pm)Σ−A) be a nonempty lan-
guage. Then there exists a deterministic, nonmarking, trajectory model nonblocking,
and M -compatible supervisor with trajectory model (S, S) such that L(Pm A‖B Sm) =
Km if and only if all of the following conditions are met:

Relative-closure: pr(Km) ∩ L((Pm)Σ−A) = Km,
Controllability: pr(Km)(Σ−B) ∩ L(PΣ−A) ⊆ pr(Km),
Observability: ∀s, t ∈ pr(Km), σ ∈ Σ : M(s) = M(t), sσ ∈ pr(Km), tσ ∈

L(PΣ−A)⇒ tσ ∈ pr(Km),
Trajectory-closure: P A‖B det(pr(Km)) = pr[Pm A‖B det(pr(Km))].

In this case S can be chosen to be det((Km)M ), where (Km)M denotes the infimal
prefix-closed and (Σ∗,M)-observable superlanguage of Km.

Proof. The necessity part follows from the necessity part of Corollary 2 and that
of [19, Theorem 6]; the sufficiency part follows from the sufficiency part of Corollary
2 and [19, Proposition 4].

5. Decentralized control. So far we have restricted our attention to the prob-
lem of centralized control under partial observation. However, in many applications,
such as manufacturing systems, communication networks, and so on, the plant is phys-
ically distributed and it is desirable to have decentralized controllers [6, 20, 22, 29, 32],
where each controller is able to control a certain set of events and is able to observe
certain other events. The problem of decentralized control can be studied quite ele-
gantly in our PSC-based approach.

Without any loss of generality we consider the case of “two-decentralization”;
i.e., given a discrete event plant P with priority set A we consider synthesis of two
supervisors S1 and S2 with priority sets B1 and B2, respectively, which are compat-
ible with their own observation masks M1(·) and M2(·), respectively, such that the
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controlled plant P A‖B1∪B2 (S1 B1‖B2 S2) satisfies a desired behavior constraint. The
priority set of supervisor Si(i = 1, 2) is Bi, and its observations are filtered through
the mask function Mi(·). Thus the events in the set A∩Bi are the controllable events
for Si, those in the set A− Bi are the uncontrollable events for Si, and finally those
in Bi − A are the driven events for Si. Also, Si must be compatible with Mi(·); i.e.,
its generated language must be (Σ∗,Mi)-observable. Since an event must belong to
at least one of the priority sets we have that A ∪B1 ∪B2 = Σ.

For notational simplicity we define B := B1 ∪ B2 and S := S1 B1‖B2 S2. Since
the events in the set A−B are in the priority set of neither of the supervisors, these
represent the uncontrollable events. Thus for decentralized supervision it is expected
that the desired behavior be controllable with respect to these uncontrollable events.
The remaining events are in the priority set(s) of one or both of the supervisors;
however, their enablement/disablement must satisfy the restriction that results from
the partial observability of the supervisors. This is captured by the following condition
of co-observability, which is similar to that given by Rudie and Wonham [29].

DEFINITION 3. Given the priority sets B1 and B2 of two supervisors, and their
observation masks M1(·) and M2(·), respectively, a language K ⊆ Σ∗ is said to be co-
observable with respect to a prefix-closed language H ⊆ Σ∗, called (H,B1, B2,M1,M2)–
co-observable, if
∀s1, s2, t ∈ pr(K), σ ∈ B1 ∪B2:
(1) [σ ∈ B1 −B2,M1(s1) = M1(t), s1σ ∈ pr(K), tσ ∈ H]⇒ [tσ ∈ pr(K)]
(2) [σ ∈ B2 −B1,M2(s2) = M2(t), s2σ ∈ pr(K), tσ ∈ H]⇒ [tσ ∈ pr(K)]
(3) [σ ∈ B1 ∩B2,M1(s1) = M1(t),M2(s2) = M2(t), s1σ, s2σ ∈ pr(K), tσ ∈ H]⇒

[tσ ∈ pr(K)].
Thus if an event belongs solely to priority set of one of the supervisors and it is

enabled following a trace, then it must be enabled following any other trace that is
indistinguishable to that supervisor (provided it can occur in the plant). On the other
hand, if the event belongs to the common priority set of the supervisors and it can
occur in the plant following a trace which is indistinguishable from a certain trace to
the first supervisor, and from another trace to the second supervisor, and the event
is enabled following these latter pair of traces, then the event must also be enabled
following the former trace. It is clear that K is co-observable if and only if pr(K) is
co-observable. Also, as is the case with observability, co-observability of prefix-closed
languages is preserved under intersection [29]; consequently, the infimal prefix-closed
and co-observable superlanguage of a given language exists.

We show below that controllability together with co-observability is necessary and
sufficient for decentralized supervision. It is clear that observability with respect to
each of the masks implies co-observability. Thus a weaker condition than observability
with respect to each of the masks is needed for decentralized supervision; this is
because the events in the common priority set of the two supervisors can be disabled
by either of them. However, if the common priority set is empty, then under the
condition of controllability, co-observability is equivalent to observability with respect
to each of the masks.

We saw above that the operation of PSC of a pair of systems can be reduced to
that of SSC when the priority sets of the two systems exhaust the entire event set.
We next prove that this is also the case when more than two systems are involved.
We need the following lemma.

LEMMA 4. Consider NSMs S1 and S2 with priority sets B1 and B2, respectively.
Then

(S1 B1‖B2 S2)Σ−B = SΣ−B1
1 Σ‖Σ SΣ−B2

2 ,

where B := B1 ∪B2.
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Proof. The above lemma follows from the following series of equalities:

SΣ−B1
1 Σ‖Σ SΣ−B2

2 = (SB−B1
1 )Σ−B

Σ‖Σ (SB−B2
2 )Σ−B

= [SB−B1
1 B‖Σ−B det((Σ−B)∗)]Σ‖Σ
×[SB−B2

2 B‖Σ−B det((Σ−B)∗)]
= [SB−B1

1 B‖BSB−B2
2 ] B‖Σ−B

×[det((Σ−B)∗) Σ−B‖Σ−B det((Σ−B)∗)]
= [SB−B1

1 B‖B SB−B2
2 ] B‖Σ−B det((Σ−B)∗)

= [S1 B1‖B2 S2]Σ−B ,

where the first, second, and final equalities follow from definition of augmentation and
the third equality follows from associativity of PSC.

The following corollary is immediate from the above lemma.
COROLLARY 4. Consider NSMs P, S1, and S2 with priority sets A, B1, and B2,

respectively, such that A ∪B1 ∪B2 = Σ. Then

P A‖B S = PΣ−A
Σ‖Σ [SΣ−B1

1 Σ‖Σ SΣ−B2
2 ],

where B := B1 ∪B2 and S := S1 B1‖B2 S2.
Proof. Since A ∪B = Σ, it follows from a PSC property [9, 30, 19] that

P A‖B S = PΣ−A
Σ‖Σ SΣ−B .

Thus the result follows from Lemma 4.
Remark 2. Corollary 4 shows that the operation of PSC of two or more systems

can be reduced to that of SSC whenever the priority sets of all the systems jointly
exhaust the entire event set. It also follows that under the hypothesis of Corollary 4

L(P A‖B S) = L(PΣ−A) ∩ L(SΣ−B1
1 ) ∩ L(SΣ−B2

2 ).(2)

Next we establish a relationship between controllability, observability, co-observ-
ability, and PSC. In the following lemma we prove that if supervisors S1 and S2
are M1-compatible and M2-compatible, respectively, and both generate (Σ∗,Σ − B)
controllable languages, then the language of S1 B1‖B2 S2 is (Σ∗,Σ − B)-controllable
and (Σ∗, B1, B2,M1,M2)–co-observable.

LEMMA 5. Consider deterministic state machines S1 and S2 with priority sets
B1 and B2, respectively. Suppose that S1 and S2 are observation-compatible with re-
spect to masks M1 and M2, respectively, and L(S1) as well as L(S2) are (Σ∗,Σ −
B) controllable, where B := B1 ∪ B2. Then L(S), where S := S1 B1‖B2 S2, is
(Σ∗, B1, B2,M1,M2)–co-observable and (Σ∗,Σ−B) controllable.

Proof. In order to see co-observability, pick s1, s2, t ∈ L(S), and σ ∈ B. Since
S1 and S2 are deterministic, S is also deterministic. Let (x1

s1 , x
2
s1), (x1

s2 , x
2
s2), and

(x1
t , x

2
t ) denote the states reached in S after execution of s1, s2, and t, respectively,

where the first coordinate denotes the state reached in S1 and the second coordinate
denotes the state reached in S2.

In order to prove co-observability of L(S) we must consider the three different
cases of the definition of co-observability. First suppose σ ∈ B1−B2, M1(s1) = M1(t),
and s1σ ∈ L(S); we need to show that tσ ∈ L(S). Since σ ∈ B1−B2 and s1σ ∈ L(S),
it follows that σ is defined at the state x1

s1 of S1. Then using the result of Lemma 2
and the fact that S1 is M1-compatible, we obtain that σ is also defined at the state
x1
t of S1, which implies that tσ ∈ L(S). It can be argued in a similar manner that

the second and third cases of the definition of co-observability also hold.
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In order to see controllability, consider s ∈ L(S) and σ ∈ Σ− B. Let (x1
s, x

2
s) be

the state reached in S by execution of s. Then it follows from the controllability of
L(S1) that σ is defined at state x1

s of S1. Hence sσ ∈ L(S).
Given a language K, we use KBMi (i = 1, 2) to denote the infimal prefix-closed,

(Σ∗,Σ − B)-controllable, and (Σ∗,Mi)-observable superlanguage of K, which exists
as the controllability and observability of prefix-closed languages is preserved under
intersection. The notation KBM12 is used to denote the infimal prefix-closed, (Σ∗,Σ−
B)-controllable, and (Σ∗,M1,M2, B1, B2)–co-observable superlanguage of K. The
result of Lemma 5 can be used to show that if S1 generates KBM1 and S2 generates
KBM2 , then S generates KBM12 . This we state in the following theorem.

THEOREM 3. Let M1,M2, B1, B2,K
BM1 ,KBM2 , and KBM12 be as defined above.

Suppose that S1 and S2 are deterministic state machines with L(S1) = KBM1 and
L(S2) = KBM2 . Then L(S) = KBM12 , where S := S1 B1‖B2 S2 and B := B1 ∪B2.

Proof. Since K ⊆ L(S1) and K ⊆ L(S2), it follows that K ⊆ L(S). Also, it
follows from Lemma 5 that L(S) is controllable and co-observable. Thus L(S) is a
prefix-closed, controllable, and co-observable superlanguage of K. Hence we have that
KBM12 ⊆ L(S). In order to see the reverse containment, it suffices to show that non–
zero-length strings of L(S) are also in KBM12 , as the zero-length string ε does belong
to KBM12 . Thus we need to show that for any string t ∈ KBM12 and an event σ such
that tσ ∈ L(S), tσ ∈ KBM12 . If σ ∈ Σ − B, then it follows from the prefix-closure
and (Σ∗,Σ − B)-controllability of KBM12 that tσ ∈ KBM12 . On the other hand, if
σ ∈ B, then we show that the following hold:

(1) [σ ∈ B1 −B2]⇒ [∃s1 : M1(s1) = M1(t), s1σ ∈ pr(K)],
(2) [σ ∈ B2 −B1]⇒ [∃s2 : M2(s2) = M2(t), s2σ ∈ pr(K)],
(3) [σ ∈ B1 ∩ B2] ⇒ [∃s1, s2 : M1(s1) = M1(t),M2(s2) = M2(t), s1σ, s2σ ∈

pr(K)],
as this together with (Σ∗, B1, B2,M1,M2)–co-observability of KBM12 clearly implies
that tσ ∈ KBM12 .

We prove this using induction on length of t. We only prove that the case (1)
holds, as the proof for the other two cases is similar. In order to see the base step, set
t = ε (note that we do have ε ∈ KBM12) and pick σ ∈ B1 −B2. Since tσ = σ ∈ L(S)
and σ ∈ B1 − B2, it follows from construction of S that σ ∈ L(S1) = KBM1 . Since
KBM1 is the infimal prefix-closed, (Σ∗,Σ−B)-controllable, and (Σ∗,M1)-observable
superlanguage of K, and σ is not an uncontrollable event, it follows that there exists
a string s1 such that s1σ ∈ pr(K) and M1(s1) = M1(t) = ε. The other two cases of
the base step can be proved analogously.

In order to see the induction step set t = t̄σ̄ and pick σ ∈ B1 − B2. Suppose
σ̄ ∈ B1 − B2. Then it follows from induction hypothesis that there exists s̄1 such
that s′1 := s̄1σ̄ ∈ pr(K) and M1(s̄1) = M1(t̄). Let (x1

t , x
2
t ) and (x1

s′1
, x2
s′1

) denote the
states reached in S after execution of t and s′1, respectively, where the first coordinate
denotes the state reached in S1 and the second coordinate denotes the state reached
in S2. Since σ ∈ B1 − B2, we have that σ is defined at state x1

t . Hence it follows
from Lemma 2 and M1-compatibility of S1 that σ is also defined at state x1

s′1
, which

implies that s′1σ ∈ L(S). Since s′1 ∈ pr(K) ⊆ L(S1) and σ ∈ B1 − B2, we must
have s′1σ ∈ L(S1) = KBM1 . Since KBM1 is the infimal prefix-closed controllable and
observable superlanguage of K, and σ is not an uncontrollable event, this implies that
there exists s1 such that s1σ ∈ pr(K) and M1(s1) = M1(s′1). Thus s1 is the desired
string, as M1(s1) = M1(s′1) = M1(t).

Using the results derived in this section, we are now ready to present a necessary
and sufficient condition for decentralized supervision.
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THEOREM 4. Consider A,B1, B2,M1, and M2 as defined above with A∪B1∪B2 =
Σ. Let (Pm, P ) be the trajectory model of a plant and K ⊆ L(PΣ−A) be a nonempty
language. Then there exist deterministic, nonmarking, and M1-compatible supervisor
with trajectory model (S1, S1) and M2-compatible supervisor with trajectory model
(S2, S2) such that L(P A‖B S) = K, where S := S1 B1‖B2 S2 and B := B1 ∪ B2 if
and only if all of the following hold:

Prefix-closure: pr(K) = K,
Controllability: pr(K)(Σ−B) ∩ L(PΣ−A) ⊆ pr(K),
Co-observability: K is (L(PΣ−A), B1, B2,M1,M2)–co-observable.

In this case Si (i = 1, 2) can be chosen to be det(KBMi), where KBMi is the infimal
prefix-closed, (Σ∗,Σ−B)-controllable, and (Σ∗,Mi)-observable superlanguage of K.

Proof. We begin by proving the necessity. Prefix-closure and controllability con-
ditions follow from the necessity part of [30, Theorem 4]. We need to show that
the co-observability condition also holds. It follows from hypothesis and Corollary
4 that K = L(P A‖B S) = L(PΣ−A) ∩ L(SΣ−B1

1 ) ∩ L(SΣ−B2
2 ). Hence it suffices to

show that H := L(SΣ−B1
1 ) ∩ L(SΣ−B2

2 ) is (Σ∗, B1, B2,M1,M2)–co-observable. Pick
s1, s2, t ∈ H and σ ∈ Σ. We must consider the three different cases of the defini-
tion of co-observability. We consider only the first case, as the other cases can be
proven in a similar manner. Suppose σ ∈ B1 − B2, s1σ ∈ H, and M1(s1) = M1(t).
We need to show that tσ ∈ H. Since t ∈ L(SΣ−B2

2 ) and σ ∈ B1 − B2 ⊆ Σ − B2,
tσ ∈ L(SΣ−B2

2 ) trivially. It remains to show that tσ ∈ L(SΣ−B1
1 ). This follows from

the fact that SΣ−B1
1 is M1-compatible (as S1 is M1-compatible and deterministic, and

observation-compatibility of deterministic systems is preserved under augmentation).
This completes the proof of the necessity part.

In order to see the sufficiency part, select S1 := det(KBM1) and S2 := det(KBM2).
Then S1 and S2 are deterministic, S1 is M1-compatible, and S2 is M2-compatible.
It remains to show that the controlled plant language equals K. From Theorem 3
we have that L(S) = KBM12 , where KBM12 is the infimal prefix-closed, (Σ∗,Σ−B)-
controllable, and (Σ∗, B1, B2,M1,M2)–co-observable superlanguage of K. Using argu-
ments similar to those in Lemma 3 we can readily conclude that L(PΣ−A)∩L(S) is the
infimal prefix-closed, (L(PΣ−A),Σ−B)-controllable, and (L(PΣ−A), B1, B2,M1,M2)–
co-observable superlanguage of K. Hence it follows from the prefix-closure, control-
lability, and co-observability conditions that

L(PΣ−A) ∩ L(S) = K.(3)

We need to show that we also have the following equality: H := L(PΣ−A)∩L(SΣ−B) =
K. This follows from (3) and the fact that K is controllable as is shown next.

Since L(S) ⊆ L(SΣ−B), clearly K ⊆ H. Suppose for contradiction that there
exists a string s such that s ∈ H −K. Let s be a minimal-length such string. Since
ε ∈ K, we have s 6= ε, which implies s = s̄σ, where s̄ ∈ K and σ ∈ Σ. Since s̄ ∈ K and
s̄σ 6∈ K, it must be the case that σ ∈ Σ−B. This is contradictory to the fact that K
is controllable, as we have s̄ ∈ K, σ ∈ Σ−B, s̄σ ∈ H, which implies s̄σ ∈ L(PΣ−A);
however, s̄σ 6∈ K. This completes the proof.

Remark 3. Note that the conditions of controllability and co-observability in
Theorem 4 are with regard to the language of the augmented plant, which depends on
the trajectory model of the plant and cannot be inferred from the language model of
the plant. Also, as is the case of the necessity part of Theorem 2, the necessity part
of Theorem 4 may not hold if the supervisors are nondeterministic.

Finally, the result of Theorem 4 can be easily extended to obtain conditions for
either language model nonblocking or trajectory model nonblocking supervisors. In
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fact arguments similar to those given in Corollaries 2 and 3 can be used to show that
language model nonblocking supervision would require the condition of relative-closure
instead of that of prefix-closure, and a trajectory model nonblocking supervision would
require the additional trajectory-closure condition.

6. Conclusion. In this paper we have extended our earlier work on supervisory
control of nondeterministic systems using prioritized synchronization as the mech-
anism of control and trajectory model as the modeling formalism to control under
partial observation. The notion of observation-compatibility of trajectory models
has been introduced, and necessary and sufficient conditions for the existence of
observation-compatible supervisors have been obtained for centralized as well as de-
centralized supervision. Although these conditions are similar to the standard condi-
tions of controllability, observability, and co-observability found in literature, they are
different, as they depend on the trajectory model as opposed to the language model
of the plant. Also, our work demonstrates the suitability of PSC-based supervisor
design for nondeterministic systems under centralized as well as decentralized setting.
These results have been applied to the design of a supervisor that achieves a mutually
exclusive usage of a communication channel in a communication system.
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Abstract. The controllability notions for partially observed stochastic systems are defined.
Their relation with complete and approximate controllabilities is shown. In particular, it is proven
that the approximate controllability condition is necessary and the complete controllability condition
is sufficient for the partially observed linear Gaussian control system to attain the arbitrarily small
neighborhood of each point in the state space with probability arbitrarily closely to one.
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1. Introduction. A quite complete theory of the controllability for the deter-
ministic linear systems exists (see, for example, Curtain and Pritchard [1]). At the
same time there have been only several attempts to introduce a controllability notion
for stochastic systems, which do not agree in general with either complete or ap-
proximate controllabilities when a deterministic system is considered as a stochastic
system with zero noise, and to obtain the conditions of its contents. For example, the
stochastic ε-controllability with probability p, defined in Sunahara et al. [2], cannot
be reduced to the known controllability notions for the deterministic systems.

In Bashirov and Hajiyev [3, 4] the approximate and complete controllability no-
tions for the deterministic systems and the stochastic controllability from [2] were
combined. In this paper, using the approach from [3, 4]—that is, based on the
separation principle—we introduce the controllability notions for partially observed
stochastic systems, show their relation with complete and approximate controllabili-
ties, and study them for the linear systems. In particular, in this paper it is proven
that the approximate controllability condition is necessary and the complete con-
trollability condition is sufficient for the partially observed linear Gaussian control
system to attain the arbitrarily small neighborhood of each point in the state space
with probability arbitrarily closely to one.

2. Notations. In this paper X and Y are the real separable Hilbert spaces. Rn

denotes the n-dimensional real Euclidean space. The closure of the set D is denoted
by D.

The space of all linear bounded operators on X to Y is denoted by L(X,Y ). The
brief notation L(X) = L(X,X) is used as well. A∗ denotes the adjoint to the oper-
ator A. The trace of the operator A is denoted by trA. If A ∈ L(X) is self-adjoint
and 〈h,Ah〉 ≥ 0 (respectively, 〈h,Ah〉 ≥ c‖h‖2, where c =const.> 0) for all h ∈ X,
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then we write A ≥ 0 (respectively, A > 0), where 〈· , · 〉 is an inner product and ‖· ‖ is
a norm.

Always it is supposed that (Ω,F ,P) is a complete probability space, and two
time moments are given. The initial time moment is identified with zero. The ter-
minal moment is denoted by T . The notation T = [0, T ] is used for the finite time
interval on which all random and nonrandom processes will be considered. L2(T, X)
(respectively, L2(Ω, X)) denotes the space of equivalence classes of all functions on
T (respectively, Ω) to X that are Lebesgue measurable (respectively, F -measurable)
and square integrable with respect to the Lebesgue measure (respectively, measure
P).

The notation ∆ = {(t, s) : 0 ≤ s ≤ t ≤ T} is used for the triangular set over
T. B2(∆,L(X,Y )) denotes the class of all L(X,Y )-valued functions on ∆ that are
strongly measurable and square integrable with respect to the Lebesgue measure on
∆ (see Curtain and Ichikawa [5]).

All integrals of the abstract functions are in Bochner sense. For the expectation
and the conditional expectation the notations E and E(· |· ) are used, respectively.
cov(x, y) is the covariance operator of the random variables x and y. The brief notation
covx = cov(x, x) is used as well. The integrals of the operator valued functions (except
the stochastic integrals) are in strong Bochner sense.

3. Main definitions. Consider a control system on T. Let xut be its (random
or not) state value at time t ∈ T corresponding to the control u taken from the set of
the admissible controls U . If the considered control system is stochastic, then by Fu
we denote the smallest σ-algebra generated by the observations on the time interval
T corresponding to the control u. Suppose that X is the state space. Introduce the
following sets:

D = {xuT : u ∈ U},(1)

S(ε, p) = {h ∈ X : ∃u ∈ U P{‖E(xuT |Fu)− h‖2 > ε} ≤ 1− p},(2)

C(ε, p)={h ∈ X : ∃u ∈ U h=ExuT , P{‖E(xuT |Fu)−h‖2>ε}≤1− p},(3)

where 0 ≤ ε <∞ and 0 ≤ p ≤ 1 are the parameters.
DEFINITION 1. If D = X (respectively, D = X), then the corresponding deter-

ministic control system will be called Dc-controllable (respectively, Da-controllable).
DEFINITION 2. If 0 ∈ S(ε, p), then the corresponding stochastic control system

will be called S0
ε,p-controllable.

DEFINITION 3. If S(ε, p) = X (respectively, S(ε, p) = X), then the corre-
sponding stochastic control system will be called Scε,p-controllable (respectively, Saε,p-
controllable).

It is clear that Dc- and Da-controllabilities are the well-known complete and
approximate controllabilities for the deterministic systems, respectively. The S0

ε,p-
controllability is a generalization of the ε-controllability with probability p, defined in
Sunahara et al. [2], to the partially observed stochastic systems.

The geometric interpretation of the Scε,p (respectively, Saε,p)-controllability is as
follows. If a stochastic system with the initial (random or not) state x0 is Scε,p (re-
spectively, Saε,p)-controllable, then with probability not less than p it can pass from
x0 for the time T into the

√
ε-neighborhood of the arbitrary point of the state space
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(respectively, the set that is dense in the state space). The S0
ε,p-controllability means

that the hitting probability into the
√
ε-neighborhood of zero is not less than p. The

smaller ε is and the larger p is for the stochastic system, the more controllable it is;
i.e., it is possible to hit into the smaller neighborhood with higher probability. In
particular, if a Dc (respectively, Da)-controllable deterministic system is considered
as stochastic with zero noise, then this system is Sc0,1 (respectively, Sa0,1)-controllable
(with parameters ε = 0 and p = 1). At the same time it is clear that all stochastic
systems are Scε,p- and Saε,p-controllable with ε ≥ 0 and p = 0 or ε =∞ and 0 ≤ p ≤ 1
if we admit ∞ as a value for ε.

It is also to be noted that if a given stochastic system is Scε,p (respectively, Saε,p)-
controllable, then it is also Scε1,p1

(respectively, Saε1,p1
)-controllable, where ε ≤ ε1 <∞

and 0 ≤ p1 ≤ p. So, if ε is given for some system, it becomes important to find
the largest value of p with which the system is Scε,p (respectively, Saε,p)-controllable.
Similarly, if there is given p, then it is worth finding the smallest ε.

We also introduce the following stronger controllability notions.
DEFINITION 4. If C(ε, p) = X (respectively, C(ε, p) = X), then the corre-

sponding stochastic control system will be called Ccε,p-controllable (respectively, Caε,p-
controllable).

It is clear that Ccε,p (respectively, Caε,p)-controllability implies Scε,p (respectively,
Saε,p) -controllability, but the converses are not true in general. The geometric in-
terpretation of the Ccε,p- and Caε,p-controllabilities differs from that of Scε,p- and Saε,p-
controllabilities since among the controls, with the help of which the

√
ε-neighborhood

of any point h is achieved, there exists one with property that the expectation of the
target state, corresponding to this control, coincides with h.

To introduce the next controllability notion we need the following lemma.
LEMMA 1. A stochastic system is Saε,p-controllable for all ε > 0 and 0 ≤ p < 1 if

and only if it is Scε,p-controllable for all ε > 0 and 0 ≤ p < 1.
Proof. The sufficiency is obvious. Let us prove the necessity. Suppose that a given

stochastic control system is Saε,p-controllable for all ε > 0 and 0 ≤ p < 1. Let S(ε, p)
be the set (2) corresponding to this system. We have S(ε, p) = X for all ε > 0 and
0 ≤ p < 1, where X is the state space. We should show that the stronger condition
S(ε, p) = X for all ε > 0 and 0 ≤ p < 1 holds. Fix arbitrary ε0 > 0, 0 ≤ p0 < 1 and
h ∈ X. Since S(ε, p) = X for all ε > 0 and 0 ≤ p < 1, there is h0 ∈ S(ε0/4, p0) such
that ‖h0 − h‖2 ≤ ε0/4. At the same time, since h0 ∈ S(ε0/4, p0), there exists u ∈ U
with

P{‖E(xuT |Fu)− h0‖2 > ε0/4} ≤ 1− p0.

Hence, for this u ∈ U , we have

P{‖E(xuT |Fu)− h‖2 > ε0} ≤ P{‖E(xuT |Fu)− h0‖+ ‖h0 − h‖ >
√
ε0}

≤ P{‖E(xuT |Fu)− h0‖+
√
ε0/2 >

√
ε0} = P{‖E(xuT |Fu)− h0‖2 > ε0/4} ≤ 1− p0.

Thus, h ∈ S(ε0, p0). Since ε0 > 0, 0 ≤ p0 < 1 and h ∈ X are arbitrary, we have
S(ε, p) = X for all ε > 0 and 0 ≤ p < 1. The lemma is proven.

DEFINITION 5. A stochastic control system will be called S-controllable if it is
Scε,p-controllable (or, equivalently, Saε,p-controllable) for all ε > 0 and 0 ≤ p < 1.

Obviously, S-controllability is independent on parameters ε and p. Moreover, by
Lemma 1, the complete and approximate versions of this controllability are equivalent.
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S-controllability is the main object of our consideration. The geometric interpretation
of S-controllability is as follows: an S-controllable stochastic control system can attain
the arbitrarily small neighborhood of each point in the state space with probability
arbitrarily closely to one.

Finally, it is to be noted that in the previously introduced controllability no-
tions the abbreviations D, S, and C mean deterministic, stochastic, and combined,
respectively.

4. Separation theorem. In this section we shall prove that in the case of linear
systems the Ccε,p (respectively, Caε,p)-controllability is equivalent to the S0

ε,p- and Dc

(respectively, Da)-controllabilities combined.
Suppose that A is the infinitesimal generator of a strongly continuous semigroup

U ; B ∈ L(Y,X); C ∈ L(X,Rk); f ∈ L2(T, X); x0 ∈ L2(Ω, X) is a Gaussian random
variable with covx0 = P0; m and n are X- and Rk-valued Wiener processes, respec-
tively; n0 = 0; m0 = 0; Ent = 0; Emt = 0; covnt = It; I is the unit (k × k)-matrix,
covmt = Mt; M is a nuclear operator on X; and x0, n, m are mutually independent.
Consider the linear partially observed stochastic system{

dxut = (Axut +But + ft)dt+ dmt, 0 < t ≤ T, xu0 = x0,
dξut = Cxut dt+ dnt, 0 < t ≤ T, ξu0 = 0,(4)

where x, u, and ξ are the state, control, and observation processes. Under a set U of
the admissible controls we consider the set of all controls in the linear form

ut = ūt +
∫ t

0
Kt,sdξ

u
s ,(5)

where K ∈ B2(∆,L(Rk, Y )), ū ∈ L2(T, Y ).
Note that under the above and some additional conditions the random function

x, defined by

xt = Utx0 +
∫ t

0
Ut−s(Bsus + fs)ds+

∫ t

0
Ut−sdms, 0 ≤ t ≤ T,

satisfies the equation in (4) and stands for its unique solution (see Curtain and
Pritchard [1]). On the other hand, the function xt, 0 ≤ t ≤ T , is well defined even
if these additional conditions do not hold. According to the theory of the differential
equations in Banach spaces the function xt, 0 ≤ t ≤ T , is called the mild solution of
the equation in (4) that becomes the solution (in the ordinary sense) when the above-
mentioned additional conditions hold. Below under the solution of the equation in
(4) we shall keep in mind its mild solution.

One can associate two systems with the system (4). The first of them is the
deterministic system

d

dt
yvt = Ayvt +Bvt + ft, 0 < t ≤ T, yv0 = y0 = Ex0,(6)

where v is a control from V = {v : vt = Eut, u ∈ U}. The second one is the partially
observed stochastic system{

dzwt = (Azwt +Bwt)dt+ dmt, 0 < t ≤ T, zw0 = z0 = x0 −Ex0,
dηwt = Czwt dt+ dnt, 0 < t ≤ T, ηw0 = 0,(7)

where w is a control from W = {w : wt = ut −Eut, u ∈ U}.
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Note that under the solution of the equations in (6) and (7) we shall also mean
their mild solution.

LEMMA 2. Under the above conditions and notation the following equalities hold:
(a) V = L2(T, Y );
(b) W = {w : wt =

∫ t
0 Kt,sdη

w
s , K ∈ B2(∆,L(Rk, Y ))}.

Proof. Item (a) can be proven by easy verification. To prove item (b) let w ∈W .
Then there exists such u ∈ U that w = u − Eu. Let u be in the form (5) with
K ∈ B2(∆,L(Rk, Y )) and ū ∈ L2(T, Y ). Then

wt = ut −Eut =
∫ t

0
Kt,sC(xus −Exus )ds+

∫ t

0
Kt,sdns

=
∫ t

0
Kt,sCz

w
s ds+

∫ t

0
Kt,sdns =

∫ t

0
Kt,sdη

w
s .

On the other hand, if

wt =
∫ t

0
Kt,sdη

w
s ,(8)

then for u, which has the representation (5), we have w = u−Eu. So item (b) is true.
LEMMA 3. Under the above conditions and notation the equality U = V + W

holds, where + is the sign of the sum of the sets.
Proof. Suppose v ∈ V , w ∈W , and w has the form (8). Let u = v + w. Then

ut = vt +
∫ t

0
Kt,sCz

w
s ds+

∫ t

0
Kt,sdns

= vt −
∫ t

0
Kt,sCy

v
sds+

∫ t

0
Kt,sCx

u
sds+

∫ t

0
Kt,sdns.

Denote

ūt = vt −
∫ t

0
Kt,sCy

v
sds.(9)

Then u has the form of (5) with ū as in (9), i.e., u ∈ U . On the other hand, each
element of U can be shown as a sum of some elements taken from V and W . So
U = V +W .

LEMMA 4. Under the above conditions and notation, if u = v+w, v ∈ V , w ∈W ,
then the σ-algebras Fu,ξ and Fw,η, generated by ξus , 0 ≤ s ≤ T , and ηws , 0 ≤ s ≤ T ,
respectively, are equal.

Proof. Using u = v + w with v = Eu it is easy to show that

ξut = ηwt + C

∫ t

0
yvsds, 0 ≤ t ≤ T.(10)

Since the second term in the right-hand side of (10) is nonrandom, we conclude that
ξus , 0 ≤ s ≤ T , and ηws , 0 ≤ s ≤ T , generate the same σ-algebra.

THEOREM 1. Under the above conditions and notation the system (4) is Ccε,p
(respectively, Caε,p)-controllable if and only if the system (6) is Dc (respectively, Da)-
controllable and the system (7) is S0

ε,p-controllable.
Proof. Let C(ε, p) be the set (3) corresponding to the system (4). Similarly, let

D be the set (1) corresponding to the system (6). Suppose that the system (4) is
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Ccε,p (respectively, Caε,p)-controllable. Then, from the inclusion C(ε, p) ⊂ D, it follows
that the system (6) is Dc (respectively, Da)-controllable. Let h ∈ C(ε, p). Then there
exists u ∈ U such that h = ExuT and

P{‖E(xuT |Fu,ξ)− h‖2 > ε} ≤ 1− p.

Consider w = u−Eu ∈W . By Lemma 4, we have Fu,ξ = Fw,η. Therefore,

P{‖E(zwT |Fw,η)‖2 > ε} = P{‖E(xuT |Fu,ξ)−ExuT ‖2 > ε} ≤ 1− p;

i.e., the system (7) is S0
ε,p-controllable. So the necessity is proven. To prove the

sufficiency let h ∈ D. Then there exists v ∈ V such that h = yvT . From the S0
ε,p-

controllability of the system (7), we conclude that there exists w ∈W with

P{‖E(zwT |Fw,η)‖2 > ε} ≤ 1− p.

Consider u = v + w. By Lemma 3, u ∈ U = V +W . Moreover,

P{‖E(xuT |Fu,ξ)− h‖2 > ε} = P{‖E(zwT |Fw,η)‖2 > ε} ≤ 1− p,

i.e., h ∈ C(ε, p). Therefore, D ⊂ C(ε, p). As D = X (respectively, D = X), then
C(ε, p) = X (respectively, C(ε, p) = X). Thus, the system (4) is Ccε,p (respectively,
Caε,p)-controllable.

Theorem 1 separates the study of the Ccε,p (respectively, Caε,p)-controllability of
the general system (4) into the study of the Dc (respectively, Da)-controllability and
the S0

ε,p-controllability of the systems (6) and (7), respectively. The Dc- and Da-
controllabilities of the linear system (6) on the set L2(T, Y ) of admissible controls are
investigated in a number of papers. Therefore, we mention only the following results
from Curtain and Pritchard [1, pp. 56, 60] that will be used later.

THEOREM 2. Under the above conditions and notation the following statements
hold:

(a) the system (6) is Dc-controllable if and only if∫ T

t

UT−sBB∗U∗T−sds > 0, 0 ≤ t < T ;

(b) the system (6) is Da-controllable if and only if B∗U∗t x = 0 implies x = 0 for
all t ∈ T.

5. Sufficient condition for S0
ε,p-controllability. Consider the system (7) un-

der the above conditions and notation. Let Qi and P be the solutions of the following
operator Riccati equations, respectively:

d

dt
Qt+QtA+A∗Qt−iQtBB∗Qt=0, 0≤ t < T, QT =I, i=1, 2, . . . ,(11)

d

dt
Pt −APt − PtA∗ −M + PtC

∗CPt = 0, 0 < t ≤ T, P0 = covz0,(12)

where I is the identity operator. Note that under the solution of (11) we mean the
operator-valued function Q that for all x, y ∈ D(A) satisfies

d

dt
〈Qtx, y〉+ 〈QtAx, y〉+ 〈Qtx,Ay〉 − i〈QtBB∗Qtx, y〉 = 0, 0≤ t<T,
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where D(A) is the domain of A. The same sense is applied to the solution of (12). It
follows from Curtain and Pritchard [1] that these equations have the unique strongly
continuous solutions Qi and P with Qit ≥ 0 and Pt ≥ 0 for all t ∈ T.

LEMMA 5. Under the above conditions and notation the equality

inf
W

E‖E(zwT |Fw,η)‖2 = lim
i→∞

∫ T

0
tr CPsQisPsC

∗ds(13)

holds, where Qi and P are the solutions of (11) and (12), respectively, and there exists
a finite limit in the right-hand side of (13).

Proof. First we shall prove the existence of the finite limit. Consider the family of
the stochastic optimal control problems on W with the state and observation systems
defined by (7) and the functional

J i(w) = E
(
‖zwT ‖2 + i−1

∫ T

0
‖wt‖2dt

)
, i = 1, 2, . . . ,

to be minimized. It is known (see Curtain and Ichikawa [5]) that there exists the
unique optimal control wi ∈W in the considered optimal control problem and

J i(wi) = trPT +
∫ T

0
tr CPsQisPsC

∗ds.

Since PT is the covariance of the error zwT −E(zwT |Fw,η) (see Curtain [6]) independently
on w,

E‖zwT ‖2 −E‖E(zwT |Fw,η)‖2 = E‖zwT −E(zwT |Fw,η)‖2 = trPT .

Therefore, if we denote

J̃ i(w) = E
(
‖E(zwT |Fw,η)‖2 + i−1

∫ T

0
‖wt‖2dt

)
,

then

J̃ i(wi) = J i(wi)− trPT =
∫ T

0
tr CPsQisPsC

∗ds.(14)

Let us show that J̃ i(wi) does not increase as i→∞. Let j ≥ i. Then

J̃j(wj) = E
(
‖zwjT ‖2 + j−1

∫ T

0
‖wjt‖2dt

)
− trPT

≤ E
(
‖zwiT ‖2 + j−1

∫ T

0
‖wit‖2dt

)
− trPT

≤ E
(
‖zwiT ‖2 + i−1

∫ T

0
‖wit‖2dt

)
− trPT = J̃ i(wi).

We conclude that J̃ i(wi), i = 1, 2, . . . , is a nonnegative and nonincreasing sequence.
Therefore, there exists a finite limit of J̃ i(wi) as i → ∞. From (14), it follows that
there exists a finite limit in the right-hand side of (13). Now let us show that (13) is
true. Indeed

inf
W

E‖E(zwT |Fw,η)‖2≤ J̃ i(wi)≤E
(
‖E(zw̃

r

T |F w̃
r,η)‖2+i−1

∫ T

0
‖w̃rt ‖2dt

)
,(15)
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where w̃r, r = 1, 2, . . . , is a minimizing sequence of the functional

J0(w) = E‖E(zwT |Fw,η)‖2.(16)

Consequently, taking the limit in (15) as i → ∞ and r → ∞, we obtain the equality
(13). The lemma is proven.

Denote

a = lim
i→∞

∫ T

0
tr CPsQisPsC

∗ds.(17)

THEOREM 3. Under the above conditions and notation the system (7) is S0
ε,p-

controllable if

a < ε(1− p),(18)

where a is defined by (17).
Proof. By Lemma 5, we have

inf
W

E‖E(zwT |Fw,η)‖2 = a < ε(1− p).

Therefore, there exists w0 ∈W such that

E‖E(zw
0

T |Fw
0,η)‖2 < ε(1− p).

Using Chebyshev’s inequality, we obtain

P{‖E(zw
0

T |Fw
0,η)‖2 > ε} ≤ 1

ε
E‖E(zw

0

T |Fw
0,η)‖2 ≤ 1− p.

Hence, the theorem is proven.
It should be noted that the condition (18) that is the sufficient condition for S0

ε,p-
controllability is not necessary in general. In view of this we present the following
arguments. Define the following functions for a given system:

ϕp = inf Φp, Φp = {ε : the system is S0
ε,p-controllable},(19)

ψε = sup Ψε, Ψε = {p : the system is S0
ε,p-controllable}.(20)

Obviously, ϕ and ψ are the nondecreasing functions and ϕ0 = 0, limε→∞ ψε = 1. It
follows from the definitions that the necessary and sufficient condition for the system
to be S0

ε,p-controllable is{
ϕp < ε if inf Φp is not achieved,
ϕp ≤ ε if inf Φp is achieved,(21)

which can be written in the following equivalent form:{
ψε > p if sup Ψε is not achieved,
ψε ≥ p if sup Ψε is achieved.(22)

Using (18), define the functions

ϕ̃p =
{
a(1− p)−1, 0 ≤ p < 1,
∞, p = 1, ψ̃ε =

{
1− aε−1, a < ε <∞,
0, 0 ≤ ε ≤ a.
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By (21), (22), and Theorem 3, it follows that

ϕp ≤ ϕ̃p, 0 ≤ p ≤ 1, and ψε ≥ ψ̃ε, 0 ≤ ε <∞;

i.e., in the case of the system (7) the functions ϕ̃ and ψ̃, defined with the help of
(18), give only approximations of the functions ϕ and ψ and may not be equal to
them. In the case ϕp < ϕ̃p or ψε > ψ̃ε the condition (18) cannot be necessary for
S0
ε,p-controllability. But it turns out that the condition (18), being sufficient for S0

ε,p-
controllability of the system (7), is weaker than the Dc-controllability of the system
(6). We shall prove this result in the next section.

6. Necessary and sufficient condition for C c
ε,p-controllability. Using the

special form of the Riccati equation (11), we can present its solution in the following
explicit form.

LEMMA 6. Under the above conditions and notation the Riccati equation (11) has
a solution in the form

Qit=U∗T−t
(
I+i

∫ T

t

UT−sBB∗U∗T−sds
)−1

UT−t, 0≤ t≤T, i=1, 2, . . . .(23)

Proof. First note that the right-hand side of (23) is a composition of three oper-
ators, each depending on time t. The first and third of them satisfy

d

dt
UT−tx = −AUT−tx = −UT−tAx, x ∈ D(A).(24)

But the middle one is the inverse of the operator that is strongly differentiable in t.
According to the rule for the derivative of the inverse operator, we have

d

dt

(
I + i

∫ T

t

UT−sBB∗U∗T−sds
)−1

= i

(
I+i
∫ T

t

UT−sBB∗U∗T−sds
)−1

UT−tBB∗U∗T−t
(
I+i
∫ T

t

UT−sBB∗U∗T−sds
)−1

.(25)

Thus, for all x, y ∈ D(A), from (23), we have

d

dt
〈Qitx, y〉 =

d

dt

〈(
I + i

∫ T

t

UT−sBB∗U∗T−sds
)−1

UT−tx,UT−ty
〉

=

〈(
d

dt

(
I+i

∫ T

t

UT−sBB∗U∗T−sds
)−1)

UT−tx

+
(
I + i

∫ T

t

UT−sBB∗U∗T−sds
)−1

d

dt
UT−tx,UT−ty

〉

+

〈(
I + i

∫ T

t

UT−sBB∗U∗T−sds
)−1

UT−tx,
d

dt
UT−ty

〉
.(26)

Substituting (24) and (25) in (26) and using (23), one can easily show that Qi, defined
by (23), is a solution of (11).
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LEMMA 7. Under the above conditions and notation the Dc-controllability condi-
tion for the system (6) from Theorem 2(a) implies

a = lim
i→∞

∫ T

0
tr CPsQisPsC

∗ds = 0.

Proof. By Dc-controllability condition, for all 0 ≤ t < T we have〈
x,

(
I + i

∫ T

t

UT−sBB∗U∗T−sds
)
x

〉

= ‖x‖2 + i

〈
x,

∫ T

t

UT−sBB∗U∗T−sxds
〉
≥ (1 + ibt)‖x‖2,

where bt > 0 for all 0 ≤ t < T . Therefore,∥∥∥∥∥
(
I + i

∫ T

t

UT−sBB∗U∗T−sds
)−1

∥∥∥∥∥ ≤ (1 + ibt)−1,

and by (23),

‖Qit‖ ≤ ‖UT−t‖2(1 + ibt)−1.

The last inequality implies

‖Qit‖≤‖UT−t‖2, i = 1, 2, . . . , 0≤ t≤T ; ‖Qit‖ → 0, i→∞, 0≤ t<T.(27)

Thus, applying majorized convergence theorem, we obtain

a = lim
i→∞

∫ T

0
tr CPsQisPsC

∗ds ≤ lim
i→∞

∫ T

0
(trPs)2‖C‖2‖Qis‖ds

=
∫ T

0
(trPs)2‖C‖2 lim

i→∞
‖Qis‖ds = 0.

THEOREM 4. Under the above conditions and notation the system (4) is Ccε,p-
controllable for all ε > 0 and 0 ≤ p < 1 if and only if the system (6) is Dc-controllable.

Proof. The necessity follows from Theorem 1. Suppose that the system (6) is Dc-
controllable. Using Theorem 2(a), we obtain that the condition of Lemma 7 holds.
Therefore, a = 0, and, applying Theorem 3, we get the S0

ε,p-controllability for all ε
and p satisfying ε(1− p) > 0 for the system (7). Note that the condition ε(1− p) > 0
includes all pairs (ε, p) with ε > 0 and 0 ≤ p < 1. Finally, by Theorem 1, we obtain
Ccε,p-controllability of the system (4) for all ε > 0 and 0 ≤ p < 1. The theorem is
proven.

Remark. One may ask, is the analogue of Theorem 4 true in the approximate
controllability case; i.e., is Caε,p-controllability of the system (4) for all ε > 0 and
0 ≤ p < 1 equivalent to Da-controllability of the system (6)? The necessity part
again holds in view of Theorem 1. Problems arise in proving the sufficiency. The
sufficiency part of Theorem 4 is based on Lemma 7, in the proof of which the uniform
operator convergence (27) under the Dc-controllability condition from Theorem 2(a)
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was used. There is an example (see section 7) constructed by the reviewer of this
article which shows that, if the exact controllability condition in Lemma 7 is replaced
with the approximate controllability condition (see Theorem 2(b)), then the uniform
operator convergence (27) is not true. Nevertheless, it might be possible to prove
the convergence Qit → 0, i → ∞, in the strong (or weak) operator topology. This
problem needs further investigation.

7. Necessary and sufficient conditions for S-controllability. Now we can
consider the main controllability notion for the stochastic systems that was defined
in Definition 5.

LEMMA 8. Under the above conditions and notation let w be the random process
defined by (8), where K ∈ B2(∆,L(Rk, Y )) and ηw is defined by (7). Then there
exists M ∈ B2(∆,L(Rk, Y )) such that

wt =
∫ t

0
Mt,sdη

0
s ,(28)

where η0 is the observation process of the system (7) corresponding to the zero-control.
Conversely, if w is defined by (28) with M ∈ B2(∆,L(Rk, Y )), then there exists
K ∈ B2(∆,L(Rk, Y )) such that w has the representation (8).

Proof. The direct statement is proven in Curtain [6]. The converse will be proven
in the same way as in Curtain [6]. Suppose w has the form (28). It is easy to observe
that there exists the following relation between ηw and η0:

dη0
s = dηws −

∫ s

0
CUs−rBwrdrds.(29)

Substituting (29) in (28) we have

wt =
∫ t

0
Mt,sdη

w
s −

∫ t

0

∫ s

0
Mt,sCUs−rBwrdrds.(30)

Equation (30) is a Volterra integral equation with respect to w which has the kernel

Lt,r = −
∫ t

r

Mt,sCUs−rBds.

It is known that (30) has a solution in the form

wt =
∫ t

0
Mt,sdη

w
s +

∫ t

0
Nt,s

∫ s

0
Ms,rdη

w
r ds

for some N ∈ B2(∆,L(Y )). Applying the stochastic analogue of the Fubini theorem
(see Curtain and Pritchard [1]) we obtain that w has the form (8) with

Kt,s = Mt,s +
∫ t

s

Nt,rMr,sdr.

So w ∈W . The lemma is proven.
LEMMA 9. Under the above conditions and notation the set U of admissible

controls of the system (4) is convex.
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Proof. Suppose u1, u2 ∈ U and λ1 > 0, λ2 > 0 with λ1 + λ2 = 1. Consider
u = λ1u

1 + λ2u
2. We have

uit = vit +
∫ t

0
M i
t,sdη

0
s , i = 1, 2,

for some v1, v2 ∈ L2(T, Y ) and M1,M2 ∈ B2(∆,L(Rk, Y )). Denoting v = λ1v
1+λ2v

2

and M = λ1M
1 + λ2M

2, we have

ut = vt +
∫ t

0
Mt,sdη

0
s

for v ∈ L2(T, Y ) and M ∈ B2(∆,L(Rk, Y )). It means that u ∈ U and, therefore, U
is convex. The lemma is proven.

THEOREM 5. Under the above conditions and notation,
(a) Dc-controllability of the system (6) is sufficient for the S-controllability of the

system (4);
(b) Da-controllability of the system (6) is necessary for the S-controllability of

the system (4).
Proof. By Theorem 4, we obtain that the Dc-controllability of the system (6)

implies Ccε,p-controllability of the system (4) for all ε > 0 and 0 ≤ p < 1. Since
C(ε, p) ⊂ S(ε, p) for an arbitrary system, where C(ε, p) and S(ε, p) are defined by
(3) and (2), then C(ε, p) = X implies S(ε, p) = X. Therefore, the system (4) is
Scε,p-controllable for all ε > 0 and 0 ≤ p < 1, which means the S-controllability of the
system (4). This proves item (a). Let us prove item (b). Suppose that the system
(4) is S-controllable, i.e., Saε,p-controllable for all ε > 0 and 0 ≤ p < 1. To prove the
Da-controllability of the system (6) let us consider arbitrary h ∈ X. We shall show
that there exists a sequence {ũn} in U such that ‖ExũnT − h‖ → 0 as n → ∞, where
xut is the state of the system (4) at time t corresponding to control u ∈ U . Consider
the sequences {εn} and {pn} with εn > 0, 0 ≤ pn < 1 and εn → 0, pn → 1 as
n → ∞. Then from Saεn,pn -controllability of the system (4) we obtain the existence
of the sequence {un} in U such that

P{‖E(xu
n

T |Fu
n,ξ)− h‖2 > εn} ≤ 1− pn.(31)

Inequality (31) implies the convergence in probability of ‖E(xu
n

T |Fu
n,ξ)− h‖ to zero.

Indeed, for any ε > 0 we can find a number N such that 0 < εn < ε2 for all n > N .
Therefore, for n > N we have

P{‖E(xu
n

T |Fu
n,ξ)−h‖>ε}≤P{‖E(xu

n

T |Fu
n,ξ)−h‖2>εn}≤1−pn → 0, n→∞.

Hence, E(xu
n

T |Fu
n,ξ) converges to h in probability. Since E(xu

n

T |Fu
n,ξ) is a Gaussian

random variable for all n, the characteristic functions of these random variables have
the form (see Vakhania [7])

χn(x) = exp
(
i〈mn, x〉 −

1
2
〈Λnx, x〉

)
, x ∈ X,(32)

where mn = E(E(xu
n

T |Fu
n,ξ)) = Exu

n

T and Λn =covE(xu
n

T |Fu
n,ξ). Also, the vector

h ∈ X is considered as a degenerate Gaussian random variable with characteristic
function

χ(x) = exp
(
i〈h, x〉

)
, x ∈ X.(33)
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The convergence of E(xu
n

T |Fu
n,ξ) to h in probability implies χn(x) → χ(x) for all

x ∈ X. The last convergence is possible when

〈mn, x〉 = 〈ExunT , x〉 → 〈h, x〉, 〈Λnx, x〉 → 0, n→∞.

First of these convergences means the convergence of Exu
n

T to h in the weak topology
of the Hilbert space X. By Mazur’s theorem (see Balakrishnan [8]) we can construct
a sequence

hn =
n∑
i=1

cni Exu
i

T , cni ≥ 0,
n∑
i=1

cni = 1, i = 1, 2, . . . , n, n = 1, 2, . . . ,

of convex combinations of Exu
n

T such that hn converges to h in the strong topology of
X. Denote ũn =

∑n
i=1 c

n
i u

i, n = 1, 2, . . . . By Lemma 9, ũn ∈ U for all n. Moreover,
in view of the affineness of the system (4), hn = Exũ

n

T . In terms of the system (6)
it means that, for the sequence of controls ṽn = Eũn in V , the sequence of vectors
hn = Exũ

n

T = yṽ
n

T converges to h in the strong topology of X. Since h is an arbitrary
point of X, we conclude that the set D defined by (1) for the system (6) is dense in
X. The theorem is proven.

8. Discussion. One can call the stochastic system (4) Dc (respectively, Da)-
controllable if the associated deterministic system (6) has the same property. The-
orem 5 indicates the following implications between Dc-, Da-, and S-controllability
properties for the system (4):

Dc ⇒ S ⇒ Da,(34)

in which S-controllability has the middle position between the strongerDc and weaker
Da-controllabilities. The following example shows that in general the reverse implica-
tion Dc ⇐ S does not hold. Note that this example was constructed by the reviewer
of this article to show that if Dc-controllability in Lemma 7 is replaced with the
Da-controllability condition, then the uniform operator convergence (27) does not
hold.

Let X = Y = l2 (the Hilbert space of numerical sequences {xn} satisfying∑∞
n=1 x

2
n < ∞ with scalar product 〈{xn}, {yn}〉 =

∑∞
n=1 xnyn), Ut ≡ I (the iden-

tity operator) and

B =


1 0 0 · · ·
0 1

2 0 · · ·
0 0 1

3 · · ·
· · · · · ·

 .

Consider the basis e1 = (1, 0, 0, . . . ), e2 = (0, 1, 0, . . . ), e3 = (0, 0, 1, . . . ), . . . in l2.
Since

∞∑
n=1

〈Ben, Ben〉 =
∞∑
n=1

1
n2 <∞,

then B is a Hilbert–Schmidt operator on l2 (the notation is B ∈ L2(l2)) and, therefore,
B ∈ L(l2). Obviously, B = B∗. Also, B∗U∗t x = 0 implies Bx = 0 and, hence, x = 0.
So the system (4) with U and B defined as above is Da-controllable (see Theorem
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2(b)). But it is not Dc-controllable since ‖B2en‖l2 = n−2 → 0 as n → ∞, and,
therefore, the operator ∫ T

t

UT−sBB∗U∗T−sds = (T − t)B2

is not positive (see Theorem 2(a)).
Let us show that the system (4) with U and B defined as above is S-controllable.

Consider Qi defined by (23). For above U and B, we have

Qitx = (I + i(T − t)B2)−1x =
{

n2xn
n2 + i(T − t)

}
, x = {xn} ∈ l2.

Therefore,

‖Qitx‖2 =
∞∑
i=1

n4x2
n

(n2 + i(T − t))2 .

The last series is majorized by the convergent series
∑∞
n=1 x

2
n. Hence, for 0 ≤ t < T ,

we have

lim
i→∞

‖Qitx‖2 = lim
i→∞

∞∑
i=1

n4x2
n

(n2 + i(T − t))2 =
∞∑
i=1

lim
i→∞

n4x2
n

(n2 + i(T − t))2 = 0.

We obtain that Qit → 0 as i → ∞ for all 0 ≤ t < T in the strong operator topology.
Now consider a defined by (17):

a= lim
i→∞

∫ T

0
tr CPsQisPsC

∗ds= lim
i→∞

∫ T

0

∞∑
i=1

〈QisPsC∗en, PsC∗en〉ds.(35)

In (35) we can change the places of the limit, integration, and summation operations
since Qis ≤ I for all i and for all 0 ≤ s ≤ T . Therefore,

∞∑
i=1

〈QisPsC∗en, PsC∗en〉 ≤
∞∑
i=1

‖PsC∗en‖2 =tr CPsPsC∗≤(trPs)2‖C‖2<∞.

Hence, from (35), by strong operator convergence Qit → 0 as i→∞, for all 0 ≤ t < T ,
we obtain

a =
∫ T

0

∞∑
i=1

〈 lim
i→∞

QisPsC
∗en, PsC

∗en〉ds = 0.

Finally, having a = 0 and following the proof of Theorem 4 (sufficiency part) and
Theorem 5(a), the S-controllability of the system (4) can be obtained.

This example indicates that in (34) there is the middle case of a = 0 between Dc-
and S-controllability conditions; i.e., (34) could be completed as

Dc ⇒ a = 0 ⇒ S ⇒ Da.

For completeness a counterexample showing the nonvalidity of the implication
Da ⇒ S would be also presented. We do not present such an example for two
reasons. First, it is not easy to construct such an example even if it exists. Second,
the authors tend to think that in the case of the system (4) the equivalence S ⇔ Da

takes place. Of course, this subject needs further study.
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Abstract. We study deterministic exit time control problems with discontinuous exit costs.
When the exit cost ϕ is upper semicontinuous and there is an outer field on the boundary, we show
that all the value functions have the same lower semicontinuous envelope which is the unique lower
semicontinuous viscosity solution of the associated Dirichlet problem. We also prove uniqueness
results for the generalized Dirichlet problem for first-order Hamilton–Jacobi equations with convex
Hamiltonians and with discontinuous boundary conditions, under some nondegeneracy conditions on
the Hamiltonians on the boundary.

Key words. exit time problems, Hamilton–Jacobi equations, Dirichlet problems, discontinuous
data, viscosity solutions
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1. Introduction. This paper is concerned with deterministic exit time control
problems with discontinuous exit costs. We want to characterize the value functions
of this type of control problems as the unique viscosity solutions of the corresponding
Hamilton–Jacobi–Bellman problem. We obtain, under some suitable conditions, the
uniqueness of the lower semicontinuous (l.s.c.) envelope of the value function.

In order to be more specific, we now describe the optimal control problem. Let
Ω be a smooth bounded domain of RN . We consider a system whose state is given
by the solution of the ordinary differential equation{

dyx(t) = b(yx(t), α(t))dt,

yx(0) = x ∈ Ω,

where b is a Lipschitz continuous function from Ω×A into RN and α(.) ∈ L∞(R+,A)
is the control; A, the control space, is a compact metric space. We denote by τ the
first exit time of the trajectory yx from Ω, i.e.,

τ = inf {t ≥ 0, yx(t) 6∈ Ω} .

In this framework, it is well known that the value function can be defined in several
ways: the first value function that we want to consider is given by

u(x) = inf
α(.)∈L∞(R+,A)

{∫ τ

0
f(yx(t), α(t))e−λtdt+ ϕ(yx(τ))e−λτ

}
,

where f is a given continuous real-valued function and λ is a positive constant, the
discount factor. Precise assumptions on f and b are detailed in the first part. The
main point is that we assume only that ϕ, the exit cost, is a bounded function on ∂Ω
defined pointwise; in particular, it may present discontinuities.
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It is well known that when the value function is continuous, it is a viscosity
solution of the corresponding Hamilton–Jacobi–Bellman equation

H(x, u,Du) = 0 in Ω,

where

H(x, t, p) = sup
α∈A
{−b(x, α) · p+ λt− f(x, α)}.(1)

This is a consequence of the so-called dynamic programming principle (cf. [17]). We
recall that the notion of viscosity solutions was introduced in [11] by M. G. Crandall
and P. L. Lions (see also [10]). We refer the reader to [12, 17], where the applications
of viscosity solutions to deterministic and stochastic control problems are described.

But the value function u may be discontinuous even when the exit cost ϕ is
continuous. Therefore, we have to use the notion of discontinuous viscosity solution,
which was introduced by H. Ishii [13, 14] and requires the concepts of l.s.c. and
upper semicontinuous (u.s.c.) envelopes of functions. In all the following discussion,
ξ∗ (resp., ξ∗) will denote the l.s.c. (resp., u.s.c.) envelope of the locally bounded
function ξ, which is defined by

ξ∗(x) = lim inf
y→x

ξ(y) (resp., ξ∗(x) = lim sup
y→x

ξ(y)).

G. Barles and B. Perthame [5] first considered the connections of such discontinuous
solutions with optimal control problems.

Moreover, the concept of viscosity solutions is used to identify the appropriate
boundary conditions satisfied by the value function. In the case of a continuous exit
cost, H. Ishii [15] and G. Barles and B. Perthame [6] show the connections between
the above control problem and the following Hamilton–Jacobi–type problem:

H(x, u,Du) = 0 in Ω,

min{H(x, u,Du), u− ϕ} ≤ 0 on ∂Ω,

max{H(x, u,Du), u− ϕ} ≥ 0 on ∂Ω.

(2)

When the function ϕ is discontinuous, the definition of viscosity solutions deals with
the l.s.c. and the u.s.c. envelope of ϕ. For illustration, we say that the bounded
function u is a viscosity subsolution of (2) on the boundary ∂Ω if

for every function φ ∈ C1(Ω), if x ∈ ∂Ω is a maximum point of u∗ − φ, we have

H(x, u∗(x), Dφ(x)) ≤ 0 or u∗(x) ≤ ϕ∗(x).

Our first aim is to prove that the value function u is a viscosity solution of (2).
Then we have to look at “uniqueness” (or characterization) properties for the

viscosity solution u. In general, the discontinuous viscosity solution is not unique.
One reason is that the Hamilton–Jacobi–Bellman equation is the same for the control
problem and for the relaxed control problem. But the value function can be different
for these two problems. Moreover, it is quite natural to consider different stopping
times on the boundary: for example, the first exit time from the closed set Ω, i.e.,

τ̄ = inf{t ≥ 0, yx(t) 6∈ Ω}.
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In this paper, since the exit cost ϕ is discontinuous, an additional choice is to use ϕ∗
or ϕ∗, instead of taking ϕ, in the definition of u.

We first prove the existence of a minimum and of a maximum solution, which are
given respectively by

u−(x) = inf

{∫ θ

0

∫
A
f(ŷx(t), α)e−λtdµt(α)dt+ ϕ∗(ŷx(θ))e−λθ, τ̂ ≤ θ ≤ ˆ̄τ ,

ŷx(θ) ∈ ∂Ω, and µ ∈ L∞(R+, P (A))

}
,

and

u+(x) = inf
α(.)∈L∞(R+,A)

{
sup

{∫ θ

0
f(yx(t), α(t))e−λtdt+ ϕ∗(yx(θ))e−λθ, τ ≤ θ ≤ τ̄ ,

and yx(θ) ∈ ∂Ω

}}
.

It is clear from these definitions that one has

u− ≤ u ≤ u+ in Ω.

But these functions may be very different, in particular because of the trajectories
which remain on Ω but which touch the boundary several times (τ 6= τ̄).

Nevertheless, in the case when the function ϕ is continuous, G. Barles and
B. Perthame [7] showed that, essentially, if there exist outer and inner fields at each
point of ∂Ω, the value function u is continuous and is the unique solution of (2); hence,
we get

u− = u = u+ in Ω.(3)

The underlying idea is that, with these outer and inner fields, one can control a
trajectory close to the boundary to make it stay in Ω or to leave Ω.

An other aim of this article is to give a similar uniqueness result when ϕ is
discontinuous. But since the value functions may be discontinuous, we first have to
explain how to interpret uniqueness of the solution in this case. We want the equalities
(3) to hold again in a weaker sense, namely,

u− = u∗ = (u+)∗ in Ω,

since u− is l.s.c. on Ω. Therefore uniqueness means in this context that all the solutions
have the same l.s.c. envelope.

In the case when the exit cost ϕ satisfies

(ϕ∗)∗ = ϕ∗ on ∂Ω,(4)

and when there is an outer field on the boundary, we show that

u− = (u+)∗ in Ω

by working directly on the control formulas. And therefore, all the solutions of (2)
have the same l.s.c. envelope since u− and u+ are, respectively, the minimum and the
maximum solution of (2).
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But we want also an uniqueness result without the condition (4) on ϕ since, for
control problems, it is quite natural to consider exit costs ϕ which are only l.s.c. In
fact, one of our motivations for this work is the exit problem from a part Γ of the
boundary ∂Ω. If, for instance, Γ is reduced to a point {x0}, then ϕ is equal to 0
at x0 and 1 elsewhere; therefore it does not satisfy (4). To solve this difficulty, we
adapt PDE arguments introduced by E. N. Barron and R. Jensen [8, 9] for convex
Hamiltonians.

Under a nondegeneracy condition on the Hamiltonian which we interpret as the
existence of an outer field on the boundary for control problems, we prove that there
exists a unique l.s.c. viscosity solution in the sense of Barron and Jensen in Ω which is a
classical viscosity supersolution on the boundary and which satisfies, for every x ∈ ∂Ω,

lim inf
y→x,y∈Ω

u(y) ≤ ϕ∗(x).(5)

We emphasize that this uniqueness result is obtained by PDE arguments.
The application of this result to the control problem is the following: since P. So-

ravia [19] showed that all the value functions are viscosity solutions in the sense of
Barron and Jensen, we have the uniqueness of the l.s.c. envelope of the value functions
which satisfy the condition (5). Besides, when the condition (4) holds, we recover the
uniqueness result obtained by working directly on the representation formulas of the
value functions.

We also refer the reader interested in the discontinuous viscosity solution approach
to Dirichlet problems to the work of A. I. Subbotin [20], M. Bardi and P. Soravia [1],
P. Soravia [19], and G. Barles [3]. These authors consider mainly continuous Dirichlet
function on the boundary. In the case of discontinuous data, the pioneering paper of
Barron and Jensen [8] was concerned with the Cauchy problem in RN . G. Barles [2]
extended their ideas to stationary optimal stopping time in RN . To the best of our
knowledge, the exit time problems with discontinuous exit costs have not yet been
considered in the literature with such a generality.

This paper is organized as follows: the first section is devoted to the study of the
exit time problems and its connections with (2). We also introduce the condition on
the behavior of the controlled vector field at the boundary to obtain an uniqueness
result. In the second section, we describe the new idea for discontinuous viscosity
solutions for convex Hamiltonians and prove uniqueness results in the case when ϕ is
discontinuous by PDE arguments. The third section is devoted to applications of the
uniqueness results. The two first parts are nearly independent.

2. The exit time control problems with discontinuous exit costs. We
recall that Ω is a smooth bounded domain of RN and that the state of the system is
described by the solution of{

dyx(t) = b(yx(t), α(t))dt,

yx(0) = x ∈ Ω

or, in the case of relaxed controls, by dŷx(t) =
∫
A
b(ŷx(t), α)dµt(α)dt,

ŷx(0) = x ∈ Ω,

where α(.) ∈ L∞(R+,A) and µ. ∈ L∞(R+, P (A)); A is a compact metric space and
P (A) is the set of probability measures on A. The function b is continuous from Ω×A
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into RN and satisfies |b(x, α)| ≤ C, ∀x ∈ Ω, ∀α ∈ A;

|b(x, α)− b(y, α)| ≤ C|x− y|, ∀x, y ∈ Ω, ∀α ∈ A.
(6)

These assumptions imply the existence and the uniqueness of the solution yx for all
t > 0.

In the same way as for τ and τ̄ , we define τ̂ and ˆ̄τ for a relaxed trajectory ŷx
respectively by

τ̂ = inf{t ≥ 0, ŷx(t) 6∈ Ω} and ˆ̄τ = inf{t ≥ 0, ŷx(t) 6∈ Ω}.

The associated cost functions are

J(x, α, θ, ϕ) =
∫ θ

0
f(yx(t), α(t))e−λtdt+ ϕ(yx(θ))e−λθ

and

Ĵ(x, µ, θ, ϕ) =
∫ θ

0

∫
A
f(ŷx(t), α)e−λtdµt(α)dt+ ϕ(ŷx(θ))e−λθ,

where λ is some positive constant and f is a continuous function from Ω×A into R
satisfying  |f(x, α)| ≤ C ∀x ∈ Ω, ∀α ∈ A;

|f(x, α)− f(y, α)| ≤ C|x− y| ∀x, y ∈ Ω, ∀α ∈ A.
(7)

We use particularly the following three value functions:

u−(x) = inf
µ∈L∞(R+,P (A))

{Ĵ(x, µ, θ, ϕ∗), τ̂ ≤ θ ≤ ˆ̄τ and ŷx(θ) ∈ ∂Ω},

which is l.s.c. on Ω;

u+(x) = inf
α(.)∈L∞(R+,A)

{sup{J(x, α, θ, ϕ∗), τ ≤ θ ≤ τ̄ and yx(θ) ∈ ∂Ω}},

which is u.s.c. on Ω; and the value function already introduced in the introduction,

u[ϕ](x) = inf
α(.)∈L∞(R+,A)

{J(x, α, τ, ϕ)}.

These three types of value functions have already been studied in [6, 13] when
the function ϕ is continuous. In the case of a discontinuous exit cost, we introduce
different exit cost functions, namely, ϕ∗ and ϕ∗. Our main results are the following.
First, we prove that the function u− is the minimum supersolution of (2) with the
Hamiltonian given by (1) and the function u+ is the maximum subsolution. We show
that the value functions u[ϕ∗], u[ϕ], and u[ϕ∗] are viscosity solutions of (2), and an
example shows that all these value functions may be very different.

In order to obtain the uniqueness of the l.s.c. envelope of the value functions, we
are going to prove that

(u+)∗ = u− on Ω.
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Therefore we have to show the following series of equalities:

(u+)∗ = (u[ϕ∗])∗ = (u[ϕ∗])∗ = u− on Ω.

The first equality is proven without additional assumptions; it already holds in the
continuous case (see [6]). For the second, since we minimize, “interesting values” may
be lost by taking the exit cost ϕ∗ instead of ϕ∗: for instance, if ϕ is equal to 0 at
one point and 1 elsewhere, then ϕ∗ is equal to 1 everywhere. To avoid this difficulty
in this section, we consider only “regular” exit costs, i.e., satisfying the property (4).
Finally, the difficulty with the trajectories which touch the boundary several times is
solved by assuming that there exists an outer field at every point on the boundary or
that the boundary is such that there are only inner fields on ∂Ω.

This section is divided in three subsections. In the first, we study the value
functions u− and u+. The second is devoted to the properties of the function u[ϕ].
And, in the last one, we prove the uniqueness result.

2.1. The value functions u− and u+. In this subsection, we characterize u−
and u+ as the minimal and maximal solutions of (2). We also prove the connection
between u+ and u[ϕ∗].

THEOREM 2.1. We assume that ϕ is a bounded function defined pointwise, the
constant λ is positive, and the assumptions (6) and (7) hold.

1. The function u− is l.s.c. and the function u+ is u.s.c. on Ω.
2. The functions u+ and u− are viscosity solutions of (2).
3. The functions u+ and u− are, respectively, the maximal subsolution and the

minimal supersolution of (2).
Proof. We first consider the case of u+. We introduce a nonincreasing sequence

(ϕn)n of continuous functions such that

inf
n
ϕn = ϕ∗.

We note u+[ϕn], the value function defined by the same formula as u+ except that the
exit cost function ϕ∗ is replaced by ϕn (in particular, u+[ϕ∗] is equal to u+). Then
we need the following lemma.

LEMMA 2.2. We have

inf
n
u+[ϕn] = u+[ϕ∗] on Ω.

Proof. It is clear enough that

u+[ϕn] ≥ u+[ϕn+1] ≥ u+[ϕ∗] on Ω,(8)

and thus infn u+[ϕn] ≥ u+[ϕ∗] on Ω.
To prove the opposite inequality, we use the definition of u+[ϕn]. For any control

α(.) and any point x ∈ Ω, we have

u+[ϕn](x) ≤ sup{J(x, α, θ, ϕn), τ ≤ θ ≤ τ̄ and yx(θ) ∈ ∂Ω}.

Now, for a fixed control α(.), we pick a sequence (θn)n such that

u+[ϕn](x) ≤ 1
n

+
∫ θn

0
f(yx(t), α(t))e−λtdt+ ϕn(yx(θn))e−λθn .(9)
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First case. If the sequence (θn)n is bounded, considering a subsequence if nec-
essary, we may assume that θn → θ̄. Taking the limit superior as n → ∞ in the
inequality (9), we get

lim sup
n

u+[ϕn](x) ≤
∫ θ̄

0
f(yx(t), α(t))e−λtdt+ lim sup

n
ϕn(yx(θn))e−λθ̄.(10)

But since yx(θn)→ yx(θ̄), since the function ϕn is continuous and since infn ϕn = ϕ∗,
we easily deduce

lim sup
n

ϕn(yx(θn)) ≤ ϕ∗(yx(θ̄)).

Moreover, using (8), we obtain

lim sup
n

u+[ϕn](x) = inf
n
u+[ϕn](x).

Combining these two results with (10), we get

inf
n
u+[ϕn](x) ≤

∫ θ̄

0
f(yx(t), α(t))e−λtdt+ ϕ∗(yx(θ̄))e−λθ̄ = J(x, α, θ̄, ϕ∗),

and taking the supremum in θ̄ in the right-hand side, we have

inf
n
u+[ϕn](x) ≤ sup{J(x, α, θ, ϕ∗), τ ≤ θ ≤ τ̄ , and yx(θ) ∈ ∂Ω}.(11)

Second case. If the sequence (θn)n is not bounded, then there exists a subsequence,
still denoted (θn)n, such that θn → +∞. The inequality (9) implies

u+[ϕn](x) ≤ 1
n

+
∫ θn

0
f(yx(t), α(t))e−λtdt+ ϕ∗(yx(θn))e−λθn

+ ϕn(yx(θn))e−λθn − ϕ∗(yx(θn))e−λθn

≤ 1
n

+ J(x, α, θn, ϕ∗) + (ϕn(yx(θn))− ϕ∗(yx(θn)))e−λθn .

Since ϕn and ϕ∗ are bounded, the last term tends to zero and we conclude as before.
Hence, finally, since the inequality (11) holds for any control α(.) and for any

point x ∈ Ω, we conclude

inf
n
u+[ϕn](x) ≤ u+[ϕ∗](x).

Now we deduce the properties of u+ from this lemma. By using the results of [6],
the function u+[ϕn] is u.s.c. Then the function u+ is u.s.c. too since u+ is equal to
the limit of the nonincreasing sequence of function u+[ϕn]. Moreover, again by the
results of [6], u+[ϕn] is the maximal subsolution (and solution) of

H(x, u,Du) = 0 in Ω,

min{H(x, u,Du), u− ϕn} ≤ 0 on ∂Ω,

max{H(x, u,Du), u− ϕn} ≥ 0 on ∂Ω.

(12)
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Then, using standard stability results (cf. [5]), u+[ϕ∗] is a subsolution of (2) because,
for every x ∈ Ω, we have

lim sup
n→∞,y→x

u+[ϕn](y) = inf
n
u+[ϕn](x) = u+[ϕ∗](x)

and

lim sup
n→∞,y→x

ϕn(y) = inf
n
ϕn(x) = ϕ∗(x).

It is also a supersolution of (2) since we have, for every x ∈ Ω,

lim inf
n→∞,y→x

u+[ϕn](y) = lim inf
y→x

u+[ϕ∗](y) = (u+[ϕ∗])∗(x)

and since

lim inf
n→∞,y→x

ϕn(y) = (inf
n
ϕn)∗(x) = (ϕ∗)∗(x)

≥ ϕ∗(x).

Moreover, if w is a subsolution of (2), w is also a subsolution of (12) since ϕn ≥ ϕ∗
on ∂Ω. This implies, for every n, that

w ≤ u+[ϕn] on Ω,

because u+[ϕn] is the maximal subsolution of (12). Therefore, by Lemma 2.2, taking
the infimum over n yields

w ≤ u+[ϕ∗] on Ω,

which implies that the function u+[ϕ∗] is a maximal subsolution of (2).
For the function u−, we proceed exactly as for the value function u+ . Let (ϕn)n

be a nondecreasing sequence of continuous functions such that

sup
n

ϕn = ϕ∗.

Again we introduce the notation u−[ϕn] to denote the value function defined as u−
but with the exit cost ϕn instead of ϕ∗. Then we consider the following lemma, which
corresponds to Lemma 2.2 for u+.

LEMMA 2.3. We have

sup
n

u+[ϕn] = u−[ϕ∗] on Ω.

With this lemma, we conclude the proof by deducing the properties of u−[ϕ∗]
from the properties of u−[ϕn] as before.

Proof of Lemma 2.3. It is clear enough that

sup
n

u−[ϕn] ≤ u−[ϕ∗] on Ω.

It remains to prove the opposite inequality. For every x ∈ Ω, we consider a
minimizing sequence (µn, θn)n for u−[ϕn] such that

u−[ϕn](x) +
1
n
≥
∫ θn

0

∫
A
f(ŷnx (t), α)e−λtdµn(α)dt+ ϕn(ŷnx (θn))e−λθn .(13)
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First case. If the sequence (θn)n is bounded, considering a subsequence if neces-
sary, we may assume that there exists a stopping time θ̄ such that θn → θ̄ as n→∞.
Moreover, using classical arguments relying on the compactness of relaxed controls,
we may also assume that µn → µ̄ weakly in L∞(R+, P (A)) for some relaxed control
µ̄. Let ŷx be the relaxed trajectory associated with µ̄. Since ŷnx converges locally
uniformly to ŷx, we can check that ŷx(θ̄) ∈ ∂Ω and ŷnx (θn)→ ŷx(θ̄).

Then, again using the local uniform convergence of ŷnx to ŷx together with the
fact that f is Lipschitz continuous, we replace the trajectory ŷnx by ŷx in the integral
of (13), i.e.,

u−[ϕn](x) +
1
n
≥
∫ θ̄

0

∫
A
f(ŷx(t), α)e−λtdµ̄(α)dt+ ϕn(ŷnx (θn))e−λθ̄ + εn,

with a sequence of numbers εn such that εn → 0 when n → ∞. From the above
inequality, we deduce

u−[ϕn](x) +
1
n
≥ u−[ϕ∗](x) + (ϕn(ŷnx (θn))− ϕ∗(ŷx(θ̄)))e−λθ̄ + εn.

Then, taking the limit inferior, we get

lim inf
n

u−[ϕn](x) ≥ u−[ϕ∗](x) + lim inf
n
{ϕn(ŷnx (θn))− ϕ∗(ŷx(θ̄))}e−λθ̄.(14)

But since ŷnx (θn) → ŷx(θ̄), since the function ϕn is continuous, and since supn ϕn =
ϕ∗, we easily deduce

lim inf
n

ϕn(ŷnx (θn)) ≥ ϕ∗(ŷx(θ̄));

thus, combining this with (14), we obtain

lim inf
n

u−[ϕn](x) = sup
n

u−[ϕn](x)

≥ u−[ϕ∗](x).

Second case. If the sequence (θn)n is not bounded, we may assume without loss
of generality that θn →∞, and then the inequality (13) implies

u−[ϕn](x) +
1
n
≥ u−[ϕ∗](x) + (ϕn(ŷnx (θn))− ϕ∗(ŷnx (θn)))e−λθn .

Since ϕ∗ is bounded and since (ϕn)n is uniformly bounded, letting n → ∞, we have
the desired result.

The following theorem shows that u+ and u[ϕ∗] are not very different.
THEOREM 2.4. Under the same assumptions of Theorem 2.1, we have

(u+)∗ = (u[ϕ∗])∗ in Ω.

Proof. We first remark that the proof is inspired from the corresponding one in
[6].

It is clear that (u+)∗ ≥ (u[ϕ∗])∗ in Ω since u+ ≥ u[ϕ∗] on Ω.
It remains to prove the opposite inequality. For any point x of Ω, there exists a

sequence (xn)n of points of Ω such that xn → x and

lim
n
u[ϕ∗](xn) = (u[ϕ∗])∗(x).
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For each xn, we consider a control αn(.) such that

u[ϕ∗](xn) +
1
n
≥ J(xn, αn, τn, ϕ∗).(15)

Then we need the following lemma.
LEMMA 2.5. For every x ∈ Ω and α ∈ L∞(R+,A), there exists a sequence (xp)p

of points of Ω such that

lim inf
p

u+(xp) ≤ J(x, α, τ, ϕ∗),

where τ is the first exit time of the trajectory yx associated with the control α.
For every n, we apply this lemma to the point xn and to the control αn. Thus

there exists a sequence (xpn)p such that xpn → xn as p→∞ and

J(xn, αn, τn, ϕ∗) ≥ u+(xpn)− 1
p
.

Combining this with (15), we pass to the limit, and by a diagonal procedure, we get

(u[ϕ∗])∗(x) = lim
n
u[ϕ∗](xn)

≥ (u+)∗(x),

which is the desired result.
Proof of Lemma 2.5. If τ = ∞, then u+(x) ≤ J(x, α, τ, ϕ∗), and therefore it

suffices to take xp := x for all p.
If τ 6=∞, we consider the map Yτ : z 7→ yz(τ), which is an homeomorphism from

a neighborhood of x onto some neighborhood of yx(τ). We introduce the domain D
defined by D := Y −1(B(yx(τ), ε) ∩ Ω

c
), where B(z, r) is the open ball centered at z

and of radius r and Ω
c

is the complementary set of Ω in RN . For ε small enough, the
domain D is a nonempty open subset of RN and the point x is in its closure D.

Moreover, since the function b is Lipschitz continuous, classical ODE estimates
yield

|yz(s)− yx(s)| ≤ |z − x|eCs for every s ∈ [0, τ ].

And, for every p, since we have

inf
{

dist(yx(s), ∂Ω), 0 ≤ s ≤ τ − 1
p

}
= δ > 0,

we consider the constant η equal to

η := max
{

1
p
, δ

}
e−Cτ ,

and therefore we have, for |z − x| < η,

|yz(s)− yx(s)| < 1
p

for every s ∈ [0, τ ],(16)
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and

yz(s) ∈ Ω for every s ∈
[
0, τ − 1

p

]
.

Then we choose a point xp ∈ B(x, η) ∩D. We first remark that the first exit time τp
of the trajectory yxp from Ω satisfies τ − 1

p ≤ τp since xp ∈ B(x, η). The exit time τ̄p
satisfies τ̄p ≤ τ since xp ∈ D. We may write

u+(xp) ≤ sup{J(xp, α, θ, ϕ∗), θ ∈ [τp, τ̄p] and yxp(θ) ∈ ∂Ω}.

Using the Lipschitz continuity of f and the inequality (16), we compute, for every
θ ∈ [τp, τ̄p],

J(xp, α, θ, ϕ∗) ≤ J(x, α, τ, ϕ∗)− ϕ∗(yx(τ))e−λτ + ϕ∗(yxp(θ))e−λτ

+‖ϕ‖∞|e−λθ − e−λτ |+ ‖f‖∞|τ − θ|+
Cτ

p

≤ J(x, α, τ, ϕ∗) + ρϕ∗(|yx(τ)− yxp(θ)|) + C̃

(
|θ − τ |+ 1

p

)
,(17)

where ρϕ∗ is a continuous function such that ρϕ∗(t) → 0 as t → 0+ and, for every
y ∈ ∂Ω,

ϕ∗(y)− ϕ∗(yx(τ)) ≤ ρϕ∗(|yx(τ)− y|).

We pass to the limit inferior in (17), and again using (16) and the fact that

τ − 1
p
≤ τp ≤ θ ≤ τ̄p ≤ τ,

we get

J(x, α, τ, ϕ∗) ≥ lim inf
p

J(xp, α, θ, ϕ∗)

≥ lim inf
p

u+(xp).

Thus the proof is complete.

2.2. The properties of the value function u[ϕ]. In this section, we prove
that the value functions u[ϕ∗], u[ϕ], and u[ϕ∗] are viscosity solutions. Then we give
an example which shows that these functions may be very different.

Let us begin by a result concerning the values of the solutions of (2) on the
boundary.

PROPOSITION 2.6. Let u be a bounded function from Ω into R.
We define

ǔ =

{
u in Ω,

ϕ on ∂Ω,
and ũ =

{
u in Ω,

ξ on ∂Ω,

where ξ is a real-valued function such that

ϕ∗ ≤ ξ ≤ ϕ∗ on ∂Ω.
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Then ǔ is a subsolution (resp., supersolution) of (2) if and only if ũ is a subsolution
(resp., supersolution) of (2).

REMARK 2.7. This proposition shows that the values of the solutions of (2) are
not prescribed by the viscosity condition on the boundary. Thus the uniqueness results
cannot be extended up to the boundary.

Proof. We prove only the proposition in the subsolutions case. The other case
may be obtained by the same method. Let us first remark that, for every x ∈ ∂Ω, we
have

ũ∗(x) = sup{u∗(x), ξ∗(x)} ≤ ǔ∗(x) = sup{u∗(x), ϕ∗(x)}.(18)

We first assume that ǔ is a subsolution, and therefore we have to prove that ũ is
a subsolution too. Let φ ∈ C1(Ω) be a test function and x0 ∈ ∂Ω be a maximum
point of ũ∗ − φ. Changing φ in φ+ (ũ∗(x0)− φ(x0)), we may assume without loss of
generality that ũ∗(x0) = φ(x0) and thus ũ∗ ≤ φ.
• If ũ∗(x0) ≤ ϕ∗(x0), there is nothing to prove.
• If ũ∗(x0) > ϕ∗(x0), then by definition of ũ and since we have ξ ≤ ϕ∗ on

∂Ω, this implies u∗(x0) > ϕ∗(x0). Hence, using the inequality (18), we deduce that
ǔ∗(x0) = ũ∗(x0).
We introduce the positive constant δ := ũ∗(x0)−ϕ∗(x0). Then, since ũ∗(x0) = φ(x0),
we get

ϕ∗(x0) +
δ

2
= φ(x0)− δ

2
.(19)

Since φ is continuous, there exists some constant ε1 > 0 such that, for all y ∈ Ω
and |x0 − y| < ε1, we have

|φ(x0)− φ(y)| < δ

2
.

And since ϕ∗ is u.s.c., there exists some constant ε2 > 0 such that, for all y ∈ ∂Ω and
|x0 − y| < ε2, we have

ϕ∗(y)− ϕ∗(x0) <
δ

2
.

Hence, combining these two preceding estimates with the equality (19), we deduce

ϕ∗(y) < ϕ∗(x0) +
δ

2
= φ(x0)− δ

2
< φ(y) for y ∈ ∂Ω ∩ B(x0, ε1 ∧ ε2),

where a ∧ b := inf{a, b} for a, b ∈ R. Combining this with the fact that

ǔ∗ ≤ φ for y ∈ Ω ∩ B(x0, ε1 ∧ ε2),

since u∗ ≤ φ in Ω, we deduce that x0 is also a maximum point of ǔ∗ − φ. And thus
ũ∗ is a subsolution.

Conversely, if ũ is a subsolution, let x0 ∈ ∂Ω be a maximum point of ǔ∗ − φ with
φ ∈ C1(Ω). As before, we choose ǔ∗(x0) = φ(x0).
• If ǔ∗(x0) ≤ ϕ∗(x0), ǔ∗ is a subsolution.
• If ũ∗(x0) > ϕ∗(x0), then using the inequality (18) and the fact that ξ∗ ≤ ϕ∗ on

∂Ω, we get

ǔ∗(x0) = u∗(x0) = ũ∗(x0).

Since ǔ∗ ≥ ũ∗ on Ω, it is easy to show that ǔ∗ is a subsolution.
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Now, we recall a general result in control theory which is the dynamic program-
ming principle.

THEOREM 2.8. Under the same assumptions of Theorem 2.1, for any T > 0 and
for any x ∈ Ω, we have

u[ϕ](x) = inf
α(.)∈L∞(R+,A)

{∫ τ∧T

0
f(yx(t), α(t))e−λtdt

+11{τ≤T}ϕ(yx(τ))e−λτ + 11{τ>T}u[ϕ](yx(T ))e−λT
}
.

Proof. To prove the theorem, we just remark that the continuity of the exit cost
is no used in the classical proof (see [17], for instance).

THEOREM 2.9. Under the assumptions of Theorem 2.1, the value functions u[ϕ∗],
u[ϕ] and u[ϕ∗] are viscosity solutions of (2).

Proof. Since the proof is inspired from the corresponding one in the continuous
case, we point out only the modifications that we need. Let us denote by ϕ̄ the
functions ϕ∗, ϕ, or ϕ∗. We prove only that u[ϕ̄] is a supersolution of (2) on ∂Ω.
The other properties may be obtained by the same method. We consider some point
x0 ∈ ∂Ω.
• If (u[ϕ̄])∗(x0) ≥ ϕ∗(x0), we have nothing to prove.
• If (u[ϕ̄])∗(x0) < ϕ∗(x0), we have to show that the function u satisfies the

equation H(x, u,Du) = 0 in viscosity sense.
There exists a sequence (xn)n of points of Ω such that xn → x0 and

lim
n
u[ϕ̄](xn) = (u[ϕ̄])∗(x0).

We may assume without loss of generality that xn ∈ Ω for all n. Indeed, if there
exists a subsequence (xp)p of (xn)n such that xp ∈ ∂Ω for all p, then, by definition of
the value function u[ϕ̄],

u[ϕ̄](xp) = ϕ̄(xp).

And since ϕ̄ is equal to ϕ∗, ϕ, or ϕ∗, passing to the limit, we obtain

lim inf
p

ϕ̄[xp] ≥ ϕ∗(x0).

Hence we get a contradiction.
Now we choose a constant T such that

T‖f‖∞ + ρϕ∗(‖b‖∞T ) + ‖ϕ‖∞|1− e−λT | ≤
ϕ∗(x0)− (u[ϕ̄])∗(x0)

2
,(20)

where ρϕ∗ is a nondecreasing continuous function satisfying ρϕ∗(t) → 0 as t → 0+

and, for every y ∈ ∂Ω,

ϕ∗(x0)− ϕ∗(y) ≤ ρϕ∗(|x0 − y|).

(Such a function ρϕ∗ exists because ϕ∗ is l.s.c.)
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For every xn, we introduce a control αn(.) such that

u[ϕ̄](xn) +
1
n
≥
∫ τn∧T

0
f(yxn(t), αn(t))e−λtdt+ 11{τn≤T}ϕ̄(yxn(τn))e−λτn

+11{τn>T}u[ϕ̄](yxn(T ))e−λT .(21)

If, for n large enough, we have τn > T , then the inequality (21) implies

u[ϕ̄](xn) +
1
n
≥
∫ T

0
f(yxn(t), αn(t))e−λtdt+ u[ϕ̄](yxn(T ))e−λT .

And, since this inequality does not deal with the discontinuous exit cost ϕ̄, we may
apply classical arguments (see [3], for instance).

Otherwise, we may assume that, for all n, there exists pn such that τpn ≤ T .
Then the inequality (21) implies, for the index pn, that

u[ϕ̄](xpn) +
1
pn
≥
∫ τpn

0
f(yxpn (t), αpn(t))e−λtdt+ ϕ̄(yxpn (τpn))e−λτpn .

Then we compute

ϕ∗(x0)− u[ϕ̄](xpn)− 1
pn

≤
∫ τpn

0
‖f‖∞dt+ ϕ∗(x0)− ϕ̄(yxpn (τpn)) + ‖ϕ‖∞|1− e−λτpn |

≤
∫ T

0
‖f‖∞dt+ ρϕ∗(x0)(|x0 − yxpn (τpn)|) + ‖ϕ‖∞|1− e−λT |

≤ T‖f‖∞ + ρϕ∗(x0)(|x0 − xpn |+ ‖b‖∞T ) + ‖ϕ‖∞|1− e−λT |.

We pass to the limit, and we get a contradiction with the choice of T in (20).
Example 2.10. We are going to show in this example that the value functions

u[ϕ∗], u[ϕ], and u[ϕ∗] may be not equal.
We take in R2

Ω := {(x, y) ∈ [−1, 1]2, y > 0 or x < 0},

f ≡ 0, λ = 0

(λ is null for the sake of simplicity but this is not relevant here), and

b(x, α) := α ∈ A,

with A := B(0, 1) ∩ (R+ × R−), i.e., {(α1, α2) ∈ R2, α2
1 + α2

2 ≤ 1, α1 ≥ 0, α2 ≤ 0}.
The exit cost ϕ is equal to 0 except on [0, 1]× {0}, where

ϕ(0, 0) = −1, ϕ(x, 0) = −2 for x ∈
]

0,
1
2

[
, ϕ(x, 0) = −3 for x ∈

[
1
2
, 1
]
.
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-
x

6y

−1 0 1

1

−1

Ω

PPqϕ = −1 rϕ ≡ −2 ϕ ≡ −3

ϕ ≡ 0

ϕ ≡ 0

In the region ] − 1, 0[×]0, 1[, it is easy to show that the best strategy is to reach the
point (0, 0). To do so, we may, for example, use the control (0,−1) until we touch the
line y = 0, and then we take the control (1, 0). Hence we compute that u[ϕ∗] ≡ −2,
u[ϕ] ≡ −1, u[ϕ∗] ≡ 0, and u− ≡ −3 in ]− 1, 0[×]0, 1[.

The value functions u[ϕ∗], u[ϕ], and u[ϕ∗] are very different because at the point
(0, 0), the exit costs ϕ∗, ϕ, and ϕ∗ take different values. Moreover, the functions
u− and u[ϕ∗] are not equal because the trajectories which reach [1

2 , 1]× {0} must be
tangent to the boundary.

The open set Ω is not regular for the sake of simplicity. But we can easily change
it. With ϕ continuous, a similar example was used to show that u− and u[ϕ] are not
necessarily equal (cf. [6]).

This example shows that the discontinuous viscosity solutions may be very dif-
ferent even if we consider only their l.s.c. or u.s.c. envelopes.

2.3. Partial controllability on the boundary. We introduce now new as-
sumptions which allow us to prove that all the value functions have the same l.s.c.
envelope, namely, u−.

We denote by d(.) the distance function to the boundary ∂Ω. We are given a
smooth bounded domain; more precisely, we assume that

d is a C1,1 function in the neighborhood V of ∂Ω.(22)

Then we set n(x) := −Dd(x) for x ∈ V.
We assume that ∂Ω = ∂Ω1 ∪ ∂Ω2, where ∂Ω1 and ∂Ω2 are unions of connected

components of ∂Ω, and, at every point of ∂Ω1, there exists an outer field, i.e.,

∀x ∈ ∂Ω1, ∃α ∈ A, b(x, α) · n(x) ≥ β > 0,(23)

and, on ∂Ω2, there are only inner fields, i.e.,

∀x ∈ ∂Ω2, ∀α ∈ A, b(x, α) · n(x) ≤ −β < 0.(24)
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Note that in (23) and (24), β can be chosen independent of x since ∂Ω1 and ∂Ω2 are
compact subsets of RN and since the functions b and n are continuous on ∂Ω.

THEOREM 2.11. We assume that ϕ is a bounded function defined pointwise sat-
isfying (4), that the constant λ is positive, and that the assumptions (6), (7), and
(22)–(24) hold.

Then we have

u− = (u+)∗ in Ω ∪ ∂Ω1.

Using the representation formula, one easily build special examples where the
equality may be wrong on ∂Ω2. For example, if the exit cost ϕ is equal to 0 on ∂Ω2
and to 1 on ∂Ω1, the value function u− is null on the boundary ∂Ω2 but not the
function u+ since the trajectories cannot exit through ∂Ω2, i.e., τ̄ > τ .

Since u+ and u− are the maximum and minimum solutions of (2), this result
characterizes the discontinuous solutions of (2) in Ω∪ ∂Ω1. Indeed, if w is a solution
of (2), then

u− ≤ w∗ ≤ w∗ ≤ u+ in Ω ∪ ∂Ω1,

and therefore, taking the l.s.c. envelope of these inequalities and using Theorem 2.11
yield

u− = w∗ = (w∗)∗ in Ω ∪ ∂Ω1.

When the exit cost is continuous (cf. [6]), to get the uniqueness result, it is enough
to know that the first exit time τ is equal to the “best exit time,” i.e., which gives
the minimal value for the value function or that u− = ϕ on ∂Ω. But this is not the
case with discontinuous exit cost since we deal with ϕ∗ and ϕ∗.

Example 2.12. We show that the assumption (23) is necessary to prove Theo-
rem 2.11. In fact, we take up the above Example 2.10, but we change ϕ to satisfy (4).
Precisely,

ϕ(x) =

{ −2 on [0, 1]× {0},

0 otherwise.

Then we can easily compute u[ϕ∗] ≡ −2 and u[ϕ∗] ≡ 0 in the region ]− 1, 0[×]0, 1[.
REMARK 2.13. The assumption (24) was introduced and used by H. M. Soner [18]

for control problems with state-space constraints to prove the continuity and the unique-
ness of the value function.

Proof of Theorem 2.11. It is easy to see that the trajectories cannot exit through
the boundary ∂Ω2 because of (24). And since the result holds only in Ω∪ ∂Ω1, we do
not need to take care of the value of the exit cost on the boundary ∂Ω2.

First, we prove that

(u+)∗ = (u[ϕ∗])∗ = (u[ϕ∗])∗ = u− in Ω.

First equality: (u+)∗ = (u[ϕ∗])∗.
This is nothing but Theorem 2.4.
Second equality: (u[ϕ∗])∗ = (u[ϕ∗])∗.
It is clear that (u[ϕ∗])∗ ≤ (u[ϕ∗])∗ in the domain Ω, since u[ϕ∗] ≤ u[ϕ∗] on Ω.
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To prove the opposite inequality, let x be a point of Ω. Then there exists a
sequence (xn)n of points of Ω such that xn → x and

lim
n
u[ϕ∗](xn) = (u[ϕ∗])∗(x).

For each xn, we consider a control αn(.) such that

u[ϕ∗](xn) +
1
n
≥ J(xn, αn, τn, ϕ∗).(25)

We denote by ynxn the trajectory associated with αn and by zn its first exit point from
Ω, i.e., zn := ynxn(τn) ∈ ∂Ω1.

By using the assumption (4), we take a sequence (zpn)p of points of the boundary
such that zpn → zn and

lim
p
ϕ∗(zpn) = ϕ∗(zn).(26)

Now we need the following lemma.
LEMMA 2.14. Let yx be a trajectory such that its first exit time τ from Ω is positive

and bounded. Then, for ε small enough and for z̃ ∈ ∂Ω1 such that |yx(τ) − z̃| < ε,
there exists a trajectory ỹx̃ such that z̃ = ỹx̃(τ̃) and

|yx(t)− ỹx̃(t)| < Dε for t ∈ [0, τ ]

with some constant D independent of ε.
For each trajectory ynxn and for p large enough, using (26), we apply Lemma 2.14

to the point zpn. Then, using again (26) and the Lipschitz continuity of the function
f , we obtain after tedious but straightforward computations

J(xn, αn, τn, ϕ∗) ≥ J(xpn, α
p
n, τ

p
n, ϕ

∗)− εpn,

with a sequence (εpn)p of numbers such that εpn → 0 as p→∞. Combining this with
(25), we get

u[ϕ∗](xn) +
1
n
≥ J(xpn, α

p
n, τ

p
n, ϕ

∗)− εpn

≥ u[ϕ∗](xpn)− εpn.

Hence, passing to the limit, by a diagonal procedure, we obtain

(u[ϕ∗])∗(x) = lim
n
u[ϕ∗](xn)

≥ (u[ϕ∗])∗(x).

Since it is true for every x ∈ Ω, the result is complete.
Third equality: (u[ϕ∗])∗ = u−.
By their definitions, u− ≤ u[ϕ∗] in Ω. And since the value function u− is l.s.c.,

we deduce u− ≤ (u[ϕ∗])∗ in Ω.
It remains to prove the opposite inequality. Let x0 be a point of Ω. By the

compactness of the set of relaxed controls, using classical arguments, there exist µ̄ ∈
L∞(R+, P (A)) and θ̄ ∈ [0,∞] such that

u−(x0) = Ĵ(x0, µ̄, θ̄, ϕ∗).

Then we need the following lemma.
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LEMMA 2.15. Let ŷx be a trajectory associated with a relaxed control µ and with
a point x ∈ Ω.

Then, for any bounded exit time θ of ŷx, there exists a classical trajectory ỹx̃
arbitrarily close to ŷx and such that

ỹx̃(τ̃) = ŷx(θ),

where τ̃ is the first exit time of ỹx̃ from Ω.
If θ̄ is bounded, using Lemma 2.15, there exists a sequence of points xn and of

controls αn(.) such that xn → x0 and

Ĵ(x0, µ̄, θ̄, ϕ∗) = J(xn, αn, τn, ϕ∗)− εn,

where εn → 0 when n→∞ using the Lipschitz continuity of f . Then this implies

u−(x0) ≥ u[ϕ∗](xn)− εn.

Passing to the limit, we get

u−(x0) ≥ (u[ϕ∗])∗(x0).

It remains the cases when θ̄ is not bounded. We have several cases to consider.
The easier is when the trajectory ŷx0 stays far to the boundary, i.e.,

inf
t ≥ 0

d(ŷx0(t)) = δ > 0;

then classical arguments imply that ŷx0 can be approximated by classical trajectories.
A connected case is when it is true but only after some finite time T , i.e.,

inf
t ≥ T

d(ŷx0(t)) = δ > 0;

then we mix the preceding arguments with those of Lemma 2.14. The last case is
when, for any T > 0, we get

inf
t ≥ T

d(ŷx0(t)) = 0.

Then we may assume that there exists a sequence of trajectories yn such that their
exit times τn tend to ∞ as n → ∞, by using Lemma 2.14 for exit times of ŷx0 large
enough, or after modifying ŷx0 when ŷx0 is near the boundary, in order that it touches
the boundary by using (23). Therefore, using the term e−λt which tends to zero as
t → ∞ and the boundedness of f and ϕ, there exists a sequence (εn)n of numbers
such that εn → 0 as n→∞ and

Ĵ(x0, µ̄, θ̄, ϕ∗) =
∫ ∞

0

∫
A
f(ŷx0(t), α)e−λtdµ̄(α)dt

≥ J(xn, αn, τn, ϕ∗)− εn.

Then we conclude as before.
It remains to prove that u− = (u[ϕ∗])∗ on the boundary ∂Ω1. Then we need the

following lemma.
LEMMA 2.16. The function u− satisfies

u−(x) = lim inf
y→x,y∈Ω

u−(y) for every x ∈ ∂Ω1.

We postpone the proof of this lemma.
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Moreover, since the function u+ is u.s.c., for every x ∈ ∂Ω1, we have

(u+)∗(x) = lim inf
y→x,y∈Ω

u+(y).

Therefore, since u− = (u+)∗ in Ω, we deduce that u− = (u+)∗ on ∂Ω.
Now we turn to the proof of the lemmas.
Proof of Lemma 2.14. In order to simplify the notation, we denote z := yx(τ), by

α(.) the control associated with the trajectory yx, and by α̃(.) the control associated
with ỹx̃, which is the unknown.

We first remark that since the map Yτ : x 7→ yx(τ) is locally an homeomorphism,
we may always find a point x̃ such that yx̃(τ) = z̃. Then a possible candidate for
α̃ may directly be α (and thus the constant D is equal to eCτ by standard ODE
estimates). But the difficulty is that the trajectory yx̃ may cross the complementary
set of Ω to reach z̃. In order to avoid this difficulty, we use the assumption (23) of
a partial controllability on the boundary. Briefly speaking, we consider a backward
trajectory which comes from the point z̃ and which goes in the interior of Ω for a
short time. Afterward, the trajectory is again associated with α in order to reach a
neighborhood of x.

First, using the assumption (23), we consider the control ᾱ ∈ A such that b(z, ᾱ) ·
n(z) > 0. Thus we define the control α̃ by

α̃(t) =

{
α(t) for t ∈ [0, τ [,

ᾱ for t ∈ [τ, τ + ε].

Then the trajectory ỹx̃ is the solution of{
dỹx̃(s) = b(ỹx̃(s), α̃(s))ds for s ∈ [0, τ + ε[,

ỹx̃(τ + ε) = z̃.

Using the assumptions (22) on n and (6) on b, there exists a constant δ > 0 such that

b(ξ, ᾱ) · n(ξ) >
β

2
for ξ ∈ B(z, δ) ∩ Ω.

Moreover, using the boundedness of b, standard ODE estimates yield, for t ∈ [τ, τ+ε],

|z − ỹx̃(t)| ≤ |z − z̃|+ |z̃ − ỹx̃(t)|

≤ ε+ Cε.

Therefore, for ε small enough, the trajectory ỹx̃ stays in B(z, δ), and then we compute,
for t ∈ [τ, τ + ε],

d(ỹx̃(t)) = d(z̃) +
∫ τ+ε

t

n(ỹx̃(s)) · b(ỹx̃(s), ᾱ)ds

≥ β

2
(τ + ε− t).(27)

Next, we prove that the trajectory ỹx̃ does not touch the boundary during [τ−η, τ ],
where η is a positive constant to determine. In order to simplify the notation, we set
zε := ỹx̃(τ) and ỹzε(.) := ỹx̃(.). To prove the claim, it suffices to show that d(ỹzε(t))
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is positive for t ∈ [τ − η, τ ]. Since the functions b and n are Lipschitz continuous, at
least, in the neighborhood V of the boundary, for η small enough, we compute

d(ỹzε(t))− d(yx(t)) = d(zε)− d(z)

+
∫ τ

t

(n(ỹzε(s)) · b(ỹzε(s), α(s))− n(yx(s)) · b(yx(s), α(s)))ds

≥ d(zε)− CK
∫ τ

t

|ỹzε(s)− yx(s)|ds.

Using standard ODE estimates, we obtain

d(ỹzε(t))− d(yx(t)) ≥ d(zε)− CK
∫ τ

t

|zε − z|eC(τ−s)ds

≥ d(zε)−K|zε − z|(eC(τ−t) − 1)

≥ d(zε)−K(|zε − z̃|+ |z̃ − z|)(eCη − 1).(28)

We need an estimate for |zε − z̃|. But, since b is bounded and since zε = ỹzε(τ), we
have

|zε − z̃| =
∣∣∣∣∫ τ+ε

τ

b(ỹzε(s), ᾱ)ds
∣∣∣∣

≤ Cε.(29)

Combining this and (27) with (28), we get

d(ỹzε(t))− d(yx(t)) ≥ βε

2
−K(Cε+ |z̃ − z|)(eCη − 1).

But, since z̃ is such that |z̃ − z| < ε, this implies

d(ỹzε(t))− d(yx(t)) ≥ ε

(
β

2
−K(1 + C)(eCη − 1)

)
.(30)

Then we take η such that the right-hand side of this inequality is null, i.e.,

η :=
1
C

ln
(

1 +
β

2K(1 + C)

)
.

Hence we conclude that

d(ỹzε(t)) ≥ 0 for every t ∈ [τ − η, τ ],

and the inequality is strict because of the term d(yx(t)). We may remark that the
constant η depends only on the functions b and n.

Finally, since τ is the first exit time of yx, we have

inf{d(yx(t)), t ∈ [0, τ − η]} = ρ > 0.

We compute, for t ∈ [0, τ − η],

d(ỹzε(t)) ≥ d(yx(t))− |(ỹzε − yx)(t)|

≥ ρ− |zε − z|(eCτ − 1)

≥ ρ− (C + 1)(eCτ − 1)ε.
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Therefore, for ε small enough, we obtain the result with a constant D equal to (C +
1)(eCτ − 1).

Proof of Lemma 2.15. First we approximate ŷx by a relaxed trajectory whose first
exit point is z̃ := ŷx(θ). We use backward trajectories. We recall that a backward
trajectory y̌z is a solution of the ODE{

dy̌z(t) = −b(y̌z(t), α(t))dt,

y̌z(0) = z.

We begin by choosing a control ᾱ ∈ A such that b(z̃, ᾱ) · n(z̃) > 0. Then we
consider the backward trajectory y̌1 with y̌1(0) = z̃ and associated with the relaxed
control µ1 defined by

µ1(t) =

{
ᾱ if t ∈ [0, ε1[,

µ(t) elsewhere,

with a parameter ε1 > 0 to be chosen later. Using the estimate (27), which can be
extended to backward relaxed trajectories, we know that the new trajectory y̌1 does
not touch the boundary during ]0, ε1[, for ε1 small enough. Now, if the new trajectory
y̌1 touches the boundary at the time τ1, we set z1 := y̌1(τ1) and choose α1 ∈ A such
that b(z1, α1) · n(z1) > 0. Then we change the control µ1 for µ2 given by

µ2(t) =

{
α1 if t ∈ [τ1 − ε2, τ1],

µ1(t) elsewhere.

Therefore the trajectory associated with µ2 does not touch ∂Ω, at least during [τ1 −
ε2, τ1]. In fact, by using the arguments of the proof of Lemma 2.14, we know that the
trajectory lies in the open set Ω during the fixed time η.

Next, we do the same thing as many times as the trajectory touches the boundary.
Finally, since after each modification, we know that the trajectory does not touch ∂Ω
during η, we change the control only a finite number of time.

In order to be close to the trajectory ŷx, it suffices to choose the parameters
εi small enough since the relaxed control of the new trajectory is equal to µ except
during the times εi where µ is replaced by αi.

Finally, it remains to approximate the new relaxed trajectory by a classical tra-
jectory. But it is standard since the relaxed trajectory lies in Ω during [ε1, θ].

Proof of Lemma 2.16. We consider a point z of ∂Ω1. Using the assumption (23),
there exists a control ᾱ ∈ A such that b(z, ᾱ) · n(z) > 0. As in Lemma 2.14, we
consider the solution ỹz of{

dỹz(s) = b(ỹz(s), ᾱ)ds for s ∈ [0, 1[,

ỹz(1) = z.

Then we consider the points

xn := ỹz

(
1− 1

n

)
and the trajectories

ỹxn(.) := ỹz

(
.+ 1− 1

n

)
.
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It is clear enough that, for n large enough, xn ∈ Ω and xn → z as n→∞. Note also
that the first exit time of ỹxn is equal to 1

n . Thus the cost function associated with
the trajectory ỹxn is

J

(
xn, ᾱ,

1
n
, ϕ∗

)
=
∫ 1

n

0
f(ỹxn(t), ᾱ)e−λtdt+ ϕ∗(z)e−λ

1
n .

Therefore this implies

u−(xn) ≤ J

(
xn, ᾱ,

1
n
, ϕ∗

)
.

Then we pass to the limit

lim inf
n

u−(xn) ≤ lim inf
n

J

(
yn, α1,

1
n
, ϕ∗

)
≤ ϕ∗(x0).

Finally, by definition of the limit inferior, we deduce

lim inf
y→z,y∈Ω

u−(y) ≤ lim inf
n

u−(xn)

≤ ϕ∗(x0),

and the proof is complete.
Example 2.17. We will show that the assumption (23) is necessary to prove

Lemma 2.15. More precisely, we give a relaxed trajectory which cannot be approxi-
mated by classical trajectories in a closed set. To this end, we consider in R3 the field
b given, for x = (x1, x2, x3) ∈ R3, by

b(x, α) =

 1
α

1
1+α2 + |x2|


with α ∈ A := [−1, 1]. (This field was already considered in [5].)

Around the point O = (0, 0, 0), the domain Ω is reduced by two cylinders, C1 and
C2:

C1 = {(x1, x2, x3) ∈ R3, (x1 − 5)2 + (x3)2 ≤ 5} ,

C2 = {(x1, x2, x3) ∈ R3, (x1 − 9)2 + (x3 − 7)2 ≤ 5} .

We can define a relaxed trajectory ŷO satisfying (ŷO)3(t) = t
2 which is tangent to

the two cylinders. We can easily prove that classical trajectories cannot approximate
the trajectory ŷO when t ≥ 10 because, since the classical trajectories are such that

(ẏ(t))3 >
1
2

for t > 0

(see [5]), at the time t = 5 they have to be above the cylinder C1 and then they cannot
pass below C2 for t = 10.
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3. The uniqueness results. In this part, we prove uniqueness results for Hamil-
ton–Jacobi equations in the case when the Dirichlet boundary data ϕ is assumed only
to be defined pointwise, by using PDE methods. We recall that uniqueness means in
this context that all the solutions have the same l.s.c. envelope.

For simplicity in what follows, we assume henceforth that H(x, t, p) = H(x, p) + t
and that (x, p)→ H(x, p) is a continuous function from Ω×RN into R which satisfies

H(x, p) is convex in p for every x ∈ Ω(31)

and ∣∣∣∣∂H∂p
∣∣∣∣ ≤ C,

∣∣∣∣∂H∂x
∣∣∣∣ ≤ C(1 + |p|) on Ω× RN for some constant C > 0.(32)

To explain the problems coming from the discontinuity of the Dirichlet condition,
we consider the function ϕ being equal to 0 at some point x0 ∈ ∂Ω and 1 elsewhere,
as in the introduction. Then the viscosity subsolution condition on the boundary is
satisfied by the function u if

u∗ ≤ ϕ∗ ≡ 1 on ∂Ω.

It is clear that this condition is not restrictive enough because the fact that ϕ(x0) = 0
is not seen by this boundary condition.

Indeed, for illustration, we consider the exit time problem from the point x0. To
this end, we even assume that the controllability is complete; i.e., the field b is given
by b(x, α) := α with α in the unit ball B(0, 1) of RN . Then, if we assume that the
domain Ω is convex, any point x ∈ Ω may reach the point x0 by following the straight
line [x, x0]. Finally, we take f ≡ 1 and λ = 1. With the notation of the introduction,
the value function u[ϕ] is defined, for every x ∈ Ω, by

u[ϕ](x) = inf
α(.)∈L∞(R+,B(0,1))

{∫ τ

0
1e−tdt+ ϕ(yx(τ))e−τ

}
= inf
α(.)∈L∞(R+,B(0,1))

{1− e−τ + 11∂Ω\{x0}(yx(τ))e−τ}.

It is easy to show that the best strategy is to reach the point x0. Then, the value
function is equal to

u[ϕ](x) = 1− e−|x−x0|.

But by the result of the first part, all the functions uζ(x) := 1 − ζe−|x−x0| with
ζ ∈ [0, 1] are also solutions of (2) since ϕ∗ ≤ ζ11∂Ω\{x0} ≤ ϕ∗. In particular, the
maximal subsolution u+, which is equal to u[ϕ∗] ≡ 1, appears to be a pathological
solution for this exit time problem.

We consider two ways to avoid this difficulty: the first one is to consider only
“regular” boundary data ϕ, i.e., functions satisfying the condition (4) as we did in
the first section. The second one is to impose additional conditions on the solution
u: since the viscosity subsolution condition on the boundary turns out to be not
restrictive enough, we replace it by the condition (5), i.e., for any x ∈ ∂Ω,

lim inf
y→x,y∈Ω

u(y) ≤ ϕ∗(x),
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and moreover, we need that the function u is a viscosity solution in the sense of Barron
and Jensen inside the domain Ω. For the sake of completeness, we recall the following
definition.

DEFINITION 3.1. Let u be a bounded function. We say that u is a Barron–Jensen
solution of

H(x,Du) + u = 0 in Ω(33)

if it satisfies{ ∀φ ∈ C1(Ω) at each minimum point x0 ∈ Ω of u∗ − φ, we have

H(x0, Dφ(x0)) + u∗(x0) = 0.
(34)

In the case of continuous solutions, we have an equivalence between (34) and the
definition of viscosity solutions of (33): if the function u satisfies (34), then u is a
viscosity solution of (33) and vice versa.

For discontinuous solutions, the connections are far less simple (cf. [2]).
• If u is a bounded viscosity solution of (33) satisfying (u∗)∗ = u∗ in Ω, then the

property (34) holds for u∗. (In particular, it holds if u is u.s.c.)
• If u is a l.s.c. bounded function satisfying the property (34), then u is a viscosity

solution of (33).
To prove the uniqueness result, we need to add nondegeneracy conditions on the

Hamiltonian on the boundary. To do so, we recall that we assume that the distance
function d satisfies (22). We assume that ∂Ω = ∂Ω1 ∪ ∂Ω2, where ∂Ω1 and ∂Ω2 are
unions of connected components of ∂Ω and

∀x ∈ ∂Ω1, ∀R > 0, ∃CR > 0 such that

if |y − x| ≤ 1
CR

, y ∈ Ω, and λ ≥ CR(1 + |p|), λ ∈ R+, p ∈ RN ,

then H(y, p− λn(y)) ≥ R,

(35)

and 
∀x ∈ ∂Ω2, ∀R > 0, ∃CR > 0 such that

if |y − x| ≤ 1
CR

, y ∈ Ω, and λ ≥ CR(1 + |p|), λ ∈ R+, p ∈ RN ,

then H(y, p− λn(y)) ≤ −R.

(36)

We recall that n(x) := −Dd(x) for every x in the neighborhood V of ∂Ω. We also
assume that{

in a neighborhood of ∂Ω2, for every p ∈ RN ,
the map λ→ H(x, p+ λn(x)) is a nondecreasing function.

(37)

In the case of control problems when the Hamiltonian is given by (1), the as-
sumption (35) is equivalent to (23), i.e., the existence of an outer field on ∂Ω1 and the
assumptions (36) and (37) are equivalent to (24), which implies that there are only
inner fields on ∂Ω2.

The assumption (36) is used in the comparison result of [7].
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Our result is the following theorem.
THEOREM 3.2. We assume that ϕ is a bounded function defined pointwise and

that the assumptions (22), (31), (32), and (35)–(37) hold.
(1) If the condition (4) holds on ∂Ω1 and if the functions u and v are viscosity

solutions of (2), then

u∗ = v∗ in Ω.

(2) If the functions u and v are Barron–Jensen solutions of (33) which are super-
solutions of (2) on the boundary and which satisfy the condition (5) on ∂Ω1, then

u∗ = v∗ in Ω.

In the first point, we recover the uniqueness result of the first section in the case
of control problems. We will detail in the part on applications the adaptation of the
second point. In particular, we will show that all the value functions are Barron–
Jensen solutions of the associated Bellman equation.

Finally, let us come back to the example of the beginning of the section. The
function u+, which is equal to 1, and the functions uζ with ζ ∈]0, 1[ are Barron–
Jensen solutions of the associated Bellman equation in Ω, but they do not satisfy the
condition (5) on ∂Ω. Only the function u[ϕ] satisfies both properties.

A viscosity solution u is a Barron–Jensen solution in particular if u satisfies the
property (u∗)∗ = u∗ in Ω which is a criterion for uniqueness in [6] or if the function
u is continuous. We recall that the solution u is continuous if H(x, p) → ∞ when
|p| → ∞.

This result is similar to that obtained in the case of optimal stopping time prob-
lems with discontinuous stopping costs (cf. [2]).

The following comparison principle is the keystone of the proof of the uniqueness
results.

THEOREM 3.3. Under the assumptions of Theorem 3.2, if the function u is a
Barron–Jensen solution of (33) satisfying (5) on ∂Ω1 and if the function v is a bounded
supersolution of (2), then

u∗ ≤ v∗ in Ω.

Proof of Theorem 3.2. (1) First, we remark that all the subsolutions of equation
(2) satisfy condition (5): indeed, using a classical result when the assumption (35)
holds, we have

u∗ ≤ ϕ∗ on ∂Ω1.

Taking the limit inferior, we find that

(u∗)∗ ≤ (ϕ∗)∗ = ϕ∗ on ∂Ω1,(38)

since the function ϕ satisfies the assumption (4). Finally, since we have, for every
x ∈ ∂Ω,

lim inf
y→x,y∈Ω

u∗(y) = (u∗)∗(x),

we deduce from (38) that the solution u∗ satisfies, for every x ∈ ∂Ω1,

lim inf
y→x,y∈Ω

u∗(y) ≤ ϕ∗(x).
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Now since the function u∗ is not necessarily a Barron–Jensen solution of (33), we
are not able to use directly Theorem 3.3 with u. Then we introduce the maximal
subsolution u+ of equation (2). The function u+ may be obtained by considering the
following standard approximate Dirichlet problem: −

1
n
|Dun|2 +H(x,Dun) + un = 0 in Ω,

un = ϕn on ∂Ω,
(39)

where (ϕn)n is a nonincreasing sequence of continuous functions such that

inf
n
ϕn = ϕ∗.

The existence of solutions of the problem (39) is a classical consequence of Perron’s
method (cf. [14]) since the constants

Mn := max{‖H(x, 0)‖∞, ‖ϕn‖∞}

and −Mn are, respectively, a supersolution and a subsolution of this problem. More-
over, the new Hamiltonian satisfies the property

− 1
n
|p|2 +H(x, p)→ −∞ as |p| → ∞,

which corresponds to the opposite of the classical coercivity property. Nevertheless,
we recover the results of [6], but for supersolutions instead of subsolutions: the super-
solutions of (39) are uniformly Lipschitz continuous in Ω and we have a comparison
result for this equation. Thus we get that the function un is continuous and unique.
Thanks to the formulation of the approximate problem, a subsolution w of the equa-
tion (2) is still a subsolution of the new equation (39). Then this implies that w ≤ un
in Ω. Hence, the maximal subsolution u+ is defined, for x ∈ Ω, by

u+(x) := lim sup
n→∞,y→x

un(y) = inf
n
un(x).

Therefore the function u+ is u.s.c.; hence it satisfies the property (34) and the con-
dition (5) by the first remark. Using the comparison principle of Theorem 3.3, we
get

(u+)∗ ≤ v∗ in Ω.

But since u+ is the maximal subsolution, we have u+ ≥ u∗ in Ω. Hence

v∗ ≥ (u+)∗

≥ (u∗)∗ ≥ u∗ in Ω.

Finally, we exchange the roles of the functions u and v, and the proof is complete.
(2) The second point is a direct consequence of Theorem 3.3.
Now we turn to the proof of the comparison principle.
Proof of Theorem 3.3. We first recall that the distance function to the boundary

d is assumed to be C1,1 in the neighborhood V of ∂Ω by the assumption (22). We
still denote by d a nondecreasing C1,1 function on Ω which is equal to the distance
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function to ∂Ω in a neighborhood V ′ of ∂Ω included in V. And we set n(x) := −Dd(x)
for x ∈ Ω, even if, for x 6∈ V ′, n(x) is not necessarily unitary.

For every α > 0, we introduce the function uα defined, for every (x, t) ∈ Ω×R+,
by

uα(x, t) = inf
y∈Ω
{u∗(y) + e−Ktφα(x, y) + C̄(d(x)− d(y))},

with

φα(x, y) :=
|x− y|4

α
+ L
|x− y|3

α
(d(x)− d(y)) +M

|d(x)− d(y)|4
α

,

where C̄, K, L, and M are some positive constants to be chosen later.
The properties of uα are described in the following lemma.
LEMMA 3.4. There exist constants C̄, K, L, and M such that, for every T > 0

and for α small enough, the following properties hold:
(1) the function uα is Lipschitz continuous in Ω× [0, T ]. (Thus we may extend it

by continuity to the boundary ∂Ω× [0, T ].)
(2) The function uα is a viscosity subsolution of

∂w

∂t
+H(x,Dw) + w −B 4

√
α = 0 in (Ω ∪ ∂Ω2)×]0, T ](40)

for some constant B > 0, independent of α.
(3) We have uα ≤ ϕα on ∂Ω1× [0, T ], where the function ϕα is defined, for every

x ∈ ∂Ω1 and t ≥ 0, by

ϕα(x, t) = inf
y∈∂Ω1

{
ϕ∗(y) + e−Kt

|x− y|4
α

}
.

We postpone the proof of the lemma.
REMARK 3.5. The inf-convolution procedure, which usually leads a supersolution

in the viscosity solution theory, allows us to obtain a subsolution following new ideas
introduced by Barron and Jensen [8] for convex Hamiltonians. The time-dependent
formulation of uα is a technical point which permits to treat discontinuous solutions
for stationary problems (cf. [2]).

The terms with the distance function is a trick to obtain the classical property
of the inf-convolution procedure despite the presence of the boundary, thanks to the
assumptions (35) and (36). The distance function to ∂Ω plays here essentially the
same role as the time variable in the classical Barron–Jensen approach for the Cauchy
problem.

To conclude the proof of Theorem 3.3, we compare the functions uα and v. Since
ϕ∗ ≥ ϕα on Ω and since the function v∗ does not depend on t, v∗ is a supersolution of

∂w

∂t
+H(x,Dw) + w = 0 in Ω×]0, T ],

w = ϕα on ∂Ω×]0, T ].
(41)

Because of the Lipschitz continuity of uα and ϕα, an easy adaptation of the comparison
result of [6] for the Cauchy problem (41) (see also [17] and [18]) yields

uα(x, T )− v∗(x) ≤ e−T ‖(uα(., 0)− v∗(.))+‖∞ +B 4
√
α.
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We first let α→ 0 in this inequality and then T →∞. Since the functions u and
v are bounded, we obtain

u∗ ≤ v∗ in Ω,

which is the inequality that we wanted to prove.
Now we turn to the proofs of the lemmas.
Proof of Lemma 3.4. (1) Regularity and elementary properties of uα.
For every x, z ∈ Ω, and t ≥ 0, we have

uα(x, t)− uα(z, t) ≤ sup
y∈Ω
{(e−Ktφα(x, y) + C̄(d(x)− d(y)))

−(e−Ktφα(z, y) + C̄(d(z)− d(y)))}

≤ e−Kt sup
y∈Ω
{φα(x, y)− φα(z, y)}+ C̄(d(x)− d(z)).

By the compactness of the domain Ω and by Lipschitz regularity of the distance
function, we obtain

uα(x, t)− uα(z, t) ≤ C

α
|x− z|.

Therefore the function uα is Lipschitz continuous in the space variable. It is easy to
check the same property in the time variable.

Then, by Rademacher’s theorem, uα is differentiable almost everywhere, and
then, by classical result in optimization theory, if yα is a point such that uα(x, t) =
u∗(yα) + e−Ktφα(x, yα) + C̄(d(x)− d(yα)), we have

Duα(x, t) = e−KtDxφα(x, yα)− C̄n(x)

and

∂uα

∂t
(x, t) = −Ke−Ktφα(x, yα).

Let us check some elementary properties of the function uα. First, using the fact
that the functions u and v are bounded, we fix the constant C̄ to the largest of the con-
stants CR which appear in the assumptions (35) and (36) for R = max{‖u‖∞, ‖v‖∞}.

LEMMA 3.6. For L large enough and M � L and for every (x, t) ∈ Ω× [0, T ], the
following properties hold:

(1) uα(x, t) ≤ u∗(x).
(2) If yα is a point such that uα(x, t) = u∗(yα)+e−Ktφα(x, yα)+ C̄(d(x)−d(yα)),

there exists a constant E independent of α such that

|x− yα| ≤ E 4
√
α.

(3) For x in a neighborhood of the boundary, if we write Duα(x, t) = pα−λαn(x)
and if we have d(x) ≥ d(yα), then

λα ≥ C̄(1 + |pα|).

(4) There exists a constant K̄ independent of α and of K such that

|Duα(x, t)||x− yα| ≤ K̄(|x− yα|+ e−Ktφα(x, yα)).
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We postpone the proof of this lemma.
(2) Equation satisfied by uα.
Since the Hamiltonian is convex, in order to prove that the function uα is a

viscosity subsolution of (40) in Ω×]0, T [, it is enough to show that uα satisfies (40) in
the almost everywhere sense (cf. [17]). Let (x0, t0) be a point of Ω×]0, T [ where uα

is differentiable.
We consider a point yα ∈ Ω such that

uα(x0, t0) = u∗(yα) + e−Kt0φα(x0, yα) + C̄(d(x0)− d(yα)).

By the definition of uα, the point yα is a minimum point of u∗ − ψ with

ψ(y) := −e−Kt0φα(x0, y)− C̄(d(x0)− d(y)).

In order to use the equation on u, we have to show that yα ∈ Ω. We first remark
that the assumptions (22), (35), and (36) are satisfied in the neighborhood of ∂Ω
included in V ′,

Ωδ := {x ∈ Ω such that d(x) < δ},

for some positive constant δ small enough.
• If x0 6∈ Ωδ, then d(x0) ≥ δ and, by using the second point of Lemma 3.6, we

obtain

d(yα) ≥ d(x0)− |x0 − yα|

≥ δ − E 4
√
α.

Hence, for α small enough, we find that d(yα) > 0.
• If x0 ∈ Ωδ, we need the following lemma.
LEMMA 3.7. If x0 ∈ Ωδ, then we have

d(x0) ≤ d(yα).

Using Lemma 3.7, we deduce that d(yα) > 0 since x0 ∈ Ω.
Hence, we get

H(yα, Dψ(yα)) + u∗(yα) = 0,(42)

where

Dψ(yα) = −e−KtDyφα(x, yα)− C̄n(yα).

We want to replace yα by x0 and u∗(yα) by uα(x0, t0) in the equality (42). By using
the assumption (32) and the definition of uα, we get

H(x0, Du
α(x0, t0)) + uα(x0, t0) ≤ C(1 + |Duα(x0, t0)|)|x0 − yα|

+C|Duα(x0, t0)−Dψ(yα)|(43)

+e−Kt0φα(x0, yα) + C̄(d(x0)− d(yα)).

To estimate the right side of this inequality, we use Lemma 3.6 and we compute

|Duα(x0, t0)−Dψ(yα)| ≤ |λα||n(x0)− n(yα)|

≤ ‖Dn‖∞|Duα(x0, t0)||x0 − yα|.
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Therefore we deduce from the inequality (43) that

H(x0, Du
α(x0, t0)) + uα(x0, t0) ≤ B 4

√
α+Ke−Kt0φα(x0, yα),

with B := (C(1 + K̄ + K̄‖Dn‖∞) + C̄)E and K := CK̄(1 + ‖Dn‖∞) + 1.
It remains to introduce the time derivative of uα, i.e.,

∂uα

∂t
(x0, t0) = −Ke−Kt0φα(x0, yα).

Then, we obtain

∂uα

∂t
(x0, t0) +H(x0, Du

α(x0, t0)) + uα(x0, t0) ≤ B 4
√
α.

Hence, the function uα satisfies the equation (40) in the almost everywhere sense.
Finally, since uα is a viscosity subsolution of (40) in Ω×]0, T [, uα is also a sub-

solution of (40) on the boundary Ω× {T} by classical properties of Cauchy problems
(cf. [7]).

Moreover, on the boundary ∂Ω2×]0, T ], the assumption (37) implies the following.
LEMMA 3.8. The function uα is a viscosity subsolution of (40) on ∂Ω2×]0, T ].
We again postpone the proof of this lemma.
(3) Boundary properties of uα.
By the definition of ϕα, for any x0 ∈ ∂Ω1 and any t ≥ 0, there exists a point y0

of ∂Ω1 such that

ϕα(x0, t) = ϕ∗(y0) + e−Kt
|x0 − y0|4

α
.

We take a sequence (yn)n of points of Ω such that yn → y0 and

lim inf
y→y0,y∈Ω

u(y) = lim
n
u(yn).

By the property (5), we know that

lim
n
u(yn) ≤ ϕ∗(y0).

Now we introduce the sequence (xn)n defined by xn := x0 − d(yn)n(x0) for every n.
Since we have d(yn) → 0 as n → ∞, the sequence (xn)n converges to x0. Note also
that d(xn) = d(yn) for n large enough.

By the definition of uα, we may write

uα(xn, t) ≤ u∗(yn) + e−Ktφα(xn, yn) + C̄(d(xn)− d(yn))

≤ u∗(yn) + e−Kt
[
|xn − yn|4

α
+ L
|xn − yn|3

α
(d(xn)− d(yn))

+M
|d(xn)− d(yn)|4

α

]
+ C̄(d(xn)− d(yn))

≤ u∗(yn) + e−Kt
|xn − yn|4

α
for n large enough.

Then, letting n→∞, we obtain

uα(x0, t) = lim
n
uα(xn, t) ≤ ϕ∗(y0) + e−Kt

|x0 − y0|4
α

= ϕα(x0, t).

Since it is true for every x0 ∈ ∂Ω1 and t ≥ 0, the result is proven.
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Proof of Lemma 3.6. (1) Since φα(x, x) = 0 for any x ∈ Ω, we have u∗ ≥ uα in
Ω× [0, T ].

(2) Since the function u∗ is l.s.c., for any α, there exists a point yα ∈ Ω such that

uα(x, t) = u∗(yα) + e−Ktφα(x, yα) + C̄(d(x)− d(yα)),

and since uα ≤ u∗ in Ω× [0, T ], we have

u∗(yα) + e−Ktφα(x, yα) + C̄(d(x)− d(yα)) ≤ u∗(x).

Then we deduce

e−Ktφα(x, yα) ≤ 2‖u‖∞ + 2C̄‖d‖∞.(44)

By using the Young inequality

L
|x− y|3

α
(d(x)− d(y)) ≤ 3

4
|x− y|4

α
+

1
4
L4 |d(x)− d(y)|4

α
,

we get

φα(x, yα) ≥ 1
4
|x− y|4

α
+ (M − 1

4
L4)
|d(y)− d(x)|4

α
(45)

≥ 1
4
|x− y|4

α
(46)

for M ≥ 1
2L

4. Combining it with (44), this implies

|x− yα| ≤ e
Kt
4

4

√
2(‖u‖∞ + C̄‖d‖∞)α.

(3) If the function uα is differentiable at (x, t), we may write Duα(x, t) = pα −
λαn(x) with

pα := e−Kt
[
4(x− yα)

|x− yα|2
α

+ 3L(x− yα)
|x− yα|

α
(d(x)− d(yα))

]
and

λα := e−Kt
[
L
|x− yα|3

α
+ 4M(d(x)− d(yα))

|d(x)− d(yα)|2
α

]
+ C̄.

Again, we use the Young inequality to get

3L
|x− yα|2

α
|d(x)− d(yα)| ≤ 2

|x− yα|3
α

+ L3 |d(x)− d(yα)|3
α

.

If we have d(x) ≥ d(yα), then we deduce

C̄(1 + |pα|)− λα ≤ e−Kt
[
(6C̄ − L)

|x− yα|3
α

+ (C̄L3 − 4M)
|d(x)− d(yα)|3

α

]
.

The right-hand side of this inequality is negative for L ≥ 6C̄ since we already know
that M ≥ 1

2L
4.



430 ALAIN-PHILIPPE BLANC

(4) We compute

|Duα(x, t)||x− yα| ≤ e−Kt
[
4
|x− yα|4

α
+ 3L

|x− yα|3
α

|d(x)− d(yα)|+ L
|x− yα|4

α

+ 4M
|d(x)− d(yα)|3

α
|x− yα|

]
+ C̄|x− yα|.(47)

Then, using again Young inequalities, we obtain after straightforward computations

|Duα(x, t)||x− yα| ≤ e−Kt
[(

(4 +
13
4
L+M

)
|x− yα|4

α

+
(

3
4
L+ 3M

)
|d(x)− d(yα)|4

α

]
+ C̄|x− yα|.

Finally, we use the inequality (45) to fix the constant K̄.
Proof of Lemma 3.7. We argue by contradiction assuming that

d(x0) > d(yα).(48)

We first consider the case when the point yα is in the domain Ω. Hence, we use
the equation on u and we get

H(yα, Dψ(yα)) + u∗(yα) = 0,(49)

where

Dψ(yα) = pα − λαn(yα)

with the notation of Lemma 3.6.
But, since d(x0) < δ, we get that yα ∈ Ωδ using the inequality (48). Then,

we may apply the assumptions (35) or (36) to the equality (49), and thus we get a
contradiction since, by Lemma 3.6, we have

λα ≥ C̄(1 + |pα|).

It remains the case when the minimum point yα is on the boundary ∂Ω. We set

χε(y) := u∗(y)− ψ(y) + |y − yα|2 +
ε

d(y)

for y ∈ Ω and ε > 0. We add the term |.− yα|2 to be sure that the point yα is a strict
local minimum point of u∗(.)− ψ(.) + |.− yα|2. Then there exists a sequence (yε)ε of
local minimum points of χε such that

lim
ε→0

yε = yα and lim
ε→0

χε(yε) = u∗(yα)− ψ(yα).

Since yε ∈ Ω, we may use the equation on u:

H

(
yε, Dψ(yα)− 2(yε − yα)− ε

d(yε)2n(yε)
)

+ u∗(yε) = 0.(50)

But since d(yε)→ 0 as ε→ 0, we have d(yε) < d(x0) for ε small enough. Then, using
the same arguments as in preceding case, we get a contradiction with (50) since the
term |yε − yα| tends to 0 and the additional term with the normal is negative.

Hence, we have d(x0) ≤ d(yα).
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Proof of Lemma 3.8. Let φ be a C1 function on Ω × [0, T ] and let (x0, t0) ∈
∂Ω2×]0, T ] be a maximum point of uα − φ. We may assume (x0, t0) to be a strict
local maximum point of uα − φ by changing, if needed, φ in φ + |. − x0|2 + |. − t0|2.
Following an idea of [4], for ε > 0 and for every (x, t) ∈ Ω×]0, T ], we set

χε(x, t) = uα(x, t)− φ(x, t)− ε

d(x)
.

As in Lemma 3.7, since the point (x0, t0) is a strict local maximum point of uα − φ,
there exists a sequence (xε, tε)ε of local maximum points of χε such that

(xε, tε)→ (x0, t0) and uα(xε, tε)→ uα(x0, t0) as ε→ 0.

Since xε ∈ Ω, (40) holds for uα and we get

∂φ

∂t
(xε, tε) +H

(
xε, Dφ(xε, tε) +

ε

d(xε)2n(xε)
)

+ uα(xε, tε)−B 4
√
α ≤ 0.(51)

Using the assumption (37), we get

H(xε, Dφ(xε, tε)) ≤ H

(
xε, Dφ(xε, tε) +

ε

d(xε)2n(xε)
)
.

Combining this with (51), we obtain

∂φ

∂t
(xε, tε) +H(xε, Dφ(xε, tε)) + uα(xε, tε)−B 4

√
α ≤ 0.

We conclude by letting ε go to zero.

4. Applications. In this section, we apply the uniqueness results of Theorem 3.2
to exit time control problems.

We use the notations of the first section; in particular, the Hamiltonian is given
by (1).

THEOREM 4.1. We assume that ϕ is a bounded function defined pointwise, that
the constant λ is positive, and that the assumptions (6), (7), and (22)–(24) hold. Then

(1) if the property (4) holds for ϕ on ∂Ω1, the l.s.c. envelope of the solutions of
(2) is equal to the value function u−.

(2) all the Barron–Jensen solutions of (33) in Ω which are supersolutions of (2) on
the boundary and which satisfy the condition (5) on ∂Ω1 have the same l.s.c. envelope,
u−.

In the second point, the only value functions satisfying the condition (5) are, in
general, u− and u[ϕ∗]. It is clear enough in the example of the introduction where
ϕ := 11∂Ω\{x0}. Besides, we can directly show that (u[ϕ∗])∗ = u− by Lemma 2.15.

P. Soravia [19] showed that all the value functions are Barron–Jensen solutions of
(33) in Ω, using their explicit representation formulas. We have the following theorem.

THEOREM 4.2. Assume (6) and (7). The value functions u[ϕ∗], u[ϕ], u[ϕ∗], u−,
and u+ are Barron–Jensen solutions of (33) in Ω.

It is an open problem to know under which assumptions the other solutions of
(2) are Barron–Jensen solutions.

Now we turn to the proofs.
Proof of Theorem 4.1. This result is an easy adaptation of Theorem 3.2. We

just have to verify the assumptions of this theorem. The Hamiltonian satisfies (32)
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because of the conditions (6) and (7) on b and f . Also, the assumptions (23) and (24)
lead to (35), (36), and (37).

We prove only the claim for (35) since the other cases use the same kind of
arguments. For any x ∈ ∂Ω1, using (23), we choose a control ᾱ such that b(x, ᾱ) ·
n(x) ≥ β. Then, by definition of the Hamiltonian, for R > 0, λ ∈ R+ and p ∈ RN ,
and for y ∈ V, we have

H(y, p− λn(y))−R = sup
α∈A
{−b(y, α) · (p− λn(y))− f(y, α)} −R

≥ −b(y, ᾱ) · (p− λn(y))− f(y, ᾱ)−R,

H(y, p− λn(y))−R ≥ λβ − λ(b(x, ᾱ) · n(x)− b(y, ᾱ) · n(y))

−‖b‖∞|p| − ‖f‖∞ −R.

Using the Lipschitz continuity of the functions b and n, we get

H(y, p− λn(y))−R ≥ λ(β −K|x− y|)−max{‖b‖∞, ‖f‖∞ +R}(1 + |p|).

Then, if we take

CR :=
2
β

max{K, ‖b‖∞, ‖f‖∞ +R},

the right side of the preceding inequality is negative and therefore the assumption
(35) is satisfied.

Now, by Theorem 4.2, we already know that u− satisfies (34). And Lemma 2.16
implies that u− satisfies (5). Then the proof is complete.

Proof of Theorem 4.2. We have already proved that all these value functions
are supersolutions of (2) in the first part. In order to prove the opposite viscosity
inequality, we need the following lemma introduced by P. Soravia [19] as the backward
dynamic programming principle.

LEMMA 4.3. Let x be a point of Ω and α(.) be a control, i.e., α ∈ L∞(R+,A).
We consider the backward trajectory y̌x solution of the dynamical system{

dy̌x(t) = −b(y̌x(t), α(t))dt,

y̌x(0) = x ∈ Ω,

We denote by τx the first exit time of the backward trajectory y̌x from Ω.
Then, for all T such that 0 < T < τx, we have

u(x) ≥ −
∫ T

0
f(y̌x(t), α(t))eλtdt+ u(y̌x(T ))eλT .

To prove Theorem 4.2, we just have to use the classical arguments as in Theo-
rem 2.9, but using the inequality of Lemma 4.3 instead of the usual dynamic pro-
gramming principle.

Now we explain how use the uniqueness result to pass to the limit. We consider
an exit time problem satisfying the assumption (23) on ∂Ω with a exit cost satisfying
(5). Let (ϕn)n be a nondecreasing sequence of continuous functions such that

sup
n

ϕn = ϕ∗ = (ϕ∗)∗.

We note un, a viscosity solution of problem (2) where ϕ is replaced by ϕn.
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By the second part, ((un)∗)∗ satisfies the property (34). Using (23) and since ϕn
is continuous, we get

((un)∗)∗ ≤ ϕn ( ≤ ϕn+1) on ∂Ω.

Therefore ((un)∗)∗ satisfies also the property (5). Then we apply Theorem 4.1 to get

(un+1)∗ ≥ ((un)∗)∗

≥ (un)∗ in Ω.

Thus, for x ∈ Ω, we have

lim inf
n→∞,y→x

(un)∗(y) = sup
n

(un)∗(x).

Finally, by classical stability results, the function

u(x) := lim inf
n→∞,y→x

(un)∗(y) = sup
n

(un)∗(x)

is a supersolution of (2). Moreover it easy to check that u satisfies the properties (5)
and (34). Hence, by using again the preceding uniqueness result, we conclude

lim
n

(un)∗ = sup
n

(un)∗ = u = u− in Ω.
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Abstract. The objective of this paper is to develop an approach to nonlinear filtering based on
the Cameron–Martin version of Wiener chaos expansion. This approach gives rise to a new numerical
scheme for nonlinear filtering. The main feature of this algorithm is that it allows one to separate the
computations involving the observations from those dealing only with the system parameters and to
shift the latter off-line.

Key words. Cameron–Martin development, Wick polynomials, Wiener chaos, Zakai equation
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1. Introduction. Nonlinear filtering is a classic problem of applied stochastic
analysis (see, e.g., Kallianpur [19], Kunita [23], Kushner [24], Liptser and Shiryayev
[27], etc.). It is of notable theoretical and practical importance by itself and also as
a part of control theory for partially observable stochastic systems (see, e.g., Fleming
and Pardoux [11]).

In this paper we consider the filtering scheme where the signal process x(t) is a
Markov diffusion process and the observation process is of the form

y(t) = y0 +
∫ t

0
h(x(s))ds+ w(t),

where w(t) is a Brownian motion independent of the process x(t).
Let f be a given bounded function on Rd and f̂(x(t)) be the optimal filter (the

best in the mean-square estimate for f(x(t)) based on observations y(s), s ≤ t).
A fundamental result of filtering theory says that the optimal filter is given by the
formula

f̂(x(t)) =

∫
Rd f(x)u(t, x)dx∫

Rd u(t, x)dx
,(1.1)

where u(t, x) is the so-called unnormalized filtering density (UFD); of course, some
regularity assumptions are needed to ensure the existence of the density.

A standard way to study the UFD (analytically or numerically) is to treat it as
a solution of the Zakai equation

du(t, x) = L∗u(t, x)dt+ h(x)u(t, x)dy(t),(1.2)

where L∗ is the formally adjoint operator to the generator of the Markov process x(t)
(see, e.g., Baras [2]; Benesh [3]; Bensoussan, Glowinski, and Rascanu [4]; Clark [8];
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DiMasi and Runggaldier [9]; Elliott and Glowinski [10]; Florchinger and LeGland [12];
Krylov and Rozovskii [20]; Kunita [22]; Pardoux [33]; Rozovskii [34]; Zakai [37]; etc.).

Another comparatively recent approach is based on the Wiener chaos expansion
(WCE) (see references below). In this paper we further develop a version of this
approach based on the Cameron–Martin orthogonal decomposition of L2-functionals
of a Gaussian process (see Cameron and Martin [7]). We prove that the UFD can be
written in the form

u(t, x) =
∑
α

1√
α!
ϕα(t, x)ξα(y),(1.3)

where ξα(y) are Wick polynomials (certain products of Hermite polynomials; see,
e.g., [14]) of Wiener integrals

∫ t
0 mi(s)dy(s), where {mk} is a complete orthonormal

system in L2([0, t]), and ϕα(t, x) are deterministic Hermite–Fourier coefficients in the
Cameron–Martin orthogonal decomposition of u(t, x) (see Mikulevicius and Rozovskii
[30, 31]). The Wick series expansion (1.3) converges in L2-sense on the reference
probability space.

We prove that the set of functions {ϕα(t, x)} is a solution to a simple recursive
system of Kolmogorov-like equations (see (2.6)). Below it will be referred to as the
S-system.

Our interest in the WCE was motivated mainly by computational purposes. One
important feature of the expansion (1.3) is that it separates observations and param-
eters in that the Wick polynomials are completely defined by the observation process
y(t) but the Hermite–Fourier coefficients ϕα(t, x) are determined only by the coeffi-
cients of the signal process x(t), its initial distribution, and the observation function h.

Unfortunately, direct application of the above expansion for numerical compu-
tations is impractical, limited, at best, to short time intervals. The main reason is
possible exponential growth of the errors inflicted by truncation of the infinite series
(1.3) as the time interval [0, t] increases (Theorem 2.2).

One important objective of the paper is to develop a numerical approximation
scheme for the UFD which retains the separation of observations and parameters but
is not subject to the aforementioned limitations (Theorem 2.5 and the accompanying
algorithm).

This recursive scheme splits into two parts: deterministic and stochastic. The
deterministic part (solving the S-system) might be time consuming but can be per-
formed off-line since in many applications the coefficients of the processes x(t), y(t)
and also of the S-system are known a priori. The stochastic part (determining the
Wick polynomials ξα(y)) is computationally simple and can be performed in real time.
In this paper this scheme is referred to as the spectral separating scheme (S3).

We prove the strong convergence of S3 both in L2 and C spaces and demonstrate
that the overall rate of convergence (on- and off-line) is of order O(∆), where ∆ is
the time step (Theorems 2.2 and 2.4).

S3 can be also viewed as a time-discretization scheme for a solution of the Zakai
equation. In section 4 we demostrate that some well-known discretization algorithms
for this equation (e.g., explicit Euler scheme, splitting-up method (see [4, 26])) can
be derived from a multistep version of (1.3). In this section we also discuss the
computational complexity of S3, compare it with the complexity of the splitting-up
method, and present some results of numerical simulations.

We conclude the introduction with some historical remarks. The idea of obtaining
an “explicit” WCE solution of a stochastic (ordinary) differential equation can be
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traced back to the paper [21] by Krylov and Veretennikov (see also Zvonkin and
Krylov [38]). Kunita [22] applied this idea to prove uniqueness of the Zakai equation.
Wong [35] obtained the solution of a special class of nonlinear filtering problems in the
form of the WCE. Ocone [32] pioneered finite-order WCEs of normalized nonlinear
filters (see also references therein).

In these works the multiple Wiener integral version of the WCE was used. The
Cameron–Martin development is analytically equivalent to this version of the WCE
(see, e.g., Ito [17]). However, it has some computational advantage since only ordinary
Wiener integrals are required in this approach. Lo and Ng [28] were the first ones
to utilize the above fact. They modified Ocone’s approximation using the Cameron–
Martin expansion. Unfortunately, the equations for the deterministic coefficients of
the finite-order approximations in [28] are quite complex. To solve them one needs
to know the Hermite–Fourier coefficients for the corresponding unnormalized filters.
Computation of the latter was not discussed in [28].

The S-system (2.6) was introduced by Mikulevicius and Rozovskii [30, 31]. The
upper bound cecttN+1/(N + 1)! on the error of the Nth-order approximation to (1.3)
was obtained in [30]. Recently, Budhiraja and Kallianpur [5] developed a different
WCE-type approximation of the unnormalized filtering density using the Haar-type
basis. They also established an upper bound on the error of truncation with respect
to the stochastic and deterministic bases.

2. Main results. Let (Ω,F ,P) be a probability space and w(t) be an r-dimensional
Brownian motion on the space. Let x(t) be a d-dimensional (unobservable) signal pro-
cess and y(t) be the r-dimensional observation process given by

y(t) =
∫ t

0
h(x(s))ds+ w(t), 0 ≤ t ≤ T,(2.1)

where h = (hl)1≤l≤r is an r-dimensional vector function on Rd. We assume in addition
that the signal x(t) is a diffusion Markov process of the form1

dxi(t) = bi(x(t))dt+ σij(x(t))dw̃j(t), 0 < t ≤ T,
x(0) = x0,

(2.2)

where b = (bi)1≤i≤d is a d-dimensional vector function on Rd, σ = (σij)1≤i≤d, 1≤j≤d1

is a d×d1 dimensional matrix function on Rd, and w̃ = (w̃i)1≤i≤d1 is a d1-dimensional
Brownian motion on (Ω,F ,P).

The following is assumed about the model (2.1), (2.2):
(A1) the functions b, σ, and h are infinitely differentiable and bounded with all

derivatives;
(A2) the processes w and w̃ are independent;
(A3) the random vector x0 is independent of both w and w̃ and has density2

p(x) ∈ Hn for n = 0, 1, 2, . . . .
(Then by the Sobolev embedding theorem, p(x) is also in Cn

b for any n.) Some of these
assumptions can be weakened, and we will discuss them at the end of this section.

Let Fyt be the σ-algebra generated by y(s), s ≤ t. Denote

ρ(t) = exp
{
−
∫ t

0
hl(x(s))dwl(s)− 1

2

r∑
l=1

∫ t

0
|hl(x(s))|2ds

}
.

1When the sum is finite, we assume summation over repeated indices and omit the
∑

sign.
2Here and below Hn is the Sobolev space Wn

2 (Rd) (see, e.g., [25]), and Cn
b is the space of n

times continuously differentiable on Rd functions bounded with all the derivatives.
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It is well known (see, e.g., [27] or [19]) that the measure P̃ defined by dP̃ = ρ(T )dP is
a probability measure on (Ω,F) with the following properties:

(i) on the reference probability space (Ω,F , P̃), y(·) is a Brownian motion inde-
pendent of x(·);

(ii) the optimal filter f̂(x(t)) = E[f(x(t))|Fyt ] is given by

f̂(x(t)) =
Ẽ[f(x(t))ρ(t)−1|Fyt ]

Ẽ[ρ(t)−1|Fyt ]
,(2.3)

where Ẽ is the expectation with respect to measure P̃. If assumptions (A1)–(A3)
hold, the unnormalized filtering measure Φt(dx) = Ẽ[1{x(t)∈dx}ρ(t)−1|Fyt ] admits the
density u(t, x) = Φt(dx)/dx, called the UFD, which is a solution of the Zakai equation

du(t, x) = L∗u(t, x)dt+ hl(x)u(t, x)dyl(t),(2.4)

where L∗u := 1
2

∂2

∂xi∂xj
((σσ∗)iju)− ∂

∂xi
(biu) and such that for every n ∈ N

Ẽ supt≤T ||u(t, ·)||2Cn
b
<∞,

Ẽ supt≤T ||u(t, ·)||2Hn <∞.

Using the UFD u(t, x), one can rewrite (2.3) in the form (1.1).
DEFINITION. A collection α = (αlk)1≤l≤r, k≥1 of nonnegative integers is called an

r-dimensional multiindex if only finitely many of αlk are different from zero.
The set of all r-dimensional multiindices will be denoted by J . For α ∈ J we use

the following definitions:
|α| :=

∑
l,k α

k
l , length of α;

d(α) := max{k ≥ 1 : αlk > 0 for some 1 ≤ l ≤ r}, order of α.
We also write α! =

∏
k,l(α

l
k!).

Let us fix an arbitrary orthonormal system {mk} = {mk(s)}k≥1 in the space
L2([0, t]) of square integrable functions on [0, t] and set

ξk,l =
∫ t

0
mk(s)dyl(s).

Note that due to property (i) of the measure P̃, ξk,l are independent Gaussian random
variables with zero mean and unit variance.

Let Hn be the nth Hermite polynomial defined by

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x

2/2.(2.5)

It is well known (see, e.g., [7] or Theorem A.1) that the collectionξα :=
∏
k,l

Hαlk
(ξk,l)√
αlk!

 , α ∈ J


is a complete orthonormal system (CONS) in L2(Ω,Fyt , P̃).

To illustrate how the system is constructed, consider the case r = 1. Then α is
a multiindex of the form (α1, α2, . . . ). If |α| = 0 (i.e., α = (0, 0, . . . )), then obviously
ξα ≡ 1.
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If |α| = 1, then the multiindex α is of the form (0, . . . , 0, 1, 0, . . . ) (i.e., αi = 1,
αk = 0, k 6= i). In this case, ξα =

∫ t
0 mi(s)dy(s).

Similarly, if |α| = 2, then α is of either the form

(0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . )

(if i < j and αi = αj = 1, αk = 0, k 6= i, j) or the form (0, . . . , 0, 2, 0, . . . ) (if i = j).
For such α we have

ξα =
(∫ t

0
mi(s)dy(s)

)(∫ t

0
mj(s)dy(s)

)
in the first case,

ξα =
1√
2

[( ∫ t

0
mi(s)dy(s)

)2
− 1
]

in the second case, and so on. See also Remark A.2.
First, we will focus on the expansion of the UFD in the Wick polynomials ξα.

To determine the coefficients of the expansion we consider the following system of
deterministic PDEs:

∂ϕα(s, x)
∂s

= L∗ϕα(s, x) +
∑
k,l α

l
kmk(s)hl(x)ϕα(k,l)(s, x), 0 < s ≤ t,

ϕα(0, x) = p(x)1{|α|=0},
(2.6)

where α=(αlk)1≤l≤r, k≥1∈J and α(i, j) stands for the multiindex α̃ = (α̃lk)1≤l≤r, k≥1
with

α̃lk =

{
αlk if k 6= i or l 6= j or both,
max(0, αji − 1) if k = i and l = j.

(2.7)

This system is recursive in |α|: once we know the functions ϕα for all α of length
|α| = k, we can compute all ϕα for |α| = k + 1. To illustrate the idea, again consider
the case r = 1. Let us write ϕ0 for the ϕα with α = (0, 0, . . . , 0, . . . ) (|α| = 0). Then
ϕ0(s, x) satisfies the forward Kolmogorov equation corresponding to the state process:

∂ϕ0(s, x)
∂s

= L∗ϕ0(s, x),

ϕ0(0, x) = p(x).

If |α| = 1 with αi = 1 and we write ϕi for ϕα with this α, then the corresponding
equation in (2.6) becomes

∂ϕi(s, x)
∂s

= L∗ϕi(s, x) +mi(s)h(x)ϕ0(s, x),

ϕi(0, x) = 0.

For |α| = 2, the corresponding function ϕij , i ≤ j, satisfies the equation

∂ϕij(s, x)
∂s

= L∗ϕij(s, x) +mi(s)h(x)ϕj(s, x) +mj(s)h(x)ϕi(s, x),

ϕij(0, x) = 0,

and so on.
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Under assumptions (A1) and (A3), system (2.6) has a unique smooth solution
(see Proposition A.1 for details).

Our approach is based on the following expansion of the UFD.
THEOREM 2.1 (Mikulevicius and Rozovskii [30, 31]). Assume (A1)–(A3). Then

for each x ∈ Rd the UFD is given by

u(t, x) =
∑
α∈J

1√
α!
ϕα(t, x)ξα (P− a.s.).(2.8)

This series converges in L2(Ω, P̃), and L1(Ω,P), and the following Parseval’s
equality holds:

Ẽ|u(t, x)|2 =
∑
α∈J

1
α!
|ϕα(t, x)|2.(2.9)

Proof of this theorem is given in the appendix.
For the computational purposes one needs to truncate the sum in the expansion

of u. This sum is “double infinite.” Writing

u(t, x) =
∞∑
k=0

∑
|α|=k

1√
α!
ϕα(t, x)ξα,(2.10)

one can see that for k ≥ 1 there are infinitely many multiindices α with |α| = k. To
make it finite, we have to bound the length |α| of α and also the order d(α) of α: if
d(α) ≤ n, then there are at most (nr)k multiindices α with |α| = k.

Recall that if α = (αlk)1≤l≤r, k≥1, then αlk defines the degree of the Hermite
polynomial of

∫ t
0 mk(s)dyl(s) used in the construction of ξα. If d(α) ≤ n, then αlk = 0

for all k > n, so the truncation of the order of α is equivalent to keeping only the first
n elements of the (deterministic) basis {mk(s)}k≥1.

On the other hand, by restricting the length of α, we eliminate a number of
elements of the stochastic basis {ξα}, which are otherwise available with the retained
collection of {mk}.

Thus, restriction of the order of α makes the inner sum in (2.10) finite and is
equivalent to the truncation of the deterministic basis {mk}, while restriction of the
length of α makes the outer sum in (2.10) finite and is equivalent to the truncation
of the stochastic basis ξα.

The following theorem gives the upper bound on the error that one makes by
doing both truncations for a particular choice of the basis {mk}.

THEOREM 2.2. Suppose that assumptions (A1)–(A3) hold and the deterministic
basis {mk} is chosen as follows:

m1(s) =
1√
t
, mk(s) =

√
2
t

cos
(π(k − 1)s

t

)
, k > 1, 0 ≤ s ≤ t.

Write JnN = {α ∈ J : |α| ≤ N, d(α) ≤ n} and define

unN (t, x) :=
∑
α∈JnN

1√
α!
ϕα(t, x)ξα.(2.11)

Then

Ẽ||unN (t, ·)− u(t, ·)||2L2
≤ BeBt

( (h0t)N+1

(N + 1)!
||p||2L2

+
t3

n
||p||2H2

)
,(2.12)
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sup
x∈Rd

Ẽ|unN (t, x)− u(t, x)|2 ≤ CeCt
( (h0t)N+1

(N + 1)!
||p||2C0

b
+
t3

n
||p||2C2

b

)
.(2.13)

Constants B and C depend only on the coefficients b, σ, and h of the model and
h0 :=

∑r
l=1 supx∈Rd |hl(x)|2.

This and the following theorems will be proven in section 3.
Remark 2.1. For different k and l, random variables

∫ t
0 mk(s)dyl(s), which

make the stochastic basis ξα, are idependent and identically distributed N (0, 1) under
measure P̃ for any CONS {mk}. This suggests that the part of the error due to the
truncation in the length of α should be independent of the choice of {mk}, and the
analysis of the proof shows that this is indeed the case. On the other hand, the error
due to the truncation of the order of α crucially depends on the choice of {mk} (see
also Remark 3.1).

Truncations in the order and in the length can be done independently of each
other. If n =∞, we have truncation in length only; this case was studied by Mikule-
vicius and Rozovskii [30].

The Hermite–Fourier coefficients ϕα in (2.10) and (2.11) can be computed off-line,
since system (2.6) does not involve the observation process y. In spite of this important
property, approximation (2.11) does not yet provide an effective numerical algorithm
for computing the UFD. The major reason for this is that the error of truncation may
grow exponentially with t, so we can expect (2.11) to give a good approximation only
for sufficiently small t. The above is a typical problem for approximations of solutions
of parabolic equations (both deterministic and stochastic). One can try to offset
this effect by choosing a higher-order approximation (in our case by taking larger N
and n). However, higher-order numerical schemes are slower and often numerically
unstable. A standard way to overcome the exponential growth of the truncation errors
is to develop a recursive procedure by iterating the one-step approximation.

Remark 2.2. Of course, for the recursive approximation to converge, it is nec-
essary that the error of the one-step approximation converges to zero fast enough as
t ↓ 0. By Theorem 2.2, the short time asymptotics of the error of approximation (2.11)
are of order t if N = 1 and of order t3/2 if N > 1, so it is possible to use (2.11) to
costruct a multistep approximation (Theorem 2.4).

In what follows, we present a recursive version of the expansion (2.8). It will
allow us to modify the corresponding numerical scheme and eliminate the possible
error growth.

Let 0 = t0 < t1 < · · · < tM = T be a uniform partition of the interval [0, T ]
with step ∆ (so that ti = i∆, i = 0, . . . ,M). Let {mi

k} = {mi
k(s)}k≥1 be a CONS in

L2([ti−1, ti]). We also define random variablesξiα :=
∏
k,l

Hαlk
(ξik,l)√
αlk!

 , α ∈ J

 ,(2.14)

where ξik,l=
∫ ti
ti−1

mi
k(s)dyl(s) and Hn is the nth Hermite polynomial (2.5).

Consider the following system of equations:

∂ϕiα(s, x, g)
∂s

=L∗ϕiα(s, x, g)+
∑
k,l

αlkm
i
k(s)hl(x)ϕiα(k,l)(s, x, g), ti−1< s≤ ti,

ϕiα(ti−1, x, g) =g(x)1{|α|=0},

(2.15)
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where g(x) is a function to be determined. For each i = 1, . . . ,M this system is similar
to (2.6). The main new feature is that the initial time moment is no longer zero and
we now allow that an arbitrary initial condition g may be different for different i; this
dependence on g is indicated explicitly in the arguments of ϕ.

The following is the recursive version of Theorem 2.1.
THEOREM 2.3. Define u(t0, x) := p(x). Then for each x ∈ Rd and each ti, i =

1, . . . ,M , the UFD is given by

u(ti, x) =
∑
α∈J

1√
α!
ϕiα(ti, x, u(ti−1, ·))ξiα, i = 1, . . . ,M (P − a.s.).(2.16)

This series converges in L2(Ω, P̃) and L1(Ω,P), and the following Parseval’s
equality holds:

Ẽ|u(ti, x)|2 =
∑
α∈J

1
α!

Ẽ|ϕα(t, x, u(ti−1, ·))|2, i = 1, . . . ,M.

This result follows easily from Theorem 2.1, since (2.4) is linear with a unique
solution, and random variables u(ti−1, x) and ξiα are independent under measure P̃.

Again, for computational purposes, we need to perform truncations in (2.16). For
that purpose, as in Theorem 2.2, we will use the special basis {mi

k}:

mi
k(s) = mk(s− ti−1), ti−1 ≤ s ≤ ti,

m1(s) =
1√
∆
, mk(s) =

√
2
∆

cos
(π(k − 1)s

∆

)
, k > 1, 0 ≤ s ≤ ∆,

mk(s) = 0, k ≥ 1, s /∈ [0,∆].

(2.17)

THEOREM 2.4. Suppose that basis {mi
k} is given by (2.17) and assumptions (A1)–

(A3) hold. Define unN (t0, x) := p(x) and by induction

unN (ti, x) :=
∑
α∈JnN

1√
α!
ϕiα(∆, x)ξiα,(2.18)

where JnN = {α ∈ J : |α| ≤ N, d(α) ≤ n} and ϕiα are solutions of the system

∂ϕiα(s, x)
∂s

= L∗ϕiα(s, x) +
∑
k,l α

l
kmk(s)hl(x)ϕiα(k,l)(s, x), 0 < s ≤ ∆,

ϕiα(0, x) = unN (ti−1, x)1{|α|=0}.

(2.19)

Then

max
1≤i≤M

Ẽ||unN (ti, ·)− u(ti, ·)||2L2
≤ BeBT

( (h0∆)N

(N + 1)!
||p||2L2

+
∆2

n
||p||2H2

)
,(2.20)

max
1≤i≤M

sup
x∈Rd

Ẽ|unN (ti, x)− u(ti, x)|2 ≤ CeCT
( (h0∆)N

(N + 1)!
||p||2C0

b
+

∆2

n
||p||2C2

b

)
.

(2.21)

Constants B and C depend only on the coefficients b, σ, and h of the model and
h0 :=

∑r
l=1 supx∈Rd |hl(x)|2.3

3Of course, B and C here are, in general, different from constants B and C in Theorem 2.2.
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The sequence {unN (ti, x)}1≤i≤M gives an approximation to the UFD at all points
of the time grid. This is a flexible and comparatively universal approximation. Many
well-known numerical schemes for the Zakai equation can be obtained as particular
cases of (2.18). In section 4 we will demonstrate this for two well-known algorithms:
the explicit Euler scheme and the splitting-up method.

Remark 2.3. Analysis of the proofs of Theorems 2.2–2.4 shows that the wavelet
type structure of our “global” basis M = ∪Mi=1 ∪∞k=1 {mi

k} is of central importance.
Specifically the following two properties of the basis are crucial:
(1) The global basis M is a direct sum of “local” bases Mi = ∪∞k=1{mi

k} with
nonoverlapping supports (Theorems 2.3–2.5).

(2) The functions mi
k(s) are smooth and

∫ ti
ti−1

mi
k(s)ds = 0 for k ≥ 2, i =

1, . . . ,M (see Theorem 2.4).
The recursive version (2.18) of the spectral approximation of the unnormalized

filtering density has one important disadvantage as compared to the one-step approx-
imation (2.11). Indeed, to compute unN (ti, x) we have to solve a certain number of
equations from system (2.19). Although these equations are the same on every time
interval and their coefficients do not involve the observation process y, the initial con-
dition for the first equation of the system, unN (ti−1, x), does. This fact of course rules
out off-line computation of the Fourier–Hermite coefficients ϕα(t, x), which is one of
the important objectives of our study. For this reason, we present below a modifica-
tion of the expansion (2.18) which admits off-line computations. Loosely speaking,
the idea is to expand the initial condition for the first equation of (2.19) in a Fourier
series as a function of spatial variable x, unN (ti−1, x) =

∑
l clel(x), and to exploit the

obvious relation

ϕα(ti, x, u(ti−1, x)) =
∑
l

clϕα(ti, x, el).

Note that the functions ϕα(ti, x, el) can be computed off-line.
THEOREM 2.5. Let {el} = {el(x)}l≥1, el ∈ ∩nHn, be a CONS in L2(Rd) and

(·, ·) be the inner product in that space. Suppose that assumptions (A1)–(A3) hold and
{mi

k} are given by (2.17). Consider the following system of equations:

∂ϕα(s, x, g)
∂s

= L∗ϕα(s, x, g) +
∑
k,l

αlkmk(s)hl(x)ϕα(k,l)(s, x, g), 0 < s ≤ ∆,

ϕα(0, x, g) = g(x)1{|α|=0}.

(2.22)

Define qlαk := (ϕα(∆, ·, ek), el) and then by induction

ψl(0, N, n) := (p, el),

ψl(i,N, n) :=
∑
α∈JnN

∑
k

1√
α!
ψk(i− 1, N, n)qlαkξ

i
α.(2.23)

Then

unN (ti, x) =
∑
l

ψl(i,N, n)el(x), 0 ≤ i ≤M (P − a.s.).(2.24)

Now we can describe an approximation algorithm which stems from Theorem 2.5.
(1) Before the observations become available, (a) choose a finite collection

{el}1≤l≤κ;
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(b) compute ψl(0, N, n, κ) := (p, el), 1 ≤ l ≤ κ, where p is the initial density;
(c) for all α ∈ JnN and l = 1, . . . , κ compute ϕα(∆, x, el);
(d) compute qlαk = (ϕα(∆, ·, ek), el).
(2) On the ith step, when the observations become available,
(a) compute ξiα;
(b) compute ψl(i,N, n, κ) :=

∑
α∈JnN

∑κ
k=1(1/

√
α!)ψk(i− 1, N, n, κ)qlαkξ

i
α for l =

1, . . . , κ ;
(c) compute

un,κN (ti, x) :=
κ∑
l=1

ψl(i,N, n, κ)el(x).(2.25)

.
We refer to this algorithm as the spectral separating scheme (S3).
Remark 2.4. The amount of on-line operations and the amount of information

that has to be stored in each step of S3 do not depend on the number of steps to be
performed. Also in contrast to the standard time-discretization schemes for the Zakai
equation, S3 does not require computing of the UFD at all the grid points ti, i =
1, . . . ,M . Specifically, step 2(c) of the algorithm can be omitted on any subset of time
grid points (e.g., everywhere except the final point tM ). Note that computing of (2.25)
is time consuming since it has to be done at all points of the space mesh.

The truncation of the basis {el} assumed in the above algorithm is necessary for
computational reasons. Obviously it adds an extra error to (2.20). It is also clear
that the error depends on the choice of the basis {el} and is very much related to the
particular numerical scheme used to solve (2.22).

It is beyond the scope of this work to study the above questions in detail, so we
restrict ourselves to one particular case.

THEOREM 2.6. Suppose that {el} is the Hermite basis in L2(Rd) [16].
Let 0 = t0 < · · · < tM = T be a uniform partition of [0, T ] and unN (ti, x) and

un,κN (ti, x) be defined by (2.18) and (2.25), respectively. Assume that (A1)–(A3) hold
and in addition the initial density p and all its derivatives decay faster than any
negative power of |x| as |x| → ∞.

Then for any positive integer γ there is a real number Cγ > 0 depending only on
γ and the parameters σ, b, p, and d of the model such that

max
1≤i≤M

√
Ẽ||unN (ti, ·)− un,κN (ti, ·)||2L2

≤ MCγ(eCγT − 1)
Tκγ−1/2 .(2.26)

This theorem shows that for sufficiently smooth initial condition p and with ap-
propriate choice of the basis {el}, the error due to the truncation of the basis decays
faster than any power of κ; i.e., our approximation is of a “spectral quality” (see, e.g.,
[15]).

Remark 2.5. The overall error of approximation for the spectral separating
scheme follows from (2.20) and (2.26) and is given by

max
1≤i≤M

Ẽ||u(ti, ·)− un,κN (ti, ·)||2L2
≤ C

( (h0∆)N

(N + 1)!
+

∆2

n
+

C(γ)
∆2κ2γ−1

)
,(2.27)

where C is a constant depending on the parameters of the model (including the initial
density p and the length of the time interval T ) and it is assumed that the Wiener
integrals

∫ ti
ti−1

mk(t)dyl(t) are computed exactly. If n = 1, then only increments of the
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observation process are needed at each step and the computation of the integrals does
not introduce any additional error. For n > 1, the integrals

∫ ti
ti−1

mk(t)dyl(t), k > 1,
can be reduced to Riemann integrals and then approximated by subdividing the interval
[ti−1, ti] with some step δ << ∆. The error of the corresponding approximation will
depend on the new asymptotic parameter δ. Still, formula (2.27) implies that, in the
limit lim∆→0 limκ→∞, the schemes with n = 1 and n > 1 have the same rate of
convergence.

Remark 2.6. Another approximation based on the Haar basis was proposed by
Budhiraja and Kallianpur [5]. The approximation in [5] converges when N ↑ ∞ and
∆ ↓ 0. For computational purposes, though, it can be difficult to take arbitrarily large
values of N because of the growing complexity and possible numerical instability. On
the other hand, it follows from (2.27) that the spectral separating scheme converges in
the limit lim∆→0 limκ→∞ for every N ≥ 1 and the rate of convergence is the same for
all N ≥ 2.

We remark that Theorems 2.1–2.6 can be extended to the case of time-dependent
coefficients. Theorems 2.1–2.6 hold if the coefficients belong to the Hölder space
C2+α(Rd) for each t. The generalization is straightforward yet a bit cumbersome.
Theorems 2.1–2.2 can be carried over to the case of correlated noises without many
changes in the proofs [29, 31]. On the other hand the error estimates in the latter
case are more delicate.

By no means is our approach a universal one. For example, it requires advanced
knowledge of the parameters of the system, which are not always readily available.
Also, it is not clear if it could be extended to the case of a non-Markov state process.

3. Proofs. In this section we will prove Theorems 2.2, 2.4, and 2.5. Everywhere
C stands for a positive constant depending only on the parameters of the system; its
actual value may be different in different places.

We introduce the following notation:
{Ts}s≥0, the semigroup generated by the operator L∗;
sk, the the ordered set (s1, . . . , sk); dsk := ds1 . . . dsk;
F (t; sk;x) := Tt−skhTsk−sk−1 . . . hTs1p(x), k ≥ 1;∫ (k)(· · · )dsk :=

∫ t
0

∫ sk
0 . . .

∫ s2
0 (· · · )ds1 . . . dsk.

When r = 1, each multiindex α = (α1, α2, . . . ) of length |α| = k can be identified
with a vector Kα = (iα1 , . . . , i

α
k ), where iα1 ≤ iα2 ≤ · · · ≤ iαk . The first entry iα1 of

Kα is the number of the first nonzero element of α. The second entry iα2 is equal
to iα1 if that first nonzero element αiα1 is greater than 1; otherwise iα2 is the number
of the second nonzero element and so on. As a result, if αj > 0, then exactly αj
entries of the vector Kα are equal to j. We will call this vector the characteristic
set of multiindex α. For example, if α = (0, 1, 0, 2, 3, 0, . . . ), then nonzero elements
are α2 = 1, α4 = 2, α5 = 3, and the characteristic set is (2, 4, 4, 5, 5, 5). A similar
construction is possible for general r > 1. In the future, when there is no danger of
confusion, we will omit the upper index in i (i.e., write ij rather than iαj ).

Let Pk be the permutation group of the set {1, . . . , k}. For a given α ∈ J with
|α| = k and the characteristic set (i1, . . . , ik) (r = 1) define

Eα(sk) :=
∑
σ∈Pk

mi1(sσ(1)) · · ·mik(sσ(k)).

Proof of Theorem 2.2. We will prove inequality (2.12); the other can be proven
in a similar way.
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Set

uN (t, x) :=
∑
|α|≤N

ϕα(t, x)ξα√
α!

.

Suppose that we know that

Ẽ||u(t, ·)− uN (t, ·)||2L2
≤ (h0t)N+1

(N + 1)!
eCt||p||2L2

(3.1)

and

Ẽ||uN (t, ·)− unN (t, ·)||2L2
≤ C t

3

n
eCt||p||2H2 .(3.2)

Then (2.12) will follow immediately from the inequality (a+ b)2 ≤ 2(a2 + b2).
The problem is thus to prove (3.1) and (3.2). To simplify the presentation, we

assume that r = 1.
Proof of (3.1). We will use the following results:∑

|α|=k

ϕ2
α(t, x)
α!

=
∫ (k)

|F (t; sk;x)|2dsk,(3.3)

where ϕα is the solution of (2.6) with any CONS {mk}, and

||Tsf ||2L2
≤ eCs||f ||2L2

.(3.4)

The first equality is established in the appendix, Proposition A.1 (see also [30]);
inequality (3.4) is a standard fact (see [25]).

Since ξα are uncorrelated under P̃, we have

Ẽ|u(t, x)− uN (t, x)|2 =
∑
k>N

∑
|α|=k

ϕ2
α(t, x)
α!

=
∑
k>N

∫ (k)

|F (t; sk;x)|2dsk.

Then by the Fubini theorem

Ẽ||u(t, ·)− uN (t, ·)||2L2
=
∑
k>N

∫ (k) (∫
Rd

|F (t; sk;x)|2dx
)
dsk

=
∑
k>N

∫ (k)

||F (t, sk, ·)||2L2
dsk.

Since h is bounded, it follows from the definition of F and (3.4) that

||F (t; sk; ·)||2L2
≤ h0e

C(t−sk)||Tsk−sk−1h . . . hTs1p||2L2

≤ · · · ≤ hk0et−sk+sk−···+s2−s1+s1 ||p||2L2
= hk0e

Ct||p||2L2
.

Finally, from
∫ (k)

dsk = tk/k!, we conclude that

Ẽ||u(t, ·)− uN (t, ·)||2L2
≤ eCt

∑
k>N

(th0)k

k!

≤ (th0)N+1

(N + 1)!
e(C+h0)t,

and (3.1) follows. Note that it holds for any CONS {mk}.
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Proof of (3.2). If α is a multiindex with |α| = k and the characteristic set
(iα1 , . . . , i

α
k ), then iαk = d(α), the order of α, and so the set JnN can be described

as {α ∈ J : |α| ≤ N ; iα|α| ≤ n}. Thus

Ẽ|unN (t, x)− uN (t, x)|2 =
∞∑

l=n+1

N∑
k=1

∑
|α|=k;iαk=l

ϕ2
α(t, x)
α!

.

The problem is thus to estimate
∑∞
l=n+1

∑N
k=1

∑
|α|=k;iαk=l

ϕ2
α(t,x)
α! .

By Proposition A.1 (see also [30]) the corresponding solution ϕα of (2.6) can be
written as

ϕα(t, x) =
∫ (k)

F (t; sk;x)Eα(sk)dsk.(3.5)

Note that we can also write

Eα(sk) =
k∑
j=1

mik(sj)Eα(ik)(skj ),

where skj denotes the same set (s1, . . . , sk) with omitted sj (e.g., sk1 = (s2, . . . , sk))
and α(ik) is the multiindex with this characteristic set (i1, . . . , ik−1) (cf. (2.7); recall
that r = 1).

This allows us to write (3.5) as

ϕα(t, x) =
k∑
j=1

∫ (k−1) (∫ sj+1

sj−1

F (t; sk;x)mik(sj)dsj
)
Eα(ik)(skj )dskj ,(3.6)

where s0 := 0; sk+1 := t. (We just change the order of integration in the multiple
integral.)

Denote

Mk(s) :=
√

2t
π(k − 1)

sin
(π(k − 1)

t
s
)
, k > 1, 0 ≤ s ≤ t,

and also Fj := ∂F (t;sk;x)
∂sj

. Then, as long as ik = l > 1, we can integrate by parts the
inner integral on the right of (3.6) to get∫ sj+1

sj−1

F (t; sk;x)ml(sj)dsj

= F (t; sk;x)Ml(sj)
∣∣∣sj=sj+1

sj=sj−1

−
∫ sj+1

sj−1

Fj(t, sk, x)Ml(sj)dsj .

For each j, let us rename the remaining variables skj in (3.6) as follows: ti := si, i ≤
j − 1; ti := si+1, i > j − 1, or, symbolically, tk−1 := skj . We will set t0 := 0, tk := t

and denote by tk−1,j , j = 1, . . . , k − 1, the set tk−1 in which tj is repeated twice
(e.g., tk−1,1 = (t1, t1, . . . , tk−1), etc.); also tk−1,0 := (t0, t1, t2, . . . , tk−1), tk−1,k :=
(t1, . . . , tk−1, tk).
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Then

F (t; sk;x)Ml(sj)
∣∣∣sj=sj+1

sj=sj−1

= F (t; tk−1,j ;x)Ml(tj)− F (t; tk−1,j−1;x)Ml(tj−1), j = 1, . . . , k.

As a result, since Ml(t0) = Ml(tk) = 0 (and this is the only place where the choice
of {mk} really makes the difference), all these terms will cancel out as we sum over
j. What remains can be written as∫ (k−1)

fl(t; tk−1;x)Eα(l)(tk−1)dtk−1,

where

fl(t; tk−1;x) = −
∫ t1

0
F1(t; τ, tk−1;x)Ml(τ)dτ

−
k−1∑
j=2

∫ tj

tj−1

Fj(t; . . . , tj−1, τ, tj , . . . ;x)Ml(τ)dτ

−
∫ tk

tk−1

Fk(t; tk−1, τ ;x)Ml(τ)dτ.

Then, since |α(i|α|)| = |α| − 1, α! ≥ α(i|α|)!, we get

∑
|α|=k;iαk=l

ϕ2
α(t, x)
α!

=
∑

|α|=k;iαk=l

( 1√
α!

∫ (k−1)

fl(t; tk−1;x)Eα(l)(tk−1)dtk−1
)2

≤
∑

|β|=k−1

( 1√
β!

∫ (k−1)

fl(t; tk−1;x)Eβ(tk−1)dtk−1
)2
,

and arguments similar to those used in the proof of Proposition A.1 show that the
last expression is equal to ∫ (k−1)

|fl(t; tk−1;x)|2dtk−1.(3.7)

Direct computations yield

Fj(t, sk, x) = Tt−skh . . . Tsj+1−sjhL∗Tsj−sj−1 . . . Ts1p(x)
−Tt−skh . . .L∗Tsj+1−sjhTsj−sj−1 . . . Ts1p(x).

Since L∗ is a continuous operator from H2 to L2, it follows from (3.4) and a
similar inequality for H2-norms that

||Fj(t; sk; ·)||2L2
≤ eCtCk||p||2H2 .

Then the definition of fl and obvious inequalities

(a1 + · · ·+ ak)2 ≤ k(a2
1 + · · ·+ a2

k)
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and (∫ x

0
f(y)dy

)2

≤ x
∫ x

0
(f(y))2dy

imply

||fl(t; tk−1; ·)||2L2
≤ kCkeCt||p||2H2t

∫ t

0
(Ml(s))2ds

≤ kCkt3eCt

(l − 1)2 ||p||
2
H2 ;

so, since
∫ (k−1)

dtk−1 = tk−1/(k − 1)!, (3.7) and the last inequality yield

∑
|α|=k,iαk=l

||ϕ2
α(t, ·)||2L2

α!
≤ eCt||p||2H2t3

kCk

(l − 1)2(k − 1)!
.

Now we collect everything to get

Ẽ||uN (t, ·)− unN (t, ·)||2L2
=
∑
l≥n+1

N∑
k=1

∑
|α|=k;iαk=l

ϕ2
α(t, x)
α!

≤ Ct3eCt
(∑
k≥1

k(Ct)k−1

(k − 1)!

)∑
l≥n

1
l2
≤ C t

3

n
eCt||p||2H2 .

This completes the proof of (3.2) and the theorem as a whole.
Proof of Theorem 2.4. We again prove only the first inequality.
First of all notice that time homogeneity of (2.15) and the special choice of {mi

k}
as mi

k(s) = mk(s− ti−1) imply

ϕiα(∆, x) = ϕiα(ti, x, u(ti−1, ·))

(see (2.15) and (2.19)). Then by Fubini’s theorem and Theorem 2.3 and due to
linearity of system (2.15),

Ẽ||unN (ti, ·)−u(ti, ·)||2L2
=
∑
α∈JnN

1
α!

Ẽ||ϕiα(ti, ·, unN (ti−1, ·)− u(ti−1, ·))||2L2

+
∑
α/∈JnN

1
α!

Ẽ||ϕiα(ti, ·, u(ti−1, ·))||2L2

≤
∑
α∈J

1
α!

Ẽ||ϕiα(ti, ·, unN (ti−1, ·)−u(ti−1, ·))||2L2

+
∑
α/∈JnN

1
α!

Ẽ||ϕiα(ti, ·, u(ti−1, ·))||2L2
.

(3.8)

By Theorem 2.3 and linearity of equation (2.4), we have∑
α∈J

1
α!

Ẽ||ϕiα(ti, ·, unN (ti−1, ·)− u(ti−1, ·))||2L2

= Ẽ||U(ti, x;unN (ti−1, ·)− u(ti−1, ·))||2L2
,

(3.9)
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where U(t, x;unN (ti−1, ·)− u(ti−1, ·)) is the solution of

dv(t, x) = L∗v(t, x)dt+ hl(x)v(t, x)dyl(t), t ∈ (ti−1, ti],
v(ti−1, x) = unN (ti−1, x)− u(ti−1, x).

It is a standard fact that under assumptions (A1) and (A3),

Ẽ||U(ti, ·;unN (ti−1, ·)− u(ti−1, ·))||2L2
≤ eC∆Ẽ||unN (ti−1, ·)− u(ti−1, ·)||2L2

(3.10)

(see, e.g., [34]).
Repeating the same arguments as in the proof of Theorem 2.2, one can check that∑

α/∈JnN

1
α!

Ẽ||ϕiα(ti, ·, u(ti−1, ·))||2L2

≤ CeC∆
( (h0∆)N+1

(N + 1)!
Ẽ||u(ti−1, ·)||2L2

+
∆3

n
Ẽ||u(ti−1, ·)||2H2

)
.

(3.11)

Finally, we use the inequalities

Ẽ||u(ti−1, ·)||2L2
≤ eCT ||p||2L2

(3.12)

and

Ẽ||u(ti−1, ·)||2H2 ≤ eCT ||p||2H2 .(3.13)

These inequalities are similar to (3.10) and can also be found in [34].
If we now denote Ẽ||unN (ti, ·)− u(ti, ·)||2L2

by εi, then, combining (3.8)–(3.13), we
arrive at

εi ≤
(
εi−1 + CeCT

( (h0∆)N+1

(N + 1)!
||p||2L2

+
∆3

n
Ẽ||p||2H2

))
eC∆,

and since ε0 = 0, the statement of the theorem follows from the discrete Gronwall
lemma.

Proof of Theorem 2.5. By construction, unN (ti, ·) ∈ L2(Rd) (P− a.s.), so

unN (ti, x) =
∑
l≥1

ψl(i,N, n)el(x) (P− a.s.)

with some ψl(i,N, n). Then all we have to do is to establish (2.23), which means∑
α∈JnN

∑
k

1√
α!
ψk(i− 1, N, n)qlαkξ

i
α = (unN (ti, ·), el).(3.14)

We will prove this by induction. For i = 0, ψl(0, N, n) = (unN (t0, ·), el) by defini-
tion. Assume that unN (ti−1, x) =

∑
l ψl(i− 1, N, n)el(x) for some i ≥ 1.

The proof of Theorem 2.2 shows that operator g 7→ ϕα(ti, ·, g) is continuous and
linear from L2(Rd) to L2(Rd) for all α ∈ J , where ϕα(ti, ·, g) is the solution of (2.22).
Then ∑

k

ψk(i− 1, N, n)qlαk =
∑
k

ψk(i− 1, N, n)(ϕα(∆, ·, ek), el)

=
(
ϕα

(
∆, ·,

∑
k

ψk(i− 1, N, n)ek
)
, el

)
,
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and by an induction assumption the right-hand side of the above formula is equal to

(ϕα(∆, ·, unN (ti−1, ·)), el).

On the other hand, comparing (2.19) and (2.22) we conclude that

ϕα(∆, x, unN (ti−1, ·)) = ϕiα(∆, x).

As a result,∑
α∈JnN

∑
k

1√
α!
ψk(i− 1, N, n)qlαkξ

i
α =

( ∑
α∈JnN

1√
α!
ϕiα(ti, ·, unN (ti−1, ·))ξiα, el

)
,

and by (2.18) this is equal to (unN (ti, ·), el). This completes the proof of (3.14) and
the theorem as a whole.

Remark 3.1. Analysis of the proof shows that the result (with obvious modifica-
tions) is also true for the exact solution u(ti, x).

Proof of Theorem 2.6. In what follows, Cγ denotes a constant depending on γ and
(maybe) the parameters of the model. As before, C is a constant depending only on
the parametes of the model. Values of C and Cγ may be different in different places.

If d = 1, then

el(x) =
1√

(2π)1/2l!
e−x

2/4Hl(x),(3.15)

where Hl is the lth Hermite polynomial (2.5) [15, 16].
For d > 1, the elements of the basis are

el(x1, . . . , xd) = el1(x1) . . . eld(xd),

where li ≥ 0 and eli are given by (3.15), i = 1, . . . , d [16]. The system {el} is thus
indexed by the set of d-dimensional multiindices l = (l1, . . . , ld) ordered in some
natural way. We will say that l ≤ κ if max1≤i≤d li ≤ κ.

To simplify the presentation, we assume from now on that d = 2. Then l = (l1, l2).
Direct computations show that eli satisfies

Aieli = (li + 1)eli , i = 1, 2,

where operator Ai is defined by

Aif(x) = −∂
2f(x)
∂x2

i

+
2 + x2

i

4
f(x).

As a result, A2A1el(x1, x2) = (l1 + 1)A2(el1(x1)el2(x2)) = (l1 + 1)(l2 + 1)el(x1, x2).
This means that if f and all its derivative decay fast enough, then

|(f, el)| ≤
||A1A2f ||L2

(l1 + 1)(l2 + 1)
≤ · · · ≤ ||(A1A2)γf ||L2

(l1 + 1)γ(l2 + 1)γ
.(3.16)

If Hs(r), s, r ∈ R, is the weighted Sobolev space W s
2 (r,R2) ([34]; see also [16]),

then definition of Ai implies that

||(A1A2)γf ||L2 ≤ Cγ ||f ||H4γ(4γ),
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and (3.16) becomes

|(f, ek)| ≤
Cγ ||f ||H4γ(4γ)

(l1 + 1)γ(l2 + 1)γ
.(3.17)

Introduce the following notation:

|||f ||| :=
√

Ẽ||f ||2L2
,

εi := |||unN (ti, ·)− un,κN (ti, ·)|||,
Πκ, the L2-orthogonal projection on the subspace generated by el, l ≤ κ,
V n,iN (f), the operator f 7→

∑
α∈JnN

ϕα(∆, ·, f)ξiα; f ∈ L2(Ω,Fyti−1
, P̃) and U i(f) :=

V∞,i∞ . Since V n,iN (f) is the L2(Ω, P̃)-orthogonal projection of U i(f) on the subspace
generated by {ξα, α ∈ JnN},

|||V n,iN (f)||| ≤ |||U i(f)|||.(3.18)

Below we will be dealing with a fixed set (n, i,N) and to simplify notation will write
V instead of V n,iN . We also omit the dot in unN (ti, ·), etc.

Since the coefficients of the model are time independent,

unN (ti) = V (unN (ti−1)), un,κN (ti) = ΠκV (un,κN (ti−1)).

The second equality follows from (2.25), the definition of ψl(i,N, n, κ), and the lin-
earity of the map f 7→ ϕα(∆, f). Then by the triangle inequality

εi ≤ |||ΠκV (unN (ti−1))−ΠκV (un,κN (ti−1))|||
+|||unN (ti)−ΠκunN (ti)|||.

(3.19)

By the definition of Πκ,

|||ΠκV (unN (ti−1))−ΠκV (un,κN (ti−1))|||
≤ |||V (unN (ti−1))− V (un,κN (ti−1))||| ≤ eC∆εi−1,

(3.20)

∆ = ti − ti−1, where the last inequality follows from (3.18) and (3.10).
Under the assumptions of the theorem it is easy to show, using the standard

estimates from [25] or [34], that for any i = 1, . . . ,M, unN (ti) ∈ ∩sHs(r) (P− a.s.) for
any r ∈ R. In addition,

∑
α∈JnN

Ẽ||ϕiα(∆)||2Hγ(γ)

α!
≤ eCγT ||p||2Hγ(γ)(3.21)

for any positive integer γ, where ϕiα(∆) = ϕα(∆, u(ti−1)). As a result, from (2.18),
(3.17), (3.21), and the obvious estimates

∑
j>κ 1/(j+1)γ ≤ Cγ/(κ+1)γ−1 ≤ Cγ/κγ−1

(valid for γ > 1), we conclude that

|||unN (ti−1)−ΠκunN (ti−1)|||2 =
∑
α∈JnN

∑
l>κ

Ẽ(ϕiα(∆), el)2

α!

≤ 2
∑
α∈JnN

( ∑
l1>κ,l2≥0

1
(l1 + 1)2γ(l2 + 1)2γ

) Ẽ||ϕiα(∆)||2H4γ(4γ)

α!

≤ Cγe
CγT

κ2γ−1 ||p||
2
H4γ(4γ).

(3.22)
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Combining (3.19), (3.20), and (3.22), we arrive at

εi ≤ eC∆εi−1 +
Cγe

CγT

κγ−1/2 ||p||H4γ(4γ),

which by the discrete Gronwall lemma implies

εi ≤
Cγ(eCγT − 1)

∆ κγ−1/2 ||p||H4γ(4γ).

Since ∆ = T/M and by assumption ||p||H4γ(4γ) ≤ Cγ , (2.26) follows.

4. Comparison with other algorithms and numerical simulations. The
Wiener chaos approximations (2.8), (2.16) can be viewed as higher-order time-discreti-
zation schemes for the Zakai equation.

For N ≥ 2, the rate of convergence of the Wiener chaos approximation unN is
O(∆), where ∆ is the time step (Theorem 2.4). This is similar to the rates of conver-
gence of the splitting-up algorithm (see [26]) and the implicit Euler–Milstein scheme
(see [18]) for the Zakai equation.

In fact, many well-known time-discretization schemes can be obtained as partic-
ular cases of the Wiener chaos approximation.

One of the simplest is the explicit Euler scheme. Take a uniform partition of the
interval [0, T ] with step ∆. Then the explicit Euler approximation ui(x) to the Zakai
equation is obtained from

u0(x) = p(x), ui(x) = (1 + ∆ · L∗)ui−1(x) +
r∑
l=1

hl(x)ui−1(x)(yl(ti)− yl(ti−1)).

(4.1)

Now we will derive the same result from Theorem 2.4. Take n = N = 1. Then
set J1

1 contains r+1 elements, and on each step we need to solve r+1 equations from
(2.19):

∂ϕi0(s, x)
∂s

= L∗ϕi0(s, x), 0 < s ≤ ∆,

ϕi0(0, x) = u1
1(ti−1, x)

(for |α| = 0);

∂ϕil(s, x)
∂s

= L∗ϕil(s, x) +
∑
l
hl(x)√

∆
ϕi0(s, x), 0 < s ≤ ∆,

ϕil(0, x) = 0, l = 1, . . . , r

(for |α| = 1 with αl1 = 1) and u1
1(t0, x) = p(x).

We solve these equations using the explicit Euler scheme; the (approximate) so-
lutions are then given by

ϕi0(∆, x) = (1 + ∆ · L∗)u1
1(ti−1, x),

ϕil(∆, x) = hl(x)
√

∆u1
1(ti−1, x).

By definition,

ξil =
∫ ti

ti−1

m1(s)dyl(s) =
yl(ti)− yl(ti−1)√

∆
,
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and by Theorem 2.4,

u1
1(ti, x) = ϕi0(∆, x) +

r∑
l=1

ϕil(∆, x)ξil ,

and this, due to the above relations, coincides with (4.1).
Another well-known algorithm for solving the Zakai equation (2.4) is the splitting-

up approximation (see Bensoussan, Glowinski, and Rascanu [4]; Florchinger and
LeGland [12]; etc.). For simplicity, we consider the case r = 1. Take a uniform
partition of [0, T ] with step ∆ and let {Tt} be the semigroup generated by operator
L∗ (or some approximation of that semigroup). Then the splitting-up approximation
ui(x) to u(ti, x) is computed from the recursion

u0(x) = p(x), ui(x) = T∆ exp([y(ti)− y(ti−1)]h− 0.5h2∆)ui−1(x).(4.2)

Let us see how the same result can be obtained from Theorem 2.4. Set n = 1, N =
∞. Then the set JnN consists of multiindices α = (k, 0, 0, . . . ); the corresponding ϕα
will be denoted by ϕk. We need to solve the following system:

∂ϕi0(s, x)
∂s

= L∗ϕi0(s, x), 0 < s ≤ ∆,

ϕi0(0, x) = u1
∞(ti−1, x)

(for |α| = 0);

∂ϕik(s, x)
∂s

= L∗ϕik(s, x) + k h(x)√
∆
ϕik−1(s, x), 0 < s ≤ ∆,

ϕik(0, x) = 0, k ≥ 1

(for |α| = k) and u1
∞(t0, x) = p(x). An approximate solution to this system is given

by

ϕik(t, x) = Tt

( th√
∆

)k
u1
∞(ti−1, ·) (x), k ≥ 0.(4.3)

Indeed, for k = 0, this is the exact solution (if Tt is exact); assuming (4.3) for some
k = n− 1 ≥ 0, we get for k = n

ϕin(t, x) = n

∫ t

0
Tt−s

h√
∆
ϕin−1(s, ·)(x)ds

=
n

∆n/2

∫ t

0
Tt−sh

nTsu
1
∞(ti−1, ·)(x)sn−1ds

≈ n

∆n/2Tth
nu1
∞(ti−1, ·)(x)

∫ t

0
sn−1ds

= Tt

( th√
∆

)n
u1
∞(ti−1, ·) (x),

so (4.3) follows by induction. Note that, if Tt(hf)(x) = hTt(f) for all f(x), it would
be an exact solution.

Clearly, (4.3) implies that

ϕik(∆, x) = T∆(h
√

∆)ku1
∞(ti−1, ·) (x), k ≥ 0.
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It is also clear that

ξik =
1√
k!
Hk

(y(ti)− y(ti−1)√
∆

)
,(4.4)

and then by Theorem 2.4

u1
∞(ti, x) = T∆u

1
∞(ti−1, ·)(x) + T∆

∑
k≥1

1
k!

(h
√

∆)kHk

(y(ti)− y(ti−1)√
∆

)
= T∆ exp([y(ti)− y(ti−1)]h− 0.5h2∆)u1

∞(ti, ·)(x).

(The last equality follows from the well-known expansion

exp(ax− 0.5x2) =
∑
k≥0

1
k!
Hk(a)xk

if we set a = (y(ti)− y(ti−1))/
√

∆, x = h
√

∆.)
An alternative form of the splitting-up approximation, namely,

uo(x)=p(x), ui(x)=exp((y(ti)−y(ti−1))h(x)−0.5|h(x)|2∆)T∆ui−1(·)(x) ,
(4.5)

can be obtained by Theorem 2.4 in the same way.
Next, we present an estimate on the number of on-line operations required by S3

and compare it with a corresponding estimate for the splitting-up method.
We introduce the following parameters: Ns, the number of grid points in the

spatial domain; NJ , the number of elements in JnN ; κ, the number of basis functions
el.

Assume that one needs to compute an approximation to the solution of (2.4) at
moment t = Nτ∆.

To do this using S3, one has to find ψl(i,N, n, κ), i = 1, . . . , Nτ , for every
l = 1, . . . , κ, which requires about 2κ2NJNτ flops, and then compute the sum in
(2.25)—κNs more flops. The Wiener integral ξk,l =

∫∆
0 mk(s)dyl(s) reduces to a

one-dimensional Riemann integral by integrating by parts. In addition, computations
of the integrals ξk,l for different k and l can be performed in parallel. As a result,
computational complexity of the Wick polynomials ξα is negligible as compared to
other procedures of S3.

The total number of flops NS3 is then NS3 = 2κ2NJNτ +Nsκ. Given the precision
of the approximation, the number κ2 will grow with d as Cd, where C is some constant
depending on the type of the basis (but not on d), so NS3 ≤ Cd(2NJNτ +Ns).

If the splitting-up algorithm is used, one has to perform Nτ steps of the type
(4.2). Each step requires solving a parabolic equation. To estimate the corresponding
number of operations, assume that a finite element method is used and the resulting
linear system is solved using an iterative procedure without preconditioning. The
matrix of the system is of dimensionNs×Ns, sparse and nonsymmetric (since operator
L∗ is not self-adjoint). Then one iteration requires about CdNs flops, where Cd is a
constant depending on d and on the particular numerical algorithm (see [1]), and
the total number of iterations is proportional to the condition number of the matrix
[36]. For nonsymmetric matrices, the condition number is proportional to at least
(lnNs)d−1 [1, 6]. Thus the total number of operations required to solve the equation on
one step is CdNs(lnNs)d−1. One also has to compute a certain number of exponential
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TABLE 4.1
Comparison of the splitting-up approximation and the S3.

t = 1 (Step 100) t = 2 (Step 200)
Splitting-up S3 Splitting-up S3

Flops 8161001 397431 16321601 788431
N50 32 27 20 16
N75 61 55 47 36
N95 93 90 85 81

functions, but this can be done much faster and we disregard it. The total number of
on-line operations is then Nsp−up = NτCdNs(lnNs)d−1.

As a result,

NS3

Nsp−up
≤ C

Cd

( C

lnNs

)d−1[2NJ
Ns

+
1
Nτ

]
.

Theorem 2.4 shows that for any d the splitting-up algorithm and S3 have errors of
the same order in ∆ already for N = 2, n = 1, so we can take 1 + 2r + r(r − 1)/2 as
the lower bound on NJ , where r is the dimension of the observation process. Since
Ns usually grows with d, we can expect S3 to have an advantage over the splitting-up
algorithm in the following situations:

(1) when the estimation of u is required at one time moment after a long obser-
vation period (Nτ � 1). This is characteristic for some tracking problems.

(2) when the dimension d of the state process is large.
To conclude this section we compare (numerically) the on-line performance of S3

and the splitting-up method for one simple example.
For the test model, both signal and observation processes were chosen one-dimen-

sional with the signal

dx(t) = 0.1 cos(2x(t))dt+ 0.14dw̃(t), x(0) ∼ N (0, 0.1),

and the observations

y(t) =
∫ t

0
arctan(x(s))ds+ 0.04w(t);

obvious modifications were made to reduce the last equation to the standard form
(2.1). We took T = 2 and ∆ = 0.01.

The interval [−1, 1] was taken as the spatial domain; it was discretized uniformly
with step 0.01. Functions sin(πl(x− 1)/2), 1 ≤ l ≤ 15, sampled at the points of the
spatial grid served as the basis {el}.

For the S3, multiindices α with |α| ≤ 8, d(α) ≤ 1 were used. (This corresponds
to the set J1

8 in Theorem 2.4.)
Given the trajectory of the signal process, 100 independent observation trajecto-

ries were simulated; for each trajectory, the filtering density was computed at moments
25∆, 50∆, . . . , 200∆, using both the S3 and the splitting-up method.

The results are presented in Table 4.1. They are borrowed from [13]. In the table,
“flops” stands for the total number of the on-line floating point operations (additions
and multiplications) that it took to compute the filtering density at the given time
moment; N50 (resp., N75, N95) is the number of times the value of the signal process
was in the 50% (resp., 75%, 95%) confidence interval defined by the computed density.
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We see that S3 results in substantial reduction (up to 20 times) in the number
of on-line computations without significant loss of accuracy. The decrease in the
number of on-line computations should be even more conspicuous as the dimension
of the observation process grows.

Appendix. To make the exposition as self-contained as possible, we will prove
Theorem 2.1 and give some other results used in the proof of Theorem 2.2. Most of
the results come from [30].

The summation over repeated indices convention is still in force. We also use the
notations introduced at the beginning of section 3.

To begin with we recall the celebrated Cameron–Martin development (see, e.g.,
[7] and also [16, 19]).

THEOREM A.1 (Cameron–Martin development). Let Bs = (B1
s , . . . , B

r
s), 0 ≤ s ≤

T , be an r-dimensional Brownian motion and η be a measurable functional of the path
{Bs, s ≤ T} such that Eη2 <∞. Let {ci(t)}i≥1 be an arbitrary complete orthonormal
system in L2([0, T ]). For α = {αlk} ∈ J set

ξα(B) =
∏
k,l

Hαlk

( ∫ T
0 ck(s)dBl(s)

)
√
αlk!

.

Then (ξα)α∈J is a CONS in L2(Ω,FBT ,P), where FBT = σ(Bs, s ≤ T ), and

η =
∑
α∈J

E[ηξα(B)]ξα(B),(A.1)

Eη2 =
∑
α∈J

(E[ηξα(B)])2.(A.2)

The series (A.1) converges in L2(Ω,P).
Let {zlk}, l = 1, . . . , r, k = 1, 2, . . . , be a sequence of real numbers such that∑

k,l |zlk|2 < ∞. Set ml
z = mk(s)zlk, where {mk} is a CONS in L2([0, t]). We also

define

Ps(z) = exp
{∫ s

o

ml
z(τ)dyl(τ)− 0.5

∫ s

0

r∑
l=1

|ml
z(τ)|2dτ

}
and denote

∂α

∂zα
:=
∏
k,l

∂α
l
k

(∂zlk)αlk
.

Proof of Theorem 2.1. It is known (see, e.g., [34]) that for every t, x the UFD
u(t, x) is a measurable functional of the observation process y(s), s ≤ t. By Girsanov’s
theorem y(s) is a Brownian motion on the new probability space (Ω,F , P̃) (recall that
dP̃ = ρ(T )dP). Then by Theorem A.1 we have

u(t, x) =
∑
α∈J

Ẽ[u(t, x)ξα(y)]ξα(y),(A.3)

Ẽ|u(t, x)|2 =
∑
α∈J

(Ẽ[u(t, x)ξα(y)])2,(A.4)
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where Ẽ stands for the expectation symbol with respect to measure P̃, and the right-
hand side of (A.3) converges in L2(Ω, P̃).

Let us denote

ϕα(s, x) :=
√
α!Ẽ[u(s, x)ξα(y)].

It is a standard fact (see, e.g., [16]) that

ξα(y) =
1√
α!

∂α

∂zα
Pt(z)|z=0,

and so for every s ≤ t

ϕα(s, x) =
∂α

∂zα
Ẽ[u(s, x)Pt(z)]|z=0 =

∂α

∂zα
Ẽ[u(s, x)Ps(z)]|z=0,

where the second equality follows from the martingale property of Ps(z) on (Ω, P̃).
Now to prove (2.8) and (2.9) it remains to show that the system of functions {ϕα}, α ∈
J , is a solution to the S-system (2.6). For this purpose it will be convenient to treat
the UFD u(t, x) as the solution of the Zakai equation (2.4). Since Ps(z) satisfies the
Ito stochastic differential equation

dPs(z) = ml
z(s)Ps(z)dy

l(s), s ≤ t; P0(z) = 1,(A.5)

by the Ito chain rule

u(t, x)Pt(z) = p(x) +
∫ t

0
(L∗u(s, x)Ps(z) + hl(x)ml

z(z)u(s, x)Ps(z))ds

+
∫ t

0
(hl(x)u(s, x)Ps(z) + u(s, x)ml

z(s)Ps(z))dy
l(s).

Taking expectation Ẽ on both sides of the last equality and setting ϕ(s, x, z) :=
Ẽu(s.x)Ps(z) we obtain

∂ϕ(s, x, z)
∂s

= L∗ϕ(s, x, z) +ml
z(s)h

l(x)ϕ(s, x, z), 0 < s ≤ t,

ϕ(0, x, z) = p(x)1{|α|=0}.
(A.6)

Applying the operator 1√
α!

∂α

∂zα on both sides of (A.6) and setting z = 0 we get
(2.6).

To complete the proof of Theorem 2.1 one needs to prove that the right-hand side
of (2.8) converges also in L1(Ω,P). This follows in a simple way from the convergence
in L2(Ω, P̃) and Cauchy–Schwartz inequality [30].

In what follows we give some additional properties of the solution of (2.6) in the
case r = 1; these properties are used in the proof of Theorem 2.2. Generalizations to
the general case r > 1 are straightforward.

PROPOSITION A.1 (see [30]). Let {ϕα(t, x)}α∈J be a solution of (2.6). Then for
each α with |α| = k

ϕα(t, x) =
∑
σ∈Pk

∫ (k)

F (t; sk;x)miσ(k)(sk) . . .miσ(1)(s1)dsk, k > 1,

ϕα(t, x) =
∫ t

0
Tt−s1hTs1p(x)mi(s1)ds1, k = 1,

ϕα(t, x) = Ttp(x), k = 0,

(A.7)
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where (i1, . . . , ik) is the characteristic set of α (see the beginning of section 3 for
notation).

In addition,

∑
|α|=k

ϕ2
α(t, x)
α!

=
∫ (k)

|F (t; sk;x)|2dsk.(A.8)

Proof. Representation (A.7) is obviously true for |α| = 0. Then the general case
|α| ≥ 1 follows by induction from the variation of parameters formula.

To prove (A.8), first of all note that∑
σ∈Pk

miσ(k)(sk) . . .miσ(1)(s1) =
∑
σ∈Pk

mik(sσ(k)) . . .mi1(sσ(1)).

Indeed, any term on the left corresponding to a given σ0 ∈ Pk is equal to the term
on the right corresponding to σ−1

0 ∈ Pk.
Then we can write (A.7) as

ϕα(t, x) =
∫ (k)

F (t; sk;x)Eα(sk)dsk.

Introducing

G(sk;x) :=
∑
σ∈Pk

Tt−sσ(k)h . . . Tsσ(2)−sσ(1)hTsσ(1)p(x)1sσ(1)<···<sσ(k) ,

we can rewrite it further as

ϕα(t, x) =
1
k!

∫
[0,t]k

G(sk)Eα(sk)dsk.(A.9)

Since for each x G is a symmetric function from L2([0, t]k) and {Eα/
√
α!k!, |α| =

k} form a CONS for the symmetric part of the space, we have

G =
∑
|α|=k

cαEα√
α!k!

with some cα ∈ R. Then from (A.9) ϕ2
α/α! = c2α/k! and so∑

|α|=k

ϕ2
α(t, x)
α!

=
1
k!

∑
|α|=k

c2α =
1
k!

∫
[0,t]k

|G(sk;x)|2dsk

=
1
k!

∫
[0,t]k

∣∣∣ ∑
σ∈Pk

Tt−sσ(k)h . . . Tsσ(2)−sσ(1)hTsσ(1)p(x)1sσ(1)<···<sσ(k)

∣∣∣2dsk
=
∫ (k)

|F (t; sk;x)|2dsk,

which proves (A.6).
Remark A.1. In this article we needed WCE (2.8) only at the final point of the

time interval. However, it is readily checked that, due to Fyt -measurability of UFD
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u(s, x) for all s ≤ t, the statement and the proof of Theorem 2.1 remain virtually
unchanged if, in (2.8) and (2.9), we replace t by any s ≤ t. This implies in particular
that equality (2.16) holds not only for grid points ti but for every s ∈ [ti−1, ti].

Remark A.2. If r = 1 and |α| = k, then, by [17, Theorem 3.1],

ξα =
1√
α!

∫ t

0

∫ sk

0
. . .

∫ s2

0
Eα(sk)dy(s1) . . . dy(sk).

This gives an alternative (but equivalent) form of WCE (2.8) in terms of multiple
Wiener integrals. A similar expansion holds for an arbitrary r.
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Abstract. This paper concerns the structure that can be achieved by feedback in descriptor
systems that lack controllability at infinity. Staircase and double staircase condensed forms obtained
through a sequence of orthogonal state transformations display when and how feedback can be used
to achieve minimal index. Furthermore, they reveal that the modes that are uncontrollable at infinity
have a fixed minimal index that cannot be reduced by feedback. However, this fixed higher index
part of the control system is constrained to be zero in an appropriate coordinate system, provided
the initial conditions are consistent. The remainder is a reduced order system that is controllable at
infinity that can be made to have index one by feedback.

Key words. descriptor system, controllability, numerical methods, impulse
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1. Introduction. Consider the linear, time-invariant descriptor system

Eẋ = Ax+Bu, Ex(0) = Ex0,(1)
y = Cx,

with system matrices E ∈ Cn×n, A ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n, state x = x(t) ∈
Cn, input u = u(t) ∈ Cm, and output y = y(t) ∈ Cp. Descriptor systems arise nat-
urally in circuit design, mechanical multibody systems, and a variety of other appli-
cations [25, 32, 33]. They have recently attracted the attention of many authors to
all aspects of control, including pole placement, filtering, stabilization, controllability,
observability, optimal control problems, invertibility, duality, realization, etc. See, for
example, [6, 14, 13, 27] and the references therein.

In contrast to standard systems in which E = I, continuous inputs to a descriptor
system can give rise to discontinuities or impulsive modes in the state trajectories. A
detailed analysis of solvability aspects of the distributional version of (1) is given in
[14]. A simple example is the single input system determined by

E =
[

0 1
0 0

]
, A =

[
1 0
0 1

]
, B =

[
0
−1

]
,

C =
[

1 0
0 1

]
.

(2)
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The input u(t) induces the state x(t):

x(t) =
[
x1(t)
x2(t)

]
=
[
u̇(t)
u(t)

]
.

If x0 = x(0−) =
[x0

1
x0

2

]
and u is smooth but x0

2 6= u(0+), then x1 will still exhibit a
pulse [u(0+) − x0

2]δ, where δ is the Dirac delta distribution [14]. (If u(0+) = x0
2 but

u̇(0+) 6= x0
1, i.e., x1(0+) 6= x1(0−), then x1 will still be impulse free [14, 40].)

If (1) is controllable and observable at infinity, i.e., rank[E, AS∞, B] = n, where

Im(S∞) = ker(E) and rank

 E
TH∞A
C

 = n,

where Im(T∞) = ker(EH), then the problem of impulses can be avoided (or at least
disguised) by using an appropriate feedback [4, 3]. Here, Im(·) denotes the image (or
range) and ker(·) is the kernel (or null space).

For example, using the feedback control u = FCx + v, where F =
[
−1 0

]
in

(2) gives the closed loop system matrices

E =
[

0 1
0 0

]
, A =

[
1 0
1 1

]
, B =

[
0
−1

]
,

C =
[

1 0
0 1

]
.

(3)

Here the inputs v(t) and the resulting state trajectories exhibit the same impulsive
behavior, and thus x will be impulse free if v is. In addition if v is q-times continuously
differentiable for t > 0, then x is as well.

Notice that the closed loop system matrices (3) have a stronger robustness prop-
erty than the ones in (2). If the closed loop system is perturbed by some unmodeled
dynamic forcing function f(t) giving

Eẋ = (A+BFC)x+Bv + f(t),

then the resulting state x(t) still has as many derivatives as
[f(t)
v(t)

]
, even if x(0−) = x0

is not consistent. Using distributions, we get

x1 = −x2 + v − f2,

x2 = (δ(1) + δ)∗
−1

[x2(0−)δ + v + f1 − f2].

In time domain, if v and f are functions, we have

x1(t) = −x2(t) + v(t)− f2(t),

x2(t) = e−tx2(0−) +
∫ t

0
e−(t−s)[v(s) + f1(s)− f2(s)]ds.

Hence, x =
[
x1(t)
x2(t)

]
has indeed as many derivatives for t > 0 as

[
f
v

]
, even if x(0−) 6=

x(0+).
We call this property index-one robustness because it is shared by regular de-

scriptor systems of index at most one. (Regularity and index are defined in the next



464 RALPH BYERS, TON GEERTS, AND VOLKER MEHRMANN

section.) Even smooth perturbations f in (2) will in general give rise to extra pulses
in the solution, whereas this cannot happen in systems that are index-one robust. It
is implicit in the results of [4, 3] that systems that are controllable and observable at
infinity can be made to be index-one robust by feedback.

In several applications including mechanical multibody systems [19, 29, 28, 33,
34] the assumptions of controllability and/or observability at infinity do not hold.
Consider for example the planar model of a three-link manipulator introduced in [19],

E =

 I 0 0
0 M0 0
0 0 0

 , A =

 0 I 0
−K0 −D0 FT0
F0 0 0

 , B =

 0
S0
0

 .
This system is not controllable at infinity. With output y =

[
C1 C2 0

]
it is not

observable at infinity either. Due to the special structure of this mechanical multibody
system, however, the part of the system that is characterized by the uncontrollable
modes at infinity can be neglected. The remaining system can be made index-one
robust [28]. If this simplification is not carried out, then undesired phenomena as in
the following example may occur. Let

E =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , A = I, B =


0
−1

0
0

 , C = I.(4)

In this case, the first two components of the state obey (2), while the second two com-
ponents of the state are confined to be zero (assuming consistent initial conditions).
Choosing an appropriate feedback causes the first two components of the state to obey
(3) while the second two remain zero. However, regardless of what feedback is chosen,
the closed loop system does not have index-one robustness. If the forcing function
f(t) =

[
f1(t), f2(t), f3(t), f4(t)

]T were added to the closed loop system, then
the third state component is x3(t) = −f3(t) − ḟ4. In the third component of the
state, we will obtain an impulse of the form (−f4(0+) − x04)δ, where x04 = x4(0−).
Lack of differentiability in f4(t) may translate into lack of continuity in x3. A jump
discontinuity in f(t) may cause an impulse.

This paper concerns the properties that can be achieved without controllability
and observability at infinity, including when and how feedback can be used to achieve
minimal index by numerically stable methods. All these properties are displayed by
the Kronecker-like feedback canonical form introduced in [24]. Extracting this canon-
ical form may, however, require ill-conditioned transformations which are sensitive
to rounding errors. For this reason, following the approaches of [4, 3, 37, 36], we
derive condensed staircase and double staircase forms through a sequence of unitary
state space transformations. They display when and how feedback can be used to
achieve minimal index. They also reveal that (4) is typical of systems which lack
controllability at infinity. The parts of the state which are uncontrollable at infinity
are constrained to be zero in an appropriate coordinate system, provided the initial
conditions are consistent and may be decoupled from the rest of the system. This
leaves a reduced order system that is controllable at infinity to which the work of [4, 3]
applies. A similar argument applies to parts of the state which are not observable
at infinity. By choosing an appropriate basis, these parts can be decoupled from the
rest, and since they cannot be observed, they can be removed without changing the
dynamics of the system.
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2. Definitions and lemmas. The control system (1) and the associated matrix
pencil λE − A are said to be regular if the characteristic polynomial det(λE − A) is
not identically zero. If the pencil λE−A is not regular, then the system of differential
algebraic equations

Eẋ = Ax+ f(t)(5)

is underdetermined in the sense that consistent initial conditions do not uniquely
determine solutions [12]. If the pencil λE − A is regular, then the roots of the char-
acteristic polynomial are the finite eigenvalues of the pencil and include the poles of
the transfer function of (1). In addition, if E is singular, the pencil is said to have in-
finite eigenvalues which may be identified as the zero eigenvalues of the inverse pencil
E − λA.

The eigenstructure of regular pencils is displayed by the Weierstraß canonical
form (WCF).

THEOREM 2.1 (Weierstraß canonical form [12]). If λE − A is regular, then there
exist nonsingular matrices X = [Xr, X∞] ∈ Cn×n and Y = [Yr, Y∞] ∈ Cn×n for
which

Y HEX =
[
Y Hr
Y H∞

]
E
[
Xr X∞

]
=
[
I 0
0 N

]
(6)

and

Y HAX =
[
Y Hr
Y H∞

]
A
[
Xr X∞

]
=
[
J 0
0 I

]
,(7)

where J is a matrix in Jordan form whose diagonal elements are the finite eigenval-
ues and N is a nilpotent matrix also in Jordan form. J and N are unique up to
permutation of Jordan blocks.

The index of the pencil λE − A and of the descriptor system (1) is the index
of nilpotency of the nilpotent block N in the WCF; i.e., the index of the pencil is
µ if and only if Nµ−1 6= 0 and Nµ = 0. By convention, if E is nonsingular, then
the pencil is said to have index zero. We denote the index of the pencil λE − A by
index(λE−A). If E is a nilpotent matrix and A nonsingular, then we write index(E)
instead of index(λE −A).

Most of the information displayed by the WCF is also easily obtained from trian-
gular pencils or block triangular pencils. It often simplifies derivations to use trian-
gular or block triangular pencils. Furthermore, numerical algorithms that transform
pencils to triangular form are usually more reliable than those that reduce to the
WCF (6)–(7) [7, 8, 20].

LEMMA 2.2. The eigenvalues of the block triangular pencil

λ

[
E11 E12
0 E22

]
−
[
A11 A12
0 A22

]
(8)

are the union of the eigenvalues of the diagonal blocks

λE11 −A11,(9)
λE22 −A22.(10)

In particular, (8) is regular if and only if (9) and (10) are regular.
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Moreover, if (9) and (10) have disjoint eigenvalues, then the Jordan and nilpotent
parts of the WCF of (8) are the union of the Jordan and nilpotent parts of the WCFs
of (9) and (10).

The next lemma gives a useful characterization of regular, index-one pencils.
LEMMA 2.3 (see [21]). The pencil λE −A is regular and has index at most one if

and only if

rank
([

E
TH∞A

])
= rank

(
E + T∞T

H
∞A

)
= n,

where the columns of T∞ span the null space of EH . Equivalently, the pencil λE −A
is regular and of index less than or equal to one if and only if

rank ([E, AS∞]) = rank
(
E +AS∞S

H
∞
)

= n,

where the columns of S∞ span the null space of E.
Similar statements for arbitrary linear systems are given in [14].
If λE −A is regular, then in terms of the WCF (6)–(7), the solutions of (5) take

the form

x(t) = Xrz1(t) +X∞z2(t),

where

z1(t) = etJz1(0) +
∫ t

0
e(t−s)JY Hr f(s) ds,

z2(t) = −
µ−1∑
i=0

di

dti
(N iY H∞ f(t)).(11)

From this we see that in order to have a smooth solution x(t), the initial condition
x(0−) must be a member of the set of admissible initial conditions{

Xrz1 +X∞z2

∣∣∣∣∣ z1 ∈ Cr, z2 = −
µ−1∑
i=0

(N iY H∞ f
(i)(0))

}
.

It may be worthwhile to use feedback to minimize the index of a control sys-
tem even when it cannot be reduced to index one in order to minimize the effect of
discontinuities in the derivatives of unmodeled or perturbing forcing functions. One
of the goals of this study is to determine what is the minimal index that can be
achieved and to determine a feedback that achieves it. It turns out that according
to the linear model (1), the modes that cannot be made to be index one by feedback
are constrained to be zero in an appropriate coordinate system, provided the initial
conditions are consistent. The remaining active modes may be made to have index
one.

We now introduce some further definitions and notation. A system of the form
(1) is regularizable by state feedback, if there exists a feedback F ∈ Cm×n such that
the pencil λE − (A + BF ) is regular [3, 31]. Similarly, it is regularizable by output
feedback if there exists G ∈ Cm×p such that the pencil λE− (A+BGC) is regular. A
system (1) is controllable at infinity or impulse controllable if rank[E, AS∞, B] = n,
where Im(S∞) = ker(E). It is called observable at infinity or impulse observable if

rank

 E
TH∞A
C

 = n,
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where Im(T∞) = ker(EH) [5, 40]. In geometric terms, controllability at infinity is
equivalent to

Im(E) +A ker(E) + Im(B) = Cn.

(See [5, 14, 17, 40].)
A regular descriptor system with index of at most one is a fortiori controllable

at infinity. Systems that are controllable at infinity admit a state feedback control
which makes the closed loop system be regular and have index of at most one [4,
3]. Moreover, the system transformations may be chosen to minimize the effects of
rounding error [3, 10].

Let P ∈ Cn×n, Q ∈ Cn×n, R ∈ Cm×m, and S ∈ Cp×p be nonsingular. If

Ẽ = PEQÃ = PAQB̃ = PBR,(12)
C̃ = SCQ,

then the descriptor system

Ẽ ˙̃x = Ãx̃+ B̃ũ,

ỹ = C̃x̃

is equivalent to (1) in the sense that

x = Qx̃,

u = Rũ,

y = Sỹ.

The transformation (12) is a generalized state transformation. Such transformations
establish an equivalence relation among descriptor systems. Controllability at infinity,
observability at infinity, regularity, eigenvalues, and index are preserved by generalized
state transformations. Canonical forms under these and other state transformations
are discussed in [24, 31]. However, these canonical forms are not easily computed, be-
cause modeling errors, measurement errors, or rounding errors may sometimes change
them completely. In the next section we use a sequence of state transformations via
unitary matrices to bring Ẽ, Ã, B̃, and C̃ into a staircase-like form in the style of
[4, 3, 37, 36]. Although our canonical forms display less information than those of
[24, 31], they are less sensitive to data perturbations and rounding errors.

The proofs of the staircase-like form in this paper are constructive and form the
basis of a numerically stable algorithm for computing the factorization. The basic
operations are row compressions and column compressions. A row compression of a
matrix M ∈ Ch×k of rank r is the factorization

UM =
[ r k − r

r M1 M2
h− r 0 0

]
,

where U ∈ Ch×h is unitary and
[
M1, M2

]
has full row rank r. The unitary matrix

U may be obtained from aQR factorization or the singular value decomposition (SVD)
of M or a combination of both [18]. If necessary, U may be chosen so that M1 is upper
triangular. Excellent software for computing the SVD and QR factorizations is widely
available [1, 9, 35]. A column compression is a row compression of MH .
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3. Reduction to condensed form. In this section we construct a unitary
state transformation that reduces the system matrices of (1) to a staircase and double
staircase form similar to those constructed in [2, 4, 3, 37, 36, 38, 39]. A feedback
that minimizes the index can be constructed from this staircase form. In addition,
the staircase form reveals which modes are uncontrollable at infinity and cannot be
reduced to index one by feedback. According to the linear model (1) these modes are
not excited and play no role in the system dynamics.

In what follows, it is convenient to allow partitioned matrices which in some
special cases may have submatrices with no rows or no columns. In this case, of
course, those submatrices are vacuous and simply do not appear. By convention,
“0−by−0 matrices” are nonsingular.

LEMMA 3.1. There exists a state transformation of (1) by unitary matrices P ∈
Cn×n and Q ∈ Cn×n such that

PEQ =


r s q

r E11 0 E13
s 0 0 0
q 0 0 0

,(13)

PAQ =


r s q

r A11 A12 A13
s A21 A22 A23
q 0 0 A33

,(14)

PB =


m

r B1
s B2
q 0

,(15)

CQ =
[ r s q

p C1 C2 C3
]
,(16)

where r = rank(E), s = rank(B2), and q = n− r − s.
Proof. The proof is by construction. First choose a row compression of the

augmented matrix
[
E, B, A

]
,

P
[
E,B,A

]
=


r s q m r s q

r Ẽ11 Ẽ12 Ẽ13 B1 Ã11 Ã12 Ã13
s 0 0 0 B2 Ã21 Ã22 Ã23
q 0 0 0 0 Ã31 Ã32 Ã33

,(17)

where r = rank(E), s = rank(B2), and q = n − r − s. If the column space of B is
contained in the column space of E, then B2 is vacuous and s = 0. Now, choose a
column compression of the permuted submatrix

[ q r s

q Ã33 Ã31 Ã32
r Ẽ13 Ẽ11 Ẽ12

]
to get

[ q r s

q Ã33 Ã31 Ã32
r Ẽ13 Ẽ11 Ẽ12

]
Q̃ =

[ q r s

q A33 0 0
r E13 E11 0

]
.
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If K ∈ Cn×n is the permutation matrix

K =


q r s

r 0 I 0
s 0 0 I
q I 0 0

,
then P as in (17) and Q = KQ̃KT satisfy the statement of the lemma.

Note that E11 in (13) is not necessarily of full row rank. To achieve this we apply
the lemma recursively to construct the following staircase-like condensed form, which
generalizes the staircase form in [37] to three and four matrices.

THEOREM 3.2. There exists a state transformation of (1) by unitary matrices
P ∈ Cn×n and Q ∈ Cn×n which puts the system pencil in the form

PEQ =


t1 t2 t3

t1 E11 0 E13
t2 0 0 E23
t3 0 0 E33

,(18)

PAQ =


t1 t2 t3

t1 A11 A12 A13
t2 A21 A22 A23
t3 0 0 A33

,(19)

PB =


m

t1 B1
t2 B2
t3 0

,(20)

CQ =
[ t1 t2 t3

p C1 C2 C3
]
,(21)

where
(1) rank(E11) = t1,
(2) rank(B2) = t2,
(3) A33 is block upper triangular, and
(4) E33 is block upper triangular, has zero diagonal blocks, and is partitioned

conformally with A33.
Proof. The proof uses Lemma 3.1 inductively. Initially, apply Lemma 3.1 to get

unitary matrices P (1) and Q(1) such that

P (1)EQ(1) =

 E
(1)
11 0 E

(1)
13

0 0 0
0 0 0

 ,
P (1)AQ(1) =

 A
(1)
11 A

(1)
12 A

(1)
13

A
(1)
21 A

(1)
22 A

(1)
23

0 0 A
(1)
33

 ,
P (1)B =

 B
(1)
1

B
(1)
2
0

 ,
CQ(1) =

[
C

(1)
1 C

(1)
2 C

(1)
3

]
.
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For the inductive step, assume that we have constructed a unitary state transfor-
mation P (k) and Q(k) such that the transformed system is in the form of (18)–(21)
with the exception that rank(E(k)

11 ) < t1. Apply Lemma 3.1 to the subsystem

Ẽ =
[
E

(k)
11 0
0 0

]
, Ã =

[
A

(k)
11 A

(k)
12

A
(k)
21 A

(k)
22

]
, B̃ =

[
B

(k)
1

B
(k)
2

]
,

C̃ =
[
C

(k)
1 C

(k)
2

]
to obtain a state transformation of the subsystem P̃ and Q̃ which brings the subsystem
into the form of (13)–(16). Embed this transformation by defining

P (k+1) =
[
P̃ 0
0 I

]
P (k),

Q(k+1) = Q(k)
[
Q̃ 0
0 I

]
.

If the (1, 1) block of P (k+1)EQ(k+1) is nonsingular, then the pencil is in the required
form. Otherwise, Lemma 3.1 may be applied again to further refine the block struc-
ture. Each application of Lemma 3.1 reduces t1 by at least one. After at most n steps
either the (1, 1) block of the transformed E is nonsingular or t1 = 0. In either case,
the pencil reaches the required form in at most n steps.

Theorem 3.2 essentially separates the uncontrollable infinite modes from the oth-
ers. We have the following corollary.

COROLLARY 3.3. In Theorem 3.2, the subsystem obtained from the first two block
rows and columns of (18)–(21),[

E11 0
0 0

] [
ẋ1
ẋ2

]
=
[
A11 A12
A21 A22

] [
x1
x2

]
+
[
B1
B2

]
u,

is controllable at infinity.
Proof. The proof follows directly from the definition.
To understand the output feedback case, it is helpful to condense (18)–(21) some-

what further to a double staircase form that decouples both the uncontrollable at
infinity modes and the unobservable at infinity modes. (See also [6].)

THEOREM 3.4. There exists a state transformation of (1) by unitary matrices
P̃ ∈ Cn×n and Q̃ ∈ Cn×n which puts the system pencil in the form

P̃EQ̃ =


t̃1 t̃2 t̃3 t̃4

t̃1 Ẽ11 0 0 Ẽ14
t̃2 0 0 0 Ẽ24
t̃3 Ẽ31 Ẽ32 Ẽ33 Ẽ34
t̃4 0 0 0 Ẽ44

,(22)

P̃AQ̃ =


t̃1 t̃2 t̃3 t̃4

t̃1 Ã11 Ã12 0 Ã14
t̃2 Ã21 Ã22 0 Ã24
t̃3 Ã31 Ã32 Ã33 Ã34
t̃4 0 0 0 Ã44

,(23)



SYSTEMS WITHOUT CONTROLLABILITY AT INFINITY 471

P̃B =


m

t̃1 B̃1
t̃2 B̃2
t̃3 B̃3
t̃4 0

,(24)

CQ̃ =
[ t̃1 t̃2 t̃3 t̃4

p C̃1 C̃2 0 C̃4
]
,(25)

with the following properties.
(1) rank(Ẽ11) = t̃1;
(2) rank(C̃2) = t̃2;
(3) Ã33 is block lower triangular;
(4) Ẽ33 is block lower triangular with zero diagonal blocks, partitioned confor-

mally with Ã33;
(5) Ã44 is block upper triangular;
(6) Ẽ44 is block upper triangular with zero diagonal blocks, partitioned confor-

mally with Ã44;
(7) the subsystem obtained by deleting the last block row and column in (22)–(25)

is controllable at infinity.
Proof. Apply Theorem 3.2 to system (1) to get the state transformations P1

and Q1 and partitioning of (18)–(21). Apply Theorem 3.2 again to the transposed
subsystem given by

Ê =

 [ t1 t2
t1 E11 0
t2 0 0

]
H

,

Â =

 [ t1 t2
t1 A11 A12
t2 A21 A22

]
H

,

B̂ =

 [ t1 t2
p C1 C2

]
H

,

Ĉ =

 [ m
t1 B1
t2 B2

]
H

to get orthogonal matrices P̂ , Q̂ ∈ C(t1+t2)×(t1+t2) that reduce the subsystem to the
form of (18)–(21). Define P2 and Q2 by

P2 =
[
Q̂H 0
0 It3

]
,

Q2 =
[
P̂H 0
0 It3

]
.
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The state transformation given by P̃ = P2P1 and Q̃ = Q1Q2 achieves the condensed
form of (22)–(25).

Properties (1)–(4) come directly from Theorem 3.2 applied to the subsystem.
Properties (5) and (6) also follow from Theorem 3.2 because when the second state
transformation P2, Q2 is applied to (18)–(21), E33 and A33 are unchanged; i.e., Ã44
in (23) is just A33 in (19) and Ẽ44 in (22) is just E33 in (19). Property (7) follows
because the first three block rows and columns in (22)–(25) are a state transformation
by P̂ and Q̂ of the first two block rows and columns of (18)–(21).

We have the following corollary.
COROLLARY 3.5. The subsystem obtained by deleting the last two block rows and

columns from (22)–(25) is controllable and observable at infinity.
Proof. It is clear that the subsystem is observable at infinity by construction. By

Theorem 3.4, we have that the subsystem given by


t̃1 t̃2 t̃3

t̃1 Ẽ11 0 0
t̃2 0 0 0
t̃3 Ẽ31 Ẽ32 Ẽ33

,

t̃1 t̃2 t̃3

t̃1 Ã11 Ã12 0
t̃2 Ã21 Ã22 0
t̃3 Ã31 Ã32 Ã33

,

m

t̃1 B̃1
t̃2 B̃2
t̃3 B̃3

,
[ t̃1 t̃2 t̃3

p C̃1 C̃2 0
]

is controllable at infinity. This directly implies that the subsystem given by

[ t̃1 t̃2

t̃1 Ẽ11 0
t̃2 0 0

]
,

[ t̃1 t̃2

t̃1 Ã11 Ã12
t̃2 Ã21 Ã22

]
,

[ m
t̃1 B̃1
t̃2 B̃2

]
,

[ t̃1 t̃2
p C̃1 C̃2

]
is also controllable at infinity.

4. Regularization and index minimization by state feedback. The fol-
lowing theorem answers the question of when state feedback may be used to make a
descriptor system regular.

THEOREM 4.1. If system (1) is in the form of Theorem 3.2, then the system is
regularizable by state feedback; i.e., there exists a state feedback gain matrix F ∈ Cm×n

such that the pencil λE − (A+BF ) is regular if and only if A33 is nonsingular.
Proof. Let F ∈ Cm×n be partitioned as

F =
[ t1 t2 t3

m F1 F2 F3
]
.

The pencil λE − (A+BF ) is block upper triangular, so its characteristic polynomial
is

det(λE − (A+BF ))

= det
(
λ

[
E11 0
0 0

]
−
([

A11 +B1F1 A12 +B1F2
A21 +B2F1 A22 +B2F2

]))
det(λE33 −A33)

= det
(
λ

[
E11 0
0 0

]
−
([

A11 +B1F1 A12 +B1F2
A21 +B2F1 A22 +B2F2

]))
det(−A33).

(26)
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The last equality follows because λE33−A33 is block triangular with diagonal blocks
that are independent of λE33.

If A33 is singular, then (26) is zero independent of λ, and the pencil is not regular.
Suppose that A33 is nonsingular. Because B2 has full row rank, there exists a

matrix F2 ∈ Cm×t2 such that A22 +B2F2 is nonsingular. Let

F =
[ t1 t2 t3

m 0 F2 0
]
.

The first factor on the right-hand side of (26) is the characteristic polynomial of the
subpencil

λ

[
E11 0
0 0

]
−
([

A11 A12
A21 A22

]
+
[
B1
B2

] [
0 F2

])
.(27)

Since A22 + B2F2 is nonsingular, the pencil in (27) is equivalent to a pencil of the
form

λ

[
E11 0
0 0

]
−
[
Ã11 Ã12
0 A22 +B2F2

]
.(28)

It then follows from the nonsingularity of E11 and Lemma 2.3 that (28) is regular
and has index one. Hence, neither factor in (26) is identically zero and the pencil is
regular.

The next theorem shows what index can be achieved by state feedback.
THEOREM 4.2. If system (1) is in the form of Theorem 3.2 and A33 is nonsingular,

then there exists a state feedback gain matrix F ∈ Cm×n such that λE − (A+BF ) is
regular and

index(λE − (A+BF )) = index

 [ t2 t3
t2 0 E23
t3 0 E33

] .

Proof. Choose F1 ∈ Cm×t1 so that A21 + B2F1 = 0 and choose F2 ∈ Cm×t2 so
that A22 +B2F2 is nonsingular. Both F1 and F2 exist, because B2 has full row rank.
Define F ∈ Cm×n by

F =
[ t1 t2 t3

m F1 F2 0
]
.

The pencil λE − (A+BF ) is block upper triangular with diagonal blocks

λE11 − (A11 +B1F1),(29)

λ

[
0 E23
0 E33

]
−
[
A22 +B2F2 A32

0 A33

]
.(30)

Pencil (29) has only finite eigenvalues because E11 is nonsingular. Pencil (30) has
only infinite eigenvalues, because the left-hand side is nilpotent and the right-hand
side is nonsingular. Lemma 2.2 implies that

index(λE − (A+BF )) = index
(
λ

[
0 E23
0 E33

]
−
[
A22 +B2F2 A32

0 A33

])
= index

([
0 E23
0 E33

])
.

Here we have used properties 3 and 4 of Theorem 3.2.
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The index of nilpotency of (
[0 E23
0 E33

]
) can be displayed by applying another stair-

case algorithm.
The Kronecker-like feedback canonical form of [24] also displays this minimal

index, but this canonical form is not suitable for numerical computation.
An obvious consequence of Theorem 4.2 is that the index of nilpotency of E33

differs from the minimal obtainable index by at most one.
THEOREM 4.3. Suppose that system (1) is in the form of Theorem 3.2. If F ∈

Cm×n is a state feedback gain matrix for which λE − (A+BF ) is regular, then

index(E33) + 1 ≥ index(λE − (A+BF )) ≥ index(E33).

Proof. The proof is an immediate consequence of Theorem 4.2.
If (1) is in the form of Theorem 3.2, then the subsystem E33ż = A33z represents

the uncontrollable infinite eigenvalue modes. Being uncontrollable, as Theorem 4.3
shows, there is nothing that feedback can do to lower index(λE33 − A33). However,
the next theorem shows that, regardless of initial condition, z(t) = 0 for t > 0 and
z(0+) = 0.

If z(0−) = 0, then z is impulse free and constrained to be zero. Hence, the
uncontrollable, infinite modes are not involved in the dynamics! To prove this result
we use the trivial fact that if N ∈ Cn×n is nilpotent, then the only smooth function
x = x(t) ∈ Cn satisfying Nẋ = x is x = 0. It follows that any distributional solution
of Nẋ = x is purely impulsive and for t > 0, x(t) = 0. The distributional solution
is impulse free if and only if Nx(0−) = 0. Moreover, x(0−) = x(0+) if and only if
x(0−) = x(0+) = 0.

THEOREM 4.4. If the descriptor system in the form of Theorem 3.2, E11 0 E13
0 0 E23
0 0 E33

 ẋ1
ẋ2
ẋ3

 =

 A11 A12 A13
A21 A22 A23
0 0 A33

 x1
x2
x3

+

 B1
B2
0

u,(31)

is regularizable, then for t > 0, x3(t) = 0 independent of the control u. If E33x3(0−) =
0, then x3 is impulse free.

Proof. The third equation of (31) is E33ẋ3 = A33x3. Theorem 4.1 implies that
A33 is nonsingular, so this is equivalent to A−1

33 E33ẋ3 = x3 and A−1
33 E33x3(0−) = 0.

By hypothesis, properties 3 and 4 of Theorem 3.2 hold, so A33 and E33 are block
upper triangular and A−1

33 E33 is nilpotent. The theorem follows.
It follows from Theorems 4.1, 4.2, and 4.4 that a regularizable system decouples

into the uncontrollable infinite modes and the subsystem[
E11 0
0 0

] [
ẋ1
ẋ2

]
=
[
A11 A12
A21 A22

] [
x1
x2

]
+
[
B1
B2

]
u.(32)

The infinite uncontrollable modes play no role in the system dynamics. With con-
sistent initial conditions, they are constrained to be zero. Only the modes involved
in (32) are active. The subsystem (32) is controllable at infinity, so the results of
[4, 3] apply. It follows that those modes constrained to be zero may be eliminated
from the system. In this way, all regularizable descriptor systems may be made to
be controllable at infinity. Hence, the methods designed for linear quadratic control,
pole assignment, stabilization, etc., under the assumption of controllability at infinity,
may be used [27].

A similar result in the context of linear quadratic control of a particular mechan-
ical multibody system was obtained by explicit transformation in [28].
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5. Geometric proofs. In this section we will provide geometric proofs for the
results in the previous sections.

Let Is denote the largest subspace L that satisfies

L ⊂ A(−1)(EL+ Im(B)).

For a discussion of this space see [13, 23, 26]. The subspace Is = A(−1)(EL+Im(B)) is
called the consistent subspace, since every point in Is is consistent; i.e., for every point
x0 ∈ Is there exists a smooth input u(t) and an associated smooth state trajectory
x(t) of system (1) satisfying x(0) = x0 [13].

Let X1 be such that X1⊕(Is∩ker(E)) = Is; let X3 be such that Is⊕X3 = Cn; and
let Y2,Y3,Y4 be spaces chosen such that EIs ⊕Y2 = EIs + Im(B), (EIs + Im(B))⊕
Y3 = EIs + Im(B) + Im(A), and (EIs + Im(B) + Im(A))⊕ Y4 = Cn. Choose U2 so
that B(−1)(EIs) ⊕ U2 = Cm. With respect to suitably chosen bases, (1) transforms
to 

E11 0 E13
0 0 E23
0 0 E33
0 0 E43

 ẋ(t) =


A11 A12 A13
A21 A22 A23
0 0 A33
0 0 0

x(t) +


B11 B12
0 B22
0 0
0 0

u(t).(33)

By construction, ker(B22) = 0, B22 is right invertible, E11 is invertible, and

M(λ) =

 λ

 E23
E33
E43

−
 A23
A33
0

 ,
 B22

0
0

 
has full column rank for all λ ∈ C [15, Appendix, Lemma 1]. In addition, we can
show that A33 is square and therefore nonsingular.

LEMMA 5.1. If the system (1) is in the form (33), then A33 is invertible.
Proof. We have that AIs = (EIs + Im(B)) ∩ Im(A). (See, for example, [16].) In

addition [30]

dim(AIs) = dim(Is)− dim(Is ∩ ker(A))
= dim(Is)− dim(ker(A))
= dim(Is)− n+ rank(A).

Thus,

dim(EIs + Im(B)) + dim(Im(A))
= dim(EIs + Im(B) + Im(A)) + dim(EIs + Im(B)) ∩ Im(A))
= dim(EIs + Im(B) + Im(A)) + dim(Is)− n+ dim(Im(A))

and dim(EIs + Im(B) + Im(A)) = n − dim(Is). Therefore, A33 is square and hence
invertible.

The next step is to relate the condensed form (33) to the regularizability of the
system. We have the following well-known result [11, 31].

THEOREM 5.2. The following are equivalent.
(i) EIs + Im(B) + Im(A) = Cn.

(ii)
[
λE −A, B

]
is right invertible as a rational matrix.

(iii) The system (1) is regularizable by proportional state feedback.
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Proof. For completeness we give a short proof of this result. Statement (i) implies
that Y4 = {0}. Hence, the last block row in (33) does not occur. From Lemma 5.1,
it follows that A33 is invertible. By choosing feedback u = Fx+ v with

F =
[

0 0 0
−B−1

22 A21 B−1
22 (I −A22) 0

]
,(34)

we obtain the closed loop system

Eẋ = (A+BF )x+Bv(35)

for which
[
λE − (A+BF ), B

]
is right invertible. This implies (ii).

Conversely (ii) implies that M(λ) is right invertible. Hence, Y4 = {0} and we
have (i).

Statement (i) implies statement (iii) because the feedback (34) makes the pencil
(35) regular. The converse is clear. If (i) did not hold, then for every feedback F , the
pencil of the closed loop system would be singular, which contradicts (iii).

From this we see that for regularizable systems the condensed form (18)–(21),
which is constructible in a numerically stable way, coincides with the form (33).

6. Derivative and output feedback. In this section we give a few results
about derivative and output feedback.

If we use state derivative feedback, the minimal attainable index is index(E33) in
(18).

THEOREM 6.1. If (1) is in the form of Theorem 3.2 and A33 is nonsingular, then
then there exists a derivative feedback gain matrix G ∈ Cm×n such that the pencil
λ(E +BG)−A is regular with t1 + t2 finite eigenvalues and index(λ(E +BG)−A =
index(E33).

Proof. Let G2 ∈ Cm×t2 be chosen so that B2G2 is nonsingular. Define G by

G =
[ t1 t2 t3

m 0 G2 0
]
.

Then

λ(E +BG)−A = λ

 E11 B1G2 E13
0 B2G2 E23
0 0 E33

−
 A11 A12 A13
A21 A22 A23
0 0 A33

 .
This is a block triangular pencil with diagonal blocks

λ

[
E11 B1G2
0 B2G2

]
−
[
A11 A12
A21 A22

]
,

λE33 −A33.

By Lemma 2.2, the infinite eigenvalues are the eigenvalues of λE33 −A33 and

index(λ(E +BG)−A) = index(λE33 −A33)
= index(E33).

The conclusion of Theorem 6.1 also holds if both state and derivative feedback
are used.

An extra hypothesis is needed to obtain the same results in the output feedback
case.
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THEOREM 6.2. If equation (1) is in the form of Theorem 3.2, then the system is
regularizable by output feedback; i.e., there exists an output feedback gain matrix F
such that λE − (A+BFC) is regular and

index(λE − (A+BFC)) = index

 [ t2 t3
t2 0 E23
t3 0 E33

]
if and only if A33 is nonsingular and

[
A22
C2

]
has full column rank.

Proof. Since B2 has full row rank there is a matrix F such that A22 +B2FC2 is
nonsingular if and only if

[
A22
C2

]
has full column rank. Applying the argument in the

proof of Theorem 4.1, the result follows.
It follows immediately from Theorem 3.4 that the part of the system which is

unobservable at infinity can be completely decoupled from the rest of the system.
This part of the system can be removed because, according to the linear model, it
does not influence the dynamics of the system and the possible impulsive behavior
cannot be observed.

7. Discrete time systems and linear quadratic control. So far, we have
discussed continuous time systems only. It should be noted that Lemma 3.1, Corollary
3.5, and Theorems 3.2, 3.4, 4.1, 4.2, 4.3, and 6.1 are independent of the origin of
the matrices and thus also hold for discrete time systems. There exists an easily
formulated, analogous discrete time version of Theorem 4.4.

The results apply to linear quadratic optimal control problems of the following
form:

minimize the cost functional

J(x, u) :=
∫ t1

t0

(xTQx+ uTRu) dt

subject to the descriptor system (1).
After transforming to the reduced form of Theorem 3.2, we may just omit the compo-
nents which are uncontrollable at infinity from the cost functional and the constraint
to obtain a reduced order problem which is controllable at infinity. For such systems,
the methods described in [27] apply. For a detailed analysis of general linear quadratic
optimal control problems for descriptor systems see [15].

8. Conclusions. According to the linear model (1), problems associated with
uncontrollable infinite modes in a regularizable system do not occur. With consistent
initial conditions, they are constrained to be zero. The only active dynamics in (1)
are controllable at infinity. The active dynamics may be made to be index one by
state feedback and the entire system may be treated as if it were controllable at
infinity as in [4, 3]. However, the resulting system is not index-one robust. If there is
an unmodeled forcing function that excites modes that are uncontrollable at infinity,
then it may generate impulses.1

1The situation is similar to one described in a nonsense verse [22]:
Yesterday, upon the stair
I saw a man who wasn’t there.
He wasn’t there again today.
Gee, I wish he’d go away!

The uncontrollable high-index infinite modes are the man upon the stair. He is not there, but he is
disturbing nevertheless.
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[34] B. SIMEON, F. GRUPP, C. FÜHRER, AND P. RENTROP, A Nonlinear Truck Model and Its
Treatment as a Multibody System, Tech. report, Mathematisches Institut, Technische Uni-
versität München, 1992.

[35] B. T. SMITH, J. M. BOYLE, J. J. DONGARRA, B. S. GARBOW, Y. IKEBE, V. C. KLEMA,
AND C. B. MOLER, Matrix Eigensystem Routines—EISPACK Guide, Lecture Notes in
Computer Science, Springer-Verlag, Berlin, New York, 1976.

[36] P. M. VAN DOOREN, The computation of Kronecker’s canonical form of a singular pencil,
Linear Algebra Appl., 27 (1979), pp. 103–140.

[37] P. M. VAN DOOREN, The generalized eigenstructure problem in linear system theory, IEEE
Trans. Automat. Control, 6 (1981), pp. 111–129.

[38] P. M. VAN DOOREN, A. EMAMI-NAEINI, AND L. SILVERMAN, Stable extraction of the Kro-
necker structure of pencils, in Proc. 17th IEEE Conf. on Decision and Control, San Diego,
IEEE, New York, 1979, pp. 521–524.

[39] P. M. VAN DOOREN AND M. VERHAEGEN, On the use of unitary state-space transformations,
Contemp. Math., 47 (1985), pp. 447–463.
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Abstract. We will study linear time-invariant delay-differential systems from the behavioral
point of view as it was introduced for dynamical systems by Willems [Dynam. Report., 2 (1989),
pp. 171–269]. A ring H which lies between R[s, z, z−1] and R(s)[z, z−1] will be presented, whose
elements can be interpreted as a generalized version of delay-differential operators on C∞(R,R).
In this framework, a behavior is the kernel of such an operator. Using the ring H, an algebraic
characterization of inclusion, respectively, equality of the behaviors under consideration, is given.
Finally, controllability of the behaviors is characterized in terms of the rank of the associated matrices.
In the case of time-delay state-space systems this criterion becomes the known Hautus criterion for
spectral controllability.
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1. Introduction. The purpose of this paper is an approach to linear time-
invariant delay-differential systems with algebraic methods. In contrast to the work
of, e.g., Morse [16], Sontag [21], and more recently Habets [8], we will not consider
these systems as systems over (polynomial) rings. Instead we will use the behavioral
viewpoint for dynamical systems as it was introduced by Willems [22]: our objects will
be behaviors, which are defined by linear time-invariant delay-differential equations
over the time axis R (for the definition of a behavior, see [22]). In the scalar case such
equations are given by

L∑
j=0

N∑
i=0

pijw
(i)(t− j) = 0, t ∈ R,(1.1)

where pij ∈ R and w(i) denotes the ith derivative of the function w. In our approach
only functions w in C∞(R,R) will be considered. In the multivariable case, linear
subspaces B of C∞(R,Rm) are investigated that are the solution space of a system
of delay-differential equations, i.e., for which there exist n, L, N ∈ N, and matrices
Pij ∈ Rn×m so that

B =

w ∈ C∞(R,Rm)|
L∑
j=0

N∑
i=0

Pijw
(i)(t− j) = 0, t ∈ R

 .(1.2)

The behavior in (1.2) can be written as B = ker P̃ , where P =
∑L
j=0

∑N
i=0 Pijs

izj ∈
R[s, z]n×m and P̃ denotes the associated delay-differential operator from C∞(R,Rm)
to C∞(R,Rn); i.e., P̃w(t) =

∑L
j=0

∑N
i=0 Pijw

(i)(t − j). Note that (1.2) includes
ordinary differential equations (P ∈ R[s]) as well as the case of a pure delay equation
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(P ∈ R[z]). Since the shift yields an isomorphism on C∞(R,R), it is algebraically
more adequate to consider the polynomial ring R[s, z, z−1] instead of R[s, z].

Although the space B is in general infinite dimensional, via polynomial matrices
it is given a description with finitely many parameters. This leads to the possibility
of studying special aspects of this type of equations with mainly algebraic methods.

The polynomial approach to time-delay systems was already introduced by Kamen
[10]. He considered delay-differential operators as special convolution operators in the
distributional sense and presented, within this set-up, procedures for the solution of
input/output equations and for the internal description (state-space realizations) of
such equations.

In the present paper our starting point will be the solution spaces (or behaviors)
ker P̃ as given in (1.2). We will not investigate the question as to which subspaces of
C∞(R,Rm) occur as such behaviors. The main ideas for an answer to this question
are contained in the thesis of Soethoudt [20]. He characterizes behaviors which have
an AR-representation (that is, a representation via autoregressive equations) in the
purely differential sense. Instead of attacking this (nevertheless interesting) problem
of the existence of polynomial representations, we will consider the question of unique-
ness: for what pairs of matrices P, Q over R[s, z, z−1] does ker P̃ = ker Q̃ hold? It
should be obvious that an answer to this question is necessary for the development
of a “behavioral theory” using polynomial (AR-) representations for time-delay sys-
tems. Simple examples show that the above problem cannot be satisfactorily solved
with the help of the ring R[s, z, z−1] or even R(s)[z, z−1]. The appropriate domain in
order to translate relations between behaviors into relations between the associated
polynomial matrices lies between these two rings and turns out to be

H = {p ∈ R(s)[z, z−1] | p(s, e−s) is an entire function}.

In the preliminaries an interpretation of the elements of H as operators on C∞(R,R)
is given. It generalizes the interpretation of polynomials in R[s, z, z−1] as delay-
differential operators. Therefore we will refer to these associated operators as delay-
differential operators as well.

A similar construction occurred already in the work of Kamen, Khargonekar, and
Tannenbaum [11], where the ring Θ generated by the entire functions (1− e−seσ)(s−
σ)−1, σ ∈ C, and their derivatives is considered. One can easily see that the ring
Θ[s, z] in [11, p. 841] is contained in H. Kamen, Khargonekar, and Tannenbaum also
gave an interpretation of the functions (1− e−seσ)(s − σ)−1 as transfer functions of
distributed-delay systems.

One main tool in the present approach is the fact that the division properties in
the ring H correspond to the division properties in the ring of entire functions, i.e.,
for p, q ∈ H it holds: p divides q in H iff q(s, e−s)p(s, e−s)−1 is an entire function. For
the associated delay-differential equations this has as a consequence that it suffices to
consider fundamental solutions, i.e., functions of the type w(t) = tkeλt instead of the
full solution space. This fits with a result of Malgrange [14, p. 318], who proved that
the space of all linear combinations of fundamental solutions of a delay-differential
equation lies dense in the full space of smooth solutions (with respect to the topology
of uniform convergence of all derivatives on all compact subsets in R).

Another important result in our framework is the fact that H is a so-called ele-
mentary divisor ring. This means first that H is a Bézout domain, i.e., every finitely
generated ideal in H is principal. Second, every matrix over H can be brought into
diagonal form via multiplication with unimodular matrices from the left and from
the right. With this type of normal form (which cannot be achieved, e.g., over the
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ring R[s, z, z−1]), the results for multivariable delay-differential equations can easily
be derived from the scalar case.

With this information about the ring H, which is derived in section 3, we will
show in the fourth section how the relations between behaviors as given in (1.2) can
be put into correspondence with the division relations of the associated matrices over
H. In particular, we prove for P ∈ Hn×m, Q ∈ Hr×m: ker P̃ ⊆ ker Q̃ iff Q = AP for
some A ∈ Hn×r, which yields ker P̃ = ker Q̃ iff A is unimodular over H.

Finally, in section 5, controllability of delay-differential systems is considered. In
this set-up it is natural to use the notion of controllability for behaviors as introduced
by Willems [22]. Using a diagonal form for matrices P ∈ Hn×m, it will be proven that
ker P̃ is controllable iff rkCP (s, e−s) = rkHP for all s ∈ C. Recently, this character-
ization has been obtained independently for the same situation of delay-differential
equations by Rocha and Willems [19]. The given criterion is a generalization of the
Hautus test for time-delay state-space systems which characterizes the so-called spec-
tral controllability ; see, e.g., Pandolfi [18], Bhat and Koivo [2], Manitius and Triggiani
[15], and Kamen, Kargonekar, and Tannenbaum [11].

2. Preliminaries. In this section we present the framework for our study of
delay-differential equations and introduce the notations. Starting with the interpre-
tation of polynomials in R[s, z, z−1] as delay-differential operators on C∞(R,R), we
first have a glance at the fundamental solutions of the associated equations. This
leads us to the corresponding characteristic function and its zeros. Simple examples
suggest the introduction of a larger space H of operators which are closely related
to the delay-differential operators. Finally we state the surjectivity of the operators
under consideration.

DEFINITION 2.1.
(1) Put R := R[s, z, z−1] and let C∞(Rm) := C∞(R,Rm) for m ≥ 1.
(2) For m ≥ 1 and t0 ∈ R define the shift σt0 : C∞(Rm) → C∞(Rm) by

(σt0w)(t) = w(t− t0) for w ∈ C∞(Rm). In particular, let σ := σ1.
(3) With P =

∑L
j=l
∑N
i=0 Pijs

izj ∈ Rn×m associate the following delay-differ-
ential operator:

P̃ : C∞(Rm) −→ C∞(Rn),

w 7−→
L∑
j=l

N∑
i=0

Pijσ
jw(i),

(2.1)

where w(i) = di

dtiw.
(4) For p =

∑N
i=0 pis

i ∈ R[s] and w ∈ C∞([a, b],R) =: C∞[a, b] we use analo-
gously the notion p̃(w)(t) =

∑N
i=0 piw

(i)(t), hence p̃(w) ∈ C∞[a, b].
Note that part (3) indeed makes sense, since on C∞(R) the operators σ and d

dt
commute.

In this context, the solution space in C∞(R) of the scalar equation (1.1) is just
ker p̃, a linear shift-invariant subspace of C∞(R); i.e., σt(ker p̃) = ker p̃ for all t ∈ R.
In this section we will only study the scalar equation (1.1). We will come to the
multivariable situation in section 4.

Remark 2.2. The map

T : R −→ EndR(C∞(R)),
p 7−→ p̃
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is an injective algebra homomorphism. The homomorphism properties p̃+ q = p̃ +
q̃, p̃q = p̃ ◦ q̃ can easily be verified. To prove injectivity of T , let p =

∑
i,j pijs

izj ∈ R
and assume that p̃ = 0. Then for arbitrary λ ∈ C and w ∈ C∞(R) with w(t) = eλt

we obtain 0 = p̃(w)(t) =
∑
i,j pijλ

ieλ(t−j) =
∑
i,j pijλ

ie−λjeλt for all t ∈ R, hence∑
i,j pijλ

ie−λj = 0. Since this holds true for all λ ∈ C, the linear independence of the
functions λ 7→ λieλj yields in fact pij = 0 for all i, j.

One question we want to attack in this paper is how to characterize the inclusion
ker p̃ ⊆ ker q̃ in terms of the elements p, q ∈ R. Let us first have a look at a simple
example.

Example 2.3.
(1) For p, q ∈ R[s] ⊂ R the theory of ordinary differential equations leads to

ker p̃ ⊆ ker q̃ iff p divides q in R[s], hence iff p divides q in R.
(2) It is easily seen that

ker s̃ = {constants} ⊂ ker z̃ − 1 = {w ∈ C∞(R)|w is of period 1}.

But s does not divide z − 1 in R. Of course, s divides z − 1 in R(s)[z, z−1].
The above shows that the division properties of the two rings R and R(s)[z, z−1]

are not useful in the algebraic description of ker p̃ ⊆ ker q̃.
As with ordinary differential equations, more information about the solution space

of (1.1) is obtainable by studying fundamental solutions w(t) = tkeλt, where k ∈ N0
and λ ∈ C. In the present case this leads to the characteristic function of (1.1), which
will be an entire function. We will need the concept of a characteristic function in a
slightly more general situation, which is handled in the next definition. In the special
case of part (2) of the definition, these functions are often called quasi polynomials
(see, e.g., [7, p. 63]) or exponential polynomials (see [1, Chap. 12]). In parts (3) and
(4) we introduce some notations useful for what follows.

DEFINITION 2.4.
(1) For p =

∑L
j=l pjz

j ∈ R(s)[z, z−1] with pj ∈ R(s) and pl 6= 0 6= pL define the
degree of p to be degz p := L− l. Further, let

p∗(s) :=
L∑
j=l

pj(s)e−js for all s ∈ C not being a pole of pj , j = l, . . . , L.

Then p∗ ∈M(C), the set of all meromorphic functions on C.
(2) If p =

∑L
j=l
∑N
i=0 pijs

izj ∈ R, then p∗ ∈ H(C), the set of entire functions.
p∗ is called the characteristic function of the delay-differential equation

L∑
j=l

N∑
i=0

pijw
(i)(t− j) = 0, t ∈ R.

(3) For f ∈M(C) and α ∈ C denote the order of the zero (resp., pole) α of f by

µα(f) := min{k ∈ Z | (s− α)−kf holomorphic and not zero around α }.

(4) For f1, . . . , fr ∈M(C) let

V(f1, . . . , fr) = {α ∈ C |µα(fi) ≥ 1, i = 1, . . . , r}

be the set of common zeros of f1, . . . , fr.
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Note that we interpret here s as an algebraic indeterminate over R as well as a
complex variable.

Remark 2.5. The map R(s)[z, z−1] → M(C), p 7→ p∗ is an injective ring homo-
morphism. The injectivity follows, as in Remark 2.2, from the linear independence of
the functions s 7→ skejs.

With this notation, we get from the theory of delay-differential equations for
p ∈ R and for the function w ∈ C∞(R,C), w(t) = tkeλt,

w ∈ ker p̃⇐⇒ µλ(p∗) > k(2.2)

(see [1, pp. 54–55] for a special case). This can also be proven directly by showing
that p̃w(t) = dk

dsk
(p∗(s)est)|s=λ. As with ordinary differential equations it is true that

with w ∈ C∞(R,C) also Rew, Imw ∈ C∞(R) are in ker p̃.
The foregoing consideration indicates that a first knowledge about the dimension

of ker p̃ can be obtained by calculating the number of zeros of the associated char-
acteristic function p∗. Using the theory of entire functions this can be done in the
following sense.

PROPOSITION 2.6. Let p ∈ R. Then

#V(p∗) <∞ ⇐⇒ p = zkφ for some k ∈ Z and φ ∈ R[s]\{0}.
This result can be proven by use of some facts about the order of entire functions,

as they can be found, e.g., in [9]. Since we are not aware of an explicit proof in the
literature, we present here a short sketch of how to establish the result with the help
of [9].

Proof. “⇐” is obvious.
“⇒” Let p =

∑L
j=l pjz

j ∈ R with pj ∈ R[s]. If #V(p∗) < ∞, then p∗ = aeg

with a ∈ C[s] and g ∈ H(C). Suppose that g is not a constant. From [9, Lemmas
2.7.3 and 2.7.4 and Theorem 4.2.1] it follows that ord(p∗) = ord(

∑L
j=l pje

−j·) ≤ 1,
where the order ord(f) of an entire function f is defined as in [9, Definition 1.11.1].
But then [9, Lemmas 2.7.3 and 2.7.5] implies g ∈ C[s], and moreover g(s) = αs + β

with some α, β ∈ C. Hence p∗(s) =
∑L
j=l pj(s)e

−js = a(s)eβeαs. Now, from the
independence of the functions skeαs, we get α ∈ {−L, . . . ,−l} and pj = 0 for j 6= −α.
Thus p = p−αz

α.
Note the simple fact that for p = zkφ ∈ R with φ ∈ R[s] and k ∈ Z one has ker p̃ =

ker φ̃, which is just the solution space of an ordinary linear homogeneous differential
equation with constant coefficients over R. Hence, as an immediate consequence of
(2.2) and Proposition 2.6 we get

#V(p∗) =∞ ⇐⇒ dim ker p̃ =∞
for arbitrary p ∈ R. In other words, ker p̃ is finite dimensional iff p̃ is a (shifted)
ordinary differential operator. Moreover, for q ∈ R and φ ∈ R[s]\{0} the finite
dimensionality of ker φ̃ together with (2.2) implies the crucial fact that

q∗

φ
∈ H(C)⇐⇒ ker φ̃ ⊆ ker q̃.(2.3)

This easy equivalence is central for our framework, as it allows us to introduce a bigger
class H of linear operators on C∞(R) which are closely related to delay-differential
operators. More precisely, for p = qφ−1 ∈ R(s)[z, z−1], where p∗ = q∗φ−1 ∈ H(C), it
is possible to define p̃ = q̃ ◦ φ̃−1.

We introduce precisely these objects in the following definition and show their
well-definedness as well as some elementary properties in Remark 2.8.
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DEFINITION 2.7.
(1) Put H := {p ∈ R(s)[z, z−1] | p∗ ∈ H(C)}.
(2) For p = qφ−1 ∈ H with q ∈ R and φ ∈ R[s]\{0} define the operator

p̃ : C∞(R) −→ C∞(R),

w 7−→ p̃(w) := q̃(v), where v ∈ C∞(R) with φ̃(v) = w.

We call p̃ a delay-differential operator also if p ∈ H.
Remark 2.8.
(1) From Remark 2.5 it follows that H is a commutative domain.
(2) One has to establish the well-definedness of the map p̃. First, for fixed q ∈ R

and φ ∈ R[s] with qφ−1 ∈ H the well-definedness of the map w 7→ q̃(v), where
v ∈ C∞(R) satisfies φ̃(v) = w, is a consequence of (2.3). Next, to see that the map
p̃ does not depend on the special representation of p, let p = qφ−1 = q′ψ−1 ∈ H.
For w ∈ C∞(R) put φ̃(v) = w = ψ̃(v′) and φ̃(h) = v′ with suitable v, v′, h ∈ C∞(R).
Then ψ̃(h)− v ∈ ker φ̃ ⊆ ker q̃ and therefore q̃(v) = q̃(ψ̃(h)) = q̃′(φ̃(h)) = q̃′(v′).

(3) It can easily be verified that p̃ is an endomorphism on C∞(R). Moreover, the
ring H can be viewed as a subring of EndR(C∞(R)). To see this, we need to prove
that the map p 7→ p̃ is an injective ring homomorphism. For this, let p = aφ−1, q =
bψ−1 ∈ H with a, b ∈ R, and φ, ψ ∈ R[s]. For w ∈ C∞(R) define v ∈ C∞(R) such that
φ̃ψ(v) = w. Then p̃+ q(w) = ˜(aψ + bφ)(v) = ãψ(v) + b̃φ(v) = p̃(w) + q̃(w) and from
ψ̃(φ̃(v)) = w it follows p̃ ◦ q̃(w) = p̃(̃b(φ̃(v))) = p̃ ◦ φ̃(̃b(v)) = ã ◦ b̃(v) = ãb(v) = p̃q(w),
where we used the homomorphism properties of T as defined in Remark 2.2. The
injectivity of p 7→ p̃ follows from the same remark.

(4) A special case of the homomorphism property of p 7→ p̃ is the following: from
p = qφ−1 ∈ H one has obviously pφ = q = φp in the ring H. The definition of p̃ tells
us that q̃(v) = p̃ ◦ φ̃(v) for all v ∈ C∞(R) and q̃(w) = q̃(φ̃(v)) = φ̃(q̃(v)) = φ̃ ◦ p̃(w)
for v, w ∈ C∞(R) satisfying φ̃(v) = w. Hence it is indeed q̃ = p̃ ◦ φ̃ = φ̃ ◦ p̃.

This shows that Definition 2.7(2) represents the unique extension of the algebra
homomorphism T given in Remark 2.2 from R to the larger ring H.

Let us illustrate the general delay-differential operator by the following example,
which is in some sense the simplest nonordinary delay-differential operator.

Example 2.9. Let p := (z − 1)s−1 ∈ R(s)[z]. Then p∗(s) = (e−s − 1)s−1 is an
entire function; thus p ∈ H. The associated operator is given by

p̃ : C∞(R) −→ C∞(R),
w 7−→ σ(v)− v, where v(1) = w.

Obviously, ker ˜(z − 1) = {v ∈ C∞(R)|v is of period 1}; therefore,

ker p̃ = {w ∈ C∞(R)|∃v ∈ C∞(R) of period 1 and with v(1) = w},

which is a proper subspace of ker ˜(z − 1). Note that in the above case we have p̃(w) =∫ t−1
t

w(τ)dτ , which indicates that H includes not only point-delay operators but also
distributed-delay operators.

As we will see in section 4, it is just the ringH which gives an algebraic description
of the relation between behaviors of the type ker p̃ ⊂ C∞(R): the lattice of kernels
of operators p̃ corresponds to the lattice of principal ideals in H. Therefore, for the
development of this correspondence it makes sense to consider also delay-differential
operators in the generalized version of Definition 2.7. The ring H will be investigated
in the next section.
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We close the preliminaries with the following proposition.
PROPOSITION 2.10. Let p ∈ H\{0}. Then
(1) The map p̃ ∈ EndR(C∞(R)) is surjective.
(2) Let degz p = L > 0. If w ∈ C∞(R) satisfies p̃(w) = 0 and w|[k,k+L] = 0 for

some k ∈ Z, then w = 0.
The result of part (1) can be found in [6, p. 697]. Since [6] uses rather difficult

methods to also prove surjectivity for other (more general) operators, we present a
complete and elementary proof of both parts of the proposition in the appendix. Of
course, the surjectivity of p̃ is well known if p ∈ R[s].

3. Properties of the ring H. Two facts about the ring H will be important
for what follows. One is that the division structure of H corresponds to the division
properties of the associated entire functions in the full ringH(C). This is made precise
in Proposition 3.1(5). The other main fact aboutH is its advantageous ring structure.
In Theorem 3.2 we will show that H is a Bézout ring, i.e., that every finitely generated
ideal is principal. Stated in other words, finitely many elements p1, . . . , pr ∈ H have
a greatest common divisor d ∈ H which fulfills a Bézout equation d =

∑r
i=1 aipi

over H. Furthermore, with Lemma 3.4 it will be proven that H is an elementary
divisor ring, which means that matrices over H can be brought into diagonal form via
multiplication with unimodular matrices from both sides. This is a very useful fact
in order to handle the matrix case of delay-differential equations. One should note
that both properties hold true also for the ring H(C) (see, e.g., [17, Thm. 5, p. 136
and Thm. 8, p. 141]), but not for R.

PROPOSITION 3.1.
(1) If p ∈ H and α ∈ C, then p∗(ᾱ) = p∗(α), where ¯ denotes complex conjuga-

tion.
(2) Define H× := {p ∈ H | p is a unit }. Then H× = {azk | a ∈ R\{0}, k ∈ Z} =

{p ∈ H |V(p∗) = ∅}.
(3) H is not a unique factorization domain and not a Noetherian ring.
(4) For p ∈ H the following statements are equivalent: (i) p is irreducible, (ii)

p = φzk for some irreducible φ ∈ R[s] and k ∈ Z, and (iii) p is prime.
(5) Let p, q ∈ H. Then p∗ | q∗ in H(C)⇐⇒ p | q in H.
(6) For p, q ∈ H, not both zero, there exists a greatest common divisor (gcd)

d ∈ H\{0} of p, q which is unique up to multiplication by units in H. Moreover,
V(d∗) = V(p∗, q∗). In particular, p and q are coprime in H iff V(p∗, q∗) = ∅.

(7) Let p = ad, q = bd ∈ H\{0}, with d being a gcd of p, q and with a, b ∈ H.
Then c := abd ∈ H is a least common multiple (lcm) of p, q. An lcm is unique up to
multiplication by units in H.

Proof. (1) This is obvious.
(2) Let p ∈ H×. Then p is also a unit in R(s)[z, z−1]. Thus p = azk for some

a ∈ R(s) and k ∈ Z. Since p∗(s) = a(s)e−ks and (p−1)∗(s) = a(s)−1eks are both
entire functions, it follows that a ∈ R\{0}. The last equality holds with Proposition
2.6.

(3) Consider z − 1 ∈ H. Let (αi)i∈N ⊂ C\{0} so that e−αi − 1 = 0, αi 6= αj for
i 6= j and α2i+1 = α2i for i ∈ N. Then pi := (s − α2i)(s − α2i+1) ∈ R[s] satisfies
z− 1 = z−1

pi
pi = z−1

Πni=1pi

∏n
i=1 pi, and these are factorizations of z− 1 in H. Moreover,

the chain
z−1
p1
H ⊆ z−1

p1p2
H ⊆ z−1

p1p2p3
H ⊆ · · ·

of ideals in H will not become stationary.
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(4) “(i) ⇒ (ii)” Let p ∈ H be irreducible. According to part (2) there exists
α ∈ C with p∗(α) = 0. If α ∈ R, then p = p

s−α (s − α) is a factorization in H;
thus p

s−α has to be a unit in H. By (2) this yields p = azk(s − α) for some nonzero
a ∈ R and k ∈ Z, which gives (ii). If α 6∈ R, then with part (1) one gets analogously
p = azk(s− α)(s− ᾱ).

“(ii)⇒ (iii)” Let φ ∈ R[s] be irreducible. Then φ is prime in R[s] and of the form
φ = s− α or φ = (s− α)(s− ᾱ). Suppose p = φzk and p | fg in H for some f, g ∈ H.
Then (fg)∗p∗

−1
= (f∗g∗)p∗

−1 ∈ H(C) and both cases for φ imply by use of (1): p | f
or p | g.

“(iii) ⇒ (i)” holds true in every commutative domain.
(5) The direction “⇐” holds since p 7→ p∗ is a ring homomorphism. “⇒” Let

q∗(p∗)−1 ∈ H(C). In the field R(s, z) we can write qp−1 = ab−1 with coprime a, b ∈
R[s, z]. The theorem of Bézout for algebraic curves implies

#{(λ, µ) ∈ C2 | a(λ, µ) = 0 = b(λ, µ)} <∞.

Since a∗(b∗)−1 = q∗(p∗)−1 ∈ H(C) yields V(b∗) ⊆ V(a∗), we get #V(b∗) < ∞. By
use of Proposition 2.6, this leads to b = φzk for some φ ∈ R[s]\{0} and k ∈ Z. Hence
qp−1 = az−kφ−1 ∈ H.

(6) Since H ⊂ R(s)[z, z−1], there exists a gcd d ∈ R(s)[z, z−1] of p, q. Thus
p = fd, q = gd with coprime f, g ∈ R(s)[z, z−1].

In order to derive from this suitable factorizations in H, we shall shift the poles
of f∗ or g∗ and the common zeros of f∗ and g∗ within multiplicities into the factor
d. To do so, let

P = {α ∈ C|µα(f∗) < 0 or µα(g∗) < 0}

be the set of poles of f or g. Then we have #P <∞ as well as #V(f∗, g∗) <∞ and
P ∩ V(f∗, g∗) = ∅. Put

φ :=
∏
α∈P

(s− α)max{−µα(f∗),−µα(g∗)} ∈ R[s],

ψ :=
∏

α∈V(f∗,g∗)

(s− α)min{µα(f∗),µα(g∗)} ∈ R[s].

This leads to

p =
fφ

ψ

ψ

φ
d, q =

gφ

ψ

ψ

φ
d where

fφ

ψ
,
gφ

ψ
∈ H and V

((
fφ

ψ

)∗
,

(
gφ

ψ

)∗)
= ∅.(3.1)

Moreover, ψ
φ d ∈ H, for if α ∈ C was a pole of (ψφ d)∗, then it would follow that α ∈

V(( fφψ )∗, ( gφψ )∗) since p∗, q∗ ∈ H(C). Hence we have a factorization p = f ′d′, q = g′d′

in H, and V((f ′)∗, (g′)∗) = ∅ implies that (d′)∗ is a gcd of p∗, q∗ in H(C).
To show that d′ is a gcd of p, q in H, let p = f ′′d′′, q = g′′d′′ with f ′′, g′′, d′′ ∈ H.

Then p∗ = (f ′′)∗(d′′)∗, q∗ = (g′′)∗(d′′)∗, and thus (d′′)∗ | (d′)∗ in H(C). By part (5)
this yields ad′′ = d′ for some a ∈ H and therefore d′ is a gcd of p, q in H. This
argument also implies the uniqueness property claimed for a gcd in H.

The equality V(d∗) = V(p∗, q∗) follows from (3.1), and the last claim of part (6)
is an easy consequence of (2).

(7) Obviously p | c and q | c in H. Let c′ ∈ H be another common multiple of
p and q; i.e., let there exist v, w ∈ H with adv = c′ = bdw. Therefore av = bw
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and a∗v∗ = b∗w∗ in H(C). This yields w∗ = (a∗v∗)(b∗)−1 ∈ H(C), and moreover
v∗(b∗)−1 ∈ H(C), since by (6) a∗ and b∗ have no common zeros. From (5) we get the
existence of b′ ∈ H with bb′ = v and thus c′ = adbb′ = cb′.

Now we can prove the following.
THEOREM 3.2. H is a Bézout ring, i.e., every finitely generated ideal is a principal

ideal.
Proof. We need to show that for p, q ∈ H and a gcd d ∈ H of p, q there exist

a, b ∈ H so that d = ap+bq, for this implies pH+qH = dH. Without loss of generality
we can assume d = 1; hence by Proposition 3.1(6) we see that V(p∗, q∗) = ∅.

Step 1. The elements p, q are coprime also in R(s)[z, z−1]. To see this, let
uv = p, uw = q with u, v, w ∈ R(s)[z, z−1]; then let u = ũφ−1, v = ṽφ−1, p =
p̃φ−1, q = q̃φ−1 with ũ, ṽ, p̃, q̃ ∈ R, φ ∈ R[s]. Then ũṽ = pφ and degz ũ ≥ 1 would
imply that all irreducible factors ui of ũ with degz ui ≥ 1 divide p̃ in R. Similarly ui | q̃
in R and thus u would be a nontrivial common factor of p, q in H, which contradicts
the coprimeness of p, q in H. Thus u ∈ R(s) and is therefore a unit in R(s)[z, z−1].

Hence there exists a Bézout equation in R(s)[z, z−1]; i.e.,

1 = ap+ bq with suitable a, b ∈ R(s)[z, z−1].(3.2)

Step 2. Next we will vary the coefficients a, b of (3.2) in such a way that we get a
Bézout equation for p and q with coefficients in H. More precisely, we will construct
a rational function v ∈ R(s) so that

b+ vp, a− vq ∈ H.(3.3)

Then (3.2) will imply the Bézout equation 1 = (a− vq)p+ (b+ vp)q in H.
Step 2a. In order to achieve (3.3) we have to get rid of the poles of a∗ and b∗.

Therefore, write

a =
ã

ψ
, b =

b̃

φ
with ã, b̃ ∈ H, ψ, φ ∈ R[s] and V(ã∗, ψ) = V (̃b∗, φ) = ∅.(3.4)

Let h ∈ R[s] be a gcd of ψ, φ and ψ = hψ1, φ = hφ1 with ψ1, φ1 ∈ R[s]. Then (3.2)
becomes

hψ1φ1 = φ1ãp+ ψ1b̃q,(3.5)

where all elements are inH. From ψ1(hφ1− b̃q) = φ1ãp and V(ψ1, φ1) = ∅ = V(ã∗, ψ1)
it results with Proposition 3.1(5) ψ1 | p in H. So let p = p1ψ1 with p1 ∈ H. Similarly,
it is q = q1φ1 with q1 ∈ H. Thus after cancellation of ψ1φ1, (3.5) reads

h = ãp1 + b̃q1.(3.6)

Step 2b. Put v = f
hψ1φ1

∈ R(s), where f ∈ R[s] still has to be specified. Then
(3.3) implies that we have to find f ∈ R[s] such that (b+ vp)∗ =

( b̃

hφ1
+

f

hφ1ψ1
p1ψ1

)∗ =
(̃b+ fp1)∗

hφ1
∈ H(C),

(a− vq)∗ =
(
ã
hψ1
− f

hφ1ψ1
q1φ1

)∗ = (ã−fq1)∗

hψ1
∈ H(C).

(3.7)

Hence we have to look for a polynomial f ∈ R[s] which places the zeros of b̃∗ + fp∗1
and ã∗ − fq∗1 appropriately at the same time. In the rest of the proof we will show
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that these are two interpolation problems for f which can in fact be solved with the
same polynomial f ∈ R[s].

First, for α ∈ V(φ1h) one has p∗1(α) 6= 0, since (i) If α ∈ V(φ1) ⊂ V(q∗), then
α 6∈ V(p∗); hence α 6∈ V(p∗1). (ii) If h(α) = 0, then by (3.6) and (3.4) it follows that
0 = ã∗(α)p∗1(α) + b̃∗(α)q∗1(α) and ã∗(α) 6= 0 6= b̃∗(α). Therefore, V(p∗, q∗) = ∅ yields
p∗1(α) 6= 0 6= q∗1(α).

For α ∈ V(φ1h) this leads to

µα(̃b∗ + fp∗1) ≥ k ⇐⇒ (̃b∗ + fp∗1)(ν)(α) = 0, ν = 0, . . . , k − 1

⇐⇒ b̃∗
(ν)

(α) +
ν∑
µ=0

(
ν
µ

)
f (µ)(α)p∗

(ν−µ)

1 (α) = 0, ν = 0, . . . , k − 1

⇐⇒ f (ν)(α) = − 1
p∗1(α)

[
b̃∗

(ν)
(α) +

ν−1∑
µ=0

(
ν
µ

)
p∗

(ν−µ)

1 (α)f (µ)(α)

]
for ν = 0, . . . , k − 1.

A similar result holds for α ∈ V(ψ1h). As a consequence f ∈ R[s] satisfies (3.7) iff

f (ν)(α) =



− 1
p∗1(α)

[
b̃∗

(ν)
(α) +

ν−1∑
µ=0

(
ν
µ

)
p∗

(ν−µ)

1 (α)f (µ)(α)

]
for ν = 0, . . . , µα(φ1h)− 1 if α ∈ V(φ1h)

1
q∗1(α)

[
ã∗

(ν)
(α)−

ν−1∑
µ=0

(
ν
µ

)
q∗

(ν−µ)

1 (α)f (µ)(α)

]
for ν = 0, . . . , µα(ψ1h)− 1 if α ∈ V(ψ1h).

(3.8)

In particular, for α ∈ V(φ1h)∩V(ψ1h) = V(h) and ν = 0, . . . , µα(h)−1 the derivative
f (ν)(α) has to be equal to both expressions given in (3.8). Thus we can find such an
f only if for those α and ν it is true that

− 1
p∗1(α)

[
b̃∗

(ν)
(α) +

ν−1∑
µ=0

(
ν
µ

)
p∗

(ν−µ)

1 (α)f (µ)(α)

]

=
1

q∗1(α)

[
ã∗

(ν)
(α)−

ν−1∑
µ=0

(
ν
µ

)
q∗

(ν−µ)

1 (α)f (µ)(α)

]
.

But this is indeed valid, since from (3.6) it follows that

0 = h(ν)(α) = (ã∗p∗1 + b̃∗q∗1)(ν)(α)

=
ν∑
µ=0

(
ν
µ

)
ã∗

(µ)
(α)p∗

(ν−µ)

1 (α) +
ν∑
µ=0

(
ν
µ

)
b̃∗

(µ)
(α)q∗

(ν−µ)

1 (α)

for ν = 0, . . . , µα(h)− 1 and therefore one can apply Lemma A.2.
As V(φ1ψ1h) ⊆ C is symmetric with respect to complex conjugation, Propo-

sition 3.1(1) and Lemma A.1 imply the existence of f ∈ R[s] with the properties
required in (3.8).
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Example 3.3. Let p = s2, q = z − 1 ∈ H. Then s | q∗ but s2 6 | q∗ in H(C), thus
d = s is a gcd of p, q. A Bézout equation is given by

s =
(1− s)z + 2s− 1

s2 s2 + (s− 1)(z − 1).

Note also that ker p̃ = {w ∈ C∞(R) | ∃α, β ∈ R for all t ∈ R : w(t) = α + βt} and
ker q̃= {w ∈C∞(R) |w is of period 1}; hence ker p̃∩ker q̃= {w ∈C∞(R) |w constant}=
ker d̃.

It is a standing conjecture that every commutative Bézout domain is an elemen-
tary divisor domain, which means that matrices can be brought into diagonal form
via left–right equivalence; see, e.g., [3, p. 92]. In the present case, one can in fact
prove the elementary divisor property. To do so, we will show the following lemma,
which states that H is a so-called adequate ring ; see, e.g., [12, p. 473].

LEMMA 3.4. Let p, q ∈ H, p 6= 0. There exists a factorization p = ab with
a, b ∈ H such that a and q are coprime, whereas b̂ and q are not coprime whenever
b̂ ∈ H\H× is a divisor of b.

Proof. The idea for the factorization is as follows: factorize p = ab such that
V(b∗) = V(p∗, q∗) and µλ(b∗) = µλ(p∗) for all λ ∈ V(b∗). This can easily be done
if #V(p∗, q∗) < ∞. In the infinite case it needs an iterative procedure as described
below.

Let b1 ∈ H be a gcd of p and q and put a1 = p
b1

so that p = a1b1. Define
successively the following elements:

let ci ∈ H be a gcd of ai and bi; define ai+1 =
ai
ci

and bi+1 = cibi.(3.9)

Hence p = aibi = ai+1cibi = ai+1bi+1. This gives a sequence of elements ai ∈ H with
the property that ai+1 divides ai in H. But then ai+1 divides ai also in the principal
ideal ring R(s)[z, z−1] with the consequence that for some k ∈ N there exist l ∈ Z and
φ ∈ R[s]\{0} such that ck = φzl is a unit in R(s)[z, z−1]. Thus the procedure (3.9)
yields the existence of a factorization:

p = akbk with φ ∈ R[s] as a gcd of ak and bk in H.

This implies that V(a∗k, b
∗
k) is finite, say V(a∗k, b

∗
k) = {λ1, . . . , λn}, and we can define

f :=
n∏
i=1

(s− λi)li ∈ R[s], where li = µλi(a
∗
k).

With a := akf
−1 ∈ H and b := fbk ∈ H we get the factorization p = ab, which

in fact satisfies the requirements of the lemma: (1) To establish the coprimeness
of a and q, suppose V(a∗, q∗) 6= ∅. Thus let λ ∈ V(a∗, q∗) ⊆ V(p∗, q∗) = V(b∗1).
Then λ ∈ V(b∗1, a

∗
k) ⊆ V(a∗k, b

∗
k) = {λ1, . . . , λn}. But for λ = λj it is µλ(a∗) =

µλj (a
∗
k)− µλj (f) = 0. Hence V(a∗, q∗) = ∅ and from Proposition 3.1(6) we conclude

the coprimeness of a and q.
(2) Let b̂ ∈ H\H× be a divisor of b and fix some λ ∈ V(b∗) with b̂∗(λ) = 0. The

construction (3.9) of the sequences (ci) and (bi) leads to the following equality of zero
sets (note that we count zeros in V not with multiplicity):

V(b∗) = V(f∗b∗k) = V(b∗k) = V(c∗k−1b
∗
k−1) = V(b∗k−1) = · · · = V(b∗1) = V(p∗, q∗).

Thus λ ∈ V(q∗, b̂∗) and therefore b̂ and q are not coprime.
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Note that when V(p∗, q∗) = {λ1, . . . , λn} is finite, the above construction leads to
the factorization p = p

b b with b =
∏n
i=1(s− λi)li and li = µλi(p

∗).
Now we can summarize the properties for matrices over H as they follow from

the above ring theory results.
THEOREM 3.5.
(1) Let a1, . . . , an ∈ H and d ∈ H be a gcd of a1, . . . , an. Then there exists a

matrix A ∈ Hn×n with [a1, . . . , an] as its first row and detA = d.
(2) For P ∈ Hn×m there exists U ∈ Gln(H) so that UP ∈ Hn×m has upper

triangular form.
(3) Let P ∈ Hn×m and Q ∈ Hl×m. There exists a greatest common right divisor

(gcrd) D ∈ Hm×m of P and Q and matrices A ∈ Hm×n, B ∈ Hm×l with D =
AP + BQ. If rkD = m, then D is unique modulo multiplication from the left by
unimodular matrices.

(4) Let P, Q ∈ Hm×m with rkP = rkQ = m. Then there exists a least common
left multiple (lclm) M ∈ Hm×m of P and Q which is uniquely determined up to
unimodular factors from the left.

(5) H is an elementary divisor ring; that is, for P ∈ Hn×m with rkP = r there
exist U ∈ Gln(H) and V ∈ Glm(H) such that

UPV =
[
P1 0
0 0

]
∈ Hn×m with P1 =


p1 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 pr

 ∈ Hr×r,(3.10)

where pi 6= 0 for all i and pi | pi+1 for i = 1, . . . , r − 1.
Proof. Parts (1)–(4) hold in general for matrices over commutative Bézout do-

mains. The proof of these parts is identical with that given for principal ideal domains
in [13, pp. 31–36]. Part (5) follows from Lemma 3.4, as shown in [12, p. 473] for ar-
bitrary adequate rings.

The existence of an lcm for elements p, q ∈ H as we proved in Proposition 3.1(7)
can also be concluded from part (1) of the above theorem (see, e.g., [4, Cor. 2, p. 126]).

4. Correspondence between behaviors and ideals in H. The results in
section 3 enable us to show a correspondence between the lattice of behaviors asso-
ciated with delay-differential equations of the type (1.1) and the lattice of finitely
generated ideals in H. After introducing multivariable delay-differential operators, an
analogous version of this correspondence will be shown also in that case.

Remember that, as outlined in Definition 2.7 and Remark 2.8, for p ∈ H the
operator p̃ ∈ EndR(C∞(R)) exists. In particular, for p ∈ R[s, z] ⊂ H this includes the
classical case as in equation (1.1).

PROPOSITION 4.1. For p, q ∈ H\{0} let d ∈ H be a gcd of p, q, and c ∈ H be an
lcm of p, q. Then

(1) ker p̃ ⊆ ker q̃ ⇐⇒ p | q;
(2) ker d̃ = ker p̃ ∩ ker q̃;
(3) ker c̃ = ker p̃+ ker q̃;
(4) if d ∈ H×, then ker p̃+ ker q̃ = ker p̃q = ker q̃p;
(5) let a ∈ H be such that ker p̃ ∩ ker q̃ ⊆ ker ã. Then a ∈ pH+ qH.
Proof. (1)“⇒” Let p = aφ−1, q = bφ−1 with a, b ∈ R and φ ∈ R[s]. Then

it is easy to see that ker p̃ ⊆ ker q̃ implies ker ã ⊆ ker b̃. Thus by (2.2) one has
b∗(a∗)−1 = q∗(p∗)−1 ∈ H(C) and with Proposition 3.1(5) it follows that p | q in H.
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“⇐” If q = ap with some a ∈ H, then Remark 2.8(3) yields q̃ = ã◦p̃, and therefore
ker p̃ ⊆ ker q̃.

(2) This is a consequence of (1) and the existence of a Bézout equation d = ap+bq
in H together with Remark 2.8(3).

(3)“⊇” follows from (1).
“⊆” Let p = ad, q = bd with a, b ∈ H. Then, by Proposition 3.1(7) we can

take c = abd as an lcm of p, q. By coprimeness of a, b there exists f, g ∈ H with
1 = af + bg. Hence w ∈ ker c̃ satisfies w = f̃a(w) + g̃b(w) ∈ ker q̃ + ker p̃.

(4) If d ∈ H×, then pq is an lcm of p, q; hence the claim holds by (3).
(5) This follows from (1) and (2) and the equality dH = pH+ qH.
Notice that the Examples 2.9 and 3.3 correspond to the situation given in (1) and

(2) of the above proposition.
Now we will come to the multivariable case. From Remark 2.8 we conclude that

for a matrix P = (pij) ∈ Hn×m the operator

P̃ : C∞(Rm) −→ C∞(Rn),

(w1, . . . , wm)t 7−→

 m∑
j=1

p̃1j(wj), . . . ,
m∑
j=1

p̃nj(wj)

t

is well defined. Thus the behavior, defined by a system of delay-differential equations,
can be described as ker P̃ with some P ∈ Rn×m, or in the more general case P ∈
Hn×m.

Remark 4.2.
(1) The map

Hn×m −→ HomR(C∞(Rm), C∞(Rn)),

P 7−→ P̃

is R linear and injective and satisfies P̃Q = P̃ ◦ Q̃ for P ∈ Hn×m, Q ∈ Hm×l.
(2) Analogous to the scalar case in Definition 2.4(1) the map

Hn×m −→ H(C)n×m,
P 7−→ P ∗(s) := P (s, e−s)

is a well-defined R-linear map and fulfills (PQ)∗(s) = P ∗(s)Q∗(s) for P ∈ Hn×m, Q ∈
Hm×l.

Let us first list some properties of the operator P̃ .
PROPOSITION 4.3. Let P ∈ Hn×m. Then
(1) if n = m and P ∈ Gln(H), then P̃ is bijective and P ∗(s) ∈ Gln(C) for all

s ∈ C;
(2) P̃ is surjective iff rkP = n;
(3) the following properties are equivalent:

(i) P̃ is injective,
(ii) rkP ∗(s) = m for all s ∈ C,
(iii) there exists Q ∈ Hm×n with QP = Im.

Proof. (1) This follows from the existence of Q ∈ Hn×n with PQ = QP = In
together with Remark 4.2.

(2) Let rkP = r ≤ n. By Theorem 3.5(5) there exist U ∈ Gln(H) and V ∈
Glm(H) so that UPV is as in (3.10). By (1) P̃ is surjective iff ŨPV is surjective, and
together with Proposition 2.10 this holds iff r = n.
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(3) All three properties are invariant under multiplication with unimodular matri-
ces from the left or from the right. Thus, using again Theorem 3.5(5), we can restrict
ourselves to diagonal P . Since all three properties imply rkP = m, we can assume

P =
[
P1
0

]
∈ Hn×m with P1 = diag(p1, . . . , pm) ∈ Hm×m.

Now (i) implies the injectivity of p̃i; thus, with (2.2) and Proposition 3.1(2), pi ∈ H×.
This yields (ii). In the same way, (ii) leads to pi ∈ H× for all i, and (iii) can be
concluded. The implication “(iii) ⇒ (i)” follows from Remark 4.2(1).

Now we can generalize part of the results in Proposition 4.1 to the multivariable
case.

PROPOSITION 4.4. Let P ∈ Hn×m, Q ∈ Hl×m, and D ∈ Hm×m be a gcrd of
P, Q. Then

(1) ker P̃ ∩ ker Q̃ = ker D̃;
(2) P is a right divisor of Q iff ker P̃ ⊆ ker Q̃;
(3) under the condition rkP = n, rkQ = l the following holds true: ker P̃ = ker Q̃

iff n = l and P = UQ for some U ∈ Gln(H).
Proof. (1) Since “⇒” of (2) holds by Remark 4.2(1), part (1) follows from the

existence of a Bézout equation for D (see Theorem 3.5(3)).
(2) It remains to prove “⇐.” Let r = rkP and U ∈ Gln(H), V ∈ Glm(H)

be such that P ′ = UPV is as in (3.10). Denoting Q′ = UQV , Proposition 4.3(1)
implies ker P̃ ′ ⊆ ker Q̃′. This yields Q′ = [R, 0] with R ∈ Hl×r, and, moreover,
ker p̃j ⊆ ker R̃ij for all j = 1, . . . , r and i = 1, . . . , l. Hence, using Proposition 4.1(1)
we get the existence of A ∈ Hl×n such that AP ′ = Q′ and therefore U−1AUP = Q.

(3) “⇐” is obvious.
“⇒” By (2) there exist P = UQ and Q = V P for some U ∈ Hn×l, V ∈ Hl×n.

Then the full rank assumption implies V U = Il and UV = In, which leads to the
desired result.

5. Controllability. In this section we will generalize the well-known Hautus cri-
terion for controllability to delay-differential systems. For time-delay state-space sys-
tems this criterion characterizes spectral controllability as it is known from, e.g., [18]
and [2]. In the behavioral context this criterion is established for finite-dimensional
discrete- or continuous-time AR-systems (see, e.g., [22, Prop. 4.3]) and, very recently,
in [19] for exactly the same situation of delay-differential equations as presented in
the paper at hand. However, the proof in [19] uses quite different methods than those
developed in this paper.

Whereas controllability for state-space systems is formulated, of course, in terms
of control functions and state trajectories, we do not have this possibility for behaviors.
Hence we will use the notion of controllability as defined in [22]. For this we have to
introduce first the concatenation of two functions.

DEFINITION 5.1. Let −∞ ≤ a1 < a2 ≤ b1 < b2 ≤ ∞, and let w1 : (a1, b1) → Rm
and w2 : [a2, b2) → Rm be two functions. For t0 ∈ [a2, b1] denote by w1∧t0w2 :
(a1, b2)→ Rm the following concatenation of w1 and w2 at t0:

(w1∧t0w2)(t) :=
{

w1(t) for a1 < t < t0,
w2(t) for t0 ≤ t < b2.

Using this definition, a behavior is called controllable if it is closed under con-
catenation in the sense given below. In [22, p. 186] one can find the system theory
justification of this notion.
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DEFINITION 5.2. Let B be a shift-invariant subspace of C∞(Rm). Then B is
called controllable if it satisfies the following: for all w, w′ ∈ B there exists t0 ≥ 0
and c ∈ C∞([0, t0),Rm) with w∧0c∧t0σt0w′ ∈ B.

The requirement w∧0c∧t0σt0w′ ∈ B yields in particular that the concatenation is
in C∞(Rm).

Note that C∞(Rm) is controllable; even more, C∞(Rm) is controllable in arbitrary
short time: for all w, w′ ∈ C∞(Rm) and all t0 > 0 there exists c ∈ C∞([0, t0),Rm)
with w∧0c∧t0σt0w′ ∈ C∞(Rm).

Since we introduce the concept of controllability only for shift-invariant subspaces,
it makes sense to consider only controllability at time zero.

Whereas it is obvious that for U ∈ R[s]n×m and w, w′ ∈ C∞(Rm) it is Ũ(w∧0w
′) =

Ũ(w)∧0Ũ(w′) if w∧0w
′ is sufficiently differentiable at t0 = 0, it is a priori not clear

that Ũ(w∧0w
′) is a sort of concatenation of Ũ(w) and Ũ(w′) if U ∈ R[s, z]n×m or

even U ∈ Hn×m.
LEMMA 5.3. Let U =

∑L
j=0 Ujz

j ∈ R[s, z]n×m with Uj ∈ R[s]n×m. Further, let
w, w′ ∈ C∞(Rm), t0 ∈ R with w∧t0w′ ∈ C∞(Rm). Then there exists c ∈ C∞([t0, t0 +
L),Rn) so that Ũ(w∧t0w′) = Ũ(w)∧t0c∧t0+LŨ(w′).

Proof. A direct calculation shows

Ũ(w∧t0w′)(t) =
L∑
j=0

Ũj(w∧t0w′)(t− j) =
L∑
j=0

(Ũj(w)∧t0Ũj(w′))(t− j)

=


∑L
j=0 Ũj(w

′)(t− j) = Ũ(w′)(t) if t ≥ t0 + L,

c(t) if t0 ≤ t < t0 + L,∑L
j=0 Ũj(w)(t− j) = Ũ(w)(t) if t < t0

for some function c : [t0, t0 + L) → Rn. Hence Ũ(w∧t0w′) = Ũ(w)∧t0c∧t0+LŨ(w′).
Since Ũ(w∧t0w′) ∈ C∞(Rn), we also get c ∈ C∞([t0, t0 + L),Rn).

With this knowledge we can prove the following.
LEMMA 5.4. Let B be a shift-invariant linear controllable subspace of C∞(Rm)

and let U ∈ Hn×m. Then Ũ(B) is a shift-invariant linear controllable subspace of
C∞(Rn).

Proof. Since B is shift invariant, it is enough to consider U =
∑L
j=0 Ujz

j ∈
R(s)[z]n×m with Uj ∈ R(s)n×m.

Let w, w′ ∈ B. Then σLw′ ∈ B and there exist t0 ≥ 0 and c ∈ C∞([0, t0),Rm) so
that w̄ := w∧0c∧t0σt0+Lw′ ∈ B.

Case 1. Let Uj ∈ R[s]n×m for all j, thus U ∈ R[s, z]n×m. Then by Lemma 5.3 we
get the existence of c′ ∈ C∞([0, t0 + L),Rn), so that

Ũ(w̄) = Ũ(w∧0c∧t0σt0+Lw′)

= Ũ(w)∧0c
′∧t0+LŨ(σt0+Lw′)

= Ũ(w)∧0c
′∧t0+Lσ

t0+LŨ(w′) ∈ Ũ(B).

Since w, w′ ∈ B were arbitrary, this yields the controllability of Ũ(B).
Case 2. Let Uj = Vjφ

−1 with Vj ∈ R[s]n×m. Put V =
∑L
j=0 Vjz

j ∈ R[s, z]n×m.
Then U = V φ−1 and by definition Ũ(w̄) = Ṽ (v), if v ∈ C∞(Rm) fulfills φ̃(v) = w̄.

As in the first case, we shall show that Ũ(w̄) is a concatenation of Ũ(w) and
σt0+LŨ(w′) so that Ũ(w̄) ∈ Ũ(B) implies the controllability of Ũ(B). In order to do
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so, we will construct a solution of φ̃(v) = w̄ which corresponds to the special form of
w̄ = w∧0c∧t0σt0+Lw′. For this let c′ ∈ C∞([0, t0),Rm) be so that φ̃(c′) = c. Then the
solutions vi ∈ C∞(Rm), i = 1, 2, of

φ̃(v1) = w, v
(ν)
1 (0) = c′(ν)(0) for ν = 0, . . . , deg φ− 1,

φ̃(v2) = σt0+Lw′, v
(ν)
2 (t0) = c′(ν)(t0) for ν = 0, . . . , deg φ− 1

satisfy v := v1∧0c
′∧t0v2 ∈ C∞(Rm) and φ̃(v) = w̄. Moreover, Ṽ (v1) = Ũ(w), Ṽ (v2) =

Ũ(σt0+Lw′). Now, by the first case of this proof there exists c′′ ∈ C∞([0, t0 + L),Rn)
so that

Ũ(w̄) = Ṽ (v) = Ṽ (v1∧0c
′∧t0v2) = Ṽ (v1)∧0c

′′∧t0+LṼ (v2)

= Ũ(w)∧0c
′′∧t0+LŨ(σt0+Lw′)

= Ũ(w)∧0c
′′∧t0+Lσ

t0+LŨ(w′) ∈ Ũ(B).

Now we can prove the main part of this section
THEOREM 5.5. Let P ∈ Hn×m. Then ker P̃ is controllable iff rkP ∗(s) = rkP for

all s ∈ C.
Proof. (a) We first prove the scalar case p ∈ H. If p = 0 then obviously ker p̃ =

C∞(R) is controllable. Let p 6= 0.
“⇐” This holds, since ker p̃ = {0} if p ∈ H×.
“⇒” Let w1 ∈ ker p̃. Then there exist t0 > 0 and some c ∈ C∞([0, t0),R) with

v := w1∧0c∧t00 ∈ ker p̃ and Proposition 2.10(2) implies v = 0; hence, again by
Proposition 2.10(2), w1 = 0. Therefore controllability of ker p̃ implies ker p̃ = {0} and
from Proposition 3.1(2) it follows that p ∈ H×.

(b) Let P ∈ Hn×m. Using Theorem 3.5(5) and Lemma 5.4 we can restrict our-
selves to the case of P being as in (3.10).

“⇐” The assumption on the rank implies that pj ∈ H× for j = 1, . . . , r, and
therefore ker P̃ = {(0, . . . , 0, wr+1, . . . , wm)t|wi ∈ C∞(R), i = r + 1, . . . ,m}, which is
indeed controllable.

“⇒” The controllability of ker P̃ yields the controllability of ker p̃j for j = 1, . . . , r.
Hence by the scalar case pj ∈ H× and the desired conclusion follows.

Conclusions. As can be seen from sections 4 and 5, the ring H seems to be
the adequate object for an algebraic treatment of delay-differential equations as (1.1)
and (1.2). Once the algebraic properties of H are established, the translation into
properties of the solution spaces are nearly straightforward.

In a forthcoming paper it will be shown how the existence of image representa-
tions for the systems under investigation can be characterized with the help of this
algebraic framework. Moreover, the analytical meaning of the operators in H has to
be clarified.

Appendix. We start with the following.
Proof of Proposition 2.10.
(1) Let p ∈ H\{0} and v ∈ C∞(R). We have to find w ∈ C∞(R) fulfilling p̃(w) = v.
First, it suffices to assume p ∈ R for let p = qφ−1 with q ∈ R, φ ∈ R[s]. If we

find f ∈ C∞(R) with q̃(f) = v and put φ̃(f) = w, then we have p̃(w) = v. Hence we
need to show the surjectivity of q̃.
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Thus let p ∈ R and, more precisely,

p =
L∑
j=0

pjz
j ∈ R[s, z] with pj ∈ R[s] and L ≥ 1.

Put p0 =
∑l
i=0 ais

i, al = 1, and pL =
∑r
i=0 bis

i, br 6= 0.
We will construct piecewise a function w ∈ C∞(R) which fulfills for all t ∈ R

p̃(w)(t) =
L∑
j=0

p̃j(w)(t− j) = v(t).(A.1)

The idea of the construction is as follows: start with a function w0 ∈ C∞[0, L]. In
order to extend w0 via concatenation (see Definition 5.1) to a solution of p̃(w) = v one
has to solve successively ordinary inhomogeneous differential equations of the type

p̃0(w̄k+1) = v − ˜(p− p0)(wk) on the time interval [L+ k, L+ k + 1] for k ≥ 0,

p̃L(w̄k) = σ−L
(
v − ˜(p− pL)(wk+1)

)
on the time interval [k, k + 1] for k ≤ −1,

where the right-hand sides are determined successively by

wk = w0∧Lw̄1∧L+1 . . .∧L+k−1w̄k on [0, L+ k] for k ≥ 1,
wk+1 = w̄k+1∧k+2 . . .∧−1w̄−1∧0w0 on [k + 1, L] for k < −1.

The initial conditions at the points L+ k (for k ≥ 0) and k + 1 (for k ≤ −1) have, of
course, to be prescribed such that the concatenations are as smooth as possible. If one
chooses the initial function w0 ∈ C∞[0, L] appropriately, this procedure leads indeed
to infinitely smooth concatenations and thus to a solution w ∈ C∞(R) of p̃(w) = v.

The choice of the function w0 is carried out in step (i) of the following elaboration.
Steps (ii) and (iii) give the details of the extension of w0 to a solution of p̃(w) = v on
the positive real line, whereas step (iv) extends w0 for negative time.

(i) Let f ∈ C∞[0, L] satisfy

l∑
i=0

aif
(i)(t) = v(t), t ∈ [0, L], f (ν)(L) = 0 for ν = 0, . . . , l − 1.

(In the case l = 0, one has no freedom for the initial conditions. In this case the
rest of the proof in (ii) and (iii) works analogously.) Let g ∈ C∞[0, L] be such that
g|[0,L−1] = 0 and g|[L−0.5,L] = 1. Put w0 := fg ∈ C∞[0, L]. Then w0|[0,L−1] = 0 and

w
(ν)
0 (L) = f (ν)(L) =

{
0 for ν = 0, . . . , l − 1,
v(ν−l)(L)−

∑l−1
i=0 aiw

(ν−l+i)
0 (L) for ν ≥ l.

(ii) Let w̄1 ∈ C∞[L,L+ 1] fulfill

l∑
i=0

aiw̄
(i)
1 (t) = v(t)−

L∑
j=1

p̃j(w0)(t− j), t ∈ [L,L+ 1],

with initial conditions w̄(ν)
1 (L) = 0 for ν = 0, . . . , l − 1. By differentiation one checks

that w̄(ν)
1 (L) = w

(ν)
0 (L) for all ν ∈ N0 and thus w1 := w0 ∧L w̄1 ∈ C∞[0, L+ 1] fulfills∑L

j=0 p̃j(w1)(t− j) = v(t) for t ∈ [L,L+ 1].
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(iii) Inductively, if wk ∈ C∞[0, L+ k] satisfies

l∑
i=0

aiw
(i)
k (t) = v(t)−

L∑
j=1

p̃j(wk)(t− j)

for t ∈ [L,L+ k], then take the solution w̄k+1 ∈ C∞[L+ k, L+ k + 1] of the ODE

l∑
i=0

aiw̄
(i)
k+1(t) = v(t)−

L∑
j=1

p̃j(wk)(t− j), t ∈ [L+ k, L+ k + 1],

with initial conditions w̄(ν)
k+1(L+ k) = w

(ν)
k (L+ k) for ν = 0, . . . , l − 1. From this we

obtain again by differentiation w̄(ν)
k+1(L+k) = w

(ν)
k (L+k) for all ν ∈ N0, and therefore

we get a solution wk+1 := wk ∧L+k w̄k+1 ∈ C∞[0, L+ k + 1]. Hence we can construct
a function w+ ∈ C∞[0,∞) which satisfies (A.1) for t ≥ L.

(iv) Let w̄−1 ∈ C∞[−1, 0] satisfy

r∑
i=0

biw̄
(i)
−1(t) = v(t+ L)−

L−1∑
j=0

p̃j(w+)(t+ L− j), t ∈ [−1, 0],

with the initial conditions w̄(ν)
−1 (0) = 0 for ν = 0, . . . , r − 1. Then w̄

(ν)
−1 (0) = 0 for all

ν ∈ N0 and the function w−1 := w̄−1 ∧0w+ ∈ C∞[−1,∞) satisfies (A.1) for t ≥ L− 1.
In a way analogous to (iii) we can proceed inductively and finally find a solution
w ∈ C∞(R) for p̃(w) = v.

(2) Put p = qφ−1 with q ∈ R and φ ∈ R[s] and let w ∈ C∞(R) be given as in
Proposition 2.10(2). It is easy to see that there exists v ∈ C∞(R) with φ̃(v) = w and
v|[k,k+L] = 0. But then 0 = p̃(w) = q̃(v) and the proof of (1) shows by proceeding
step by step on the intervals [j, j + 1] that v = 0 and thus w = 0.

The following two lemmas are used in the proof of Theorem 3.2. The first one
states the interpolation property for polynomials: given a finite set of points in the
complex plane, there exists a polynomial f ∈ C[s], such that a specified number
of derivatives f (ν) take prescribed values at those points. If the required situation
is symmetric with respect to complex conjugation, one can find a real interpolation
polynomial.

LEMMA A.1. Let α1, . . . , αr ∈ C\R, αr+1, . . . , αr+t ∈ R, k1, . . . , kr+t ∈ N0, cjν ∈
C for j = 1, . . . , r and ν = 0, . . . , kj, and cjν ∈ R for j = r + 1, . . . , r + t and
ν = 0, . . . , kj. Then there exists a unique f ∈ R[s] satisfying

deg f ≤ N := 2
r∑
j=1

(kj + 1) +
r+t∑

j=r+1

(kj + 1)− 1,

f (ν)(αj) = cjν for j = 1, . . . , r + t, ν = 0, . . . , kj ,

f (ν)(αj) = cjν for j = 1, . . . , r, ν = 0, . . . , kj .

Proof. The existence and uniqueness of f ∈ C[s] with the desired properties
can be found, e.g., in [5, p. 37]. But this already implies f ∈ R[s], since with f =∑N
j=0 fjs

j ∈ C[s], f̄ =
∑N
j=0 f̄js

j also fulfills the above requirements.
The second lemma is just a rather specific calculation. It is used to show that the

interpolation requirements given in (3.8) can be satisfied by one polynomial, f ∈ R[s].
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LEMMA A.2. Let K ∈ N0 and aj , bj , pj , qj ∈ C for j = 0, . . . ,K. Let p0 6= 0 6= q0
and

n∑
m=0

(
n

m

)
bmqn−m = −

n∑
m=0

(
n

m

)
ampn−m for n = 0, . . . ,K.(A.2)

Put fn := q−1
0 [an −

∑n−1
m=0

(
n
m

)
qn−mfm] for n = 0, . . . ,K. Then the recursion fn =

−p−1
0 [bn +

∑n−1
m=0

(
n
m

)
pn−mfm] is also valid for n = 0, . . . ,K.

Proof. For n = 0 it is b0q0 = −a0p0; hence f0 = a0
q0

= − b0
p0

.
Suppose the claim holds true for f0, . . . , fn, n < K. Then one calculates

q0fn+1 = an+1 −
n∑

m=0

(
n+1
m

)
qn+1−mfm

= an+1 +
n∑

m=0

(
n+1
m

)
qn+1−m

[
1
p0

(
bm +

m−1∑
k=0

(
m
k

)
pm−kfk

)]

= an+1 +
1
p0

[
n∑

m=0

(
n+1
m

)
qn+1−mbm

+
n∑

m=1

m−1∑
k=0

(
n+1
m

)(
m
k

)
qn+1−mpm−kfk

]

=
1
p0

[
−bn+1q0 −

n∑
m=0

(
n+1
m

)
ampn+1−m

+
n−1∑
k=0

n∑
m=k+1

(
n+1
m

)(
m
k

)
qn+1−mpm−kfk

]

= − 1
p0

[
bn+1q0 +

n∑
m=0

(
n+1
m

)
ampn+1−m

−
n∑

m=1

m−1∑
k=0

(
n+1
m

)(
m
k

)
pn+1−mqm−kfk

]

= − 1
p0

[
bn+1q0 + q0

n∑
m=0

(
n+1
m

)
pn+1−m

1
q0

(
am −

m−1∑
k=0

(
m
k

)
qm−kfk

)]

= − q0

p0

[
bn+1 +

n∑
m=0

(
n+1
m

)
pn+1−mfm

]
,

where the fourth equation follows from (A.2) and the fifth one from

n∑
m=k+1

(
n+1
m

)(
m
k

)
qn+1−mpm−k =

n∑
l=k+1

(
n+1

n+1+k−l
)(
n+1+k−l

k

)
ql−kpn+1−l

=
n∑

l=k+1

(
n+1
l

)(
l
k

)
ql−kpn+1−l.
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Abstract. The purpose of this paper is to study the asymptotic stability in probability of
affine in the control stochastic differential systems. Sufficient conditions for the existence of control
Lyapunov functions leading to the existence of stabilizing feedback laws which are smooth, except
possibly at the equilibrium point of the system, are provided.

Key words. stochastic stability, control stochastic differential equation, control Lyapunov
function, feedback law
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Introduction. The stabilization of nonlinear stochastic differential systems by
means of state feedback laws is an important problem in control theory. The stochastic
version of the Lyapunov theorem has been used to derive necessary and sufficient
conditions for stabilization of stochastic differential systems at their equilibrium state.
The stabilizability of various types of nonlinear stochastic differential systems has
been studied for different notions of stochastic stability in the last past years (see, for
instance, [8], [3], [4], [5], [7], or [6]).

The procedure used by Gao and Ahmed [8] relies on the stochastic Lyapunov
theory and on the properties of the solution of a stochastic algebraic Riccati equation
introduced by Wonham [16].

In [3], [4], and [6] the necessary and sufficient conditions for the asymptotic feed-
back stability in probability of the stochastic differential systems at their equilibrium
state are of Lyapunov type, the stabilizers computed in these papers are smooth except
possibly at the equilibrium state, and their construction is based on the knowledge
of an appropriate control Lyapunov function. The aim of this paper is to study the
asymptotic stability in probability for a wider class of affine in the control nonlinear
stochastic differential systems than the one considered in [6]. This class of stochastic
differential systems can be characterized in terms of computable control Lyapunov
functions which depend on the system coefficients.

Note that a wide class of stochastic bilinear differential systems (like those used
to model biological processes) as well as the equation of the angular velocity of a rigid
body corrupted by noise (see [13] for the deterministic case) can be stabilized by using
the results proved in the following. The main tools used in this paper are the stochastic
Lyapunov theorem proved by Khasminskii [9] and the converse stability theorems
of Kushner [10], Khasminskii [9], and Wilson [15]. In this paper, we extend some
results proved by Tsinias [14] for deterministic control systems to control stochastic
differential systems driven by a Wiener process. The analysis used in this paper is
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closely related to that of [14], taking into account that one needs differentiability of
higher order than the one needed in the deterministic case. Furthermore, in order
to use converse stochastic Lyapunov theorems, more restrictive assumptions on the
system coefficients than those stated in [14] have to be assumed. This paper is divided
in three sections organized as follows. In section 1, we introduce the class of affine in
the control stochastic differential systems that we are dealing with in this paper, and
we recall the stochastic version of Artstein’s theorem proved in [6]. In section 2, we
state and prove the main results of the paper on the existence of control Lyapunov
functions (for the class of systems introduced in section 1) leading to the existence of
stabilizing feedback laws which are smooth, except possibly at the equilibrium points
of the systems. In section 3, we provide some numerical examples, for which the
results proved in the previous sections allow, to compute stabilizing feedback laws.
For a brief review of the Lyapunov machinery that we need in what follows to study
the stochastic stability of the equilibrium solution of a stochastic differential equation,
we refer the reader to [6], and for a detailed exposition of the stochastic stability theory
we refer the reader to Khasminskii [9] or Arnold [1], for example.

1. Problem statement. The purpose of this section is to introduce the class
of affine in the control stochastic differential systems that we are dealing with in this
paper and to recall the stochastic version of Artstein’s theorem proved in [6]. Denote
by (Ω,F , P ) a complete probability space and by w = {wt, t ∈ R+} a standard Rm-
valued Wiener process defined on this space. Consider the multi-input stochastic
differential system in Rn written in the Itô form,

xt = x0 +
∫ t

0
(f(xs) + h(xs)u)ds+

∫ t

0
g(xs)dws,(1)

where
1. x0 is given in Rn;
2. u is an Rp-valued control law;
3. f , g, and h are C∞ functionals mapping Rn into Rn, Rn×m, and Rn×p, respec-

tively, vanishing in the origin and such that there exists a nonnegative constant K
such that for any x ∈ Rn,

|f(x)|+ |g(x)|+ |h(x)| ≤ K(1 + |x|).

The stochastic differential system (1) is said to be asymptotically stabilizable in
probability (at the origin) if there exist a neighborhood D of the origin in Rn and a
function k mapping D in Rp, vanishing in the origin, such that

1. for every x ∈ D, the solution xt of the closed-loop system

xt = x+
∫ t

0
(f(xs) + h(xs)k(xs))ds+

∫ t

0
g(xs)dws(2)

is uniquely defined;
2. the equilibrium solution xt ≡ 0 of the resulting closed-loop system (2) is asymp-

totically stable in probability.
Denoting by L the infinitesimal generator of the stochastic process solution of the

uncontrolled part of the stochastic differential system (1), that is, L is the second-order
differential operator defined for any function Ψ in C2(Rn;R) by

LΨ(x) =
n∑
i=1

fi(x)
∂Ψ
∂xi

(x) +
1
2

n∑
i,j=1

aij(x)
∂2Ψ
∂xi∂xj

(x),
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where aij(x) =
∑m
k=1 g

i
k(x)gjk(x), 1 ≤ i, j ≤ n, one can introduce the notion of control

Lyapunov function as follows.
DEFINITION 1.1. The stochastic differential system (1) satisfies a stochastic Lya-

punov condition at the origin if there exist a neighborhood D of the origin in Rn and
a Lyapunov function V defined on D such that for every x ∈ D \ {0} the following
condition holds:

n∑
j=0

hji (x)
∂V

∂xj
(x) = 0, i = 1, ..., p ⇒ LV (x) < 0.

A Lyapunov function V satisfying the above condition is called a control Lyapunov
function for the stochastic differential system (1).

The control Lyapunov function V defined above is said to satisfy the bounded
control property if there exists a positive real function d mapping D in R such that d
is bounded on D and for every x ∈ D \ {0} there exists a control u ∈ Rp such that

||u|| < d(x)(3)

and

LV (x) +
p∑
i=1

n∑
j=1

hji (x)
∂V

∂xj
(x)ui < 0.(4)

If in addition limx→0 d(x) = 0, then we say that the control Lyapunov function
V satisfies the small control property. The following theorem, established in [6],
is an extension of Artstein’s theorem [2] to the feedback stabilization of stochastic
differential systems. Another version of this result can be found in [3].

THEOREM 1.2. 1. The stochastic differential system (1) satisfies a stochastic
Lyapunov condition at the origin if and only if it is asymptotically stabilizable by
means of a feedback law u = k(x) which is smooth in a neighborhood of the origin
except possibly in zero.

2. The corresponding control Lyapunov function V satisfies the bounded control
property if and only if there exists a stabilizing feedback law u = k(x) which is smooth
in a neighborhood D of the origin, except possibly in zero, and such that

||k(x)|| < d(x)

for every x ∈ D \ {0} where d is defined in (3).
Furthermore, the function k is bounded in a neighborhood of the origin in Rn, and

if in addition the control Lyapunov function V satisfies the small control property, then
k(x) tends to zero as x tends to zero.

In the following section, we consider stochastic differential systems (1) of the form

d

(
x1,t
x2,t

)
=
(
f1(x1,t, x2,t)
f2(x1,t, x2,t)

)
dt+

(
0

h2(x1,t, x2,t)

)
udt

+
(

g1(x1,t)
g2(x1,t, x2,t)

)
dwt,(5)

where xt =
(
x1,t
x2,t

)
∈ Rn1 × Rn2 , n = n1 + n2, and we derive sufficient conditions for

the existence of control Lyapunov functions guaranteeing the existence of stabilizing
feedback laws. A similar decomposition for the stochastic differential system (1) has
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been considered by Mao [11], but his methodology is quite different from the one
used in this work. To illustrate the method used in the following section, consider a
single-input stochastic differential system in the form (5) with n2 = 1. Assume that
there exists a C2 function φ mapping Rn1 into R, vanishing in the origin, which is the
unique solution of the equation h2(x1, ν) = 0 and such that ν = φ(x1) is a stabilizing
feedback law for the single-input stochastic differential system in Rn1 ,

dx1,t = f1(x1,t, ν)dt+ g1(x1,t)dwt(6)

(see Example 1). Then, the stochastic differential system (5) satisfies a stochas-
tic Lyapunov condition at the origin, and so by application of Theorem 1.2 it is
asymptotically stabilizable in probability. Indeed, if V is a Lyapunov function for the
closed-loop system

dx1,t = f1(x1,t, φ(x1,t))dt+ g1(x1,t)dwt(7)

deduced from (6) when the control law ν is given by ν = φ(x1), then the function Φ
defined on Rn by

Φ(x1, x2) = V (x1) +
1
4

(x2 − φ(x1))4

is a control Lyapunov function for the stochastic differential system (5). It is obvious
that the function Φ is twice continuously differentiable on Rn and positive definite,
and for any x 6= 0 with

h2(x)
∂Φ
∂x2

(x) = h2(x1, x2)(x2 − φ(x1))3 = 0

one has x2 = φ(x1), and therefore, denoting by L1 the infinitesimal generator of the
stochastic process solution of the stochastic differential equation (7), it yields

LΦ(x1, x2)|x2=φ(x1) = L1V (x1) < 0.

Hence, the stochastic differential system (5) satisfies a stochastic Lyapunov con-
dition at the origin, and, according to Theorem 1.2, it is asymptotically stabilizable
in probability by means of a feedback law which is smooth in a neighborhood of the
origin except possibly in zero. The method described above is applicable to stochastic
differential systems in the form

d


x1
.
.
.
xn

 =


x2
.
.
xn
f(x)

 dt+ u


0
.
.
0

h(x)

 dt+


x1
.
.

xn−1
g(x)

 dwt,(8)

where f , g, and h are C∞ functionals vanishing in the origin. The stochastic dif-
ferential system (8) satisfies a stochastic Lyapunov condition at the origin provided
that there exists a function φ mapping Rn−1 into R, vanishing in the origin, such
that xn = φ(x1, ..., xn−1) is the unique solution of the equation h(x) = 0 and the
equilibrium solution xt ≡ 0 of the lower-dimensional stochastic differential system

d


x1
.
.
.

xn−1

 =


x2
.
.

xn−1
φ(x1, ..., xn−1)

 dt+


x1
.
.
.

xn−1

 dwt
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is asymptotically stable in probability. In the following section, we extend the above
results to more general stochastic differential systems. A special emphasis is given
to the asymptotic stabilization in probability of stochastic differential systems (5) in
which the function h is constant and they are of the form

d

(
x1,t
x2,t

)
=
(
f1(x1,t, x2,t)
f2(x1,t, x2,t)

)
dt+

(
0
u

)
dt+

(
g1(x1,t)

g2(x1,t, x2,t)

)
dwt,(9)

where (x1, x2) ∈ Rn1 × Rn2 and u is an Rn2 -valued control law.

2. Main results. Consider the lower-dimensional subsystems of the stochastic
differential system (5):

dx1,t = f1(x1,t, ν)dt+ g1(x1,t)dwt,(10)

dx2,t = h2(x1,t, x2,t)udt,(11)

where ν ∈ Rn2 and u is an Rp-valued control law. Then, one can prove the following
result, where the stochastic Lyapunov condition for the stochastic differential system
(5) is characterized in terms of suitable positive functions for the stochastic differential
systems (10)–(11).

THEOREM 2.1. Assume that there exist neighborhoods D and D1 of the origin in
Rn and Rn1 , respectively, and mappings r : D → Rp, φ : D1 → Rn2 , and W : D → R
such that φ(0) = 0, φ is continuous, and W is twice continuously differentiable.

Denote by M , S1, and S2 the subsets of Rn defined by

M = {x ∈ D / x2 = φ(x1)}, S1 = {x ∈ D / ∇αW (x) = 0, α = 0, 1, 2}

and

S2 =
{
x ∈ D /

(
∂W

∂x2
h2r

)
(x) = 0

}
,

and suppose that
1. for any x in a neighborhood of the origin in Rn, W (x) ≥ 0 and S2 ⊂ S1 = M ;
2. the stochastic differential system (10) is asymptotically stabilizable in probabil-

ity by means of the feedback law ν = φ(x1).
Then, the stochastic differential system (5) satisfies a stochastic Lyapunov condition
at the origin. Furthermore, if Φ denotes the corresponding control Lyapunov function
and if one assumes further that

3. the function r is bounded, and the functions φ and ∂W
∂x2

are continuously dif-
ferentiable;

4. there exist positive constants c and a ≤ 2 such that(
∂W

∂x2
h2r

)
(x) ≤ −c||x2 − φ(x1)||a(12)

for x in a neighborhood of the origin in Rn,
then if a ≤ 1 the function Φ satisfies the small control property, and if 1 < a ≤ 2 and
the equilibrium solution x1,t ≡ 0 of the stochastic differential system

dx1,t = f1(x1,t, φ(x1,t))dt+ g1(x1,t)dwt,
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the coefficients of which are assumed to be C2
b , is exponentially stable in mean square,

the stochastic control Lyapunov function Φ satisfies the bounded control property.
Proof of Theorem 2.1. Since the equilibrium solution x1,t ≡ 0 of the closed-loop

system

dx1,t = f1(x1,t, φ(x1,t))dt+ g1(x1,t)dwt,(13)

deduced from the stochastic differential system (10) when the control law ν is given
by ν = φ(x1), is asymptotically stable in probability, the converse Lyapunov theorem
for asymptotic stability in probability proved by Kushner [10] asserts that there exist
a neighborhood D of the origin in Rn1 and a Lyapunov function V defined on D such
that

L1V (x1) < 0

for any x1 ∈ D, x1 6= 0, where L1 denotes the infinitesimal generator of the stochastic
process solution of the closed-loop system (13). On the other hand, the function Φ
defined on Rn by

Φ(x) = V (x1) +W (x)(14)

is positive definite, and for any x ∈ (D × Rn2) ∩D,

∇Φ(x).
(

0
h2(x)

)
=
∂W

∂x2
(x)h2(x).

Hence for any x 6= 0 such that ∇Φ(x).
( 0
h2(x)

)
= 0 one has, according to assumption 1

of Theorem 2.1, x2 = φ(x1), which implies that

∇W (x1, φ(x1)) = 0 and ∇2W ((x1, φ(x1)) = 0.

Then, denoting by L the infinitesimal generator of the stochastic process solution of
the uncontrolled part of the stochastic differential system (5) yields

LΦ(x)|x2=φ(x1) = L1V (x1) < 0.

Therefore, the stochastic differential system (5) satisfies a stochastic Lyapunov
condition at the origin, and the function Φ defined by (14) is a control Lyapunov func-
tion. Now, assume that (12) holds, and let a ≤ 1. Since the function f is continuously
differentiable, W is twice differentiable and for any x1 ∈ D, ∇W (x1, φ(x1)) = 0 and
∇2W (x1, φ(x1)) = 0, one can prove easily that there exist nonnegative constants c1,
c2, and c3 such that

||∇f(x)|| ≤ c1,(15)

||∇W (x)|| ≤ c2||x2 − φ(x1)||,(16)

and

||∇2W (x)|| ≤ c3||x2 − φ(x1)||(17)

for x in a neighborhood of the origin in Rn. On the other hand, denoting by q the
positive definite functional defined by

q(x) = −L1V (x1) + ||x2 − φ(x1)||2
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and denoting by b the functional defined by

b(x) = c1||∇V (x1)||+ c2||f(x)||+ c3
2
||(gg?)(x)||

yield

|LΦ(x) + q(x)| ≤ b(x)||x2 − φ(x1)||
≤ b(x)||x2 − φ(x1)||a.

Then, taking into account inequality (12) one gets

LΦ(x) +
(
∂Φ
∂x2

h2

)
(x)

b(x)r(x)
c

≤ −q(x) < 0

for x in a neighborhood of the origin x 6= 0. Therefore, since r is bounded and b is
continuous with b(0) = 0, it follows that the control Lyapunov function Φ satisfies
the small control property. Finally, assume that (12) holds with 1 < a ≤ 2 and that
the function φ is continuously differentiable. Since the function g is continuously
differentiable there exists a nonnegative constant c4 such that

||∇(gg?)(x)|| ≤ c4(18)

for x in a neighborhood of the origin. On the other hand, since φ(0) = 0, there exists
a nonnegative constant c5 such that

||φ(x1)|| ≤ c5||x1||(19)

for x1 in a neighborhood of the origin in Rn1 , and since f(0) = 0 and g(0) = 0, one
can deduce from (15), (18), and (19) that

||f(x)|| ≤ c1 ((c5 + 1)||x1||+ ||x2 − φ(x1)||)

and

||(gg?)(x)|| ≤ c4 ((c5 + 1)||x1||+ ||x2 − φ(x1)||)

for all x in a neighborhood of the origin in Rn. Furthermore, since the equilibrium
solution xt ≡ 0 of the stochastic differential equation (13) is exponentially stable in
mean square, the converse Lyapunov theorem proved by Khasminskii [9] asserts that
there exists a Lyapunov function V and positive constants β1 and β2 such that

L1V (x1) ≤ −β1||x1||2

and

||∇V (x1)|| ≤ β2||x1||2

for all x1 in a neighborhood of the origin in Rn1 . Then, defining the function q on Rn
by

q(x) = −L1V (x1)−
(
∇V ∂f1

∂x2

)
(x1, φ(x1))(x2 − φ(x1))− LW (x)

+k||x2 − φ(x1)||2,
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where k is nonnegative, one can prove that there exist nonnegative constants M1 and
M2 such that

q(x) ≥ β1||x1||2 −M1||x1||.||x2 − φ(x1)||+ (k −M2)||x2 − φ(x1)||2,

and so q is positive definite provided that k is large enough. On the other hand,
denoting by K a nonnegative constant such that

||f1(x)− f1(x1, φ(x1))− ∂f1

∂x2
(x1, φ(x1))(x2 − φ(x1))|| ≤ K||x2 − φ(x1)||,

one can prove that there exists a constant s > 0 such that for all x in a neighborhood
of the origin in Rn,

|LΦ(x) + q(x)| ≤ s||x2 − φ(x1)||a

≤ −s
c

(
∂W

∂x2
h2r

)
(x).

Therefore,

LΦ(x) +
(
∂Φ
∂x2

h2

)
(x)

rs

c
≤ −q(x)

for all x in a neighborhood of the origin in Rn, x 6= 0, and since rs
c is bounded, the

control Lyapunov function Φ satisfies the bounded control property. This concludes
the proof of Theorem 2.1.

The following result, which is an immediate consequence of the previous theorem,
provides a control Lyapunov function for the stochastic differential system (5) that
depends directly on the dynamics of the stochastic differential systems (10) and (11).

THEOREM 2.2. Assume that there exist neighborhoods D and D1 of the origin in
Rn and Rn1 , respectively, and mappings r : D → Rp and φ : D1 → Rn2 such that r is
Lipschitz continuous, φ(0) = 0, φ is continuous, the equilibrium solution x1,t ≡ 0 of
the stochastic differential system

dx1,t = f1(x1,t, φ(x1,t))dt+ g1(x1,t)dwt(20)

is asymptotically stable in probability, and the set

M = {x ∈ D / x2 = φ(x1), x1 ∈ D1}

is asymptotically stable with respect to the differential system

ẋ =
(

0
(h2r)(x)

)
.(21)

Then, the stochastic differential system (5) satisfies a stochastic Lyapunov condition
at the origin.

Proof of Theorem 2.2. Let N be the subset of Rn defined by

N = {x ∈ Rn / x1 ∈ D1}.

Then the region N is positively invariant for the ordinary differential system (21)
(cf. [12]), and since M ⊂ N is asymptotically stable with respect to (21), one can
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deduce from [15] that there exists a smooth Lyapunov function W defined on N such
that W (x) > 0 and (∂W∂x2

h2r)(x) < 0 for x /∈ M , whereas W (x) = 0 for x ∈ M .
Therefore, (∂W∂x2

h2r)(x) ≤ 0 in a neighborhood of the origin and (∂W∂x2
h2r)(x) = 0 if

and only if x2 = φ(x1). Then, assumptions 1 and 2 of Theorem 2.1 are satisfied, and
so the stochastic differential system (5) satisfies a stochastic Lyapunov condition at
the origin. This concludes the proof of Theorem 2.2.

In the following, we study the particular case of stochastic differential systems
in the form (9). Note that one can assume without loss of generality that f2 ≡ 0.
Otherwise, it suffices to apply in (9) the smooth feedback law u→ −f2 + u, and the
stochastic differential system becomes

d

(
x1,t
x2,t

)
=
(
f1(x1,t, x2,t)

0

)
dt+

(
0
u

)
dt+

(
g1(x1,t)

g2(x1,t, x2,t)

)
dwt.(22)

The stabilizability of such stochastic differential systems has already been studied
in [6]; however, the following result asserts that the existence of stabilizing feedback
laws for the stochastic differential system (22) is a consequence of Theorem 2.1.

PROPOSITION 2.3. Assume that the stochastic differential system (10) is asymp-
totically stabilizable in probability by means of a feedback law ν = φ(x1) which is
continuously differentiable in a neighborhood of the origin in Rn1 . Then, the stochas-
tic differential system (22) satisfies a stochastic Lyapunov condition at the origin, and
the corresponding control Lyapunov function satisfies the small control property.

Proof of Proposition 2.3. Since the equilibrium solution x1,t ≡ 0 of the stochastic
differential equation

dx1,t = f1(x1,t, φ(x1,t))dt+ g1(x1,t)dwt

is asymptotically stable in probability, the converse Lyapunov theorem proved by
Kushner [10] asserts that there exists a Lyapunov function V defined in a neighbor-
hood D of the origin in Rn1 such that

L1V (x1) < 0

for any x1 ∈ D, x1 6= 0. On the other hand, let W be the functional defined on Rn by

W (x) =
1
2
||x2 − φ(x1)||2.

Then, W is semipositive definite and ∂W
∂x2

is continuously differentiable in a neigh-
borhood of the origin. Furthermore, if r denotes the functional defined on Rn by

ri(x) = −sgn ((x2 − φ(x1))i) , 1 ≤ i ≤ n2,

it is obvious that r is uniformly bounded on Rn and so W satisfies the hypotheses of
Theorem 2.1.

In particular, note that (12) is fulfilled with a = 1, which implies that the control
Lyapunov function Φ defined on Rn by

Φ(x) = V (x1) +W (x)

satisfies the small control property. This completes the proof of Proposition 2.3.
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3. Numerical examples.
Example 1. Let x0 be given in R2, and denote by xt ∈ R2, the solution of the

stochastic differential system

d

(
x1,t
x2,t

)
=
(
− 1

2x1,t + x2,t
φ1(x1,t, x2,t)

)
dt+ u

(
0

x2,t + φ2(x1,t)

)
dt

+
(
x1,t
x2,t

)
dwt,(23)

where φ2 is a C2 functional on R such that

−2x1φ2(x1) + (x1∇φ2(x1)− φ2(x1))2 < 0(24)

for any x1 in a neighborhood of the origin in R, x1 6= 0. (Note that φ2(x1) = x1
satisfies inequality (24).) Then one can prove easily that
• the function Φ defined on R2 by

Φ(x) = x2
1 + (x2 + φ2(x1))2

is a control Lyapunov function for the stochastic differential system (23);
• the feedback law ν = −φ2(x1) renders the control stochastic differential system

dx1,t = −1
2
x1,tdt+ νdt+ x1,tdwt

asymptotically stable in probability.
Therefore, according to Theorems 1.2 and 2.1 the stochastic differential system

(23) is asymptotically stabilizable in probability by means of a feedback law which is
smooth in a neighborhood of the origin in R2, except possibly at the origin. On the
other hand, if W denotes the function defined on R2 by

W (x) = (x2 + φ(x1))2,

one can prove that inequality (12) is fulfilled with a = 2 and r = −1; therefore, the
function Φ satisfies the bounded control property provided that ∇φ2(0) = 0.

Furthermore, in this case the equilibrium solution x1,t ≡ 0 of the stochastic
differential equation

dx1,t =
(
−1

2
x1,t − φ2(x1,t)

)
dt+ x1,tdwt

is exponentially stable in mean square, which implies, according to Theorem 2.1, that
the stochastic differential system (23) is asymptotically stabilizable in probability by
a bounded feedback law.

Example 2. Consider the stochastic differential system in R3 defined by

dyt =

 y3
1,t − y2

1,t(y2,t + y3,t)
y2,t
0

 dt+

 0
(y1,t − y2,t)3

0

u1dt

+

 0
0
1

u2dt+

 y2
1,t
y2,t
y3,t

 dwt,(25)
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where y0 is given in R3. The stochastic differential system (25) has the form (5),
where

x1,t = y1,t, x2,t =
(
y2,t
y3,t

)
, xt =

(
x1,t
x2,t

)
,

f1(x) = y3
1,t − y2

1,t(y2,t + y3,t), f2(x) =
(
y2,t
0

)
,

g1(x1,t) = x2
1,t, g2(x) = x2,t,

u =
(
u1
u2

)
,

and

h2(x) =
(

(y1,t − y2,t)3 0
0 1

)
.

Furthermore, if r denotes the functional defined on R3 by

r(x) =
(

1
y1,t − y3,t

)
and if φ denotes the functional defined on R by

φ(x1) =
(
x1
x1

)
,(26)

then the set

M =
{
x ∈ R3 / x2 = φ(x1)

}
is asymptotically stable with respect to the ordinary differential system (21). This
result is easily proved by evaluating the derivative of the Lyapunov functionW defined
on R3 by

W (x) =
1
2
||x2 − φ(x1)||2

along the trajectories of (21). On the other hand, the feedback law ν defined on R by

ν = φ(x1)

asymptotically stabilizes in probability the stochastic differential system (10). Indeed,
if V denotes the Lyapunov function defined on R by

V (x1) =
1
2
x2

1,

one has

L1V (x1) = −1
2
x4

1,

which implies, according to the stochastic Lyapunov theorem (Theorem 1.3 in [6]),
that the equilibrium solution x1,t ≡ 0 of the stochastic differential system (20) is
asymptotically stable in probability. Therefore, the stochastic differential system
(25) satisfies the hypotheses of Theorem 2.2 and so is asymptotically stabilizable in
probability.
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Abstract. In this paper we study the bilevel dynamic problem, which is a hierarchy of two
dynamic optimization problems, where the constraint region of the upper level problem is determined
implicitly by the solutions to the lower level optimal control problem. To obtain optimality conditions,
we reformulate the bilevel dynamic problem as a single level optimal control problem that involves the
value function of the lower-level problem. Sensitivity analysis of the lower-level problem with respect
to the perturbation in the upper-level decision variable is given and first-order necessary optimality
conditions are derived by using nonsmooth analysis. A constraint qualification of calmness type and
a sufficient condition for the calmness are also given.

Key words. necessary conditions, bilevel dynamic problems, sensitivity analysis, nonsmooth
analysis, value function, constraint qualification, calmness condition
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1. Introduction. Let us consider a two-level hierarchical system where two de-
cision makers try to find best decisions with respect to certain, but generally different,
goals. Moreover, assume that these decision makers cannot act independently of each
other but only according to a certain hierarchy whereby the optimal strategy chosen
by the lower level (hereafter the “follower”) depends on the strategy selected by the
upper level (hereafter the “leader”). On the other hand, let the objective function of
the leader depend not only on his own decision but also on the reaction of the follower.
Then while having the first choice, the leader is able to evaluate the true value of his
own selection only after knowing the follower’s possible reactions. Assume that the
game is cooperative; i.e., if the follower’s problem has several optimal decisions for a
given leader’s decision, then the follower allows the leader to choose which of them is
actually used. Thus the leader will choose his optimal decision among all decisions
available and the follower’s optimal decision to minimize his objective. In particular,
we consider a hierarchical dynamical system, where the state x(t) ∈ Rd is influenced
by the decisions of both leader and follower u(·) and v(·). The state x(t) ∈ Rd is
described by

ẋ(t) = φ(t, x(t), u(t), v(t)) almost everywhere (a.e.) t ∈ [t0, t1],
x(t0) = x0,

where u(t) ∈ U , a closed subset of Rn and v(t) ∈ W (t) ⊂ Rm for almost all t ∈
[t0, t1]. In mathematical terms, given any control function u(·) selected by the leader,
the follower faces the ordinary (single-level) optimal control problem involving a
parameter u,

P2(u) min J2(x, u, v) =
∫ t1

t0

G(t, x(t), u(t), v(t))dt+ g(x(t1))
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subject to (s.t.) ẋ(t) = φ(t, x(t), u(t), v(t)) a.e.,

x(t0) = x0,

v(t) ∈W (t) a.e.,

while the leader faces the bilevel dynamic problem,

P1 min J1(x, u, v) =
∫ t1

t0

F (t, x(t), u(t), v(t))dt+ f(x(t1))

over u ∈ L2([t0, t1], U) and all solutions (x, v) of P2(u).

The bilevel static problem, where both the leader’s and the follower’s decisions are
vectors instead of control functions, was first introduced by von Stackelberg [14] for
an economic model. The bilevel dynamic problems were first considered by Chen and
Cruz in [2]. Most of the bilevel (static or dynamic) problems are attacked by reducing
the bilevel problem to a single-level problem with the first-order necessary optimality
conditions for the lower-level problem as additional constraints (cf. Bard and Falk [1]
and Zhang [20], [21] for bilevel static problems, Chen and Cruz [2] and Zhang [20] for
bilevel dynamic problems). The reduction is equivalent provided the lower-level opti-
mal control problem is convex, since in this case the first-order necessary optimality
condition is also sufficient. Apart from the strong convexity assumption, the resulting
optimality conditions of the above approach involve second-order derivatives and a
larger system, since the reduced problem minimizes over the set of original decision
variables as well as the set of multipliers of the lower-level problem.

To our knowledge, there is no optimality condition for a general bilevel dynamic
problem to date. The necessary condition obtained by Chen and Cruz in [2] holds
in the case where Pontryagin’s maximum principle for the lower-level optimal control
problem is sufficient for optimality and no bounds are allowed for the control func-
tions. The necessary condition was stated in a normal form (i.e., the multiplier for the
objective function of the upper-level problem is 1) that holds only when the reduced
single-level optimal control problem is calm (see [3] for definition). The necessary con-
dition obtained by Zhang in [20] is only for a bilevel dynamic problem in which the
dynamics are linear in the state and control variables and require convexity assump-
tions on the objective function of the lower-level problem. The purpose of this paper
is to provide first-order necessary optimality conditions for problem P1 under very
general assumptions (in particular, without convexity assumptions and with bounds
on the control functions).

Define the value function of the lower-level optimal control problem as an extended-
valued functional V (u) : L2([t0, t1], U)→ R̄ defined by

V (u) := inf


∫ t1
t0
G(t, x(t), u(t), v(t))dt+ g(x(t1)) : ẋ(t) = φ(t, x(t), u(t), v(t)) a.e.

v(t) ∈W (t) a.e.
x(t0) = x0

 ,

where R̄ := R ∪ {−∞} ∪ {+∞} is the extended real line and inf ∅ = +∞ by conven-
tion. Our approach is to reformulate P1 as the following single-level optimal control
problem:

P̃1 min J1(u, v) =
∫ t1

t0

F (t, x(t), u(t), v(t))dt+ f(x(t1))
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s.t. ẋ(t) = φ(t, x(t), u(t), v(t)) a.e.,

x(t0) = x0,

u(·) ∈ L2([t0, t1], U), v(t) ∈W (t) a.e.,∫ t1

t0

G(t, x(t), u(t), v(t))dt+ g(x(t1))− V (u) = 0.(1)

The above problem is obviously equivalent to the original bilevel dynamic problem
P1 and is a nonstandard optimal control problem since the constraint (1) involves a
functional defined by the value function V (u) of the lower-level optimal control prob-
lem. In general V (u) is not an explicit function of the problem data and is nonsmooth
even in the case where all problem data are smooth functions. To derive a necessary
condition for optimality for problem P1, one needs to study Lipschitz continuity and
generalized gradients of the value function V (u) and develop a necessary optimality
condition for the nonstandard optimal control problem with functional constraints
(1). Recent developments in nonsmooth analysis allow us to study Lipschitz continu-
ity and generalized gradients of the value function V (u) with respect to a nonadditive
infinite-dimensional perturbation u. We then reformulate the nonstandard optimal
control problem as an infinite-dimensional optimization problem and use a result due
to Ioffe [8] to derive a necessary optimality condition for the nonstandard optimal
control problem with functional constraints.

The approach of reducing a bilevel problem to a single-level problem using the
value function was used in the literature (see [11], [12]) for numerical purposes and
for deriving first-order necessary conditions for the static bilevel optimization problem
[17], [18]. The essential issue in the static case is the constraint qualification since the
generalized differentiability of the value function in the finite-dimensional case is well
known and the resulting equivalent single-level problem is an ordinary mathematical
programming problem. It was shown in [17] and [18] that bilevel problems always
have abnormal multipliers, and the right constraint qualification for ensuring the
existence of a normal multiplier is the calmness condition. In Ye [16], a bilevel dynamic
optimization problem where the lower level is an optimal control problem while the
upper-level decision variable is a vector is considered. Although the bilevel dynamic
optimization problem considered in [16] is a special case of the problem we study in
this paper, it deserves special attention since it reduces to a single-level optimal control
problem with end point constraints involving a value function that is a function of
the upper-level decision vector. Fritz John–type necessary optimality conditions were
derived under more general assumptions.

The following basic assumptions are in force throughout this paper:
(A1) W (t) : [t0, t1] → Rm is a nonempty, compact-valued, set-valued map. The

graph of W (t) (i.e., the set {(s, r) : s ∈ [t0, t1], r ∈W (s)}), denoted by GrW , is L×B
measurable, where L × B denotes the σ-algebra of subsets of [t0, t1] × Rm generated
by product sets M ×N where M is a Lebesgue measurable subset of [t0, t1] and N is
a Borel subset of Rm.

(A2) The function F (t, x, u, v) : [t0, t1]×Rd×Rn×Rm → R is L×B measurable in
(t, v) and continuously differentiable in x and u. The functions φ(t, x, u, v) : [t0, t1]×
Rd ×Rn ×Rm → Rd, G(t, x, u, v) : [t0, t1]×Rd ×Rn ×Rm → R are measurable in t,
continuously differentiable in x and u, and lower semicontinuous in v.

(A3) There exists an integrable function ψ : [t0, t1]→ R such that

|∇(x,u)F |+ |∇(x,u)G|+ |∇(x,u)φ| ≤ ψ(t) ∀(t, x, u, v) ∈ [t0, t1]×Rd × U ×W (t).
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(A4) The function f(x) : Rd → R is locally Lipschitz continuous, and the function
g(x) : Rd → R is Lipschitz continuous of rank Lg ≥ 0.

(A5) For any u ∈ L2([t0, t1], U), P2(u) has an admissible pair (whose definition is
given below).
A control function for P2(u) is a (Lebesgue) measurable selection v(·) for W (·), that is,
a measurable function satisfying v(t) ∈ W (t) a.e. t ∈ [t0, t1]. An arc is an absolutely
continuous function. An admissible pair for P2(u) is a pair of functions (x(·), v(·)) on
[t0, t1] of which v(·) is a control function for P2(u) and x(·) : [t0, t1] → Rd is an arc
that satisfies the differential equation ẋ(t) = φ(t, x(t), u(t), v(t)) a.e., together with
the initial condition x(t0) = x0. The first and the second components of an admissible
pair are called an admissible trajectory and admissible control, respectively. A solution
to problem P2(u) is an admissible pair for P2(u) that minimizes the value of the cost
functional J2(x, u, v) over all admissible pairs for P2(u). An admissible strategy for
P1 includes u ∈ L2([t0, t1], U) and an optimal control v for P2(u). The strategy (u, v)
and the corresponding trajectory x are optimal for the bilevel dynamic problem P1
if (x, u, v) minimizes the value of the cost functional J1(x, u, v) among all admissible
strategies and the corresponding trajectories for P1.

The plan of the paper is as follows. In section 2, we study generalized differen-
tiability of the value function V (u). In section 3, under a calmness-type constraint
qualification, we derive a Kuhn–Tucker–type necessary optimality condition for the
bilevel dynamic problem. It is also shown that the existence of a uniformly weak
sharp minimum is a sufficient condition for the calmness, and a sufficient condition
for existence of a weak sharp minimum is given. Finally, three examples are given in
section 3 to illustrate applications of the constraint qualification and the necessary
optimality conditions.

2. Differentiability of the value function. Let X be a Hilbert space. Con-
sider a lower semicontinuous functional φ : X → R∪{+∞} and a point x̄ ∈ X, where
φ is finite. A vector ζ ∈ X is called a proximal subgradient of φ(·) at x̄ provided that
there exist M > 0, δ > 0 such that

φ(x′)− φ(x̄) +M‖x′ − x̄‖2 ≥ 〈ζ, x′ − x̄〉, x′ ∈ x̄+ δB.

The set of all proximal subgradients of φ(·) at x̄ is denoted ∂πφ(x̄). A limiting
subgradient of φ at x̄ is the set

∂̂φ(x̄) := {weak lim
k→∞

ζk : ζk ∈ ∂πφ(xk), xk → x̄, φ(xk)→ φ(x̄)}.

The limiting subgradient is a smaller object than the Clarke generalized gradient
(see Clarke [3] for definition). In fact, if φ is Lipschitz continuous near x̄, we have
∂φ(x̄) = clco∂̂φ(x̄), where ∂ and clcoA denote the Clarke generalized gradient and
closed convex hull of set A, respectively. For the definition and more details of the
precise relation between the limiting subgradient and the Clarke generalized gradient,
the reader is referred to Clarke [4] and Rockafellar [13].

The following result concerning the compactness of trajectories of a differential
inclusion is slightly different from [3, Theorem 3.1.7] and will be used repeatedly. We
omit the proof here since it can be proved similarly to [3, Theorem 3.1.7].

PROPOSITION 2.1. Let Γ : [t0, t1] × Rd × Rn → Rn × Rn be a set-valued map.
We suppose that Γ is integrably bounded (i.e., there exists an integrable function k(t)
such that |v| ≤ k(t)∀v ∈ Γ(t, x, u)) and that Γ is nonempty, compact, and convex. We
suppose that for every (t, x, u) ∈ [t0, t1]×Rd ×Rn the set-valued map t′ → Γ(t′, x, u)
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is measurable and ∀[t0, t1]×Rd×Rn, the set-valued map (x′, u′)→ Γ(t, x′, u′) is upper
semicontinuous. Let Γ be L × B measurable, where L × B denotes the σ-algebra of
subsets of [t0, t1]×Rd×Rn generated by product sets M ×N , where M is a Lebesque
measurable subset of [t0, t1] and N is a Borel subset of Rd ×Rn.

Let {xi} be a sequence of arcs on [t0, t1] and {ζi} be a sequence of functions in
L2([t0, t1], Rn) satisfying

(i) (ẋi(t), ζi(t)) ∈ Γ(t, xi(t), ui(t))a.e. t ∈ [t0, t1],
(ii) ζi → ζ weakly in L2,
(iii) ui → u in L2,
(iv) {xi(t0)} is bounded.

Then there exists a subsequence of {xi} that converges uniformly to an arc x such that

(ẋ(t), ζ(t)) ∈ Γ(t, x(t), u(t)) a.e. t ∈ [t0, t1].

To discuss generalized differentiability of the value function V (u), we will need
the following assumptions:

(A6) There exists k(t) ∈ L2([t0, t1], R) such that

|φ|+ |∇(x,u)φ|+ |G|+ |∇(x,u)G| ≤ k(t) ∀(t, x, u, v) ∈ [t0, t1]×Rd × U ×W (t).

(A7) For any (t, x, u) ∈ [t0, t1]×Rd ×Rn the set

{(φ(t, x, u, v), G(t, x, u, v) + r) : v ∈W (t), r ≥ 0}

is convex.
(A8) |∇uφ| ≤ M ∀(t, x, u, v) ∈ [t0, t1] × Rd × U × W (t), where M > 0 is a

constant.
Remark 2.2. Assumption (A7) is standard in control theory to ensure the existence

of an optimal control for the lower-level problem. In the case where this assumption
is not satisfied, the standard procedure is to go for the relaxed control (see, e.g., [19]
and [22]).

Let the Hamiltonian for P2(u) be the function defined by

H2(t, x, u, p2) := sup{p2 · φ(t, x, u, v)−G(t, x, u, v) : v ∈W (t)}

and Yu be the set of all optimal trajectories x to problem P2(u).
The following result gives the Lipschitz continuity of the value function and char-

acterizes the generalized gradient of the value function. It extends the result of Clarke
[5] to allow general nonadditive perturbations in both the dynamics and the objective
function.

THEOREM 2.3. Suppose that assumptions (A1)–(A8) hold. Then V is Lipschitz
continuous near u and

∂V (u) ⊂ clco ∪x∈Yu {ζ : ∃ arc p2 s.t. (−ṗ2,−ζ, ẋ) ∈ ∂H2(t, x, u, p2) a.e.

−p2(t1) ∈ ∂̂g(x(t1))},

where ∂H2 denotes the Clarke generalized gradient with respect to (x, u, p2).
Before proving Theorem 2.3, we first give the following result.
LEMMA 2.4. Let ui be a sequence converging (in L2) to u and let (xi, vi) be

an admissible pair for P2(ui). Then there exist a subsequence of {xi} converging
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uniformly to an arc x and a control v with (x, v) being an admissible pair for P2(u)
such that

J2(x, u, v) ≤ lim inf J2(xi, ui, vi).

Proof. Let

ẏi(t) := G(t, xi(t), ui(t), vi(t)).

Then

(ẋi(t), ẏi(t)) ∈ Γ(t, xi(t), yi(t), ui(t)),(2)

where

Γ(t, x, y, u) := {(φ(t, x, u, v), r) : G(t, x, u, v) ≤ r ≤ k(t) + 1, v ∈ V (t)}.

The proof can be reduced to an application of Proposition 2.1 by studying the
differential inclusion (2). The essential fact in the reduction is Fillipov’s lemma: an
(extended) arc (x, y) satisfies the differential inclusion iff there is a control function
v for x such that (x, v) is feasible for P2(u) and y satisfies G(t, x, u, v) ≤ ẏ ≤
k(t) + 1.

We now turn to the proof of the theorem. By (A5), P2(u) has an admissible pair.
So V (u) is finite. By Lemma 2.4, V is (strongly) lower semicontinuous.

Step 1. Let u ∈ L2([t0, t1], U) and ζ ∈ ∂πV (u). Let (x, v) be a solution of P2(u)
that exists by virtue of Lemma 2.4. Then by definition, for some M > 0 and ∀ u′
near u (in the L2 norm), we have

V (u′)− 〈ζ, u′〉+M‖u′ − u‖22 ≥ V (u)− 〈ζ, u〉

=
∫ t1

t0

G(t, x(t), u(t), v(t))dt+ g(x(t1))−
∫ t1

t0

〈ζ(t), u(t)〉dt.

Let (x′, v′) be an admissible pair for P2(u′). Then∫ t1

t0

G(t, x′(t), u′(t), v′(t))dt+ g(x′(t1))−
∫ t1

t0

〈ζ(t), u′(t)〉dt+M‖u′ − u‖22

≥
∫ t1

t0

G(t, x(t), u(t), v(t))dt+ g(x(t1))−
∫ t1

t0

〈ζ(t), u(t)〉dt.

Hence (x, u, v) is a solution of the following optimal control problem:

min
∫ t1

t0

[G(t, x′(t), u′(t), v′(t))− 〈ζ(t), u′(t)〉]dt+ g(x′(t1)) +M‖u′ − u‖22

s.t. ẋ′(t) = φ(t, x′(t), u′(t), v′(t)) a.e.,

x′(t0) = x0,

v′(t) ∈W (t) a.e.,

u′(t) ∈ U(t) := {u′ ∈ Rn : |u′ − u(t)| ≤ ε}.

Applying Theorem 5.2.1 of Clarke [3] with the Clarke generalized gradient replaced
by the limiting subgradient in the transversality conditions (cf. [4, 10, 9]) to the above
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optimal control problem with free end points leads to the existence of an arc p2 such
that

−ṗ2(t) = ∇xφ(t, x(t), u(t), v(t))>p2(t)−∇xG(t, x(t), u(t), v(t)) a.e.,(3)
max

u∈U(t),v∈W (t)
{p2(t) · φ(t, x(t), u, v)−G(t, x(t), u, v) + 〈ζ(t), u〉}

= p2(t) · φ(t, x(t), u(t), v(t))−G(t, x(t), u(t), v(t)) + 〈ζ(t), u(t)〉 a.e.,(4)

−p2(t1) ∈ ∂̂g(x(t1)),(5)

where > denotes the transpose. Equation (4) implies that

max
v∈W (t)

{p2(t) · φ(t, x(t), u(t), v)−G(t, x(t), u(t), v)}

= p2(t) · φ(t, x(t), u(t), v(t))−G(t, x(t), u(t), v(t)) a.e.

and

−ζ(t) = ∇uφ(t, x(t), u(t), v(t))>p2(t)−∇uG(t, x(t), u(t), v(t)).(6)

Step 2. For any ζ ∈ ∂̂V (u) by definition ζ = weak limi→∞ ζi, where ζi ∈ ∂πV (ui),
ui → u in L2 and V (ui) → V (u). By Step 1, for each ui there exists an arc pi2 and
an arc xi that solves P2(ui) (along with vi) such that

−ṗ2
i(t) = ∇xφ(t, xi(t), ui(t), vi(t))>pi2(t)−∇xG(t, xi(t), ui(t), vi(t)) a.e.,(7)

max
v∈W (t)

{pi2(t) · φ(t, xi(t), ui(t), v)−G(t, xi(t), ui(t), v)}

= pi2(t) · φ(t, xi(t), ui(t), vi(t))−G(t, xi(t), ui(t), vi(t)) a.e.,(8)

−ζi(t) = ∇uφ(t, xi(t), ui(t), vi(t))>pi2(t)−∇uG(t, xi(t), ui(t), vi(t)),(9)

−pi2(t1) ∈ ∂̂g(xi(t1)).(10)

By [3, Theorem 2.8.2], (7), (8), and (9) imply that

(−ṗi2(t),−ζi(t), ẋi(t)) ∈ ∂H2(t, xi(t), ui(t), pi2(t)) a.e.(11)

From (7)

pi2(t) = pi2(t1)−
∫ t

t1

[∇xφ(s, xi(s), ui(s), vi(s))>pi2(s)−∇xG(s, xi(s), ui(s), vi(s))]ds.

By assumption (A4) and inclusion (10), the norm of pi2(t1) is bounded by Lg. As-
sumption (A3) implies that the norms of ∇xφ and ∇xG are bounded by the integrable
function ψ. Thus

|pi2(t)| ≤ (Lg +
∫ t1

t0

ψ(s)ds) +
∫ t1

t

ψ(s)|pi2(s)|ds

= K +
∫ t1

t

ψ(s)|pi2(s)|ds,
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where K := Lg +
∫ t1
t0
ψ(s)ds. Invoking Gronwall’s inequality, we conclude that

|pi2(t)| ≤ Ke
∫ t1
t ψ(s)ds,

which implies that ‖pi2‖∞ is bounded. It follows that the set-valued map ∂H2 is inte-
grably bounded. Applying Proposition 2.1 to differential inclusion (11) with boundary
condition (10), we conclude that there exists a convergent subsequence of {xi, pi2} that
converges to the arcs x, p2 such that

(−ṗ2(t),−ζ(t), ẋ(t)) ∈ ∂H2(t, x(t), u(t), p2(t)) a.e.

Note that by Lemma 2.4 we may suppose x ∈ Yu since xi is an optimal trajectory of
P2(ui). From the upper semicontinuity of the limiting subgradients

−p2(t1) ∈ ∂̂g(x(t1)).

Therefore we conclude that

∂̂V (u) ⊂ ∪x∈Yu{ζ : ∃ arc p2 s.t. (−ṗ2,−ζ, ẋ) ∈ ∂H2(t, x, u, p2) a.e.,−p2(t1) ∈ ∂̂g(x(t1))}.

Step 3. To complete the proof of the theorem, we only have to show that V is
Lipschitz near u. By [6, Theorem 3.6], V is Lipschitz near u of rank C iff

sup{‖ζ‖2 : ζ ∈ ∂πV (u′)} ≤ C ∀u′ in a neighborhood of u.

Indeed, by Step 1, for any u and any ζ ∈ ∂πV (u) there exists an arc p2 along with a
solution (x, v) of P2(u) such that (3), (5), and (6) hold. Therefore

|ζ(t)| ≤M(|p2(t)|+ |∇uG|).(12)

Since ∀ such p2, ‖p2‖∞ ≤ Ke
∫ t1
t0
ψ(s)ds, it then follows from (12) that all ζ ∈ ∂πV (u), ∀u ∈

L2([t0, t1], U) are bounded in L2. Hence V is Lipschitz continuous, and the proof of
Theorem 2.3 is now complete.

3. Necessary conditions for optimality. As in the static case (cf. [17, 18]), it
is easy to show that the equivalent single-level optimal control problem P̃1 always has
a nontrivial abnormal multiplier; i.e., there always exists (λ, r, p1) not all equal to zero
with λ = 0 satisfying (13), (14), (15), and (16). Hence the traditional technique of
concluding the existence of a normal multiplier from the nonexistence of a nontrivial
abnormal multiplier will not work for the bilevel dynamic problem, and the calmness
is the right constraint qualification (see more discussion in [17, 18]). The purpose
of this section is to derive a Kuhn–Tucker–type necessary optimality condition for
the bilevel dynamic problem under a calmness-type constraint qualification. Our ap-
proach is to reformulate the original problem as an infinite-dimensional optimization
problem and derive the desired result from the necessary optimality condition for this
infinite-dimensional optimization problem. Formulation as an infinite-dimensional
optimization problem takes care of the functional constraints. However, the usual La-
grange multiplier rule for infinite-dimensional optimization problems cannot be used
here since the problem data are not Lipschitz in the control variable in the lower-level
optimal control problem. Ioffe [8] derived a very general maximum principle for the
standard optimal control problem by reduction to an infinite-dimensional optimiza-
tion problem. We will use the result and approach of Ioffe to derive the necessary
optimality condition of the maximum principle type for the bilevel dynamic problem.
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DEFINITION 3.1. Let (u∗, v∗) be an optimal strategy of P1 (equivalently P̃1) and
x∗ the corresponding trajectory. P̃1 is said to be partially calm at (x∗, u∗, v∗) with
modulus µ ≥ 0 if ∀(x, u, v) satisfying

ẋ(t) = φ(t, x(t), u(t), v(t)) a.e.,

x(t0) = x0,

u(·) ∈ L2([t0, t1], U), v(·) ∈ V,

we have

J1(x, u, v)− J1(x∗, u∗, v∗) + µ(J2(x, u, v)− V (u)) ≥ 0,

where V denotes the collection of all admissible control functions for P2(u).
Define the pseudo Hamiltonian for problem (P̃1) as

H1(t, x, u, v, p1;λ, r) := p1 · φ(t, x, u, v)− rG(t, x, u, v)− λF (t, x, u, v),

for t ∈ [t0, t1], x, p1 ∈ Rd, u ∈ Rn, v ∈ Rm, λ, r ∈ R.
THEOREM 3.2. Assume that (A1)–(A5) hold. Let (x∗, u∗, v∗) be an optimal so-

lution of P1. Suppose that P̃1 is partially calm at (x∗, u∗, v∗) with modulus µ ≥ 0.
Assume that the value function for the lower-level problem V is locally Lipschitz con-
tinuous near u∗. Then there exist λ > 0, r = λµ, and an arc p1 such that

−ṗ1(t) = ∇xH1(t, x∗(t), u∗(t), v∗(t), p1(t);λ, r) a.e.,(13)

max
v∈W (t)

H1(t, x∗(t), u∗(t), v, p1(t);λ, r)

= H1(t, x∗(t), u∗(t), v∗(t), p1(t);λ, r) a.e.,(14)

−p1(t1) ∈ λ∂f(x∗(t1)) + r∂g(x∗(t1)),(15)

∇uH1(·, x∗(·), u∗(·), v∗(·), p1(·);λ, r) ∈ −r∂V (u∗) +NL2([t0,t1],U)(u∗).(16)

Proof. Since P̃1 is partially calm at (x∗, u∗, v∗) with modulus µ, it is easy to see
that (x∗, u∗, v∗) is also optimal for the following penalized problem:

P (µ) min J1(x, u, v) + µ(J2(x, u, v)− V (u))
s.t. ẋ(t) = φ(t, x(t), u(t), v(t)) a.e.,

x(t0) = x0,

u(·) ∈ L2([t0, t1], U), v(t) ∈W (t) a.e.,

which can be equivalently posed as the following problem:

P̂1 min f(x(t1)) + z(t1) + µ(g(x(t1)) + y(t1)− V (u))
s.t. ẋ(t) = φ(t, x(t), u(t), v(t)) a.e.,

ẏ(t) = G(t, x(t), u(t), v(t)) a.e.,
ż(t) = F (t, x(t), u(t), v(t)) a.e.,
v(t) ∈W (t) a.e.,
(x, y, z)(t0) ∈ {x0} × {0} × {0}.
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We now reformulate the above problem as an infinite-dimensional optimization prob-
lem. Let C([t0, t1], Rn) be the space of continuous mappings from [t0, t1] into Rn with
the usual supremum norm. Set

x̃ := (x, y, z), φ̃ := (φ,G, F ).

For v(·) ∈ V, the mapping (x̃(·), u(·))→ F0(x̃(·), u(·), v(·)) from X := C([t0, t1], Rd+2)
×L2([t0, t1], U) into Y := C([t0, t1], Rd+2):

F0(x̃(·), u(·), v(·))(t) := x̃(t)− x̃(t0) +
∫ t

t0

φ̃(s, x̃(s), u(s), v(s))ds

is well defined, continuously differentiable in x̃(·), and Lipschitz continuous in u(·).
Finally, let

f0(x̃(·)) := f(x(t1)) + z(t1),(17)

G0(x̃(·), u(·)) := y(t1) + g(x(t1))− V (u),(18)

S := {x̃ ⊂ Y : x(t0) = x0, y(t0) = 0, z(t0) = 0}.

Then problem P̂1 is equivalent to the following infinite-dimensional optimization prob-
lem:

P1
′ min f0(x̃) + µG0(x̃, u)

s.t. F0(x̃, u, v) = 0,

(x̃, u) ∈ S × L2([t0, t1], U),

v ∈ V.

The above problem is in the form of a very general problem in section 4 of Ioffe
[8]. Let the Lagrangian of the above problem be

L(λ, α, x̃, u, v) := λ(f0(x̃) + µG0(x̃, u)) + 〈α, F0(x̃, u, v)〉.

As in section 5 of Ioffe [8], the assumptions for [8, Theorem 2] can be verified. By
[8, Theorem 2], if (x∗, u∗, v∗) is a local solution to P1

′, then there exist Lagrange
multipliers λ ≥ 0, α ∈ Y ∗ not all equal to zero such that

0 ∈ ∂(x̃,u)L(λ, α, x̃∗, u∗, v∗) +NS(x̃∗)×NL2([t0,t1],U)(u∗),(19)

L(λ, α, x̃∗, u∗, v∗) = min
v∈V

L(λ, α, x̃∗, u∗, v),(20)

where Y ∗ denotes the space of continuous linear functions on Y . Since f0, G0 are
separable functions of (x̃, u) (f0 is independent of u and G0 is the sum of a function
independent of x̃ and a function independent of u), by [15, Proposition 1.8], (19)
implies that

0 ∈ λ∂f0(x̃∗)× {0}+ (λµ∂x̃G0(x̃∗, u∗))× (−λµ∂V (u∗))

+∂(x̃,u)〈α, F0(x̃∗, u∗, v∗)〉+NS(x̃∗)×NL2([t0,t1],U)(u∗).(21)
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Notice that 〈α, F0(x̃, u, v)〉 can be represented as an integral functional on X ×L2 by

〈α, F0(x̃, u, v)〉

=
∫ t1

t0

〈x̃(s)− x̃(t0), ξ(s)〉dµ−
∫ t1

t0

〈∫ t1

t

ξ(τ)dµ, φ̃(t, x̃(t), u(t), v(t))
〉
dt,

where the pair (µ, ξ(·)) represents the functional α ∈ Y ∗ (µ being a nonnegative
Radon measure on [t0, t1] and ξ(·) : [t0, t1]→ Rd+2, µ-integrable); i.e.,∫ t1

t0

〈ξ(t), y(t)〉dµ = 〈α, y(·)〉 ∀y(·) ∈ Y.

Hence by Theorems 2.7.4 and 2.7.5 of [3] it is regular. Therefore, by [3, Proposition
2.3.15], (21) implies that

0 ∈ λ∂f0(x̃∗) + λµ∂x̃G0(x̃∗, u∗) +Dx̃〈α, F0(x̃∗, u∗, v∗)〉+NS(x̃∗),(22)

0 ∈ −λµ∂V (u∗) + ∂u〈α, F0(x̃∗, u∗, v∗)〉+NL2([t0,t1],U)(u∗),(23)

whereDx̃〈α, F0(x̃, u, v)〉 denotes the Gâteaux derivative of the functional 〈α, F0(x̃, u, v)〉
with respect to x̃.

Now let us analyze (22). We have that ∂f0(x̃(·)) contains those β ∈ Y ∗ that can
be represented in the form

〈β, h(·)〉 = 〈a, h(t1)〉

for some a ∈ ∂f(x(t1))× {0} × {1}.
Similarly, ∂x̃G0(x̃, u) contains those β ∈ Y ∗ that can be represented in the form

〈β, h(·)〉 = 〈b, h(t1)〉

for some b ∈ ∂g(x(t1))× {1} × {0}.
Let p(t) :=

∫ t1
t
ξ(τ)dµ. Then p is an arc. For any h ∈ X,

〈Dx̃〈α, F0(x̃, u, v)〉, h(·)〉 =
∫ t1

t0

〈h(t)− h(t0), ξ(t)〉dµ

−
∫ t1

t0

〈∇x̃φ̃(t, x̃(t), u(t), v(t))>p(t), h(t)〉dt.

NS(x̃) contains those β ∈ Y ∗ that can be represented in the form

〈β, h(·)〉 = 〈c, h(t0)〉

for some c ∈ N{x0}×{0}×{0}(x̃(t0)).
Inclusion (22) yields the existence of

a ∈ ∂f(x∗(t1))× {0} × {1}, b ∈ ∂g(x∗(t1))× {1} × {0}, c ∈ N{x0}×{0}×{0}(x̃
∗(t0))

such that

0 = λ〈a, h(t1)〉+ λµ〈b, h(t1)〉+
∫ t1

t0

〈h(t)− h(t0), ξ(t)〉dµ

−
∫ t1

t0

〈∇x̃φ̃(t, x̃∗(t), u∗(t), v∗(t))>p(t), h(t)〉dt+ 〈c, h(t0)〉 ∀h ∈ X.
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Let us denote h = (h1, h2, h3), ξ = (ξ1, ξ2, ξ3), p = (p1, p2, p3), where subscript 1
corresponds to vectors in Rd and subscripts 2, 3 to vectors in R. In particular, if we
choose h(·) that are absolutely continuous with h(t0) = 0, hi(·) = 0 for i = 1, 3, we
have

0 = λµh2(t1) +
∫ t1

t0

h2(t)ξ2(t)dµ,

which is equal to

0 =
∫ t1

t0

(∫ t1

t

ξ2(s)dµ+ λµ

)
dh2(t),

which implies that p2(t) = −λµ.
Similarly, if we choose h(·) that are absolutely continuous with h(t0) = 0, hi(·) = 0

for i = 1, 2, we have

0 = λh3(t1) +
∫ t1

t0

h3(t)ξ3(t)dµ,

which implies that p3(t) = −λ.
If we choose h(·) that are absolutely continuous with h(t0) = 0, hi(·) = 0 for

i = 2, 3, we have

0 = λ〈a1, h1(t1)〉+ λµ〈b1, h1(t1)〉+
∫ t1

t0

〈h1(t), ξ1(t)〉dµ

−
∫ t1

t0

〈∇xφ̃(t, x̃∗(t), u∗(t), v∗(t))>p(t), h1(t)〉dt.

Setting −q = λa1 + λµb1 and changing the order of integration, we obtain

0 =
∫ t1

t0

〈∫ t1

t

ξ1(t)dµ+∇xφ(t, x∗(t), u∗(t), v∗(t))>p1(t)

− λµ∇xG(t, x∗(t), u∗(t), v∗(t))− λ∇xF (t, x∗(t), u∗(t), v∗(t))− q, k(t)
〉
dt,

where k(t) = ḣ(t) is an arbitrary integrable mapping. In view of the definition of
p1(t), this implies

p1(t)− q = −
∫ t1

t

(∇xφ(s, x∗(s), u∗(s), v∗(s))>p1(s)

+λµ∇xG(s, x∗(s), u∗(s), v∗(s)) + λ∇xF (s, x∗(s), u∗(s), v∗(s)))ds,

from which we derive (13).
Let us now analyze (23). Since 〈α, F0(x̃, u, v)〉 is an integral functional of u on

L2, it is not Gâteaux differentiable. However, under our assumptions, [3, Theorem
2.7.5] applies. Therefore, for β ∈ ∂u〈α, F0(x̃∗, u∗, v∗)〉,

〈β, h(·)〉 = −
∫ t1

t0

〈∇uφ̃(t, x̃∗(t), u∗(t), v∗(t))>p(t), h(t)〉dt

for any h ∈ L2([t0, t1], Rn). Hence (23) implies (16).
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We also have

p(t1) = q ∈ −λ∂f(x∗(t1))− λµ∂g(x∗(t1)).

That is (15).
Equation (20) implies that

−
∫ t1

t0

〈p(t), φ̃(t, x̃∗(t), u∗(t), v∗(t))〉dt ≤ −
∫ t1

t0

〈p(t), φ̃(t, x̃∗(t), u∗(t), v(t))〉dt.

Since −λ = p2(t), λµ = −p3(t), the above inequality implies that∫ t1

t0

H1(t, x∗(t), u∗(t), v∗(t), p1(t);λ, λµ)dt ≥
∫ t1

t0

H1(t, x∗(t), u∗(t), v(t), p1(t);λ, λµ)dt

for any v(·) ∈ V. Since for any measurable set E ⊂ [t0, t1],

v(·) = χE(·)v(·) + (1− χE(·))v∗(·),

where χE denotes the characteristic function ofE, and belongs to V whenever v(·) ∈ V,
it follows that

H1(t, x∗(t), u∗(t), v∗(t), p1(t);λ, λµ) ≥ H1(t, x∗(t), u∗(t), v(t), p1(t);λ, λµ) a.e.

for any v(·) ∈ V. From measurable selection theory, (14) follows.
Now we need to show that λ 6= 0. From the fact that λ and α are not all equal

to zero, it follows easily that

‖p1‖∞ + λ > 0.(24)

This condition prevents λ becoming zero. Indeed if λ = 0, then the transversality
condition (15) would imply that p1(t1) = 0. This in turn implies that p1 ≡ 0, which
contradicts (24). The proof of the theorem is now complete.

Combining Theorems 3.2 and 2.3, the following Kuhn–Tucker–type necessary op-
timality condition for the general bilevel dynamic problem is obtained.

THEOREM 3.3. Assume (A1)–(A8) hold. Let (u∗(t), v∗(t)) be an optimal strategy
of the bilevel dynamic problem P1 and x∗(t) the corresponding optimal trajectory.
Suppose that P̃1 is partially calm at (x∗, u∗, v∗) with modulus µ ≥ 0. Then there
exists arc p1 such that

−ṗ1(t) = ∇xH1(t, x∗(t), u∗(t), v∗(t), p1(t); 1, µ),(25)

max
v∈W (t)

H1(t, x∗(t), u∗(t), v, p1(t); 1, µ)

= H1(t, x∗(t), u∗(t), v∗(t), p1(t); 1, µ) a.e.,(26)

−p1(t1) ∈ ∂f(x∗(t1)) + µ∂g(x∗(t1)),(27)

∇uH1(·, x∗(·), u∗(·), v∗(·), p1(·); 1, µ)

∈ µclco ∪x∈Yu∗ {ζ : ∃ arc p2 s.t. (−ṗ2, ζ, ẋ) ∈ ∂H2(t, x, u∗, p2) a.e.,

−p2(t1) ∈ ∂̂g(x(t1))}
+NL2([t0,t1],U)(u∗).(28)
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It is clear that in the minimax case (i.e., when J1 = −J2) and the trivial case
(i.e., when J1 = J2), the calmness condition always holds with µ = 1 and µ = 0,
respectively. We now give an example that satisfies the partial calmness condition.

Example 1. Consider the following bilevel dynamic problem:

min (x1(1))2 + (x2(1))2

s.t. u(t) ≥ 0, (x, v) ∈ S(u),

where S(u) is the solution set of

min (x1(1) + x2(1))3

s.t. ẋ1(t) = u(t),

ẋ2(t) = v(t), v(t) ≥ 0,

x1(0) = x2(0) = 0.

The solution of the above problem is x∗ = 0, u∗ = 0, v∗ = 0. Since J1(x, u, v) ≥ 0 for
all (x, u, v) that are admissible for P (µ) and J(x∗, u∗, v∗) = 0, it is easy to see that
the above problem is partially calm.

As seen in Example 1, the calmness condition depends on knowledge of the optimal
value of the dynamic bilevel problem. It is therefore important to find sufficient
conditions for the calmness condition. For the static case, [17] identifies the existence
of a uniformly weak sharp minimum as a sufficient condition for the calmness. It is
shown in that paper that the bilevel programming problem in which the lower-level
problem is linear is always calm, and sufficient conditions for the calmness of the
bilevel problem where the lower-level problem is a linear quadratic problem are given.

To extend the definition of a uniform weak sharp minimum to our dynamic setting,
we introduce the following notation. Given u, a control function for the upper level,
let Ω(u) denote

Ω(u) = {(x, v) ∈ C([t0, t1], Rd)× V : ẋ = φ(t, x, u, v), x(t0) = x0}.

Let S(u) denote the set of all solutions to problem P2(u). We say that the family
of optimal control problems {P2(u) : u ∈ L2([t0, t1], U)} has a uniformly weak sharp
minimum with modulus α > 0 if

dS(u)(x, v) ≤ α(J2(x, u, v)− V (u)) ∀(x, v) ∈ Ω(u), u ∈ L2([t0, t1], U),

where dS(u)(x, v) denotes the distance from (x, v) to the set S(u). As in [17], we
can show that a uniformly weak sharp minimum is a sufficient condition for partial
calmness.

PROPOSITION 3.4. In addition to (A1) and (A7), assume that for any u(·) there
exists k(·) ∈ L1([t0, t1]) such that

|F (t, x′, u(t), v′)− F (t, x′′, u(t), v′′)| ≤ k(t)‖(x′, v′)− (x′′, v′′)‖

∀t ∈ [t0, t1], x′, x′′ ∈ Rd, v′, v′′ ∈ Rm

and that f is Lipschitz continuous with constant Lf > 0. That {P2(u) : u ∈
L2([t0, t1], U)} has a uniformly weak sharp minimum with modulus α implies that
P̃1 is partially calm with modulus µ ≥ α(‖k‖1 + Lf ) at any solution of the problem.
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Proof. By the definition of a uniformly weak sharp minimum, there exists α > 0
such that ∀ (x, v) ∈ Ω(u), u ∈ L2([t0, t1], U),

J2(x, u, v)− V (u) ≥ (1/α)dS(u)(x, v)

= (1/α)|(x, v)− (x(u), v(u))|,

where (x(u), v(u)) is the metric projection of (x, v) onto the set S(u). Let (x∗, u∗, v∗)
be any solution of the problem P1. The assumptions imply that J1(x, u, v) is Lipschitz
continuous in (x, v) uniformly in u with constant L1 = ‖k‖1 + Lf . It follows that

J2(x, u, v)− V (u) ≥ 1
α
dS(u)(x, v)

=
1
α
|(x, v)− (x(u), v(u))|

≥ 1
αL1

(J1(x, u, v)− J1(x(u), u, v(u)))

≥ 1
αL1

(J1(x, u, v)− J1(x∗, u∗, v∗))

≥ 1
µ

(J1(x, u, v)− J1(x∗, u∗, v∗)).

Therefore, we see that P̃1 is partially calm at any solution of the problem with modulus
µ ≥ αL1.

The following result is a sufficient condition for a uniformly weak sharp minimum.
The proof technique follows from a result about regular points due to Ioffe (Theorem
1 and Corollary 1.1 of [7]).

PROPOSITION 3.5. Suppose that J2(x, u, v) is Lipschitz continuous in (x, v) uni-
formly in u with constant L > 0. If there exists a constant c > 0 such that ‖ξ+η‖ ≥ c
whenever ξ ∈ ∂(x,v)J2(x, u, v), η ∈ (L + 1)∂dΩ(u)(x, v) (or η ∈ NΩ(u)(x, v))∀(x, v) ∈
Ω(u) such that (x, v) 6∈ S(u) ∀ admissible controls u, then

dS(u)(x, v) ≤ (1/c)(J2(x, u, v)− V (u))∀(x, v) ∈ Ω(u).

Proof. Assume that the statement is false. Then there is u ∈ L2([t0.t1], U) and
(x, v) ∈ Ω(u) such that

dS(u)(x, v) >
1
c

(J2(x, u, v)− V (u)).

We can obviously choose δ > 1 to make the following inequality valid:

dS(u)(x, v) >
δ

c
(J2(x, u, v)− V (u)) := γ.(29)

It is also obvious that

J2(x, u, v)− V (u) ≤ inf
(x,v)∈Ω(u)

(J2(x, u, v)− V (u)) +
cγ

δ
.
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Let δS denote the indicator function of set S. Applying the Ekeland variational
principle [3, Theorem 7.5.1] with F (x′, v′) := J2(x′, u, v′) − V (u) + δΩ(u)(x′, v′), ε =
γc/δ, and λ = γ, we find (x̃, ṽ) ∈ Ω(u) such that

‖(x̃, ṽ)− (x, v)‖ ≤ γ(30)

and

φ(x′, v′) := J2(x′, u, v′)− V (u) + (c/δ)‖(x′, v′)− (x̃, ṽ)‖

attains its minimum on Ω(u) at (x̃, ṽ). It follows that

0 ∈ ∂φ(x̃, ṽ) + (L+ 1)∂dS(u)(x̃, ṽ)

⊂ ∂(x,v)J2(x̃, u, ṽ) + (c/δ)B + (L+ 1)∂dS(u)(x̃, ṽ).

Thus there exist

ξ ∈ ∂(x,v)J2(x̃, u, ṽ), η ∈ (L+ 1)∂dS(u)(x̃, ṽ)

such that

‖ξ + η‖ ≤ c/δ < c.(31)

According to (29), (30), and (x̃, ṽ) ∈ Ω(u), we have that

(x̃, ṽ) 6∈ S(u).

Therefore (31) contradicts the assumption. The proof of the proposition is then
complete.

We now use an example to illustrate the application of the above result. It is
different from Example 1 only in the lower-level objective function.

Example 2. Consider the following bilevel dynamic problem:

min (x1(1))2 + (x2(1))2

s.t. u(t) ≥ 0, (x, v) ∈ S(u),

where S(u) is the solution set of

min x1(1) + x2(1) + (x1(1) + x2(1))3

s.t. ẋ1(t) = u(t),

ẋ2(t) = v(t), v(t) ≥ 0,

x1(0) = x2(0) = 0.

It is easy to see that Ω(u) = {x1 : x1(t) =
∫ t

0 u(s)ds}×{x2 : x2(t) ≥ 0}×{v : v(t) ≥ 0}
and S(u) = {(x, v) : x1(t) =

∫ t
0 u(s)ds, x2 ≡ 0, v ≡ 0} ∀ u(t) ≥ 0. Since

∂(x,v)J2(x, u, v) = {(ξ1, ξ2, 0) :〈ξ1, h(·)〉 = ((1 + 3(x1(1) + x2(1))2)h(1),

〈ξ2, h(·)〉 = (1 + 3(x1(1) + x2(1))2)h(1) ∀ h ∈ C[0, 1]},

and NΩ(u)(x, v) = N{x1:x1(t)=
∫ t
0 u(s)ds}(x1)× {0} ×N{v:v(t)≥0}(v) for any (x1, x2, v) 6∈

S(u), it is easy to see that the assumptions in Proposition 3.5 are satisfied.
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We now calculate that

H1(t, x, u, v, p1; 1, µ) = p1
1u+ p2

1v, H2(t, x, u, v, p2) = sup{p1
2u+ p2

2v : v ≥ 0}.

Since H2 is independent of x, (28) implies that there exists an arc p2 such that

ṗ2(t) = 0,(32)

−p2(1) = (1 + 3(x∗1(1) + x∗2(1))2, 1 + 3(x∗1(1) + x∗2(1))2),(33)

p1
1 − µp1

2 ∈ N{u∈C[0,1]:u≥0}(u∗).(34)

Observing that x1(0) = x2(0) = 0 and both x1(t) and x2(t) are nondecreasing, we
derive from (32) and (33) that p1

2 = p2
2 ≤ −1 are constants. Hence H2 = p1

2u, which
implies from (28) that ẋ∗2(t) = 0. That is x∗2 ≡ 0. If u∗ 6≡ 0 then (34) implies
that

p1
1 = µp1

2.

But by (25) and (27), p1
1 and p2

1 are nonpositive constants and

−2x∗1(1)− µ(1 + 3[x∗1(1) + x∗2(1)]2) = −µ(1 + 3[x∗1(1) + x∗2(1)]2),

which implies that x∗1(1) = 0. But this is a contradiction. Therefore u∗ ≡ 0, v∗ ≡ 0 is
a candidate for an optimal solution since x1(0) = x2(0) = 0 and both x1(t) and x2(t)
are nondecreasing. It is not hard to check that it is indeed a solution. Notice that in
Example 2 the lower-level problem is not convex and hence is out of the scope of any
currently available control theory.

Finally, we use another example to illustrate applications of Theorem 3.2 in solv-
ing bilevel dynamic problems in the absence of the calmness condition. Example 3
shows that even without the calmness condition, the necessary condition that we de-
rived may be used to find condition for the existence of a normal
multiplier.

Example 3. Consider the following bilevel dynamic problem with linear-quadratic
cost functions on the interval [0, 1], where

F (t, x, u, v) =
1
2

[x>Q1x+ u>R11u+ v>R12v],

f(x) =
1
2
x>K1x,

G(t, x, u, v) =
1
2

[x>Q2x+ u>R21u+ v>R22v],

g(x) =
1
2
x>K2x,

φ(t, x, u, v) = A(t)x+B(t)u+ C(t)v,

where x ∈ Rd, u ∈ Rn, v ∈ Rm, Q1, Q2,K1,K2 are positive semidefinite matrices
and R22, R11, rR22 + R12, where r ≥ 0 is any constant, are positive definite matrices
with appropriate order; R21 is a n× n matrix; A(t), B(t), and C(t) are matrices with
continuous components.
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We can calculate

H1(t, x, u, v, p1; 1, µ) = p>1 φ− µG− F

= p>1 (A(t)x+B(t)u+ C(t)v)

−1
2
µ[x>Q2x+ u>R21u+ v>R22v]

−1
2

[x>Q1x+ u>R11u+ v>R12v],

H2(t, x, u, p2) = sup
v
{p>2 φ−G}

= sup
v
{p>2 (A(t)x+B(t)u+ C(t)v)− 1

2
[x>Q2x+ u>R21u+ v>R22v]}

= p>2 (A(t)x+B(t)u+ C(t)R−1
22 C(t)>p2)

−1
2

[x>Q2x+ u>R21u+ p>2 C(t)R−1
22 C(t)>p2].

Suppose that (u∗, v∗) is an optimal control pair and x∗ is the corresponding trajectory.
If the conclusion of Theorem 3.3 holds, then there exist adjoint arcs p1, p2 and constant
µ ≥ 0 such that

−ṗ1 = A(t)>p1 − [µQ2 +Q1]x∗,

−p1(1) = [µK2 +K1]x∗(1),

−ṗ2 = A(t)>p2 −Q>2 x∗,

−p2(1) = K2x
∗(1),

ẋ∗ = A(t)x∗ +B(t)u∗ + C(t)v∗,(35)

B(t)>p1 −R11u
∗ = µB(t)>p2,(36)

v∗(t) = R−1
22 C(t)>p2 = [µR22 +R12]−1C(t)>p1.(37)

Equation (36) implies that

u∗(t) = R−1
11 B(t)>(p1 − µp2).(38)

Substituting (37) and (38) into (35) yields

ẋ∗ = A(t)x∗ +B(t)R−1
11 B(t)>(p1 − µp2) + C(t)R−1

22 C(t)>p2.(39)

Thus, for any µ ≥ 0 that satisfies (37), i.e.,

R−1
22 C(t)>p2 = [µR22 +R12]−1C(t)>p1,(40)

we obtain a set of 3d equations with equal numbers of unknowns.

ẋ∗ = A(t)x∗ +B(t)R−1
11 B(t)>(p1 − µp2) + C(t)R−1

22 C(t)>p2,

−ṗ1 = A(t)>p1 − [µQ>2 +Q>1 ]x∗,

−ṗ2 = A(t)>p2 −Q>2 x∗.
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Assume that

p1(t) = ψ1(t)x∗(t),

p2(t) = ψ2(t)x∗(t),

where ψi are matrices that satisfy the end point conditions

ψ1(1) = −[K1 + µK2], ψ2(1) = −K2

to be determined. Differentiating them with respect to t gives

ṗ1 = ψ̇1x
∗(t) + ψ1ẋ

∗(t),

ṗ2 = ψ̇2x
∗(t) + ψ2ẋ

∗(t).

Substituting for ẋ∗, ṗ1, and ṗ2 gives

ψ̇1 = −A(t)>ψ1 − ψ1A(t) + µQ2 +Q1 − ψ1B(t)R−1
11 B(t)>(ψ1 − µψ2)

−ψ1C(t)R−1
22 C(t)>ψ2,

ψ̇2 = −A(t)>ψ2 − ψ2A(t) +Q2 − ψ2B(t)R−1
11 B(t)>(ψ1 − µψ2)− ψ2C(t)R−1

22 C(t)>ψ2.

Moreover,

u∗(t) = R−1
11 B(t)>(ψ1(t)− µψ2(t))x(t),

v∗(t) = R−1
22 C(t)>ψ2(t)x(t).

Let ψ3 = ψ1 − µψ2. Then provided that there exists µ ≥ 0 that satisfies

R−1
22 C(t)>ψ2 = [µR22 +R12]−1C(t)>(ψ3 + µψ2)(41)

we obtain

u∗(t) = R−1
11 B(t)>ψ3(t)x(t),(42)

v∗(t) = R−1
22 C(t)>ψ2(t)x(t),(43)

where ψ3 and ψ2 are solutions to

ψ̇3 = −A(t)>ψ3 − ψ3A(t) +Q1 − ψ3B(t)R−1
11 B(t)>ψ3 − ψ3C(t)R−1

22 C(t)>ψ2,

ψ̇2 = −A(t)>ψ2 − ψ2A(t) +Q2 − ψ2B(t)R−1
11 B(t)>ψ3 − ψ2C(t)R−1

22 C(t)>ψ2,

with end point conditions

ψ3(1) = −K1, ψ2(1) = −K2.

It is clear that the existence of µ ≥ 0 that satisfies the equality (41) is a constraint
qualification for ensuring the existence of normal multipliers for the class of linear-
quadratic bilevel problems. Such µ ≥ 0 exists, for example, when

K1 = 0, Q1 = 0, R12 = 0

or

K1 = K2 = 0, Q1 = Q2 = 0.
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Abstract. An interior path-following algorithm is proposed for solving the nonlinear saddle
point problem

minimax cT x+ φ(x) + bT y − ψ(y)− yTAx

subject to (x, y) ∈ X × Y ⊂ Rn ×Rm,

where φ(x) and ψ(y) are smooth convex functions and X and Y are boxes (hyperrectangles). This
problem is closely related to the models in stochastic programming and optimal control studied by
Rockafellar and Wets (Math. Programming Studies, 28 (1986), pp. 63–93; SIAM J. Control Optim.,
28 (1990), pp. 810–822). Existence and error-bound results on a central path are derived. Starting
from an initial solution near the central path with duality gap O(µ), the algorithm finds an ε-
optimal solution of the problem in O(

√
m+ n | log µ/ε|) iterations if both φ(x) and ψ(y) satisfy a

scaled Lipschitz condition.

Key words. interior point methods, nonlinear complementarity problem, optimal control, sad-
dle point problem, stochastic programming
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1. Introduction. We discuss an interior path-following scheme for solving a
class of nonlinear saddle point problems in the following form:{

Find a saddle point for l(x, y) ≡ cTx+ φ(x) + bT y − ψ(y)− yTAx
subject to x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm,

(1.1)

where φ(x) and ψ(y) are C2-convex functions, c ∈ Rn, b ∈ Rm, A ∈ Rm×n, and the
superscript T represents transpose. The sets of X and Y are boxes (hyperrectangles).

According to convex analysis [17], problem (1.1) has a pair of associated opti-
mization problems: the primal problem

minimizex∈X f(x) ≡ cTx+ φ(x) + sup
y∈Y
{(b−Ax)T y − ψ(y)}(1.2)

and the dual problem

maximizey∈Y g(y) ≡ bT y − ψ(y)− sup
x∈X
{(AT y − c)Tx− φ(x)}.(1.3)

Note that the function f(x) (called the primal objective function) is convex, the func-
tion g(y) (called the dual objective function) is concave, and both are nondifferentiable
in general. (For a detailed analysis for the case that both φ(x) and ψ(y) are quadratic,
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see [18], where f(x) and −g(y) turn out to be “piecewise quadratic” convex functions.)
Therefore, problems (1.1)–(1.3) can be categorized as nonsmooth convex programming
problems. Some fundamental duality relationships among (1.1), (1.2), and (1.3) have
been established in [17] which include existence results on the saddle point(s) of (1.1)
and the saddle point value—the common optimal value of (1.2) and (1.3).

Problems (1.1)–(1.3) stem from a development beyond the conventional formula-
tion of optimization problems. These models provide a framework that allows penalty
representations of constraints as well as accommodates other sources of nonsmooth-
ness such as objectives produced by multistage optimization problems. For instance,
linearly constrained convex optimization problems are usually posed in the form

minimize φ(x) subject to Ax ≥ b, x ≥ 0.

The corresponding Lagrangian saddle point problem is

minimaxx≥0,y≥0 φ(x) + yT (b−Ax),

which is a special case of (1.1). Now let ψ(y) be a convex function such that ψ(0) = 0
and ψ(y) ≥ 0 and add −ψ(y) to the Lagrangian function. Then the corresponding
primal program becomes

minimize φ(x) + sup
y≥0
{yT (b−Ax)− ψ(y)} subject to x ≥ 0,

where the function supy≥0{yT (b−Ax)−ψ(y)} is equal to zero for x satisfying Ax ≥ b
and is greater or equal to zero for all x. Thus in this formulation the exact constraint
Ax ≥ b is replaced by a penalty representation that allows the modeler to deal with
Ax ≥ b more flexibly by selecting suitable ψ(y) and Y.

As an example of how multistage optimization could fit into the form of (1.1), we
consider a two-stage stochastic programming model studied by Rockafellar and Wets
[23]. At the first (current) stage, a decision x ∈ Rn has to be made, incurring a direct
cost cTx+ φ(x), subject to x ∈ X , where X is a box. At the second (future) stage, a
random event is observed with outcome ω ∈ Ω, where Ω is a probability space. The
decision x and the outcome ω then determine an additional “recourse cost” ρω(x).
Under the practical circumstances such as soft constraints [18, 20] and simple recourse
[31], the function ρω(x) is expressed by an optimal value function as follows:

ρω(x) = sup
yω∈Yω

{yTω (bω −Aωx)− ψω(yω)}.(1.4)

In principle, the set Yω, the vector bω, the matrix Aω, and the function ψω are allowed
to be random. The objective in this model is to make the best decision x with respect
to the present cost and constraints as well as the expected cost Eω[ρω(x)] and certain
induced constraints. Assuming finite discrete distribution for ω, the decision problem
can be described by

minimize cTx+ φ(x) +
∑
ω∈Ω

πωρω(x) subject to x ∈ X ,(1.5)

where πω is the probability of the random event ω. Now let

Y =
∏
ω∈Ω

Yω, b =


·
·

πωbω
·
·

 , A =


·
·

πωAω
·
·

 , and ψ(y) =
∑
ω∈Ω

πωψω(yω).

Then problem (1.5) takes the form of (1.2).
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More about the motivation of models (1.1)–(1.3) and their applications in stochas-
tic programming and optimal control can be found in a series of pioneer papers of
Rockafellar and Wets [18, 19, 20, 21, 23, 24].

Algorithms for linear-quadratic cases of problem (1.1) in which both φ(x) and ψ(y)
are linear or quadratic have been studied extensively. Among them are the L-shaped
method [30], the decomposition methods [1, 5], the finite generation method [23],
the projected gradient method [37], the steepest descent method [36], the sequential
quadratic programming method [16], and some interior point methods [2, 3, 27, 32, 33].
For the special case where both X and Y are boxes and both φ(x) and ψ(y) are
separable quadratic functions, a simplex–active-set method has been developed [22].
The more general convex case of (1.1), however, has not yet received enough attention
in algorithmic development, although the problem can be traced back to the extended
Fenchel duality model in the 1970s [17].

The predictor-corrector algorithm studied in this paper is rooted in the primal-
dual path-following algorithm of Kojima, Mizuno, and Yoshise [10] for linear comple-
mentarity problems and the predictor-corrector method of Mizuno, Todd, and Ye [14]
for linear programming. The algorithms in [10] and [14] and their variants have been
extensively studied on their global, local, and computational behaviors in the context
of linear complementarity problems. It is not possible for us to point out all references
on this method; the interested reader may look into the tutorial paper of Gonzaga [6]
and recent papers such as [9, 11, 12, 25, 34, 35] and the references therein.

The purpose of writing this paper is threefold.
(i) We develop a predictor-corrector algorithm for problem (1.1) together with

existence and error-bound results on a central path. In particular we show that if
functions φ(x) and ψ(y) satisfy a scaled Lipschitz condition, then starting from an
initial solution near the central path, the algorithm converges to an ε-optimal solution
of the problem in O

(√
m+ n |logµ0/ε|

)
iterations, where µ0 is a number related to

the initial duality gap.
(ii) To the research community in stochastic programming and optimal control,

we demonstrate that the interior point method can be used as one of the theoretically
efficient methods for convex-concave saddle point problems. We also suggest ways to
take computational advantage of the special structure of problem (1.1) arising from
stochastic programming and optimal control.

(iii) To the research community of interior point methods, this paper contributes
a polynomial algorithm for a class of monotone complementarity problems (MCP).
To our knowledge, only few algorithms for nonlinear MCP have been shown to have
polynomial complexity (Nesterov and Nemirovskii [15] and Tseng [28]) under different
conditions. The scaled Lipschitz condition used in this paper, as shown in [38], is
satisfied by a fairly large class of convex functions.

This paper is organized as follows. In section 2 we discuss the conditions for the
existence of the optimal solution(s) and the central path. We establish an estimate
on the duality gap if (x, y) is near the central path. These results form a foundation
for the interior path-following method for problem (1.1). Section 3 is devoted to the
proof of polynomial convergence of the predictor-corrector algorithm. Finally, section
4 contains some concluding remarks.

2. Results on feasibility, existence, and error bounds related to the
central path. In the following analysis, we assume that both X and Y are nonneg-
ative orthants in order to simplify the statements. This is not an essential change
from assuming that X and Y are boxes. We will elaborate this point at the end of
section 3.
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Suppose that a saddle point (x∗, y∗) of (1.1) exists; that is,

l(x∗, y) ≤ l(x∗, y∗) ≤ l(x, y∗) for all x ∈ X and y ∈ Y.

It can be shown [17] that x∗ and y∗ must be optimal solutions of (1.2) and (1.3),
respectively, and that f(x∗) = l(x∗, y∗) = g(y∗) and vice versa. In addition, the
saddle point condition is equivalent to the following variational relationships:

−∇xl(x∗, y∗) ∈ NX (x∗) and ∇yl(x∗, y∗) ∈ NY(y∗),(2.1)

where NX (x∗) stands for the normal cone of X at x∗. The notation NY(y∗) has a
similar meaning. We assume that both φ(x) and ψ(y) are finite and twice continuously
differentiable on X and Y, respectively. By introducing auxiliary vectors w∗ and s∗,
conditions (2.1) can be written in an explicit form as follows:

∇φ(x∗)−AT y∗ − w∗ = −c,
Ax∗ +∇ψ(y∗)− s∗ = b,

(x∗)Tw∗ = (y∗)T s∗ = 0,

x∗, y∗, w∗, s∗ ≥ 0.

(2.2)

The proposed algorithm finds a point (x, y) ∈ X × Y such that f(x) − g(y) ≤ ε by
finding a sequence of approximate solutions of the following system as µ ↓ 0 :

∇φ(x)−AT y − w = −c,
Ax+∇ψ(y)− s = b,

xjwj = µ, j = 1, ..., n,

yisi = µ, i = 1, ...,m,
x, w, y, s ≥ 0.

(2.3)

Similar to the deduction of system (2.2), it can be shown that (x, y, w, s) is a solution
to (2.3) if and only if (x, y) is a saddle point of

lµ(x, y) ≡ cTx+ φ(x) + bT y − ψ(y)− yTAx− µ
n∑
j=1

log xj + µ

m∑
i=1

log yi

over X × Y.
Naturally, as an interior point method, the proposed algorithm needs some kind

of interior points from which to start. We make the following assumption.
Assumption 2.1. There is a quadruple (x, y, w, s) > 0 such that the first two

equations of system (2.3) are satisfied.
Under this assumption, we can prove that the iterates generated by our algorithm

are feasible solutions to problems (1.2) and (1.3) and that the solutions to problem
(2.3) exist for all µ ≥ 0.

We first discuss the feasibility problem. An x is feasible to (1.2) if x ≥ 0 and
f(x) < ∞; a y is feasible to (1.3) if y ≥ 0 and g(y) > −∞. We have the following
result under an assumption weaker than Assumption 2.1.

PROPOSITION 2.2. Suppose that the following relations are valid:
∇φ(xk)−AT yk − wk = −c,
Axk +∇ψ(yk)− sk = b,

xk, wk, yk, sk ≥ 0.

(2.4)
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Then xk is a feasible solution to problem (1.2) and yk is a feasible solution to problem
(1.3).

Proof. The second equation of (2.4) and the convexity of ψ(y) imply that for any
y ∈ Y,

(b−Axk)T y − ψ(y) = [∇ψ(yk)− sk]T y − ψ(y)

= ∇ψ(yk)T (y − yk) +∇ψ(yk)T yk − yT sk − ψ(y)

≤ ∇ψ(yk)T yk − ψ(yk)− yT sk.

Since y ≥ 0 and sk ≥ 0, we have

f(xk) = cTxk + φ(xk) + sup
y≥0
{(b−Axk)T y − ψ(y)}

≤ cTxk + φ(xk) + sup
y≥0
{∇ψ(yk)T yk − ψ(yk)− yT sk}

≤ cTxk + φ(xk) +∇ψ(yk)T yk − ψ(yk) <∞.

Thus the second equation of (2.4), sk ≥ 0, and xk ≥ 0 imply that xk is feasible to
(1.2). Similarly, the first equation of (2.4), wk ≥ 0, and yk ≥ 0 imply that yk is
feasible to (1.3).

Because our algorithm will ensure that (2.4) is valid for all iterates (see details
below), the algorithm will generate a feasible sequence {(xk, yk)} to problems (1.2)
and (1.3) according to Proposition 2.2.

Now we discuss the existence of the saddle points of lµ(x, y). Unlike the linear-
quadratic case, the feasibility of both primal and dual problems is not enough for the
existence of a saddle point. However, we will show that under Assumption 2.1 for any
µ ≥ 0 a saddle point of lµ(x, y) exists. We first prove a lemma.

LEMMA 2.3. Suppose that the following relations are valid:

P ≡ ∩y>0{p ∈ Rn+|cT p+ (φ0+)(p)− yTAp ≤ 0} = {0},(2.5)

Q ≡ ∩x>0{q ∈ Rm+ | − bT q + (ψ0+)(q) + xTAT q ≤ 0} = {0},(2.6)

where (φ0+)(p) and (ψ0+)(q) are the recession functions of φ(x) and ψ(y), respec-
tively:

(φ0+)(p) ≡ lim
λ→0+

λφ(x+ λ−1p),

(ψ0+)(q) ≡ lim
λ→0+

λψ(y + λ−1q).

(The two recession functions are invariant regardless of the choice of x ∈ X and
y ∈ Y.) Then lµ(x, y) has a saddle point on X × Y.

Proof. According to convex analysis [17, Theorem 37.6], a sufficient condition
for lµ(x, y) to have a saddle point on X × Y is that the convex functions lµ(·, y)
have no common direction of recession for y ∈ riY and that the convex functions
−lµ(x, ·) have no common direction of recession for x ∈ riX , where “ri” stands for
the relative interior. Denote by Rn+ and Rm+ the nonnegative orthants of Rn and Rm,
respectively. Now for fixed y ∈ riY, the set of directions of recession of lµ(·, y) is
given by
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Py ≡ {p ∈ Rn+| lim
λ→0+

λlµ(x+ λ−1p, y) ≤ 0}

=

p ∈ Rn+| lim
λ→0+

λφ(λ−1p)− lim
λ→0+

λµ
n∑
j=1

log(xj + λ−1pj) + (c−AT y)T p ≤ 0


= {p ∈ Rn+|(φ0+)(p) + (c−AT y)T p ≤ 0}.

Similarly, for fixed x ∈ riX , the set of directions of recession of −l(x, ·) is

Qx ≡ {q ∈ Rm+ |(ψ0+)(q)− (b−Ax)T q ≤ 0}.

The statement “for y ∈ riY there is no common direction of recession” is then inter-
preted as (2.5). We also get (2.6) in the same fashion.

PROPOSITION 2.4. Under Assumption 2.1 for any µ ≥ 0, lµ(x, y) has a saddle
point on X × Y.

Proof. Suppose that Assumption 2.1 is satisfied by a quadruple (x0, y0, w0, s0) >
0. Note that

(φ0+)(p) = lim
λ→0+

λφ(x0 + λ−1p) = lim
λ→0+

λ[φ(x0 + λ−1p)− φ(x0)] ≥ ∇φ(x0)T p.

We have, for any p ∈ Py0 ,

(w0)T p = cT p+∇φ(x0)T p− (y0)TAp ≤ cT p+ (φ0+)(p)− (y0)TAp ≤ 0.

Since w0 > 0 and p ≥ 0, the above inequality implies p = 0. Therefore we have
Py0 = {0}. Analogously we have Qx0 = {0}. By Lemma 2.3, lµ(x, y) has a saddle
point on X × Y.

Proposition 2.4 says that Assumption 2.1 is sufficient for the existence of
optimal solutions of problems (1.1)–(1.3) as well as for the existence of the solutions of
(2.3) for any µ > 0. From the strict convexity of supy≥0 lµ(x, y) and − infx≥0 lµ(x, y),
it can be seen that (x(µ), y(µ)) is unique for µ > 0. We call the set {(x(µ), y(µ))
|µ > 0} the central path of problem (1.1) if (x(µ), y(µ)) is a saddle point of lµ(x, y)
on X × Y.

It should be noted that system (2.2) can be viewed as an MCP of the mapping

F : Rm+n → Rm+n, F (x, y) =
[∇φ(x)−AT y + c

Ax+∇ψ(y)− b

]
.

Several conditions have been discussed in the literature for the existence of the central
path under various situations. For example Güler [7] studies conditions for MCPs. It
can be shown that his conditions are equivalent to Assumption 2.1 in the context of
mapping F. The conditions involving recession functions stated in Lemma 2.3 appear
to be new in the literature.

We now estimate the error if the solution of system (2.3) is used as an approximate
solution to the saddle point problem (1.1). We prove that the duality gap of the
solutions on the central path converges to zero as µ goes to zero. This is the basic
fact that justifies interior path-following algorithms.

PROPOSITION 2.5. Under Assumption 2.1, given any µ ≥ 0 we have

0 ≤ f(x(µ))− g(y(µ)) ≤ (m+ n)µ.(2.7)
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Proof. The assumption implies the existence of (x(µ), y(µ)), which together with
a certain (w(µ), s(µ)) satisfies system (2.4). By definitions of f(x) and g(y), we always
have f(x) ≥ g(y) for all (x, y) ∈ X × Y (the weak duality). Therefore we only need
to prove the second inequality. Analogous to the proof of Proposition 2.2, we have

f(x(µ)) ≤ cTx(µ) + φ(x(µ))− ψ(y(µ)) +∇ψ(y(µ))T y(µ)
(2.8)

= cTx(µ) + φ(x(µ))− ψ(y(µ)) + [b−Ax(µ)]T y(µ) + s(µ)T y(µ).

The last equality above is based on the second equation of (2.4). A symmetric argu-
ment for the dual problem implies

g(y(µ)) ≥ bT y(µ)− ψ(y(µ)) + φ(x(µ))− [AT y(µ)− c]Tx(µ)− w(µ)Tx(µ).(2.9)

Proposition 2.5 is proved by subtracting (2.9) from (2.8):

f(x(µ))− g(y(µ)) ≤ w(µ)Tx(µ) + s(µ)T y(µ) = (m+ n)µ.

Proposition 2.5 provides the estimation on the duality gap for the points on the
central path. Denote the positive diagonal matrices diag(x1, . . . , xn), diag(y1, . . . , ym),
diag(w1, . . . , wn), and diag(s1, . . . , sm) by X, Y, W, and S, respectively. For any
µ > 0, we do not have to obtain x(µ) and y(µ) exactly. In practice a path-following
algorithm generates a sequence of (xk, yk) close to (x(µk), y(µk)). The closeness is
defined by a proximity function

δ(x, y, w, s, µ) =

(∥∥∥∥Wx

µ
− e
∥∥∥∥2

+
∥∥∥∥Syµ − e

∥∥∥∥2
)1/2

,(2.10)

where e is a vector of ones of compatible dimension and ‖ · ‖ is the Euclidean norm.
Notice that δ(x, y, w, s, µ) = 0 implies that (x, y) is on the central path; i.e., (x, y) =
(x(µ), y(µ)). With a little abuse of the notations, the same e is used in (2.10) and
below regardless of the dimension. The following result provides an error bound for
an approximate solution of (2.3) which satisfies (2.4) but may not satisfy the other
equations of (2.3).

PROPOSITION 2.6. If (x, y, w, s) satisfies (2.4) and δ(x, y, w, s, µ) ≤ α, then

0 ≤ f(x)− g(y) ≤ (1 + α/
√
n+m)(n+m)µ.

Proof. Notice that the proof of inequalities (2.8) and (2.9) uses only the relation-
ships in (2.4). Thus by following the proof of Proposition 2.5, we have

f(x)− g(y) ≤ wTx+ sT y.

On the other hand,

wTx+ sT y = eTWx+ eTSy = eT
[
Wx− µe
Sy − µe

]
+ (m+ n)µ

≤ ‖e‖ ·
∥∥∥∥[Wx− µe

Sy − µe

]∥∥∥∥+ (m+ n)µ ≤ αµ
√
n+m+ (n+m)µ.

Hence

f(x)− g(y) ≤ (1 + α/
√
n+m)(n+m)µ.
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Proposition 2.6 provides an estimation of the duality gap for the solutions in a
neighborhood of the central path. With this estimation, in order to find a pair of
ε-optimal solution to (1.1) in the following sense

x is feasible to (1.2), y is feasible to (1.3), and 0 ≤ f(x)− g(y) ≤ ε,

we only need to find a pair of primal and dual feasible solutions in a neighborhood of
the central path satisfying δ(x, y, w, s, µ) ≤ α, where µ = ε/[(1 +α/

√
n+m)(n+m)].

3. Convergence analysis of the predictor-corrector algorithm. Given any
point (x, y, w, s) > 0 and any number µ > 0 satisfying (2.4) and δ(x, y, w, s, µ) ≤ α,
we consider a path-following method for problem (1.1). A typical iteration in the
algorithm applies one step of Newton’s method to the system

∇φ(x)−AT y − w = −c,
Ax+∇ψ(y)− s = b,

Wx = λµe,

Sy = λµe,

(3.1)

where λ is a certain constant. From the Newton approximation of system (3.1), the
improving direction (∆x,∆y,∆w,∆s) is determined by

∆w = ∇2φ(x)∆x−AT∆y,

∆s = A∆x+∇2ψ(y)∆y,

W∆x+X∆w = −Xw + λµe,

S∆y + Y∆s = −Sy + λµe.

(3.2)

The associated direction is called the predictor (affine-scaling) direction if λ = 0 and
is called the corrector (centering) direction if λ = 1. The following algorithm moves a
solution from a tight neighborhood of the central path to a loose one in each predictor
step in order to reduce the central path parameter µ. It then draws a solution from
the loose neighborhood back to the tight one in each corrector step. The algorithm
terminates when µ ≤ ε/[(1 + α/

√
n+m)(n+m)]. We now present the algorithm.

ALGORITHM 3.1 (a predictor-corrector algorithm for problem (1.1)).
Step 0 (Initialization) Let k = 0. Choose (x0, y0, w0, s0) > 0, µ0 > 0, 0 < α < 1 < t,
where αt < 1, such that the first two equations of (3.1) are satisfied by (x0, y0, w0, s0)
and such that δ(x0, y0, w0, s0, µ0) ≤ α.
Step 1 For k = 0, 1, . . . , until µk ≤ ε/[(1 + α/

√
n+m)(n+m)] (where ε is the

user assigned tolerance), do
Step 1.1 Solve (3.2) with x = xk, y = yk, w = wk, s = sk, µ = µk, and
λ = 0. Denote by ∆xp, ∆yp, ∆wp, and ∆sp the resulting directions. Let θ
be a suitable positive number such that

δ(x(θ), y(θ), w(θ), s(θ), µ(θ)) ≤ tα,

where

x(θ) = xk + θ∆xp, y(θ) = yk + θ∆yp,

w(θ) = wk + θ∆wp +∇φ(xk + θ∆xp)−∇φ(xk)− θ∇2φ(xk)∆xp,

s(θ) = sk + θ∆sp +∇ψ(yk + θ∆yp)−∇ψ(yk)− θ∇2ψ(yk)∆yp,
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and

µ(θ) = (1− θ)µk.

This is the predictor step.
Step 1.2 Solve (3.2) with x = x(θ), y = y(θ), w = w(θ), s = s(θ), µ = µ(θ),
and λ = 1, resulting in ∆xc, ∆yc, ∆wc, and ∆sc. Let

xk+1 = x(θ) + ∆xc, yk+1 = y(θ) + ∆yc,

wk+1 = w(θ) + ∆wc +∇φ(x(θ) + ∆xc)−∇φ(x(θ))−∇2φ(x(θ))∆xc,

sk+1 = s(θ) + ∆sc +∇ψ(y(θ) + ∆yc)−∇ψ(y(θ))−∇2ψ(y(θ))∆yc,

and

µk+1 = µ(θ).

This is the corrector step. Update k and go to next iteration of Step 1.
The steplength θ in Step 1.1 can be computed by an explicit formula which will

be discussed in Proposition 3.6 below. It will become apparent at the end of our
analysis that all (xk, yk) are feasible to (1.2) and (1.3).

Algorithm 3.1 can be generalized to find an approximate solution (u∗, v∗) of the
following MCP:

(MCP) u, v ∈ Rm+n, u ≥ 0, v = F (u) ≥ 0, uT v = 0

in the sense of

u∗, v∗ ∈ Rm+n, u∗ ≥ 0, v∗ = F (u∗) ≥ 0, δ(u∗, v∗, µ) ≤ α,

where 0 < α < 1, µ is any preassigned small positive number, and δ(u, v, µ) is defined
similarly to δ(x, y, w, s, µ). In order to facilitate comparisons of Algorithm 3.1 with
existing interior point algorithms for nonlinear complementarity problems, we will
prove our convergence result for the following algorithm for (MCP) which generalizes
Algorithm 3.1.

ALGORITHM 3.2 (a predictor-corrector algorithm for problem (MCP)).
Step 0 (Initialization) Let k = 0. Choose (u0, v0) > 0, µ0 > 0, 0 < α < 1 < t, where
αt < 1, such that the first equation of{

F (u)− v = 0,

V u = λµe
(3.3)

is satisfied by (u0, v0) and such that δ(u0, v0, µ0) ≤ α.
Step 1 For k = 0, 1, . . . , until µk ≤ ε/[(1 + α/

√
n+m)(n+m)] (where ε is the

user-assigned tolerance), do
Step 1.1 Solve {

∆v = F ′(u)∆u,

V∆u+ U∆v = −V u+ λµe,
(3.4)

with u = uk, v = vk, µ = µk, and λ = 0, where F ′(u) represents the Jacobian
of F at u. Denote by ∆up and ∆vp the resulting directions. Let θ be a suitable
positive number such that

δ(u(θ), v(θ), µ(θ)) ≤ tα,
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where

u(θ) = uk + θ∆up,

v(θ) = vk + θ∆vp + F (uk + θ∆up)− F (uk)− θF ′(uk)∆up,

and

µ(θ) = (1− θ)µk.

This is the predictor step.
Step 1.2 Solve (3.4) with u = u(θ), v = v(θ), µ = µ(θ), and λ = 1, resulting
in ∆uc and ∆vc. Let

uk+1 = u(θ) + ∆uc,

vk+1 = v(θ) + ∆vc + F (u(θ) + ∆uc)− F (u(θ))− F ′(u(θ))∆uc,

and

µk+1 = µ(θ).

This is the corrector step. Update k and go to next iteration of Step 1.
It is not hard to verify that by assigning

u =
[
x
y

]
, v =

[
w
s

]
, and F (u) =

[∇φ(x)−AT y + c

Ax+∇ψ(y)− b,

]
Algorithm 3.2 specializes to Algorithm 3.1.

We now proceed to show that Algorithm 3.2 is of polynomial complexity. We
take notations such as U and V in the same way as X, Y, W, and S. The following
assumption is used in our proof.

The scaled Lipschitz condition (SLC) for F (u).
Given 0 < β < 1, there exists M > 0 such that

‖U [F (u+ ∆u)− F (u)− F ′(u)∆u]‖ ≤M∆uTF ′(u)∆u

holds for any u > 0 and ∆u satisfying ‖U−1∆u‖ ≤ β.
Back to the saddle point problem, this condition is equivalent to∥∥X[∇φ(x+ ∆x)−∇φ(x)−∇2φ(x)∆x]

∥∥ ≤M∆xT∇2φ(x)∆x

and ∥∥Y [∇ψ(y + ∆y)−∇ψ(y)−∇2ψ(y)∆y]
∥∥ ≤M∆yT∇2ψ(y)∆y

for any x > 0,∆x, y > 0, and ∆y satisfying
∥∥X−1∆x

∥∥ ≤ β and
∥∥Y −1∆y

∥∥ ≤ β.
SLC has been employed in the analysis of interior point methods for convex

programs [38]. Functions satisfying this condition include many useful functions such
as φ(x) =

∑
φj(xj) (similarly for ψ(y) =

∑
ψi(yi)), where φj(xj) could be

− log xj , xj log xj , xαj (α < 0 or α > 1).

Note that φ(x) is not necessarily separable in general. For instance, the SLC is
satisfied by the quadratic functions φ(x) = xTQx with Q being positive semidefinite.
The same can be said about ψ(y).
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Denote the diagonal matrices

diag(∆u1, . . . ,∆um+n) and diag(∆v1, . . . ,∆vm+n)

by ∆U and ∆V, respectively. We use the conventional notations such as Uν =
diag(uν1 , . . . , u

ν
m+n), ∆Uν = diag(∆uν1 , . . . ,∆u

ν
m+n) and uν = (uν1 , . . . , u

ν
m+n)T for

any real number ν. In the derivations below, we frequently use relationships defined
by (3.4) and the following simple inequality:

For all u, v such that δ(u, v, µ) ≤ τ there holds

(1− τ)µ ≤ ujvj ≤ (1 + τ)µ, j = 1, . . . ,m+ n.(3.5)

Analysis on the predictor step. Given

δ(u, v, µ) ≤ α

(the superscript k is omitted), we want to know how to choose θ such that

δ(u(θ), v(θ), µ(θ)) ≤ tα.

This will give us important information on the complexity of the algorithm because
the algorithm sets µk+1 = (1−θ)µk and stops when µk ≤ ε/[(1+α/

√
n+m)(n+m)].

An explicit formula for θ will be given following our analysis. Let

ξ = (I + θU−1∆U)U [F (u+ θ∆u)− F (u)− θF ′(u)∆u],

where I stands for the identity matrix. Note that

‖V (θ)u(θ)− (1− θ)µe‖

=
∥∥V u+ θ(V∆u+ U∆v) + θ2∆U∆v − (1− θ)µe+ ξ

∥∥
=
∥∥(1− θ)V u− (1− θ)µe+ θ2∆U∆v + ξ

∥∥
≤ (1− θ) ‖V u− µe‖+ θ2 ‖∆U∆v‖+ ‖ξ‖

≤ (1− θ)αµ+ θ2 ‖∆U∆v‖+ ‖ξ‖(3.6)

and that

‖ξ‖ ≤ 2Mθ2∆uTF ′(u)∆u,

if ‖θU−1∆u‖ ≤ β < 1 is satisfied. Let

η1 ≡ ‖∆U∆v‖ and η2 ≡ ∆uTF ′(u)∆u.

Now we estimate η1 and η2 separately.
LEMMA 3.3.

η1 ≡ ‖∆U∆v‖ ≤ (1 + α)(m+ n)µ.

Proof. Let

r1 = (UV )−1/2
V∆u,

r2 = (UV )−1/2
U∆v,
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and

R1 = (UV )−1/2
V∆U.

Then by (3.4) we have

r1 + r2 = − (Uv)1/2

and

r1
T r2 = ∆uT∆v = ∆uTF ′(u)∆u ≥ 0.

Therefore we get

η1 = ‖∆U∆v‖ = ‖R1r2‖ ≤ max{‖r1‖2, ‖r2‖2}

≤ ‖r1 + r2‖2 =
∥∥∥(Uv)1/2

∥∥∥2
≤ (1 + α)(m+ n)µ (by (3.5)).

Since we will apply the SLC in the estimate of η2, we need to prove the following
lemma.

LEMMA 3.4. In the predictor step, if

θ ≤

√
(1− α)β

(1 + α)(m+ n)
,

then
∥∥θU−1∆u

∥∥ ≤ β.
Proof. Multiplying both sides of

V∆u+ U∆v = −Uv

by U−1/2V −1/2, we have

U−1/2V 1/2∆u+ U1/2V −1/2∆v = −U1/2v1/2.

Therefore by using (3.5) and noting that the inner product of the two terms on the
left-hand side is nonnegative, we have∥∥∥U−1/2V 1/2∆u

∥∥∥2
≤
∥∥∥U1/2v1/2

∥∥∥2
≤ (1 + α)(m+ n)µ.

It in turn implies

(1 + α)(m+ n)µ ≥
∥∥∥U−1/2V 1/2∆u

∥∥∥2
=
∥∥∥U1/2V 1/2U−1∆u

∥∥∥2
≥ (1− α)µ

∥∥U−1∆u
∥∥2
.

Thus we have ∥∥θU−1∆u
∥∥2 ≤ (1 + α)(m+ n)θ2/(1− α) ≤ β

as long as

θ ≤

√
(1− α)β

(1 + α)(m+ n)
.

The estimate related to η2 is given in the following lemma.
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LEMMA 3.5. In the predictor step,

η2 ≡ ∆uTF ′(u)∆u ≤ (1 + α)(m+ n)µ/4.

Proof. Setting λ = 0 in (3.4), we have

V∆u+ U(F ′(u)∆u) = −Uv.

Multiply both sides of the equation by ∆uTU−1, and we get

∆uTU−1V∆u+ ∆uTF ′(u)∆u = −∆uT v.

Hence

∆uTF ′(u)∆u

= −∆uT v −∆uTU−1V∆u

= −∆uT (U−1/2V 1/2)(U1/2v1/2)−
∥∥∥U−1/2V 1/2∆u

∥∥∥2

≤
∥∥∥U1/2v1/2

∥∥∥ · ∥∥∥U−1/2V 1/2∆u
∥∥∥− ∥∥∥U−1/2V 1/2∆u

∥∥∥2

≤
∥∥∥U1/2v1/2

∥∥∥2
/4

≤ (1 + α)(m+ n)µ/4.

The second to last inequality above is due to the fact that

bt− t2 ≤ b2/4

for any real numbers b and t.
PROPOSITION 3.6. Taking

θ = min


√

(1− α)β
(1 + α)(m+ n)

,
2

1 +
[
1 + (4+2M)(1+α)(m+n)

(t−1)α

]1/2
 = O

[
(m+ n)−1/2

]
,

we have

‖V (θ)u(θ)− (1− θ)µe‖ ≤ tα(1− θ)µ.

Proof. From (3.6), Lemmas 3.3, 3.4, and 3.5 we have

‖V (θ)u(θ)− (1− θ)µe‖

≤ (1− θ)αµ+ θ2 ‖∆U∆v‖+ ‖ξ‖

≤ (1− θ)αµ+ η1θ
2 + 2Mθ2η2.

This quantity will be not greater than tα(1− θ)µ as long as

0 ≤ θ ≤ 2

1 +
[
1 + 4(η1+2Mη2)

(t−1)αµ

]1/2
by simply solving a quadratic equation and picking the large root.
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Replacing η1 and η2 by the estimates in Lemmas 3.3 and 3.5, we obtain an explicit
upper bound for θ:

θ ≤ 2

1 +
[
1 + (4+2M)(1+α)(m+n)

(t−1)α

]1/2 .
This, together with the condition of Lemma 3.4, results in the proposition.

COROLLARY 3.7. In each predictor step the central path parameter µ can be
reduced at least by a factor of 1− τ/

√
m+ n, where τ is a positive constant depending

on the choices of α, β, t, and the smooth coefficient M in the SLC.
Analysis on the corrector step. We begin the corrector step with δ(u(θ), v(θ),

µ(θ)) ≤ tα. Our target is to show that after the step we will have

δ(uk+1, vk+1, µk+1) ≤ α,

where

uk+1 = u(θ) + ∆uc, µk+1 = µ(θ),

and

vk+1 = v(θ) + ∆vc + F (u(θ) + ∆uc)− F (u(θ))− F ′(u(θ))∆uc.

We will follow the same clue used in the analysis of the predictor step. Omitting the
θ in the parentheses, we estimate

η3 ≡ ‖∆U∆v‖ and η4 ≡ ∆uTF ′(u)∆u

in Lemmas 3.8 and 3.10, while Lemma 3.9 will guarantee the use of the SLC.
LEMMA 3.8. If δ(u, v, µ) ≤ tα then

η3 ≡ ‖∆U∆v‖ ≤ (tα)2

1− tαµ.

Proof. Let

r3 = (UV )−1/2
V∆u

and

r4 = (UV )−1/2
U∆v.

Then

r3 + r4 = (UV )−1/2 (−Uv + µe).

Since rT3 r4 = ∆uT∆v = ∆uTF ′(u)∆u ≥ 0, similar to the proof of Lemma 3.3, we
have

‖∆U∆v‖ ≤ ‖r3 + r4‖2 ≤
(tαµ)2

(1− tα)µ
=

(tα)2

1− tαµ.

LEMMA 3.9. In the corrector step if tα ≤ β/(1 + β), then

‖U−1∆u‖ ≤ β.
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Proof. Set λ = 1 in (3.4), and we get

V∆u+ U∆v = −Uv + µe.(3.7)

Let

D = U1/2V −1/2.

Multiply both sides of (3.7) by U−1/2V −1/2, and we obtain

D−1∆u+D∆v = −U−1/2V −1/2 (Uv − µe) .

Since ∆uT∆v = ∆uTF ′(u)∆u ≥ 0, we have(
D−1∆u

)T
(D∆v) ≥ 0

and

‖D−1∆u‖2 ≤ ‖D−1∆u+D∆v‖2

≤ ‖U−1/2V −1/2‖2‖Uv − µe‖2

≤
[
((1− tα)µ)−1/2

]2
(tαµ)2 =

(tα)2µ

1− tα .

On the other hand,

‖D−1∆u‖2 = ‖U1/2V 1/2U−1∆u‖2

≥ (1− tα)µ‖U−1∆u‖2.

Hence we get

‖U−1∆u‖ ≤ tα

1− tα ≤ β.

LEMMA 3.10. If δ(u, v, µ) ≤ tα, then

η4 ≡ ∆uTF ′(u)∆u ≤ (tα)2

4(1− tα)
µ.

Proof. The proof is very similar to the proof of Lemma 3.5, so we omit the details.
The only changes we have to make are to replace Uv and U1/2v1/2 with Uv− µe and(
U−1/2V −1/2

)
(Uv − µe), respectively, and to use the fact that(

U−1/2V −1/2
)

(Uv − µe)
4

≤ ‖Uv − µe‖
2

4(1− tα)µ
≤ (tα)2

4(1− tα)
µ.

PROPOSITION 3.11. If the parameters α, t, and M satisfy

(tα)2

1− tα +
M(tα)2

2(1− tα)
≤ α,

for example, we can choose

t = 2 and 0 < α ≤ 1
6 + 2M

;

then we have (uk+1, vk+1) > 0, and δ(uk+1, vk+1, µk+1) ≤ α.
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Proof. Using similar derivations to that of (3.6) and invoking Lemmas 3.8–3.10,
we have ∥∥Vk+1u

k+1 − µk+1e
∥∥

≤ ‖∆U∆v‖+ 2M [∆uF ′(u)∆u]

= η3 + 2Mη4

≤ (tα)2µ

1− tα +
M(tα)2µ

2(1− tα)
≤ αµ = αµk+1.

Thus we have δ(uk+1, vk+1, µk+1) ≤ α, which further implies (uk+1, vk+1) > 0.
Back to the saddle point algorithm 3.1, it is easy to see that (xk, yk, wk, sk) > 0

for all k because δ(xk, yk, wk, sk, µk) < 1. In addition, the choices of (xk+1, yk+1,
wk+1, sk+1) in the algorithm ensure that condition (2.4) is satisfied for all k. Thus,
by Proposition 2.2, xk and yk are feasible to problems (1.1) and (1.2), respectively,
for all k.

In summary, the algorithm keeps (xk, yk, wk, sk) > 0 and δ(xk, yk, wk, sk, µk) ≤ α
for each k while reducing µ at a linear rate of 1−O[(m+ n)−1/2]. From Proposition
2.6, it is readily to see that, in order to find an ε-optimal solution (xk, yk) of problem
(1.1) satisfying f(xk) − g(yk) ≤ ε, only O

[√
m+ n |log(m+ n)µ0/ε|

]
iterations are

necessary. Since µ0/ε is usually larger than m + n, the algorithm has polynomial
complexity of O

(√
m+ n| logµ0/ε|

)
.

Remarks on taking advantage of the problem structure. Practical prob-
lems formulated as problem (1.1) often have special structures. For instance, in the
two-stage model of stochastic programming mentioned in section 1, the matrix ∇2ψ(y)
is very large and block diagonal, whereas the matrix∇2φ(x) is of ordinary size. So the
key point is how to reduce the amount of work for solving system (3.2). The special
feature of system (3.2) allows us to reduce the amount of computations substantially.
Let us elucidate this point in some detail.

Problems with large, block-diagonal ∇2ψ(y) and small ∇2φ(x). Sub-
stituting ∆w and ∆s into the last two equations and canceling ∆y, we obtain an
equivalent system to (3.2):

{
∇2φ(x) +X−1W +AT

[
∇2ψ(y) + Y −1S

]−1
A
}

∆x

= AT
[
∇2ψ(y) + Y −1S

]−1 (−s+ λµY −1e
)
− w + λµX−1e,[

∇2ψ(y) + Y −1S
]

∆y = −A∆x− s+ λµY −1e,

∆w = ∇2φ(x)∆x−AT∆y,

∆s = A∆x+∇2ψ(y)∆y.

(3.8)

The principal work is to solve the first equation in (3.8). Since the dimension of x is
low (less than 100, say), we can solve system (3.8) exactly even if the dimension of y is
high. Notice that the matrix (∇2ψ(y)+Y −1S) has a block-diagonal structure. Hence
AT [∇2ψ(y) + Y −1S]−1A can be computed blockwise. In particular the computation
can proceed in parallel. The solution of the first equation in (3.8) can be obtained
by a factorization of ∇2φ(x) +X−1W + AT [∇2ψ(y) + Y −1S]−1A, which might be a
dense matrix but must be a low-dimensional and symmetric positive definite matrix.
After ∆x is obtained from the first equation, ∆y can be calculated through the second
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equation of (3.8) using [∇2ψ(y) + Y −1S]−1 computed in the first step. As a matter
of fact, we may store the block factorizations of ∇2ψ(y) + Y −1S in the first step for
later use in the second step. Subsequently, we get ∆w and ∆s.

Problems with large, block-diagonal∇2ψ(y),∇2φ(x), and block-banded
A. Discretized optimal control problems often have large, block-diagonal ∇2ψ(y) and
∇2φ(x) as described in [20] and [24]. In addition, the matrix A in problem (1.1) can
be partitioned into blocks such that the resulting matrix of blocks is banded [32], [33].
For instance, the dynamic constraint system

xt = Atxt−1 +Btut + bt for t = 0, . . . , T with A0 = 0(3.9)

can be expressed as an additional term in the saddle function (1.1):

−
T∑
t=0

(yt − zt)T (−xt +Atxt−1 +Btut + bt),(3.10)

where yt ≥ 0, zt ≥ 0 are some additional dual vectors. By doing this, we generate
an infinite penalty for the violation of constraints (3.9) in the primal problem. Let
u = (u0, . . . , uT ) be the primal control vector and x = (x0, . . . , xT ) be the primal
state vector. It can be seen that the submatrix of A in problem (1.1) corresponding
to the primal vector (u, x) and the dual vector (y, z) = (y0, . . . , yT , z0, . . . , zT ) is

Ā =
[
B F
−B −F

]
, where B =

B0
. . .

BT

 , F =


−I0
A1 −I1

. . . . . .
AT −IT

 .
The computation of AT (∇2ψ(y) + Y −1S)−1A in (3.8) will require us to compute the
submatrices

M1 ≡ Ȳ −1S̄y, M2 ≡ Z̄−1S̄z, and ĀT
[
M1

M2

]−1

Ā,

where Ȳ , S̄y, Z̄, and S̄z are some diagonal matrices. Note that

ĀT
[
M1

M2

]−1

Ā =
[
B F
−B −F

]T [M1

M2

]−1 [
B F
−B −F

]

=
[
BT (M−1

1 +M−1
2 )B BT (M−1

1 +M−1
2 )F

FT (M−1
1 +M−1

2 )B FT (M−1
1 +M−1

2 )F

]

≡
[
H11 H12

H21 H22

]
.

According to the structures of M1,M2, B, and F, matrix H11 is a block-diagonal
matrix, matrix H12 = HT

21 is a block-band matrix with bandwidth 2, and matrix H22
is also a block-band one with bandwidth 3. Therefore it is possible to solve equation
system (3.8) by using block operations applied to a banded system.

The case of X and Y being boxes. Now we explain why changing X and Y
into boxes will not complicate the computation. Consider a simple case that both X
and Y are closed-end boxes:

X = {x ∈ Rn|0 ≤ x ≤ u <∞} and Y = {y ∈ Rm|0 ≤ y ≤ v <∞}.



IP METHOD FOR SADDLE POINT PROBLEMS 549

By introducing auxiliary variables x1 = u− x, y1 = v − y, s, s1, w, and w1 and using
the variational relationships, the saddle point condition can be written as follows:

∇φ(x)−AT y − w + w1 = −c,
Ax+∇ψ(y)− s+ s1 = b,

x+ x1 = u,

y + y1 = v,

xTw = (x1)Tw1 = yT s = (y1)T s1 = 0,

x, x1, y, y1, w, w1, s, s1 ≥ 0.

The corresponding Newton equations become

∇2φ(x)∆x−AT∆y + ∆w1 −∆w = a1,

A∆x+∇2ψ(y)∆y + ∆s1 −∆s = a2,

∆x+ ∆x1 = a3,

∆y + ∆y1 = a4,

X∆w +W∆x = a5,

Y∆s+ S∆y = a6,

W1∆x1 +X1∆w1 = a7,

S1∆y1 + Y1∆s1 = a8,

(3.11)

where a1, . . . , a8 are certain fixed vectors. After canceling all variables with super-
script 1, we get a system whose major equations are{[

∇2φ(x) +X−1W +X−1
1 W1

]
∆x−AT∆y = b1,

A∆x+
[
∇2ψ(y) + Y −1S + Y −1

1 S1
]

∆y = b2,
(3.12)

where b1 and b2 are certain fixed vectors. After canceling ∆y, system (3.12) becomes a
similar system to (3.8). Therefore the computations needed for solving system (3.11)
are roughly the same as solving system (3.2). Hence there are no significant changes
in the algorithm if X and Y are changed into boxes. The case that X and Y are
half-open-end and half-closed-end boxes can be treated analogously.

4. Conclusions and final remarks. We have shown the polynomiality of a
predictor-corrector algorithm for a class of nonlinear saddle point problems. The
model is an extension of the traditional Lagrange multiplier model in optimization.
The results on existence of the central path and the relationship between the central
path and the duality gap established in section 2 are useful in developing other interior
path-following algorithms.

Several issues deserve further investigation.
(i) The smooth condition. We have proposed the SLC as the smooth condition.

In the context of convex programming, various smooth conditions were proposed to
characterize the problems which will have polynomial interior point algorithms. We
refer the reader to references [4] and [15] for more details. A direction of future
studies is to identify different classes of practical saddle point problems which will
have polynomial interior point algorithms under smooth conditions other than the
SLC.

(ii) Infeasible starting point. Algorithm 3.1 requires a starting point near the cen-
tral path. It could be an obstacle if such a starting point is not provided. Recently,
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much research has been done on interior point algorithms starting from an infeasible
interior point; see [8, 12, 13, 29, 33, 35] for examples. The algorithms reduce both
infeasibility and duality gap simultaneously. Some of the algorithms use large neigh-
borhoods of the central path and have been tested, e.g., Wright and Ralph [33]. It
makes practical sense to develop infeasible interior point methods with large stepsizes
for saddle point problems like (1.1).

(iii) Computation-related developments. Primary studies [26, 32, 33] show that
interior point methods might be fairly effective in solving linear-quadratic problems,
but comparison studies between interior point methods and other existing methods
have not been conducted fully. In addition, for large-scale problems, it is crucial to
reduce the amount of computations for matrix inverse and Hessian evaluation. It
is meaningful to develop algorithms that, for instance, can use inexact directions,
inaccurate Hessians, and parallelizations in predictor and corrector steps.

Acknowledgment. The authors would like to thank three anonymous referees
and the associate editor for their very valuable and detailed suggestions on improving
this paper.
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Abstract. We show how any (generalized) supersolution of the Hamilton–Jacobi equation can
be used to construct a feedback pursuit strategy which guarantees (to any given tolerance) a capture
time not exceeding the solution’s value. If the supersolution is the value function, then a near-optimal
pursuit strategy is obtained in this way. An important feature of the construction is its “universal”
nature, i.e., the fact that the feedback law is uniformly effective on compact sets of initial conditions.
This implies in particular that the feedback construction is one that exploits nonoptimal behavior
on the part of the evader.
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Introduction. The differential equation bearing the names of Hamilton and
Jacobi and of Bellman and Isaacs has been the essential ingredient of the dynamic
programming approach to solving differential games. When the value function is
smooth, it constitutes a classical solution of that equation; further, its derivatives give
rise easily to optimal strategies in feedback form (we recall this familiar argument in
section 1). Of course, it is now understood that it is essential to consider the value
function as a solution in some generalized sense (minimax or viscosity, for example) via
constructs of nonsmooth analysis [3]: derivates, generalized gradients, subdifferentials,
etc. (see [5] for an overview of this topic). In this more realistic setting, the issue of
effective feedback synthesis is a more subtle one; it is the one we focus upon in this
article.

The particular tool of nonsmooth analysis used here is the proximal subdifferential
∂P f of a lower semicontinuous function f mapping Rn to (−∞,∞]. An element ζ of
Rn belongs to ∂P f(x) (for a given x at which f is finite) iff there exists σ ≥ 0 and a
neighborhood N(x) of x such that

f(y)− f(x) + σ‖y − x‖2 ≥ 〈ζ, y − x〉 ∀y ∈ N(x).

Supersolutions of the Hamilton–Jacobi equation can be defined in terms of the prox-
imal subdifferential in a manner akin to the well-known approaches of Subbotin [14]
and of Crandall and Lions [6] (see section 2 and [4] for a comparison of these solu-
tion concepts). As shown in [5], the proximal approach is particularly well suited to
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the construction of (set) invariant feedbacks; that same property is what lies at the
heart of the present article. Experts will recognize our basic constructs in part as
especially simple yet powerful variants of the extremal aiming techniques introduced
by Krasovskii and Subbotin [10]. The simplicity of the approach is underlined by the
fact that the main result (Theorem 2.1) is completely self-contained, although we do
cite a few other results in the next section for the purpose of situating the present
contribution.

The context of this article is that of a general differential game of pursuit and
evasion. Starting with any supersolution of the associated Hamilton–Jacobi equation,
Theorem 2.1 constructs an explicit feedback pursuit strategy which guarantees (to
any specified tolerance) a capture time no greater than the value of the supersolution
at the starting point x0. When the supersolution is the value function, the ε-optimal
feedback strategies are obtained.

An important feature of this feedback is its “universality,” i.e., the property of
remaining uniformly effective for all starting positions x0 in a given compact set. In
practical terms, this implies that the feedback strategy is one that exploits nonoptimal
behavior: if the evader makes a bad move, this is equivalent to starting over from a
new position from which the capture time is less, but then the given feedback pursuit
strategy is effective from this new starting point. Similarly, a universal strategy
is one that has robustness properties in the presence of jumps or uncertainties in
state position.

1. The time-optimal differential game. We proceed to formulate precisely a
time-optimal differential game whose payoff is the elapsed time before the state reaches
a prescribed terminal set. The value function of the game may be discontinuous and
extended valued.

Main assumptions. Let the motion of the controlled system be described by
the equation

ẋ(t) = f(x(t), p(t), q(t)),(1.1)

where x(t) ∈ Rn is the state, p(t) ∈ P and q(t) ∈ Q are the controls of the pursuer
and the evader, and P and Q are compact sets. It is assumed that the function
f : Rn × P ×Q 7→ Rn is continuous and satisfies the Lipschitz condition

‖f(x, p, q)− f(y, p, q)‖ ≤ λ‖x− y‖(1.2)

for all x, y ∈ Rn, p ∈ P , q ∈ Q. Suppose for the moment that

min
p∈P

max
q∈Q
〈s, f(x, p, q)〉 = max

q∈Q
min
p∈P
〈s, f(x, p, q)〉 =: H(x, s)(1.3)

for all s ∈ Rn and x ∈ Rn. This local saddle point condition is a familiar one frequently
referred to as the Isaacs condition. The function H(x, s) defined by the equality (1.3)
is called the Hamiltonian.

Under the above assumptions, for any initial point x0 ∈ Rn and any choice of
measurable controls p(·) : R+ 7→ P , q(·) : R+ 7→ Q, the corresponding solution
of equation (1.1) exists, is unique, and can be extended over the whole semiaxis
R+ := [0,∞).

Let a closed set M ⊂ Rn be given. We define τ the payoff functional on the space
C(R+;Rn) of continuous functions x(·) : R+ 7→ Rn by the equality

τ(x(·)) := min{t ∈ R+ : x(t) ∈M}.(1.4)

If x(t) 6∈M for all t ∈ R+, then we put τ(x(·)) =∞.
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Feedback strategies and value. An arbitrary function U : Rn 7→ P (a function
V : Rn 7→ Q) will be called a feedback strategy of the pursuer (the evader). Let an
initial point x0 ∈ Rn be given. Let a feedback strategy U and a partition ∆ of [0,∞),

∆ := {0 = t0 < t1 < · · ·}, ti →∞ as i→∞,

be chosen by the pursuer. Denote by X(x0, U,∆) the set of “step-by-step” trajectories
of the differential inclusion

ẋ(t) ∈ co{f(x(t), U(x(ti)), q) : q ∈ Q},(1.5)

ti ≤ t < ti+1, i = 0, 1, 2, . . .. Specifically, the elements of the set X(x0, U,∆) are
continuous functions x(·):R+ 7→ Rn which satisfy the initial condition x(0) = x0;
for any θ > 0 their restrictions to [0, θ] are absolutely continuous and satisfy the
differential inclusion (1.5) for almost all t ∈ [0, θ].

Similarly, let a feedback strategy V : Rn 7→ Q and a partition ∆ be chosen by the
evader. By the symbol X(x0, V,∆) we denote the set of step-by-step trajectories of
the differential inclusion

ẋ(t) ∈ co{f(x(t), p, V (x(ti))): p ∈ P},(1.6)

ti ≤ t < ti+1, i = 0, 1, 2, . . . . It is obvious that any pair (U, V ) of feedback strategies
of the pursuer and the evader is compatible in the following sense: for arbitrary
partitions ∆(1) and ∆(2) chosen by the pursuer and the evader there exists a unique
trajectory of (1.1) corresponding to the controls given by

p(t) = U(x(t(1)
i )), t

(1)
i ≤ t < t

(1)
i+1, t

(1)
i ∈ ∆(1), i = 0, 1, 2, . . . ,

q(t) = V (x(t(2)
j )), t

(2)
j ≤ t < t

(2)
j+1, t

(2)
j ∈ ∆(2), j = 0, 1, 2, . . . .

Therefore X(x0, U,∆(1)) ∩X(x0, V,∆(2)) 6= ∅.
Below we will use the notation

diam(∆) := sup
i

(ti+1 − ti) for i = 0, 1, 2, . . . .(1.7)

Since the payoff functional (1.4) may in general be discontinuous, we need some
additional constructions in order to define the value. Consider the functional

τε(x(·)) := min{t ∈ R+ : x(t) ∈Mε}.(1.8)

If x(t) 6∈ Mε for all t ∈ R+, then we put τε(x(·)) := ∞. Here ε is a positive number
and Mε is the ε-neighborhood of the terminal set M ; that is,

Mε := {x+ y : x ∈M, ‖y‖ ≤ ε}.

Further we introduce the values

T ε1 (x0, U,∆) := sup{τε(x(·)) : x(·) ∈ X(x0, U,∆)},
T ε1 (x0, U) := lim sup

diam(∆)↓0
T ε1 (x0, U,∆),

T ε1 (x0) := inf
U
T ε1 (x0, U),

T 0
1 (x0) := lim

ε↓0
T ε1 (x0).
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It is evident that T ε
′

1 (x0) ≥ T ε′′1 (x0) for ε′ ≤ ε′′. From this monotonicity we have that
the last limit exists.

The quantity T 0
1 (x0) is called the optimal result for the pursuer in the class

of feedback strategies. Assume that T 0
1 (x0) < ∞. From the definition we obtain

immediately that for any ε > 0 and θ > T 0
1 (x0) a feedback strategy U∗ and a number

δ > 0 can be found such that for any step-by-step motion x(·) ∈ X(x0, U∗,∆), where
diam(∆) ≤ δ the point x(t) reaches the ε-neighborhood of the set M no later than at
time θ.

Similarly we define the optimal result for the evader. We set

T ε2 (x0, V,∆) := inf{τε(x(·)) : x(·) ∈ X(x0, V,∆)},
T ε2 (x0, V ) := lim inf

diam(∆)↓0
T ε2 (x0, V,∆),

T ε2 (x0) := sup
V
T ε2 (x0, V ),

T 0
2 (x0) := lim

ε↓0
T ε2 (x0).

The quantity T 0
2 (x0) is called the optimal result for the evader in the class of feedback

strategies. From the definitions we have that for any θ < T 0
2 (x0) there exist an

ε > 0, a feedback strategy V∗, and a δ > 0 such that any step-by-step motion x(·) ∈
X(x0, V∗,∆) on the time interval [0, θ] will avoid the ε-neighborhood of the set M ,
provided diam(∆) ≤ δ.

For arbitrary step-by-step control choices (U,∆(1)) and (V,∆(2)) of the pursuer
and the evader we have the inequalities

T ε1 (x0, U,∆(1)) ≥ τε(x∗(·)) ≥ T ε2 (x0, V,∆(2)),

where

x∗(·) ∈ X(x0, U,∆(1)) ∩X(x0, V,∆(2)).

Therefore T 0
1 (x0) ≥ T 0

2 (x0).
It is known [10] that under our assumptions the value Val(x0) of the time-optimal

differential game exists; that is, the equality

Val(x0) := T 0
1 (x0) = T 0

2 (x0)(1.9)

holds.
The framework presented here is that of Krasovskii and Subbotin [10]. Of course,

other well-known approaches have been developed; see, for example, [1], [2], [7],
[8], [12].

The Bellman–Isaacs equation. Consider the following boundary value prob-
lem:

H(x,Dv(x)) + 1 = 0, x ∈ G := Rn \M,(1.10)

v(x) = 0, x ∈ ∂G,(1.11)

where H(x, s) is the Hamiltonian defined by (1.3). For the differential game under
consideration, equation (1.10) is called the Bellman–Isaacs equation. Let us recall
some well-known facts.
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Let a continuous function v : G 7→ R+ satisfy the boundary condition (1.11).
Let this function be continuously differentiable in the domain G and satisfy equation
(1.10). Then the function v(·) coincides with the value function Val(·) of the time-
optimal differential game. Moreover, in this case optimal feedback strategies U0 and
V0 of the pursuer and the evader can be constructed with the help of v as follows.
Introduce extremal prestrategies [10] which are defined by the relations

p0(x, s) ∈ Arg min
p∈P

[max
q∈Q
〈s, f(x, p, q)〉],(1.12)

q0(x, s) ∈ Arg max
q∈Q

[min
p∈P
〈s, f(x, p, q)〉].(1.13)

We construct feedback strategies U0 and V0 as compositions of the prestrategies and
the gradient Dv; that is,

U0(x) := p0(x,Dv(x)), V0(x) := q0(x,Dv(x)).(1.14)

It is well known, however, that the value function is differentiable only in rare
situations. We will show that in the general case, optimal or suboptimal strategies of
the pursuer can still be defined via v by relations of the form (1.14), but instead of
the gradient Dv(x), proximal subgradients of v are utilized.

2. The main result. Since it is unrealistic to suppose that v is smooth, a gen-
eralized solution concept is required. For our present purposes, we consider proximal
solutions. We stress that as a solution concept, this is entirely equivalent (see [4])
to the earlier formulations of minimax [13], [14] or viscosity solutions [6], but certain
advantages derive from using the proximal formulation: the calculus is more natural
than that of Dini subderivates (used in minimax solutions) or that of comparison
functions (used in viscosity solutions), and the geometric interpretation of a proximal
subgradient lends itself to the dualization of results in either set terms or functional
terms. To put this another way, the proximal formulation leads to a generalized solu-
tion concept that is well integrated with both the theory of nonsmooth analysis and a
body of results in control theory bearing on many other issues, as opposed to standing
alone. The survey paper [5] is in part a demonstration of this point.

A lower semicontinuous function v:G→ [0,∞] is called a proximal supersolution
of (1.10) provided that

H(x, ζ) + 1 ≤ 0 ∀x ∈ G, ∀ζ ∈ ∂P v(x).(2.1)

Note that the inequality (2.1) holds vacuously at points x for which ∂P v(x) is empty
(among which are the points x at which v(x) =∞).

Given any nonnegative lower semicontinuous proximal supersolution v, we asso-
ciate with it for any α ∈ (0, 1/2) a certain feedback strategy UPα of the pursuer, as
follows. For x ∈ G, select any minimizer yα(x) over G of the function

y 7→ |x− y|
2

2α2 − exp{−2λv(y)}.

This minimum over G is attained, as is easily seen. Thus we have

yα(x) ∈ Arg min
y∈G

{
|x− y|2

2α2 − exp(−2λv(y))
}
.(2.2)
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Subsequently, set

ζα(x) :=
x− yα(x)

α2(2.3)

and define

UPα (x) := p0(x, ζα(x)),(2.4)

where p0 is an extremal prestrategy (1.12). Observe that the specification of UPα is
quite explicit.

In what follows, we posit the hypotheses of the previous section on the data of the
problem, except that the Isaacs condition (1.3) is not required. In its absence, and
without having recourse to relaxed (mixed) control strategies or counterstrategies of
the evader, the existence of the value cannot be asserted. However, this has no bearing
on the theorem below, which simply provides a feedback strategy for one player (the
pursuer) furnishing (up to a specified tolerance) a guaranteed result corresponding to
any supersolution. In this one-sided setting, the Hamiltonian H appearing in (2.1) is
given by

H(x, ζ) := min
p∈P

max
q∈Q
〈ζ, f(x, p, q)〉.

THEOREM 2.1. Let v:G→ [0,∞] be a lower semicontinuous proximal supersolu-
tion of the Bellman–Isaacs equation (i.e., v satisfies (2.1)). Let D be a compact subset
of G upon which v is bounded. Then for any ε > 0, there exist α > 0 and δ > 0 such
that

x0 ∈ D, diam(∆) < δ ⇒ T ε1 (x0, U
P
α ,∆) ≤ v(x0) + ε,(2.5)

where UPα is the feedback strategy constructed from v as described above.
Remark 2.2.
(a) The feedback strategy UPα is defined independently of D, and the theorem

asserts that it is “universal”; i.e., that within the specified tolerance and for α small
enough (this does depend on D), it provides the guaranteed upper bound associated
with v uniformly for all initial points in D.

(b) It follows from the results in [14] that in the presence of the Isaacs condition the
value function Val(·) is a supersolution of the Bellman–Isaacs equation. In fact, it is
the minimal supersolution satisfying the boundary condition v(x) = 0, x ∈ ∂G. With
v(·) = Val(·), the theorem then provides a universal ε-optimal feedback strategy. Note,
however, that we do not suppose here that v coincides with Val and that (surprisingly)
no boundary condition on ∂G enters into the theorem. The theorem evidently implies
T 0

1 ≤ v.
(c) The construction of UPα corresponds to a functional version of the geometric

approach called “proximal aiming” in [5]; it can also be viewed as a variant of the
extremal aiming method of [9], [10]. We stress that the proof of the theorem is
completely self-contained and elementary and that specific criteria for α and diam(∆)
to be “small enough” can be inferred from it. Thus the feedback UPα is implementable
at least conceptually. Let us stress that “small enough” here corresponds to picking
α small first and then δ = diam(∆) small in accordance with the order of the iterated
limit appearing in (2.12) below.

(d) We remark that the construction of an explicit universal feedback strategy for
the evader appears to be an essentially different problem, one that we do not address
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here. It is known [10] that in the presence of the Isaacs condition, an appropriate pair
of pursuit/evasion strategies would give rise to an approximate saddle point.

Proof of Theorem 2.1. We define a new lower semicontinuous u:G → [0, 1] via
the Kruzhkov transformation:

u(x) := 1− exp(−2λv(x)).(2.6)

Then we claim that u(·) satisfies

H(x, ζ)− 2λ(u(x)− 1) ≤ 0 ∀x ∈ G, ∀ζ ∈ ∂Pu(x).(2.7)

This is straightforward from (2.1), (2.6) when u(x) < 1, since then v(x) < ∞ and
∂Pu(x) and ∂P v(x) are related in an evident way. When u(x) = 1, the only possible
element ζ of ∂Pu(x) is ζ = 0, as follows readily from the definition of ∂Pu(x) and the
fact that u ≤ 1 everywhere. But then (2.7) holds, since H(x, 0) = 0.

We define uα on Rn by

uα(x) := min
y∈G

{
u(y) +

|x− y|2
2α2

}
,(2.8)

an inf-convolution familiar in many settings, notably convex and functional analysis
(Moreau–Yosida approximations) and partial differential equations (see, for example,
[11], [15]).

Note that by (2.2) the minimum is attained at yα(x) and that we have 0 ≤
uα(x) ≤ u(x) ≤ 1. In addition, the minimum must be attained at points y for which
|x− y|2/(2α2) is no greater than 1, whence

|x− yα(x)| ≤ 2α.(2.9)

Finally, when yα(x) ∈ G (open), then the stationarity condition holds at yα(x): zero
is a proximal subgradient of the function of y appearing in (2.8); i.e., we have

yα(x) ∈ G⇒ ζα(x) ∈ ∂Pu(yα(x))(2.10)

(recall that ζα is defined by (2.3)).
Denote by X(x0) the family of all trajectories x(·) on [0,∞) of the differential

inclusion

ẋ(t) ∈ co{f(x(t), p, q): p ∈ P, q ∈ Q}

satisfying the initial condition x(0) = x0. Let T0 be an upper bound for v(·) on D,
and define

K := {x(t) ∈ Rn:x(·) ∈ X(x0), t ∈ [0, T0 + 1]},
m := sup{|f(x, p, q)|:x ∈ K, p ∈ P, q ∈ Q}.

Note that K is bounded and m < ∞. Choose numbers α ∈ (0, 1/2) and δ0 > 0 such
that

3α ≤ ε.(2.11)

Choose any x0 ∈ D and set θ := v(x0) + ε. Without loss of generality we may assume
ε ≤ 1, so that θ ≤ T0 + 1.
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We now construct a certain function h which will provide the estimate (2.5) of
the theorem.

LEMMA 2.3. There is a nonnegative function h(α, δ) depending only on α and δ
(and not on x0 ∈ D nor on x(·) ∈ X(x0, U

P
α ,∆)) such that

lim
α↓0

(lim
δ↓0

h(α, δ)) = 0(2.12)

and having the following property: for any x(·) ∈ X(x0, U
P
α ,∆) let ti ∈ ∆, ti < θ and

suppose dist(x(ti),M) > 3α. Then for any τ ∈ [ti, ti+1] ∩ [0, θ] we have

uα(x(τ)) ≤ 1 + e2λ(τ−ti)[uα(x(ti))− 1] + (τ − ti)e2λ(τ−ti)h(α, diam(∆)).(2.13)

To prove this, let f∗ be defined by

f∗ :=
x(τ)− x(ti)

τ − ti
=

1
τ − ti

∫ τ

ti

ẋ(t) dt.

Note that ẋ(t) ∈ co{f(x(t), UPα (x(ti)), q): q ∈ Q} and |f∗| ≤ m. Below we use the
notation

ξ := x(ti), ζα := ζα(ξ), ηα := yα(x(ti)), µ := τ − ti.

Note that ζα = (ξ − ηα)/α2 and uα(x(τ)) = uα(ξ + µf∗). We observe from (2.8) and
the definition of ηα = yα(ξ) that

uα(ξ + µf∗) ≤ u(ηα) + |ξ + µf∗ − ηα|2/(2α2)

= u(ηα) + |ξ − ηα|2/(2α2) + 〈ξ − ηα, µf∗〉/α2 +
µ2

2α2 |f
∗|2

= uα(ξ) + µ〈ζα, f∗〉+
µ2

2α2 |f
∗|2.

(2.14)

We now require a bound for the middle term in this last expression.
By definition (i.e., (2.4)) we have

max
q∈Q
〈ζα, f(ξ, UPα (ξ), q)〉 = min

p∈P
max
q∈Q
〈ζα, f(ξ, p, q)〉 = H(ξ, ζα),

whence

〈ζα, f〉 ≤ H(ξ, ζα) ∀f ∈ co{f(ξ, UPα (ξ), q): q ∈ Q}.

Also, we have |ξ − ηα| ≤ 2α and |ζα| ≤ 2/α by (2.9) and (2.3). Invoking the positive
homogeneity of H(x, s) in s and its Lipschitz continuity in x, we derive

H(ξ, ζα) ≤ H(ηα, ζα) + λ|ξ − ηα| |ζα|
= H(ηα, ζα) + λ|ξ − ηα|2/α2.

(2.15)

We note the existence of f̃ ∈ co{f(ξ, UPα (ξ), q): q ∈ Q} such that |f∗ − f̃ | ≤ γ(µ),
where γ(µ)→ 0 as µ ↓ 0. Hence

〈ζα, f∗〉 ≤ 〈ζα, f̃〉+ h̃(α, µ),(2.16)
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where h̃(α, µ) := 2γ(µ)/α. Combining (2.15), (2.16) gives

〈ζα, f∗〉 ≤ H(ηα, ζα) + λ|ξ − ηα|2/α2 + h̃(α, µ),

where limα↓0(limµ↓0 h̃(α, µ)) = 0.
We now invoke the above estimates together with (2.14) to deduce

uα(ξ + µf∗) ≤ uα(ξ) + µ[H(ηα, ζα) + λ|ξ − ηα|2/α2] +
µ2

2α2 |f
∗|2 + µh̃(α, µ).

Since dist(ξ,M) > 3α by assumption and since |ξ − ηα| ≤ 2α, it follows that ηα lies
in G. Thus ζα ∈ ∂Puα(ηα) by (2.10). We may therefore use (2.7) to write

H(ηα, ζα) + λ|ξ − ηα|2/α2 ≤ 2λu(ηα)− 2λ+ λ|ξ − ηα|2/α2

= 2λ
{
u(ηα) +

|ξ − ηα|2
2α2

}
− 2λ = 2λuα(ξ)− 2λ.

Substituting in the previous estimate gives

uα(ξ + µf∗) ≤ uα(ξ) + 2λµ[uα(ξ)− 1] +
µ2

2α2 |f
∗|2 + µh̃(α, µ)

= (1 + 2λµ)uα(ξ)− 2λµ+
µ2

2α2 |f
∗|2 + µh̃(α, µ)

≤ e2λµuα(ξ)− 2λµ+
µ2

2α2m
2 + µh̃(α, µ)

= 1 + e2λµ[uα(ξ)− 1] + µe2λµh(α, µ),

where

h(α, µ) :=
[
h̃(α, µ) +

µ

2α2m
2 − 2λ+

e2λµ − 1
µ

]
e−2λµ

is nonnegative and has the required limiting property. The lemma is proved.
We now require of the parameters α and δ (= diam(∆)) that they satisfy

θe2λθh(α, δ) < e2λε − 1.(2.17)

If for every such ∆ and x(·) as in the lemma there exists ti ∈ ∆ such that ti < θ and
dist(x(ti),M) ≤ 3α, then (since 3α ≤ ε by (2.11)) the conclusion (2.5) of Theorem
2.1 follows immediately. Let us suppose the contrary (for some such ∆ and x) and
derive a contradiction.

By iterating (2.13) as a recurrent inequality for uα − 1 we easily derive

uα(x(θ))− 1 ≤ [uα(x0)− 1]e2λθ + θe2λθh(α, δ).

It is clear that e2λθ = e2λε(1− u(x0))−1, and we have uα(x0) ≤ u(x0). This yields

uα(x(θ)) ≤ 1− e2λε + θe2λθh(α, δ) < 0 (by (2.17)),

which cannot be since uα is nonnegative by construction. This completes the proof
of Theorem 2.1.

Remark 2.4. It is a familiar observation that the Lipschitz condition on f(x, p, q)
in the x variable can be weakened by requiring it to hold for x in any given compact
set K (with the Lipschitz constant λ depending on K), if one postulates the linear
growth (in x) condition on f .
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Abstract. This paper formulates and solves in closed form the problem of finding the minimum-
time path of a particle between two points in a uniform gravitational field when motion of the particle
is resisted by a force proportional to the normal force exerted on the particle by the path. This
resistance to motion is the common mathematical form for Coulomb friction. The problem solution
involves the reformulation of the classical brachistochrone of Bernoulli in terms of a singular control
problem in which the time derivative of the heading angle of the particle is the control parameter.
As such, this solution provides a unique approach to the solution of minimum-time path problems.

Key words. brachistochrone, singular control, extremal control, minimum-time control, corner
conditions, optimal control
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1. Introduction. Minimum-time optimal control problems are a common re-
search area in analytical and numerical control system synthesis. Current research
in robotics and automation is fraught with minimum-time optimization problems
[4, 8, 16, 20]. Some of the earliest work in optimal control theory was concerned with
minimum-time optimization [3]. Perhaps the earliest problem proposed in minimum-
time optimization was the brachistochrone of Bernoulli [1]. This problem may be
stated as follows: A bead slides on a frictionless wire between points A and B in a
constant-gravity field. The bead has an initial speed V0 at point A. What is the shape
of the wire that will produce a minimum-time path between the two points? Assum-
ing the positive y axis points upward with A = (x0, y0) and B = (0, 0), the optimal
path is a portion of a cycloid [2], the path generated by a point on the circumference
of a circle as it rolls in the direction of the x axis. The minimum-time solution in this
case requires that the time rate of change of heading angle of the bead is constant [2].

Euler proposed an extension to this problem. As quoted from Goldstine [7],
Euler “. . . takes up the elegant problem of finding the shape of the brachystochrone
[sic] curve in case the medium through which the heavy particle falls resists the motion
depending only on the velocity v. Here he assumes that the resistance function R is
proportional to v2n.” Euler’s solution to this problem is an implicit solution [5]. Due
to the fact that the friction is proportional to a function of the velocity only, this
problem may be solved using the calculus of variations.

Current research into the brachistochrone has been primarily focused on different
approaches to solving the classical brachistochrone problem. For example, Roomany
[19] uses a graph theoretical approach to solve the classical brachistochrone problem.
This technique is efficient and convergent but is only useful if the field through which
the particle moves is derivable from a potential. In a similar manner, Razzaghi and
Elnagar solve the classical brachistochrone problem using interpolating polynomials
of appropriate degree [18]. Szarkowicz approaches the solution of the brachistochrone
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problem with use of multistage Monte Carlo methods [22]. Some extensions of the
classical brachistochrone problem have been discussed in the current literature as well.
Hoskins extended and solved the classical brachistochrone problem, where the change
in direction is allowed only along circles of a given radius R [9]. Perlick solved the
classical brachistochrone problem extended to a stationary Lorentzian space-time [14].

The present paper examines the brachistochrone problem in which the friction
force on the particle is a resistance proportional to the force exerted by the particle
by its path (the normal force). This formulation is the equivalent of determining
minimum-time paths in a uniform gravitational field with Coulomb friction resisting
the motion. With this choice of motion resistance, the penalty for curvature in the
path is high. In fact, the dynamics to be derived will demand that there be no abrupt
changes in curvature. Therefore, if the optimal control problem is reformulated with
an intermediate point as the initial point and the corresponding speed at that point
as the initial speed, a different optimal path will result. This again differs from the
classical brachistochrone result in that the position and speed at any point on an
optimal cycloidal path determine the cycloid. It is the position and velocity which
uniquely determine the time-optimal path when Coulomb friction is present in the
brachistochrone problem.

A discretization of this problem was formulated and solved using a Davidon–
Fletcher–Powell algorithm in 1990 [17]. A number of important points in this re-
sult were left unsolved, including the question of whether a solution exists and how
close a solution is to the actual minimum-time solution. Some interesting features of
the minimum-time path were not illustrated in the discretized solution. This paper
will present the closed-form solution for the minimum-time path. Therefore, it will
demonstrate the validity of the discretized approach and provide further insight into
the limitations of that generic approach in its application to this problem.

2. Optimal control formulation. The classical brachistochrone problem may
be formulated as an optimal control problem with the heading angle θ as the control
variable. In the formulation of any optimal control problem, the first step is the
formation of the scalar Hamiltonian [15]. The Hamiltonian is defined by

(2.1) H = 〈λ,f(x, u)〉+ L(x, u),

where ẋ = f(x, u) are the state dynamics, λ̇ = −∂H∂x are the “costate” dynamics,
L(x, u) is the scalar function whose time integral is to be minimized, u is the control
variable, and 〈·, ·〉 denotes the scalar inner (dot) product. For minimum-time control
problems, the scalar cost function L(x, u) ≡ 1, since the minimization of the time
integral of one corresponds to the minimization of the final time.

Pontryagin’s “minimum” principle [15] states that the optimal control is the con-
trol u which minimizes the Hamiltonian almost everywhere. When the Hamiltonian
is convex in the control variable u, the optimal control necessarily satisfies Euler’s
condition (the first variation) ∂H

∂u = 0 and sufficiency is guaranteed with the “strict”

Legendre–Clebsch condition (the second variation) ∂2H
∂u2 > 0 . The strict Legendre–

Clebsch condition is guaranteed in the case of the classical brachistochrone.
The state dynamics for the standard brachistochrone may be derived in x and y

coordinates using Newton’s laws. Assume that positive x is to the right and positive
y is up. Additionally, assume that a first quadrant heading angle θ corresponds to
negative x-speed and y-speed. The particle speed is denoted by V . A diagram of the
geometry is shown in Figure 2.1.
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x V

y
θ

FIG. 2.1. State-variable geometry.

Using dimensionless variables

(2.2)

ẋ = −V cos θ,
ẏ = −V sin θ,

V̇ =
1
2

sin θ .

The dimensionless variables chosen were

(2.3) x =
x∗

x∗(0)
, y =

y∗

x∗(0)
, V =

V ∗√
2gx∗(0)

, t = t∗

√
2g
x∗(0)

,

where the superscript ∗ indicates dimensional variables. Treating θ as the control
variable, the initial and final conditions on the states are

(2.4) x(0) = 1, y(0) = y0, V (0) = V0, x(tf ) = 0, y(tf ) = 0 .

Setting

(2.5) λ =

 λx
λy
λV

 ,

the Hamiltonian may be written as

(2.6) H = −λxV cos θ − λyV sin θ +
1
2
λV sin θ + 1 .

The costate dynamics as obtained from λ̇ = −∂H∂x are

(2.7)
λ̇x = λ̇y = 0,

λ̇V = λx cos θ + λy sin θ .

With the state boundary conditions given, the costates λ have free (unknown) bound-
ary conditions except at the boundary where x is unconstrained. Thus the only
boundary condition satisfied by λ is

(2.8) λV (tf ) = 0 .

This means that there are six differential equations and seven unknowns (V (tf ), λx(0),
λy(0), λV (0), λx(tf ), λy(tf ), and tf ).
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FIG. 2.2. Free-body diagram of bead on path with Coulomb friction resisting motion.

The final condition for determination of the optimal control is the transversality
condition [15], which states that

(2.9) H(tf ) =
∂L(x, u)

∂t
= 0 .

With the Hamiltonian having no explicit time dependence, this means that H(t) ≡ 0 .
Simple integration demonstrates that the first and second variation conditions hold
for a cycloidal path. Therefore, the cycloidal path is the optimal minimum-time path
for control.

When Coulomb friction is added as a resisting force to the motion, the dimension-
less equations of motion may be determined from a free-body diagram of the particle
(see Figure 2.2). In the figure, the dimensionless normal force N and dimensionless
friction force f are given by

(2.10) N =
N∗

2mg
and f =

f∗

2mg
.

Coulomb friction resistance has the constitutive law f = µ|N |, where µ is the coeffi-
cient of friction. The normal force exerted by the path on the particle is equal to the
component of the weight of the particle (1/2 in dimensionless terms) in the direction
of the normal force minus the mass of the particle multiplied by the centripetal accel-
eration caused by the particle’s speed and the curvature of the path. In dimensionless
terms, this is V θ̇. Therefore, the dimensionless equations of motion are

(2.11)

ẋ = −V cos θ,
ẏ = −V sin θ,

V̇ =
1
2

sin θ − µ
∣∣∣∣12 cos θ − V θ̇

∣∣∣∣ .
Unlike the classical or Euler’s brachistochrone problem, θ̇ has entered the dynamics.
In order to formulate the problem as an optimal control problem, θ will be adjoined
as an extra state with θ̇ = Ω as the control variable.
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This formulation is troublesome due to the fact that the control objective and
the state dynamics are not convex in the control variable. The second derivative of
the Hamiltonian with respect to the control being zero is not sufficient for optimal-
ity. In fact, Euler’s necessary condition is not satisfied initially for nonzero initial
velocity. Recourse to Pontryagin’s minimum principle yields extremal control ini-
tially but yields no information about the control when the system equations simplify
with Euler’s condition being satisfied. This problem requires the theory of singular
control [10, 11].

When the partial derivative of the Hamiltonian with respect to the control variable
equals zero but yields a relation in which there is no explicit control variable, then
a singular control solution may exist for the system. Singular control methods yield
the following constraint equations for determining the control:

(2.12)

di

dti

[
∂H
∂u

]
= 0, i = 0, 1, . . . ,m− 1,

dm

dtm

[
∂H
∂u

]
= g(x,λ, u) = 0.

The first m − 1 derivatives are independent of the control u. The mth derivative
determines the control u as a function of the states/costates. A result obtainable
from this theory is [11]: (1) m is always even; (2) if the number of states is n,
the singular control restricts state/costate space to dimension 2n −m (the singular
hypersurface); and (3) it is necessary that

(−1)
m
2
∂

∂u

(
dm

dtm

[
∂H
∂u

])
≥ 0 .

The final condition is a generalized Legendre–Clebsch condition, a necessary condition
for optimality. In general there are no sufficiency conditions for optimality of a singu-
lar control arc. Even the strict inequality does not guarantee optimality. Nevertheless,
this method will prove invaluable in generating control trajectories for the brachis-
tochrone with Coulomb friction. Furthermore, since the classical brachistochrone can
be derived as a singular control problem and the Coulomb friction brachistochrone
simplifies to the classical brachistochrone when the coefficient of friction µ → 0, the
necessarily optimal path derived by singular control methods is sufficient in the limit.

3. Reformulation of the classical brachistochrone problem. The classical
brachistochrone problem can also be formulated as a singular control problem where
the control variable is Ω, the time rate of change of the slope of the time-optimal
path. In this case, the state equations are

(3.1)

ẋ = −V cos θ,
ẏ = −V sin θ,

V̇ =
1
2

sin θ,

θ̇ = Ω .

The dimensionless Hamiltonian is thus

(3.2) H = −λxV cos θ − λyV sin θ +
1
2
λV sin θ + λθΩ + 1 .
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The costate equations are

(3.3)

λ̇x = −∂H
∂x

= 0,

λ̇y = −∂H
∂y

= 0,

λ̇V = −∂H
∂V

= λx cos θ + λy sin θ,

λ̇θ = −∂H
∂θ

= V (λy cos θ − λx sin θ)− 1
2
λV cos θ

with the boundary conditions

(3.4) λV (tf ) = 0, λθ(0) = λθ(tf ) = 0, H(tf ) = 0 .

With the Hamiltonian being linear in the control variable Ω, the optimal control will
be singular control. The singular control is determined with the following conditions:

(3.5)

∂H
∂Ω

= λθ = 0,

d

dt

∂H
∂Ω

= V (λy cos θ − λx sin θ)− 1
2
λV cos θ = 0,

d2

dt2
∂H
∂Ω

= −1
2
λx +

(
1
2
λV sin θ − V (λx cos θ + λy sin θ)

)
Ω = 0 .

These conditions restrict state/costate space to dimension six. This restriction in
the dimensionality of the state/costate dynamics is known as the singular surface;
the trajectory defined on this surface is known as the singular arc. The generalized
Legendre–Clebsch condition for this singular control problem is

(3.6) − ∂

∂Ω

[
d2

dt2

(
∂H
∂Ω

)]
= V (λx cos θ + λy sin θ)− 1

2
λV sin θ ≥ 0 .

Solving the differential equations for the states/costates and choosing θ as the
independent parameter yields (see section 4.2 for more details)

(3.7)

x(θ) =
V 2
f

2 cos2 θf
(2(θ − θf ) + sin 2θ − sin 2θf ),

y(θ) =
V 2
f

2 cos2 θf
(cos 2θf − cos 2θ),

V (θ) = Vf
cos θ
cos θf

,

t(θ) = tf −
2Vf

cos θf
(θ − θf ),

λx(θ) =
cos θf
Vf

,

λy(θ) =
sin θf
Vf

,

λV (θ) = −
2 sin(θ − θf )

cos θf
,

λθ(θ) = 0 .

The values of Vf , θf , and θ0 are determined from the initial conditions on x, y, and
V . The fact that λθ(θ) ≡ 0 indicates the singular solution for the control exists
throughout the control trajectory. The optimal control is

(3.8) Ω = −
cos θf
2Vf

,
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satisfying the necessary generalized Legendre–Clebsch condition

V (λx cos θ + λy sin θ)− 1
2
λV sin θ = 1 > 0 .

These results will serve as a check for the brachistochrone problem with Coulomb
friction. When µ = 0, the Coulomb friction results should reduce to the above results.

4. Brachistochrone with Coulomb friction.

4.1. The equations of motion. The dimensionless equations of motion for the
brachistochrone with Coulomb friction are obtained from (2.11) with θ̇ = Ω appended.
The boundary conditions for the states are

(x( 0 ), y( 0 ), V ( 0 ), θ( 0 )) = (1, y0, V0 , θ0) ,(4.1)
(x(tf ), y(tf ), V (tf ), θ(tf )) = (0, 0 , Vf , θf ) ,(4.2)

where θ0, Vf , and θf are unknown parameters.
The Hamiltonian for the system is

(4.3) H = −λxV cos θ − λyV sin θ + λV

(
1
2

sin θ − µ
∣∣∣∣12 cos θ − V Ω

∣∣∣∣)+ λθΩ + 1 .

Therefore, the equations for the costates are

(4.4)

λ̇x = 0,
λ̇y = 0,

λ̇V = λx cos θ + λy sin θ − µsλV Ω,

λ̇θ = −λxV sin θ + λyV cos θ − 1
2
λV (cos θ + µs sin θ)

with the boundary conditions

(λx( 0 ), λy( 0 ), λV ( 0 ), λθ( 0 )) = (λx0
, λy0

, λV0
, 0) ,(4.5)

(λx(tf ), λy(tf ), λV (tf ), λθ(tf )) = (λxf , λyf , 0 , 0) ,(4.6)

where λx0
, λy0

, λV0
, λxf , and λyf are unknown. In the above equations

(4.7) s = sgn
(

1
2

cos θ − V Ω
)

= sgn(N) .

Note that for N = 0, the above differential equations for λV and λθ are not properly
defined. This case will be considered in section 4.3.

4.2. The singular control arc. The first step in synthesizing the singular con-
trol arc for this problem is to derive the constraint equations. To simplify the following
analysis, three parameters will be introduced to replace three parameters in the state/
costate equations. These parameters are defined as follows:

(4.8) sin θµ =
sµ√

1 + µ2
, cos θµ =

1√
1 + µ2

, λx = L cos θλ, λy = L sin θλ
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with L > 0. Noting that the time derivatives of λx and λy are both zero, the reduced
set of six state/costate equations is

(4.9)

ẋ = −V cos θ,
ẏ = −V sin θ,

V̇ =
1

2 cos θµ
sin(θ − θµ) + tan θµV Ω,

θ̇ = Ω,
λ̇V = L cos(θ − θλ)− tan θµλV Ω,

λ̇θ = −LV sin(θ − θλ)− 1
2 cos θµ

λV cos(θ − θµ) .

The seven unknown parameters for these six equations are θ0, θf , Vf , L, θλ, λV0
,

and tf . There is also θµ, which is unknown because of s being unknown. In forthcom-
ing equations, s is assumed constant; its sign will be determined from the generalized
Legendre–Clebsch condition. The seventh condition is the transversality condition
which, for minimum-time optimization, states that the Hamiltonian is zero at time
t = tf . Using the final conditions of the states and costates, equations (4.2) and (4.6),
respectively, in the Hamiltonian, (4.3), with use of the parameter equations (4.8), the
transversality condition may be written as

(4.10) LVf cos(θf − θλ) = 1 .

For this problem, the constraints for singular control may be written as

∂H
∂Ω

= λθ + tan θµV λV = 0,

cos θµ
d

dt

∂H
∂Ω

= −LV sin(θ − θµ − θλ)− 1
2 cos θµ

λV cos θ = 0,(4.11)

cos2 θµ
d2

dt2
∂H
∂Ω

=
L

2
(sin θµ sin(2θ − θµ − θλ)− cos θλ)

− LV Ω cos(θ − 2θµ − θλ) +
1

2 cos θµ
λV Ω sin(θ + θµ) = 0 .

With the condition that λV (tf ) = λθ(tf ) = 0, it is evident that singular control will
lead the system to the final state.

The generalized Legendre–Clebsch condition for the existence of singular arcs is

− ∂

∂Ω

[
d2

dt2

(
∂H
∂Ω

)]
> 0 .

For this problem, this is equivalent to the condition

(4.12) − 1
2 cos θµ

λV sin(θ + θµ) + LV cos(θ − 2θµ − θλ) > 0 .

The assumptions upon which the singular control derivation is based are that (1) the
speed, including the parameter Vf , is positive; (2) the parameter L is positive; (3) the
heading angle θ lies in the interval (−π/2, π/2); (4) the variable s as manifested in the
parameter θµ is constant; and (5) the generalized Legendre–Clebsch condition holds.
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The derivation will proceed assuming these conditions hold. When the singular-
control state trajectories are finally derived, these assumptions will be verified.

The control as determined from the final condition is

(4.13) Ω =
L
2 (sin θµ sin(2θ − θµ − θλ)− cos θλ)

LV cos(θ − 2θµ − θλ)− 1
2 cos θµ

λV sin(θ + θµ)
.

If the second equation is solved for λV , the result is

(4.14) λV = − 2V
cos θ

L cos θµ sin(θ − θµ − θλ) .

Substituting this result into the control equation,

(4.15) Ω =
cos θ
2V

sin θµ sin(2θ − θµ − θλ)− cos θλ
sin θµ sin(2θ − θµ − θλ) + cos(2θµ + θλ)

.

Notice the equations are identical to the singular control equations for the classical
brachistochrone when θµ = 0.

With λV obtained from (4.14), the generalized Legendre–Clebsch condition be-
comes

(4.16)
LV

cos θ
(sin θµ sin(2θ − θµ − θλ) + cos(2θµ + θλ)) > 0 .

With −π/2 < θ < π/2, the constraint that λV (tf ) = 0 implies that if (4.14) is
evaluated at tf then

θf = θµ + θλ + kπ,

where k is an integer. Substituting θ = θf in the generalized Legendre–Clebsch
condition yields

LV

cos θ
(sin θµ sin(2θ − θµ − θλ) + cos(2θµ + θλ))

∣∣∣∣
t=tf

= (−1)kLVf cos θµ > 0 .

Therefore, k must be an even integer. Without loss of generality, k = 0 and

(4.17) θλ = θf − θµ .

Hereafter, the variable θλ will be replaced by the right-hand side of (4.17). Rewriting
the generalized Legendre–Clebsch condition in terms of θf ,

(4.18)
LV

cos θ
{sin θµ sin(2θ − θf ) + cos(θµ + θf )} > 0 .

With L and V positive, and −π/2 < θ < π/2, the generalized Legendre–Clebsch
condition holds if the term in the braces is positive.

The dimensionless normal force in the system is

(4.19) N =
1
2

cos θ − V Ω = cos θ
cos θµ cos θf

sin θµ sin(2θ − θf ) + cos(θµ + θf )
.

The generalized Legendre–Clebsch condition explicitly requires s = sgn(N) = +1. In
other words, there is no way of picking an optimal singular control for which N < 0 at
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some point in the singular arc. Furthermore, the assumption of s constant is justified.
Hereafter, the parameter θµ will be defined by the relations (4.8) with s ≡ +1.

It will be helpful to express the generalized Legendre–Clebsch condition, and other
relationships in the equations, in a different form. First,

LV

cos θ
(sin θµ sin(2θ − θf ) + cos(θµ + θf ))(4.20)

= LV cos θ cos θf cos θµ((tan θ + tan θµ)2 − (tan θf + tan θµ)2 + sec2 θf ) > 0 .

The dimensionless normal force may be written as

(4.21) N =
sec θ

(tan θ + tan θµ)2 − (tan θf + tan θµ)2 + sec2 θf
.

Similarly, (4.15) may be written as

(4.22) Ω = −cos θ
2V

(tan θ − tan θµ)2 − (tan θf − tan θµ)2 + sec2 θf
(tan θ + tan θµ)2 − (tan θf + tan θµ)2 + sec2 θf

.

Using this last relationship and writing the differential equation for V (θ),

(4.23)
dV

dθ
= −V

tan3 θ + (1− 2 tan θf tan θµ) tan θ − 2 tan θµ
(tan θ − tan θµ)2 − (tan θf − tan θµ)2 + sec2 θf

.

The solution of this differential equation is

(4.24) V+(θ) =
Vf sec θf sec θ

(tan θ − tan θµ)2 − (tan θf − tan θµ)2 + sec2 θf
.

The subscript + indicates that this and subsequent formulas are valid for θ near θf
(singular control). The beauty of this result is its simplicity. With θµ = 0,

V (θ) = Vf
sec θf
sec θ

= Vf
cos θ
cos θf

,

which is the result for the classical brachistochrone.
With V+ > 0, cos θ > 0, and the generalized Legendre–Clebsch condition, Ω(θ) <

0, which implies that θ decreases as a function of time. This means that θ ≥ θf ,
where θ represents the heading angle at time t ≤ tf . The implicit assumption in the
analysis to this point has been that V+ > 0. In order for this to be true,

V+(θ) =
Vf sec θf sec θ

(tan θ − tan θµ)2 − (tan θf − tan θµ)2 + sec2 θf

= Vf
cos θf
cos θ

1
f2(θ)− f2(θf ) + 1

> 0,

where

(4.25) f(x) =
tanx− tan θµ

sec θf
= cos θf (tanx− µ) .

Given that θ and θf are each bounded between −π/2 and π/2, this implies that
f2(θ) − f2(θf ) + 1 > 0. If 1 − f2(θf ) > 0, then the constraint holds regardless of
the value of θ. If 1−f2(θf ) < 0, then θ must be constrained. The fact that V+ > 0 and
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Ω(θ) < 0 translates to the following constraints on θ and θf :

(4.26)
θf > 2θµ −

π

2
, θf < θ <

π

2
,

θf ≤ 2θµ −
π

2
, θf < θ < tan−1

(
tan θµ −

√
(tan θf − tan θµ)2 − sec2 θf

)
.

This constraint on the range of θ also implies the generalized Legendre–Clebsch con-
dition is satisfied in general for the state trajectories to be computed.

The differential equations satisfied by x, y, and t are as follows:

dx

dθ
= 2V 2

f cos θf
f2(θ)− 4f0f(θ)− f2(θf ) + 4f0f(θf ) + 1

(f2(θ)− f2(θf ) + 1)3 f ′(θ) ,

dy

dθ
= 2V 2

f

(f(θ)− f0)(f2(θ)− 4f0f(θ)− f2(θf ) + 4f0f(θf ) + 1)
(f2(θ)− f2(θf ) + 1)3 f ′(θ) ,(4.27)

and
dt

dθ
= −2Vf

f2(θ)− 4f0f(θ)− f2(θf ) + 4f0f(θf ) + 1
(f2(θ)− f2(θf ) + 1)2 f ′(θ),

where f0 = f(0) = −µ cos θf .
The solution of each differential equation differs with θf greater than, equal to,

or less than 2θµ − π/2. The value for θf > 2θµ − π/2 is presented first. The value for

θf < 2θµ − π/2 is obtained from this result by replacing each term
√

1− f2(θf ) with

i
√
f2(θf )− 1, and tan−1(ix) with i coth−1(x). For each solution the corresponding

formula for θf = 2θµ−π/2 is also presented. The solutions of the differential equations
are

x+(θ)
V 2
f

= cos θf

[
1− f2(θf ) + 3f(θf )f0

(1− f2(θf ))2

 f(θ)
f2(θ)− f2(θf ) + 1

− f(θf )

+
1√

1− f2(θf )

tan−1

 f(θ)√
1− f2(θf )

− tan−1

 f(θf )√
1− f2(θf )

(4.28)

+
2f0f(θf )

1− f2(θf )

(
f(θ)

(f2(θ)− f2(θf ) + 1)2 − f(θf )

)

− 2f0

(
1− 1

(f2(θ)− f2(θf ) + 1)2

)]
,

y+(θ)
V 2
f

= 1− 1
f2(θ)− f2(θf ) + 1

+ 2f0(f(θf ) + f0)

(
1− 1

(f2(θ)− f2(θf ) + 1)2

)

+
2f0(1− f2(θf )− f(θf )f0)

1− f2(θf )

(
f(θ)

(f2(θ)− f2(θf ) + 1)2 − f(θf )

)

−
f0(2− 2f2(θf ) + 3f(θf )f0)

(1− f2(θf ))2

(
f(θ)

f2(θ)− f2(θf ) + 1
− f(θf )

+
1√

1− f2(θf )

tan−1

 f(θ)√
1− f2(θf )

− tan−1

 f(θf )√
1− f2(θf )

 ,(4.29)
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and

t+(θ)
2Vf

=
tf

2Vf
−

2f0f(θf )
1− f2(θf )

(
f(θ)

f2(θ)− f2(θf ) + 1
− f(θf )

)

+ 2f0

(
1− 1

f2(θ)− f2(θf ) + 1
)− (1 +

2f0f(θf )
1− f2(θf )

)

· 1√
1− f2(θf )

tan−1

 f(θ)√
1− f2(θf )

− tan−1

 f(θf )√
1− f2(θf )

 .(4.30)

The solutions of the differential equations for f(θf ) = −1 (θf = 2θµ − π/2) are

(4.31)
x+(θ)
V 2
f

= sin 2θµ

[
−2

3

(
1

f3(θ)
+ 1
)

+ 2f0

(
1

f4(θ)
− 1
)

+
8f0

5

(
1

f5(θ)
+ 1
)]

,

(4.32)
y+(θ)
V 2
f

= 1− 1
f2(θ)

+ 2f0(1− f0)
(

1
f4(θ)

− 1
)

+
10f0

3

(
1

f3(θ)
+ 1
)
− 8f2

0

5

(
1

f5(θ)
+ 1
)
,

and

(4.33)
t+(θ)
2Vf

=
tf

2Vf
+

1
f(θ)

+ 1 + 2f0

(
1− 1

f2(θ)

)
− 4f0

3

(
1

f3(θ)
+ 1
)
.

When θµ = 0, the equations simplify to

x(θ) =
V 2
f

2 cos2 θf
(2(θ − θf ) + sin 2θ − sin 2θf ),

y(θ) =
V 2
f

2 cos2 θf
(cos 2θf − cos 2θ) ,

and

t(θ) = tf −
2Vf

cos θf
(θ − θf ) .

Admittedly, the results were presented without exposition, but the fact that the
results yielded are identical to classical brachistochrone results when µ = 0 is at
least reassuring.

4.3. The extremal control arc. With the derivation of the singular control
arc, the optimal control has yet to be completely described. For one, each of the
expressions derived contains two unknowns, Vf and θf . There must be relations
connecting the states in the singular arc with states starting at time t = 0.

Initially the control will be extremal control, that is, control which lies at the
boundary of the admissible domain of control. As demonstrated earlier, the optimal
control for initial conditions in the first or fourth quadrant (x0 positive) is control in
which the normal force is nonnegative. Therefore

(4.34)
1
2

cos θ − V Ω ≥ 0 .

This constraint will yield the initial extremal control.



574 STEPHEN C. LIPP

The partial derivative of the Hamiltonian with respect to the control variable Ω
is given by

(4.35)
∂H
∂Ω

= λθ + sµV λV .

Examining this term at time t = 0, if V0 = V (0) 6= 0 then this term is nonzero.
Furthermore, the time derivative of the Hamiltonian is

(4.36)
dH
dt

= (λθ + sµV λV )Ω̇− µλV
(

1
2

cos θ − V Ω
)
ṡ = 0 .

There are thus two options for the initial control Ω if V0 6= 0: (1) choose Ω constant
with s constant (either + or − 1), or (2) choose Ω = cos θ

2V such that the normal force
is zero and define s = − λθ

µV λV
so that the coefficient of Ω̇ in the time derivative of the

Hamiltonian is also zero.
Choosing case (1), the constant extremal control which “minimizes” the Hamil-

tonian must be Ω = ±∞; that is, the initial control will be a jump change in the
direction of the particle. By Pontryagin’s principle [15], the optimal control is the
control which extremizes the Hamiltonian. In this case, extremization of the Hamil-
tonian occurs with Ω = ±∞ if and only if

(4.37)
∣∣∣∣ λθ
µV λV

∣∣∣∣ ≥ 1 .

This constraint follows from the fact that λV , from (4.14), is less than zero and
that λθ, from the first equation of (4.11), is greater than zero at the corner between
singular control and extremal control. Thus, in order for constant control to be
extremal control, the control reduces to a jump change in slope. After the jump
in the control trajectory, the velocity is now zero and singular control yields the
constraints. Intuitively, this possibility is trivial as setting the initial normal force
infinite makes this problem identical to a zero-initial-velocity problem. All that is
gained from having nonzero initial energy is lost immediately.

Therefore, the extremal control will be to let

(4.38) Ω =
cos θ
2V

.

This control minimizes the Hamiltonian if and only if

(4.39) s = − λθ
µV λV

with |s| ≤ 1 .

This initial extremal control is different from the singular control derived earlier. Due
to the order of the singularity, the control must be discontinuous [21] at the corner
between extremal control and singular control. Setting the normal force equal to zero
means that the curve described by the motion of the particle is that of a particle in
“free fall.”

Starting with the free-fall equation for velocity,

dV

dθ
= V tan θ .
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Integrating this result yields

(4.40) V−(θ) = V0
cos θ0

cos θ
.

The subscript − indicates that this and subsequent formulas are valid for θ near θ0
(extremal control). Using this result in the differential equations for x, y, and t yields

dx

dθ
= −2V 2

0 cos2 θ0 sec2 θ ,

dy

dθ
= −2V 2

0 cos2 θ0 sec2 θ tan θ ,(4.41)

and
dt

dθ
= 2V0 cos θ0 sec2 θ .

The solution of this set of differential equations is

x−(θ) = 1− 2V 2
0 cos2 θ0(tan θ − tan θ0)(4.42)

= 1− 2V 2
0

cos2 θ0

cos2 θf
cos θf (f(θ)− f(θ0)) ,

y−(θ) = y0 − V 2
0 cos2 θ0(tan2 θ − tan2 θ0)(4.43)

= y0 − V 2
0

cos2 θ0

cos2 θf
(f2(θ)− 2f(θ)f0 − f2(θ0) + 2f(θ0)f0),

and
t−(θ) = 2V0 cos θ0(tan θ − tan θ0) = 2V0

cos θ0

cos θf
(f(θ)− f(θ0)) .(4.44)

If θ is the heading angle at the time at which the control switches, then letting
x+(θ) from (4.28) equal x−(θ) from (4.42), y+(θ) from (4.29) equal y−(θ) from (4.43),
and V+(θ) from (4.24) equal V−(θ) from (4.40) yields three equations in unknowns θ0,
θf , Vf , and θ. Therefore it is necessary to derive a fourth equation in these unknowns.
The fourth equation will come from meeting the first two conditions for the existence
of a singular arc at heading angle θ.

In order to derive the two necessary conditions for a singular arc, the differen-
tial equations for λV and λθ need to be solved. Using the costate time differential
equations (4.4) with s = − λθ

µV λV
yields

(4.45)
λ̇V = L cos(θ − θf + θµ) +

1
2
λθ cos θ
V 2
−(θ)

,

λ̇θ = −LV−(θ) sin(θ − θf + θµ)− 1
2
λV cos θ +

1
2
λθ sin θ
V−(θ)

.

Rewriting these time differential equations, with a change of dependent variable, in
terms of θ

(4.46)

dλV
dθ

=
2LV0 cos θ0 cos(θ − θf + θµ)

cos2 θ
+
λθ
V−

,

d

dθ

λθ
V−

= −
2LV0 cos θ0 sin(θ − θf + θµ)

cos2 θ
− λV .
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Furthermore, the first two necessary conditions for a singular solution may be written
as

λθ + tan θµV−(θ)λV =
V−(θ)
cos θµ

(
λθ

V−(θ)
cos θµ + V−(θ)λV sin θµ

)
= 0 ,(4.47)

−LV−(θ) sin(θ − θf )− 1
2 cos θµ

λV cos θ = 0 .(4.48)

Solving the differential equations for λV and λθ/V− yields

λV (θ) = λV0
cos(θ − θ0) + 2L(V0 sin(θ − θ0 − θf + θµ) + V−(θ) sin(θf − θµ))

and

λθ(θ)
V−(θ)

= −λV0
sin(θ − θ0) + 2L(V0 cos(θ − θ0 − θf + θµ)− V−(θ) cos(θf − θµ)),

where λV0
= λV (0).

With these two quantities determined, the value of the switching function given
by (4.47) and the constraint given by (4.48) is

(4.49) −
V−(θ)
cos θµ

(
λV0

sin(θ − θ0 − θµ) + 2LV0
sin(θ − θ0) sin(θ − θf )

cos θ

)
= 0 ,

− 1
2 cos θµ

[
λV0

cos(θ − θ0) cos θ + L

(cos θf cos θµ + cos θ cos(θ − θf + θµ)
cos θ

sin(θ − θ0)

(4.50) +
cos θ0 cos θµ + cos θ cos(θ − θ0 + θµ)

cos θ
sin(θ − θf )

)
V0

]
= 0 .

These two linear equations have a nontrivial solution in λV0
and L if and only if

the determinant of the coefficient matrix is zero. The coefficients of λV0
and L in the

second equation are not (scaled) time derivatives of the corresponding coefficients in
the first equation, despite the derivation given for the conditions in the singular solu-
tion. This is due to the fact that the costates on the (constrained) extremal trajectory
have different governing equations than the singular trajectory paths (s is not constant
here). Expanding and simplifying the determinant of the coefficient matrix yield

(4.51)
V 2

0 cos θ0

cos2 θ
[sin(θ−θ0)(sin(θ−θ0)−µ cos(θ−θ0)) cos θf−µ sin(θ−θf ) cos θ] = 0 .

Provided that the (dimensionless) initial velocity V0 is not zero, the term in
brackets being zero is the fourth equation that must hold. The constraints on these
four equations come from the fact that θ > θ0, θ > θf , and Vf > 0 and the restrictions
on θ given with the states, inequality (4.26).

4.4. Abnormal trajectories. The derivation up to this point has implicitly
assumed “normality” of the minimum-time trajectories. The complete formulation of
an optimal control problem in the calculus of variations requires the formation of the
Hamiltonian as

(4.52) H = 〈λ,f(x, u)〉+ λ0L(x, u),
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where λ0 is a nonnegative constant. To this point the assumption has been that
λ0 was strictly positive. Thus equation (2.1) is obtained by scaling the remaining
costates by the positive constant λ0.

If, however, λ0 is zero, then a degenerate condition exists which may yield optimal
trajectories. For example, as noted in a novel case in [13], a completely controllable
optimal control system with k linear controls and n states, k < n, and a cost function
L which is quadratic positive-definite in the controls yields an optimal solution which
is abnormal. The full definition of the optimal control problem is as follows [12, 23]:

(1) For any t, λ(t) and λ0 are not both zero.
(2) At (t,x(t),λ(t), λ0), the function of u,

H = 〈λ,f(x, u)〉+ λ0L(x, u),

assumes for u = u(t) its minimum. With the cost and the state dynamics having no
explicit time dependence, the minimum value of the function H is constant.

(3) For the arguments t,x(t),λ(t), λ0 the canonical Euler equations

ẋ =
∂H
∂λ
, λ̇ = −∂H

∂x

hold.
(4) If T0 and Tf are the tangent spaces to the state manifold at t = t0 and t = tf ,

respectively, then

λ(t0) ⊥ T0 and λ(tf ) ⊥ Tf .

This is the transversality condition.
The abnormal case corresponds to choosing λ0 = 0 and finding nontrivial λ(t)

which satisfy the Euler equations everywhere except possibly at points where the
state dynamics f are discontinuous [6]. An equivalent definition of abnormality [23]
is that for an n-dimensional system x(t), there do not exist 2n linearly independent
permissible variations δP, δQ, where

(P,Q) = ((t0,x(t0)), (tf ,x(tf ))) .

This second definition indicates the nature of abnormal trajectories; they are trajec-
tories where the states/control cannot be admissibly varied about a given trajectory.

The singular control trajectory or the extremal control trajectory limits the ad-
missible variations of the states and control about the given trajectory. For example,
the extremal control trajectory requires that the normal force, given by

1
2

cos θ − V Ω,

be zero along the entire path. This specifies the control Ω as a function of the states
V and θ. If V or θ is varied, the control varies. The control itself does not restrict
the variation of V and θ. If it did, this would indicate an abnormal trajectory.

Similarly, the singular control trajectory requires the states/costates/control to
satisfy the three constraints (4.11), thus restricting the state/costate manifold to
dimension six, rather than the unconstrained eight. Thus in the singular trajectory,
there are only six admissible variations in the states/costates, rather than the eight
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of the unconstrained system. Nevertheless, the derivation of the singular control
relies upon the cost function L in that the generalized Legendre–Clebsch condition
(4.18) implicitly uses the transversality condition for admissible variations of tf to
ensure positive definiteness. With λ0 = 0, there are no admissible variations of tf
and the generalized Legendre–Clebsch condition is trivial (zero). The singular paths
therefore require “normal” trajectories, that is, those in which all seven unconstrained
parameters are allowed to vary in order to realize a minimum.

The question then remains: is there a control strategy such that the states/
costates may not be admissibly varied to the full dimension of the space. This question
may be answered by examining the “smoothness” of the state manifold. The state
manifold consists of two smooth submanifolds joined at the corner where

1
2

cos θ − V Ω = 0 .

The corner is defined by the control Ω. Furthermore, there are no stationary points
in the state-space for V > 0. Thus with V > 0, the states and the cost may be varied
on the corner and on both sides of the corner due to the definition of the corner in
terms of the control Ω. The minimization of the final time tf trivially requires V > 0
at all interior points in a state trajectory. Thus at every point in the interior of a
state trajectory, there exist admissible variations in the states/costates allowing the
normal minimization.

5. The brachistochrone when the initial velocity is zero. If V0 = 0, then
the solution of the optimization problem is much simpler than the general case. In
this case θ0 = θ = π/2. The optimal control becomes the solution of the two equations

x+(π/2) = 1 and y+(π/2) = y0 .

The velocity equation and (4.51) both hold. Furthermore,

f(θ) = f(π/2)→∞ and θf > 2θµ − π/2 .

Taking the ratio of y+ to x+ will eliminate Vf from the equations, yielding one equa-
tion in one unknown, θf . When this is solved, the corresponding value of Vf can be
solved for in either of the two equations as a positive scaling factor.

The one equation in θf can be used to obtain θf as a function of y0 and µ.
Expressing this relationship in one equation,

1 +
f0(2f(θf )− f0)

1− f2(θf )
+

3f2
0

(1− f2(θf ))2 − f0

(
2

1− f2(θf )

+
3f(θf )f0

(1− f2(θf ))2

)
1√

1− f2(θf )
cos−1(f(θf )) = y0 cos θf

[
f0 − f(θf )
1− f2(θf )

− 3f0

(1− f2(θf ))2 +

(
1

1− f2(θf )
+

3f(θf )f0

(1− f2(θf ))2

)
1√

1− f2(θf )
cos−1(f(θf ))

]
.(5.1)

Expanding this equation in a power series in θf about θf = 2θµ− π/2 will yield y0 as
a function of θf . Then, reverting this power series will yield θf as a function of y0.
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The result of this analysis is

(5.2)

θf = 2θµ −
π

2
+ 3

y0 − µ
1 + µ2 +

3
µ

(1− 2µ2)
(
y0 − µ
1 + µ2

)2

− 3
√

6
π
√
µ

(3− µ2)
(
y0 − µ
1 + µ2

) 5
2

+O((y0 − µ)3).

Immediately apparent from this series expansion is that y0 = µ corresponds to
a final angle θf = 2θµ − π/2. If this angle is substituted into equation (4.30), it is

evident that the time-to-go tf − t(θ) is infinite. Furthermore, the gradient ∂θf
∂y0

is
positive. Thus initial conditions for y0 which are less than or equal to µ will not yield
the origin in any time. This may also be argued on the grounds of the energy content
of the system.

A further point to be noted is that the formal power series derived for θf does not
converge if µ = 0. This is due to the fact that the power series was expanded about
θf = 2θµ − π/2. In order to obtain a convergent power series for µ = 0, (5.1) would
need to be solved about µ = 0. In this case a power series expansion for θf in terms
of µ with y0 as a parameter would be obtained. The initial value for θf would be the
solution for θf in the classical frictionless brachistochrone. Due to the difficulty of
the solution of these implicit transcendental equations, this power series solution will
not be attempted.

An examination of the brachistochrones computed for V0 = 0, y0 = 1, and varying
values of µ (Figure 5.1) demonstrates that the curves cross. The crossing occurs
because near the starting point (x, y) = (1, 1), the curvature of the brachistochrones
is an increasing function of µ, with the curvature being infinite for θ = π/2 and
µ = 1. With the increasing curvature, the brachistochrones lie closer to the line
y = y0x, which, in the limit, is the “curve” for µ = y0 = 1. However, at the final
point (x, y) = (0, 0) of each brachistochrone, the slope tan θf is a decreasing function
of µ. This observation was not predicted correctly by Ramamani, Lu, and Tabarrok
[17] in their discretization of this problem.

The final heading θf , the final velocity Vf , and the time-to-go tf as a function
of the coefficient of friction µ are plotted in Figure 5.2. The figure uses an initial
condition of y0 = 1. Although the trends displayed in the figures are consistent with
different values of y0, there is no linear relationship between figures with different
values of y0. Demonstrated in the figure is that θf is a decreasing function of µ.
Furthermore, this function also has negative concavity. This negative concavity, which
becomes infinite as µ → y−0 , means that tf → ∞ “slowly” as µ → y−0 . The slowness
of this approach to infinity can be determined by substituting the power series for
θf into the relationship for tf , and by noting the implicit relationship for Vf in this
expression. The result is

(5.3) tf = 4
√
π

3

(
6(y0 − µ)
µ(1 + µ2)

)− 1
4

+O((y0 − µ)
3
4 ).

This slow divergence is demonstrated in Figure 5.2.
A point not immediately apparent in Figure 5.2 is that although Vf decreases

with increasing µ, its concavity has an inflection point around µ = 0.65 . Referring
to the differential equation for V (θ), (4.23), for a given value of y0, there is a value
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FIG. 5.1. Coulomb friction brachistochrones with V0 = 0, y0 = 1, and differing values for µ.
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FIG. 5.2. (a) Final heading angle θf , (b) final speed Vf , and (c) minimum time tf for V0 = 0,
y0 = 1, and variable µ.
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of µ at which the derivative dV (θf )
dθ = 0 . This occurs when tan θf = 2µ . For y0 = 1,

this corresponds to µ = 0.162 . . . . Thus, for y0 = 1 and µ > 0.162 . . . , the value of
Vf is no longer the largest value of V for the brachistochrone; that is, the speed of
the particle initially increases but then decreases as the origin is approached. As the
value of µ increases, the point of maximum velocity moves toward θ = π/2. Due to
the larger difference in angle between Vmax and Vf for increasing µ, the plot of Vf as
a function of µ will begin concave downward, inflect, and finish concave upward.

6. Some observations about minimum-time paths with nonzero ini-
tial velocity. As derived in section 4.3, the minimum-time path for a particle with
nonzero initial velocity in a uniform gravitational field with Coulomb friction resisting
motion consists of a “free fall” segment followed by a singular arc. The corner con-
ditions joining the two segments are satisfied when (4.51) is satisfied. Setting θ = θ0
in (4.51) and solving for θ0 (and V0) yields the minimum-time solution for which the
entire path is a singular trajectory. The result of this substitution is the zero initial
velocity paths presented in the previous section. These paths require θ = θ0 = π/2.

Setting θ = θf in (4.51) will yield the solution for a minimum-time path in which
the optimal trajectory is entirely a “free fall” trajectory, that is, a trajectory in which
the normal force exerted by the path on the particle is zero. Solving for θf yields

(6.1) θf = θ0 + θµ .

Substituting this result for θ in (4.42) and (4.43) and solving for θ0 and V0 yields

θ0 = tan−1
(
y0 + µ−1 −

√
1 + y2

0 + µ−2

)
(6.2)

and

V0 =

√√
1 + y2

0 + µ−2 − y0

2
.(6.3)

The question then is whether velocities greater than this value will yield optimal free-
fall trajectories. The answer to this question comes in the solution of s = − λθ

µV λV
when λθ, V , and λV are chosen to satisfy the boundary conditions at t = 0 and t = tf .
The solutions to the differential equations (4.46) with boundary conditions (4.6) are

λV (θ) = −2λxV0 cos θ0 cos θ(tan θf − tan θ)(1 + tan θ tan θ0) ,(6.4)

λθ(θ)
V (θ)

= 2λxV0 cos θ0 cos θ(tan θf − tan θ)(tan θ − tan θ0) .(6.5)

Thus

(6.6) s = − λθ
µV λV

=
tan(θ − θ0)

µ
and smax =

tan(θf − θ0)
µ

.

Hence, if a free-fall path were time optimal, smax ≤ 1 . Solving equation (4.42) equals
zero and (4.43) equals zero for tan θ0 and tan θf ,

tan θ0 =
√

(2V 2
0 + y0)2 − 1− y2

0−2V 2
0 , tan θf = 2(V 2

0 +y0)−
√

(2V 2
0 + y0)2 − 1− y2

0 .

This means that

(6.7) smax =
tan(θf − θ0)

µ
=

1
µ
√

(2V 2
0 + y0)2 − 1− y2

0

≤ 1 .
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Thus for V0 greater than the critical V0 given by equation (6.3), the minimum-time
path is exclusively a free-fall path.

7. Conclusions. This paper has presented the time-optimal path of a particle
between two points in a uniform gravitational field when motion of the particle is
resisted by a force proportional to the normal force exerted on the particle by the path.
This problem is equivalent to finding a brachistochrone in a uniform gravitational field
with Coulomb friction resisting motion. The construction of the brachistochrone in
the general case of nonzero initial velocity less than the critical initial velocity given by
equation (6.3) becomes the solution of four nonlinear equations in four unknowns. For
velocities greater than or equal to the critical initial velocity, the minimum-time path
to the origin is a free-fall path. The special case of zero initial velocity is discussed in
detail. This case simplifies the analysis to the solution of two transcendental equations
in two unknowns. With a simplification, the solution becomes (5.1), which is a single
transcendental equation in the unknown θf , the final heading angle.

A set of Coulomb friction brachistochrones with zero initial velocity are presented.
The features displayed for the specific case plotted are general features of all zero initial
velocity Coulomb friction brachistochrones, namely: (1) the (x, y) path is concave
upward, (2) the initial heading is always directly downward, (3) the initial curvature
is an increasing function of µ for a fixed initial position, (4) the final heading is
a concave-downward decreasing function of the coefficient of friction µ for a fixed
initial position, (5) the final velocity is a decreasing function of µ with a value of
zero at µ = y0, and (6) the time-to-go is an increasing function of µ with tf → +∞
for µ → y−0 . Points (3) and (4) above indicate that if two brachistochrones between
the same initial and final positions are drawn with different values of µ, the paths
cross. This is not a common occurrence in time-optimal path problems. Typically,
a change in a parameter in a time-optimal control problem does not produce a path
which intersects the original path. The crossing of the paths with a change in the
coefficient of friction µ is due to the lack of smoothness in the dynamics of the problem.
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Abstract. We prove the exact controllability by boundary action of hyperbolic interface prob-
lems with singularities. The two proposed methods consist of acting by a classical boundary control
whose support does not contain a neighborhood of the singular points and adding internal controls
located near these singular points. (See [M.-T. Niane and O. Seck, C. R. Acad. Sci. Paris Sér. I, 318
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1. Introduction. This paper is the second of two whose purpose is the boundary
exact controllability of hyperbolic interface (or transmission) problems presenting
singularities at the vertices. For the sake of convenience, we use the notation and
definitions from part I [20] without comment.

As we explained in [20], our motivation is twofold: first, various models of
multiple-link flexible structures, consisting of finitely many interconnected flexible
elements, like strings, beams, plates, or shells, or combinations of them, are of partic-
ular interest for mechanical applications and were recently derived in [8, 1, 10, 11, 2].
Second, the problem of controllability, or even stabilizability, of such structures is
considered very little. Let us quote the recent works of [22, 9, 10, 21, 6, 15, 16, 6, 7].
In all these works, either no singularity occurs or, if there are some singularities, they
are cancelled by an appropriate choice of the multiplier. In both cases, this is possible
under strong geometrical conditions.

In order to avoid strong geometrical conditions, Niane and Seck [13, 14] and
Heibig and Moussaoui [5] proposed, for the wave equation on domains with slits or
with mixed boundary conditions, using classical boundary controls whose support
stays far from the singular points and adding internal controls located in a small
neighborhood of the singular vertices. Here we show that the method proposed by
Niane and Seck [13, 14] and Heibig and Moussaoui [5] also works for transmission
problems. We even proposed two strategies: the first is similar to the above authors’
[5, 14]; the second consists of adding internal controls with support concentrated on
small circles centered at the singular vertices.

Let us recall that for the wave equation on two-dimensional (2-d) networks, we
showed [20] how to manage the presence of singularities and the controllability prob-
lem using the Hilbert uniqueness method (HUM) of Lions [12]. The strategy consisted
of replacing the boundary control by its regular part and adding the coefficients of
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the singularities to the space of controls. This led to a classical boundary control but
with an internal control, which is a distribution with a support equal to the singular
vertices.

The order of part II is the following. In section 2, we formulate the main results
of this paper. In sections 3 and 6, we establish different inequalities with multipliers,
which will be useful in the application of HUM. These inequalities yield an estimate
of the energy. The weak solution of the wave equation is considered in sections 4 and
7, as well as its interpretation in terms of partial differential equations. Sections 5
and 8 are devoted to the setting of the HUM, i.e., to the proof of the boundary exact
controllability.

The results of this paper were presented in [19].

2. Main results. On the 2-d polygonal topological network Ω (see [20, section
2]), we consider the following boundary value problem: given f ∈ L2(Ω), let u be a
solution of

−4ui = fi in Pi ∀i ∈ I,(2.1)
γijui = 0 on Γij ∀ Γij ∈ D,(2.2)
γijui = γkluk when Γij = Γkl,(2.3) ∑
i∈I:∃j:Γij=A

αiγij
∂ui
∂νij

= 0 on A when A ∈ N .(2.4)

Recall that the associated self-adjoint operator A on L2(Ω) has the property that any
u ∈ D(A) has the singular expansion (2.13) of [20] (see also [3]).

In this paper we are dealing with the boundary exact controllability of the hy-
perbolic transmission problem associated with (2.1)–(2.4): given T > 0 and (y0, y1) ∈
L2(Ω)× V ′, find controls viA , A ∈ D and wiA , A ∈ Next such that the solution y of

y′′ +Ay = 0 in Q,
y(0) = y0, y′(0) = y1,
yiA = viA on ΣA ∀A ∈ D,
∂yiA
∂νiA

= wiA on ΣA ∀A ∈ Next

(2.5)

satisfies y(T ) = y′(T ) = 0.
For this problem, the HUM [12] is based on the estimate of the energy

E0 =
1
2

∫
Ω
{α|∇ϕ0|2 + |ϕ1|2} dx(2.6)

for (ϕ0, ϕ1) ∈ D(A) × V with respect to the L2-norms of ∂ϕ
∂ν |ΣA for A ∈ D, ∂ϕ

∂τ |ΣA ,
and ϕ′|ΣA for A ∈ Next, where ϕ is the unique solution of the homogeneous hyperbolic
transmission problem 

ϕ′′ +Aϕ = 0 in Q,
ϕ(0) = ϕ0, ϕ′(0) = ϕ1,
ϕiA = 0 on ΣA ∀A ∈ D,
∂ϕiA
∂νiA

= 0 on ΣA ∀A ∈ Next.
(2.7)

In our case, the implementation of HUM is not direct due to the presence of the
singularities SS,n in the decomposition (2.13) in [20] of ϕ. Indeed these singularities
imply that ∂ϕ

∂ν and ∂ϕ
∂τ are not square integrable in a neighborhood of the singular

vertices (i.e. vertices for which there exists λS,n ≤ 1/2).
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As we explained in the introduction, to overcome this difficulty we propose two
methods. The first, called addition of surfacial internal control, uses classical bound-
ary controls whose support stays far from the singular points and adds internal con-
trols located in a small neighborhood of the singular vertices. The other consists of
adding internal controls with support concentrated on small circles centered at the
singular vertices; that is why we call it addition of circular internal controls.

In order to give our two main results, let us introduce the following notation: the
set of singular vertices Ssing is the set of vertices S such that there exists at least one
λS,n ∈ (0, 1/2]. As in [20, section 4], we also fix points x0i ∈ Πi, i ∈ I, define the
multiplier m on Ω by mi(x) = x − x0i, and suppose that the geometrical conditions
(H1) to (H4) in [20] are satisfied (see Remark 2.3 below). For three positive real
numbers δ, γ, T such that 0 < δ < γ, we set

Qi = Pi × (0, T ) ∀i ∈ I,
Aδ = A \ ∪S∈SsingB(S, δ) ∀A ∈ A,
ΣAδ = Aδ × (0, T ) ∀A ∈ A,
VS = (B(S, γ) ∩ Ω)× (0, T ) ∀S ∈ Ssing,
CS = (S1(S, δ) ∩ Ω)× (0, T ) ∀S ∈ Ssing,

(2.8)

where, as usual, B(S, δ) (resp., S1(S, δ)) is the ball (resp., sphere) of center S and
radius δ.

THEOREM 2.1. Suppose that the geometrical conditions (H1) to (H4) [20] are
satisfied. Then there exists T0 > 0 such that for all T > T0 and (y0, y1) ∈ L2(Ω)× V ′
there exists (ϕ0, ϕ1) ∈ V × L2(Ω) such that the solution y of

y′′ +Ay =
∑
S∈Ssing DS in Q,

y(0) = y0, y′(0) = y1,

yiA =

{
α−1
iA

∂ϕiA
∂νiA

on ΣAδ ∀A ∈ D+,

0 on the remainder of the Dirichlet boundary,

∂yiA
∂νiA

=


α−1
iA

d
dtϕ
′
iA

on ΣAδ ∀A ∈ N+
ext,

−α−1
iA

∂2ϕ
∂τ2
iA

on ΣAδ ∀A ∈ N−ext,

0 on the rest of the external Neumann boundary

(2.9)

satisfies y(T ) = y′(T ) = 0, where ϕ is the solution of (2.7) and DS = (ϕ− d
dtϕ
′)χVS .

THEOREM 2.2. Under the geometrical assumptions (H1) to (H4) in [20], there
exists T0 > 0 such that for all T > T0 and (y0, y1) ∈ L2(Ω)×V ′ there exists (ϕ0, ϕ1) ∈
V ×L2(Ω) such that if ϕ is the solution of (2.7), then the solution y of (2.9) satisfies
y(T ) = y′(T ) = 0. Here DS is a distribution defined by

〈DS , η〉 = −
∑

j∈I(S)

∫
CSj

{
ϕ′jη

′
j +

∂ϕj
∂νj

∂ηj
∂νj

+
∂ϕj
∂τ j

∂ηj
∂τ j

}
dσdt,(2.10)

where CS = ∪j∈I(S)CSj, with CSj = CS ∩ Qj, and on CSj we have set νj =
(cos θj , sin θj), τ j = (− sin θj , cos θj).

Remark 2.3. In Theorems 2.1 and 2.2, the boundary controls are quite classical.
The influence of the singularities is balanced by the addition of the internal control
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DS for all singular vertices S ∈ Ssing, which can be seen as a distributional internal
control with a support concentrated on VS in the first case and on CS in the second
one. Their introduction avoids the regularity hypothesis D(A) ↪→ H3/2+ε(Ω) for some
ε > 0, leading to strong geometrical conditions on the domains Ω [10, Chaps. 4, 7].
On the other hand, as already explained in part I, the conditions (H1) to (H4) [20]
are not related to the singularities but are linked to the multiplier method, since they
were introduced to avoid control on internal interfaces (see [20, Remark 6.2]).

3. Estimate of the energy I. The aim of this section is to prove the estimate
of the energy with respect to an appropriate norm, leading to the addition of surfacial
internal controls with the help of HUM. Usually [12, 4], the energy estimate is based
on an identity with multiplier, but here we use two inequalities with multipliers, unlike
[13, 5, 14], where an identity with a remainder involving the coefficients of singularities
is used. The first multiplier has a support concentrated near the singular points S
and vanishes at S in order to balance the singularities, while the second one vanishes
in a neighborhood of the singular vertices. More precisely, we prove the following
two lemmas.

LEMMA 3.1. Let ϕ ∈ C([0, T ], D(A))∩C1([0, T ], V )∩C2([0, T ], H) be the solution
of (2.7). For any S ∈ Ssing, set mS

i (x) = (ri cos θi, ri sin θi) for all i ∈ I(S) and
m̃S = ηSm

S, where ηS ≡ ηS(r) is a cut-off function such that ηS ≡ 1 on B(S, δ) ∩ Ω
with support in B(S, δ′) ∩ Ω for δ < δ′ < γ. Then the following identity holds:

1
2

∫
Q

div m̃S{(ϕ′)2 − α|∇ϕ|2} dxdt(3.1)

+
∑

k,l=1,2

∫
Q

αDkm̃
S
l DkϕDlϕ dxdt = −

∫
Ω
ϕ′m̃S · ∇ϕdx|T0 .

Proof. As m̃S ∼= r near S and since m̃S is identically equal to 0 far from the
other vertices, m̃S balances the singularities (see [20, Theorem 3.5]), and, therefore,
one may apply formula (3.4) of [4]; i.e., the following identity holds on each Pi:∫

Pi

4ϕim̃S
i · ∇ϕi dx = −

∑
k,l=1,2

∫
Pi

Dkm̃
S
i,lDkϕiDlϕi dx(3.2)

+
1
2

∫
Pi

div m̃S
i |∇ϕi|2 dx+

Ni∑
j=1

{
−1

2

∫
Γij

m̃S
i · νij |∇ϕi|2 dσ

+
∫

Γij

∂ϕi
∂νij

m̃S
i · ∇ϕi dσ

}
,

where m̃S
i,l stands for the lth component of m̃S

i . By the choice of the multiplier m̃S ,
we always have

m̃S
i · νij = 0 on Γij ∀j = 1, . . . , Ni.(3.3)

Taking into account this property, multiplying the identity (3.2) by αi, and summing
on i ∈ I, we get∫

Ω
Aϕm̃S · ∇ϕ dx =

∑
k,l=1,2

∫
Ω
αDkm̃

S
l DkϕDlϕ dx(3.4)

− 1
2

∫
Ω
α div m̃S |∇ϕ|2 dx−

∑
i∈I

Ni∑
j=1

∫
Γij

αi
∂ϕi
∂νij

m̃S
i · τij

∂ϕi
∂τij

dσ.
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Since m̃S is continuous through the edges of Ω, the boundary term of the above
identity may be transformed as follows:

∑
i∈I

Ni∑
j=1

∫
Γij

αi
∂ϕi
∂νij

m̃S
i · τij

∂ϕi
∂τij

dσ =
∑
A∈A

∫
A

{∑
i∈IA

αi
∂ϕi
∂νi

}
m̃S · τ ∂ϕ

∂τ
dσ.

As ϕ satisfies the “boundary conditions” (2.2) and (2.4), this right-hand side cancels.
Accordingly, the identity (3.4) is reduced to∫

Ω
Aϕm̃S · ∇ϕ dx =

∑
k,l=1,2

∫
Ω
αDkm̃

S
l DkϕDlϕ dx(3.5)

− 1
2

∫
Ω
α div m̃S |∇ϕ|2 dx.

For the term
∫
Q
D2
tϕm̃

S · ∇ϕ dxdt, one integration by parts in t and Green’s
formula directly yield∫

Qi

D2
tϕim̃

S
i · ∇ϕi dxdt =

∫
Pi

Dtϕim̃
S
i · ∇ϕi dx|T0(3.6)

+
1
2

∫
Qi

div m̃S
i (Dtϕi)2 dxdt

because of (3.3).
Integrating (3.5) with respect to t ∈ (0, T ) and summing the result with the sum

of (3.6) on i ∈ I, we arrive at (3.1), since D2
tϕ+Aϕ = 0.

By the preceding choice of m̃S , we remark that

Dkm̃
S
i,l(x) = ηS,i(x)δk,l +DkηS,i(x)(x− S)l ∀x ∈ Pi, i ∈ I(S).

This allows us to rewrite (3.1) in the following way:∫
Q

ηS(Dtϕ)2 dxdt = RS ,(3.7)

where we set

RS = −1
2

∫
Q

∇ηS · (x− S){(ϕ′)2 − α|∇ϕ|2} dxdt(3.8)

−
∑

k,l=1,2

∫
Q

αDkηS(x− S)lDkϕDlϕ dxdt

−
∫

Ω
ϕ′m̃S · ∇ϕdx|T0 .

The trick, as we shall see later on, is that this remainder is bounded by

|RS | ≤ C
[
E0 +

∫
VS

{ϕ2 + (ϕ′)2} dxdt
]

(3.9)

for some positive constant C, depending upon ηS , T , and the geometry of Ω but
independent of the initial data ϕ0, ϕ1.
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Accordingly, summing (3.7) on all singular vertices S, we obtain∫
Q

∑
S∈Ssing

ηS(Dtϕ)2 dxdt =
∑

S∈Ssing

RS .(3.10)

The left-hand side of (3.10) differs from the left-hand side of the classical identity
with multiplier (see, e.g., [4, eq. (3.6)] or [12, eq. (I.5.2)]) by the presence of the factor∑
S∈Ssing ηS in front of (Dtϕ)2. Therefore it remains to cover the interior part of

Ω. For this part, we take as multiplier m̃ = (1 −
∑
S∈Ssing ηS)m, where m is the

multiplier introduced in section 4 of [20].
LEMMA 3.2. The solution ϕ ∈ C([0, T ], D(A)) ∩ C1([0, T ], V ) ∩ C2([0, T ], H) of

(2.7) satisfies the inequality

1
2

∫
Q

div m̃{(ϕ′)2 − α|∇ϕ|2} dxdt+
∑

k,l=1,2

∫
Q

αDkm̃lDkϕDlϕ dxdt(3.11)

≤ −
∫

Ω
ϕ′m̃ · ∇ϕdx|T0 +

1
2

∑
A∈D

∫
ΣA

αiAm̃iA · νiA
(
∂ϕiA
∂νiA

)2

dσdt

+
1
2

∑
A∈Next

∫
ΣA

m̃iA · νiA
{

(DtϕiA)2 − αiA(
∂ϕiA
∂τiA

)2
}
dσdt.

Proof. The proof of (3.11) is analogous to the proof of Proposition 4.2 in [20]
with ϕ = ϕR. Indeed, the integrations by parts are allowed since our multiplier m̃
vanishes in a neighborhood of the singular vertices; on the other hand, the continuity
of ηS and the property 0 ≤ ηS ≤ 1 imply that m̃ still satisfies the conditions (H1) to
(H4) in [20].

As previously, the multiplier satisfies

Dkm̃l =

1−
∑

S∈Ssing

ηS

 δk,l −
∑

S∈Ssing

DkηSml.

This allows us to transform (3.11) into∫
Q

1−
∑

S∈Ssing

ηS

 (Dtϕ)2 dxdt ≤ R,(3.12)

where we define

R = −
∫

Ω
ϕ′m̃ · ∇ϕdx|T0(3.13)

+
1
2

∑
A∈Next

∫
ΣA

m̃iA · νiA

{
(DtϕiA)2 − αiA

(
∂ϕiA
∂τiA

)2
}
dσdt

+
1
2

∑
A∈D

∫
ΣA

αiAm̃iA · νiA
(
∂ϕiA
∂νiA

)2

dσdt

+
1
2

∫
Q

∑
S∈Ssing

(∇ηS ·m){(ϕ′)2 − α|∇ϕ|2} dxdt

+
∑

k,l=1,2

∫
Q

α
∑

S∈Ssing

DkηSmlDkϕDlϕ dxdt.
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For any {ϕ0, ϕ1} ∈ D(A) × V , let ϕ ∈ C([0, T ], D(A)) ∩ C1([0, T ], V ) be the
solution of (2.7), and define

|||{ϕ0, ϕ1}|||2 =
∑
A∈D+

∫
ΣAδ

(
∂ϕiA
∂νiA

)2

dσdt(3.14)

+
∑

A∈N−ext

∫
ΣAδ

(
∂ϕiA
∂τiA

)2

dσdt

+
∑

A∈N+
ext

∫
ΣAδ

(DtϕiA)2
dσdt

+
∑

S∈Ssing

∫
VS

[ϕ2 + (ϕ′)2] dxdt.

We are now ready to establish the main result of this section.
PROPOSITION 3.3. Let ϕ ∈ C([0, T ], D(A)) ∩ C1([0, T ], V ) ∩ C2([0, T ], H) be a

solution of (2.7). Then there exists a minimal time T0 > 0 such that for all T > T0,
there exists a constant C > 0 (depending on T but not on ϕ0, ϕ1) such that

(T − T0)E0 ≤ C|||{ϕ0, ϕ1}|||2.(3.15)

Proof. We first start as in Proposition 4.3 of [20], i.e., by Theorem 4.3 and Remark
4.4 of [20] and the identity (4.24) of [15], we may write

TE0 =
∫
Q

|Dtϕ|2dxdt−
1
2

∫
Ω
Dtϕϕ dx |T0 .(3.16)

The estimation of the term
∫

ΩDtϕϕ dx |T0 with respect to E0 is classical (see [12, 4]);
therefore, it remains to estimate

∫
Q
|Dtϕ|2dxdt.

The sum of (3.10) and (3.12) yields a positive constant C depending only upon
the functions ηS and the geometry of Ω such that∫

Q

|Dtϕ|2dxdt ≤ C|||{ϕ0, ϕ1}|||2 + CE0(3.17)

+ C
∑

S∈Ssing

∫ T

0

∫
B(S,δ′)

[(ϕ′)2 + α|∇ϕ|2] dxdt

because ∇ηS ≡ 0 outside the ball B(S, δ′). We therefore have only to estimate∫ T

0

∫
B(S,δ′)

α|∇ϕ|2 dxdt

for all S ∈ Ssing. This is done using Heibig and Moussaoui’s trick [5]. We fix another
cut-off function η̃S similar to ηS but satisfying η̃S ≡ 1 on B(S, δ′) and with a support
on B(S, γ). Then we multiply the equation

D2
tϕi − αi4ϕi = 0

by η̃S,iϕi for all i ∈ I and integrate on Qi, leading to∫
Q

(D2
tϕ− α4ϕ)η̃Sϕ dxdt = 0.



592 SERGE NICAISE

One integration by parts with respect to t and Green’s formula on each Pi yields

0 = −
∫
Q

(Dtϕ)2η̃S dxdt

+
∫

Ω
(Dtϕ)ϕη̃S dx|T0

+
∫
Q

α∇ϕ · ∇(η̃Sϕ) dxdt.

The boundary term on ∂Pi is cancelled due to the continuity of η̃Sϕ through the edges
of Ω and since ϕ satisfies (2.2)–(2.4). By Leibniz’s rule, the above identity may be
written as ∫

Q

α|∇ϕ|2η̃S dxdt =
∫
Q

(Dtϕ)2η̃S dxdt(3.18)

−
∫

Ω
(Dtϕ)ϕη̃S dx|T0

−
∫
Q

αϕ∇ϕ · ∇η̃S dxdt.

As ∇η̃S is identically equal to 0 near the vertices, Green’s formula again leads to∫
Q

αϕ∇ϕ · ∇η̃S dxdt = −
∫
Q

αϕ div (ϕ∇η̃S) dxdt

+
∑
i∈I

Ni∑
j=1

αi

∫ T

0

∫
Γij

(ϕi)2 ∂η̃S,i
∂νij

dσdt.

Since ∂η̃S,i
∂νij

≡ 0 on all Γij , the previous identity becomes∫
Q

αϕ∇ϕ · ∇η̃S dxdt = −1
2

∫
Q

αϕ24η̃S dxdt.

Inserting this last identity into (3.18), we arrive at∫
Q

α|∇ϕ|2η̃S dxdt =
∫
Q

(Dtϕ)2η̃S dxdt(3.19)

−
∫

Ω
(Dtϕ)ϕη̃S dx|T0

+
1
2

∫
Q

αϕ24η̃S dxdt.

Since η̃S ≡ 1 on B(S, δ′) and has its support on B(S, γ), the identity (3.19) yields a
positive constant C such that∫ T

0

∫
B(S,δ′)

α|∇ϕ|2 dxdt ≤ C
[
E0 +

∫
VS

{ϕ2 + (ϕ′)2} dxdt
]
.(3.20)

The estimates (3.17) and (3.20) prove (3.15).
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The inverse estimate is only possible under some geometrical conditions. There-
fore, we simply note that

|||{ϕ0, ϕ1}|||2 ≤ C{‖ϕ0‖D(A) + ‖ϕ1‖V },(3.21)

which is a consequence of Theorem 3.5 of [20] and the Poincaré estimate∫
Ω
ϕ2 dx ≤ ca(ϕ,ϕ)

for some c > 0.
We now fix T > T0 such that the inequality (3.15) holds. Then the application

D(A)× V → R+ : {ϕ0, ϕ1} → |||{ϕ0, ϕ1}|||

is a norm stronger than the norm induced by V × H due to Proposition 3.3. As in
[12, 4, 15], we define F as the closure of D(A)× V for this new norm. Due to (3.15)
and (3.21) we have the algebraic and topological inclusions:

D(A)× V ↪→ F ↪→ V ×H.(3.22)

For the inhomogeneous wave equation (3.1) of [20], we can now state the follow-
ing result.

PROPOSITION 3.4. Let {ϕ0, ϕ1} ∈ F and f ∈ L1(0, T ;V ). Then the unique
solution ϕ ∈ C([0, T ], V ) ∩ C1([0, T ], H) of (3.1) of [20] satisfies

∂ϕiA
∂νiA

∈ L2(ΣAδ) ∀A ∈ D+,(3.23)

∂ϕiA
∂τiA

∈ L2(ΣAδ) ∀A ∈ N−ext,(3.24)

DtϕiA ∈ L2(ΣAδ) ∀A ∈ N+
ext.(3.25)

Moreover, there exists a constant C > 0 (independent of {ϕ0, ϕ1} and f) such that ∑
A∈D+

∫
ΣAδ

(
∂ϕiA
∂νiA

)2

dσdt+
∑

A∈N−ext

∫
ΣAδ

(
∂ϕiA
∂τiA

)2

dσdt(3.26)

+
∑

A∈N+
ext

∫
ΣAδ

(DtϕiA)2
dσdt+

∑
S∈Ssing

∫
VS

[ϕ2 + (ϕ′)2] dxdt


1/2

≤ C
{
|||{ϕ0, ϕ1}|||+ ‖f‖L1(0,T ;V )

}
.

Proof. The proof is standard (see [4, Theorem 5.6] or [20, Proposition 4.4]). It
is based on the definition of F , Theorem 2.2 of [20] and the usual trace theorems.
Indeed the solution ϕ(2) of the wave equation (3.1) of [20] with data ϕ0 = ϕ1 = 0
and f ∈ L1(0, T ;V ) has the regularity ϕ(2) ∈ C([0, T ], D(A)) ∩ C1([0, T ], V ), as a
consequence of Theorem 3.1 of [20]. By Theorem 2.2 and the estimate (3.2) of [20]
and the usual trace theorems, it clearly satisfies the estimate (3.26).
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4. Weak solutions of the wave equation I. We transpose Proposition 3.4 to
get Theorem 4.1.

THEOREM 4.1. For all u0 ∈ H, u1 ∈ V ′, wA ∈ L2(ΣAδ), where A ∈ D+ ∪
N+
ext ∪ N−ext, and all wS ∈ H1((0, T );L2(B(S, γ) ∩ Ω)), S ∈ Ssing, there exist unique

u ∈ L∞(0, T ;V ′), {ψ1, ψ0} ∈ F ′, which satisfy∫ T

0
〈u(t), f(t)〉V ′−V dt+ 〈{ψ1, ψ0}, {ϕ0,−ϕ1}〉F ′−F(4.1)

= 〈u1, ϕ(0)〉V ′−V − 〈u0, ϕ
′(0)〉H′−H −

∑
A∈D+

∫
ΣAδ

wA
∂ϕiA
∂νiA

dσdt

−
∑

A∈N−ext

∫
ΣAδ

wA
∂ϕiA
∂τiA

dσdt−
∑

A∈N+
ext

∫
ΣAδ

wADtϕiA dσdt

−
∑

S∈Ssing

∫
VS

{wSϕ+ w′Sϕ
′} dxdt

for all f ∈ L1(0, T ;V ), {ϕ0,−ϕ1} ∈ F , where ϕ ∈ C([0, T ], V ) ∩ C1([0, T ], H) is the
unique solution of {

ϕ′′(t) +Aϕ(t) = f(t), t ∈ [0, T ],
ϕ(T ) = ϕ0, ϕ

′(T ) = ϕ1.(4.2)

For the interpretation of (4.1) in terms of partial differential equations, we need
the next density result.

LEMMA 4.2. Let X be a separable Hilbert space and denote by

K = {w ∈ H2((0, T );X) : w′(0) = w′(T ) = 0}.

Then K is dense in H1((0, T );X).
Proof. Let u ∈ K⊥; then it fulfills∫ T

0
{(u(t), w(t))X + (u′(t), w′(t))X} dt = 0∀w ∈ K,(4.3)

where (·, ·)X denote the inner product of X. Fix an arbitrary element w of X and
introduce the function

U : t→ (u(t), w)X .

Clearly, it belongs to H1((0, T )) and satisfies

U ′′ − U = 0 in D′((0, T ))

by taking as test function w(t) in (4.3) the function w(t) = ϕ(t)w, where ϕ ∈
D((0, T )). This implies that U is a linear combination of et and e−t. But going
back to (4.3) with w(t) = wϕ(t), where ϕ ∈ C∞([0, T ]) such that ϕ′(T ) = ϕ′(0) = 0,
we deduce that U ≡ 0, because ϕ(0), ϕ(T ) are free.

Since w was arbitrary in X, we conclude that u ≡ 0.
We apply Lemma 4.2 with X = L2(B(S, γ) ∩ Ω), for any S ∈ Ssing. Let us then

denote by KS the corresponding space K.
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THEOREM 4.3. Let u ∈ L∞(0, T ;V ′), {ψ1, ψ0} ∈ F ′ be the unique solution of
(4.1) with data u0 ∈ V , u1 ∈ H, wA ∈ D(ΣAδ), where A ∈ D+ ∪ N+

ext ∪ N−ext, and
with wS ∈ KS , S ∈ Ssing. Then u ∈ C1([0, T ], H) satisfies the boundary conditions

uiA =

 α−1
iA
wA on ΣAδ ∀A ∈ D+,

0 on ΣA \ ΣAδ ∀A ∈ D+,
0 on ΣA ∀A ∈ D \ D+

(4.4)

and (4.5) to (4.7) below:

u′′i − αi4ui =
∑

S∈Ssing

{wS,i − w′′S,i}χVS ,i in D′(Qi) ∀i ∈ I,(4.5)

u(0) = u0, u′(0) = u1,(4.6)
u(T ) = ψ0, u′(T ) = ψ1.(4.7)

Proof. We proceed as in Theorem 5.3 of [15] or in Theorem 5.4 of [20] with the
necessary adaptations. Let us fix v ∈ D(0, T,

∏
i∈I C

∞(P i)) fulfilling (5.3) and (5.4)
of [20] (on ΣA \ ΣAδ, we simply take wA = 0) and obtained in [20, Lemma 5.3]. (v
can be chosen equal to 0 in a neighborhood of S × [0, T ] for all S ∈ Ssing; see Lemma
7.2). Define

f = v′′ − α4v −
∑

S∈Ssing

{wS − w′′S}χVS .

Since f ∈ L2(0, T ;H), Lemma I.3.4 of [12] guarantees the existence of a unique
solution ψ ∈ C([0, T ], V ) ∩ C1([0, T ], H) ∩H2(0, T ;V ′) of

〈ψ′′(t), w〉+ a(ψ(t), w)

= −
∫

Ω f(t)wdx, a.e. t ∈ [0, T ] ∀w ∈ V,
ψ(0) = u0, ψ′(0) = u1.

(4.8)

Let us now show that

u = ψ + v(4.9)

is the unique solution of (4.1) when ψ0 = u(T ), ψ1 = u′(T ). We remark that the fact
that v ≡ 0 near t = 0 and t = T leads to the initial conditions (4.6).

From Theorem 4.2 of [15], it suffices to check (4.1) for ϕ ∈ C([0, T ], D(A))
∩C1([0, T ], V ) ∩ C2([0, T ], H). Since u ∈ H2(0, T ;V ′), the integrations by parts over
(0, T ) are allowed. Taking into account the initial conditions satisfied by ϕ and u, we
get ∫ T

0
〈u(t), ϕ′′(t) +Aϕ(t)〉dt− 〈u(T ), ϕ1〉+ 〈u′(T ), ϕ0〉(4.10)

= 〈u1, ϕ(0)〉 − 〈u0, ϕ
′(0)〉

+
∫ T

0
{〈ψ′′(t), ϕ(t)〉+ a(ψ(t), ϕ(t))

+ 〈v′′(t), ϕ(t)〉+ (v(t), Aϕ(t))H}dt.
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As v(t) is identically equal to 0 in a neighborhood of the singular vertices, Green’s
formula on each Pi is allowed and leads to

(v(t), Aϕ(t))H = (Av(t), ϕ(t))H

+
∑

A∈Next

∫
A

αiA
∂viA
∂νiA

ϕiA dσ

−
∑
A∈D

∫
A

αiAviA
∂ϕiA
∂νiA

dσ.

Integrating this identity on (0, T ) and taking into account (5.3) and (5.4) of [20], we
obtain, after integrations by parts on each ΣAδ for all A ∈ N+

ext ∪ N−ext,∫ T

0
(v(t), Aϕ(t))H dt =

∫ T

0
(Av(t), ϕ(t))H dt

−
∑

A∈N+
ext

∫
ΣAδ

wADtϕiA dσdt

−
∑

A∈N−ext

∫
ΣAδ

wA
∂ϕiA
∂τiA

dσdt

−
∑
A∈D+

∫
ΣAδ

wA
∂ϕiA
∂νiA

dσdt.

Inserting this identity into (4.10), we arrive at the conclusion, because the choice of
wS ∈ KS yields ∫

VS

(wS − w′′S)ϕ dxdt =
∫
VS

(wSϕ+ w′Sϕ
′) dxdt.

Roughly speaking, ψ introduced in the above proof satisfies (2.4), and therefore,
as v satisfies (5.4), one can say that u satisfies

∂uiA
∂νiA

=


α−1
iA
DtwA on ΣAδ ∀A ∈ N+

ext,

α−1
iA

∂wA
∂τiA

on ΣAδ ∀A ∈ N−ext,

0 on ΣA \ ΣAδ ∀A ∈ (N+
ext ∪ N−ext),

0 on ΣA ∀A ∈ Next \ (N+
ext ∪ N−ext)

(4.11)

in a weak sense.
All these considerations lead us to call the solution u of (4.1) the weak solution of

(4.5), (4.6), (4.4), and (4.11). Moreover, with the help of Lemma 4.2, Theorem 5.7 of
[20] still holds for u, which allows us to give a meaning to the final conditions (4.7).
We even have the following result.

THEOREM 4.4. Under the assumption of Theorem 4.1, let u, {ψ1, ψ0} be the
solutions of (4.1). Then u ∈ C([0, T ], V ′) ∩ C1([0, T ], D(A)′) and u satisfies the final
conditions (4.7).

5. Addition of surfacial internal controls. The application of the Hilbert
uniqueness method of Lions [12] is now standard. First, by Proposition 3.4 for
{ϕ0, ϕ1} ∈ F there exists a unique solution ϕ ∈ C([0, T ], V ) ∩ C1([0, T ], H) of (2.7)
(or (3.1) of [20] with f = 0), satisfying (3.26). Second, consider ψ ∈ L∞(0, T ;V ′),
{χ1,−χ0} ∈ F ′, the unique solution of
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∫ T

0
〈ψ(t), g(t)〉dt− 〈{χ1,−χ0}, {η0, η1}〉(5.1)

= −
∑
A∈D+

∫
ΣAδ

∂ϕiA
∂νiA

∂ηiA
∂νiA

dσdt−
∑

A∈N−ext

∫
ΣAδ

∂ϕiA
∂τiA

∂ηiA
∂τiA

dσdt

−
∑

A∈N+
ext

∫
ΣAδ

DtϕiADtηiA dσdt

−
∑

S∈Ssing

∫
VS

{ϕη + ϕ′η′} dxdt

for all g ∈ L1(0, T ;V ), {η0, η1} ∈ F , where η ∈ C([0, T ], V ) ∩ C1([0, T ], H) is the
unique solution of {

η′′(t) +Aη(t) = g(t), t ∈ [0, T ],
η(0) = η0, η′(0) = η1.

(5.2)

Its existence comes from Theorem 4.1 by inverting the order of time; moreover, The-
orem 4.4 gives a meaning to the initial conditions

ψ(0) = χ0, ψ′(0) = χ1.

Accordingly, the operator

Λ : F → F ′ : {ϕ0, ϕ1} → {χ1,−χ0}

is well defined and is an isomorphism, because the identity (5.1) with η = ϕ yields

〈Λ{ϕ0, ϕ1}, {ϕ0, ϕ1}〉 = |||{ϕ0, ϕ1}|||2 ∀{ϕ0, ϕ1} ∈ F.

This leads to Theorem 2.1, which we reformulate as follows.
THEOREM 5.1. For all u0 ∈ H, u1 ∈ V ′ there exist wA ∈ L2(ΣAδ), A ∈ D+ ∪

N+
ext ∪ N−ext, and vS ∈ H1((0, T );L2(B(S, γ) ∩ Ω), S ∈ Ssing, such that the weak

solution u ∈ C([0, T ], V ′) ∩ C1([0, T ], D(A)′) of the wave equation (5.3) below (in the
sense of (4.1)) satisfies u(T ) = u′(T ) = 0:

u′′(t) +Au(t) =
∑
S∈Ssing{vS −

d
dtv
′
S}χVS , t ∈ [0, T ],

u(0) = u0, u′(0) = u1,
u satisfies (4.4) and (4.11).

(5.3)

Proof. Since {u1,−u0} ∈ V ′×H ⊂ F ′, there exists a unique solution {ϕ0, ϕ1} ∈ F
of

Λ{ϕ0, ϕ1} = {u1,−u0}.

We take the solution ϕ of (2.7) and the solution ψ of (5.1) and set u = ψ, wA = ∂ϕiA
∂νiA

for all A ∈ D+, wA = DtϕiA for all A ∈ N+
ext, wA = ∂ϕiA

∂τiA
for all A ∈ N−ext, vS = ϕ for

all S ∈ Ssing. Because of the time reversibility of the wave equation, the conclusion
follows from Proposition 3.4.

6. Estimate of the energy II. The main idea of the second method consists
of isolating the singular vertices S by the introduction of an artificial interface CS .
We then use the classical multiplier far from the singular vertices and the multiplier
mS on B(S, δ) ∩ Ω. Namely, we establish the following result.
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LEMMA 6.1. Introduce the multiplier q defined on Ω by q(x) = mS(x) if x ∈
B(S, δ) ∩ Ω for all S ∈ Ssing and q(x) = m(x) if x ∈ Ω \ ∪S∈SsingB(S, δ). Then the
solution ϕ ∈ C([0, T ], D(A)) ∩ C1([0, T ], V ) of (2.7) satisfies the inequality

1
2

∫
Q

(ϕ′)2 dxdt ≤ −
∫

Ω
ϕ′q · ∇ϕdx|T0(6.1)

+
1
2

∑
A∈D

∫
ΣAδ

αiAmiA · νiA
(
∂ϕiA
∂νiA

)2

dσdt

+
1
2

∑
A∈Next

∫
ΣAδ

miA · νiA

{
(DtϕiA)2 − αiA

(
∂ϕiA
∂τiA

)2
}
dσdt

+
∑

S∈Ssing

∑
j∈I(S)

∫
CSj

[
1
2

(mS
j −mj) · νj

{
(ϕ′j)

2 + αj

(
∂ϕj
∂νj

)2

− αj
(
∂ϕj
∂τj

)2
}

+ αj(mS
j −mj) · τ j

∂ϕj
∂νj

∂ϕj
∂τj

]
dσdt.

Proof. We follow the proof of Proposition 4.2 of [20], except that the integration
by parts on Ω are here made on B(S, δ) ∩ Ω for all S ∈ Ssing and on the remainder,
i.e., on Ω\∪S∈SsingB(S, δ). That explains the presence of the boundary terms on CS .
More precisely, as mS ∼= r near the singular vertices S, mS balances the singularities
(see [20, Theorem 3.5]) and, therefore, one may apply formula (3.4) of [4] in Pi∩B(S, δ)
and in Pi \ ∪S∈SsingB(S, δ). Summing the results, we arrive at the following identity
on each Pi:∫

Pi

4ϕiqi · ∇ϕi dx =
Ni∑
j=1

{
−1

2

∫
Γij

qi · νij |∇ϕi|2 dσ(6.2)

+
∫

Γij

∂ϕi
∂νij

qi · ∇ϕi dσ
}

+
∑

S∈Ssing∩P̄i

∫
S1(S,δ)∩Pi

[
1
2

(mS
i −mi) · νi

{(
∂ϕi
∂νi

)2

−
(
∂ϕi
∂τi

)2
}

+ (mS
i −mi) · τ i

∂ϕi
∂νi

∂ϕi
∂τi

]
dσdt.

As usual, we multiply this identity by αi and sum on i ∈ I. Since q is continuous on
B(S, δ) ∩ Ω for S ∈ Ssing and satisfies

qi · νij = 0 on Γij ∩B(S, δ) ∀j = 1, . . . , Ni,

the boundary terms are equal to 0 on Γij ∩B(S, δ) for all S ∈ Ssing. Moreover, as in
Lemma 4.1 of [20], taking into account the conditions (H1) to (H4) [20] satisfied by
m, the identity (6.2) implies the estimate∫

Ω
Aϕq · ∇ϕdx ≥ −1

2

∑
A∈D

∫
Aδ

αiAmiA · νiA
(
∂ϕiA
∂νiA

)2

dσ(6.3)

+
1
2

∑
A∈Next

∫
Aδ

αiAmiA · νiA
(
∂ϕiA
∂τiA

)2

dσ
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+
∑

S∈Ssing

∑
i∈I(S)

αi

∫
S1(S,δ)∩Pi

[
1
2

(mS
i −mi) · νi

{(
∂ϕi
∂νi

)2

−
(
∂ϕi
∂τi

)2
}

+ (mS
i −mi) · τ i

∂ϕi
∂νi

∂ϕi
∂τi

]
dσdt.

For the term
∫
Q
D2
tϕq · ∇ϕ dxdt one integration by parts in t leads to∫
Q

D2
tϕq · ∇ϕ dxdt =

∫
Ω
Dtϕq · ∇ϕ dx |T0(6.4)

−
∫
Q

Dtϕq · ∇Dtϕ dxdt.

The second term of the right-hand side is transformed using Green’s formula in Pi ∩
B(S, δ) for any S ∈ Ssing and in the remainder for all i ∈ I. This leads to∫

Q

Dtϕq · ∇Dtϕ dxdt = −
∫
Q

(Dtϕ)2dxdt

+
1
2

∑
A∈A

∫
ΣA

(Dtϕ)2

(∑
i∈IA

qi · νi

)
dσdt

+
1
2

∑
S∈Ssing

∑
j∈I(S)

∫
CSj

(mS
j −mj) · νj(ϕ′)2 dσdt.

Taking into account the above properties of q and the condition (H1) [20], we arrive
at ∫

Q

Dtϕq · ∇Dtϕ dxdt = −
∫
Q

(Dtϕ)2dxdt(6.5)

+
1
2

∑
A∈Next

∫
ΣAδ

(Dtϕ)2qiA · νiAdσdt

+
1
2

∑
S∈Ssing

∑
j∈I(S)

∫
CSj

(mS
j −mj) · νj(ϕ′)2 dσdt.

Integrating (6.3) on (0, T ) and summing the result with (6.5), we obtain the
inequality (6.1).

The right-hand side of (6.1) legitimates the next definition. For any {ϕ0, ϕ1} ∈
D(A)× V , let ϕ ∈ C([0, T ], D(A)) ∩ C1([0, T ], V ) be the solution of (2.7) and define

|||{ϕ0, ϕ1}|||2 =
∑
A∈D+

∫
ΣAδ

(
∂ϕiA
∂νiA

)2

dσdt(6.6)

+
∑

A∈N−ext

∫
ΣAδ

(
∂ϕiA
∂τiA

)2

dσdt

+
∑

A∈N+
ext

∫
ΣAδ

(DtϕiA)2
dσdt

+
∑

S∈Ssing

∑
j∈I(S)

∫
CSj

{
(ϕ′j)

2 +
(
∂ϕj
∂νj

)2

+
(
∂ϕj
∂τ j

)2
}
dσdt.
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The identity (3.16) and the estimate (6.1) directly lead to the next estimate of
the energy.

PROPOSITION 6.2. Let ϕ ∈ C([0, T ], D(A)) ∩ C1([0, T ], V ) ∩ C2([0, T ], H) be a
solution of (2.7). Then there exists a minimal time T0 > 0 such that for all T > T0
there exists a constant C > 0 (independent upon ϕ0, ϕ1) such that

(T − T0)E0 ≤ C|||{ϕ0, ϕ1}|||2.(6.7)

As in section 3, the inverse estimate (3.21) also holds owing to Theorem 3.5 of
[20] and the usual trace theorems. We then define F as the closure of D(A) × V for
the norm (6.6) (F clearly satisfies (3.22)). The analogue of Proposition 3.4 here is
Proposition 6.3.

PROPOSITION 6.3. Let {ϕ0, ϕ1} ∈ F and f ∈ L1(0, T ;V ). Then the unique
solution ϕ ∈ C([0, T ], V )∩C1([0, T ], H) of [20, eq. (3.1)] satisfies (3.23) to (3.25) and

ϕ′j ,
∂ϕj
∂νj

,
∂ϕj
∂τ j

∈ L2(CSj) ∀j ∈ I(S), S ∈ Ssing.

Moreover, there exists a constant C > 0 (independent of {ϕ0, ϕ1} and f) such that ∑
A∈D+

∫
ΣAδ

(
∂ϕiA
∂νiA

)2

dσdt+
∑

A∈N−ext

∫
ΣAδ

(
∂ϕiA
∂τiA

)2

dσdt(6.8)

+
∑

A∈N+
ext

∫
ΣAδ

(DtϕiA)2
dσdt

+
∑

S∈Ssing

∑
j∈I(S)

∫
CSj

{
(ϕ′j)

2 +
(
∂ϕj
∂νj

)2

+
(
∂ϕj
∂τ j

)2
}
dσdt


1/2

≤ C
{
|||{ϕ0, ϕ1}|||+ ‖f‖L1(0,T ;V )

}
.

Proof. The proof is similar to that of Proposition 3.4, since in the left-hand side
of (6.8) derivatives of ϕ(2) appear only far from the singular vertices, and by Theorem
2.2 of [20], they are square integrable.

7. Weak solutions of the wave equation II. The transposition of Proposition
6.3 yields the following theorem.

THEOREM 7.1. For all u0 ∈ H, u1 ∈ V ′, wA ∈ L2(ΣAδ), where A ∈ D+ ∪
N+
ext ∪N−ext and all wkSj ∈ L2(CSj), j ∈ I(S), S ∈ Ssing, k = 1, 2, 3, there exist unique

u ∈ L∞(0, T ;V ′), {ψ1, ψ0} ∈ F ′, which satisfy∫ T

0
〈u(t), f(t)〉V ′−V dt+ 〈{ψ1, ψ0}, {ϕ0,−ϕ1}〉F ′−F(7.1)

= 〈u1, ϕ(0)〉V ′−V − 〈u0, ϕ
′(0)〉H′−H −

∑
A∈D+

∫
ΣAδ

wA
∂ϕiA
∂νiA

dσdt

−
∑

A∈N−ext

∫
ΣAδ

wA
∂ϕiA
∂τiA

dσdt−
∑

A∈N+
ext

∫
ΣAδ

wADtϕiA dσdt

−
∑

S∈Ssing

∑
j∈I(S)

∫
CSj

{
w1
Sjϕ

′
j + w2

Sj

∂ϕj
∂νj

+ w3
Sj

∂ϕj
∂τ j

}
dσdt
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for all f ∈ L1(0, T ;V ), {ϕ0,−ϕ1} ∈ F , where ϕ ∈ C([0, T ], V ) ∩ C1([0, T ], H) is the
unique solution of (4.2).

The interpretation of (7.1) in terms of partial differential equations is based on
the following trace lifting result, which is easily proved (compare with [20, Lem-
ma 5.3]).

LEMMA 7.2. Let wA ∈ D(ΣAδ), A ∈ D+ ∪ N+
ext ∪ N−ext, and wkSj ∈ D(CSj), j ∈

I(S), S ∈ Ssing, k = 1, 2, 3. Then there exists a function v defined on Q and equal to
zero in a neighborhood of S × [0, T ] for all S ∈ Ssing having the regularity

vi ∈ D
(

0, T, C∞
(
Pi \ ∪S∈SsingB(S, δ)

))
∀i ∈ I,

vi ∈ D
(

0, T, C∞
(
Pi ∩B(S, δ)

))
∀S ∈ Ssing, i ∈ I(S)

and fulfilling (2.3), (2.4) for all A ∈ Nint, the boundary conditions (4.4) and (4.11),
as well as the following interface conditions through CS for all S ∈ Ssing:

vSj − v
far
j = α−1

j w2
Sj on CSj ∀j ∈ I(S),

∂vSj
∂νj −

∂vfarj

∂νj = α−1
j

(
Dtw

1
Sj + ∂w3

Sj

∂τj

)
on CSj ∀j ∈ I(S),

(7.2)

where vSj (resp., vfarj ) stands for the trace on CSj of the restriction of vj to {B(S, δ)∩
Pj} × (0, T ) (resp., {Pj \B(S, δ)} × (0, T )).

THEOREM 7.3. Let u ∈ L∞(0, T ;V ′), {ψ1, ψ0} ∈ F ′ be the unique solution
of (4.1) with data u0 ∈ V , u1 ∈ H, wA ∈ D(ΣAδ), A ∈ D+ ∪ N+

ext ∪ N−ext, and
wkSj ∈ D(CSj), j ∈ I(S), S ∈ Ssing, k = 1, 2, 3. Then u ∈ C1([0, T ], H) satisfies the
boundary conditions (4.4), the initial conditions (4.6), the final conditions (4.7), and
the hyperbolic equation

u′′i − αi4ui =
∑

S∈Ssing

DSi in D′(Qi) ∀i ∈ I,(7.3)

where the distribution DSi ∈ D′(Qi) is defined by

〈DSi, η〉 = −
∫
CSi

{
w1
Siη
′ + w2

Si

∂η

∂νi
+ w3

Si

∂η

∂τ i

}
dσdt(7.4)

if i ∈ I(S) and DSi = 0 else.
Proof. Since it is similar to that of Theorem 4.3, we only explain the differences.

From the function v obtained in Lemma 7.2, we define the function f on Q by

fi = v′′i − αi4vi on Qi \ ∪S∈SsingCSi ∀i ∈ I.

Note that the Laplacian of vi is computed outside ∪S∈SsingCSi because vi is not
necessarily continuous through CSi for S ∈ Ssing due to (7.2).

As f ∈ L2(0, T ;H), there exists a unique solution ψ ∈ C([0, T ], V )∩C1([0, T ], H)∩
H2(0, T ;V ′) of (4.8). The conclusion follows with u = ψ + v by applying Green’s
formula on Pi \ ∪S∈SsingB(S, δ) and on Pi ∩B(S, δ) for all S ∈ Ssing, as usual.

Let us finally remark that we readily deduce (7.3) from (4.8) and the conditions
(7.2) satisfied by v.

As before, we then call the solution u of (7.1) the weak solution of (7.3), (4.6),
(4.4), and (4.11). Moreover, from the density of D(V ) in L2(V ) for any open set V ,
the conclusion of Theorem 4.4 holds for our solution u.
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8. Addition of circular internal controls. Theorem 2.2 is now a direct con-
sequence of the HUM of Lions [12]. As Proposition 3.4 is replaced by Proposition
6.3, we then solve (5.1), the right-hand side being unchanged except for the last term,
which is replaced by

−
∑

S∈Ssing

∑
j∈I(S)

∫
CSj

{
ϕ′jη

′
j +

∂ϕj
∂νj

∂ηj
∂νj

+
∂ϕj
∂τ j

∂ηj
∂τ j

}
dσdt.

THEOREM 8.1. For all u0 ∈ H, u1 ∈ V ′, there exist wA ∈ L2(ΣAδ), A ∈
D+ ∪ N+

ext ∪ N−ext, and wkSj ∈ L2(CSj), j ∈ I(S), S ∈ Ssing, k = 1, 2, 3, such that the
weak solution u ∈ C([0, T ], V ′) ∩ C1([0, T ], D(A)′) of the wave equation (8.1) below
(in the sense of (7.1)) satisfies u(T ) = u′(T ) = 0.

u′′i − αi4ui =
∑
S∈Ssing DSi in D′(Qi) ∀i ∈ I,

u(0) = u0, u′(0) = u1,
u satisfies (4.4) and (4.11),

(8.1)

where DSi is defined by (7.4).
Proof. Since {u1,−u0} ∈ V ′×H ⊂ F ′, there exists a unique solution {ϕ0, ϕ1} ∈ F

of

Λ{ϕ0, ϕ1} = {u1,−u0}.

We take the solution ϕ of (2.7) and then the solution ψ of (5.1) (with the new right-
hand side). Because of the time reversibility of the wave equation and Proposition
6.3, the conclusion follows with u = ψ, wA = ∂ϕiA

∂νiA
for all A ∈ D+, wA = DtϕiA for

all A ∈ N+
ext, wA = ∂ϕiA

∂τiA
for all A ∈ N−ext, w1

Si = ϕ′i, w
2
Si = ∂ϕi

∂νi , w
3
Si = ∂ϕi

∂τ i for all
S ∈ Ssing.

Let us finally remark that with the above choice of the wkSi and (7.4), we ar-
rive at the form (2.10) of DSi given in Theorem 2.2. The proof of Theorem 2.2 is
then complete.

Acknowledgments. We would like to thank Professor J. E. Lagnese for his
interest in this work, as well as his valuable remarks.
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Abstract. We consider a multidimensional singular stochastic control problem with state-
dependent diffusion matrix and drift vector and control cost depending on the position and direction
of displacement of the controlled process. The objective is to minimize the total expected discounted
cost. We write an equivalent infinite-dimensional linear programming problem on a subspace of the
space conjugate to C(Rn) × C(Rn × B), where B is the unit sphere in Rn. We write a dual linear
program and prove absence of duality gap. The dual program characterizes the optimal cost function
as a maximal solution to the variational inequality with gradient constraints.

Key words. stochastic control, stochastic differential equations, controlled diffusion processes,
primary and dual linear programs, variational inequalities
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1. Introduction. One of the methods to study the optimal control problems
is via mathematical programming on suitable spaces. Most probably the earliest
result obtained by this approach was Pontryagin’s maximum principle (see, e.g., [6]).
Recently there was a renewed interest in applying linear and convex programming
techniques to deterministic and stochastic optimal control problems (see [31], [17],
[30], [8], [9], [16], [14], [15]). A certain duality was established between the problem
of minimizing a cost functional over a set of all admissible controls and minimizing
a linear or convex functional in the space of measures. The measures in question
correspond to occupational measures of the controlled process and are described by
linear or convex constraints. The original cost functional can then be represented
as an integral with respect to the occupational measure. This gives a possibility to
interpret the original control problem as a linear or convex programming problem in
an infinite-dimensional space regardless of the structure of the cost function. In [9]
convex programming methods were used to study finite horizon and infinite horizon
control problems. Infinite-dimensional linear programming methods were employed
in studying deterministic continuous-time control problems and discrete-time Markov
decision processes with discounted cost (see [14], [15]). The main challenge in the
linear programming approach is to show an absence of duality gap between the primal
and the dual programs (strong duality) and establishing equality of values of the
original optimal control problem and its linear programming counterpart.

In this paper we apply linear programming techniques to singular diffusion control.
In singular control models the control is described by a functional ν of bounded
variation rather than by a classical “input-output” process. We will study a general
singular control model with dimension of the control functional being equal to that
of the state process.
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In classical stochastic control models there is a set U of controls available at each
state x ∈ Rn. To relate the original control problem to linear or convex programming,
one considers measures on Rn × U generated by the controlled process and identifies
constraints which these measures must satisfy. If we had chosen to follow the same
route for singular control problems then we would have had to make U the set of
values of generalized functions. Defining measures on such a space is technically
cumbersome, and thus it would be rather difficult to implement such an approach.
Instead we consider a linear space X consisting of pairs (M,N), where M is a linear
functional on C(Rn) and N is a linear functional on C(Rn × B), where B is a unit
sphere in Rn. (C(X ) stands for the set of bounded continuous functions on X .) Any
measure on Rn or Rn ×B is identified with one such functional. On the other hand,
with each admissible control ν we associate two measures Mν and Nν on Rn and
Rn ×B, respectively. The measure Mν is the occupational measure of the controlled
process in the state space. To calculate Nν , we replace real time t by |ν|(·), where
|ν| is the total variation of the process ν. The measure Nν is the joint occupational
measure of the controlled process and dν

d|ν| . The generalized Ito formula yields linear
constraints which (Mν , Nν) ∈ X must satisfy.

We consider the linear program on X and its dual. We prove strong duality and
we also show that the dual program is equivalent to finding the maximal solution to
a variational inequality.

The structure of the paper is the following. In the next section we describe
notations and outline the main assumptions. In section 3 we formulate the singular
control problem, and in section 4 we formulate its linear programming counterpart.
Section 5 is devoted to the proof of the main results of the paper: the absence of a
duality gap and the equivalence of the values of the linear programming problem and
the optimal control problem. In section 6 we summarize the principle results from
the infinite-dimensional linear programming used in this paper. Most of the technical
issues such as the proof of the generalized Ito formula, the existence of a smooth
classical solution to the partial differential equations employed in the paper, and the
like are resolved in section 7.

2. Notations and main assumptions. In this section we describe the param-
eters of the problem and introduce notations used in the paper. We denote by Rn
the n-dimensional Euclidean space and by B a unit sphere in it. The exogenous
parameters of the singular control problem are the following:
• a diffusion matrix σ(x) = ‖σij(x)‖ and a drift vector b(x) = (b1(x), . . . , bn(x))

associated with each x ∈ Rn.
• a discount factor α > 0.
• a holding cost function h(x), x ∈ Rn. It corresponds to the rate of increase of

the cost when the controlled process is at the point x.
• a control cost function c(x, y), x ∈ Rn, y ∈ B, which corresponds to the cost of

a unit displacement in the direction y when the controlled process is at the point x.
Put

a(x) ≡ ‖aij(x)‖ = σ(x)σ(x)T .

The conditions we impose upon the parameters of the problem are the following.
(Below K stands for a generic constant which can be different in different formulas.
The norm of the matrix σ(x) is (tr[σ(x)σ(x)T ])1/2.)

(H1) There exists K > 0 such that for all x, y ∈ Rn,

|b(x)| ≤ K.(2.1)
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(H2) There exist constants C1, C2 > 0 such that for each ξ = (ξ1, . . . , ξn) ∈ Rn
and each x,

C1|ξ|2 ≤
∑
ij

aij(x)ξiξj ≤ C2|ξ|2.(2.2)

(H3) There exist β1, β2 ≥ 0 such that

‖σ(x)− σ(y)‖ ≤ β1|x− y|,(2.3)

|b(x)− b(y)| ≤ β2|x− y|,(2.4)

and

β2
1/2 + β2 < α.(2.5)

(H4) h(x) ≥ 0 for any x ∈ Rn. There exist K > 0 and δ > 0 such that for all
|x− y| < δ,

|h(x)− h(y)| ≤ K|x− y|h(x).(2.6)

(H5) There exist constants λ1, λ2 > 0, and K > 0 such that

λ1 ≤ c(·, ·) ≤ λ2,(2.7)

|c(x1, y1)− c(x2, y2)| ≤ K(|x1 − x2|+ |y1 − y2|).(2.8)

The following notations will be used throughout the paper.

L =
1
2

∑
ij

aij(x)
∂2

∂xi∂xj
+
∑
i

bi(x)
∂

∂xi
− α.(2.9)

If X is a metric space, then C(X ) stands for the Banach space of bounded continuous
functions f on X with

‖f‖ = sup
x∈X
|f(x)|.

The set of k times continuously differentiable functions on X with bounded derivatives
is denoted by Ck(X ). If g is a continuous strictly positive function on X , then we set

‖f‖g = sup
x∈X
|f(x)|/g(x).

The linear space of continuous functions with norm ‖ · ‖g is denoted by Cg(X ). In the
sequel X will be either Rn or Rn ×B. Define

C1(Rn) =
{
f :

∂f

∂xi
∈ C(Rn)∀i ≤ n

}
,

C1
g (Rn) = Cg(Rn) ∩ C1(Rn),

C2
g (Rn) =

{
f ∈ C1

g (Rn) :
∂2f

∂xi∂xj
∈ Cg(Rn)∀i, j ≤ n

}
.
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Note that in C1
g (Rn) and C2

g (Rn) we require ∂f
∂xi

to be bounded while f and its second
derivatives are bounded only with respect to the function g. The space C2

g (Rn) is a
Banach space with the norm

‖f‖2,g = ‖f‖g +
∑
i

∥∥∥∥ ∂f∂xi
∥∥∥∥+

∑
i,j

∥∥∥∥ ∂2f

∂xi∂xj

∥∥∥∥
g

,

as are C1(Rn) and C1
g (Rn).

If X is a generic Banach space then we denote by X∗ its conjugate, i.e., the set
of all bounded continuous functionals on X. Put

L(X ) = C(X )∗,Lg(X ) = Cg(X )∗.

Define M(X ) to be the set of all signed measures on X with finite variation. We use
the notation 〈M, f〉 for the integral of f with respect to M . Let

Mg(X ) = {M ∈M : |〈M, g〉| <∞}.

We will identify measures with the functionals they generate on the space of bounded
continuous functions. Thus M(X ) ⊂ L(X ) and Mg(X ) ⊂ Lg(X ).

For a linear space X we denote by X+ the closed cone of its positive elements.
For example, Cg(X)+ is the set of all nonnegative continuous functions on X with
finite ‖ · ‖g norm. The set M(X )+ would be the set of all bounded (nonnegative)
measures on X , etc.

If f ∈ C1(Rn) then (∇f, ·) is a function on C(Rn, B) defined as

(∇f, ·)(x, y) =
∂f(x)
∂y

≡
n∑
i=1

∂f(x)
∂xi

yi, x ∈ Rn, y = (y1, . . . , yn) ∈ B.(2.10)

The rest of the section is devoted to the description and properties of vector-valued
functions of bounded variation.

A deterministic vector-valued function l(t) ∈ Rn, 0 ≤ t < ∞ is called cadlag if it
is right continuous and has left limits. For any cadlag function l we put l(0−) = 0.
Let ‖ · ‖ be any Minkowski norm in Rn. Set

‖l‖(t) = lim
k∑
i=1

‖l(ti)− l(ti1−)‖,(2.11)

where the limit in (2.11) is taken over divisions 0 = t0 < t1 < · · · < tk = t such
that maxi |ti − ti−1| → 0. When ‖ · ‖ coincides with the ordinary Euclidean metric,
(2.11) becomes the definition of the total variation |l|(t) of the function l on [0, t]. If
|l|(t) <∞ for all t ≤ ∞, then we say that l is a function of bounded variation. Since
all norms in a finite-dimensional space are equivalent, ‖l‖(t) <∞ for any Minkowski
norm ‖ · ‖ whenever l is a function of bounded variation.

If f(s) is a measurable function and l is a (real or vector-valued) function of
bounded variation then it is possible to define a Lebesgue–Stieltjes integral∫ t

0
f(s)dl(s).

Following the usual convention, we interpret this integral as an integral over [0−, t]
with respect to the (vector-valued) measure with distribution function l. Thus when
l(0) 6= 0 a point mass equal to l(0) is concentrated at t = 0.
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Set

∆l(s) = l(s)− l(s−),
Λ(l) = {s : ∆l(s) 6= 0},
ld(t) =

∑
s∈Λ(l),s≤t

∆l(s),(2.12)

lc(t) = l(t)− ld(t).

Obviously, lc(t) is a continuous process with l(0) = 0 and |lc|(t) ≤ |l|(t).
For any function l of bounded variation there exists a vector function χl(s) such

that |χl(s)| = 1 for all s and

l(t) =
∫ t

0
χl(s)d|l|(s).(2.13)

We will use notations dl(s)/d|l|(s) and χl(s) interchangeably. If s ∈ Λ(l) then one
can verify that

dl

d|l| (s) =
∆l(s)
|∆l(s)| .

The vector function χl(·) is unique up to a measure d|l|(·) on the real line. It is also
easy to see that if l is a discontinuous functional then it has at most countable number
of discontinuities. Thus χl(·) = χlc(·) almost everywhere (a.e.) d|lc|(·) and

lc(t) =
∫ t

0
χl(s)d|lc|(s) =

∫ t

0
χlc(s)d|lc|(s).(2.14)

3. Formulation of the singular control problem. We start with a proba-
bility space (Ω,F ,Ft, P ) and a standard n-dimensional Brownian motion w(t) on it.
An n-dimensional cadlag process ν(t) is called a control if ν(t) is Ft-measurable for
each t ≥ 0. Given control ν and an initial position x ∈ Rn we define the state process
x(·) as the solution of the following stochastic differential equation:

x(t) = x+
∫ t

0
σ(x(s))dw(s) +

∫ t

0
b(x(s))ds+ ν(t).(3.1)

Note that according to our convention x(0−) = x and x(0) = x+ ν(0).
The control ν is called admissible at point x if (3.1) has a unique solution and

E

{∫ ∞
0

e−αtd|ν|(t)
}
<∞.(3.2)

Obviously (3.2) implies that ν is a process of bounded variation. We denote by A(x)
the set of all controls admissible at x. Given the initial position x and an admissible
control ν, we define the cost functional

Jx(ν) = E

{∫ ∞
0

e−αth(x(t))dt+
∫ ∞

0
e−αtc(x(t), χν(t))d|νc|(t)

+
∑

s∈Λ(ν)

e−αs
∫ |∆ν(s)|

0
c(x(s−) + zχν(s), χν(s))dz

}
.(3.3)
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The first integral on the right-hand side of (3.3) is called the holding cost. The
remaining two terms are called the control cost. The objective is to find

v(x) = inf
ν∈A(x)

Jx(ν).(3.4)

The usual framework leading to singular control problems appears in the models where
the “input” (the control functional) is additive and the control cost is linear. If we
consider a particle whose position is represented by the state process of our system
then in absence of control the particle’s dynamics are governed by a diffusion process.
The control (input) corresponds to the displacement of the particle from the original
trajectory with the cost proportional to the distance the particle is forced to move due
to the exerted control. The coefficient of proportionality, however, may depend on the
direction of the displacement as well as the position of the particle. On the right-hand
side of (3.3) the “quantity” d|νc|(s) in the second integral corresponds to the length
of displacement of the particle while it moves continuously and χν(s) = dν

d|ν| (s) is the
direction of displacement. The quantity c(x(s), χν(s)) is the unit cost of moving in
the direction χν(s) from the point x(s). To understand the last term in (3.3), consider
any s ∈ Λ(ν). This is the moment when the functional ν(·) as well as the process x(·)
are discontinuous. It corresponds to an instantaneous jump of the particle from x(s−)
in the direction ∆ν(s)/|∆ν(s)| ≡ dν

d|ν| (s) to the position x(s). At this moment of time
we assume that the real time stops and the “internal clock” is turned on. During the
“internal” time the particle travels the distance |ν(s) − ν(s−)| with a constant unit
velocity, thus moving from x(s−) to x(s). After z units of “internal” time it reaches
the position x(s−) + zχν(s). The cost incurred during the time interval [z, z + dz] is
then equal to c(x(s−) + zχν(s), χν(s))dz. Integrating this cost yields the last term in
(3.3).

In one of the classical situations of an “additive input–linear control cost” prob-
lem, the dynamics of the state process are described by

dx(t) = σ(x(t))dw(t) + (b(x(t)) + u(t))dt,

where u(t) is a control functional with values restricted to a compact set. The control
cost is given by ∫ ∞

0
e−αt|u(t)|c(x(t), u(t)/|u(t)|)dt.

Suppose that in (3.1) we have a sequence of admissible controls νn(t) which are ab-
solutely continuous with derivatives dνn(t)/dt = un(t). Suppose that xn(·) and νn(·)
converge to a stochastic process x(·) and a bounded variation process ν(·), respec-
tively, in M1-Skorohod topology. (In this case, M1-convergence of νn to ν corresponds
to the convergence of νn(t) to ν(t) at each point t at which ν(t) is continuous.) Then
one can easily verify that∫ ∞

0
e−αt|un(t)|c(xn(t), un(t)/|un(t)|)dt→

∫ ∞
0

e−αtc(x(t), χν(t))d|νc|(t)

+
∑

s∈Λ(ν)

e−λs
∫ |∆ν(s)|

0
c(x(s−) + zχν(s), χν(s))dz.(3.5)

This gives another justification for the definition of the control cost in (3.3).
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When c(x, y) does not depend on x ∈ Rn(= c(y)), the expression for the control
cost in (3.3) reduces to ∫ ∞

0
e−αtc(χν(t))d|ν|(t).(3.6)

The most frequently considered case is the one in which c(·) ≡ const and the holding
cost function is convex (e.g., [13], [18], [19], [25], [24], [27], [28], [29]). If c(y) = ‖y‖,
where ‖ · ‖ is any Minkowski norm in Rn, then (3.5) becomes∫ ∞

0
e−αtd‖ν‖(t),(3.7)

where ‖ν‖(t) is defined by (2.11). The case of ‖(y1, . . . , yn)‖ =
∑
i(aiy

+
i +biy−i ), ai, bi >

0, was studied in [25]. It also appears in diffusion approximation of controlled queues
(see [32], [33]).

4. Formulation of the linear programming problem. In this section we
formulate linear program (P) and its dual (P∗) related to the original singular control
problem.

We start by associating two measures Mν ∈ M(Rn)+ and Nν ∈ M(Rn × B)+

with each admissible control ν.

Mν(Γ) = E

{∫ ∞
0

e−αt1Γ(x(t))dt
}
, Γ ⊂ Rn.

Nν(Γ) = E

{∫ ∞
0

e−αt1Γ(x(t), χν(t))d|νc|(t)(4.1)

+
∑

s∈Λ(ν)

e−αs
∫ |∆ν(s)|

0
1Γ(x(s−) + zχν(s), χν(s))dz

}
, Γ ⊂ Rn ×B.

Let g(x), x ∈ Rn be a smooth convex function such that

1 + |x| ≤ g(x) ≤ 2 + |x|, x ∈ Rn,
g(x) = 1 + |x|, |x| ≥ 1.(4.2)

PROPOSITION 4.1. For each admissible control ν,

Mν ∈Mg(Rn)+.

The proof of this proposition is given in section 7.
It follows from (3.3) that

Jx(ν) = 〈Mν , h〉+ 〈Nν , c〉.

Expression (4.1) shows that for any admissible control ν, with Jx(ν) < ∞, we have
Mν ∈Mh(Rn). Together with Proposition 4.1 this yields

Mν ∈Mg̃(Rn),(4.3)

where g̃ = g + h.
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To understand the constraints the measures Mν and Nν must satisfy, consider
f ∈ C2

g (Rn) and apply Proposition 7.1 to it (below (x, y) stands for the inner product
of vectors x, y ∈ Rn).

−f(x) = E

{∫ ∞
0

e−αtLf(x(t))dt+
∫ ∞

0
e−αt∇f(x(t))dνc(t)

+
∑

s∈Λ(ν)

e−αs[f(x(s))− f(x(s−))]
}
≡

E

{∫ ∞
0

e−αtLf(x(t))dt+
∫ ∞

0
e−αt(∇f(x(t)), χν(t))d|νc|(t)

+
∑

s∈Λ(ν)

∫ |∆ν(s)|

0
(∇f(x(s−) + zχν(s)), χν(s))dz

}
= Mν(Lf) +Nν((∇f, ·)).(4.4)

We introduce a dual pair (X,Y ),

X = {(M,N) :M∈ Lg̃(Rn), N ∈ L(Rn ×B)},

Y = {(f, j) : f ∈ Cg̃(Rn), j ∈ C(Rn ×B)}.

Define

〈(M,N), (f, j)〉 = 〈M, f〉+ 〈N, j〉.

To write the linear program (P), we need another dual pair (Z,W ):

W = C2
g (Rn),

Z = C2
g (Rn)∗.

Note that Z contains all the functionals of the form δx such that

〈δx, f〉 = f(x).

Let L : W → Y be defined as follows

L(f) = (−Lf,−(∇f, ·)).

In a more detailed way Lf(x) = (F (x), G(x, y)), where

F (x) = −1
2

n∑
i,j=1

aij(x)
∂2f(x)
∂xi∂xj

−
n∑
i=1

bi(x)
∂f(x)
∂xi

+ αf(x),

G(x, y) = −
n∑
i=1

∂f(x)
∂xi

yi, x ∈ Rn, y = (y1, . . . , yn) ∈ B.

Since g̃ ≥ g we have Cg(Rn) ⊆ Cg̃(Rn); thus the operator L : W → Y is well defined
for all f ∈W . Having a dual pair (X,Y ), we will always consider the weak topology
σ(X,Y ) on X (see [1] or [26]). The same applies for (Z,W ).
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For each M̃ = (M,N) ∈ X consider the following linear functional on W :

TM̃ (f) = 〈M̃,Lf〉 ≡ −〈M,Lf〉 − 〈N, (∇f, ·)〉.(4.5)

It follows from (2.1), (2.2), and the definition of C2
g (Rn) that L is a bounded linear

operator from C2
g (Rn) into Cg̃(Rn). Since M̃ is a bounded functional on Cg̃(Rn) and

g̃ ≥ g, we conclude that M̃ is a bounded functional on Cg(Rn) as well. Thus (4.5)
implies that TM̃ is a bounded functional on C2

g (Rn) and there exists z̃ ∈ Z such
that TM̃ (f) = 〈z̃, f〉. We denote z̃ = L∗M̃ . Standard arguments show that L∗ is a
continuous linear map. Let δx be a unit measure concentrated at the point x. Formula
(4.4) and the definition of the operator L∗ imply that for any admissible control ν
and any f ∈ C2

g (Rn)

〈δx, f〉 = −〈Mν , Lf〉 − 〈Nν , (∇f, ·)〉 ≡ 〈M̃ν ,Lf〉 ≡ 〈L∗M̃ν , f〉.(4.6)

Relation (4.6) provides linear constraints which all (Mν , Nν) must satisfy. This en-
ables us to formulate the linear program. Put h̃ = (h, c) below.

(P) Minimize 〈M̃, h̃〉 ≡ 〈M,h〉+ 〈N, c〉 subject to

M̃ ∈ X+,

L∗M̃ = δx.

The dual program (see section 6) is
(P∗) Maximize δx(φ) ≡ φ(x) subject to

φ ∈W,

Lφ ≤ h̃.

The dual program can be rewritten in a more conventional way:
Maximize φ(x) subject to φ(x) ∈ C2

g (Rn) and

1
2

∑
i,j

aij(x)
∂2φ(x)
∂xi∂xj

+
∑
i

bi(x)
∂φ(x)
∂xi

− αφ(x) + h(x) ≥ 0 ∀x ∈ Rn,(4.7)

(∇φ(x), y) + c(x, y) ≥ 0 ∀x ∈ Rn∀y ∈ B.(4.8)

If c(x, y) = ‖y‖, then (4.8) is equivalent to

‖∇φ(x)‖∗ ≤ 1,(4.9)

where ‖ · ‖∗ is the norm in Rn dual to the Minkowski norm ‖ · ‖. When c(x, y) ≡ c,
inequality (4.9) becomes a standard gradient constraint variational inequality

|∇φ(x)| ≤ c(4.10)

(see [24], [29]).

5. Consistency and absence of duality gap. The program (P∗) is consis-
tent (see the definitions in section 6) since we can take φ ≡ 0 in (4.7). According to
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Proposition 7.2, for each x there exists a feasible control ν such that Jx(ν) <∞. The
corresponding pair of measures M̃ν = (Mν , Nν) is consistent with finite value. Since
for any admissible ν, the measure M̃ν satisfies (4.6), we deduce that the program (P)
is consistent with finite value and

inf (P) ≤ v(x),

where v(x) is given by (3.4). Therefore, by virtue of Proposition 6.1,

sup (P)∗ ≤ inf (P) ≤ v(x).(5.1)

Our main results are given by the following theorems. They show that the inequalities
in (5.1) are tight.

THEOREM 5.1. There is no duality gap:

inf (P) = sup (P)∗.

THEOREM 5.2. The linear program is consistent with the optimal control problem:

v(x) = inf (P).

To prove Theorem 5.1, we need to show that the subset D of Z×R defined below
is closed (see Theorem 6.1).

D = {(L∗M̃, 〈M̃, h̃〉), M̃ ≥ 0}.

Let γ ∈ T be a net and M̃γ = (Mγ , Nγ) ∈ X+ be a family of functionals such that
there exist

lim
γ∈T
L∗M̃γ = V,(5.2)

lim
γ∈T
〈M̃γ , h̃〉 = d.(5.3)

We need to show that there exists M̃ = (M,N) such that

V = L∗M̃,(5.4)

d = 〈M̃, h̃〉.(5.5)

(We need to use nets in (5.2), (5.3) because the space Z is not separable and to
prove closure of D one cannot consider only sequences. See [20] or [3, section I.7] for
more details on nets and convergence.) Since Mγ , Nγ are nonnegative functionals and
h, c ≥ 0, relation (5.3) implies that 〈Mγ , h〉 and 〈Nγ , c〉 are bounded. Since c(·, ·) ≥
λ1 > 0 (see (2.5)) we see that 〈Nγ , F 〉 are bounded for any F ∈ C(Rn × B)+. Since
the functionals Nγ are positive the latter implies that 〈Nγ , F 〉 ≡ 〈Nγ , F+〉−〈Nγ , F−〉
is bounded for any F ∈ C(Rn × B). Therefore there exists N ∈ L(Rn × B) and a
subnet γ1 ∈ T1 such that

lim
γ1∈T1

Nγ1 = N.(5.6)

Using the definition of the topology in Z and the definition of the operator L∗, we
can rewrite (5.2) as

lim
γ∈T

(−〈Mγ , Lf〉 − 〈Nγ , (∇f, ·)〉) = V (f)(5.7)
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for all f ∈ C2
g (Rn). By virtue of Proposition 7.3, there exists a function f ∈ C2

g (Rn)
such that −Lf = g. Applying (5.7) to this f , we have

lim
γ∈T

(〈Mγ , g〉 − 〈Nγ , (∇f, ·)〉) = V (f).(5.8)

Since ∂f
∂xi
∈ C(Rn), we have (∇f, ·) ∈ C(Rn × B). We have already established

boundedness of 〈Nγ , F 〉 for all F ∈ C(Rn × B); thus (5.8) implies boundedness of
〈Mγ , g〉. This and the boundedness of 〈Mγ , h〉 show that 〈Mγ , h + g〉 ≡ 〈Mγ , g̃〉 is
bounded as well. Using positivity of the functional Mγ , we conclude that 〈Mγ , G〉 is
bounded for all G ∈ Cg̃(Rn). Therefore there exists M and a subnet γ2 ∈ T2 of the
net γ1 ∈ T1 such that

lim
γ2∈T2

Mγ2 = M.(5.9)

Combining (5.9) and (5.6), we conclude

lim
γ2∈T2

〈(Mγ2 , Nγ2), (h, c)〉 = 〈(M,N), (h, c)〉(5.10)

and for any f ∈ C2
g (Rn)

lim
γ2∈T2

〈(Mγ2 , Nγ2), (−Lf,−(∇f, ·))〉 = 〈(M,N), (−Lf,−(∇f, ·))〉.(5.11)

Taking M̃ = (M,N), we see that (5.11) implies (5.4) and (5.10) implies (5.5). This
proves that D is closed.

Proof of Theorem 5.2. Suppose inf(P)< v(x). Then there exists M̃ = (M,N) ∈
X+ such that L∗M̃ = δx and

〈M,h〉+ 〈N, c〉 < v(x).(5.12)

By virtue of Proposition 7.4, there exists a family of functions hε(·) ∈ C(Rn), vε(·) ∈
C2
g (Rn), cε(·, ·) ∈ C(Rn ×B), ε > 0 subject to (7.31)–(7.35).

Applying L∗M̃ to vε, we get

vε(x) ≡ δx(vε) = 〈L∗M̃, vε〉 = 〈M̃,Lvε〉
= 〈(M,N), (−Lvε, (−∇vε, ·))〉 = 〈M,−Lvε〉+ 〈N, (∇vε, ·)〉

≤ 〈M,hε〉+ 〈N, cε〉.(5.13)

The last inequality in (5.13) is due to (7.31) and (7.32). Letting ε→ 0 in (5.13) and
applying (7.33), (7.34), and (7.35), we obtain

v(x) ≤ 〈M,h〉+ 〈N, c〉,

which contradicts (5.12).

6. Appendix I. Infinite-dimensional linear programming. In this section
we present some well-known results from the theory of linear programming in infinite-
dimensional spaces. Further details can be found in [1, Chapter 3].

DEFINITION. Two linear vector spaces X and Y are called a dual pair with respect
to a bilinear form 〈·, ·〉 on X × Y if

(i) for each x ∈ X,x 6= 0 there exists y ∈ Y such that 〈x, y〉 6= 0,
(ii) for each y ∈ Y, y 6= 0 there exists x ∈ X such that 〈x, y〉 6= 0.
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The space Y is called dual to X, and X is called dual to Y . If (X,Y ) is a
dual pair, then by σ(X,Y ) we denote the weakest topology on X in which 〈x, y〉 are
continuous for all y ∈ Y . Similarly, the topology σ(Y,X) is the weakest topology on
Y in which 〈x, y〉 are continuous for all x ∈ X.

If X+ is a closed cone of positive elements in X, then the dual cone Y + is defined
as the set of all y ∈ Y such that 〈x, y〉 ≥ 0.

Let (X,Y ) and (W,Z) be two dual pairs and L : X → Z be a continuous linear
map of X into Z. We define the adjoint map L∗ : W → Y via the relation

〈Lx,w〉 = 〈x,L∗w〉 for all x ∈ X,w ∈W.(6.1)

The mapping L∗ is continuous (see [26, section II.6, Proposition 12]).
Consider the linear program
(P) Minimize 〈x, c〉 subject to

Lx = b,

x ∈ X+,

where b ∈ Z and c ∈ Y are given vectors. The dual of (P) is
(P∗) Maximize 〈b, w〉 subject to

w ∈W

−L∗w + c ∈ Y +.

DEFINITION. A linear program is consistent with finite value (or just consistent) if
it has a feasible (i.e., satisfying the constraints) solution x. If (P) (respectively, (P∗))
is consistent, then its value is defined as the infimum of 〈x, c〉 (respectively, supremum
of 〈b, w〉) over all feasible x (respectively, w) and is denoted by inf(P) (respectively,
sup(P∗)).

PROPOSITION 6.1. If (P) and (P∗) are both consistent, then

sup (P∗) ≤ inf (P).

The proof of this proposition can be found in [1].
DEFINITION. If both (P) and (P∗) are consistent with finite values and

sup (P) = inf (P∗),

then it is said that there is no duality gap.
Conditions ensuring absence of a duality gap are given by the following theorem

(see [1, Theorems 3.10 and 3.22]).
THEOREM 6.1. Let D be the subset of Z × R defined as

D = {(Lx, 〈x, c〉), x ∈ X+}.

If (P) is consistent with finite value and the set D is closed, then there is no duality
gap.
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7. Appendix II. Proofs of auxiliary results. This appendix is devoted to
the proof of the technical results used in the previous sections. Below, K stands for
a generic constant whose value might differ in different formulas.

Proof of Proposition 4.1. Let ν be an admissible control and x(·) be the solution
of (3.1). To show that 〈Mν , g〉 <∞, we need to prove

E

{∫ ∞
0

e−αt(1 + |x(t)|)dt
}
<∞.(7.1)

Obviously the expectation of the first term in the integrand in (7.1) is equal to 1/α.
Let

ηt = sup
u≤t

∣∣∣∣∫ u

0
σ(x(s))dw(s)

∣∣∣∣ ,
ζt = sup

u≤t

∣∣∣∣∫ u

0
b(x(s))ds

∣∣∣∣ .
The dynamics equation (3.1) implies

|x(t)| ≤ ηt + ζt + |ν|(t).

Thus

E

{∫ ∞
0

e−αt|x(t)|dt
}
≤
∫ ∞

0
e−αtE{ηt}dt+

∫ ∞
0

e−αtE{ζt}dt+E
{∫ ∞

0
e−αt|ν|(t)dt

}
.

(7.2)
We can use (2.2) and Theorem I.9.2 of [23] to get

E{ηt} ≤ (E{η2
t })1/2 ≤ E

{
n∑
i=1

sup
u≤t

(∫ u

0
σ(x(s))dw(s)

)2

i

}1/2

≤ 2E

{
n∑
i=1

(∫ t

0
σ(x(s))dw(s)

)2

i

}1/2

≤ 2E
{∫ t

0
‖σ(x(s))‖2ds

}1/2

≤ Kt1/2.(7.3)

Inequality (2.1) implies

E{|ζt|} ≤ E
{∫ t

0
|b(x(s))|ds

}
≤ Kt.(7.4)

Integrating by parts, we get

E

{∫ s

0
e−αtd|ν|(t)

}
= E{e−αs|ν|(s)}+ E

{∫ s

0
αe−αt|ν|(t)dt

}
.

Letting s→∞,

E

{∫ ∞
0

e−αt|ν|(t)dt
}
≤ α−1E

{∫ ∞
0

e−αtd|ν|(t)
}
.(7.5)

The right-hand side of (7.5) is finite for any admissible control ν. Inequalities (7.2)–
(7.5) yield (7.1).
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PROPOSITION 7.1. Let ν be an admissible control and x(·) be given by (3.1) and
f ∈ C2

g (Rn). Then

−f(x) = E


∫ ∞

0
e−αtLf(x(t))dt+

∫ ∞
0

e−αt∇f(x(t))dνc(t)

+
∑

s∈Λ(ν)

e−αs[f(x(s))− f(x(s−))]

 .(7.6)

Proof. Using the generalized Ito’s formula (see Theorem VIII.27 in [2]), we can
write

e−αT f(x(T ))− f(x(0−)) =
∫ T

0
e−αt∇f(x(t))dw(t) +

∫ T

0
e−αtLf(x(t−))dt

+
∫ T

0
e−αt∇f(x(t−))dν(t) +

∑
t≤T,t∈Λ(ν)

e−αt[f(x(t))− f(x(t−))−∇f(x(t))].(7.7)

Since ∆x(s) = ∆ν(s), we have∫ T

0
e−αt∇f(x(t−))dν(t)−

∑
t≤T

e−αt∇f(x(t−))∆x(t)

=
∫ T

0
e−αt∇f(x(t−))d(νc(t) + νd(t))−

∑
t≤T

e−αt∇f(x(t−))∆ν(t)

=
∫ T

0
e−αt∇f(x(t−))dνc(t) =

∫ T

0
e−αt∇f(x(t))dνc(t).(7.8)

Since ∇f(·) is bounded, the first term on the right-hand side of (7.7) is a square
integrable martingale and its expectation vanishes. Thus, taking into account (7.8)
and recalling that x(0−) = x,

e−αTE{f(x(T )} − f(x) = E


∫ T

0
e−αtLf(x(t))dt

+
∫ T

0
e−αt∇f(x(t))dνc(t) +

∑
s∈Λ(ν),s≤T

e−αs[f(x(s))− f(x(s−))]

 .(7.9)

To complete the proof we need only to justify passing to a limit in (7.9) as T → ∞.
Since f ∈ C2

g (Rn), we have

f(x), |Lf(x(t))| ≤ K(1 + |x(t)|) ≤ K(1 + ηt + ζt + |ν|(t))(7.10)

(see the proof of Proposition 4.1). By virtue of (7.3) and (7.4), the expectation of
the absolute value of the first term on the right-hand side of (7.9) does not exceed∫ T

0 e−αt(1 + t+ t1/2)dt. Therefore the expectation of the first term on the right-hand
side of (7.9) converges to that of the first term on the right-hand side of (7.6) thanks
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to the dominated convergence theorem. Due to the boundedness of ∇f , we can write∣∣∣∣∣
∫ T

0
e−αt∇f(x(t))dνc(t)

∣∣∣∣∣+

∣∣∣∣∣∣
∑

s∈Λ(ν),s≤T
e−αs[f(x(s))− f(x(s−))]

∣∣∣∣∣∣
≤
∣∣∣∣∣
∫ T

0
e−αtKdνc(t)

∣∣∣∣∣+
∑

s∈Λ(ν),s≤T
e−αsK|x(s)− x(s−)|

≤
∫ T

0
e−αtKd|νc|(t) +

∑
s∈Λ(ν),s≤T

e−αsK|ν(x(s))− ν(x(s−))|

=
∫ T

0
e−αtKd|ν|(t).(7.11)

Inequality (7.11) implies that the expectation of the last two terms on the right-hand
side of (7.9) converges to that of the last two terms on the right-hand side of (7.6)
thanks to (3.2) and the dominated convergence theorem.

In view of (7.10), (7.3), and (7.4)

E{f(x(T ))} ≤ K(1 + T + T 1/2).

Therefore the second term on the left-hand side of (7.9) converges to 0 as T →∞ and
we get (7.6).

PROPOSITION 7.2. For each x ∈ Rn there exists a control ν such that

Jx(ν) <∞.

Proof. Let D be a closed unit ball in Rn with the center at x. Consider the
solution to the Skorohod problem in D for the stochastic differential equation with
normal reflection at the boundary of D. This solution consists of a pair of continuous
Ft-adapted processes (X(t), ν(t)) such that ν(t) is a process of bounded variation and

X(t) = x+
∫ t

0
σ(X(s))dw(s) +

∫ t

0
b(X(s))ds+ ν(t) ∈ D for all t > 0,(7.12)

∫ ∞
0

1X(s)6=∂Dd|ν|(s) = 0,(7.13)

ν(t) =
∫ t

0
n(X(s))d|ν|(s),(7.14)

where n(y), y ∈ ∂D is a unit inward normal, i.e., n(y) = x − y. Existence of such a
solution was proved in [22].

Let f ∈ C2(D) be the solution to the following boundary value problem (see [21,
section III], where the existence of such a solution is shown)

Lf(y) = 0, y ∈ D,(7.15)

∂f

∂n
(y) = −1, y ∈ ∂D.(7.16)
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Applying Ito’s formula to f(X(t)) and using (7.15), (7.16) together with (7.13) and
(7.14), we get

f(x)− e−αTE{f(X(t))} = E

{
−
∫ T

0
Lf(X(t))dt−

∫ T

0
∇f(X(t))e−αtdν(t)

}

= E

{∫ T

0
e−αt∇f(X(t))n(X(t))d|ν|(t)

}
= E

{
−
∫ T

0
e−αt

∂f

∂n
(X(t))d|ν|(t)

}

= E

{∫ T

0
e−αtd|ν|(t)

}
.(7.17)

In view of (7.12), the process X(·) belongs to a compact domain; hence f(X(T )) is
uniformly bounded in R× Ω. Taking limit as T →∞, we obtain

E

{∫ ∞
0

e−αtd|ν|(t)
}

= f(x) <∞.(7.18)

Consider

Jx(ν) = E

{∫ ∞
0

e−αth(X(t))dt
}

+ E

{∫ ∞
0

e−αtc(X(t), χν(t))d|ν|(t)
}
.(7.19)

By virtue of (7.12), the process h(X(t)) is uniformly bounded. Thus the first term
on the right-hand side of (7.19) is bounded. In view of (2.7) the second term on the
right-hand side of (7.19) does not exceed λ2E{

∫∞
0 e−αtd|ν|(t)}, which is finite thanks

to (7.18).
PROPOSITION 7.3. Let g be given by (4.2). Then there exists f ∈ C2

g (Rn) such
that

Lf = g.(7.20)

Proof. (1) Let (X(t), Px) be the Markov diffusion process with the infinitesimal
generator L + α (see [4], [5], [10]); i.e., for each x ∈ Rn, the measure Px is the
distribution of the solution to the following stochastic differential equation:

X(t) = x+
∫ t

0
σ(X(s))dw(s) +

∫ t

0
b(X(s))ds.(7.21)

Put

f(x) = Ex

{∫ ∞
0

e−αtg(X(t))dt
}
.(7.22)

Since |X(t)| ≤ x+ηt+ζt, estimates (7.3) and (7.4) show that Ex{g(X(t))} ≤ x+const,
whereas

f(x) ≤ K(1 + |x|).(7.23)

Therefore f ∈ Cg(Rn). Let D be the unit ball with the center at x and τ be the first
hitting time of ∂D by X(t). The strong Markov property of the process X(t) implies

f(x) = E

{∫ τ

0
e−ατg(X(t))dt+ e−ατf(X(τ))

}
.
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In view of Theorem 5.1 of [11, section 6], the function f given by the above formula is
the unique solution in D to the Dirichlet problem (7.20) with the boundary conditions
on ∂D given by the same function f . The latter shows that f given by (7.22) satisfies
(7.20) in the whole space Rn.

(2) Let D1, D2 be two bounded open sets in Rn such that D̄1 ⊂ D2. Then a priori
Schauder’s inner estimates (see [12, Chapter III]) yield

sup
x∈D1

|f(x)|+
∑
i

∣∣∣∣∂f(x)
∂xi

∣∣∣∣+
∑
i,j

∣∣∣∣ ∂2f(x)
∂xi∂xj

∣∣∣∣
 ≤ c sup

x∈D2

(
|f(x)|+ |g(x)|+

∑
i

∣∣∣∣∂g(x)
∂xi

∣∣∣∣
)
,

(7.24)
where c is a constant which depends only on C1, C2, β1, β2 in (2.2)–(2.4), on the upper
bound for |b|(·) in (2.1), on the diameter of the set D2, and on the distance between
D1 and D2. Let D1 be a ball of radius 1 with the center x and D2 be a ball of radius
2 with the center x. Then, using (7.23) and (7.24), we deduce the existence of a
constant K such that|f(x)|+

∑
i

∣∣∣∣∂f(x)
∂xi

∣∣∣∣+
∑
i,j

∣∣∣∣ ∂2f(x)
∂xi∂xj

∣∣∣∣
 ≤ K(1 + |x|).(7.25)

(3) To complete the proof we need only to show that ∂f
∂xi

is bounded in Rn.
Assume that σ(x) and b(x) are differentiable with

‖Dxσ(x)‖2/2 + ‖Dxb(x)‖ ≤ β2
1/2 + β2 ≡ β < α,(7.26)

where Dxb(x) is an n×n matrix with (Dxb(x))ij = ∂bi(x)
∂xj

and ‖Dxb(x)‖2 = tr(Dxb(x)
·Dxb(x)T ) and with Dxσ(x) being an n× n× n tensor with

Dxσ(x)ijk =
∂σ(x)ij
∂xk

and

‖Dxσ(x)‖2 =
∑
ijk

Dxσ(x)2
ijk.

Using the results of section 5.5 of [11], we can show that

∂f(x)
∂xi

= E

{∫ ∞
0

e−αt∇g(X(t))X(i)(t)dt
}
,(7.27)

where X(i)(t) is the solution to the following stochastic differential equation

X(i)(t) = ei +
∫ t

0
Dxσ(X(s))X(i)(s)dw(s) +

∫ t

0
Dxb(X(s))X(i)(s)ds,(7.28)

where ei ∈ Rn is a vector with (ei)j = δij and X(·) is the solution to (7.21). Taking
Z(t) = |X(i)(t)|2 and using Ito’s formula, we get

E{Z(t)} = 1 +
∫ t

0
E{2Z(s)Dxb(X(s)) +Dxσ(X(s))X(i)(s)(Dxσ(X(s))X(i)(s))T }dt

≤ 1 + sup
x∈R

(2‖Dxb(x)‖+ ‖Dxσ(x)‖2)
∫ ∞

0
e−αtE{Z(t)}dt

≤ 1 + 2β
∫ ∞

0
e−αtE{Z(t)}dt.(7.29)



LINEAR PROGRAMMING AND SINGULAR CONTROL 621

Application of Gronwall’s inequality to (7.29) yields

E{|X(i)(t)|2} ≡ E{Z(t)} ≤ e2βt.

Thus E{|X(i)(t)|} ≤ eβt. Substituting the latter inequality into (7.27), we get∣∣∣∣∂f(x)
∂xi

∣∣∣∣ ≤ sup
y∈R
|∇g(y)|

∫ ∞
0

e−αtE{|X(i)(t)|}dt ≤ sup
y∈R
||∇g(y)||/(α− β) ≤ K.(7.30)

In the case of nondifferentiable σ(·) and b(·), we can approximate both functions uni-
formly by differentiable functions σn(·) and bn(·) subject to (7.26). The correspond-
ing cost functions fn(·) given by (7.22) converge uniformly to f(·) and are subject to
(7.30). The latter implies that the limiting function f satisfies (7.30) as well.

PROPOSITION 7.4. Let v be given by (3.4). Then there exists a family of functions
hε(·) ∈ C(Rn), vε(·) ∈ C2

g (Rn), cε(·, ·) ∈ C(Rn ×B), ε > 0, such that

−Lvε ≤ hε,(7.31)

−(∇vε, ·) ≤ cε,(7.32)

hε ≤ (1 + δ(ε))h,(7.33)

where δ(ε)→ 0 as ε→ 0, and

lim
ε→0
‖c− cε‖ = 0,(7.34)

lim
ε→0
‖vε(x)− v(x)‖ = 0.(7.35)

Proof. (1) Assume that σ and b are continuously differentiable with bounded
derivatives, satisfying (7.26). Let (X(t), Px) be the same Markov process as in part 1
of the proof to Proposition 7.3. Let p(t, x, y), t > 0, x, y ∈ Rn be the transition density
of this Markov process. Put

vε(x) = Ex{v(X(ε)} ≡
∫
Rn
p(ε, x, y)v(y)dy,(7.36)

hε(x) = Ex{h(X(ε)} ≡
∫
Rn
p(ε, x, y)h(y)dy.(7.37)

The weak dynamic programming principle (see [7]) implies that for any s > 0

v(y) ≤ Ey
{∫ s

0
e−αth(X(t))dt

}
+ Ey{e−αsv(X(s))}

≡
∫ s

0
e−αtEy{h(X(t))}dt + e−αsEy{v(X(s))}.

Multiplying both sides of the above inequality by p(ε, x, y) and integrating we get∫
Rn
p(ε, x, y)v(y)dy

≤
∫ s

0
e−αt

(∫
Rn
p(ε, x, y)Ey{h(X(t))}dy

)
dt+ e−αs

∫
Rn
p(ε, x, y)Ey{v(X(t))}dy

≡
∫ s

0
e−αtEx{h(X(t+ ε))}dt+ e−αsEx{v(X(t+ ε))}

≡
∫ s

0
e−αtEx{hε(X(t))}dt+ e−αsEx{vε(X(s))}.(7.38)
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The last two equalities in (7.38) are due to (7.36), (7.37) and the Chapman–Kolmo-
gorov equation for the transition density p. It is known that the transition density p is
the fundamental solution to the parabolic equation with the operator −∂/∂t+(L+α)
and is twice continuously differentiable in x (see [11], [10], [4]). Therefore vε is also
twice continuously differentiable. Subtracting vε(x) from both sides of inequality
(7.38), we can apply Ito’s formula for e−αsvε(X(s)) and use (7.21) to get

Ex

{∫ s

0
e−αt[Lvε(X(t)) + hε(X(t))]dt

}
≥ 0.(7.39)

Dividing both parts of (7.39) by s and letting s→ 0, we use standard limiting argu-
ments to conclude (7.31).

(2) Extend function c(x, y) to Rn × Rn in a homogeneous way, putting

c(x, y) = c(x, y/|y|)|y|, x, y ∈ Rn.

One can see that the thus extended function c(·, ·) remains Lipschitz.
Starting with the initial position x ∈ Rn and considering controls ν such that

ν(0) = εy, y ∈ Rn, we get

v(x) ≤ v(x+ εy) +
∫ ε

0
c(x+ zy, y)dz.

Subtracting v(x) from both sides and dividing by ε, we get

lim sup
ε→0

−(v(x+ εy)− v(x))/ε ≤ c(x, y).(7.40)

Inequalities (7.40) and (2.7) show that v is Lipschitz. Therefore ∇v(·) exists almost
everywhere in Rn and for almost all x ∈ Rn for all y ∈ Rn:

−(∇v(x), y) ≤ c(x, y).(7.41)

Employing the same arguments as in section 5.5 of [11], we can show

(∇vε(x), y) = Ex{(∇v(X(ε)), Y y(ε))},(7.42)

where Y y(ε) = (Y y1 (ε), . . . , Y yn (ε)), Y yi (ε) = (X(i)(ε), y), with the process X(i)(·) satis-
fying the following stochastic differential equation (below δij denotes the Kronecker’s
delta)

X
(i)
j (t) = δij +

∫ t

0

n∑
k=1

n∑
l=1

∂σjk(X(s))
∂xl

X
(i)
l dwk(s)+

∫ t

0

n∑
l=1

∂b(X(s))
∂xl

X
(i)
l (s)ds.

(7.43)
Put

cε(x, y) = Ex{c(X(ε), Y y(ε))}.

Inequality (7.41) yields

(∇vε(x), y) + cε(x, y) = Ex{(∇v(X(ε)), Y y(ε)) + c(X(ε), Y y(ε))} ≥ 0,

whereas (7.32) follows.
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(3) Inequality (7.41) implies v(x) ≤ K(1 + |x|). Repeating the arguments of part
1 of the proof to Proposition 7.3, we get vε ≤ K(1 + |x|). Since vε(x) = f(x, ε), where
f(x, t) is the solution to the parabolic equation

−∂f(x, t)
∂t

+ (L+ α)f(x, t) = 0, x ∈ Rn, 0 ≤ t ≤ ε,

f(x, 0) = v(x),

(see [10], [11]), we can derive that vε is twice continuously differentiable (see [12]).
Applying Schauder-type a priori estimates for the solution of the parabolic equations
(see [12, section III]), we conclude that vε, its first and second derivatives, belong to
Cg(Rn). To prove vε ∈ C2

g (Rn), we need to show boundedness of ∇vε in Rn.
Similar to the last section of the previous proposition, we obtain

E{|Y y(ε)|} ≤ eβε,(7.44)

where β is the same as in (7.26). Therefore,

|∇vε(x)| ≤ λ2e
βε,

thanks to (2.7), (7.41), (7.42), and (7.44).
(4) It is shown in section I.6 of [12] that there exist constants k > 0 and k1 > 0

such that

p(t, x, y) ≤ k1t
−n/2 exp(−k(x− y)2/t).(7.45)

In [14] it was shown that every function h subject to (2.6) satisfies

h(y)/h(x) ≤ exp(K|x− y|).(7.46)

Combining (7.45) and (7.46), we see

hε(x)/h(x) =
∫
Rn
p(ε, x, y)h(y)/h(x)dy

≤
∫
|z|≤ε

p(ε, x, x+ z) exp(Kz)dz +
∫
|z|>ε

k1ε
−n/2 exp(−kz2/ε) exp(z)dz

≤ exp(Kε) +
∫
|z|>ε

k1ε
−n/2 exp(−kz2/ε) exp(z)dz ≡ (1 + δ(ε)).(7.47)

By inspection, δ(ε) given in (7.47) converges to 0 as ε→ 0. Therefore, (7.33) follows.
Using Lipschitz continuity of v with a constant λ2 (see (2.7) and (7.40)) and

(7.45), we can write

vε(x)− v(x) = Ex{v(X(ε))− v(x)} ≤ λ2Ex{|X(ε)− x|}.

On the other hand

Ex{|X(ε)− x|} =
∫
Rn
p(ε, x, y)|y − x|dy =

(∫
|x−y|≤ε

. . .+
∫
|x−y|>ε

. . .

)

≤ ε+
∫
|z|>ε

k1ε
−n/2 exp(−kz2/ε)|z|dz = δ1(ε)→ 0(7.48)

as ε→ 0, whereas (7.35) follows.
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From (7.43) it follows that Y y(0) = y. Applying the Lipschitz property of the
function c, we get

|cε(x, y)− c(x, y)| = Ex{|c(X(ε), Y y(ε))− c(x, Y y(0))|}

≤ KEx{|X(ε)− x||Y y(ε)− Y y(0)|}.
(7.49)

From (7.43), (7.44), and (7.48), we imply that the right-hand side of (7.49) converges
to 0 as ε→ 0. The latter implies (7.34).
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THE DIFFERENTIABILITY OF THE DRAG WITH RESPECT
TO THE VARIATIONS OF A LIPSCHITZ DOMAIN

IN A NAVIER–STOKES FLOW∗
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Abstract. This paper is concerned with the computation of the drag T associated with a body
traveling at uniform velocity in a fluid governed by the stationary Navier–Stokes equations. It is
assumed that the fluid fills a domain of the form Ω+u, where Ω ⊂ R3 is a reference domain and u is a
displacement field. We assume only that Ω is a Lipschitz domain and that u is Lipschitz-continuous.
We prove that, at least when the velocity of the body is sufficiently small, u 7→ T (Ω + u) is a C∞

mapping (in a ball centered at 0). We also compute the derivative at 0.

Key words. domain optimization, hydrodynamic drag, Navier–Stokes equations, Lipschitz
domains, optimal control

AMS subject classification. 49J20

PII. S0363012994278213

1. Introduction. Formulation of the problem. In this paper, we study the be-
havior of the drag T associated with a body traveling at uniform velocity γ in a
viscous incompressible fluid. It is assumed that the flow of this fluid is governed by
the stationary Navier–Stokes equations. We are interested in viewing T as a function
of the shape of the body.

More precisely, let B be a reference shape for the body and Ω be the corres-
ponding fluid domain. The body variations are described by a field u, and we search
for a formula of the kind

T (Ω + u) = T (Ω) + T ′(Ω;u) + O(u),

where the modified fluid domain is

Ω + u = {x ∈ Rd; x = (I + u)(ξ), ξ ∈ Ω}.

We are thus led to an analysis of the differentiability of the function u 7→ T (Ω + u).
The main results. We prove that when Ω is a Lipschitz domain, u is Lipschitz-

continuous, and the velocity γ is sufficiently small, the function u 7→ T (Ω + u) is
differentiable. More precisely (see Theorem 4), we show that it is a C∞ mapping in a
small ball W whose elements are Lipschitz vector fields. We also compute explicitly
T ′(Ω;u), i.e., the derivative at 0 in the direction u.

In the similar but more simple case of an elliptic equation, differentiability results
have been established by F. Murat and J. Simon in [9], [10] without any regularity
hypothesis on Ω. The proof relies on the change of variables x = (I+u)(ξ), by means
of which one is led to a fixed domain. This method has been used for many equations
by several authors.
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Some difficulties related to incompressibility. The general method in [9], [10]
cannot be directly applied to the Stokes and Navier–Stokes cases. This is due to the
incompressibility condition

∇ . y(u) = 0 in Ω + u,

which has to be satisfied by the velocity field y(u). This difficulty was surmounted
when Ω is a W 2,∞ domain by J. Simon [17] for Stokes flows and by J. A. Bello,
E. Fernández-Cara, and J. Simon [1], [2] for Navier–Stokes flows. In [17], the author
uses a variant of the implicit function theorem; in [1], [2], one introduces a family of
isomorphisms which allow us to rewrite the equation ∇ . y(u) = 0 appropriately. In
this paper, the incompressibility equation is rewritten explicitly.

We will assume that Ω is a Lipschitz domain and that u is Lipschitz-continuous.
This includes many interesting situations in which ∂Ω and/or ∂(Ω + u) possess “cor-
ner” points.

Recall that formal computations of the derivative were previously carried out by
O. Pironneau [12] (see also [13]) using “normal” variations.

Some difficulties related to weak regularity. The “natural” expression of the
derivative T ′(Ω;u) (that is, the right-hand side of (15)) is not defined a priori since
y is only H1(Ω)d. Nevertheless, we will give a meaning for this expression using the
technical result (17).

2. The definition of the drag. Let D and B be bounded open connected sets
in Rd, d = 2 or 3, with B ⊂⊂ D. Let us set Ω = D\B. In the following discussion, it
will be assumed that

(1) Ω is a Lipschitz domain;

that is to say, its boundary ∂Ω is locally the graph of a Lipschitz-continuous func-
tion and Ω is the corresponding epigraph. (This is explained more in detail in the
appendix.)

Let γ ∈ Rd be a given vector. We consider the stationary Navier–Stokes problem
[4]

(2)


y − g ∈ H1

0 (Ω)d,

p ∈ L2(Ω),
∫

Ω p = 0,
− ν∆y + (y . ∇) y +∇p = 0,
∇ . y = 0.

Here, g ∈ H1(Rd)d and satisfies

(3) ∇ . g = 0, g = γ in a neighborhood of ∂D, g = 0 in a neighborhood of B.

When B is small with respect to D, any solution (y, p) to (2) provides good
approximations to the velocity field and the pressure distribution of a viscous incom-
pressible fluid in Ω having constant velocity far from B. It can be imagined that we
have chosen spatial coordinates fixed with respect to B, D is an approximation to
Rd, the fluid is at rest at infinity, and B is the shape of a body traveling at constant
velocity −γ.

The requirement
∫

Ω p = 0 provides uniqueness for the pressure p that, otherwise,
would be defined up to an additive constant.
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If γ is sufficiently small, problem (2) possesses exactly one solution, which is
“small” and does not depend on the choice of g. More precisely, Theorem 2.1 in [9]
gives the following lemma.

LEMMA 1. There exists a constant α > 0 such that, if |γ| < αν, then (2) possesses
exactly one solution, (y, p) ∈ H1(Ω)d × L2(Ω). This solution does not depend on the
choice of the function g satisfying (3). Furthermore, for each ε > 0, the constant α
can be chosen in such a way that

‖y‖H1(Ω)d ≤ εν.

If O ⊂⊂ D is given, one can also choose α = α(ε,O, D) not depending on B, provided
B ⊂ O. Finally, if Ω is a W 2,∞ domain, then (y, p) ∈ H2(Ω)d ×H1(Ω).

Thus, at least when γ is small, one can associate with Ω a drag

(4) T (Ω) =
ν

2

∫
Ω
σ(y)2,

where σ(y)2 = σ(y) . σ(y) ≡
∑
ij(σij(y))2.

Remark. If Ω is regular enough, T (Ω) coincides with the usual hydrodynamical
drag, which is given as follows (cf. [14]):

T (Ω) = −γ .
∫
∂B

(− p Id+ ν σ(y)) . nds.

Indeed, using the boundary condition, we obtain

T (Ω) = −
∫
∂Ω

(p (y − γ)− ν σ(y) . (y − γ)) . nds.

From Gauss formula and incompressibility, this gives

T (Ω) = −
∫

Ω
∇ . (p (y − γ)− ν σ(y) . (y − γ))

=
∫

Ω
((ν∆y −∇p) . (y − γ) + ν σ(y) . ∇y).

Note that, again using incompressibility,

(ν∆y −∇p) . (y − γ) = ((y . ∇) y) . (y − γ) = ∇ . (|y − γ|2 y).

Therefore, ∫
Ω

(ν∆y −∇p) . (y − γ) =
∫
∂Ω
|y − γ|2 y . nds = 0,

and, finally, since σ(y) . ∇y = 1
2 σ(y)2, we have T (Ω) = T (Ω).

3. The domain variations. We will choose fields u ∈W 1,∞(Rd,Rd) such that
u = 0 on ∂D. This condition expresses the fact that the outer boundary limiting the
fluid is fixed.

We will also assume ‖u‖Lip < c(Ω), with c(Ω) being small enough to ensure that
Ω + u is Lipschitzian and also that B + u is included in a fixed open set O satisfying

B ⊂⊂ O ⊂⊂ D.
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Here, we have denoted by ‖u‖Lip the best Lipschitz constant for u. More precisely,
we have the following obvious result (see [8] for a proof).

LEMMA 2. Assume that O is as before. There exists c(Ω), 0 < c(Ω) < 1, such
that

(5) B + u ⊂ O

for all u ∈W 1,∞(Rd,Rd) satisfying u = 0 on ∂D and ‖u‖Lip ≤ c(Ω).
We will also use the following result, whose proof is given in the appendix.
LEMMA 3. There exists c(Ω), 0 < c(Ω) < 1, such that

(6) Ω + u is a bounded Lipschitz domain in Rd

for all u ∈W 1,∞(Rd,Rd) satisfying ‖u‖W 1,∞(Rd,Rd) ≤ c(Ω).
Remark. This lemma holds for each bounded Lipschitz domain Ω ⊂ Rd.
For the subsequent discussion, we introduce

W = {u ∈W 1,∞(Rd,Rd); ‖u‖W 1,∞(Rd,Rd) < c(Ω), u = 0 on ∂D},

with c(Ω) being as in Lemmas 2 and 3. Observing that

‖u‖Lip ≤ ‖u‖W 1,∞(Rd,Rd)

we see that (5) and (6) are satisfied for all u ∈ W.
It will also be assumed in the sequel that

(7) |γ| < α(ε,O, D) ν,

where α is furnished by Lemma 1. The precise value of ε will be fixed below. Now,
we choose g satisfying (3) and

g ≡ 0 in a neighborhood of O.

(Such a choice is always possible; for instance, one can take g = a∧∇ψ, where a ∈ R3,
a . γ = 0, |a| = 1, ψ ∈ C∞(R3), ψ = 0 in O, ψ(x) = (g ∧ a) . x in a neighborhood
of ∂D.) If u ∈ W, one has g = 0 in a neighborhood of ∂B + u. The Navier–Stokes
problem in Ω + u can be written as follows:

(8)



y(u)− g ∈ H1
0 (Ω + u)d,

p(u) ∈ L2(Ω + u),
∫

Ω
p(u) ◦ (I + u) = 0,

− ν∆y(u) + (y(u) . ∇) y(u) +∇p(u) = 0,
∇ . y(u) = 0.

From Lemma 1, we know that (8) possesses exactly one solution (y(u), p(u)).
Accordingly, the drag associated with B + u can be defined and is given by

(9) T (Ω + u) =
ν

2

∫
Ω+u

σ(y(u))2
.

Remark. In principle, it seems more natural to normalize p(u) by imposing that∫
Ω+u p(u) = 0. However, it will be seen below that the choice that we have made is

more useful when one considers different fields u ∈ W. (Indeed, it yields
∫

Ω P (u) = 0
for the transported pressure P (u) = p(u) ◦ (I + u); see (23).)
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4. A differentiability result for the drag. Our main interest in this section
to describe the variations of T (Ω +u) with respect to u. As already mentioned in the
introduction, we search for a formula

(10) T (Ω + u) = T (Ω) + T ′(Ω;u) + O(u),

which must hold for all u ∈ W, with T ′(Ω; . ) being a linear mapping and

O(u)/‖u‖W 1,∞(Rd,Rd) → 0 as ‖u‖W 1,∞(Rd,Rd) → 0.

That such a formula can be obtained stems from the next result, which is the
most important in this article.

THEOREM 4. There exists α > 0 such that if |γ| < αν, then u 7→ T (Ω + u) is a
C∞ mapping in the set W.

In addition, the first derivative at 0 can be obtained from any of the expressions
(11), (15), or (18).

THEOREM 5. Assume |γ| < αν.
(i) For all u ∈W 1,∞(Rd,Rd) such that u|∂D = 0, one has

(11)

T ′(Ω;u) = ν

∫
Ω

∑
ijσij(y)

(
σij(ẏ(u))−

∑
k (∂iuk ∂kyj + ∂juk ∂kyi) +

1
2
σij(y)∇ . u

)
with (ẏ(u), ṗ(u)) being the unique solution to the linear problem

(12)



ẏ(u) ∈ H1
0 (Ω)d,

ṗ(u) ∈ L2(Ω),
∫

Ω
ṗ(u) = 0,

− ν∆ẏ(u) + (ẏ(u) . ∇) y + (y . ∇) ẏ(u) +∇ṗ(u) = G(u, y, p),
∇ . ẏ(u) =

∑
ij∂iuj ∂jyi.

Here, y = y(0), p = p(0), and Gk(u, y, p) ∈ H−1(Ω) is given as follows for 1 ≤ k ≤ d:

(13)

Gk(u, y, p) =− ν
∑
ij (∂j(∂iuj ∂iyk) + ∂j(∂jui ∂iyk)) + ν

∑
j ∂j((∇ . u) ∂jyk)

+
∑
ij yi ∂iuj ∂jyk − (y . ∇) yk∇ . u

+
∑
j ∂j(∂kuj p)− ∂k((∇ . u) p).

Moreover, y ∈ C∞(Ω)d, p ∈ C∞(Ω), and, consequently,
(14)
G(u, y, p) = −ν∆((u . ∇) y) + (((u . ∇) y) . ∇) y + (y . ∇)((u . ∇) y) +∇(u . ∇p).

(ii) One also has

(15) T ′(Ω;u) = ν

∫
Ω

∑
ij

(
σij(y)σij(y′(u)) +

1
2
∇ .

(
σij(y)2u

))
,

with (y′(u), p′(u)) being the unique solution to

(16)



y′(u) + (u . ∇) y ∈ H1
0 (Ω)d,

(p′(u) + u . ∇p) ∈ L2(Ω),
∫

Ω
(p′(u) + u . ∇p) = 0,

− ν∆y′(u) + (y′(u) . ∇) y + (y . ∇) y′(u) +∇p′(u) = 0,

∇ . y′(u) = 0.
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Furthermore, y′(u) ∈ H1
loc(Ω)d and the sum in (15) satisfies

(17)
∑
ij

(
σij(y)σij(y′(u)) +

1
2
∇ .

(
σij(y)2u

))
∈ L1(Ω).

(iii) If B and D are W 2,∞ domains and u ∈W 2,∞(Rd,Rd), then (y, p) ∈ H2(Ω)d×
H1(Ω) and

(18) T ′(Ω;u) =
∫
∂B

u . n
(
∂w

∂n
− ∂y

∂n

)
.
∂y

∂n
ds,

with (w, q) being the unique solution to the “adjoint” problem

(19)



w ∈ H1
0 (Ω)d ∩H2(Ω)d,

q ∈ H1(Ω),
∫

Ω
q = 0,

− ν∆wi +
∑
j ∂iyj wj −

∑
j yj ∂jwi + ∂iq = −2ν∆yi , 1 ≤ i ≤ d,

∇ . w = 0.

Remark. In order to compute the derivative of the drag in several directions
using (15), one has to solve, for each direction u, the corresponding partial differential
problem (16). It is much more interesting to use the identity (18) because it suffices
to solve (2) and (19) only once; then, for each u, one has only to compute an integral
on ∂B.

Remark. One can also obtain expressions for the derivatives of higher orders.
This must be made with caution; indeed, T ′′(Ω; . , . ) (i.e., the second derivative at
0 of u 7→ T (Ω + u)) does not coincide with (T ′(Ω; . )′; . ) (i.e., the derivative at 0
of the mapping u 7→ T ′(Ω + u; . )). In fact, these two quantities are related by the
following formula (see [16]):

T ′′(Ω;u, v) = (T ′(Ω;u)′; v)− T ′(Ω; (u . ∇) v).

5. Differentiability results for the velocity and the pressure. In order
to prove Theorem 4, we will first show that u 7→ y(u) is, in a certain sense, a “dif-
ferentiable” mapping. An important difficulty arises here, because y(u) is a function
defined only for x ∈ Ω + u, a domain which depends on u. This is why we introduce
a suitable change of variables and we rewrite the equations satisfied by y(u) and p(u)
in the fixed domain Ω. Then, we will have to differentiate the transported variable
Y (u) = y(u) ◦ (I + u), which is defined in Ω.

In what follows, y and p stand for y(0) and p(0), respectively. We will check the
following:

ẏ(u) = Y ′(0) . u ≡ lim
t→0

y(tu) ◦ (I + tu)− y
t

.

This is the “total derivative” of y(u) at 0, used in (11) to give an expression of T ′(Ω;u).
We will also have to use the “local derivative.” In fact, we will check that

y′(u) =
d

dv
y(v)|ω(0) . u ≡ lim

t→0

y(tu)|ω − y|ω
t

in ω.
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This defines y′(u) in each open set ω ⊂⊂ Ω and, consequently, in the whole domain
Ω. The previous local derivative was used in (15) to give an expression of T ′(Ω;u).
More precisely, the following result holds.

THEOREM 6. There exists α > 0 such that if |γ| < αν, then
(i) The mapping u 7→ (y(u), p(u))◦ (I+u) is C∞ in W, with values in the product

space H1(Ω)d × L2(Ω). Its derivative at 0 in the direction u is the unique solution
(ẏ(u), ṗ(u)) to (12).

(ii) For all ω ⊂⊂ Ω, the mapping u 7→ y(u)|ω is differentiable in W, with values
in L2(ω)d. Its derivative at 0 in the direction u is y′(u)|ω, where y′(u) is uniquely
defined by (16). One also has

(20) y′(u) = ẏ(u)− (u . ∇) y.

Remark. From general results on local differentiability (see Lemma 2.1 in [15]),
(ii) is implied by (i).

Theorems 4, 5, and 6 will be demonstrated in several steps:
— differentiability at 0 of the velocity, the pressure (section 5), and the drag

(section 6);
— differentiability at any point in W (section 7); higher-order differentiability

(section 8).

6. Proof of differentiability at 0 of the velocity and the pressure. The
goal of this section is to prove the following result.

LEMMA 7. There exists α > 0 such that, if |γ| < αν, then the mapping u 7→
(y(u), p(u)) ◦ (I + u), which is defined in W and takes values in H1(Ω)d × L2(Ω), is
differentiable at 0. Its derivative, denoted by (ẏ(u), ṗ(u)), is uniquely determined by
(12).

The proof is based on the implicit function theorem. We will show that this lemma
holds with α being of the form α(ε,O, D) (as in Lemma 1) for an appropriate constant
ε. First, we will have to rewrite the equations (8) in the fixed domain Ω. For this, we
have to “transport” all the terms, some of which belong to H−1(Ω + u). But it is not
clear for a distribution f ∈ H−1(Ω + u) how f ◦ (I + u) can be defined. Contrarily,
following [10, Definition 4.1], one can give a definition of (f ◦ (I + u)) Jac(I + u) .

DEFINITION 8. Assume u ∈ W and f ∈ H−1(Ω + u). Then

(f ◦ (I + u)) Jac(I + u) ∈ H−1(Ω)

is defined as follows: for any ϕ ∈ H1
0 (Ω), one has

(21) 〈(f ◦ (I +u)) Jac(I +u), ϕ〉H−1(Ω)×H1
0 (Ω) = 〈f, ϕ ◦ (I +u)−1〉H−1(Ω+u)×H1

0 (Ω+u).

Remark. Rigorously speaking, (f ◦ (I + u)) Jac(I + u) is not a good notation,
because f ◦ (I + u) is not defined. However, it will be used in subsequent discussion
for convenience.

Note that (21) makes sense; indeed, ϕ◦(I+u)−1 ∈ H1
0 (Ω+u) (see [10, Lemma 4.1]).

It does not change the usual definition of (f ◦(I+u)) Jac(I+u) when f ∈ L1
loc(Ω+u).

In order to rewrite (8), we denote by D(u) the operator whose components Di(u)
are given as follows:

(22) Di(u) =
∑
jMij(u) ∂j , M(u) = t [∂j(I + u)i]

−1
.

Here, t [∂j(I + u)i]
−1 is the transpose of the inverse of the matrix of components

∂j(I + u)i. We will use the following three lemmas (see [9] and [10]).
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LEMMA 9. Assume u ∈ W and f ∈ H1(Ω + u). Then

(∂if) ◦ (I + u) =
∑
jMij(u) ∂j(f ◦ (I + u)) = Di(u)(f ◦ (I + u)).

LEMMA 10. If u ∈ W and f ∈ L2(Ω + u), then

((∂if) ◦ (I + u)) Jac(I + u) =
∑
j ∂j(Mij(u) (f ◦ (I + u)) Jac(I + u)).

LEMMA 11. Assume u ∈ W and f ∈ H1(Ω + u). Then

((∆f) ◦ (I + u)) Jac(I + u) =
∑

ij ∂j(Mij(u) Jac(I + u)Di(u)(f ◦ (I + u))).

The Navier–Stokes problem (8) can now be written as follows:

(23)



Y (u)− g ∈ H1
0 (Ω)d,

P (u) ∈ L2(Ω),
∫

Ω
P (u) = 0,

− ν
∑
ij ∂j(Mij(u) Jac(I + u)Di(u)Yk(u))

+ (Y (u) . D(u))Yk(u) Jac(I + u)
+
∑
j ∂j(Mkj(u)P (u) Jac(I + u)) = 0, 1 ≤ k ≤ d,

D(u) . Y (u) Jac(I + u) = 0.

Here, we have set Y (u) = y(u) ◦ (I + u) and P (u) = p(u) ◦ (I + u).
We will also introduce in (23) the new variable X(u) = Y (u) − g. This leads to

the following system, equivalent to (23) (which is, in turn, equivalent to (8)):

(24)



X(u) ∈ H1
0 (Ω)d,

P (u) ∈ L2(Ω),
∫

Ω
P (u) = 0,

− ν
∑
ij ∂j(Mij(u) Jac(I + u)Di(u)(X(u) + g)k)

+ ((X(u) + g) . D(u)) (X(u) + g)k Jac(I + u)
+
∑
j ∂j(Mkj(u)P (u) Jac(I + u)) = 0, 1 ≤ k ≤ d,

D(u) . (X(u) + g) Jac(I + u) = 0.

This equation can be written

(25) H(u;X(u), P (u)) = 0,

where the function H is defined, from W ×H1
0 (Ω)d × L2

0(Ω) into H−1(Ω)d × L2
0(Ω),

by

(26)



H(u;χ, π) = (F (u;χ, π), R(u;χ, π)), F = (F1, . . . , Fd),

Fk(u;χ, π) = −ν
∑
ij ∂j(Mij(u) Jac(I + u)Di(u)(χ+ g)k)

+ ((χ+ g) . D(u))(χ+ g)k Jac(I + u)
+
∑
j ∂j(Mkj(u)π Jac(I + u)), 1 ≤ k ≤ d,

R(u;χ, π) = D(u) . (χ+ g) Jac(I + u).
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The fact that R(u;χ, π) ∈ L2
0(Ω) is crucial. This is true because∫

Ω
(D(u) . Y (u)) Jac(I + u) =

∫
Ω+u

(D(u) . Y (u)) ◦ (I + u)−1

=
∫

Ω+u
∇ . (Y (u) ◦ (I + u)−1)

= 0.

Now, we check that the assumptions of the implicit function theorem are satisfied.
First, H is C1 in a neighborhood of (0;X,P ), where we have set X = X(0) = y − g,
P = P (0) = p. Indeed, the coefficients in D(u) and M(u) are C1 since, according
to the results in [10], the mapping u 7→ Mij(u) is C1 in a neighborhood of 0 in
W 1,∞(Rd,Rd), with values in L∞(Rd,Rd2

).
On the other hand, let us see that the differential operator L = D(χ,π)H(0;X,P )

is an isomorphism from H1
0 (Ω)d × L2

0(Ω) onto H−1(Ω)d × L2
0(Ω). For each (χ, π) ∈

H1
0 (Ω)d × L2

0(Ω), one has

(27) L(χ, π) = (− ν∆χ+ (χ . ∇) y + (y . ∇)χ+∇π , ∇ . χ).

The operator L is linear and bounded from H1
0 (Ω)d × L2

0(Ω) into H−1(Ω)d × L2
0(Ω).

Hence, we have to check that, for each f ∈ H−1(Ω)d and φ ∈ L2
0(Ω), there exists a

unique solution (χ, π) ∈ H1
0 (Ω)d × L2

0(Ω) to the system

(28)

{
− ν∆χ+ (χ . ∇) y + (y . ∇)χ+∇π = f,

∇ . χ = φ

and, also, that this solution depends continuously on the data. Since Ω is a Lipschitz
domain, Corollary 2.4 in [6] asserts
(29)

∀φ ∈ L2(Ω) such that
∫

Ω
φ = 0, there exists ψ ∈ H1

0 (Ω)d such that ∇ . ψ = φ.

Setting Φ = χ− ψ, system (28) reduces to{
Φ ∈ V, π ∈ L2

0(Ω),
− ν∆Φ + (Φ . ∇) y + (y . ∇) Φ +∇π = F,

where V = {v ∈ H1
0 (Ω)d; ∇ . v = 0} and F = f + ν∆ψ − (ψ . ∇)y − (y . ∇)ψ.

This equation is elliptic with respect to Φ and possesses a unique solution depending
continuously on the data if, for some appropriate r = r(O, D) > 0, one has

(30) ‖y‖H1
0 (Ω)d < r ν.

Hence, if we choose ε < r, α = α(ε,O, D) as in Lemma 1 and

|γ| < αν,

this condition holds and L is an isomorphism.
This allows us to apply the implicit function theorem to (25). We deduce that

the mapping u 7→ (X(u), P (u)), which takes values in the space H1
0 (Ω)d × L2

0(Ω), is
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differentiable at 0. Since y(u) ◦ (I+u) = X(u) + g and p(u) ◦ (I+u) = P (u), the first
part of Lemma 7 is proven.

Finally, let us deduce the equations satisfied by (ẏ(u), ṗ(u)). In accordance with
the implicit function theorem,

L(ẏ(u), ṗ(u)) = −DvH(0;X,P ) . u

for all admissible u. Taking into account (26) and also the identities

(31) M ′ik(0) . u = −∂iuk and
d

dv
Jac(I + v)(0) . u = ∇ . u

(see [10]), we find that (ẏ(u), ṗ(u)) is a solution to (12). But this problem possesses
exactly one solution, since L is an isomorphism. Consequently, Lemma 7 is proven.

Remark. In order to solve (28), we have had to assume that Ω is a Lipschitz
domain. The same requirement is found when one writes (28) as a mixed problem and
one tries to apply general results concerning mixed variational formulations.

7. Proof of differentiability at 0 of the drag. The goal of this section is to
prove Theorem 5.

Proof of part (i). By definition, one has

T (Ω + u) =
ν

2

∫
Ω+u

∑
ij(∂iyj(u) + ∂jyi(u))2

=
ν

2

∫
Ω

∑
ij(
∑
k(Mik(u) ∂kYj(u) +Mjk(u) ∂kYi(u)))2 Jac(I + u).

We will deduce the differentiability of the mapping u 7→ T (Ω + u) from the following
result (Theorem 4.1 in [10]).

LEMMA 12. Assume that z(u) is well defined for all u ∈ W and, also, that

(32) u 7→ z(u) ◦ (I + u) is differentiable at 0, with values in L1(Ω).

Then the mapping u 7→ S(Ω + u) =
∫

Ω (z(u) ◦ (I + u)) Jac(I + u) is also differentiable
at 0. Its derivative at 0 in the direction u is given by

S′(Ω;u) =
∫

Ω
(ż(u) + z(0)∇ . u).

We will apply this lemma with

z(u) ◦ (I + u) =
∑

ij(
∑
k(Mik(u) ∂kYj(u) +Mjk(u) ∂kYi(u)))2

.

Obviously, S(Ω + u) ≡ T (Ω + u) in this case; also, that (32) holds is deduced from
the differentiability at 0 of the H1

0 (Ω)d-valued mapping u 7→ Y (u).
Let us compute T ′(Ω;u). From (31) and the fact that M(0) = Id, one has

ż(u) = 2
∑
ij (∂iyj + ∂jyi)(∂iẏj(u) + ∂j ẏi(u)−

∑
k ∂iuk ∂kyj −

∑
k ∂juk ∂kyi)

= 2
∑
ij σij(y)(σij(ẏ(u))−

∑
k ∂iuk ∂kyj −

∑
k ∂juk ∂kyi).

Since z(0) =
∑
ijσij(y)2, we have

T ′(Ω;u) = ν

∫
Ω

∑
ij σij(y)

(
σij(ẏ(u))−

∑
k (∂iuk ∂kyj + ∂juk ∂kyi) +

1
2
σij(y)∇ . u

)
.
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This proves (11). The regularity results are y ∈ C∞(Ω)d and p ∈ C∞(Ω). (This is
well known; for instance, see [7].) The identity (14) is then an easy consequence of
(13).

Proof of part (ii). Let us set

y′(u) = ẏ(u)− (u . ∇) y, p′(u) = ṗ(u)− u . ∇p.

Using (14) we see that (12) and (16) are equivalent. On the other hand, these defini-
tions provide the following identity:

∑
ij

(
σij(y)σij(y′(u)) +

1
2
∇ . (σij(y)2u)

)
=
∑
ijσij(y)

(
σij(ẏ(u))−

∑
k (∂iuk ∂kyj + ∂juk ∂kyi) +

1
2
σij(y)∇ . u

)
.

Hence, (11) implies (17) and (15).
Proof of part (iii). Let us now suppose that Ω is a W 2,∞ domain and u ∈

W 2,∞(Rd,Rd). According to Lemma 1, one has y ∈ H2(Ω)d and p ∈ H1(Ω). Conse-
quently, one obtains from (15)

(33) T ′(Ω;u) = ν

∫
Ω

∑
ij σij(y)σij(y′(u)) +

ν

2

∫
∂Ω

∑
ij σij(y)2 u . nds.

Since ẏ(u) = 0 and y ≡ const. on ∂Ω, y′(u) = −u . n ∂y
∂n on ∂Ω. Therefore,

ν

∫
Ω

∑
ij σij(y)σij(y′(u))

= −2ν
∫

Ω
∆y . y′(u)− 2ν

∑
ij

∫
∂Ω
u . n (∂iyj + ∂jyi)

∂yi
∂n

nj ds.

In addition,
∑

i ∂iyi = 0 imply
∑
ij (∂iyj + ∂jyi) ∂yi∂n nj = | ∂y∂n |2, whence

T ′(Ω;u) = −2ν
∫

Ω
∆y . y′(u)− ν

∫
∂Ω

∣∣∣∣∂y∂n
∣∣∣∣2 u . nds.

If w and q are given by (19), after some manipulation, one obtains

T ′(Ω;u) =
∫

Ω

∑
i(−ν∆wi y′i(u) +

∑
j(∂iyj wj − yj∂jwi)y′i(u) + ∂iq y

′
i(u))

− ν
∫
∂Ω

∣∣∣∣∂y∂n
∣∣∣∣2 u . nds

= 〈−ν∆y′(u) + (y′(u) . ∇) y + (y . ∇) y′(u) +∇p′(u), w〉H−1(Ω)d×H1
0 (Ω)d

+ ν

∫
∂Ω
u . n

(
∂w

∂n
− ∂y

∂n

)
.
∂y

∂n
ds.

Using (16) satisfied by (y′(u), p′(u)), one sees that the duality product on the right-
hand side cancels. This proves (18), since u = 0 on ∂D.
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8. Proof of differentiability at any point in W of the velocity, the pres-
sure, and the drag. In this section, we prove the following result.

LEMMA 13. The mapping u 7→ (y(u), p(u)) ◦ (I + u), which takes values in
H1(Ω)d × L2(Ω), is differentiable at any point u0 ∈ W. The mapping u 7→ T (Ω + u)
is also differentiable at any u0 ∈ W.

Proof. Let u0 ∈ W be given. We have

(34) Ω + (u0 + v) = (Ω + u0) + v ◦ (I + u0)−1

for v ∈ W small enough in order to have u0 + v ∈ W. According to the results in
section 6, the mapping w 7→ T ((Ω + u0) + w) is differentiable at 0. The mapping
v 7→ v ◦ (I+u0)−1 is linear and bounded (therefore differentiable) from W 1,∞(Rd,Rd)
into itself. Consequently,

v 7→ T ((Ω + u0) + v ◦ (I + u0)−1) is differentiable at 0;

i.e., u 7→ T (Ω + u) is differentiable at u0.
Now we will apply the previous results to some new reference domains different

from Ω. So we introduce the more explicit notation (y(Ω; v), p(Ω; v)) for the solution
to the Navier–Stokes problem in Ω + v. We see from (34) that, for small v,

(35) y(Ω;u0 + v) ◦ (I + (u0 + v)) = y(Ω + u0; v ◦ (I + u0)−1) ◦ (I + u0 + v).

On the other hand, from Lemma 7, we know that the H1(Ω + u0)d-valued mapping
w 7→ y(Ω+u0;w)◦(I+w) is differentiable at 0. Thus, v 7→ y(Ω;u0 +v)◦(I+u0 +v) is
differentiable at 0; i.e., u 7→ y(Ω;u)◦(I+u) is differentiable at u0. A similar argument
holds for the function u 7→ p(Ω;u) ◦ (I + u).

Remark. Theorem 4.1 in [1] asserts that, when Ω is a W 2,∞ domain, the mapping
u 7→ (y(u), p(u)) ◦ (I +u) is well defined for u ∈W 2,∞(Rd,Rd)∩W and differentiable
at 0, with values in H2(Ω)d×H1(Ω). Adapting the previous argument, we can deduce
differentiability at each point in a W 2,∞-open ball centered at 0.

9. Higher-order differentiability. In this section, we will prove Theorems 6
and 4.

Proof of part (i) of Theorem 6. It remains to prove that u 7→ (Y (u), P (u)) is a C∞

mapping. (The remainder of part (i) has already been proven in section 6, Lemma 7.)
Observe that the mapping H, introduced in section 5 and defined from W ×

H1
0 (Ω)d×L2

0(Ω) into H−1(Ω)d×L2
0(Ω), is C∞. This is a consequence of the fact that

u 7→ Mij(u) and u 7→ Jac(I + u) are C∞ mappings. In turn, this stems from the
following:

(a) The mapping u 7→ Jac(I +u) is multilinear and, consequently, is of class C∞.
(b) The mapping u 7→M(u) = t [∂i(I + u)j ]

−1 is C∞ onW, because the inversion
operator is indefinitely differentiable in the set of the nonsingular matrices.

From the implicit function theorem, we deduce that u 7→ (Y (u), P (u)) possesses
derivatives of all orders at 0. Again using (35), which can be written in the form

Y (Ω;u0 + u) = Y (Ω + u0;u ◦ (I + u0)−1) ◦ (I + u0),

one also sees that u 7→ Y (Ω;u) is C∞ at each point u0 ∈ W. The same is true for
u 7→ P (Ω;u).

Proof of part (ii). The differentiability of the mapping u 7→ y(u)|ω at 0 in L2(ω)d

and the identity (20) are consequences of the differentiability of u 7→ y(u) ◦ (I + u)
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given in Lemma 7. This is a consequence of general results on differentiation with
respect to domains (see Lemma 2.1 in [15]). On the other hand, (12) and (20) together
imply (16).

Proof of Theorem 4. We have to check that u 7→ T (Ω+u) is a C∞ mapping. This
is deduced from the above results and the following equality, which has already been
used in section 6:

T (Ω + u) =
ν

2

∫
Ω

∑
ij(
∑
k(Mik(u) ∂kYj(Ω;u) +Mjk(u) ∂kYi(Ω;u)))2Jac(I + u).

10. Miscellaneous remarks. The case of a non-Lipschitz domain. Until now,
we have assumed that Ω is a Lipschitz domain in order to ensure, among other things,
that (29) is true. Actually, this assumption on Ω can be replaced by (29) itself:

∀φ ∈ L2(Ω) such that
∫

Ω
φ = 0, there exists ψ ∈ H1

0 (Ω)d such that ∇ . ψ = φ;

i.e., the divergence operator maps H1
0 (Ω)d onto L2

0(Ω).
Under this weaker hypothesis, the results in the previous sections hold again with

minor changes. Instead of p ∈ C∞(Ω) ∩ L2(Ω), we now have only

(36) p ∈ C∞(Ω), ∇p ∈ H−1(Ω)d.

On the other hand, we cannot normalize p and ṗ(u) as before. Instead, a possibility
is to fix a nonempty open set ω ⊂⊂ Ω and to impose∫

ω

p = 0,
∫
ω

ṗ(u) = 0.

Remark. The condition (29) requires some regularity on Ω, which is probably not
far from being Lipschitz.

Remark. It is important to note that, here, the difficulty is not related to nonlin-
earity. Even if we were concerned with Stokes flows (the term (y . ∇) y disappears),
(36) could not be improved unless a regularity assumption is required for Ω. This
difficulty is connected with the fact that the equations are coupled by the incompress-
ibility condition ∇ . y = 0.

Remark. For more simple (scalar) problems, we can obtain a result similar to
Theorem 4, without any regularity hypothesis for Ω. For example, let y be the unique
solution to

(37) −∆y = f in Ω, y − g ∈ H1
0 (Ω)d,

and let us set

S(Ω) =
∫

Ω
|∇(y − z)|2,

where f ∈ L2(Ω)d, g ∈ H2(Rd), and z ∈ H1(Rd) are given and Ω is an arbitrary
bounded open set in Rd. Then, u 7→ S(Ω + u) is well defined and differentiable in a
neighborhood of 0 in W 1,∞(Rd,Rd) [10, Theorem 5.2, p. V.10].

The particular case of a polygonal two-dimensional body. Assume that B is a two-
dimensional polygonal domain with vertices s1, s2, . . . , sn. Let us set s = (s1, . . . , sn),
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and let us assume that the corresponding polygonal line, ∂B, does not cross itself.
Thus, using the notation sn+1 = s1, one has

(38) [si, si+1[
⋂

[sj , sj+1[ = ∅ if 1 ≤ i < j ≤ n.

Also, assume that

(39) B ⊂⊂ O ⊂⊂ D.

It is then obvious that Ωs = D\B satisfies (1). In this situation, the following is not
difficult to prove:

The mapping s 7→ T (Ωs) is C∞ at each point s ∈ R2n satisfying (38) and (39).
Other examples. Above, the polygonal domain can be replaced by a spline de-

pending on a finite number of parameters. In such a way, we obtain similar results
for “NACA profiles” or other piecewise C1 boundaries. Similar results hold for three-
dimensional domains.

11. Appendix. In order to prove Lemma 3, we need some previous definitions
and results.

DEFINITION 14. Let Ω be a bounded open set in Rd.
(i) We say that Ω is a Lipschitz domain (also that Ω is Lipschitzian; see [11], [5])

if there exist constants a > 0 and b > 0 such that, for each z ∈ ∂Ω, one can find
— coordinates (x1, . . . , xd),
— a Lipschitz-continuous real-valued function ψ in Θ∗ with best Lipschitz constant

smaller than b, where Θ∗ = {x∗; |x∗ − z∗| < a}, x∗ = (x1, . . . , xd−1), and z∗ =
(z1, . . . , zd−1),
such that, for each x ∈ Θ = {x ∈ Rd; |x∗ − z∗| < a, |xd − ψ(x∗)| < a}, one has

x ∈ Ω⇐⇒ xd > ψ(x∗).

(ii) We say that Ω satisfies the cone property uniformly if there exist constants
α > 0 and b > 0 such that, for each z ∈ ∂Ω, one can find coordinates such that

x ∈ Ω ∩B(z;α) =⇒ x+ Cb,α ⊂ Ω.

Here, we have set B(z;α) = {x ∈ Rd; |x− z| < α} and

Cb,α = {x ∈ Rd; xd > b |x∗|, |x| < α}.

The properties (i) and (ii) are equivalent. More precisely, we have the following
result (see [3]).

LEMMA 15. A bounded open set in Rd is Lipschitzian if and only if it satisfies the
cone property uniformly.

The following result was also used in the proof of Lemma 3.
LEMMA 16. Assume that α > 0 and b > 0 are given. There exist α′ > 0,

b′ > 0, and l ∈ (0, 1) such that, whenever v ∈W 1,∞(Rd,Rd), ‖v‖W 1,∞(Rd,Rd) ≤ l, and
v(0) = 0, one has

Cb′,α′ ⊂ (I + v) Cb,α.

Proof of Lemma 3. From Lemma 15, there exist α > 0 and b > 0 such that, for
each z ∈ ∂Ω, one has

(40) x ∈ Ω ∩B(z;α) =⇒ x+ Cb,α ⊂ Ω.
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Again from Lemma 15, it is enough to find α′ and b′ such that, for each z′ ∈ ∂(Ω+u),

(41) x′ ∈ (Ω + u) ∩B(z′;α′) =⇒ x′ + Cb′,α′ ⊂ Ω + u.

Given such an x′, let ξ′ ∈ Cb′,α′ , and define x and z by x′ = x+ u(x), z′ = z + u(z).
Lemma 16 with v(ξ) = u(ξ + x) − u(x) gives the existence of ξ ∈ Cb,α such that
ξ′ = ξ + u(ξ + x)− u(x). Then

x′ + ξ′ = x+ ξ + u(x+ ξ).

This gives (41), provided that x + ξ ∈ Ω. By (40), it is enough to check that x ∈ Ω
(which is obvious) and |x − z| ≤ α, which is satisfied for α′ ≤ α(1 − c) (indeed,
x′ − z′ = x− z + u(x)− u(z) implies |x′ − z′| ≥ |x− z|(1− c)).

REFERENCES
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Abstract. In this paper the partial exact controllability of an elastic spherical membrane is
proved. The reachability problem for the integrodifferential equation, introduced for the vibrations
of the meridional displacement, is solved. The main result is a generalization of a Ingham’s theorem
on nonharmonic Fourier series.
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Introduction. Following Love’s and Koiter’s linear shell theory [17], [10], in pre-
vious works [3], [4], [5], [6] we studied the problem of exact controllability for a thin
elastic shell. The mathematical model is a system of partial differential equations
where the unknown is the displacement vector v of the middle shell surface. We de-
noted by Am and Af the operators associated with the membrane energy and flexion
energy, respectively, and by ε a small parameter depending on h (shell thickness) with
limh→0 ε = 0. The spectrum behavior of A = Am + εAf can be utilized to prove
some results of exact controllability for the vibrations of thin shells. In the particular
case of an hemispherical shell, the existence of an asymptotic gap for the eigenvalues
λj of A allowed us to give a controllability time (depending on ε) and to prove exact
controllability in suitable initial data spaces. In the general case we pointed out that
when the thickness of the shell goes to zero, the number of eigenvalues of A less than
a fixed λ ≥ λ0 goes to infinity; that is,

Nλ(A) =
∑
λj<λ

1→∞ as h→ 0.

It suggests therefore that an accumulation point for the eigenvalues of the limit prob-
lem ε = 0 (the so-called membrane approximation) may occur; moreover, we proved
that exact controllability of the limit problem generally fails, and an example of nonex-
act controllability is constructed in the case of hemispherical membrane approximation
(see [6]).

In this paper we give a result of partial controllability for a spherical membrane;
i.e., we want to control only one of the displacement components without conditions
for the other components. The axially symmetric vibrations of a spherical membrane
are described in section 1 by a pair of partial differential equations in the meridional
and radial displacements u and w. The partial exact controllability problem is given
in terms of the reachability problem for the integrodifferential equation for the vibra-
tions of the meridional displacement. We propose the reverse or reachability Hilbert
uniqueness method (RHUM) [11], [14], [15], [16] to construct our control function. In
section 2, the well posedness of the corresponding homogeneous problem is proved.
In section 4 we give a result of partial exact controllability (PEC) taking into account
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a generalization of the Ingham theorem [8], which we prove in section 3. Results on
the reachability problem for plate equation with memory can be found in [9], [11],
[12], [13].

1. Statement of the problem. We consider the axially symmetric vibrations
of an elastic spherical membrane with middle ray R and opening angle θ0. The
meridional and radial components of the displacement vector v = (u(θ, t), w(θ, t))
satisfy in Q = (0, T )× (0, θ0) the system

(1.1)

dutt − L(u)− (1− ν)u+ (1 + ν)w′ = 0,

dwtt − (1+ν)
sin θ (u sin θ)′ + 2(1 + ν)w = 0

with

u(0, t) = 0, u(θ0, t) = g(t)

and

v (θ, 0) = v 0, vt(θ, 0) = v 1,

where

(1.2) L(u) =
(

(u sin θ)′

sin θ

)′
.

The prime stands for the first derivative with respect to θ, ν ∈ (−1, 1/2), and d =
d0 R2(1 − ν2)/E, where E is an elastic positive constant and d0 is the density of
the material. In what follows we change t =

√
d t. We introduce the following

spaces:

L2 = L2(0, θ0; sin θ dθ) =

{
f :
∫ θ0

0
|f |2 sin θ dθ < +∞

}
,

U =
{
u :

∂u

∂θ
, u cot θ ∈ L2(0, θ0; sin θ dθ) , u(0) = u(θ0) = 0

}
.

‖f‖0 is the norm induced by the scalar product (f, g)0 =
∫ θ0

0 f ·g sin θ dθ, and ‖u‖2U =
‖u′‖20 + ‖u cot θ‖20. The exact controllability problem requires that we find a control
function g(t) that drives the system to the rest in a finite time T . In [6] we proved
that the membrane approximation is not exactly controllable for any {v 1,v 0} ∈
(U ′×L2)× (L2×L2). We observed that for the hemispherical membrane there exists
a subsequence of eigenfunctions v ∗n(θ) = (u∗n(θ), w∗n(θ)) such that

lim
n→∞

u∗n(π/2)− (1 + ν)w∗n(π/2) = 0.

Then the sequence {v ∗n , 0} with ‖v ∗n‖U×L2 = 1 (initial data for the homogeneous
problem associated with (1.1)) does not satisfy the necessary (and sufficient) condition
of exact controllability.

Since the exact controllability for membrane approximation generally fails, we
look for a partial result; i.e., we look for a PEC result.
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The problem (1.1) is equivalently written in the form

utt − L(u)− (1− ν)u+ (1 + ν)(w0)′ cos t
√

2(1 + ν) +
(1 + ν)√
2(1 + ν)

(w1)′

· sin t
√

2(1 + ν) +
(1 + ν)3/2
√

2

∫ t

0
sin((t− s)

√
2(1 + ν))L(u(θ, s)) ds = 0.

We consider the following partial controllability (PC) problem.

(PC) Given T > 0 and two functions u0(θ), u1(θ), find g(t) such that the system

(1.3)

utt − L(u)− (1− ν)u+ (1 + ν)w′ = 0,

wtt − (1+ν)
sin θ (u sin θ)′ + 2(1 + ν)w = 0,

with boundary conditions

(1.4) u(0, t) = 0, u(θ0, t) = g(t)

and null initial data, i.e.,

(1.5) v (θ, 0) = 0, v t(θ, 0) = 0,

verifies the final conditions

(1.6) u(θ, T ) = u0, ut(θ, T ) = u1

or, equivalently,

(PC)′ Given T > 0 and two functions u0(θ), u1(θ), find g(t) such that the system

utt − L(u)− (1− ν)u+
(1 + ν)3/2
√

2

∫ t

0
sin((t− s)

√
2(1 + ν))L(u(θ, s)) ds = 0,

with

u(0, t) = 0, u(θ0, t) = g(t)

and

v (θ, 0) = 0, v t(θ, 0) = 0,

verifies the conditions

u(θ, T ) = u0, ut(θ, T ) = u1.

To solve the problem (PC)′ we apply the RHUM method [11], [16].
We consider the adjoint system

(1.7) ztt − L(z)− (1− ν)z +
(1 + ν)3/2
√

2

∫ T

t

sin((s− t)
√

2(1 + ν))L(z(θ, s)) ds = 0

with homogeneous boundary conditions

(1.8) z(0, t) = 0, z(θ0, t) = 0
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and final data

(1.9) z(θ, T ) = z0, zt(θ, T ) = z1.

Then we consider the problem

φ̈tt − L(φ)− (1− ν)φ+
(1 + ν)3/2
√

2

∫ t

0
sin((t− s)

√
2(1 + ν))L(φ(θ, s)) ds = 0

with

φ(0, t) = 0, φ(θ0, t) = − (1 + ν)3/2
√

2

∫ T

t

sin((s− t)
√

2(1 + ν))z′(θ0, s) ds+ z′(θ0, t)

and

φ(θ, 0) = 0, φt(θ, 0) = 0.

We define µ{z0, z1} = {φ0
t (T ),−φ0(T )} and put

Gz(θ, t) =
∫ t

0
sin((t− s)

√
2(1 + ν))z(θ, s) ds

and the adjoint operator of G by G∗, where

(1.10) G∗z(θ, t) =
∫ T

t

sin((s− t)
√

2(1 + ν))z(θ, s) ds.

With some simple computations we can prove

〈µ{z0, z1}, {z0, z1}〉 =
∫ T

0
sin θ0φ(θ0, t)z′(θ0, t) dt

− (1 + ν)3/2
√

2

∫ T

0
G∗z′(θ0, t)φ(θ0, t) sin θ0 dt.

Our aim is to prove that ν{z0, z1} is invertible in a suitable function space.

2. Analysis of the homogeneous problem. In order to prove existence and
uniqueness results for (1.7), (1.8), and (1.9), we introduce the energy

E(t) =
1
2

∫ ϑ0

0
(z2
t + (z′)2 + z2 cot2 ϑ+ νz2) sinϑ dϑ

and

ET =
1
2

∫ ϑ0

0
(z12

+ (z0′)2 + (z0)2 cot2 ϑ+ ν(z0)2) sinϑ dϑ.

We have the following proposition.
PROPOSITION 2.1. There exist two constants C1(T, ν) and C2(T, ν) such that

E(t) ≤ C1(T, ν)ET · eC2(T,ν)(T−t).
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Proof. To prove Proposition 2.1 we argue in similar way to [16, vol. 2, p. 242].
To this end we introduce

r0(t) =
∫ ϑ0

0

∫ T

t

sin((s− t)
√

2(1 + ν))(z(ϑ, s) sinϑ)′

· 1√
sinϑ

ds[z(ϑ, t) sinϑ]′
1√

sinϑ
dϑ

and

r1(t) =
∫ ϑ0

0

∫ T

t

cos((s− t)
√

2(1 + ν))(z(ϑ, s) sinϑ)′

· 1√
sinϑ

ds[z(ϑ, t) sinϑ]′
1√

sinϑ
dϑ.

Applying the Schwarz inequality after simple computations we obtain

|r0(t)| ≤ 4
E(t)√

27
+
√

27
16

{
T − t

2
− 1

4
sin 2(T − t)

√
2(1 + ν)√

2(1 + ν)

}∫ T

t

E(s) ds,

and similarly we obtain

|r1(t)| ≤ E(t) +
1
4

(
T − t

2
+

1
4

sin 2(T − t)
√

2(1 + ν)√
2(1 + ν)

)∫ T

t

E(s) ds.

On the other hand, it is easy to show that

d

dt

(
E(t) +

√
2

2

√
(1 + ν)3r0(t)

)
= −(1 + ν)2r1(t).

Hence,

E(t) ≤ ET +
√

2
2

√
(1 + ν)3|r0(t)|+ (1 + ν)2

∫ T

t

|r1(s)| ds.

We compute ∫ T

t

|r1(s)| ds ≤
(

1 +
1
4

∫ T

t

M2
1 (s) ds

)∫ T

t

E(s) ds,

where

M2
1 =

T − t
2

+
1
4

sin 2(T − t)
√

2(1 + ν)√
2(1 + ν)

,

E(t) ≤ ET + 2
√

2(1 + ν)3E(t)√
27

+
√

27
1
64

(
T +

1
2
√

2(1 + ν)

)√
2(1 + ν)3

∫ T

t

E(s) ds

+ (1 + ν)2

(
1 +

1
4

∫ T

t

M2
1 (s) ds

)∫ T

t

E(s) ds.
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It is straightforward to find∫ T

t

M2
1 (t) dt ≤ T 2

4
+

1
8(1 + ν)

.

From the above estimates we conclude choosing

c1(T, ν) =
ET(

1−
√

2
2

√
(1 + ν)3 2√

27

) ,

c2(T, ν) =
(
(1 + ν)2T

2

16
+
√

27
1
64

√
2(1+ν)3T +

(√
27

1
128

+(1+ν)+
1
8

))
(1+ν).

From the above result we obtain the following.
PROPOSITION 2.2. The problem (1.2) has a unique solution such that

{z, z′} ∈ C([0, T ]; U × L2).

Now we shall find the explicit solution of the equation (1.2) with boundary
homogeneous conditions and the final state z0, z1.

So we consider the eigenvalues problem

(2.1) −L(zk) = λkzk,

where L is the operator given in (1.2) and zk(0) = zk(ϑ0) = 0.
We assume that the solution of our problem can be written as

(2.2) z(ϑ, t) =
+∞∑
k=1

fk(t)zk(ϑ),

where zk is an orthonormal base in (0, θ0).
Substituting z, given by (2.2), using the eigenvalue problem (2.1), and multiplying

the equation by zk we find the following integrodifferential equation in the unknown
f (here the dot denotes the derivative with respect to t):

f̈k(t) + (λk − 1 + ν)fk(t)− λk
(1 + ν)2√
2(1 + ν)

∫ t

0
sin((t− s)

√
2(1 + ν))fk(s) ds = 0.

Using [18, p. 149] and the method of Evans [18, p. 67], we find the solution

fk(t) = (fTk + ḟTk t)
(

1 +
b1k
a+
k

+
b2k
a−k

)
− fTk

(
b1k
a+
k

cos(a+
k t) +

b2k
a−k

cos(a−k t)
)

− ḟTk
(

b1k
(a+
k )2

sin(a+
k t) +

b2k
(a−k )2

sin(a−k t)
)

and b1k, b2k, a+
k , a−k given, respectively, by

b1k = − (λk − 1 + ν)[(a−k )2 − (λk − 1 + ν)]− λk(1 + ν)2

a+
k [(a−k )2 − (a+

k )2]
,(2.3)
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b2k =
(λk − 1 + ν)[(a+

k )2 − (λk − 1 + ν)]− λk(1 + ν)2

a−k [(a−k )2 − (a+
k )2]

,(2.4)

a±k =

√
(λk + 1 + 3ν)±

√
(λk + 1 + 3ν)2 − 4(1− ν2)(λk − 2)

2
.(2.5)

Doing the substitution t = T − t in (2.2) we find the solution of (1.7)–(1.9): z =∑+∞
k=1 fk(t)zk(θ) with

fk(t) = (fTk − ḟTk (T − t))
(

1 +
b1k
a+
k

+
b2k
a−k

)
− fTk

(
b1k
a+
k

cos(a+
k (T − t)) +

b2k
a−k

cos(a−k (T − t))
)

+ ḟTk

(
b1k

(a+
k )2

sin(a+
k (T − t)) +

b2k
(a−k )2

sin(a−k (T − t))
)
.

Taking into account that

b1k
a+
k

+
b2k
a−k

= −1 ∀ ν ∀ k,

we have

fk(t) = −fTk
{
b1k
a+
k

cos(a+
k (T − t)) +

b2k
a−k

cos(a−k (T − t))
}

+ ḟTk

{
b1k
a+2
k

sin(a+
k (T − t)) +

b2k
(a−k )2

sin(a−k (T − t))
}
.

PROPOSITION 2.3. The following properties of the coefficients a+
k and a−k hold:

(a+
k )2 = λk − 1 + ν + c+k (1 + ν)2,

(a−k )2 = 2(1 + ν) + c−k (1 + ν)2,

with

lim
k→∞

c+k = +1, lim
k→∞

c−k = −1,

lim
k→∞

a+
n = +∞, lim

k→∞
a−k =

√
1− ν2.

Remark 2.1. The solution of this problem can be easily given at least in the
case ϑ0 = π

2 . More precisely we have zk = akP
′
k and λk = k(k + 1) with k =

2, 4, 6, . . . , and Pk is the k–Legendre polynomial and ak is the normalization factor;
i.e., (akP ′k, ajP

′
j) = δkj .
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3. Trigonometrical inequalities for almost periodic functions. The fol-
lowing theorem, on almost periodic functions [2], is a generalization of a result due to
Ingham (see [8, Theorem 1]).

THEOREM 3.1. Let

f(t) =
+∞∑

n=−∞
A+
n e
−ia+

n t +A−n e
−ia−n t =

∑
n

A+
n e
−ia+

n t +A−n e
−ia−n t,(3.1)

where we assume
∑
nA

+
n e
−ia+

n t +A−n e
−ia−n t is uniformly convergent in [−T, T ] and

∃γ1 > 0 : |a+
n − a+

n−1| ≥ γ1 ∀n,(3.2)

∃γ2 > 0 : |a+
n − a−j | ≥ γ2 ∀n ∀ j,(3.3)

∃α ≥ 1 , C2 > 0 : ∀ k |A−k | ≤
C2

kα
|A+
k |.(3.4)

Then ∃T0 : ∀T > T0 : ∃C3(T ), C4(T ) > 0 such that

C3(T )
∑
n

|A+
n |2 ≤

∫ T

−T
|f |2 dt ≤ C4(T )

∑
n

|A+
n |2.

Proof. We prove the first inequality. Let h(t) be a nonnegative integrable function
over (−∞,+∞). We consider∫ +∞

−∞
h(t)|f(t)−

∑
k

A+
k e
−ia+

k
t|2 dt

=
∫ +∞

−∞
h(t)

(
f(t)−

∑
k

A+
k e
−ia+

k
t

)
·

f(t)−
∑
j

A
+
j e

ia+
j
t

 dt

=
∫ +∞

−∞
h(t)|f(t)|2 dt+

∫ +∞

−∞

∑
k

∑
j

A+
k A

+
j e

i(a+
j
−a+

k
)th(t) dt

−
∫ +∞

−∞
h(t)f(t) ·

∑
k

A+
k e
−ia+

k
t dt−

∫ +∞

−∞
h(t)f(t)

∑
j

A
+
j e

+ia+
j
t dt

=
∫ +∞

−∞
h(t)|f(t)|2 dt+

∑
k

∑
j

A+
k A

+
j K(a+

k − a
+
j )

−
∫ +∞

−∞
h(t)

∑
j

A
+
j e

ia+
j
t +A

−
j e

ia−
j
t

 ·∑
k

A+
k e
−ia+

k
t dt

−
∫ +∞

−∞
h(t)

(∑
k

A+
k e
−ia+

k
t +A−k e

−ia−
k
t

)
·
∑
j

A
+
j e

ia+
j
t dt,

where

K(u) =
∫ +∞

−∞
e−itu · h(t) dt.
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Hence, using
∑
k

∑′
j to denote the sum for k 6= j,

0 ≤ −
∑
k

|A+
k |2K(0)−

∑
k

′∑
j

A+
k A

+
j K(a+

k − a
+
j )

−
∑
j

∑
k

A
−
j A

+
kK(a+

k − a
−
j )

−
∑
k

∑
j

A−k A
+
j K(a−k − a

+
j ) +

∫ +∞

−∞
h(t)|f |2 dt,

we take

h(t) =

{
cos πt

2T , |t| ≤ T,

0, |t| > T,

with T > π
2γ and γ = min{γ1, γ2}

∫ +∞

−∞
h(t)ei(a

+
k
−a+

j
)t dt =


4Tπ cos(a+

k
−a+

J
)T

π2−4T 2(a+
k
−a+

j
)2 , k 6= j,

4T
π , k = j.

By assumption (3.2)

∑
k

∣∣∣∣∣ 4Tπ cos(a+
k − a

+
j )

π2 − 4T 2(a+
k − a

+
j )2

∣∣∣∣∣ ≤ 4π
Tγ2

1
≤ 4π
Tγ2

and by assumption (3.3)

∑
k

∣∣∣∣∣ 4Tπ cos(a+
k − a

−
j )

π2 − 4T 2(a+
k − a

−
j )2

∣∣∣∣∣ ≤ 4π
Tγ2

2
≤ 4π
Tγ2

so that∫ T

−T
|f(t)|2 dt ≥ 4T

π

∑
k

|A+
k |2 +

∑
k

′∑
j

A+
k A

+
j K(a+

k − a
+
j )

+
∑
k

∑
j

A−k A
+
j K(a−k − a

+
j ) +

∑
j

∑
k

A
−
j A

+
kK(a+

k − a
−
j )

≥ 4T
π

∑
k

|A+
k |2 −

4π
Tγ2

1

∑
k

|A+
k |2

− C2

∑
k

∑
j

|A+
k ||A

+
j |
|K(a−k − a

+
j )|

kα
− C2

∑
k

∑
j

|A+
j |
jα
|A+
k ||K(a+

k − a
−
j )|

≥
∑
k

|A+
k |2
(

4T
π
− 4π
Tγ2

1

)
−
∑
k

∑
j

|A+
k |2|K(a+

j − a−k )|

− C2
2

∑
k

∑
j

|A+
j |2
|K(a+

j − a−k )|
k2α .
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If we put S = C2
2
∑
J

1
J2α , α ≥ 1, we have∫ T

−T
|f(t)|2 dt ≥

(
4T
π
− 4π
Tγ2

1
− 4π
Tγ2

2
− S4π
Tγ2

2

)
·
∑
k

|A+
k |2.

This inequality is verified for any T > T0 with

(3.5) T0 =
{

inf T :
4T
π
− 4π
Tγ2

1
− 4π
Tγ2

2
− S4π
Tγ2

2
> 0
}

= π

√
1 + S

γ2
2

+
1
γ2

1
.

Next, we prove the second inequality.
We compute

∫ T

−T
|f(t)|2h(t) dt

=
∫ T

−T

(∑
k

A+
k e
−ia+

k
t +A−k e

−ia−
k
t

)
·

∑
j

A
+
J e

+ia+
j
t +A

−
j e

ia−
j
t

h(t) dt

=
∫ T

−T

∑
k

∑
j

A+
k A

+
j e

i(a+
j
−a+

k
)th(t) dt+

∫ T

−T

∑
k

∑
j

A−k A
−
j e

i(a−
j
−a−

k
)t · h(t) dt

+
∫ T

−T

∑
k

∑
j

A+
k A
−
j e

i(a−
j
−a+

k
)t · h(t) dt+

∫ T

−T

∑
k

∑
j

A−k A
+
j e

i(a+
j
−a−

k
)t · h(t) dt,

∫ T

−T
|f |2h(t) dt =

∑
k

∑
j

A+
k A

+
j K(a+

k − a
+
j )

+
∑
k

∑
j

A−k A
−
j K(a−k − a

−
j ) +

∑
k

∑
j

A+
k A
−
j K(a+

k − a
−
j )

+
∑
k

∑
j

A−k A
+
j K(a−k − a

+
j ) ≤

∑
k

∑
j

|A+
k ||A

+
j |K(a+

k − a
+
j )|

+
∑
k

∑
j

|A+
k |
kα
|A+
j |
jα
|K(a−k − a

−
j )|+ 2

∑
k

∑
j

|A+
k |
|A+
j |
jα
|K(a+

k − a
−
j )|

≤
(

4T
π

+
4π
Tγ2

)∑
k

|A+
k |2 +

4T
π
C2

2

{∑
k

|A+
k |2
∑
j

1
j2α +

∑
j

|A+
j |2
∑
k

1
k2α

}

+ C2
2

∑
k

|A+
k |2
∑
j

|K(a−j − a+
k )|

j2α +
∑
j

|A+
j |2
∑
k

|K(a−j − a+
k )|

≤
(

4T
π

+
4π
Tγ2 +

8T S

π

)∑
k

|A+
k |2+

(
4π
Tγ2 S +

4π
Tγ2

)∑
k

|A+
k |2 = C4(T )

∑
k

|A+
k |2.

We conclude the proof choosing C4(T ) = 2√
2
C4(2T ).
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Remark 3.1. In an analogous way to [1] (see also [7]), the assumptions (3.2) and
(3.3) can be relaxed with

(3.2′) ∃γ1 > 0 : |a+
k+1 − a

+
k | ≥ γ1 ∀|k| > K,

(3.3′) ∃γ2 > 0 : |a+
k − a

−
j | ≥ γ2 ∀|k| > K and ∀j.

If γ2 → +∞ as K → +∞ (as in the case of spherical membranes, see Proposition
2.3), we find from (3.5) that the proof of Theorem 3.1 holds with

(3.6) T0 =
π

γ
.

4. Controllability. In what follows we put α = (1+ν)3/2
√

2
.

LEMMA 4.1. For every fixed T > 0, there exist two positive constants c0 = c0(T, α)
and c1 = c1(T, α) such that

c0

∫ T

0
(z′ − αG∗z′(θ0, t))2 dt ≤

∫ T

0
(z′(θ0, t))2 dt ≤ c1

∫ T

0
(z′ − αG∗z′(θ0, t))2 dt.

Proof. The left inequality follows by simple computations. To prove the right
inequality we assume that there exists a sequence z̃′n such that ‖z̃′n‖L2 = 1 and

(4.1) z̃′n(t)− αG∗z̃′n(t) = f̃n(t),

with

lim
n→∞

‖f̃n‖L2 = 0.

By simple computation [18, p. 45] we have by (4.1),

(4.2) z̃′n(t) = f̃n(t)−
∫ T

t

Q(s, t)f̃n(s) ds,

where Q is a reciprocal kernel of (4.1), (1.10) given by

Q(s, t) =
∞∑
h=1

P (h)(s, t),

where

|P (h)(s, t)| ≤ |α|
h|s− t|h−1

(h− 1)!
.

It is easy to prove that

|Q(s, t)| ≤ |α|e|α| |s−t|.

On the other hand,∫ T

t

Q2(s, t) ds ≤ α2
∫ T

t

e2|α| |s−t| ds =
α2

2|α| (e
(T−t)·2|α| − 1)
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and ∫ T

0

∫ T

t

Q2(s, t) ds ≤ |α|
2

∫ T

0
(e(T−t)2|α| − 1) dt =

1
4
e2T |α| − 1

4
− |α|

2
T,

so that ∫ T

0
(z̃′n(θ0, t)2 dt ≤ 2

∫ T

0
(f̃n(s))2 ds

{
3
4

+
1
4
e2T |α| − |α|

2
T

}
.

Hence we find a contradiction.
THEOREM 4.1. If the generalized assumptions of Theorem 3.1 are verified, then

we can solve the partial controllability problem in a suitable space.
Proof. We take

A+
k =

b1k
(a+
k )2

z′k(θ0)
[
a+
k f

T
k +

1
i
ḟTk

]
,

A−k =
b2k

(a−k )2
z′k(θ0)

[
a−k f

T
k +

1
i
ḟTk

]
,

where a+
k , a−k , b1k, and b2k are given by (2.3), (2.4), and (2.5). By Lemma 4.1 and

Theorem 3.1 we have that there exist two positive constants C1(T ) and C2(T ) such
that

C1(T )
∑
k

|A+
k |2 ≤ 〈µ(z0, z1) , (z0, z1)〉 ≤ C2(T )

∑
k

|A+
k |2.

This ends the proof.
Example 4.1 (PEC for the hemispherical shell).
For θ0 = π/2, we have

λk = 2k(2k + 1), k = 1, 2, . . . ,

a+
k ∼ 2k +

1
2

as k →∞,

|a+
k+1 − a

+
k | = 2 , lim

k→∞
a−k =

√
1− ν2 < a+

1 .

Moreover,

b1k
(a+
k )2

∼ const
k

as k →∞

and

b2k
(a−k )2

∼ const
k2 as k →∞.

Moreover, we assume the data {fT , ḟT } are given in a suitable space in order for∑
k |A

+
k | < +∞. Hence the hypotheses of Theorem 3.1 are verified, and we can apply

Theorem 4.1.
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Abstract. The long-time behavior of solutions for an optimal distributed control problem
associated with the Navier–Stokes equations is studied. First, a linear feedback solution for the
Navier–Stokes equations is constructed; this feedback solution possesses decay (in time) properties.
Then, some preliminary estimates for the long-time behavior of all solutions of the Navier–Stokes
equations are derived. Next, the existence of a solution for the optimal control problem is proved.
Finally, the long-time decay properties for the optimal solutions are established.
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1. Introduction. In this article we study the long-time behavior of the solu-
tions for optimal control problems associated with the Navier–Stokes equations on
the infinite time interval. In this paper, we concentrate on the following prototype
problem: minimize the functional

(1.1) J (u, f) =
α

2

∫ ∞
0

∫
Ω
|u−U|2 dx dt+

β

2

∫ ∞
0

∫
Ω
|f − F|2 dx dt

subject to the Navier–Stokes equations

(1.2) ∂tu− ν∆u + (u · ∇)u +∇p = f in Ω× (0,∞) ,

(1.3) div u = 0 in Ω× (0,∞) ,

(1.4) u = 0 on ∂Ω× (0,∞),

and

(1.5) u(·, 0) = u0 in Ω .

Here, α, β > 0 are given constants, Ω is a bounded domain in R2 which is of class
C2 or convex, ∂Ω denotes the boundary of Ω, U is a given desired flow field, and
F is a given body force. Also, f is the distributed control (body force), and (u, p)
denote the velocity field and the pressure field. The first term in the functional (1.1)
measures the L2(0,∞; L2(Ω))-distance between the candidate flow and the desired
flow. Thus, the physical objective of this minimization problem is to match a desired
flow field (in the L2 sense) by adjusting (controlling) the body force f . The second
term in the functional measures the size of the control with respect to some fixed force
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F. The inclusion of this term in the functional will keep the body force f (i.e., the
control) within a reasonable distance from F so that the optimal f we find can still be
physically realized. This functional reflects a trade-off between achieving a physical
objective and minimizing the work. It is worth mentioning that (U,F) in general is
not an optimal solution, for U(·, 0) 6≡ u0 in general.

Through the change of variables v = u − U and g = f − F, we may interpret
the optimal control problem from another physical point of view; i.e., one seeks a
candidate flow v and a candidate body force g such that the L2(Ω × (0,∞))-energy
and the total work done by the body force in the flow’s entire life span is minimized.
Many other physical cost functionals such as the drag functional can be formulated
in a similar optimal control setting wherein one minimizes the total cost such as the
total drag and the total work done by the body force in the flow’s entire life span.

If our goal is only to match the desired flow U by the designed flow u (without
considering minimizing the energy and work), then a linear body force feedback control
can be used instead of the optimal control. In this paper we will study both optimal
control and feedback control. The feedback control solution we will construct has
exponential decay properties, but, unlike the optimal solution, the feedback solution
can be too costly to realize physically.

The study of optimal flow control problems in the infinite time interval is of great
importance in many physical applications, such as in drag and turbulence minimiza-
tion in the entire life span of a flow. (Of course, the functional will be chosen differently
in these cases from the functional introduced above.) Much effort has been made by
mathematicians and scientists in the study of the asymptotic behaviors and dynamics
of solutions for the Navier–Stokes equations. Naturally, we are motivated to study
the asymptotic behaviors and dynamics of solutions for the controlled Navier–Stokes
equations. There is also an interest in controlling the dynamics of flows which will
be studied elsewhere. Although the methods and techniques used in this paper are
applicable to the study of optimal control problems for many other cost functionals,
we will only deal with the functional (1.1) throughout this paper. As was explained
above, the physical objective behind (1.1) is to match the candidate flow field with a
desired one. Ideally, one wishes to match the desired flow at each time instance; the
functional that describes this ideal objective involves L∞-norm in t. Such an ideal
objective is in general too costly to achieve physically, and numerical solutions of such
an ideal control problem can be computationally expensive (numerical methods will
be discussed elsewhere). It is natural to introduce the time-averaged functional (1.1)
for the matching objective. But how good is the optimizer for (1.1) as an optimizer for
pointwise matching in t? This will be the main question to be answered in this paper.
Our main conclusion is that for large t, the time-averaged optimizer will indeed give
us pointwise matching in t.

We comment on some works extant in the literature that are related to this
paper. In [2], [8], [9], [10], and [14] optimal distributed control problems for the time-
dependent Navier–Stokes equations on finite time intervals were studied. In [8], [9],
and [10], the existence of optimal distributed controls was shown, an optimality system
of equations was derived, and the question of the uniqueness of optimal solutions was
resolved. The optimality system of equations established in these references on finite
time intervals will be very useful in our derivation of an analogous system for the
infinite time interval.

Controllability is somewhat related to our interest in controlling the pointwise-
in-t behavior for the solutions of the Navier–Stokes equations. In [7], [11], and [12]
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the distributed approximate controllability problem was studied. It was shown in
[7] that in the special case of control acting everywhere in the domain, the Navier–
Stokes system is approximately controllable; i.e., one may match a given flow field
with arbitrary accuracy at time instance t = T . In [11] it was proved that one can
exactly match the zero vector field at t = T by distributed control. However, the
techniques used in [7] and [12] cannot be applied to more general controllability or
approximate controllability problems for the Navier–Stokes system. The results of
[12] on the noncontrollability of the Burgers equation seem to indicate that in general
one cannot obtain approximate controllability for the Navier–Stokes system. In any
case, the controllability approach does not give us information on the matching of
flow fields over a time period, nor could it give us any information beyond t = T .

We also point out that some results on the asymptotic behaviors/dynamics for
the (uncontrolled) Navier–Stokes equations can be found in the literature, such as
[3], [15], [16], [18], and [19]. Also, in [4] and [5], the dynamics for the controlled
Burgers equation was studied. Although the properties for the controlled Burgers
equations can be substantially different from that for the controlled Navier–Stokes
equations, results on Burgers equations often give us some insight into the results for
the Navier–Stokes equations.

We summarize the major components of this paper as follows.
• A feedback control solution is constructed which can be treated as a quasi

optimizer for the optimal control problem.
• The results of [8], [9], and [10] for finite time intervals are generalized to the

infinite time interval [0,∞); i.e., we prove the existence of a solution for the distributed
optimal control problem of minimizing (1.1) subject to (1.2)–(1.5) and derive an
optimality system of equations from which optimal solutions may be deduced.
• The long-time behavior (dynamics) of the optimal solution is derived and the

main result is that ‖û(t)−U(t)‖ and ‖∇û(t)−∇U(t)‖; i.e., the L2(Ω)-distance and
the H1(Ω)-distance between the optimal solution û(t) and the desired flow field U(t)
both decay to zero as time t→∞. Note that the distances are measured pointwise in
t despite the fact that the (time-averaged) functional (1.1) seems to provide only L2-
information in t. Moreover, although the functional (1.1) provides only L2-information
in x, the decay property can be upgraded to the H1(Ω)-distance in x.
•We also obtain as by-products some estimates for the solutions of the optimality

system on both finite and infinite intervals.
Our plan of the paper is as follows. In section 2, we construct a feedback control

solution and obtain some preliminary estimates for all solution of the Navier–Stokes
equations and, in particular, for optimal solutions. In section 3, we first recall the
results of [8], [9], and [10] on finite time intervals and establish some estimates for
the Lagrange multiplier (the adjoint state variable). We then prove the existence of
an optimal solution on the infinite time interval. Finally, in section 4, we prove the
decay of the controlled dynamics to the desired dynamics.

2. Statement of the problem, feedback control, and preliminary
estimates.

2.1. Functional spaces and notations, statement of the problem.
Throughout this paper, C denotes a generic constant depending only on the physical
domain Ω. We will use the standard notations for the function space Lr(Ω) and the
Sobolev spaces Hm(Ω) with its norm denoted by ‖·‖m. H0(Ω) = L2(Ω). Also, Hr

0 (Ω)
is the closure of C∞0 (Ω) under the ‖ · ‖r-norm. The dual space of Hr

0 (Ω) is denoted
by H−r(Ω), r > 0. The vector-valued (R2-valued) counterparts of these spaces are
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denoted by Lr(Ω), Hm(Ω), Hr
0(Ω), and H−r(Ω). For details, see [1] and [13]. We

introduce the solenoidal spaces

Vr(Ω) = {u ∈ Hr
0(Ω) : ∇ · u = 0}

equipped with the norm ‖ · ‖r for r ≥ 0,

V = V1(Ω) = {u ∈ H1
0(Ω) : ∇ · u = 0}

equipped with the norm ‖ · ‖1, and

W = {u ∈ L2(Ω) : ∇ · u = 0, (u · n)|Γ = 0}

(i.e., the closure of div-free C∞0 (Ω)-functions under the ‖·‖0-norm) equipped with the
norm ‖ · ‖0. The dual space of Vr(Ω), r > 0, is denoted by V−r(Ω). The dual space
of V is denoted by V∗. We identify the dual space of W with W itself under the
L2(Ω)-inner product. We next introduce the temporal–spatial function spaces defined
on QT = Ω× (0, T ) for T ∈ (0,∞] (note that Q∞ is also simply denoted by Q):

Lm(0, T ; Hr(Ω))

equipped with the norm

‖u‖Lm(0,T ;Hr(Ω)) =

(∫ T

0
‖u(t)‖mr dt

)1/m

,

and the solenoidal temporal–spatial function space

V(s)(QT ) = {v ∈ L2(0, T ; Vs(Ω)) : ∂tv ∈ L2(0, T ; Vs−2(Ω))}

with the norm

‖v‖2V(s)(QT ) = ‖v‖2L2(0,T ;Vs(Ω)) + ‖∂tv‖2L2(0,T ;Vs−2(Ω)) .

For a function u in the temporal–spatial space, we often use the abbreviated notation

u(t) def u(·, t),

which is defined over the spatial domain Ω.
We introduce the simplified norm notation

(2.1) ‖ · ‖ def ‖ · ‖L2(Ω) .

Let λ1 > 0 be the greatest real number satisfying the Poincaré inequality

(2.2) ‖∇w‖2 ≥ λ1‖w‖2 ∀w ∈ H1
0(Ω) .

We now define the solution for the Navier–Stokes equations in a weak sense (see
[6] or [18]). To this end, we introduce two continuous linear forms:

a(u,v) = ν

∫
Ω
∇u : ∇v dx ∀u,v ∈ H1(Ω)
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and

c(u,v,w) =
∫

Ω
(u · ∇)v ·w dx ∀u,v,w ∈ H1(Ω) ,

where the colon notation : denotes the inner product on R2×2. Also, (·, ·) denotes
the L2(Ω)-inner product and 〈·, ·〉 the duality pairing between a Banach space and its
dual.

DEFINITION 2.1. Given T ∈ (0,∞), u0 ∈W, and f ∈ L2(0, T ; V∗), u is said to
be a solution of the Navier–Stokes equations iff u ∈ V(1)(QT ) and u satisfies

(2.3)

〈∂tu(t),w〉+ a(u(t),w) + c(u(t),u(t),w)

= 〈f(t),w〉 ∀w ∈ V (almost everywhere) t ∈ (0, T )

and

(2.4) lim
t→0+

u(t) = u0 in W.

We point out that u ∈ V(1)(QT ) implies u ∈ C([0, T ]; W), so that (2.4) makes
sense. It is well known that if T ∈ (0,∞) and f ∈ L2(0, T ; L2(Ω)), then there is indeed
a solution u for the Navier–Stokes equations. Furthermore, u satisfies the regularity
result u ∈ L2

loc(0, T ; H2(Ω)).
For T =∞, we define a solution for the Navier–Stokes equations as follows.
DEFINITION 2.2. Given u0 ∈ W and f ∈ L2

loc(0,∞; V∗), u is said to be a
solution of the Navier–Stokes equations on (0,∞) iff u ∈ L2

loc(0,∞; V)∩L∞(0,∞; W),
∂tu ∈ L2

loc(0,∞; V∗), and u satisfies (2.3), (2.4) with T =∞.
Intuitively, if a flow field u is close to the desired field U, then the body forces

corresponding to the two fields u and U should also be close. Hence, in order that
the optimal control solution of the Navier–Stokes flow is close to the desired flow
U, we must place some restrictions on the desired body force F involved in the cost
functional (1.1). In fact, throughout this paper we will simply choose

(2.5) F = N(U) def
∂tU− ν∆U + (U · ∇)U,

which is the body force corresponding to the desired flow U. Here note that, for
convenience, the pressure term is not included in the definition of F = N(U), since
it is not involved in the cost functional. The omission of the pressure term will not
affect any of the results in this paper. In fact, the pressure term does not even appear
in our definition of the solutions (in the weak sense) for the Navier–Stokes equations.
The restriction (2.5) implies that when the functional (1.1) is minimized, u is close to
the desired flow U and f is close to the body force corresponding to the desired flow.
Note that the pair (U,F) in general is not an optimal solution, for U in general does
not satisfy the initial condition (2.4).

Throughout this paper, in addition to (2.5), we make the following hypothesis for
the desired flow U and the fixed body force F = N(U):

(2.6)
{

U = U(x, t) ∈ L∞(0,∞; H2(Ω) ∩V) ,
F = N(U) ∈ L∞(0,∞; L2(Ω)) .

Hypothesis (2.6) implies

∂tU ∈ L∞(0,∞; L2(Ω)) ∩ L2
loc(0,∞; L2(Ω)) .
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Note that these hypotheses permit the special case of steady state U. Thus one
application of the optimal control problem is to match a steady state flow field through
the control of external forces.

We also introduce the following simplified norm notations:

(2.7) |‖·‖| def ‖ · ‖L∞(0,∞;L2(Ω))

and

(2.8) ‖‖·‖‖ def ‖ · ‖L∞(Ω×(0,∞)) .

These norms will be applied solely to U, ∇U, . . . , etc.
We now turn to the precise statement of the optimal control problem.
For each T ∈ (0,∞] we define the functional JT by

(2.9) JT (u, f) =
α

2

∫ T

0

∫
Ω
|u−U|2 dx dt+

β

2

∫ T

0

∫
Ω
|f − F|2 dx dt

for all u ∈ U + L2(Ω× (0, T )) and f ∈ N(U) + L2(Ω× (0, T )). Note that J∞ is also
simply denoted by J .

We point out that in the case of T =∞, which we will eventually consider, if we
choose the control f in the space L2(Ω× (0,∞)), it may happen (e.g., in the case of
a steady state U) that the value of the cost functional J∞(u, f) is always infinite for
every pair (u, f) under consideration. Therefore, the choice of the control set should
also involve U and F. We define the admissible elements as follows with XT and YT

denoting, respectively, the functional spaces

XT =
{
V(1)(QT ) if T ∈ (0,∞) ,
{u ∈ L2

loc(0,∞; V) ∩ L∞(0,∞; W) : ∂tu ∈ L2
loc(0,∞; V∗)} if T =∞

and

YT =
{
L2(0, T ; V∗) if T ∈ (0,∞) ,
L2

loc(0,∞; V∗) if T =∞ .

DEFINITION 2.3. For a given T ∈ (0,∞], a pair (u, f) ∈ XT × YT is called an
admissible element if JT (u, f) < ∞ and (u, f) satisfies (2.3)−(2.4). The set of all
admissible elements is denoted by Uad(T ).

Now for each T ∈ (0,∞], we state the optimal control problem on (0, T ) as follows:

(2.10) find a (u, f) ∈ Uad(T ) such that
JT (u, f) ≤ JT (w,h) ∀ (w,h) ∈ Uad(T ) .

We point out that in general, the initial state u0 is a certain distance away from
the desired flow, or, u0 6= U(·, t) for all t, the cost functional generally has a positive
minimum. Therefore our optimal control problem has nontrivial solutions.

With the change of variables

(2.11) v = u−U and g = f −N(U) ,

(2.3), (2.4) are equivalent to (v,g) ∈ XT ×YT satisfying

(2.12)
〈∂tv(t),w〉+ a(v(t),w) + c(v(t),v(t),w) + c(U(t),v(t),w)

+ c(v(t),U(t),w) = (g(t),w) ∀w ∈ V a.e. t ∈ (0, T )
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and

(2.13) lim
t→0+

v(t) = u0 −U0 in W .

The cost functional can be rewritten as

(2.14) KT (v,g) def JT (v+U,g+N(U)) =
α

2

∫ T

0

∫
Ω
|v|2 dxdt+ β

2

∫ T

0

∫
Ω
|g|2dxdt .

By defining

Vad(T ) def {(v,g) ∈ XT ×YT : KT (v,g) <∞, (v,g) satisfies (2.12), (2.13)}

for each T ∈ (0,∞], we can restate the optimization problem (2.10) in terms of the
auxiliary variables (v,g):

(2.15)
find a (v,g) ∈ Vad(T ) such that
KT (v,g) ≤ KT (w,h) ∀ (w,h) ∈ Vad(T ) .

2.2. A linear feedback distributed control—a quasi optimizer. To esti-
mate the dynamics of the optimal control solution, we need to find a sharp bound
for the value of inf(u,f)∈Uad(T ) JT (u, f). It is important that this bound is uniform
in T . We now construct a quasi optimizer (ũ, f̃) ∈ Uad(∞) for J∞(·, ·) by means of
a linear feedback. We can in turn derive some preliminary estimates for the opti-
mal solutions. By a quasi optimizer we mean an element (ũ, f̃) ∈ Uad(∞) satisfying
‖ũ(t)−U(t)‖ → 0 as t→∞. The following theorem asserts the existence of such an
element.

THEOREM 2.4. There exists a pair (ũ, f̃) ∈ Uad(∞) satisfying

(2.16) ‖ũ(t)−U(t)‖2 ≤ ‖u0 −U0‖2 exp{−(k̃ + νλ1 − C1 |‖∇U‖|2 /ν)t}

for some k̃ > M , where C1 > 0 is a constant depending only on Ω, λ1 > 0 is the
Poincaré constant in (2.2),

(2.17) M = M(|‖∇U‖|) def C1 |‖∇U‖|2

ν
− νλ1,

and

(2.18) JT (ũ, f̃) ≤ K ‖u0 −U0‖2
(

1− exp{−T
√
β2M2 + 4αβ/β}

)
∀T ∈ (0,∞],

where

(2.19) K = K(∇U, α, β) def
4αβ +

(√
β2M2 + 4αβ + βM

)2

8
√
β2M2 + 4αβ

.

If, in addition, ∇U ∈ L∞(Ω × (0,∞)), then the constant M in (2.18), (2.19) can be
replaced by

(2.20) M ′ = M ′(‖‖∇U‖‖) def 4 ‖‖∇U‖‖ − 2νλ1.
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Proof. Let k > 0 be an arbitrary (fixed) constant, and we seek a solution u ∈ X∞
for the following Navier–Stokes equations with a linear feedback in the body force:

(2.21)
〈∂tu(t),w〉+ a(u(t),w) + c(u(t),u(t),w)

= −k
2

(u(t),w) + (kU(t)/2 + N(U(t)),w) ∀w ∈ V a.e. t ∈ (0,∞)

and

(2.22) lim
t→0+

u(t) = u0 in W .

As the term −k(u/2,w) has the right sign when moved to the left-hand side and
by (2.6), U ∈ L∞(0, T ; L2(Ω)), we can use the techniques for the Navier–Stokes
equations (see [6] and [18]) to show that there exists a u ∈ X∞ that satisfies (2.21),
(2.22) provided k is bounded from below by a certain finite number (the range of k
will be determined later in the proof). By setting v = u−U we see that v satisfies

(2.23)
〈∂tv(t),w〉+ a(v(t),w) + c(v(t),v(t),w) + c(U(t),v(t),w)

+ c(v(t),U(t),w) = −k
2

(v(t),w) ∀w ∈ V a.e. t ∈ (0,∞)

and

(2.24) lim
t→0+

v(t) = u0 −U0 in W .

Setting w = v(t) in (2.23), we obtain

(2.25)
1
2
d

dt
‖v(t)‖2 + ν ‖∇v(t)‖2 +

k

2
‖v(t)‖2 = −c(v(t),U(t),v(t)) .

We deduce from the Ladyzhenskaya inequality ‖v‖2L4(Ω) ≤ C ‖v‖ ‖∇v‖ for all v ∈
H1(Ω) that

(2.26)
|c(v(t),U(t),v(t))| ≤ ‖v(t)‖2L4(Ω) ‖∇U(t)‖ ≤ C ‖v(t)‖ ‖∇v(t)‖ |‖∇U‖|

≤ ν

2
‖∇v(t)‖2 +

C

ν
‖v(t)‖2 |‖∇U‖|2 ,

so that from (2.25) and Poincaré inequality (2.2) we obtain

(2.27)
d

dt
‖v(t)‖2 +

(
k + νλ1 −

C1 |‖∇U‖|2

ν

)
‖v(t)‖2 ≤ 0 ,

where λ1 is the Poincaré constant in (2.2) and C1 > 0 is a constant depending only
on Ω. Thus, if k satisfies

(2.28) k > M = M (|‖∇U‖|) def C1 |‖∇U‖|2

ν
− νλ1 ,

then we may apply the Gronwall inequality to (2.27) to obtain

(2.29) ‖v(·, t)‖2 ≤ ‖u0 −U0‖2 exp{−(k −M)t}.
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Setting f = −kv/2 + N(U) and g = −kv/2, we see that for each T ∈ (0,∞],

(2.30)

JT (u, f) = KT (v,g) =
α

2

∫ T

0

∫
Ω
|v|2 dx dt+

β

2

∫ T

0

∫
Ω
|g|2 dx dt

≤
(
4α+ βk2) ‖u0 −U0‖2

8

∫ T

0
exp{−(k −M)t} dt

=

(
4α+ βk2) ‖u0 −U0‖2 · (1− exp{−(k −M)T})

8(k −M)
.

We now choose a particular k and define ũ. We notice that the function

θ(k) def 4α+ βk2

k −M

defined for k ∈ (M,∞) attains its minimum at

(2.31) k̃
def 1

β

(√
β2M2 + 4αβ + βM

)
> M .

We let ũ denote the solution of (2.21), (2.22) with k = k̃. Upon setting ṽ = ũ −U,
f̃ = −kṽ/2 + N(U), and g̃ = −kṽ/2, and using (2.30), we are led to

(2.32)
JT (ũ, f̃) ≤ 1

8
θ(k̃) ‖u0 −U0‖2 (1− exp{−(k̃ −M)T})

=
(4α+ βk̃2)‖u0 −U0‖2

8(k̃ −M)
(1− exp{−(k̃ −M)T})

for all T ∈ (0,∞], so that (2.18) is proved with

K
def 4α+ βk̃2

8(k̃ −M)
=

4αβ + (
√
β2M2 + 4αβ + βM)2

8
√
β2M2 + 4αβ

.

Also, (2.16) follows from (2.29) with k = k̃.
If, in addition, ∇U ∈ L∞(Ω×(0,∞)), then from (2.25) we have, instead of (2.26),

|c(v(t),U(t),v(t))| ≤ 2 ‖‖∇U‖‖ ‖v(t)‖2

so that, instead of (2.27),

d

dt
‖ṽ(t)‖2 + (k + 2νλ1 − 4 ‖‖∇U‖‖) ‖ṽ(t)‖2 ≤ 0 .

Evidently, upon replacing M by M ′ (defined by (2.20)) in the foregoing arguments
after (2.27), we see that (2.16) and (2.18) now hold with M = M ′.

In what follows, the element (ũ, f̃) will always denote the one constructed in
Theorem 2.4. As a consequence of (2.18) and the intermediate-value theorem we
obtain the following bound for JT (ũ, f̃):

COROLLARY 2.5. If the assumptions of Theorem 2.4 hold, then

(2.33) JT (ũ, f̃) ≤ min
{
K,

T

8
(4α+ βk̃2)

}
‖u0 −U0‖2

for all T ∈ (0,∞], where k̃ is given by (2.31) and K is given by (2.19).
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It follows trivially from Corollary 2.5 that

(2.34) min
(u,f)∈Uad(T )

JT (u, f) = O(T ) as T → 0+.

Remark 2.6. In Theorem 2.4, we see that a quasi optimizer (ũ, f̃) has been created
in the sense that ‖ũ(t)−U(t)‖ → 0 and J∞(ũ, f̃) is finite. In fact, ‖ũ(t)−U(t)‖ → 0
exponentially as t→∞. Also, the computation of (ũ, f̃) def (U + ṽ,N(U)− k̃ṽ/2) is
straightforward—one only needs to integrate the initial value problem (2.21), (2.22)
with k = k̃. However, we point out that −k̃ṽ/2 + N(U) acts as an external force to
the flow, and both ṽ and k̃ can be large; therefore the work (external force) required
to achieve the quasi optimizer may be prohibitively expensive. The true optimizer û
is expected to have the property ‖û(t)−U(t)‖ → 0 as t→∞ and, at the same time,
minimize the work involved to realize and maintain the optimized flow.

2.3. Preliminary estimates for the dynamics of admissible elements.
With the aid of the quasi optimizer constructed in Theorem 2.4, we are prepared to
derive some estimates for the dynamics of all solutions of (2.3), (2.4). These estimates
in turn will allow us to derive preliminary estimates for the dynamics of the optimal
solutions. First, we consider the L∞(0, T ; L2(Ω)) estimates in terms of the initial data
and the functional values.

THEOREM 2.7. Let T ∈ (0,∞]. Assume that (u, f) ∈ Uad(T ). Then

(2.35) ‖u(t)−U(t)‖2 ≤ ‖u0 −U0‖2 +
C

ν
max

{
|‖∇U‖|2

α
,

1
β

}
JT (u, f)

for all t ∈ [0, T ]. If, in addition,

(2.36) JT (u, f) ≤ JT (ũ, f̃),

then

(2.37) ‖u(t)−U(t)‖2 ≤ K0 · ‖u0 −U0‖2 ,

where

(2.38) K0 = K0(∇U, α, β) def 1 +
C

ν
max

{
|‖∇U‖|2

α
,

1
β

}
·K

with K = K(∇U, α, β) defined by (2.19).
Proof. Since (v,g) def (u−U, f −N(U)) satisfies (2.12), by setting w = v(t) in

(2.12) and using the inequality ‖v‖2L4(Ω) ≤ C ‖v‖ ‖∇v‖ for all v ∈ H1(Ω), we obtain
that for a.e. t ∈ (0, T ),

1
2
d

dt
‖v(t)‖2 + ν ‖∇v(t)‖2 = c(v(t),U(t),v(t)) + (g(t),v(t))

≤ C |‖∇U‖| ‖v(t)‖ ‖∇v(t)‖+ ‖g(t)‖ ‖v(t)‖

≤ C

ν

(
|‖∇U‖|2 ‖v(t)‖2 + ‖g(t)‖2

)
+
ν

2
‖∇v(t)‖2

so that

(2.39)
d

dt
‖v(t)‖2 + ν‖∇v(t)‖2 ≤ C

ν
max

{
|‖∇U‖|2

α
,

1
β

} (
α‖v(t)‖2 + β‖g(t)‖2

)
.
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Multiplying the last inequality by eνλ1t and integrating over (0, t), we arrive at

‖v(t)‖2 ≤ ‖u0 −U0‖2 e−νλ1t

+
C

ν
max

{
|‖∇U‖|2

α
,

1
β

} ∫ t

0

(
α‖v(s)‖2 + β‖g(s)‖2

)
e−νλ1(t−s) ds,

which easily yields (2.35). We see that (2.37) follows from (2.35) and (2.18).
Now, we derive the L∞(0, T ; H1(Ω)) estimates. To this end, we recall two well-

known results. The first result is the uniform Gronwall inequality (see [19, Lemma
III.1.1]).

UNIFORM GRONWALL LEMMA. Let g, h, and y be three nonnegative locally inte-
grable functions on t ∈ (t0,∞) such that y′ is locally integrable on (t0,∞) and that

dy

dt
≤ gy + h ∀ t ≥ t0 ,∫ t+r

t

g(s)ds ≤ a1 ,

∫ t+r

t

h(s)ds ≤ a2 , and
∫ t+r

t

y(s)ds ≤ a3 ∀ t ≥ t0,

where r > 0 and a1, a2, a3 are constants. Then

(2.40) y(t+ r) ≤
(a3

r
+ a2

)
ea1 ∀ t ≥ t0.

The second result is that for the Leray operator

(2.41) P : L2(Ω)→W

(i.e., the orthogonal projection with respect to the L2(Ω)-norm), it is well known (see
[6]) that there is a constant γ > 0 depending only on Ω such that

(2.42) γ‖w‖2 ≤ ‖P∆w‖ ≤ ‖w‖2 ∀w ∈ H2(Ω) ∩V ,

so that ‖P∆ · ‖ is equivalent to the H2(Ω)-norm on H2(Ω) ∩V.
THEOREM 2.8. Let T ∈ (0,∞]. Assume that (u, f) ∈ Uad(T ) and that (2.36)

holds. Then for each ε > 0,

(2.43) u−U ∈ L2(0, T ; H1(Ω)) ∩ L∞(ε, T ; H1(Ω)) ∩ C([ε, T ]; H1(Ω)),

(2.44)
∫ T

0
‖∇u(s)−∇U(s)‖2ds ≤ K1 · ‖u0 −U0‖2,

and

(2.45) ‖∇u(t)−∇U(t)‖2 ≤ K1(ε) · ‖u0 −U0‖2 ∀ t ∈ [ε, T ] ,

where

(2.46) K1 = K1(∇U, α, β) def 1
ν

+
C

ν2 max

{
|‖∇U‖|2

α
,

1
β

}
K = K0/ν ,

with K0 and K given in Theorems 2.7 and 2.4, and

(2.47)
K1(ε) = K1(ε,U, α, β) def exp

{
‖u0 −U0‖4K0K1/ν3}

·
{

1
ε
K1 +

C

ν3

[
(|‖U‖|2 |‖∇U‖|2 + ν2 |‖∇U‖| |‖∆U‖|)K1 +

ν2K

β

]}
.
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Proof. Let T ∈ (0,∞] be given and set v = u − U. We first note that (2.45)
follows from integrating (2.39). Thus u−U ∈ L2(0, T ; H1(Ω)).

To show u−U ∈ L∞(ε, T ; H1(Ω)) for any ε > 0, it suffices to derive the estimate
(2.45). We set w = −P∆v(t) in (2.12) to obtain

1
2
d

dt
‖∇v(t)‖2 + ν‖P∆v(t)‖2

= ([v(t) · ∇]v(t),−P∆v(t))− ([U(t) · ∇]v(t),−P∆v(t))
− ([v(t) · ∇]U(t),−P∆v(t)) + (g(t),−P∆v(t)) .

Applying Sobolev imbedding and interpolation results, together with Young’s inequal-
ity and (2.42), we have

1
2
d

dt
‖∇v(t)‖2 + ν ‖P∆v(t)‖2

≤ C(‖v(t)‖L4(Ω) ‖∇v(t)‖L4(Ω) + ‖U(t)‖L4(Ω) ‖∇v(t)‖L4(Ω)

+ ‖v(t)‖L4(Ω) ‖∇U(t)‖L4(Ω) + ‖g(t)‖) ‖P∆v(t)‖
≤ C(‖v(t)‖1/2‖∇v(t)‖ ‖P∆v(t)‖1/2

+ ‖U(t)‖1/2 ‖∇U(t)‖1/2 ‖∇v(t)‖1/2 ‖P∆v(t)‖1/2

+ ‖∇U(t)‖1/2 ‖P∆U(t)‖1/2 ‖v(t)‖1/2 ‖∇v(t)‖1/2 + ‖g(t)‖) ‖P∆v(t)‖

≤ ν

2
‖P∆v(t)‖2 +

C

ν3 (‖v(t)‖2 ‖∇v(t)‖4 + ‖U(t)‖2 ‖∇U(t)‖2 ‖∇v(t)‖2

+ ν2‖∇U(t)‖ ‖∆U(t)‖ ‖∇v(t)‖2 + ν2‖g(t)‖2).

Rearranging terms and applying Theorem 2.7 and (2.42), we obtain

(2.48)

d

dt
‖∇v(t)‖2 + ν‖P∆v(t)‖2 ≤ CK0‖u0 −U0‖2 ‖∇v(t)‖2

ν3 ‖∇v(t)‖2

+
C

ν3 [(‖U(t)‖2 ‖∇U(t)‖2 + ν2‖∇U(t)‖ ‖∆U(t)‖)‖∇v(t)‖2 + ν2‖g(t)‖2] .

We introduce

y(t) def ‖∇v(t)‖2 ,

g(t) def CK0‖u0 −U0‖2 ‖∇v(t)‖2

ν3 ,

and

h(t) def C

ν3 [(‖U(t)‖2 ‖∇U(t)‖2 + ν2‖∇U(t)‖ ‖∆U(t)‖)‖∇v(t)‖2 + ν2‖g(t)‖2] .

For each ε > 0, by Theorem 2.7 and (2.44) we have∫ t+ε

t

y(s)ds ≤ ‖u0 −U0‖2 ·K1 ,

∫ t+ε

t

g(s)ds ≤ ‖u0 −U0‖4
CK0K1

ν3 ,



666 L. S. HOU AND Y. YAN

and∫ t+ε

t

h(s)ds

≤ ‖u0 −U0‖2
C

ν3 (|‖U‖|2 |‖∇U‖|2 + ν2 |‖∇U‖| |‖∆U‖|)K1 +
C

ν

∫ t+ε

t

‖g(s)‖2ds

≤ ‖u0 −U0‖2
C

ν3 (|‖U‖|2 |‖∇U‖|2 + ν2 |‖∇U‖| |‖∆U‖|)K1 +
C

νβ
JT (u, f)

so that by (2.36) and (2.18),∫ t+ε

t

h(s)ds

≤ ‖u0 −U0‖2
C

ν3β

{
β
[
|‖U‖|2 |‖∇U‖|2 + ν2 |‖∇U‖| |‖∆U‖|

]
K1 + ν2K

}
.

Hence, (2.45) follows from the uniform Gronwall inequality (2.40) (applied to (2.48))
and the last three estimates for y, g, and h.

Finally, we prove u −U ∈ C([ε, T ]; H1(Ω)). Integrating (2.48) for t ∈ [ε, T ] and
utilizing the bounds for g(t), h(t), and y(t), we obtain

νλ1

∫ T

ε

‖P∆v(t)‖2 dt ≤ y(ε) +
∫ T

ε

(g(t)y(t) + h(t)) dt

≤
∫ T

ε

h(t) dt+

(
sup

t∈(ε,T )
y(t)

)
·
(

1 +
∫ T

ε

g(t) dt

)
<∞.

Hence v ∈ L2(ε, T ; H2(Ω)). From (2.39) we easily see that vt = νP∆v−P (v ·∇)v−
P (U ·∇)v−P (v ·∇)U+P f ∈ L2(ε, T ; L2(Ω)), where P is the Leray operator defined
in (2.41). Therefore, ∇v ∈ L2(ε, T ; (H1(Ω))2) and (∇v)t ∈ L2(ε, T ; (H−1(Ω))2).
From [17, Lemma 5.5.1], we conclude that ∇v ∈ C([ε, T ]; L2(Ω)), which implies v ∈
C([ε, T ]; H1(Ω)).

An immediate consequence of Theorems 2.7 and 2.8 is the following preliminary
estimates for the optimal solutions.

THEOREM 2.9. Let T ∈ (0,∞]. Assume (û, f̂) ∈ Uad(T ) is an optimal solution
for (2.10). Then

(2.49) ‖û(t)−U(t)‖2 ≤ K0 · ‖u0 −U0‖2 ∀ t ∈ [ε, T ] ,

(2.50)
∫ T

0
‖∇û(s)−∇U(s)‖2ds ≤ K1 · ‖u0 −U0‖2 ,

and

(2.51) ‖∇û(t)−∇U(t)‖2 ≤ K1(ε) · ‖u0 −U0‖2 ∀ t ∈ [ε, T ] ,

where all the constants are as defined in Theorems 2.7 and 2.8.
Remark 2.10. The quantity K1(ε) is unbounded as ε→ 0:

(2.52) K1(ε) = O(1/ε) as ε→ 0+.

Remark 2.11. If T = ∞, then the interval [ε, T ] in (2.43), (2.45), (2.49), and
(2.51) (and elsewhere in this paper) should be understood as [ε,∞).
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3. Existence of an optimal control.

3.1. The case of finite time intervals. In this subsection, we first quote the
results of [8], [9], and [10] concerning the existence of an optimal solution for (2.10)
with T < ∞ and concerning an optimality system. We then derive some estimates
for the adjoint equations.

With the notion of admissible elements, admissible sets and optimal solutions
were introduced in section 2.1 together with the functional spaces. We may state the
results of [8], [9], and [10] as follows.

THEOREM 3.1. Let T ∈ (0,∞). Then there exists a optimal solution (û, f̂) ∈
Uad(T ) for the problem (2.10). Furthermore, there exists ξ̂ ∈ V(1)(QT ) such that

(3.1)
−〈∂tξ̂(t),w〉+ a(ξ̂(t),w) + c(û(t),w, ξ̂(t)) + c(w, û(t), ξ̂(t))

= α (v̂(t),w) ∀w ∈ V a.e. t ∈ (0, T ) ,

(3.2) lim
t→T−

ξ̂(t) = 0 in W,

and

(3.3) ξ̂+ β ĝ = 0 in Ω× (0, T ),

where v̂ def û−U and ĝ def f̂ −N(U).
From this theorem we see that the optimal solution (û, f̂) together with the La-

grange multiplier ξ̂ satisfies equations (2.12), (2.13) and (3.1), (3.3). Note that (3.3)
allows us to eliminate the variable f in (2.12). We collect these equations here to form
an optimality system of equations:

(3.4)
〈∂tû(t),w〉+ a(û(t),w) + c(û(t), û(t),w)

= (f̂(t),w) ∀w ∈ V a.e. t ∈ (0, T ),

(3.5) lim
t→0+

û(t) = u0 in W ,

(3.6)
−〈∂tξ̂(t),w〉+ a(ξ̂(t),w) + c(û(t),w, ξ̂(t)) + c(w, û(t), ξ̂(t))

= α (v̂(t),w) ∀w ∈ V a.e. t ∈ (0, T ),

and

(3.7) lim
t→T−

ξ̂(t) = 0 in W .

Based on the optimality system and the preliminary estimates for the optimal
solutions, we may obtain estimates for ξ̂ on finite time intervals.

THEOREM 3.2. Let T ∈ (0,∞). Assume that (û, f̂) ∈ Uad(T ) is a solution for
(2.10) and that ξ̂ ∈ V(1)(QT ) is a solution for (3.1)–(3.3). Then, for each ε > 0,

(3.8) ‖ξ̂(t)‖2 + ν

∫ T

t

‖∇ξ̂(s)‖2ds ≤ C

ν
max {α, βρ2

1(ε)}JT (û, f̂) ∀ t ∈ [ε, T ] ,

where

(3.9) ρ1(ε) def
K1(ε) ‖u0 −U0‖+ |‖∇U‖| <∞ .
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Proof. For each ε > 0, we clearly have ρ1(ε) <∞. Equation (3.3) yields

ξ̂ = −β ĝ .

Setting w = ξ̂(t) in (3.1), we have

(3.10)
− 1

2
d

dt
‖ξ̂(t)‖2 + ν ‖∇ξ̂(t)‖2 = α (v̂(t), ξ̂(t))− c(ξ̂(t), û(t), ξ̂(t))

≤ α ‖v̂(t)‖ ‖ξ̂(t)‖+ C ‖∇û(t)‖ ‖ξ̂(t)‖ ‖∇ξ̂(t)‖ .

From the triangle inequality and estimate (2.51) we obtain

‖∇û(t)‖ ≤ ‖∇û(t)−∇U(t)‖+ ‖∇U(t)‖ ≤ ρ1(ε) ∀ t ∈ [ε, T ] .

Using Young’s inequality in (3.10) and using the last relation, we are led to

− d

dt
‖ξ̂(t)‖2 + ν ‖∇ξ̂(t)‖2 ≤ C

ν
(α2‖v̂(t)‖2 + ‖∇û(t)‖2 ‖ξ̂(t)‖2)

≤ C

ν
max

{
α, βρ2

1(ε)
} (

α‖v̂(t)‖2 + β‖ĝ(t)‖2
)
.

Integrating both sides over the interval (t, T ′) ⊂ (0, T ) and using the fact that
limT ′→T− ξ̂(T ′) = 0, we obtain the desired estimate for ξ.

3.2. The case of the infinite time interval. We now prove the existence of
an optimal solution for (2.10) on the infinite time interval (0,∞). We will make use
of the existence results on finite time intervals.

THEOREM 3.3. There exists a solution (û, f̂) ∈ Uad(∞) for (2.10) with T = ∞.
Furthermore, there exists a ξ̂ ∈ V(1)

loc (Q) which satisfies (3.1) and (3.3) with T =∞.
Proof. For each T ∈ (0,∞), we may use Theorem 3.1 to choose a (uT , fT ) ∈ Uad(T )

which solves (2.10). Thus, (uT , fT ) satisfies

(3.11) JT (uT , fT ) = inf
(w,h)∈Uad(T )

JT (w,h) ,

(3.12)
〈∂tuT (t),w〉+ a(uT (t),w) + c(uT (t),uT (t),w)

= (fT (t),w) ∀w ∈ V a.e. t ∈ (0, T ),

and

(3.13) lim
t→0+

uT (t) = u0 in W .

Furthermore, there exists a ξT ∈ V(1)(QT ) which satisfies (3.1)–(3.3).
For each finite T , we obviously have [Uad(∞)]|(0,T ) ⊂ Uad(T ). Thus, for each

(w,h) ∈ Uad(∞),

(3.14) JT (uT , fT ) ≤ JT (w,h) ≤ J∞(w,h) .

Since J∞(ũ, f̃) < ∞ so that (ũ, f̃) ∈ Uad(∞), where (ũ, f̃) is constructed in section
2.2, it follows that inf(w,h)∈Uad(∞) J∞(w,h) < ∞. For each T ∈ (0,∞), we obtain
from (3.14) that

(3.15) JT (uT , fT ) ≤ inf
(w,h)∈Uad(∞)

J∞(w,h) <∞ .
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For each integer k > 0, we denote by (uk, fk) a solution of (3.11)–(3.13) for T = k
and denote by ξk the corresponding multiplier which satisfies (3.1)–(3.3). We set
(vk,gk) def (uk −U, fk −N(U)). Then, (vk,gk) is a solution of (2.12), (2.13) with
T = k. Using (3.15) and standard estimates for the Navier–Stokes equations on finite
time intervals, we obtain that ‖gk‖L2(0,k;L2(Ω)), ‖uk‖V(1)(Qk), and ‖uk‖L∞(0,k;W) are
uniformly bounded for all k. Using the estimate (3.8), we obtain that ‖ξk‖V(1)(Ω×(ε,k))
and ‖ξk‖L∞(ε,k;W) are uniformly bounded for all ε > 0 and k. Hence, by induction we
may choose successive subsequences of positive integers {k(m)

n }∞n=1 for m = 1, 2, . . .
such that {k(1)

n }∞n=1 ⊃ {k
(2)
n }∞n=1 ⊃ {k

(3)
n }∞n=1 ⊃ · · · and

v
k

(m)
n

⇀ v(m) in V(1)(Qm) as n→∞ ,

v
k

(m)
n

∗
⇀v(m) in L∞(0,m; W) as n→∞ ,

g
k

(m)
n

⇀ g(m) in L2(0,m; W) as n→∞ ,

ξ
k

(m)
n

⇀ ξ(m) in V(1)(Ω× (1/m,m)) as n→∞,
and

ξ
k

(m)
n

∗
⇀ ξ(m) in L∞(1/m,m; W) as n→∞

for some v(m) ∈ V(1)(Qm), g(m) ∈ L2(0,m; W), and ξ(m) ∈ V(1)(Ω× (1/m,m)). (We
remark that V(1)(Qm) ⇀ L∞(0,m; W) and V(1)(Ω × (1/m,m)) ⇀ L∞(ε,m; W).)
Hence, by extracting the diagonal subsequence, we have that for each m′,

(3.16) v
k

(m)
m

⇀ v(m′) in V(1)(Qm′) as m→∞ ,

(3.17) v
k

(m)
m

∗
⇀v(m′) in L∞(0,m′; W) as m→∞ ,

(3.18) g
k

(m)
m

⇀ g(m′) in L2(0,m′; W) as m→∞ ,

(3.19) ξ
k

(m)
m

⇀ ξ(m′) in V(1)(Ω× (1/m′,m′)) as m→∞

and

(3.20) ξ
k

(m)
m

∗
⇀ ξ(m′) in L∞(1/m′,m′; W) as m→∞ .

For each integer m′ > 0, (3.16)–(3.18) and standard techniques for the Navier–Stokes
equations (see, e.g., [18]) allow us to pass to the limit as m→∞ in the equation

(3.21)∫ m′

0
〈∂tvk(m)

m
(t),w〉ψ(t) dt+

∫ m′

0
a(v

k
(m)
m

(t),w)ψ(t) dt

+
∫ m′

0
c(v

k
(m)
m

(t),v
k

(m)
m

(t),w)ψ(t) dt

+
∫ m′

0
c(U(t),v

k
(m)
m

(t),w)ψ(t) dt+
∫ m′

0
c(v

k
(m)
m

(t),U(t),w)ψ(t) dt

=
∫ m′

0
(g
k

(m)
m

(t),w)ψ(t) dt ∀w ∈ V, ψ ∈ C[0,m′] with ψ(m′) = 0
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to obtain

(3.22)∫ m′

0
〈∂tv(m′)(t),w〉ψ(t) dt+

∫ m′

0
a(v(m′)(t),w)ψ(t) dt

+
∫ m′

0
c(v(m′)(t),v(m′)(t),w)ψ(t) dt

+
∫ m′

0
c(U(t),v(m′)(t),w)ψ(t) dt+

∫ m′

0
c(v(m′)(t),U(t),w)ψ(t) dt

=
∫ m′

0
(g(m′)(t),w)ψ(t) dt ∀w ∈ V, ψ ∈ C[0,m′] with ψ(m′) = 0,

which is equivalent to

(3.23)
〈∂tu(m′)(t),w〉+ a(u(m′)(t),w) + c(u(m′)(t),u(m′)(t),w)

= (f (m′)(t),w) ∀w ∈ V a.e. t ∈ (0,m′),

where u(m′) = v(m′) + U. Similarly, for each positive integer m′, we may pass to the
limit as m→∞ in the equations

(3.24)
− 〈∂tξk(m)

m
(t),w〉+ a(ξ

k
(m)
m

(t),w) + c(u
k

(m)
m

(t),w, ξ
k

(m)
m

(t))

+ c(w,u
k

(m)
m

(t), ξ
k

(m)
m

(t)) = α (v
k

(m)
m

(t),w) ∀w ∈ V a.e. t ∈ (0,m′)

and

(3.25) ξ
k

(m)
m

+ β g
k

(m)
m

= 0 in Ω× (1/m′,m′)

to obtain

− 〈∂tξ(m′)(t),w〉+ a(ξ(m′)(t),w) + c(u(m′)(t),w, ξ(m′)(t))

+ c(w,u(m′)(t), ξ(m′)(t)) = α (v(m′)(t),w) ∀w ∈ V a.e. t ∈ (0,m′)

and

ξ(m′) + β g(m′) = 0 in Ω× (1/m′,m′).

By the uniqueness of weak limits, we have that v(m1)|(0,m2) = v(m2), g(m1)|(0,m2) =
g(m2) and ξ(m1)|(0,m2) = ξ(m2) for all m1, m2 with m1 < m2. Thus, the functions

v̂(t) def v(m)(t) (if t ≤ m) ,

ĝ(t) def g(m)(t) (if t ≤ m),

and

ξ̂(t) def
ξ(m)(t) (if (1/m) ≤ t ≤ m)

are well defined on (0,∞); furthermore, v̂ ∈ V(1)
loc (Q), ĝ ∈ L2(0,∞; L2(Ω)), and

ξ̂ ∈ V(1)
loc (Q). Upon setting û = v̂ + U and f̂ = g + F and noting that m′ is arbitrary

in (3.23)–(3.25), we are easily led to

(3.26)
〈∂tû(t),w〉+ a(û(t),w) + c(û(t), û(t),w)

= (f̂(t),w) ∀w ∈ V a.e. t ∈ (0,∞) ,
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−〈∂tξ̂(t),w〉+ a(ξ̂(t),w) + c(u(t),w, ξ̂(t)) + c(w,u(t), ξ̂(t))
= α (v̂(t),w) ∀w ∈ V a.e. t ∈ (0,∞) ,

and

ξ̂+ β ĝ = 0 in Ω× (0,∞) .

We now examine the initial condition for û. Let ψ be a continuously differentiable
function in [0,∞) with a bounded support. Equation (3.21) can be rewritten as

〈∂tuk(m)
m

(t),w〉+ a(u
k

(m)
m

(t),w) + c(u
k

(m)
m

(t),u
k

(m)
m

(t),w)

= (f
k

(m)
m

(t),w) ∀w ∈ V a.e. t ∈ (0,m′) (m > m′) .

Multiplying the last equation by ψ(t), integrating by parts, and using the fact that
u
k

(m)
m

(0) = u0, we are led to

−
∫ ∞

0
(u
k

(m)
m

(t), z)ψ′(t) dt+ ν

∫ ∞
0

∫
Ω
ψ(t)∇u

k
(m)
m

(t) : ∇z dx dt

+
∫ ∞

0

∫
Ω
ψ(t) (u

k
(m)
m

(t) · ∇)u
k

(m)
m

(t) · z dx dt = ψ(0) (u0, z) ∀ z ∈ V .

Thus, by passing to the limit in the last equation we obtain

(3.27)
−
∫ ∞

0
(û(t), z)ψ′(t) dt+ ν

∫ ∞
0

∫
Ω
ψ(t)∇û(t) : ∇z dx dt

+
∫ ∞

0

∫
Ω
ψ(t) (û(t) · ∇)û(t) · z dx dt = ψ(0) (u0, z) ∀ z ∈ V .

On the other hand, by multiplying (3.26) by ψ(t) and integrating by parts we obtain

(3.28)
−
∫ ∞

0
(û(t), z)ψ′(t) dt+ ν

∫ ∞
0

∫
Ω
ψ(t)∇û(t) : ∇z dx dt

+
∫ ∞

0

∫
Ω
ψ(t) (û(t) · ∇)û(t) · z dx dt = ψ(0) (û(0), z) ∀ z ∈ V .

Here we have used the continuous imbedding result V(1)(Q) ↪→ C([0, T ]; W) so that
û(0) is well defined in W. A comparison of (3.27) and (3.28) yields û(0) = u0 in W.

Finally, using the lower semicontinuity of the functional JT (·, ·) and the fact that
v̂ = û−U ∈ L2(0,∞; V) and ĝ = f̂ − F ∈ L2(0,∞; W), we obtain

J
k

(m)
m

(û, f̂) ≤ lim inf
m→∞

J
k

(m)
m

(u
k

(m)
m
, f
k

(m)
m

) ≤ J∞(w,h) ∀ (w,h) ∈ Uad(∞)

so that by letting m→∞,

J∞(û, f̂) ≤ J∞(w,h) ∀ (w,h) ∈ Uad(∞) .

Hence we have shown that (û, f̂) is the desired optimizer for (2.10) with T =∞.
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4. Dynamics of optimal control solutions on the infinite time interval.
As mentioned in the introduction, one of the motivations of considering infinite time
optimal control is that one wishes the dynamics, or at least the eventual dynamics,
of optimal control solutions to match well with the desired dynamics. Minimizing
the cost functional (1.1) forces the controlled flow û to be close to the desired flow
U only in the L2 sense in t. For some t ‖u(t) − U(t)‖ can still be very large. To
reduce the error of the dynamics in t, e.g., to reduce the value of ‖u(t) −U(t)‖ as
t → ∞, one needs to control the system for a long time. For many feedback control
models, the controlled flow exponentially decays to the desired flow. For the optimal
control system with a functional of the type (1.1), this is not expected to be true. But
we may still obtain some results on their pointwise dynamics. Theorems 2.7 and 2.8
gave some preliminary results in this regard, i.e., ‖u(t)−U(t)‖ and ‖∇u(t)−∇U(t)‖
stay bounded. We will prove much stronger results in this section: ‖u(t)−U(t)‖ and
‖∇u(t)−∇U(t)‖ approach zero as t goes to ∞. We point out that these last results
are not unique to the solutions of the optimal control system; these results can be
proved under weaker conditions.

We first establish the “reverse” inequalities as opposed to the inequalities in The-
orem 2.7.

LEMMA 4.1. Let T ∈ (0,∞]. Assume (u, f) ∈ Uad(T ). If ‖u(t) −U(t)‖ > 0 for
all t ∈ (t1, t2) ⊂ [0, T ], then

(4.1)

‖u(t1)−U(t1)‖ ≥ ‖u(t2)−U(t2)‖

− C
√
t2 − t1

(
|‖∇U‖|4

αν2 +
1
β

)1/2

(JT (u, f))1/2
.

Assume further that (2.36) holds, i.e., JT (u, f) ≤ JT (ũ, f̃), where (ũ, f̃) is as defined
in Theorem 2.4, then

(4.2)

‖u(t1)−U(t1)‖ ≥ ‖u(t2)−U(t2)‖

− C
√
t2 − t1 ‖u0 −U0‖

(
|‖∇U‖|4

αν2 +
1
β

)1/2

(K(∇U, α, β))1/2
.

Proof. By setting w = v(t) in (2.12) we obtain

‖v‖ d
dt
‖v(t)‖+ ν‖∇v(t)‖2 ≤ C |‖∇U‖| ‖v(t)‖ ‖∇v(t)‖+ ‖g(t)‖ ‖v(t)‖

≤ ν

2
‖∇v(t)‖2 +

C |‖∇U‖|2

ν
‖v(t)‖2 + ‖g(t)‖ ‖v(t)‖

for all t ∈ (0, T ). If ‖u(t)−U(t)‖ > 0 for all t ∈ (t1, t2), then we may divide the last
inequality by ‖v(t)‖ to obtain

d

dt
‖v(t)‖+

νλ1

2
‖v(t)‖ ≤ C

(
|‖∇U‖|2

ν
‖v(t)‖+ ‖g(t)‖

)

≤ C
(
|‖∇U‖|4

αν2 +
1
β

)1/2 (
α‖v(t)‖2 + β‖g(t)‖2

)1/2
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for all t ∈ (t1, t2). Multiplying the last inequality by eνλ1t/2 and integrating over
(t1, t2), we are led to

‖v(t2)‖ ≤ ‖v(t1)‖ e−νλ1(t2−t1)/2

+ Ce−νλ1t2/2

(
|‖∇U‖|4

αν2 +
1
β

)1/2 ∫ t2

t1

(
α‖v(s)‖2 + β‖g(s)‖2

)1/2
eνλ1s/2 ds

≤ ‖v(t1)‖+ C

(
|‖∇U‖|4

αν2 +
1
β

)1/2

·
(∫ t2

t1

[α‖v(s)‖2 + β‖g(s)‖2] ds
)1/2 (

e−νλ1t2

∫ t2

t1

eνλ1s ds

)1/2

≤ ‖v(t1)‖+ C

(
|‖∇U‖|4

αν2 +
1
β

)1/2

(JT (u, f))1/2
(

1− exp{−νλ1(t2 − t1)}
νλ1

)1/2

so that by applying the mean value theorem to the last factor we have shown (4.1).
(4.2) simply follows from the bound (2.18).

We are now prepared to establish the asymptotic decay property of ‖u(t)−U(t)‖
as t→∞ for any (u, f) ∈ Uad(∞).

THEOREM 4.2. Assume that (u, f) ∈ Uad(∞). Then

(4.3) lim
t→∞

‖u(t)−U(t)‖ = 0.

Proof. The theorem is trivial if J∞(u, f) = 0. Thus we assume J∞(u, f) > 0 and
proceed to prove (4.3) by contradiction. Assume that (4.3) is false. Then we may
choose an ε0 > 0 and a sequence {tn} such that tn →∞ and

‖u(tn)−U(tn)‖ ≥ ε0 > 0.

Upon setting

δ
def ε2

0

4C2 /

[(
|‖∇U‖|4

αν2 +
1
β

)
J∞(u, f)

]
> 0,

we may assume, without loss of generality (by choosing a subsequence if necessary),
that

|tn+1 − tn| ≥ δ .

We claim that for each n

‖u(t)−U(t)‖ > 0 ∀ t ∈ (tn − δ, tn) .

If the claim were not true, then there would exist an n̄ such that tn̄
def sup{t ∈

(−∞, tn̄) : ‖u(t)−U(t)‖ = 0} ∈ (tn̄−1, tn̄) satisfies |tn̄− tn̄| < δ and ‖u(t)−U(t)‖ > 0
on (tn̄, tn̄) so that by (4.1),

‖u(tn̄)−U(tn̄)‖ ≥ ‖u(tn̄)−U(tn̄)‖ − C δ1/2

(
|‖∇U‖|4

αν2 +
1
β

)1/2

(J∞(u, f))1/2

≥ ε0 − ε0/2 = ε0/2 > 0 ,



674 L. S. HOU AND Y. YAN

which would contradict ‖u(tn̄)−U(tn̄)‖ = 0. This proves the claim. Now using (4.1)
again, we have

‖u(t)−U(t)‖ ≥ ‖u(tn)−U(tn)‖ − C δ1/2

(
|‖∇U‖|4

αν2 +
1
β

)1/2

(J∞(u, f))1/2

≥ ε0 − ε0/2 = ε0/2 ∀ t ∈ (tn − δ, tn) .

Thus

J∞(u, f) ≥ α

2

∞∑
n=2

∫ tn

tn−δ
‖u(t)−U(t)‖2 dt ≥ αε2

0

8

∞∑
n=2

∫ tn

tn−δ
dt =∞ ,

contradicting the assumption J∞(u, f) <∞. Hence, (4.3) is true.
We now turn to the study of the asymptotic behavior of ‖∇u(t)−∇U(t)‖. Note

that Theorem 4.2 is true for arbitrary (u, f) ∈ Uad(∞). Under some additional as-
sumptions on u, we can establish a similar asymptotic result for ‖∇u(t) − ∇U(t)‖.
In particular, we can establish the asymptotic behavior for u = û, where (û, f̂) is the
optimizer for (2.10) with T =∞. With ξ̂ ∈ L2 (ε,∞; V) for each ε > 0, we can prove
an analog of (4.1) in the H1(Ω) norm.

LEMMA 4.3. Let T ∈ (0,∞]. Assume that (û, f̂) ∈ Uad(T ) is a solution of (2.10).
Assume further that ‖∇ (û−U) (t)‖ > 0 for all t ∈ (t1, t2) ⊂ [ε, T ]. Then

‖∇ (û−U) (t1)‖ ≥ ‖∇ (û−U) (t2)‖ − C

ν
(σ2

0σ
3
1(ε) + σ1(ε) |‖U‖|2 |‖∇U‖|2

+ ν2σ1(ε) |‖∇U‖| |‖∆U‖|)(t2 − t1)− C max{
√
α,
√
βρ1(ε)}

βν
[JT (û, f̂)]1/2

√
t2 − t1 ,

where ρ1(ε) is defined by (3.9) and

σ0
def √

K0‖u0 −U0‖,
σ1(ε) def √

K1(ε) ‖u0 −U0‖

with K0 defined by (2.37) and K1(ε) defined by (2.45).
Proof. We first note that from (2.37) and (2.45),

sup
t∈[ε,T ]

‖û‖ ≤ ρ1(ε) ,

sup
t∈[0,T ]

‖v̂(t)‖ ≤ σ0 ,

and
sup
t∈[ε,T ]

‖∇v̂(t)‖ ≤ σ1(ε) .

Setting w = −P∆v̂(t) in (2.12) and by similar treatments as in the proof of Theorem
2.8, we obtain

(4.4)

1
2
d

dt
‖∇v̂(t)‖2 +

3ν
4
‖P∆v̂(t)‖2

≤ C

ν3

(
‖v̂(t)‖2 ‖∇v̂(t)‖4 + ‖U(t)‖2 ‖∇U(t)‖2 ‖∇v̂(t)‖2

+ν2‖∇U(t)‖ · ‖∆U(t)‖ · ‖∇v̂(t)‖2 +
ν3

β
|(ξ̂(t),−P∆v̂(t))|

)
.
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Since div ξ̂(t) = 0, we have ξ̂(t) = P ξ̂(t). Thus∣∣∣(ξ̂(t),−P∆v̂(t))
∣∣∣ = (∇ξ̂(t),∇v̂(t)) ≤ ‖∇ξ̂(t)‖ · ‖∇v̂(t)‖ .

Using (2.42) and dividing both sides by ‖∇v̂‖, we have

1
2
d

dt
‖∇v̂(t)‖+

γν

2
‖∇v̂(t)‖ ≤ C

ν3

(
σ2

0σ
3
1(ε) + σ1(ε) |‖U‖|2 |‖∇U‖|2

+ν2σ1(ε) |‖∇U‖| · |‖∆U‖|+ ν3

β
‖∇ξ̂(t)‖

)
for all t ∈ (t1, t2). Multiplying both sides by eγνλ1t and integrating over (t1, t2), we
are led to

‖∇v̂(t2)‖ ≤ ‖∇v̂(t1)‖ exp{−γν(t2 − t1)}

+
C

ν3 (σ2
0σ

3
1(ε) + σ1(ε) |‖U‖|2 |‖∇U‖|2

+ σ1(ε)ν2
∣∣∥∥∇U

∥∥∣∣ · |‖∆U‖|) 1− exp{−γν(t2 − t1)}
γν

+
C exp{−γνt2}

β

∫ t2

t1

‖∇ξ̂(s)‖ exp{γνs} ds.

By the Schwarz inequality and (3.8),∫ t2

t1

‖∇ξ̂(s)‖ exp{γνs} ds

≤
(∫ t2

t1

‖∇ξ̂(s)‖2 ds
)1/2(∫ t2

t1

exp{2γνs} ds
)1/2

≤ C

ν
max{

√
α,
√
βρ1(ε)}

(
JT (û, f̂)

)1/2
(

exp{2γνt2} − exp{2γνt1}
2γν

)1/2

.

Hence, by the mean value theorem,

‖∇v̂(t2)‖ ≤ ‖∇v̂(t1)‖+
C

ν
(σ2

0σ
3
1(ε) + σ1(ε) |‖U‖|2 |‖∇U‖|2

+ σ1(ε)ν2 |‖∇U‖| · |‖∆U‖|) (t2 − t1)

+
C

βν
max{

√
α,
√
βρ1(ε)} [JT (û, f̂)]1/2

√
t2 − t1.

Based on Lemma 4.3, we may establish the long-time behavior for ‖∇û(t) −
∇U(t)‖.

THEOREM 4.4. Let (û, f̂) be an solution for (2.10) with T =∞. Then

(4.5) lim
t→∞

‖∇û(t)−∇U(t)‖ = 0.

The proof is similar to that of Theorem 4.2 (now we use the bound (2.44) of
Theorem 2.8 in place of JT (u, f) <∞) and is omitted here.

Remark 4.5. From Theorem 4.4 and the proof of Lemma 4.3, we see that the
condition (û, f̂) being an optimizer for (2.10) is not essential. If a pair (u, f) ∈ Uad(∞)
satisfies

(4.6)
∫ ∞

0

∫
Ω
|u−U|2dxdt+

∫ ∞
0

∫
Ω
|∇(f − F)|2dxdt <∞,
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(4.7) (f − F) · n = 0 in Ω,

and

(4.8) div (f − F) = 0 on ∂Ω ,

then (4.5) holds for such u. The condition (4.6) requires higher regularity of f − F,
(4.7) requires that the boundary conditions of f and F agree with each other, and
(4.8) requires div f = div F, where we recall that F = ∂tU−ν∆U+(U·∇)U.

For each finite T , ξ̂T satisfies ξ̂T (·, T ) = 0. This is also true for T = ∞, namely
limt→∞ ξ̂∞(·, t) = 0. To prove this, we first establish the following inequality.

LEMMA 4.6. Let T ∈ (0,∞] and ε > 0. Assume that (û, f̂) is a solution for
(2.10) and ξ̂ is a solution of (3.1)–(3.3). Assume further that ‖ξ̂(t)‖ > 0 for all
t ∈ (t1, t2) ⊂ [ε, T ]. Then

‖ξ̂(t2)‖ ≥ ‖ξ̂(t1)‖ −
√
t2 − t1

(
α+

Cβσ4
1(ε)
ν2

) (
JT (û, f̂)

)1/2
,

where ρ1(ε) is defined as in (3.9).
Proof. (3.10) and Young’s inequality yield

−1
2
d

dt
‖ξ̂(t)‖2 + ν ‖∇ξ̂(t)‖2 ≤ α‖v̂(t)‖ ‖ξ̂(t)‖+

C‖∇û(t)‖2
ν

‖ξ̂(t)‖2.

Then, by applying Poincaré inequality, dividing both sides by ‖ξ̂(t)‖, and then apply-
ing the Schwarz inequality, we obtain

− d

dt
‖ξ̂(t)‖+ ν λ1 ‖ξ̂(t)‖ ≤

(
α+

Cβ ‖∇û‖4

ν2

)1/2 (
α‖v̂(t)‖2 +

1
β
‖ξ̂(t)‖2

)1/2

.

By integrating both sides over (t1, t2) ⊂ [ε, T ] and applying the Schwarz inequality,
the lemma is proved.

Similar to the proof of Theorem 4.2 (we now use the bound (3.8) of Theorem 3.2),
we have the following result on the long-time behavior of ‖ξ(t)‖ as t→∞.

THEOREM 4.7. Assume that the hypotheses of Lemma 4.6 hold. Then

lim
t→∞

‖ξ̂(t)‖ = lim
t→∞

β ‖f − F‖ = 0 .

Remark 4.8. We make some comparison between the optimizer (û, f̂) and the
quasi optimizer (ũ, f̃). The optimizer û(t) matches well with U(t) for large t and
∇û(t) matches well with ∇U(t) for large t. We see from the functional (1.1) that in
obtaining a good matching of û(t) with U(t) for large t, the work done by the external
force f is also minimized. However, we are unable to prove the exponential decay of
‖û(t)−U(t)‖. The optimizer is costly to compute numerically (one needs to solve the
optimality system). The quasi optimizer ũ gives us an acceptable matching of ũ(t)
with U(t) with an exponential decay rate for ‖ũ(t)−U(t)‖. ũ is defined by a Navier–
Stokes–like equation and is therefore easy to compute (compared with the optimizer).
However, we have no control over the work involved (i.e., the corresponding external
force) in maintaining the quasi optimizer. The work to maintain the quasi optimizer
can be formidable.

Remark 4.9. In Theorems 2.4, 2.7, 2.8, 2.9, and 3.2 and Lemmas 4.1, 4.3, and 4.6,
the quantities on the right-hand side of all the estimates were independent of T (such
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as K0, K1, |‖∇U‖|, etc). This facilitated the derivation of estimates on (0,∞) and
the passage to the limit as T →∞. However, if one is only interested in corresponding
estimates on the finite time interval, then one can replace the quantities on the right-
hand side of all the estimates by their finite time counterparts (such as K0 replaced
by K0(T ), K1 by K1(T ), |‖∇U‖| by |‖∇U‖|

T

def ‖U‖L∞(0,T ;L2(Ω)), etc., where the
definitions of the quantities K0(T ), K1(T ), etc., are the obvious modifications of the
definitions for the quantities K0, K1, etc.).
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Abstract. The on-line or adaptive identification of parameters in abstract linear and nonlin-
ear infinite-dimensional dynamical systems is considered. An estimator in the form of an infinite-
dimensional linear evolution system having the state and parameter estimates as its states is defined.
Convergence of the state estimator is established via a Lyapunov estimate. The finite-dimensional
notion of a plant being sufficiently rich or persistently excited is extended to infinite dimensions. Con-
vergence of the parameter estimates is established under the additional assumption that the plant
is persistently excited. A finite-dimensional approximation theory is developed, and convergence
results are established. Numerical results for examples involving the estimation of both constant and
functional parameters in one-dimensional linear and nonlinear heat or diffusion equations and the es-
timation of stiffness and damping parameters in a one-dimensional wave equation with Kelvin–Voigt
viscoelastic damping are presented.
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1. Introduction. In this paper we develop an abstract framework for the on-
line, or adaptive, identification of unknown parameters for a class of infinite-dimen-
sional and, in general, nonlinear dynamical systems. The estimator we construct takes
the form of an infinite-dimensional linear evolution system with time-varying coeffi-
cients whose states consist of an estimator for the state of the plant and an estimator
for the unknown parameters. Our scheme can estimate both constant and functional
(e.g., spatially varying) parameters including the nonlinearity itself. That is, both the
state space of the plant and the parameter space may be infinite dimensional.

The results reported here were in fact obtained independently by two separate
groups of researchers. The efforts of the first two authors (Baumeister and Scondo)
culminated in the Ph.D. thesis of Dr. Scondo [30], while the investigation by the
second two authors (Demetriou and Rosen) led to the Ph.D. thesis of Dr. Demetriou
[6]. In this paper we have attempted to capture the essence of the problem and its
solution as treated independently by both groups of researchers in a clear and coherent
manner. However, it should be noted that, as would be expected, there are some
variations between the two treatments. Thus, the interested reader may also wish to
consult the two theses, [6] and [30], in addition to the study that we present here.
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The approach we take here represents an infinite-dimensional analogue, or exten-
sion, of some portion of the finite-dimensional treatment in [22] (see also [23] and
[24]). Convergence of the state estimator is established using a Lyapunov estimate–
based argument and an argument in the spirit of the one used to verify Barbălat’s
lemma (see [27]). In order to establish the convergence of the parameter estimates,
we require an additional assumption. This assumption, which is a richness condition
on the plant data, is an infinite-dimensional analogue of the notion of persistence
of excitation defined in [22] and [23]. In mathematical terms, we establish that the
solution to the error equations derived from the plant dynamics and the estimator
with arbitrary initial data, tends to the trivial solution as time tends to infinity. Our
primary motivation for studying these on-line identification schemes is that we ul-
timately intend to use them as a part of an indirect adaptive control algorithm for
distributed parameter systems.

Because the estimator is infinite dimensional, its implementation requires some
form of finite-dimensional approximation. Consequently, we have also developed a
rather complete approximation theory and established corresponding convergence re-
sults. In addition, while our treatment is in the context of abstract first-order sys-
tems, we have also shown how our theory can be applied to certain classes of abstract
second-order systems. A number of examples along with numerical studies have been
included to demonstrate the feasibility of our schemes.

There has been a great deal of research activity in the area of identification of
distributed parameter systems over the past two decades. An extensive treatment
of off-line schemes (e.g., output least squares, equation error, etc.) together with a
rather comprehensive survey of the literature can be found in the monograph by Banks
and Kunisch [2]. In the case of on-line, or adaptive, schemes, the available literature
is less extensive and more recent. In [1] Alt, Hoffmann, and Sprekels developed
an asymptotic embedding method for the identification of functional parameters in
linear elliptic (stationary) partial differential equations. In their approach, the elliptic
equation is embedded in a nonautonomous pseudoparabolic evolution equation in such
a way that the elliptic equation’s solution is an asymptotic steady state of the evolution
equation. In [14] Hoffmann and Sprekels introduce a form of regularization into their
embedding equations, and in [15] an abstract functional analytic framework for the
earlier results summarized above is developed. They also extend their earlier results to
certain classes of stationary elliptic and evolutionary parabolic nonlinear variational
inequalities.

In [4] Baumeister and Scondo consider parameter estimation techniques for finite-
dimensional evolution equations, while in [5] they treat linear elliptic partial differ-
ential equations. The elliptic equation is embedded in a pseudoparabolic evolution
equation having the solution to the elliptic equation and the true parameters as an
equilibrium point. Using a richness-like assumption and linear semigroup theory, they
are able to establish uniform exponential convergence to this equilibrium as t → ∞.
The extension of the treatment in [5] to abstract evolution equations via infinite-
dimensional analogues of the arguments in [22] is, to a large extent, the contribution
of the effort that we are reporting on here.

Recently Hong and Bentsman (see [16] and [17]) have studied model reference
adaptive control (MRAC) of linear n-dimensional parabolic partial differential equa-
tions. Although, strictly speaking, MRAC is not the same problem that we treat
here, there are some connections (and a number of significant differences) between
their efforts and ours. For example, the resulting error equations are formally the
same, and both treatments are concerned with state and parameter convergence. On
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the other hand, however, they deal with a specific system, while our approach is more
abstract. Their analysis is more classical, while ours is more functional analytic in
nature.

In a recent series of papers [9], [10], [11], [12], [13], [25] Duncan and Pasik-Duncan
and their coworkers have developed and analyzed adaptive control algorithms for
classes of linear stochastic distributed parameter systems. In particular, they have
considered indirect adaptive control schemes in the form of consistent least squares
and maximum likelihood estimators for the unknown parameters combined with lin-
ear quadratic (LQ) control design techniques. They consider a variety of classes of
infinite-dimensional systems, including hereditary systems [10] and systems involving
unbounded input, such as boundary and point control [9], [13]. The schemes that
they propose and techniques that they use to argue convergence are, in general, very
different from and largely unrelated to the theory that we develop here.

An outline of the remainder of the paper is as follows. In section 2 we define the
plant and the estimator equations. In section 3 we establish convergence of the state
estimator. We define the notion of persistence of excitation and establish parameter
convergence. The notion of partial persistence of excitation also is defined, and a
corresponding partial parameter convergence result is given. Our approximation re-
sults are presented in section 4, and the extension of our results to a class of abstract
second order systems is discussed in section 5. Examples together with the results of
our numerical studies are presented in section 6.

In general all notation is standard. For X and Y Banach spaces, L(X,Y ) denotes
the space of bounded linear operators from X into Y . All inner products, 〈·, ·〉, are
assumed to be linear in the first argument and conjugate linear in the second. Finally,
for X a linear space and Y a space of linear or conjugate linear functionals on X,
〈x, ϕ〉 = 〈x, ϕ〉X,Y denotes the action of the linear functional ϕ ∈ Y on the element
x ∈ X, and 〈ϕ, x〉 = 〈ϕ, x〉Y,X denotes the action of the conjugate linear functional
ϕ ∈ Y on the element x ∈ X.

2. The plant and the estimator. Let H be a Hilbert space with inner product
〈·, ·〉 and corresponding induced norm | · |. Let V be a reflexive Banach space with
norm denoted by ‖ · ‖, and assume that V is embedded densely and continuously in
H. Let V ∗ denote the conjugate dual of V (i.e., the space of continuous conjugate
linear functionals on V ) and ‖ · ‖∗ denote the usual uniform operator norm on V ∗. It
follows that

V ↪→ H ↪→ V ∗,(2.1)

with both embeddings dense and continuous. In particular we assume that

|ϕ| ≤ K‖ϕ‖, ϕ ∈ V,(2.2)

for some positive constant K. The notation 〈·, ·〉 will also be used to denote the duality
pairing between V ∗ and V induced by the continuous and dense embeddings given
in (2.1). We note that while we have chosen to develop our theory in the generality
of complex Hilbert and Banach spaces H and V , all that follows is easily modified
(simplified) to allow for H and V to be chosen to be real.

Let Q be a Hilbert space with inner product 〈·, ·〉Q and corresponding induced
norm | · |Q. Let Q∗ = Q denote the conjugate dual of Q. The Hilbert space Q is
known as the parameter space. The Hilbert space Q could be taken to be real as well.
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For each q ∈ Q, let A0(q) : V → V ∗ be a, in general, nonlinear operator satisfying the
following assumptions:

(A1) (Q-linearity) The map q → A0(q)ϕ is affine from Q into V ∗ for each ϕ ∈ V .
That is, for q ∈ Q and ϕ ∈ V we have A0(q)ϕ = A1(q)ϕ + A2ϕ, where
A1(q) : V → V ∗ and A2 : V → V ∗ are, in general, nonlinear operators from
V into V ∗ with the map q → A1(q)ϕ from Q into V ∗ linear for each ϕ ∈ V .

(A2) (V 7→ V ∗-boundedness) There exist α1, α2 > 0 such that |〈A1(q)ϕ,ψ〉| ≤
α1|q|Q‖ϕ‖‖ψ‖ for ϕ,ψ ∈ V and q ∈ Q, and |〈A2ϕ,ψ〉| ≤ α2‖ϕ‖‖ψ‖ for
ϕ,ψ ∈ V .

In order to simplify our treatment we have assumed that for q ∈ Q the operator
A0(q) is time invariant. However, it would be relatively straightforward to extend
all of the results in this section and those in the subsequent sections to the case of
a time-dependent operator, A0(t; q), t ≥ 0. Of course for some of these results to
remain valid, additional, but rather standard, assumptions on the regularity of the
map t→ A0(t; q), t ≥ 0 would be required (see, for example, [3], [19], [26], [32]).

For ϕ ∈ V , let B(ϕ) : V → Q be the linear operator defined by

〈B(ϕ)ψ, q〉Q = 〈A1(q)ϕ,ψ〉, ψ ∈ V, q ∈ Q.(2.3)

Note that assumption (A2) implies that for ϕ ∈ V , B(ϕ) ∈ L(V,Q) with

‖B(ϕ)‖L(V,Q) ≤ α1‖ϕ‖.(2.4)

Let u0 ∈ H, let f ∈ L2(0, T, V ∗) for all T > 0, and for each q ∈ Q consider the
initial value problem

Dtu(t) +A0(q)u(t) = f(t), almost every (a.e.) t > 0,(2.5)

u(0) = u0.(2.6)

By a solution to the initial value problem (2.5), (2.6) we mean a weak or variational
solution. That is, a function u ∈ L2(0, T ;V ) with Dtu ∈ L2(0, T ;V ∗) for all T > 0
which satisfies (2.5) and (2.6). Note that if u is a solution to (2.5), (2.6), then for
all T > 0, u agrees almost everywhere with a function in C([0, T ];H) (see [20]).
Note also that A0(q) monotone (i.e., 〈A0(q)ϕ − A0(q)ψ,ϕ − ψ〉 ≥ 0), hemicontinu-
ous (i.e., limλ→0〈A0(q){ϕ + λψ}, χ〉 = 〈A0(q)ϕ, χ〉, ϕ,ψ, χ ∈ V ), and coercive (i.e.,
Re〈A0(q)ϕ,ϕ〉 ≥ β0(q)‖ϕ‖2+λ0(q), ϕ ∈ V , for some β0(q), λ0(q) ∈ R with β0(q) > 0),
for example, is sufficient to guarantee the existence of a unique solution to (2.5), (2.6)
(see, for example, [3], [19], [26], [32]).

DEFINITION 2.1. A plant is a pair (q, u) for which q ∈ Q, u is a solution to (2.5),
(2.6) with q = q, and there exists a constant γ = γ(u) such that |〈B(u(t))ϕ, q〉Q| ≤
γ(u)|q|Q‖ϕ‖, t > 0, q ∈ Q, ϕ ∈ V .

Note that if (q, u) is a plant, then B(u(·)) ∈ L2 (0, T ;L(V,Q)) for all T > 0. Note
also that (2.4) implies that if (q, u) is such that ‖u(t)‖ ≤ γ, a.e. t > 0, for some γ > 0,
then (q, u) is a plant.

To demonstrate that it is in fact possible to provide sufficient conditions for a
pair (q, u) to be a plant, let q ∈ Q, let u be the solution to the initial value problem
(2.5), (2.6) with q = q, and assume that A0(q) ∈ L(V, V ∗) is coercive,

Re 〈A0(q)ϕ,ϕ〉 ≥ β0(q)‖ϕ‖2, ϕ ∈ V,(2.7)

for some β0(q) > 0. It follows (see [32, Theorem 3.6.1]) that −A0(q) : V ⊂ V ∗ → V ∗

is the infinitesimal generator of an analytic semigroup, {T0(t; q) : t ≥ 0}, of bounded
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linear operators on V ∗ and that

u(t) = T0(t; q)u0 +
∫ t

0
T0(t− s; q)f(s)ds, t ≥ 0.(2.8)

Suppose further that u0 ∈ V and that f ∈ C([0,∞];V ∗) is uniformly V ∗-Hölder
continuous. That is, there exists C > 0 and ρ ∈ (0, 1) such that ‖f(t)−f(s)‖∗ ≤ C|t−
s|ρ, 0 ≤ t, s < ∞. Assume also that there exists f∞ ∈ V ∗ such that limt→∞ ‖f(t) −
f∞‖∗ = 0.

It can be shown (see [32, Theorem 5.6.1]) that u(t) ∈ V , t ≥ 0, there exists an
element u∞ ∈ V such that A0(q)u∞ = f∞, and

lim
t→∞

‖A0(q)u(t)−A0(q)u∞‖∗ = 0.(2.9)

Now

‖u(t)‖ ≤ ‖u(t)− u∞‖+ ‖u∞‖,(2.10)

and for t ≥ 0, coercivity (i.e., (2.7)) implies that

‖u(t)− u∞‖2 ≤
1

β0(q)
Re 〈A0(q){u(t)− u∞}, u(t)− u∞〉

≤ 1
β0(q)

|〈A0(q){u(t)− u∞}, u(t)− u∞〉|

≤ 1
β0(q)

‖A0(q)u(t)−A0(q)u∞‖∗‖u(t)− u∞‖.

Consequently, (2.9) yields

lim
t→∞

‖u(t)− u∞‖ = 0.(2.11)

Similarly, recalling that u0 ∈ V , (2.7) and (2.8) imply that for all t ≥ 0

‖u(t)− u0‖ ≤
1

β0(q)
‖A0(q){u(t)− u0}‖∗

≤ 1
β0(q)

‖A0(q){T0(t; q)u0 − u0}‖∗ +
1

β0(q)
‖A0(q)v(t)‖∗

=
1

β0(q)
‖T0(t; q)A0(q)u0 −A0(q)u0‖∗ +

1
β0(q)

‖A0(q)v(t)‖∗,

where v(t) =
∫ t

0 T0(t− s; q)f(s)ds, t ≥ 0. Since {T0(t; q) : t ≥ 0} is an analytic semi-
group on V ∗ and f was assumed to be uniformly Hölder continuous, Lemma IX.1.28 in
[18] (see also the proof of Theorem 3.34 in [32]) implies that limt→0 ‖A0(q)v(t)‖∗ = 0.
It follows from the elementary properties of strongly continuous semigroups that

lim
t→0
‖u(t)− u0‖ = 0.(2.12)

Since for t ≥ 0, ‖u(t)‖ ≤ ‖u(t) − u0‖ + ‖u0‖, (2.10), (2.11), and (2.12) yield that
‖u(t)‖ is bounded on [0,∞). This, together with assumption (A2), implies that (q, u)
is a plant.

There is also another, alternative set of assumptions on A0(q), f , and u0 that
lead to the conclusion that ‖u(t)‖ is uniformly bounded for t ≥ 0 and therefore that
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(q, u) is a plant. Indeed, suppose once again that A0(q) ∈ L(V, V ∗) is coercive; that is,
(2.7) holds. Suppose further that A0(q) is symmetric in the sense that 〈A0(q)ϕ,ψ〉 =
〈A0(q)ψ,ϕ〉, ϕ,ψ ∈ V , and that f ∈ L2(0,∞;H) and u0 ∈ V . Then, if we consider the
operator A0(q) restricted to the subspace of H, Dom(A0(q)) = {ϕ ∈ V : A0(q)ϕ ∈ H},
then A0(q) : Dom(A0(q)) ⊂ H → H is positive definite and self-adjoint. It follows
that the square root of A0(q), A0(q)

1
2 , can be defined with Dom(A0(q)

1
2 ) = V (see, for

example, Theorem 2.2.3 on page 29 of [32]). Moreover, for ϕ ∈ V , ‖ϕ‖0 = |A0(q)
1
2ϕ|

defines a norm on V and, by assumption (A2) and (2.7), we have that

β0(q)‖ϕ‖2 ≤ 〈A0(q)ϕ,ϕ〉 = 〈A0(q)
1
2ϕ,A0(q)

1
2ϕ〉 = ‖ϕ‖20 = 〈A0(q)ϕ,ϕ〉 ≤ α0(q)‖ϕ‖2

for all ϕ ∈ V , where α0(q) = α1|q|Q + α2. Thus the two norms ‖ · ‖ and ‖ · ‖0 on V
are equivalent.

We require also that u(t) ∈ Dom(A0(q)) for almost all t > 0. Note that since
{T0(t; q) : t ≥ 0}, the semigroup of bounded linear operators on H generated by the
operator −A0(q), is analytic, this can be guaranteed if, for example, we require that
f be H-Hölder continuous for t ≥ 0. That is, if for t ≥ 0, |f(t) − f(s)| ≤ C|t − s|ρ,
0 ≤ t, s <∞, where C > 0 and ρ ∈ (0, 1] (see, for example, [18] and [26]). Then, from
(2.5) we obtain that

〈Dtu(t), A0(q)u(t)〉+ |A0(q)u(t)|2 = 〈f(t), A0(q)u(t)〉, a.e. t > 0,

and therefore that
1
2
Dt‖u(t)‖20+|A0(q)u(t)|2 ≤ |f(t)||A0(q)u(t)| ≤ 1

2
|f(t)|2+

1
2
|A0(q)u(t)|2, a.e. t > 0.

Integrating the above estimate from 0 to t and recalling (2.6), we find that

‖u(t)‖20+
∫ t

0
|A0(q)u(s)|2ds ≤ ‖u0‖20+

∫ t

0
|f(s)|2ds ≤ ‖u0‖20+‖f‖2L2(0,∞;H), t ≥ 0.

It follows that ‖u(t)‖ is bounded uniformly in t for t ≥ 0 and consequently, via (2.3)
and assumption (A2), that (q, u) is a plant.

Let (q, u) be a plant, and assume that u is available and q is unknown. The on-line
identification problem is to define a dynamical system which uses u to asymptotically
estimate q. Toward this end, we define an infinite-dimensional analogue of the finite-
dimensional estimator treated in [22] and [24].

Let A ∈ L(V, V ∗) satisfy the following two assumptions:
(A3) (V 7→ V ∗-boundedness) There exist α > 0 for which |〈Aϕ,ψ〉| ≤ α‖ϕ‖‖ψ‖,

ϕ,ψ ∈ V .
(A4) (V -coercivity) There exist β > 0 for which Re 〈Aϕ,ϕ〉 ≥ β‖ϕ‖2, ϕ ∈ V .

We define our estimator in the form of the initial value problem

Dtu(t) +Au(t) +B(u(t))∗q(t) = f(t) +Au(t)−A2u(t), a.e. t > 0,(2.13)

Dtq(t)−B(u(t))u(t) = −B(u(t))u(t), a.e. t > 0,(2.14)

u(0) ∈ H, q(0) ∈ Q,(2.15)

where for ϕ ∈ V , B(ϕ)∗ ∈ L(Q,V ∗) is the Banach space adjoint of B(ϕ). That is,
recalling (2.3), for ϕ ∈ V

〈B(ϕ)∗p, ψ〉 = 〈p,B(ϕ)ψ〉Q = 〈A1(p)ϕ,ψ〉, ψ ∈ V, p ∈ Q.(2.16)
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To establish the well-posedness of the initial value problem (2.13)–(2.15), we let
X = H ×Q and Y = V ×Q. Endowing X and Y with the usual product topologies,
X becomes a Hilbert space and Y a reflexive Banach space, and we have the dense
and continuous embeddings Y ↪→ X ↪→ Y ∗. For t > 0 define A(t) : Y → Y ∗ by

A(t) =
[

A B(u(t))∗

−B(u(t)) 0

]
,(2.17)

and define F (t) ∈ Y ∗ by

F (t) =
[
f(t) +Au(t)−A2u(t)
−B(u(t))u(t)

]
for a.e. t > 0. The fact that (q, u) is a plant implies that F ∈ L2(0, T ;Y ∗) for all
T > 0. Assumptions (A3) and (A4) together with (q, u) being a plant imply that
A(t) ∈ L(Y, Y ∗), t > 0, and that for t > 0, Re 〈A(t)ϕ,ϕ〉Y ∗,Y + ρ|ϕ|2X ≥ σ‖ϕ‖2Y ,
ϕ ∈ Y , where | · |X and ‖ · ‖Y denote, respectively, the norms on X and Y , and ρ,
σ > 0. It follows (see, for example, [19], [31], [32]) that the initial value problem

Dtx(t) +A(t)x(t) = F (t), a.e. t > 0,

x(0) ∈ X,
admits a unique solution x ∈ L2(0, T ;Y ) with Dtx ∈ L2(0, T ;Y ∗), all T > 0. Con-
sequently, the estimator (2.13)–(2.15) admits a unique solution (q, u) ∈ L2(0, T ;Q)×
L2(0, T ;V ) with (Dtq,Dtu) ∈ L2(0, T ;Q) × L2(0, T ;V ∗), all T > 0. Moreover, for
each T > 0, q and u agree almost everywhere with functions in C([0, T ];Q) and
C([0, T ];H), respectively.

Let e(t) = u(t) − u(t) and r(t) = q(t) − q, where (q, u) is a plant and (q, u) is a
solution to the initial value problem (2.13)–(2.15). The functions e and r are solutions
to the error equations given by

Dte(t) +Ae(t) +B(u(t))∗r(t) = 0, a.e. t > 0,(2.18)

Dtr(t)−B(u(t))e(t) = 0, a.e. t > 0,(2.19)

or equivalently

Dt

[
e(t)
r(t)

]
+A(t)

[
e(t)
r(t)

]
= 0, a.e. t > 0,(2.20)

where the operator A(t) is given by (2.17). In the next section we show that under
appropriate hypotheses (i.e., that the plant (q, u) is persistently excited), the solution
of (2.18), (2.19), or (2.20) with arbitrary initial data tends strongly to the trivial
solution as t → ∞. That is, in particular, for any u(0) ∈ H and q(0) ∈ Q we have
limt→∞ |u(t) − u(t)| = limt→∞ |e(t)| = 0 and limt→∞ |q(t) − q|Q = limt→∞ |r(t)|Q =
0. (We in fact show that the convergence of the state estimator holds without any
additional assumptions. The assumption of persistence of excitation is required only
to establish parameter convergence).

3. Convergence. Throughout this section we assume that (q, u) is a plant. We
begin by establishing the convergence of the state estimator. Define the function
E : [0,∞)→ R1 by

E(t) =
1
2

∣∣∣∣[ e(t)
r(t)

]∣∣∣∣2
X

=
1
2
{
|e(t)|2 + |r(t)|2Q

}
, t ≥ 0.(3.1)

We require the following lemma.
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LEMMA 3.1. For all t ≥ 0

E(t) + β

∫ t

0
‖e(s)‖2ds ≤ ξ,(3.2)

where ξ = E(0) = 1
2

{
|e(0)|2 + |r(0)|2Q

}
and β is as defined in assumption (A4).

Proof. From (2.18), (2.19), and assumption (A4) we find that for s > 0

DsE(s) = Re 〈Dse(s), e(s)〉+ Re 〈Dsr(s), r(s)〉Q
= −Re 〈Ae(s), e(s)〉(3.3)
≤ −β‖e(s)‖2.

Integrating from 0 to t, we obtain the desired result.
Using Lemma 3.1, we show that the state error, e(t), converges to zero asymp-

totically as t→∞. The proof is in the spirit of the arguments used in [27] to verify a
result known as Barbălat’s lemma. A somewhat different proof of this result can be
found in [30] (see also [2]).

THEOREM 3.2. The function E given in (3.1) is nonincreasing and

lim
t→∞

|e(t)| = 0.

Proof. That E is nonincreasing follows immediately from the estimate (3.3). For
t2 > t1, (2.18), assumption (A4), Definition 2.1, and Lemma 3.1 (more precisely, (3.1)
and (3.2)) yield

|e(t2)|2 − |e(t1)|2 =
∫ t2

t1

Dt|e(t)|2dt

= 2
∫ t2

t1

Re 〈Dte(t), e(t)〉dt

= 2
∫ t2

t1

{−Re 〈Ae(t), e(t)〉 − Re 〈B(u(t))∗r(t), e(t)〉}dt

≤ −2β
∫ t2

t1

‖e(t)‖2dt+ 2
∫ t2

t1

|〈B(u(t))∗r(t), e(t)〉|dt

≤ 2γ(u)
∫ t2

t1

‖e(t)‖|r(t)|Qdt

≤ 2γ(u)
{∫ t2

t1

|r(t)|2Qdt
} 1

2
{∫ t2

t1

‖e(t)‖2dt
} 1

2

≤ 2
√

2γ(u)ξ√
β

(t2 − t1)
1
2 .

Note that the estimate (3.2) implies that for all L > 0

lim
t→∞

∫ t

t−L
‖e(s)‖2ds = 0,(3.4)

and suppose that limt→∞ |e(t)|2 6= 0. Then there exist ε > 0 and a sequence {tn}∞n=1
with tn > 0 and limn→∞ tn =∞ for which

|e(tn)|2 > ε, n = 1, 2, . . . .(3.5)
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It follows from (3.4) and (3.5) that for δ > 0 and n = 1, 2, . . .∫ tn

tn−δ
|e(t)|2dt =

∫ tn

tn−δ
|e(tn)|2dt−

∫ tn

tn−δ
{|e(tn)|2 − |e(t)|2}dt

> εδ − 2
√

2γ(u)ξ√
β

∫ tn

tn−δ
(tn − t)

1
2 dt

= εδ − µδ 3
2 ,

where µ = 4
√

2γ(u)ξ
3
√
β

. Choosing δ = ε2

4µ2 , we obtain that∫ tn

tn−δ
|e(t)|2dt > ε3

8µ2 =
εδ

2
, n = 1, 2, . . . .(3.6)

The estimate (3.6) together with (2.2) implies that for n = 1, 2, . . . ,∫ tn

tn−δ
‖e(t)‖2dt ≥ K−2

∫ tn

tn−δ
|e(t)|2dt > εδ

2K2 , n = 1, 2 . . . .

However, this contradicts (3.4). Consequently, limt→∞ |e(t)|2 = 0, and the proof is
complete.

To establish parameter convergence, an additional hypothesis is required. We
extend the finite-dimensional notion of persistence of excitation to infinite dimensions
and argue parameter convergence using ideas similar to those used in [22] (see also [23])
to study the uniform asymptotic stability of certain classes of linear nonautonomous
finite dimensional systems.

DEFINITION 3.3. A plant (q, u) is said to be persistently excited, or an input f is
said to be persistently exciting for the plant (q, u), if there exist T0, δ0, ε0 > 0 such
that for each q ∈ Q with |q|Q = 1 and each t > 0 sufficiently large, there exists a
t̃ ∈ [t, t+ T0] such that ∥∥∥∥∥

∫ t̃+δ0

t̃

B(u(τ))∗qdτ

∥∥∥∥∥
∗

≥ ε0,

where for t ≥ 0, B(u(t))∗ ∈ L(Q,V ∗) is the Banach space adjoint of the operator
B(u(t)) defined in (2.16).

THEOREM 3.4. If the plant (q, u) is persistently excited, then limt→∞ |r(t)|Q = 0.
The proof of Theorem 3.4 is argued using two lemmas, which we now state and

prove.
LEMMA 3.5. Let δ > 0 be given. If the plant (q, u) is persistently excited, then

there exist positive numbers ε = ε(δ), T1 = T1(δ), and T such that for all t1 ≥ T1, if
|r(t)|Q ≥ δ for t ∈ [t1, t1 + T ], then there exists a t̂ ∈ [t1, t1 + T ] such that |e(t̂)| ≥ ε.

Proof. Let T0, δ0, ε0, and t̃ be as in Definition 3.3 with t = t1 (t1 assumed to be
sufficiently large to apply the condition of persistence of excitation), and q = p(t1) =
r(t1)/|r(t1)|Q. Set T = T0 + δ0 and assume that |r(t)|Q ≥ δ for all t ∈ [t1, t1 + T ].
Integrating (2.18) over the interval [t̃, t̃ + δ0], taking norms in V ∗, and applying the
triangle inequality we obtain

‖e(t̃+ δ0)‖∗ ≥
∥∥∥∥∥
∫ t̃+δ0

t̃

B(u(τ))∗r(τ)dτ

∥∥∥∥∥
∗

−
∥∥∥∥∥e(t̃)−

∫ t̃+δ0

t̃

Ae(τ)dτ

∥∥∥∥∥
∗

.(3.7)
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The second term on the right-hand side of (3.7) can be estimated using assumption
(A3), (2.2), and the Cauchy–Schwarz inequality. Indeed∥∥∥∥∥e(t̃)−

∫ t̃+δ0

t̃

Ae(τ)dτ

∥∥∥∥∥
∗

≤ ‖e(t̃)‖∗ + α

∫ t̃+δ0

t̃

‖e(τ)‖dτ(3.8)

≤ K|e(t̃)|+ α
√
δ0

√∫ t̃+δ0

t̃

‖e(τ)‖2dτ.

Applying the backward triangle inequality to the first term on the right-hand side of
(3.7), we obtain∥∥∥∥∥

∫ t̃+δ0

t̃

B(u(τ))∗r(τ)dτ

∥∥∥∥∥
∗

≥
∥∥∥∥∥
∫ t̃+δ0

t̃

B(u(τ))∗p(t1)|r(t1)|Qdτ
∥∥∥∥∥
∗

−
∥∥∥∥∥
∫ t̃+δ0

t̃

B(u(τ))∗ {p(t1)|r(t1)|Q − r(τ)} dτ
∥∥∥∥∥
∗

.

(3.9)

Using the fact that (q, u) is a plant, integrating (2.19) over the interval [t1, τ ], for
τ > t1, taking norms in Q, and applying the Cauchy–Schwarz inequality we obtain

|r(t1)− r(τ)|Q =
∣∣∣∣∫ τ

t1

B(u(t))e(t)dt
∣∣∣∣
Q

(3.10)

≤
∫ τ

t1

|B(u(t))e(t)|Q dt

≤ γ(u)
∫ τ

t1

‖e(t)‖dt

≤ γ(u)(τ − t1)
1
2

√∫ τ

t1

‖e(t)‖2dt.

Definition 2.1, t̃ ∈ [t1, t1 + T0], and (3.10) then imply that∥∥∥∥∥
∫ t̃+δ0

t̃

B(u(τ))∗ {p(t1)|r(t1)|Q − r(τ)} dτ
∥∥∥∥∥
∗

≤
∫ t̃+δ0

t̃

‖B(u(τ))∗‖L(Q,V ∗)|r(t1)− r(τ)|Qdτ

≤ γ(u)2δ0
√
t̃+ δ0 − t1

√∫ t̃+δ0

t1

‖e(t)‖2dt

≤ γ(u)2δ0
√
T

√∫ t1+T

t1

‖e(t)‖2dt.

(3.11)

Since by assumption |r(t)|Q ≥ δ, t ∈ [t1, t1 + T ], and (q, u) is persistently excited,
(3.9) and (3.11) imply that∥∥∥∥∥

∫ t̃+δ0

t̃

B(u(τ))∗r(τ)dτ

∥∥∥∥∥
∗

≥ δε0 − γ(u)2δ0
√
T

√∫ t1+T

t1

‖e(t)‖2dt.(3.12)
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Then, from (3.7), (3.8), and (3.12), we obtain that

‖e(t̃+ δ0)‖∗ ≥ δε0 −K|e(t̃)| −
{
α
√
δ0 + γ(u)2

√
Tδ0

}√∫ t1+T

t1

‖e(t)‖2dt.(3.13)

Applying Lemma 3.1 and Theorem 3.2, let T1 = T1(δ) be so large that

|e(t)| ≤ δε0
2K

and

√∫ t+T

t

‖e(t)‖2dt ≤ δε0

4(α
√
δ0 + γ(u)2

√
Tδ0)

(3.14)

for all t ≥ T1. It then follows from (3.13), (3.14), and (2.2) that |e(t̂)| ≥ ε, where
t̂ = t̃ + δ0 ∈ [t1 + δ0, t1 + T0 + δ0] ⊂ [t1, t1 + T ] and ε = δε0

4K , and thus the lemma is
proven.

LEMMA 3.6. Let δ > 0 be given and T1 = T1(δ) and T be as they were defined in
Lemma 3.5. If the plant (q, u) is persistently excited, then there exists T2 = T2(δ) > 0
with T2 ≥ T1 such that if t1 ≥ T2, then there exists t2 ∈ [t1, t1 + T ] such that
|r(t2)|Q < δ.

Proof. Let ε = ε(δ) = ε0δ
4K be as it was defined in the proof of Lemma 3.5.

Theorem 3.2 implies that there exists S = S(ε) such that

|e(s)| < ε =
ε0δ

4K
, s ≥ S.(3.15)

Set T2 = T2(δ) = max{T1(δ), S(ε)}. Now if the lemma were not true, there would
exist a t1 ≥ T2 such that |r(t)|Q ≥ δ for all t ∈ [t1, t1 +T ]. But then Lemma 3.5 would
imply that there exist t̂ ∈ [t1, t1 + T ] such that |e(t̂)| ≥ ε. Since t̂ ≥ t1 ≥ T2 ≥ S, this
contradicts (3.15), and the lemma is proven.

We are now prepared to prove Theorem 3.4.
Proof of Theorem 3.4. We show that for any ε > 0, there exists a t̂ such that

E(t̂) ≤ ε,(3.16)

where the function E is given by (3.1). Since, by Theorem 3.2, E is nonincreasing,
(3.16) implies that limt→∞E(t) = 0 and, therefore, that limt→∞ |r(t)|Q = 0.

To establish (3.16), first note that if E(t1) ≤ ε, then we are finished. On the other
hand, if E(t1) > ε, we show that there exist M > 0 and γ ∈ (0, 1), both depending
only on the estimator (2.13)–(2.15) and the plant (q, u) (i.e., A, T0, δ0, ε0, f , etc.),
such that there exists a t̂1 ∈ [t1, t1 +M ] for which

E(t̂1) ≤ γE(t1) + ρ(t1),(3.17)

where ρ is such that ρ(t) ≥ 0, t ≥ 0, and limt→∞ ρ(t) = 0. It follows that there exists
a positive integer K which depends only on ε such that E(t1 + KM) ≤ ε. Indeed,
by repeating the argument that leads to (3.17), we obtain the difference inequality
Ek+1 ≤ γEk + ρk, k = 0, 1, 2, . . ., where Ek = E(t1 + kM), k = 0, 1, 2, . . ., ρ0 = ρ(t1),
ρk ≥ 0, k = 0, 1, 2, . . ., and limk→∞ ρk = 0. It follows that

Ek ≤ γkE0 +
k−1∑
j=0

γk−j−1ρj , k = 0, 1, 2, . . . .



ON-LINE ESTIMATION OF INFINITE-DIMENSIONAL SYSTEMS 689

Letting J be so large that ρj ≤ ε(1−γ)
3 , j ≥ J , and choosing K > J so large that

γkE0 = γkE(t1) ≤ ε
3 and γk

∑J
j=0 γ

−(j+1)ρj ≤ ε
3 , k ≥ K, we obtain

E(t+KM) = EK ≤ γKE0 + γK
J−1∑
j=0

γ−(j+1)ρj +
K−1∑
j=J

γK−j−1ρj

≤ ε

3
+
ε

3
+
ε

3
(1− γK−J) ≤ ε.

(3.18)

Consequently, (3.18) yields (3.16) with t̂ = t1 +KM .
Let ε > 0 be given and c1, c2 > 0 be chosen so that

0 < βK−2c2{(2− c1)− 2γ(u)c2} < 1.(3.19)

For example, set c1 = 1 and c2 < min{ 1
2γ(u) ,

K2

β }. Note that the values of c1 and
c2 depend only on the plant and the estimator dynamics, A. Apply Lemma 3.6 with
δ =
√
εc1 to obtain T2. Let t1 ≥ T2 and let t2 ∈ [t1, t1 + T ] be such that |r(t2)|Q < δ.

If E(t2) ≤ ε, we are finished. So assume that

E(t2) > ε.(3.20)

Now

E(t2) =
1
2
{
|e(t2)|2 + |r(t2)|2Q

}
≤ 1

2
{
|e(t2)|2 + δ2} =

1
2
{
|e(t2)|2 + εc1

}
.

But then (3.20) implies that

|e(t2)|2 ≥ 2E(t2)− εc1 > (2− c1)E(t2).(3.21)

For t ≥ t2, (2.18), assumption (A3), Definition 2.1, and the Cauchy–Schwarz inequal-
ity imply that

|e(t2)|2 − |e(t)|2 ≤
∣∣∣∣∫ t

t2

Ds|e(s)|2ds
∣∣∣∣ =

∣∣∣∣2 ∫ t

t2

Re 〈Dse(s), e(s)〉ds
∣∣∣∣

=
∣∣∣∣−2

∫ t

t2

Re 〈Ae(s), e(s)〉ds− 2
∫ t

t2

Re 〈B(u(s))∗r(s), e(s)〉ds
∣∣∣∣

≤ 2α
∫ t

t2

‖e(s)‖2ds+ 2γ(u)
∫ t

t2

|r(s)|Q‖e(s)‖ds

≤ {2α+ γ(u)}
∫ t

t2

‖e(s)‖2ds+ γ(u)
∫ t

t2

|r(s)|2Qds.

(3.22)

Recalling (3.1) and Theorem 3.2, (3.22) implies that for t ∈ [t2, t2 + c2] we have

|e(t2)|2 − |e(t)|2 ≤ {2α+ γ(u)}
∫ t2+c2

t2

‖e(s)‖2ds+ 2γ(u)c2E(t2).(3.23)

Combining (3.21) and (3.23), we find that for t ∈ [t2, t2 + c2]

|e(t)|2 ≥ {(2− c1)− 2γ(u)c2}E(t2)− {2α+ γ(u)}
∫ t2+c2

t2

‖e(s)‖2ds.(3.24)



690 J. BAUMEISTER, W. SCONDO, M. DEMETRIOU, AND I. ROSEN

Recalling (3.3), we have that

E(t)− E(t2) ≤ −β
∫ t

t2

‖e(s)‖2ds.(3.25)

Setting t = t2 + c2 in (3.25) and recalling (2.2), (3.24) implies that

E(t2)− E(t2 + c2) ≥ β
∫ t2+c2

t2

‖e(s)‖2ds

≥ βK−2
∫ t2+c2

t2

|e(s)|2ds

≥ βK−2c2 {(2− c1)− 2γ(u)c2}E(t2)− βK−2c2 {2α+ γ(u)}
∫ t2+c2

t2

‖e(s)‖2ds,

or

E(t2 + c2) ≤
{

1− βK−2c2 {(2− c1)− 2γ(u)c2}
}
E(t2)

+βK−2c2 {2α+ γ(u)}
∫ t2+c2

t2

‖e(s)‖2ds

≤ (1− γ0)E(t1) + ρ(t1),

(3.26)

where γ0 = βK−2c2 {(2− c1)− 2γ(u)c2} and ρ(t) = βc2{2α+γ(u)}
K2

∫ t+T+c2
t

‖e(s)‖2ds.
In the estimate (3.26) we have used the fact that t2 ∈ [t1, t1 + T ] and, since E is
nonincreasing and (3.19) implies that γ0 ∈ (0, 1), that (1− γ0)E(t2) ≤ (1− γ0)E(t1).
Recalling Lemma 3.1, we have limt→∞ ρ(t) = 0. Thus (3.26) yields (3.17) with γ =
1 − γ0 ∈ (0, 1) and t̂1 = t2 + c2 ∈ [t1, t1 + M ], where M = T + c2. This proves the
theorem.

Considerable insight can be gained from the proofs of Lemma 3.5, Lemma 3.6, and
Theorem 3.4. In particular, the arguments and estimates used in these proofs suggest
how the persistence of excitation parameters T0, δ0, and ε0 and the choice of the
estimator dynamics A retard or accelerate convergence. The following observations
can be made.

(i) As ε0 increases, the value of ε in Lemma 3.5 increases, and therefore the value
of T2 in Lemma 3.6 decreases. Consequently, convergence will be more rapid.

(ii) As either T0 or δ0 decrease, the values of T and T1 in Lemma 3.5, the value
of T2 in Lemma 3.6, and the value of M in Theorem 3.4 decrease as well. It
follows that more rapid convergence results.

(iii) As the value of β in assumption (A4) increases, the convergence of |e(t)| to
zero as t → ∞ is more rapid (see Theorem 3.2). Thus the value of T1 in
Lemma 3.5 and the value of T2 in Lemma 3.6 decrease, and convergence will
be more rapid. Also, in the proof of Theorem 3.4, if β increases, either the
value of γ0 will increase or the value of c2 will decrease, and therefore either
the value of γ = 1−γ0 will decrease or the value of M will decrease. In either
case the rate of convergence will be enhanced.

One way to either increase ε0 or decrease δ0 or T0 in Definition 3.3 is to increase the
gain on the input f . Assuming that the plant is linear and initially at rest, the linearity
of (2.5) implies that an increase in the gain on u will result, and therefore, it is likely
that the value of γ(u) will also increase. However, in the proof of Theorem 3.4, if γ(u)
increases for a fixed value of c2 (and therefore M), γ0 will decrease and consequently
γ will increase, thus slowing convergence.
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For τ > 0, integrating (2.19) from t to t + τ , taking norms, and using the fact
that (q, u) is a plant, we find that

|r(t+ τ)− r(t)|Q =
∣∣∣∣∫ t+τ

t

B(u(s))e(s)ds
∣∣∣∣
Q

≤ γ(u)
∫ t+τ

t

‖e(s)‖ds

≤ γ(u)
√
τ

√∫ t+τ

t

‖e(s)‖2ds, t ≥ 0.

It follows that ∣∣∣∣∆τr(t)
τ

∣∣∣∣
Q

≤ γ(u)

√
1
τ

∫ t+τ

t

‖e(s)‖2ds, t ≥ 0,

where ∆τr(t) = r(t + τ) − r(t), t ≥ 0. Recalling Lemma 3.1, we have that for each
τ > 0

lim
t→∞

∣∣∣∣∆τr(t)
τ

∣∣∣∣
Q

= 0.(3.27)

Moreover, from Lemma 3.1, and in particular (3.2), it follows that the rate of conver-
gence in (3.27) increases with increasing β. Consequently, if the estimator dynamics,
A, are chosen so that β is too large, the average rate of change in r, the parameter
error, will tend to zero too rapidly. In effect, the estimator will be overdamped and
sluggish parameter convergence will result.

The remarks above indicate that making an appropriate choice of an input, f , and
the estimator dynamics, A, is delicate. One must balance those factors which tend to
enhance convergence with those that tend to retard it. In [8] a careful study of this
phenomenon was undertaken. By looking at a plant consisting of a one-dimensional
heat equation with a monochromatic modal input, and an estimator whose dynamics
are also described by a one-dimensional heat equation, it was observed that the error
equations (2.18), (2.19), or (2.20), to first order, took the form of a damped linear
harmonic oscillator. The damping was determined by the magnitude of β, and the
stiffness was related to the value of γ(u)2. If β was too large (relative to γ(u)), the
system was overdamped and parameter convergence was slow. If, on the other hand,
γ(u) was too large (relative to β), the system was stiff and underdamped. Oscillations,
which are particularly undesirable in a parameter estimator being used as a part of
an indirect adaptive control algorithm, resulted. Choosing the estimator dynamics,
A, and input f to optimize the performance of the estimator required finding an
appropriate compromise between these two extremes.

It is possible to establish a parameter convergence result in the absence of persis-
tence of excitation in the spirit of the treatment in [2] for the identification of second-
order elliptic partial differential equations via an asymptotic embedding technique.
The result which we will establish below also provides insight into a phenomenon
which we refer to as partial persistence of excitation. That is, the plant is persistently
excited with respect to some subset of the unknown parameters and is not, or is to a
lesser degree, persistently excited with respect to the rest.
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For ξ as defined in the statement of Lemma 3.1, let Bξ =
{
q ∈ Q : |q|Q ≤

√
ξ
}

and

Q̂ =

{
q ∈ Q : lim

t→∞

∣∣∣∣∣
∫ t+L

t

〈B(u(τ))∗q, ϕ〉dτ
∣∣∣∣∣ = 0, ϕ ∈ V, L > 0

}
.

We assume that for q ∈ Q, A0(q) ∈ L(V, V ∗), and that in assumption (A1) A0(q) =
A1(q) (i.e., that A2ϕ = 0, ϕ ∈ V ). We assume further that u0 ∈ V , f ∈ C([0,∞);V )
is uniformly Hölder continuous, and there exists f∞ ∈ V ∗ such that limt→∞ ‖f(t) −
f∞‖∗ = 0. Then, as was discussed in section 2, it follows that there exists u∞ ∈ V
such that

lim
t→∞

‖u(t)− u∞‖ = 0.(3.28)

Under these assumptions, we obtain the following theorem.
THEOREM 3.7. For r satisfying (2.19) we have

lim
t→∞

w − dist(r(t), Q̂ ∩Bξ) = 0,(3.29)

where w− dist(·, ·) denotes the distance function with respect to the weak topology on
Q.

Proof. Suppose that (3.29) does not hold. Then there would exist a sequence,
{tn}∞n=1, and η > 0 such that limn→∞ tn =∞ and w− dist(r(tn), Q̂∩Bξ) ≥ η. Since
Q∩Bξ is a bounded subset of the Hilbert space Q, it is weakly compact. Consequently
there exists a subsequence which we will again denote by {tn}∞n=1, and r∞ ∈ Bξ such
that w − limn→∞ r(tn) = r∞ and w − dist(r∞, Q̂ ∩ Bξ) ≥ η. It follows that r∞ 6∈ Q̂
and therefore that there exists ϕ̃ ∈ V and ε > 0 such that

lim
n→∞

∣∣∣∣∫ tn+ε

tn

〈B(u(τ))∗r∞, ϕ̃〉dτ
∣∣∣∣ = δ > 0.(3.30)

But (3.30) implies that there exists a subsequence, {tnk}∞k=1, of {tn}∞n=1 such that∣∣∣∣∣
∫ tnk+ε

tnk

〈B(u(τ))∗r(tnk), ϕ̃〉dτ
∣∣∣∣∣ > δ

2
(3.31)

for all k = 1, 2, . . .. Indeed, if this were not the case, then there would exist N such
that |

∫ tn+ε
tn
〈B(u(τ))∗r(tn), ϕ̃〉dτ | ≤ δ

2 for all n > N . It would then follow that for
n > N ∣∣∣∣∫ tn+ε

tn

〈B(u(τ))∗r∞, ϕ̃〉dτ
∣∣∣∣(3.32)

≤
∣∣∣∣∫ tn+ε

tn

〈B(u(τ))∗{r∞ − r(tn)}, ϕ̃〉dτ
∣∣∣∣+
∣∣∣∣∫ tn+ε

tn

〈B(u(τ))∗r(tn), ϕ̃〉dτ
∣∣∣∣

≤
∣∣∣∣∫ ε

0
〈r(tn)− r∞, B(u(tn + τ))ϕ̃〉Qdτ

∣∣∣∣+
δ

2

≤
∣∣∣∣∫ ε

0
〈A1(r(tn)− r∞)u(tn + τ)−A1(r(tn)− r∞)u∞, ϕ̃〉dτ

∣∣∣∣
+
∣∣∣∣∫ ε

0
〈A1(r(tn)− r∞)u∞, ϕ̃〉dτ

∣∣∣∣+
δ

2

≤ 2α1
√
ξ‖ϕ̃‖

∫ ε

0
‖u(tn + τ)− u∞‖dτ + ε |〈r(tn)− r∞, B(u∞)ϕ̃〉Q|+

δ

2
,
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where the final two estimates above are consequences of (2.3), assumption (A2), and,
recalling our findings in section 2, the fact that under the present assumptions ‖u(t)‖
is bounded for t ∈ [0,∞).

It follows from (3.28), together with the bounded convergence theorem, that the
term involving the integral in the final estimate in (3.32) tends to zero as n →
∞. Moreover, from the fact that w − limn→∞ r(tn) = r∞, it also follows that
limn→∞|

∫ tn+ε
tn
〈B(u(τ))∗r∞, ϕ̃〉dτ | ≤ δ

2 , which contradicts (3.30).
Now (2.18), assumption (A3), and the Cauchy–Schwarz inequality imply that∥∥∥∥∥

∫ tnk+ε

tnk

B(u(τ))∗r(τ)dτ

∥∥∥∥∥
∗

=

∥∥∥∥∥e(tnk)− e(tnk + ε)−
∫ tnk+ε

tnk

Ae(τ)dτ

∥∥∥∥∥
∗

≤ K|e(tnk)|+K|e(tnk + ε)|+ α
√
ε

√∫ tnk+ε

tnk

‖e(τ)‖2dτ,

which, together with Theorem 3.2 and Lemma 3.1, yields that

lim
n→∞

∥∥∥∥∥
∫ tnk+ε

tnk

B(u(τ))∗r(τ)dτ

∥∥∥∥∥
∗

= 0.(3.33)

Also, recalling the estimate (3.10), using (2.3) and assumption (A2), we find that∥∥∥∥∥
∫ tnk+ε

tnk

〈B(u(τ))∗r(τ), ϕ̃〉dτ
∣∣∣∣∣−
∣∣∣∣∣
∫ tnk+ε

tnk

〈B(u(τ))∗r(tnk), ϕ̃〉dτ
∥∥∥∥∥

≤
∣∣∣∣∣
∫ tnk+ε

tnk

〈B(u(τ))∗{r(τ)− r(tn)}, ϕ̃〉dτ
∣∣∣∣∣

=

∣∣∣∣∣
∫ tnk+ε

tnk

〈A1(r(τ)− r(tnk))u(τ), ϕ̃)〉dτ
∣∣∣∣∣

≤ α1‖ϕ̃‖
∫ tnk+ε

tnk

|r(τ)− r(tnk)|Q‖u(τ)‖dτ

≤ α1‖ϕ̃‖γ(u)
√
ε

√∫ tnk+ε

tnk

‖e(τ)‖2dτ
∫ tnk+ε

tnk

‖u(τ)‖dτ.

The fact that ‖u(t)‖ is bounded on [0,∞) (see section 2) and Lemma 3.1 then imply
that

lim
k→∞

∣∣∣∣∣
∣∣∣∣∣
∫ tnk+ε

tnk

〈B(u(τ))∗r(τ), ϕ̃〉dτ
∣∣∣∣∣−
∣∣∣∣∣
∫ tnk+ε

tnk

〈B(u(τ))∗r(tnk), ϕ̃〉dτ
∣∣∣∣∣
∣∣∣∣∣ = 0.(3.34)

But (3.33) implies that

lim
k→∞

∣∣∣∣∣
∫ tnk+ε

tnk

〈B(u(τ))∗r(τ), ϕ̃〉dτ
∣∣∣∣∣ ≤ lim

k→∞

∥∥∥∥∥
∫ tnk+ε

tnk

B(u(τ))∗r(τ)dτ

∥∥∥∥∥
∗

‖ϕ̃‖ = 0.

(3.35)
Combining (3.34) and (3.35) we obtain a contradiction to (3.31), and the theorem is
proven.

Theorem 3.7 yields the following corollary. Its proof, which is omitted, is exactly
the same as the one given to verify Theorem 4.4 in [2] (see also [30]).
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COROLLARY 3.8. Under the same assumptions required to establish Theorem 3.7,
we have limt→∞ w − dist(q(t), P̂ ∩ Bξ) = 0, where ξ =

√
ξ + |q|Q and P̂ is the linear

variety in Q given by P̂ = q+ Q̂. Moreover w− limt→∞ q(t) = p+PQ̂q(0), where PQ̂
is the orthogonal projection of Q onto the closed linear subspace Q̂, and p = q − PQ̂q
is the unique element of minimum norm in P̂ (see, for example, [21]).

Note that the fact that Q̂ is closed follows from the assumption that (q, u) is a
plant.

If Q̂ = {0}, we shall say that the plant (q, u) is weakly persistently excited. When
this is the case, we obtain weak parameter convergence. Indeed, Corollary 3.8 implies
that w − limt→∞ q(t) = q.

It is also possible to obtain what we shall call weak partial parameter convergence
when the plant (q, u) is only partially weakly persistently excited. Suppose that
Q = Q1 ⊕Q⊥1 with Q1 ⊂ Q̂⊥. Then Corollary 3.8 implies that w − limt→∞ P1q(t) =
P1p + P1PQ̂q(0) = P1q − P1PQ̂q = P1q, where P1 denotes the orthogonal projection
of Q onto Q1. Thus if the plant (q, u) is weakly persistently excited with respect
to some of the unknown parameters, the estimates for those parameters, P1q(t), will
converge weakly to the corresponding true plant parameters, P1q. An illustration of
this phenomenon can be found in [8]. Note that when, as is frequently the case, Q is
finite dimensional, the weak convergence discussed above becomes strong convergence.

Finally we note that persistence of excitation is sufficient to establish an identifi-
ability result similar to the one in [5].

THEOREM 3.9. If the plant (q, u) is persistently excited, then the parameter q is
identifiable.

Proof. Suppose not. That is, there exists q1, q2 ∈ Q such that u is a solution
to the initial value problem (2.5), (2.6) with either q = q1 or q = q2. Subtraction
then yields that 〈A1(q1 − q2)u(t), ϕ〉 = 0, a.e. t > 0, ϕ ∈ V , or, in light of (2.3),
that B(u(t))∗{q1 − q2} = 0, a.e. t > 0. This clearly contradicts Definition 3.3 unless
q1 = q2, and the theorem is proven.

4. Approximation theory. The estimator (2.13)–(2.15) is infinite dimensional.
Its implementation requires finite-dimensional approximation. We consider Galerkin
approximation and establish a convergence result.

For each n = 1, 2, . . ., let Hn be a finite-dimensional subspace of H with Hn ⊂ V ,
and let Qn be a finite-dimensional subspace of Q. The Galerkin equations correspond-
ing to (2.13)–(2.15) are given by

〈Dtu
n(t), ϕn〉+ 〈Aun(t), ϕn〉+ 〈B(u(t))∗qn(t), ϕn〉 = 〈f(t), ϕn〉

+〈Au(t), ϕn〉 − 〈A2u(t), ϕn〉, ϕn ∈ Hn, a.e. t > 0,
(4.1)

〈Dtq
n(t), ψn〉Q − 〈B(u(t))un(t), ψn〉Q

= −〈B(u(t))u(t), ψn〉Q, ψn ∈ Qn, a.e. t > 0,
(4.2)

un(0) ∈ Hn, qn(0) ∈ Qn.(4.3)

An argument similar to the one outlined previously in section 2 for the initial
value problem (2.13)–(2.15) can be used to establish the existence of a unique solution,
(qn, un), to the initial value problem (4.1)–(4.3) for each T > 0 with un ∈ H1(0, T ;Hn)
and qn ∈ H1(0, T ;Qn).

In order to establish convergence we require the following assumption:
(A5) For each fixed T > 0 and (q, u) the solution to the initial value problem

(2.13)–(2.15), there exist functions un ∈ H1(0, T ;Hn) and qn ∈ H1(0, T ;Qn)



ON-LINE ESTIMATION OF INFINITE-DIMENSIONAL SYSTEMS 695

such that limn→∞ un = u in L2(0, T ;V ) and C(0, T ;H), limn→∞ qn = q in
C(0, T ;Q), limn→∞Dtun = Dtu in L2(0, T ;V ∗), and limn→∞Dtqn = Dtq
in L2(0, T ;Q).

THEOREM 4.1. Assume that assumption (A5) holds, let (qn, un) be the solution
to the initial value problem (4.1)–(4.3) with un(0) = un(0) and qn(0) = qn(0), and let
(q, u) be the solution to the initial value problem (2.13)–(2.15). Then for each T > 0,
limn→∞ un = u in L2(0, T ;V ) and C(0, T ;H) and limn→∞ qn = q in C(0, T ;Q).

Proof. Assumption (A5) and the triangle inequality imply that we need only show
that

lim
n→∞

∫ T

0
‖un(t)− un(t)‖2dt = 0, lim

n→∞
sup
t∈[0,T ]

|un(t)− un(t)| = 0,

and lim
n→∞

sup
t∈[0,T ]

|qn(t)− qn(t)|Q = 0.

Toward this end, let wn = un − un and pn = qn − qn. Then, using the fact that
(qn, un) satisfies (4.1), (4.2), and (q, u) satisfies (2.13), (2.14), we obtain the identity

Dt{|wn(t)|2 + |pn(t)|2Q} = 2Re {〈Dtw
n(t), wn(t)〉+ 〈Dtp

n(t), pn(t)〉Q}

= 2Re {−〈Awn(t), wn(t)〉+ 〈A{u(t)− un(t)}, wn(t)〉

+〈B(u(t))∗{q(t)− qn(t)}, wn(t)〉+ 〈Dt{u(t)− un(t)}, wn(t)〉

+〈B(u(t)){un(t)− u(t)}, pn(t)〉Q + 〈Dt{q(t)− qn(t)}, pn(t)〉Q}, a.e. t > 0.

Assumptions (A3) and (A4), the fact that (q, u) is a plant, and the well-known in-
equality

ab ≤ ε

2
a2 +

b2

2ε
, a, b ∈ R, ε > 0,(4.4)

then yield that

Dt{|wn(t)|2 + |pn(t)|2Q}

≤ −2β‖wn(t)‖2 +
α2

ε
‖u(t)− un(t)‖2 +

γ(u)2

ε
|q(t)− qn(t)|2Q

+
1
ε
‖Dtu(t)−Dtun(t)‖2∗ + γ(u)2‖un(t)− u(t)‖2 + |Dtq(t)−Dtqn(t)|2Q

+3ε‖wn(t)‖2 + 2|pn(t)|2Q, a.e. t > 0.

Choosing ε < 2
3β and integrating from 0 to t, we obtain

δ

∫ t

0
‖wn(s)‖2ds+ |wn(t)|2 + |pn(t)|2Q ≤ zn(t) + 2

∫ t

0
|wn(s)|2 + |pn(s)|2Qds,(4.5)

where δ = 2β − 3ε > 0 and

zn(t) =
∫ t

0

{
α2

ε
+ γ(u)2

}
‖un(s)− u(s)‖2 +

1
ε
‖Dsun(s)−Dsu(s)‖2∗

+
γ(u)2

ε
|qn(s)− q(s)|2Q + |Dsqn(s)−Dsq(s)|2Qds.

It follows from assumption (A5) that limn→∞ zn(t) = 0 uniformly on [0, T ] for each
T > 0. An application of the Gronwall lemma to the estimate (4.5) above yields the
desired result.
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Since the state of the plant at each time t, u(t), is also in the infinite-dimensional
space V , from an implementation point of view (i.e., sensor requirements), it may
be desirable to replace u in (4.1)–(4.3) with a finite-dimensional approximation, un.
To establish a convergence result similar to the one given in Theorem 4.1 above, we
require the following additional assumption.

(A6) For each fixed T > 0 and for the plant (q, u), there exists un ∈ C(0, T ;Hn)
such that un → u in C(0, T ;V ).

THEOREM 4.2. Assume that assumptions (A5) and (A6) hold, let (qn, un) be the
solution to the initial value problem (4.1)–(4.3) with un(0) = un(0) and qn(0) = qn(0)
and u replaced by un, and let (q, u) be the solution to the initial value problem (2.13)–
(2.15). Then for each T > 0, limn→∞ un = u in L2(0, T ;V ) and C(0, T ;H) and
limn→∞ qn = q in C(0, T ;Q).

Proof. Once again, letting wn = un − un and pn = qn − qn, we show that
limn→∞ wn = 0 in L2(0, T ;V ) and C(0, T ;H) and that limn→∞ pn = 0 in C(0, T ;Q).
Using (2.13), (2.14), (4.1), (4.2), and (2.3) we obtain the identity

Dt{|wn(t)|2 + |pn(t)|2Q} = 2Re {〈Dtw
n(t), wn(t)〉+ 〈Dtp

n(t), pn(t)〉Q}

= 2Re {−〈Awn(t), wn(t)〉+ 〈A{u(t)− un(t)}, wn(t)〉+ 〈A1(q(t)− qn(t))un(t), wn(t)〉

+〈A1(q(t))u(t)− un(t), wn(t)〉+ 〈A{un(t)− u(t)}, wn(t)〉

+〈A2{un(t)− u(t)}, wn(t)〉+ 〈A1(pn(t))un(t), un(t)− u(t)〉

+〈A1(pn(t))un(t)− u(t), u(t)〉+ 〈A1(pn(t))un(t), u(t)− un(t)〉

+〈A1(pn(t))u(t)− un(t), u(t)〉+ 〈Dt{u(t)− un(t)}, wn(t)〉

+〈Dt{q(t)− qn(t)}, pn(t)〉Q}, a.e. t > 0.

Assumptions (A2), (A3), (A4), and (A6) then yield that

Dt{|wn(t)|2 + |pn(t)|2Q}

≤ −2{β‖wn(t)‖2 + α‖u(t)− un(t)‖‖wn(t)‖+ α1|q(t)− qn(t)|Q‖un(t)‖‖wn(t)‖

+α1|q(t)|Q‖u(t)− un(t)‖‖wn(t)‖+ α‖un(t)− u(t)‖‖wn(t)‖

+α2‖un(t)− u(t)‖‖wn(t)‖+ α1|pn(t)|Q‖un(t)‖‖un(t)− u(t)‖

+α1|pn(t)|Q‖un(t)− u(t)‖‖u(t)‖+ α1|pn(t)|Q‖un(t)‖‖u(t)− un(t)‖

+α1|pn(t)|Q‖u(t)− un(t)‖‖u(t)‖+ ‖Dt{u(t)− un(t)}‖∗‖wn(t)‖

+|Dt{q(t)− qn(t)}|Q|pn(t)|Q}, a.e. t > 0.

Applying the inequality (4.4) and gathering like terms, we obtain that

Dt{|wn(t)|2 + |pn(t)|2Q}

≤ {−2β + 6ε}‖wn(t)‖2 +
{
α2

1

ε
+ α2

1‖un(t)‖2
}
‖un(t)− u(t)‖2

+

{
α2

1|q(t)|2Q
ε

+
α2

ε
+ α2

2 + α2
1{‖u(t)‖2 + ‖un(t)‖2 + ‖u(t)‖2}

}
‖u(t)− un(t)‖2

+
α2

1‖un(t)‖2
ε

|q(t)− qn(t)|2Q +
1
ε
‖Dt{u(t)− un(t)}‖2∗ + |Dt{q(t)− qn(t)}|2Q + 5|pn(t)|2Q
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for a.e. t > 0. Choosing ε > 0 so that ε < 1
3β and then integrating both sides of the

above estimate from 0 to t, we obtain

δ

∫ t

0
‖wn(s)‖2ds+ |wn(t)|2 + |pn(t)|2Q ≤ zn(t) + 5

∫ t

0
|wn(s)|2 + |pn(s)|2Qds,(4.6)

where δ = β − 3ε > 0 and

zn(t) =
∫ t

0

{
α2

ε
+ α2

1‖un(s)‖2
}
‖un(s)− u(s)‖2

+

[
α2

1|q(s)|2Q
ε

+
α2

ε
+ α2

2 + α2
1
(
‖u(s)‖2 + ‖un(s)‖2 + ‖u(s)‖2

)]
‖u(s)− un(s)‖2

+
α2

1‖un(s)‖2
ε

|q(s)− qn(s)|2Q +
‖Ds{u(s)− un(s)}‖2∗

ε
+ |Ds{q(s)− qn(s)}|2Qds.

Assumptions (A5) and (A6) imply that limn→∞ zn(t) = 0, uniformly on [0, T ], for
each fixed T > 0. Consequently, an application of the Gronwall lemma to the estimate
(4.6) yields the desired result.

5. Second-order systems. It is possible to use the framework developed in the
previous three sections to identify unknown parameters in certain classes of strongly
damped second-order, or abstract hyperbolic, systems on-line. We briefly outline the
essential features of the requisite theory below. However, a more general and more
versatile treatment of second-order systems can be found in [7] and [28].

Let H0 be a Hilbert space with inner product 〈·, ·〉0 and V0 be a reflexive Banach
space with norm denoted by ‖ · ‖0. We assume that V0 is densely and continuously
embedded in H0. Let Q be a Hilbert space with inner product 〈·, ·〉Q, and for i = 1, 2,
let ai(·; ·, ·) : Q× V0 × V0 → C be a form satisfying the following assumptions:

(A7) (Q-linearity and symmetry) The map q → ai(q; ·, ·) is linear from Q into
the space of conjugate symmetric sesquilinear forms on V0.

(A8) (V0 × V0-boundedness) There exists αi > 0 for which

|ai(q;ϕ,ψ)| ≤ αi|q|Q‖ϕ‖0‖ψ‖0, ϕ, ψ ∈ V0, q ∈ Q.

(A9) (V0-coercivity) There exists a subset Q̃ ⊂ Q such that for each q∗ ∈ Q̃ there
exists βi(q∗) > 0 such that ai(q∗ϕ,ϕ) ≥ βi(q∗)‖ϕ‖20, ϕ ∈ V0.

For q ∈ Q and i = 1, 2, let Ai(q) : V0 → V ∗0 be the linear operator on V0
determined by the form ai(q; ·, ·) via 〈Ai(q)ϕ,ψ〉0 = ai(q;ϕ,ψ), ϕ,ψ ∈ V0. Let w0 ∈ V0
and w1 ∈ H0, let g ∈ L2(0, T ;V ∗0 ) for all T > 0, and for each q ∈ Q consider the
abstract second-order initial value problem given by

D2
tw(t) +A2(q)Dtw(t) +A1(q)w(t) = g(t), a.e. t > 0,(5.1)

w(0) = w0, Dtw(0) = w1.(5.2)

By a solution to the initial value problem (5.1), (5.2) on the interval [0, T ] for some
T > 0, we mean a function w ∈ L2(0, T ;V0) with Dtw ∈ L2(0, T ;V0) and D2

tw ∈
L2(0, T ;V ∗0 ) which satisfies (5.1) on a.e. (0, T ) as well as (5.2).

To apply the abstract theory developed in sections 2, 3, and 4 above, we effectively
rewrite the initial value problem (5.1), (5.2) as an equivalent first-order system. Let
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q∗ ∈ Q̃ be fixed but arbitrary and H be the Hilbert space defined by H = V0 × H0
with inner product given by

〈ϕ,ψ〉 = a1(q∗;ϕ1, ψ1) + 〈ϕ2, ψ2〉0(5.3)

for ϕ = (ϕ1, ϕ2), ψ = (ψ1, ψ2) ∈ H. Let V be the reflexive Banach space defined by

V = V0× V0 with norm given by ‖ϕ‖ =
{
‖ϕ1‖20 + ‖ϕ2‖20

} 1
2 for ϕ = (ϕ1, ϕ2) ∈ V , and

for q ∈ Q define the operator A0(q) : V → V ∗ by 〈A0(q)ϕ,ψ〉 = −a1(q∗;ϕ2, ψ1) +
a1(q;ϕ1, ψ2) + a2(q;ϕ2, ψ2) for ϕ = (ϕ1, ϕ2) ∈ V and ψ = (ψ1, ψ2) ∈ V . Assumptions
(A7) and (A9) imply that the expression given in (5.3) is in fact an inner product onH.
Assumption (A7) implies that for each q ∈ Q, the operator A0(q) satisfies assumption
(A1) with the operator A1(q) : V → V ∗ given by 〈A1(q)ϕ,ψ〉 = a1(q;ϕ1, ψ2) +
a2(q;ϕ2, ψ2) and the operator A2 : V → V ∗ in assumption (A1) given by 〈A2ϕ,ψ〉 =
−a1(q∗;ϕ2, ψ1). Assumption (A8) implies that assumption (A2) is satisfied with α1 =
2 max{α1, α2} and α2 = α1|q∗|Q. For any λ > 0, defining A ∈ L(V, V ∗) by 〈Aϕ,ψ〉 =
〈A0(q∗)ϕ+λϕ, ψ〉, ϕ,ψ ∈ V , assumption (A8) implies that assumption (A3) holds, and
assumption (A9) implies that assumption (A4) holds with β = min{λβ1(q∗), β2(q∗)}.

For ϕ ∈ V , defining the operator B(ϕ) : V → Q as it was in (2.3) and setting
u0 = (w0, w1) ∈ H and f = (0, g) ∈ L2(0, T ;V ∗), the second-order system (5.1), (5.2)
and the first-order system (2.5), (2.6) are considered to be equivalent to u ∼ (w,Dtw).

For ϕ = (ϕ1, ϕ2) ∈ V , the operator B(ϕ) : V → Q defined in (2.3) is given by

〈B(ϕ)ψ, q〉Q = 〈A1(q)ϕ,ψ〉 = a1(q;ϕ1, ψ2) + a2(q;ϕ2, ψ2)

for q ∈ Q and ψ = (ψ1, ψ2) ∈ V . It then follows from Definition 2.1 that a pair (q, w)
with q ∈ Q and w a solution to the initial value problem (5.1), (5.2) with q = q is a
plant if there exists a constant γ0 = γ0(w) such that

|〈A1(q)w(t), ϕ〉0 + 〈A2(q)Dtw(t), ϕ〉0| ≤ γ0(w)|q|Q‖ϕ‖0, a.e. t > 0, ϕ ∈ V0.

It also follows from Definition 3.3 that the condition for a plant, (q, w), to be persis-
tently excited is for there to exist T0, δ0, ε0 > 0 such that for each q ∈ Q with |q|Q = 1
and each t > 0 sufficiently large, there exists a t̃ ∈ [t, t+ T0] such that∥∥∥∥∥

∫ t̃+δ0

t̃

A1(q)w(τ) +A2(q)Dτw(τ)dτ

∥∥∥∥∥
V ∗0

≥ ε0.

The convergence results given in section 3 take the form limt→∞ ‖u1(t)−w(t)‖0 = 0,
limt→∞ |u2(t) − Dtw(t)|0 = 0, and if, in addition, the plant (q, w) is persistently
excited, then limt→∞ |q(t)− q|Q = 0, where (q, u) with u = (u1, u2) is the solution to
the initial value problem (2.13)–(2.15).

It is also possible to restate our partial persistence of excitation and partial pa-
rameter convergence results, Theorem 3.7 and Corollary 3.8, in the context of second-
order systems. In particular, note that the set Q̂ takes the form

Q̂ =

{
q ∈ Q : lim

t→∞

∣∣∣∣∣
∫ t+L

t

〈A1(q)w(τ) +A2(q)Dτw(τ), ϕ〉0dτ
∣∣∣∣∣ = 0, ϕ ∈ V0, L > 0

}
.

Finally we note that the appropriate modifications to the approximation theory pre-
sented in section 4 (i.e., assumptions (A5) and (A6) and Theorems 4.1 and 4.2), re-
quired to restate it in the context of second-order systems, should also be immediately
clear.
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6. Examples and numerical results. In this section we present and discuss
a number of examples illustrating the application of the on-line estimation theory
which was developed in the previous sections. We consider the estimation of both
constant and functional (i.e., spatially varying) parameters in one-dimensional heat
or diffusion equations, the estimation of constant damping and stiffness parameters
in a one-dimensional wave equation with Kelvin–Voigt viscoelastic damping, and the
estimation of the nonlinearity in a one-dimensional quasi-linear heat equation in which
the thermal diffusivity is a function of the temperature gradient. The numerical
studies for each example presented below were carried out via simulation of the plant.
We also did not attempt to construct input signals which necessarily resulted in a
persistently excited plant. Our concern here was to simply illustrate the feasibility of
our approach. A detailed and complete numerical study of persistence of excitation
and its effect on convergence has been carried out and is reported on elsewhere (see
[8]). For simplicity, in the examples to follow, we have chosen all of the Hilbert and
Banach spaces, H, V , and Q, to be real.

All of the computations described below were carried out on either a SUN SPARC-
system 600 or a SPARCstation 10 in the Department of Mathematics at the University
of Southern California. The finite-dimensional estimator equations, (4.1)–(4.3), were
integrated using the stiff ODE solver from the Numerical Algorithms Group (NAG)
Library, routine D02NBF. All required integrals were computed numerically via a
composite two-point Gauss–Legendre quadrature rule.

6.1. Example 1. We consider the estimation of the parameters q1, q2, and q3
in the one-dimensional heat or diffusion equation (with convective or advective and
decay or growth terms) given by

∂u

∂t
(t, x) = q1

∂2u

∂x2 (t, x)− q2
∂u

∂x
(t, x)− q3u(t, x) + f(t, x), t > 0, 0 < x < 1,

together with the Dirichlet boundary conditions u(t, 0) = 0 = u(t, 1), t > 0. In
this case we have H = L2(0, 1) and V = H1

0 (0, 1) endowed with the usual inner
products and corresponding induced norms. The embedding constant is K = π−1

(see, for example, [29]). We take Q = R3 endowed with the weighted Euclidean inner
product 〈q, p〉 = qTΩp, q, p ∈ R3, where Ω is the 3 × 3 diagonal matrix given by
Ω = Diagonal(ω1, ω2, ω3), with ω1, ω2, ω3 > 0. We note that the weights ω1, ω2, and
ω3 serve as so-called adaptive gains or tuning parameters in the estimator. For q ∈ Q,
the operator A0(q) = A1(q) ∈ L(V, V ∗) is given by

〈A0(q)ϕ,ψ〉 = q1

∫ 1

0
Dϕ(x)Dψ(x)dx+ q2

∫ 1

0
Dϕ(x)ψ(x)dx

+ q3

∫ 1

0
ϕ(x)ψ(x)dx, ϕ, ψ ∈ H1

0 (0, 1).

It is easily verified that assumptions (A1) and (A2) are satisfied.
For the estimator dynamics, A ∈ L(V, V ∗), we set A = A0(q∗) for an appropriate

choice of q∗ ∈ Q. It is immediately clear that q∗ ∈ Q can be chosen so that assump-
tions (A3) and (A4) hold. For example, let q∗ = (q∗1 , q

∗
2 , q
∗
3), with q∗2 = 0, q∗1 > 0, and

q∗3 ≥ 0.
We approximate using linear B-splines. For n = 1, 2, . . ., let {ϕnj }nj=0 be the

standard linear B-splines on the interval [0, 1] defined with respect to the uniform
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mesh {0, 1
n ,

2
n , . . . , 1}. That is, for i = 0, 1, 2, . . . , n

ϕni (x) =

{
1− |nx− i|, x ∈ [ i−1

n , i+1
n ],

0 elsewhere on [0, 1].
(6.1)

Set Hn = span{ϕnj }n−1
j=1 . Since Q is finite dimensional, we simply set Qn = Q,

n = 1, 2, . . .. For each n = 1, 2, . . . , let Pn denote the orthogonal projection of H onto
Hn, and setting un = Pnu, standard approximation results for spline functions (see
[29]) can be used to establish that assumption (A5) is satisfied. For n = 1, 2, . . . , let
Pn denote the orthogonal projection of V = H1

0 (0, 1) onto Hn (with respect to the
standard H1

0 inner product), and set un = Pnu. If u is sufficiently smooth, it is not
difficult to establish that assumption (A6) is satisfied as well. Thus the conclusions
of Theorem 4.1 and Theorem 4.2 hold.

There is a practical advantage to using the V projection, Pn, to finite dimension-
alize the plant. Indeed, if

un(t) = Pnu(t) =
n−1∑
j=1

Un(t)jϕnj(6.2)

(i.e., let Un(t) ∈ Rn−1 be the coordinate vector for un(t) with respect to the basis
{ϕnj }n−1

j=1 ), then

Un(t) = (Kn)−1hn(u(t)),(6.3)

where for ϕ ∈ V , hn(ϕ) ∈ Rn−1 is given by hn(ϕ)j =
∫ 1

0 Dϕ(x)Dϕnj (x)dx, j =
1, 2, . . . , n− 1, and Kn ∈ R(n−1)×(n−1) is given by

Kn =
[
Kn
ij

]
=
[∫ 1

0
Dϕni (x)Dϕnj (x)dx

]
= n


2 −1 0 0
−1 2 ·
0 · · ·

· · · 0
· · −1

0 0 −1 2

 .(6.4)

It is easily verified that for ϕ ∈ V

hn(ϕ)j = −n∆2
1
n
ϕ(
j − 1
n

) = −n
{
ϕ

(
j + 1
n

)
− 2ϕ

(
j

n

)
+ ϕ

(
j − 1
n

)}
,

j = 1, . . . , n− 1.

Thus the approximating estimator (i.e., (4.1)–(4.3) with u replaced by un) does not
require spatially distributed data. For a given value of n, u need only be spatially
sampled at the n− 1 nodal points 1

n ,
2
n , . . . ,

n−1
n .

Let Un(t) ∈ Rn−1 be the coordinate vector for un(t). That is,

un(t) =
n−1∑
j=1

Un(t)jϕnj .(6.5)

Let Mn denote the Gram matrix corresponding to the basis {ϕnj }n−1
j=1 . We have

Mn =
[
Mn
ij

]
=
[∫ 1

0
ϕni (x)ϕnj (x)dx

]
=

1
6n


4 1 0 0
1 4 1
0 · · ·

· · · 0
· · 1

0 0 1 4

 .(6.6)
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Also, let Ln be the (n− 1)× (n− 1) matrix given by

Ln =
[
Lnij
]

=
[∫ 1

0
ϕni (x)Dϕnj (x)dx

]
=

1
2


0 1 0 0
−1 0 1
0 · · ·

· · · 0
· · 1

0 0 −1 0

 .

The matrix form of the approximating estimator ((4.1)–(4.3) with u replaced by un)
is then given by

MnU̇n(t) + q∗1K
nUn(t) + q∗2L

nUn(t) + q∗3M
nUn(t)

+ q1(t)KnUn(t) + q2(t)LnUn(t) + q3(t)MnUn(t)

= q∗1K
nUn(t) + q∗2L

nUn(t) + q∗3M
nUn(t) + Fn(t), t > 0,

ω1q̇
n
1 (t) + Un(t)TKn

{
Un(t)− Un(t)

}
= 0, t > 0,

ω2q̇
n
1 (t) + Un(t)TLn

{
Un(t)− Un(t)

}
= 0, t > 0,

ω3q̇
n
1 (t) + Un(t)TMn

{
Un(t)− Un(t)

}
= 0, t > 0,

where for t > 0

Fn(t)j =
∫ 1

0
f(t, x)ϕnj (x)dx, j = 1, 2, . . . , n− 1.(6.7)

To carry out our numerical studies, we set q = (q1, q2, q3)T = (.1, 0, .8)T and let

f(t, x) =
{

sin(4πt) + 10−3t2
}
χ[.215,.315](x), t > 0, 0 < x < 1,(6.8)

where χ[a,b] denotes the characteristic function corresponding to the interval [a, b].
We assume that the plant was initially at rest (i.e., u0 = 0). Since q2 = 0, the mode
shapes of the plant are ϕj(x) = sin(jπx), j = 1, 2, . . .. To simulate the plant we used
an N -dimensional truncated modal model with N = 65. We set q∗1 = .01, q∗2 = 0, and
q∗3 = 0. We also set ω1 = ω2 = ω3 = 1.0. We took the state estimate to be initially
at rest and set qn1 (0) = 0, qn2 (0) = .25, and qn3 (0) = −.15, for all n. We integrated
the estimator from t = 0 to t = 100. Our results for n = 4, 8, 16, and 32 are plotted
in Figures 6.1, 6.2, and 6.3. The estimates for q1 are plotted in Figure 6.1; for q2,
in Figure 6.2; and for q3, in Figure 6.3. The dotted line in each of the figures is the
value for q1, q2, or q3.

It is clear from the figures that the asymptotic limits (with respect to time as
opposed to n) of the approximating estimates for the unknown parameters approach
the true values of the parameters as n increases. However, it is worth noting that
reasonably good estimates are obtained for rather low values of n. This is valuable
from a practical point of view. Indeed, the implication is that fewer data are required
and that the estimator will be of relatively low dimension. Consequently fewer sensors
are required, and the approximating estimator can be integrated more rapidly.

The oscillations which appear in the trajectories of the parameter estimates are
a result of the relative levels of input excitation (i.e., f) and dissipation (i.e., q∗).
The other tuning parameters (i.e., ωi, i = 1, 2, 3) also play a role in either amplify-
ing or attenuating these oscillations. For an analysis and numerical study of these
phenomena, see [8].
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FIG. 6.1. Estimates for q1 for n = 4, 8, 16, 32.
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FIG. 6.2. Estimates for q2 for n = 4, 8, 16, 32.



ON-LINE ESTIMATION OF INFINITE-DIMENSIONAL SYSTEMS 703

0

0.5

1

0 50 100

n = 4 0

0.5

1

0 50 100

n = 8

0

0.5

1

0 50 100

n = 16 0

0.5

1

0 50 100

n = 32

FIG. 6.3. Estimates for q3 for n = 4, 8, 16, 32.

6.2. Example 2. In this example we consider the estimation of the functional
parameter q in the one-dimensional heat or diffusion equation

∂u

∂t
(t, x) =

∂

∂x

{
q(x)

∂u

∂x
(t, x)

}
+ f(t, x), t > 0, 0 < x < 1,

together with the Dirichlet boundary conditions u(t, 0) = 0 = u(t, 1), t > 0. Once
again we set H = L2(0, 1) and V = H1

0 (0, 1), each endowed with its usual inner
product and corresponding induced norm. We let Q = H1(0, 1) and take it to be
endowed with the weighted inner product

〈q, p〉Q = ω1

∫ 1

0
q(x)p(x)dx+ ω2

∫ 1

0
Dq(x)Dp(x)dx, p, q ∈ H1(0, 1),

where the weights ω1 and ω2 are assumed to be positive. When ω2 = 0, it is equivalent
to taking Q = L2(0, 1). For q ∈ Q, the operator A0(q) = A1(q) ∈ L(V, V ∗) is given
by

〈A0(q)ϕ,ψ〉 =
∫ 1

0
q(x)Dϕ(x)Dψ(x)dx, ϕ, ψ ∈ H1(0, 1).

It is easily verified that assumptions (A1) and (A2) are satisfied.
Once again we choose the estimator dynamics A ∈ L(V, V ∗), to be A = A0(q∗),

for an appropriate choice of q∗ ∈ Q. In particular for x ∈ [0, 1], we let q∗(x) = q∗ > 0
(i.e., a constant function). For such a q∗ ∈ Q, assumptions (A3) and (A4) are satisfied.

For n = 1, 2, . . ., we choose the approximating subspaces for the state estimator,
Hn, as they were in the previous example. We also use linear B-splines to discretize
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the parameter space Q. For each m = 1, 2, . . ., we set Qm = span{ϕmj }mj=0, where the
linear spline basis, {ϕmj }mj=0 is given by (6.1) with n replaced by m. Note that dim
Hn = n− 1 and dim Qm = m+ 1. Consequently the dimension of the approximating
estimator is n− 1 +m+ 1 = n+m.

Once again standard approximation results for linear splines yield that assumption
(A5) is satisfied and consequently that the conclusion of Theorem 4.1 holds. If ω2 >
0, it is also easily verified that assumption (A6) is satisfied and therefore that the
conclusion of Theorem 4.2 holds as well.

Define the family of (n− 1)× (n− 1) matrices {Kn,m
k }mk=0 by

Kn,m
k = [Kn,m

k ]
ij

=
∫ 1

0
ϕmk (x)Dϕni (x)Dϕnj (x)dx,

i, j = 0, 1, . . . , n− 1, k = 0, 1, . . . ,m.

It then follows that the matrix Kn given in (6.4) is given by Kn =
∑m
k=0K

n,m
k .

Let pm(t) = [pm0 (t), . . . , pmm(t)]T ∈ Rm+1 denote the coordinate vector for the ap-
proximating estimate qm(t) with respect to the basis {ϕmj }mj=0. That is, qm(t) =∑m
j=0 p

m
j (t)ϕmj , t > 0. Taking, for simplicity, the tuning parameter q∗(x) = q∗,

x ∈ [0, 1], to be constant, the matrix form of the approximating estimator (4.1)–(4.3)
with u replaced by un (un as it was defined in the previous example) is given by

MnU̇n(t) + q∗KnUn(t) +
m∑
k=0

pmk (t)Kn,m
k Un(t) = Fn(t) + q∗KnUn(t), t > 0,

[Ωmṗm(t)]k + Un(t)TKn,m
k

{
Un(t)− Un(t)

}
= 0, t > 0, k = 0, 1, 2, . . . ,m,

where the matrices Mn and Kn are given by (6.6) and (6.4), respectively, Un is as
defined in (6.5), Un is as defined in (6.2) and (6.3), Fn is as given in (6.7), and the
(m+ 1)× (m+ 1) matrix Ωm is given by

Ωm = [Ωm]ij =
ω1

6m


2 1 0 0
1 4 ·
0 · · ·

· · · 0
· 4 1

0 0 1 2

+ ω2m


1 −1 0 0
−1 2 ·
0 · · ·

· · · 0
· 2 −1

0 0 −1 1

 .

We set q(x) = .1 − .05 sin {2π(x− .25)}, 0 < x < 1, and took f to be as defined in
(6.8). We assumed that the plant was initially at rest. To simulate the plant, we
used a finite difference–based integrator for parabolic systems from the NAG Library,
routine D03PAF. We set q∗ = .01, ω1 = 1, and ω2 = 0. We note that strictly speaking
assumption (A6) is not satisfied when ω2 = 0 (or equivalently when Q = L2(0, 1)).
Therefore, in this case, Theorem 4.2 does not, in fact, apply. But nevertheless, we
were still able to achieve convergence using approximating plant data.

We took the state estimator to be initially at rest and set q(0, x) = .1, 0 < x < 1.
In Figure 6.4 we plot estimate time trajectories for q for various values of n and m.
The function q has also been plotted on the same sets of axes with a solid line. (The
initial guess, q(0, ·), is also plotted with a solid line.) Once again, reasonably accurate
estimates are obtained with relatively low values of n and m. In Figure 6.5 we plot
the approximating estimates of q at time t = 100 for n = 64 and m = 8, 16, 24,
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and 32. Note that in the last case the dimension of the approximating estimator is
(n − 1) + (m + 1) = (64 − 1) + (32 + 1) = 96. It is worth noting the high degree
of stability exhibited by the scheme. Indeed, the problem of estimating functional
coefficients in partial differential equations is well known to be, in general, ill posed.
(see, for example, [2]). The instability usually becomes apparent as the value of m
increases. For large values of n, we observed no evidence of instability until the value
of m started to approach the value of n. We checked this for values of n as large
as 64.

6.3. Example 3. In this example we consider the simultaneous estimation of
constant stiffness and damping parameters in the one-dimensional wave equation with
Kelvin–Voigt viscoelastic damping given by

∂2w

∂t2
(t, x)− q2

∂2

∂x2

∂w

∂t
(t, x)− q1

∂2w

∂x2 = g(t, x), t > 0, 0 < x < 1,(6.9)

with the Dirichlet (fixed endpoint) boundary conditions

w(t, 0) = 0 = w(t, 1), t > 0.(6.10)

Applying the theory developed in section 5, we set H0 = L2(0, 1) and V0 = H1
0 (0, 1),

each endowed with its respective usual inner product and corresponding induced norm.
We let Q = R2 with the weighted inner product given by 〈q, p〉 = qTΩp, q, p ∈ R2,
where Ω is the 2× 2 diagonal matrix given by Ω = Diagonal(ω1, ω2), with ω1, ω2 > 0.

For q = (q1, q2)T ∈ Q and i = 1, 2, we define the forms ai(q; ·, ·) : V0× V0 → R by

ai(q;ϕ,ψ) = qi

∫ 1

0
Dϕ(x)Dψ(x)dx, ϕ, ψ ∈ H1

0 (0, 1).

Once again it is easily verified that assumptions (A7)–(A9) are satisfied for i = 1, 2,
with the subset Q̃ of Q being the positive orthant of R2. That is, Q̃ = {(q∗1 , q∗2) ∈
R2 : q∗i > 0, i = 1, 2}.

We again approximate the state estimator using the linear spline basis given
by (6.1). Let Hn

0 = span{ϕnj }n−1
j=1 , and set un1 (t) =

∑n−1
j=1 U

n
1 (t)jϕnj , t ≥ 0, and

un2 (t) =
∑n−1
j=1 U

n
2 (t)jϕnj , t ≥ 0. Furthermore, let Wn(t) ∈ Rn−1 be the coordinate

vector with respect to the basis {ϕnj }n−1
j=1 for the approximating plant wn(t) = Pnw(t),

where Pn is the orthogonal projection of V0 onto Hn
0 with respect to V0 = H1

0 (0, 1)
inner product. The matrix form of the corresponding estimator is then given by

q∗1K
nU̇n1 (t)− q∗1KnUn2 (t) + λq∗1K

nUn1 (t) = λq∗1K
nWn(t), t > 0,

MnU̇n2 (t) + q∗2K
nUn2 (t) + q∗1K

nUn1 (t) + λMnUn2 (t)

+qn2 (t)KnẆn(t) + qn1 (t)KnWn(t)

= q∗2K
nẆn(t) + q∗1K

nWn(t) + λMnẆn(t) +Gn(t), t > 0,

ω1q̇
n
1 (t) +W (t)TKn

(
Ẇn(t)− Un2 (t)

)
= 0, t > 0,

ω2q̇
n
1 (t) + Ẇ (t)TKn

(
Ẇn(t)− Un2 (t)

)
= 0, t > 0,

where the matrices Mn and Kn are given by (6.6) and (6.4), respectively, q∗1 , q
∗
2 , λ > 0,

and Gn is given by Gn(t)j =
∫ 1

0 g(t, x)ϕnj (x)dx, j = 1, 2, . . . , n− 1.
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FIG. 6.6. Estimator trajectories for q1 and q2 for n = 8, 16, 24, and 32.

To generate the numerical results that we present below, we set q = (q1, q2)T =
(.0308, .01)T , and let g(t, x) = {4 sin(4πt) + cos(πt) + 2}χ[.215,.315](x), t > 0, 0 <
x < 1. We assumed that the plant was initially at rest and used the IMSL routine
DMOLCH (a cubic Hermite polynomial method of lines solver for systems of partial
differential equations) to integrate (6.9), (6.10) (together with zero initial data) with
qi = qi, i = 1, 2, to obtain w(t) and ẇ(t), for t > 0. We set q∗1 = 2 × 10−4,
q∗2 = .5, ω1 = ω2 = 53.334, and λ = 1. We took the state estimator to be initially
at rest and set qn1 (0) = qn2 (0) = 0 for all n. We integrated the estimator from t = 0
to t = 100. Our results for n = 8, 16, 24, and 32 are plotted in Figure 6.6. The
true values of the parameters, q1 and q2, are also plotted on the same axes with
a dashed line. In Figure 6.7 we plot the Euclidean norm of the parameter error,
|rn(t)| =

{
(qn1 (t)− q1)2 + (qn2 (t)− q2)2

} 1
2 , from t = 0 to t = 100, for n = 8, 16, 24,

and 32. That convergence is achieved is immediately clear.

6.4. Example 4. In this example we consider the estimation of the thermal con-
ductivity in a one-dimensional nonlinear (strictly speaking, quasi-linear) heat equa-
tion. More precisely, we consider the identification of the thermal conductivity, q, in
the one-dimensional quasi-linear heat equation

∂u

∂t
(t, x)− ∂

∂x

{
q

(∣∣∣∣∂u∂x (t, x)
∣∣∣∣) ∂u

∂x
(t, x)

}
= f(t, x), 0 < x < 1, t > 0,(6.11)

together with the Dirichlet boundary conditions

u(t, 0) = 0 and u(t, 1) = 0, t > 0,(6.12)

and the initial conditions

u(0, x) = u0(x), 0 ≤ x ≤ 1.(6.13)

We assume that u0 ∈ L2(0, 1) and f(t, · ) ∈ L2(0, 1) for t ≥ 0.
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FIG. 6.7. Euclidean norm of the parameter error for n = 8, 16, 24, and 32.

Let H = L2(0, 1) be endowed with the standard inner product, let V = H1
0 (0, 1)

be endowed with the usual norm, ‖ϕ‖ = {
∫ 1

0 |Dϕ(x)|2dx} 1
2 , ϕ ∈ H1

0 (0, 1), and define
the Hilbert space Q as follows. Let Q̂ = {ϕ : ϕ ∈ H1

Loc(R
+) and ϕ,Dϕ ∈ L∞(R+)}.

Define the inner product, 〈·, ·〉Q, on Q̂ by

〈ϕ,ψ〉Q =
∫ ∞

0
ω0(θ)ϕ(θ)ψ(θ)dθ +

∫ ∞
0

ω1(θ)Dϕ(θ)Dψ(θ)dθ, ϕ, ψ ∈ Q̂,(6.14)

where ω0, ω1 ∈ L1(R+) are positive weighting functions. Let | · |Q denote the norm
induced by the inner product given in (6.14), and define the Hilbert space Q to be the
completion of the inner product space {Q̂, 〈·, ·〉Q, |·|Q}. For q ∈ Q, let A0(q) : V → V ∗

be given by

〈A0(q)ϕ,ψ〉 =
∫ 1

0
q(|Dϕ(x)|)Dϕ(x)Dψ(x)dx, ϕ, ψ ∈ V.

It is not difficult to verify that assumptions (A1) and (A2) are satisfied.
For our estimator dynamics, we use a linear constant coefficient heat conduction

operator with Dirichlet boundary conditions. That is, we define A ∈ L(V, V ∗) by

〈Aϕ,ψ〉 = α

∫ 1

0
Dϕ(x)Dψ(x)dx, ϕ, ψ ∈ V,

where α > 0. It follows that for ϕ,ψ ∈ V we have |〈Aϕ,ψ〉| ≤ α‖ϕ‖‖ψ‖, and
〈Aϕ,ϕ〉 ≥ β‖ϕ‖2, with β = α. Consequently, assumptions (A3) and (A4) are satisfied.

We again approximate the state space using linear B-spline functions. Set Hn =
span{ϕnj }n−1

j=1 , where for each n = 2, 3, . . . and j = 1, 2, . . . n− 1, ϕnj is given by (6.1).
We again assume that (6.5) holds and that the plant, u, is discretized as in (6.2).
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We also use linear B-splines to discretize the parameter space Q. For each
m = 1, 2, . . ., and each r > 0, let {ψ̂m,rj }mj=0 be the standard linear B-splines on
the interval [0, r] defined with respect to the uniform mesh {0, rm ,

2r
m , . . . , r}. Let

Qm,r = span{ψm,rj }mj=0, where

ψm,rj =

{
ψ̂m,rj , j = 0, 1, 2, . . . ,m− 1,

ψ̂m,rm + χ[r,∞), j = m,

with χJ denoting the characteristic function for the interval J . If we let Pm,rQ denote
the orthogonal projection of Q onto Qm,r, the requisite strong convergence to the
identity which will ensure that assumption (A5) is satisfied can be demonstrated.
Consequently, let Ωm,r denote the (m+ 1)× (m+ 1) Gram matrix corresponding to
the basis {ψm,rj }mj=0. That is,

Ωm,r = [Ωm,r]i,j

= 〈ψm,ri , ψm,rj 〉Q =
∫ ∞

0
ω0(θ)ψm,ri (θ)ψm,rj (θ)dθ +

∫ ∞
0

ω1(θ)Dψm,ri (θ)Dψm,rj (θ)dθ.

For t ≥ 0, let pm,r(t) = [pm,r(t)0, . . . , p
m,r(t)m]T ∈ Rm+1 denote the coordinate

vector for the approximating parameter estimate qm,r(t) with respect to the basis
{ψm,rj }mj=0. That is, qm,r(t) =

∑m
j=0 p

m,r(t)jψ
m,r
j , t ≥ 0.

For each t ≥ 0, define the (n− 1)× (m+ 1) matrix Bn,m,r(t) by

[Bn,m,r(t)]i,j

=
∫ 1

0
ψm,rj (|Dxun(t, x)|)Dxun(t, x)Dϕni (x)dx, j = 0, 1, . . . ,m, i = 1, . . . , n− 1.

Using the fact that un(t) ∈ span{ϕnj }n−1
j=1 and the fact that Dϕnj is piecewise constant,

and adopting the convention that Un(t)0 = Un(t)n = 0, we obtain that

[Bn,m,r(t)]i,j = nψm,rj (n{Un(t)i − Un(t)i−1}){Un(t)i − Un(t)i−1}

−nψm,rj (n{Un(t)i+1 − Un(t)i}){Un(t)i+1 − Un(t)i},

i = 1, 2, . . . , n− 1, j = 0, 1, . . . ,m.

The matrix form of the approximating estimator, (4.1)–(4.3), is then given by

MnU̇n(t) +KnUn(t) +Bn,m,r(t)pm,r(t) = Fn(t) +KnUn(t), t > 0,(6.15)

Ωm,rṗm,r(t)−Bn,m,r(t)TUn(t) = −Bn,m,r(t)TUn(t), t > 0,(6.16)

Un(0) = (Mn)−1Un0 , pm,r(0) = (Ωm,r)−1pm,r0 ,(6.17)

where the (n− 1)-vector Un0 and the (m+ 1)-vector pm,r0 are given by

[Un0 ]i =
∫ 1

0
u0(x)ϕni (x)dx, i = 1, 2, . . . , n− 1,

and

[pm,r0 ]i = 〈q0, ψ
m,r
i 〉Q

=
∫ ∞

0
ω0(θ)q0(θ)ψm,ri (θ)dθ +

∫ ∞
0

ω1(θ)Dq0(θ)Dψm,ri (θ)dθ, i = 0, 1, 2, . . . ,m,
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FIG. 6.8. Final (t = 100) estimates for q for n = 2j+1, m = 2j for j = 1, 2, 3, 4.

respectively; Fn is given by (6.7); and the (n− 1)× (n− 1) matrices Mn and Kn are
given by (6.6) and (6.4), respectively.

We set q(θ) = .9(1 − 1
2e
− 1

2 θ
2
), θ ≥ 0, we let f be as it was given in (6.8),

f(t, x) = {sin(4πt) + 10−3t2}χ[.215,.315](x), 0 < x < 1, t > 0, and set u0(x) = 0,
0 < x < 1. We then proceeded to simulate the plant (i.e., (6.11)–(6.13)) using the
IMSL routine DMOLCH, a double-precision Hermite polynomial–based method-of-
lines partial differential equation solver. In our estimator, we set α = 10−2, r = 3.5,

ω0(θ) = ω1(θ) =

{
1, 0 ≤ θ < r,
1
2e
−20θ, r < θ <∞,

u0(x) = 0, 0 < x < 1, and q0(θ) = 1, 0 < θ < ∞. In Figure 6.8 we have plotted our
final (i.e., at time t = 100) estimates for q for various values of n and m obtained
by integrating the approximating estimator equations (6.15)–(6.17). In Figure 6.9 we
have plotted the estimates for q at various times. These estimates were generated
with n = 32 and m = 16.

7. Summary and concluding remarks. In this paper we have developed,
analyzed, and tested an on-line, or adaptive, parameter identification scheme for ab-
stract linear and nonlinear dynamical systems. Our estimator takes the form of an
infinite–dimensional linear evolution system whose states consist of a state estimator
and a parameter estimator. Using a standard Lyapunov estimate–based argument
involving a variation of Barbălat’s lemma, we were able to establish convergence of
the state estimator. Under the additional assumption that the plant is sufficiently
rich, or persistently excited, we were able to argue parameter convergence as well.
Equivalently, when the plant is persistently excited, we were able to show that the
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FIG. 6.9. Estimates for q at various times generated with n = 32 and m = 16.

solution to the error equations corresponding to the plant dynamics and the estimator
with arbitrary initial data tends to the trivial solution as time tends to infinity. Our
approach here represents an infinite-dimensional analogue, or extension, of some of
the ideas and techniques found in the finite-dimensional treatment in [22]. We also
developed a rather complete finite-dimensional approximation theory and established
corresponding convergence results. We have considered the application of our gen-
eral framework to certain classes of second-order systems and presented a number
of examples (both first and second order, both linear and nonlinear, and involving
both finite- and infinite-dimensional parameter spaces) and corresponding numerical
results to demonstrate the feasibility of our schemes.

There are a number of significant extensions and applications of the results that
we have presented here that we are currently pursuing. These include the develop-
ment of a similar estimation theory for more general classes of distributed parameter
systems, in particular, delay or hereditary systems and infinite-dimensional systems
most appropriately formulated in a Banach space rather than Hilbert space setting.
We are currently developing a rather general framework based upon either a single
Hilbert space formulation (as opposed to the Gelfand triple approach taken here) or
a Banach space formulation, which should be able to handle a significantly wider
class of problems than does the treatment presented here. Extending our schemes
to parameter estimation problems involving stochastic elements would also be quite
useful. For example, these stochastic elements might take the form of noise in the
plant measurement or the inclusion of a noise term in the plant dynamics.

A further and more significant extension of our results would involve the intro-
duction of an observer for the purpose of eliminating the requirement that the full
state be measured at each time. A modification of our scheme which does not require
the entire state but rather only the output of a (finite rank) observation operator,
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would represent a significant and valuable improvement. Indeed, even with the recent
developments in sensor technology (for example, piezoceramics, fiber optics, and laser
scanners) measuring the full state of an infinite-dimensional, or distributed, plant
continues to present a substantial and, most likely, costly challenge. On the other
hand, the analysis of a scheme such as ours coupled with an observer, is likely to
present a significant mathematical challenge. This is because the observer would al-
most certainly destroy the overall linearity of the estimator. Consequently, a nonlinear
stability and convergence analysis would now be required.

Finally, we are interested in using our on-line parameter estimator as a component
in an indirect adaptive control algorithm for distributed parameter systems. For
example, one approach that we are currently looking at involves using the evolving
identified model (i.e., the output from the parameter estimator at any time instant)
to design a linear quadratic controller. Such a treatment would be similar in spirit to
the approach taken in [9], [10], [11], [12], [13], and [25] using either least squares or
maximum likelihood estimators for the unknown parameters. A complete analysis of
such a scheme is likely to be a nontrivial exercise as well.
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[2] H. T. BANKS AND K. KUNISCH, Estimation Techniques for Distributed Parameter Systems,
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Abstract. We consider a controlled Markov chain on a general state space whose transition
probabilities are parameterized by an unknown parameter belonging to a compact metric space.
There is a one-step reward associated with each pair of control and the following state of the process.
Given a finite set of stationary control laws, under each of which the Markov chain is uniformly
recurrent, an optimal control law in this set is one that maximizes the long-run average reward.
In ignorance of the parameter value, we construct an adaptive control rule which uses the optimal
control law(s) at a relative frequency of 1−O(n−1 log n) and show that this relative frequency gives an
asymptotically optimal balance between the control objective and the amount of information needed
to learn about the unknown parameter. The basic idea underlying this construction is to introduce
suitable “uncertainty adjustments” via sequential testing theory into the certainty-equivalence rule,
thus resolving the apparent dilemma between control and information.

Key words. adaptive control of Markov chains, martingales, likelihood ratios, stationary dis-
tributions, certainty equivalence, sequential testing, multiarmed bandits

AMS subject classifications. 93C40, 93E20, 93E35, 60J20, 62L10

PII. S0363012994275440

1. Introduction and background. We consider here a controlled Markov
chain {Xn, n ≥ 0} on a measurable state space (S,A), with a general control set
U and a parametric family of transition density functions p(x, y;u, θ) with respect to
some measure M on S, where θ is an unknown parameter taking values in a compact
metric space Θ. Thus the transition probability measure under control action u and
parameter θ is given by Pu

θ (Xn+1 ∈ A|Xn = x) =
∫

A
p(x, y;u, θ)dM(y). The initial

distribution of X0 under Pu
θ is also assumed to be absolutely continuous with respect

to M . Let G = {g1, . . . , gL} be a finite set of stationary control laws gj : S → U such
that for every g ∈ G, the transition probability function {P g(x)

θ (x,A) : x ∈ S,A ∈ A}
is irreducible with respect to some maximal irreducibility measure and has stationary
distribution {πg

θ (A) : A ∈ A}. Let r(Xt, ut) represent the one-step reward at time t,
where r : S × U → R, and define the long-run average reward

(1.1) µθ(g) =
∫
r(x, g(x))dπg

θ (x),

which will be assumed to be finite. If θ were known, then one would use the stationary
control law gj(θ) such that

(1.2) µ∗
θ := max

g∈G
µθ(g) = µθ(gj(θ)).
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In ignorance of θ, a certainty-equivalence control rule is to use the control law gj(θ̂t)
at

time t, where θ̂t is an estimate of θ based on the observed dataX0, u0, . . . , Xt−1, ut−1, Xt

(in chronological order).
For the case of a finite state space S, Mandl [18] studied this certainty-equivalence

rule in which θ̂t is a minimum contrast estimate and showed that θ̂t converges almost
surely (a.s.) to θ under a restrictive “identifiability condition” and some other reg-
ularity conditions. Borkar and Varaiya [6] removed this identifiability condition and
showed that when Θ is finite, the maximum likelihood estimate θ̂t converges a.s. to a
random variable θ∗ such that

(1.3) p(x, y; gj(θ∗)(x), θ∗) = p(x, y, gj(θ∗)(x), θ)

for all x, y ∈ S (finite). They also gave an example for which θ∗ 6= θ with positive
probability, showing that the certainty-equivalence rule can prematurely converge to
a wrong parameter value so that it eventually uses only the suboptimal stationary
control law gj(θ∗) to the exclusion of other control laws.

In view of this difficulty with the certainty-equivalence rule, various modifications
of the rule have appeared in the literature. Kumar [11] and Kumar and Varaiya [12]
have provided comprehensive surveys of the developments up to the mid-1980s, which
include (i) forced choice schemes that reserve some prespecified sparse set of times
for experimentation with all stationary control laws in G, (ii) randomization schemes
for which every g ∈ G has a positive probability, whose value is to be determined
adaptively from the past data, of being applied at each time, and (iii) using penalized
(cost-biased) maximum likelihood estimators θ̂t.

1.1. Ideas from bandit theory. The past decade has witnessed other devel-
opments in a classical example of adaptive choice from a finite set of control actions,
namely, the multiarmed bandit problem. In its simplest form, the problem can be
described as follows. There are L statistical populations Π1, . . . ,ΠL with univariate
density functions p(y; θ1), . . . , p(y; θL) with respect to some measure M . At each time
t we can sample from one of these populations, and the reward is the sampled valueXt.
Thus the control set U is {1, . . . , L}, where control action j refers to sampling from Πj .
An adaptive sampling rule consists of a sequence of random variables u1, u2, . . . taking
values in {1, . . . , k} such that the event {ut = j} (“Xt+1 is sampled from Πj”) belongs
to the σ-field generated by u0, X1, u1, . . . , Xt−1, ut−1, Xt. Let θ = (θ1, . . . , θL). If θ
were known, then we would sample from the population Πj(θ) with the largest mean;
i.e., µ∗

θ := max1≤j≤L µθ(j) = µθ(j(θ)), where µθ(j) =
∫
yp(y; θj)dM(y) is assumed

to be finite. In ignorance of θ, the problem is to sample X1, X2, . . . sequentially from
the k populations to maximize Eθ(

∑n
i=1Xi), or equivalently to minimize the regret

(1.4) Rn(θ) = nµ∗
θ − Eθ

(
n∑

i=1

Xi

)
=

∑
j:µθ(j)<µ∗

θ

(µ∗
θ − µθ(j))EθTn(j)

as n → ∞, where Tn(j) =
∑n

t=1 I{ut−1=j} and IA = 1 if A occurs, IA = 0 oth-
erwise. Lai and Robbins [16] showed how to construct sampling rules for which
Rn(θ) = O(logn) at every θ. These rules are called “uniformly good.” They also
developed asymptotic lower bounds for the regret Rn(θ) of uniformly good rules and
showed that the rules constructed actually attain these asymptotic lower bounds and
are therefore asymptotically efficient. Specifically, they showed that under certain
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regularity conditions

(1.5) lim infn→∞Rn(θ)/ logn ≥ c(θ)

for uniformly good rules and gave an explicit formula for c(θ) in terms of µ∗
θ − µθ(j)

and certain Kullback–Leibler information numbers. A more general representation
of the lower bound c(θ) is given in section 2, where we extend this result on the
multiarmed bandit problem to the general setting of adaptive choice of stationary
control laws in controlled Markov chains.

Anantharam, Varaiya, and Walrand [5] generalized the results of [16] to the mul-
tiarmed bandit problem in which each Πj represents an aperiodic, irreducible Markov
chain on a finite state space S so that successive observations from Πj are no longer
independent but are governed by the Markov transition density p(x, y; θj). Assuming
the successive observations from Πj to be independent with a common density func-
tion p(y; θj), Agrawal, Hedge, and Teneketzis [1] incorporated an additional switching
cost and showed that the sampling rules of [16] can be modified by sampling in blocks
so that the asymptotic lower bound in (1.5) is still attained and the cumulative switch-
ing cost up to time n is of the order o(logn) when no more than one population has
the largest mean µ∗

θ.
For the problem of adaptive choice of stationary control laws in controlled Markov

chains, switching costs are particularly relevant since it usually takes time to change
from a new control strategy to another. We shall assume no switching cost for switch-
ing among the (typically equivalent) optimal stationary control laws that attain the
maximum in (1.2) and a cost a(θ) for each switch from one g ∈ G to another g′ ∈ G
when g and g′ are not both optimal. An adaptive control rule φ is a sequence of
random variables φ1, φ2, . . . taking values in G such that {φt = g} ∈ Ft for all g ∈ G
and t ≥ 0, where

(1.6) Ft = σ-field generated by X0, φ0, . . . , Xt−1, φt−1, Xt.

Defining µθ(g) and µ∗
θ by (1.1) and (1.2), we generalize (1.4) to controlled Markov

chains by letting

(1.7) Rn(θ) =
∑

g∈G:µθ(g)<µ∗
θ

(µ∗
θ − µθ(g))EθTn(g), with Tn(g) =

n−1∑
i=0

I{φi=g}.

In view of the additional switching cost a(θ) for each switch between two control laws
in G, not both optimal, we define the overall regret to be Rn(θ) + a(θ)Sn(θ), where

(1.8) Sn(θ) = Eθ

(
n∑

i=1

I{φi 6=φi−1,min(µθ(φi),µθ(φi−1))<µ∗
θ}

)
.

An adaptive control rule φ is said to be uniformly good if

(1.9) Rn(θ) = O(logn) and Sn(θ) = o(logn) for every θ ∈ Θ.

In section 2 we develop an asymptotic lower bound for Rn(θ) among all uniformly
good rules, and in section 3 we construct adaptive control rules that attain this lower
bound. These results therefore generalize those of [16] on the multiarmed bandit
problem to the setting of adaptive choice of control laws in controlled Markov chains.
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A major technical difficulty in this generalization is that unlike Markovian bandit
processes in which the state of Πj is “frozen” until a new observation is sampled from
Πj , for controlled Markov chains Xt+1 is governed by the immediately preceding state
Xt and control action φt(Xt) irrespective of whether φt+1 = φt or not. We resolve
this difficulty by using certain change-of-measure arguments in section 2 and some
limit theorems for controlled Markov chains developed in section 4.

This difficulty disappears in the special case where the controlled Markov chain
{Xt, t ≥ 1} is a sequence of independent random variables so that the conditional
density of Xt+1 given ut = u is p(y;u, θ). Assuming U and Θ to be finite, Agrawal,
Teneketzis, and Anantharam [3] studied this special case by regarding each control
action u ∈ U as an arm and r(X1, u1), r(X2, u2), . . . as a sequence of rewards obtained
by choosing the arms u1, u2, . . .. They noted, however, another difficulty in reducing
this problem to the multiarmed bandit problem because of the differences in how the
parameter space Θ is defined in the two problems. In the controlled independent
sequence problem, θ parameterizes all the arms u ∈ U , whereas in the multiarmed
bandit problem θ = (θ1, . . . , θk) with each θj parameterizing the individual arm Πj .
They circumvented this difficulty by making use of the finiteness of Θ and introducing
a finite set B(θ) of “bad” parameter values associated with θ. They thereby obtained
an asymptotic lower bound for the regret (1.7) of uniformly good control rules and
developed a rule that attains this bound. In section 2, without assuming Θ to be finite,
we define the bad set B(θ) in the setting of controlled Markov chains with general
state and parameter spaces. When the state space S, the control set U , and the
parameter space Θ are all finite, Agrawal, Teneketzis, and Ananthanam [4] developed a
“translation scheme” which together with the construction of an “extended probability
space” enabled them to solve the controlled Markov chain problem by converting it
to a form similar to that for the controlled independent sequence problem in [3]. This
ingenious idea of translation schemes, however, depends heavily on the finiteness of S.
Our development of an asymptotic lower bound for (1.7) in section 2 uses a different
approach which involves large deviation probabilities for controlled Markov chains on
general state spaces S satisfying certain uniform recurrence assumptions.

As a consequence of the translation scheme under their finiteness assumptions,
Agrawal, Teneketzis, and Ananthanam [4] obtained the approximation

(1.10) Eθ

{
n−1∑
i=0

r(Xi, φi(Xi))

}
=
∑
g∈G

µθ(g)EθTn(g) +O(1) as n → ∞.

Hence in this case (1.7) can be expressed as

(1.11) Rn(θ) = R̃n(θ) +O(1), where R̃n(θ) = nµ∗
θ − Eθ

{
n−1∑
i=0

r(Xi, φi(Xi))

}
.

Note that R̃n(θ) is the shortfall between the long-run cumulative reward using the
optimal stationary control law gj(θ) and the cumulative reward of the adaptive control
rule φ. Moreover, by making use of the translation scheme in the development of their
asymptotic lower bound for Rn(θ), Agrawal, Teneketzis, and Ananthanam [4] did not
need to impose the constraint on the expected number of switches in (1.9) for uni-
formly good rules. However, for general state spaces, (1.10) and (1.11) need no longer
hold, and there may even exist adaptive control rules for which limn→∞ R̃n(θ) = −∞
at certain values of θ. This difficulty arises because in the absence of (1.10), the long-
run average optimality property (1.2) of the stationary control law gj(θ) no longer
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ensures it to be asymptotically optimal among adaptive control rules that can switch
freely among stationary control laws in G. Note that G does not contain such adap-
tive control rules which are not stationary. We therefore have to put some constraint
on the expected number of switches in the adaptive control rules to compare them
with the optimal stationary control law gj(θ) (which makes no switch in G). This can
be regarded as a “complexity constraint,” consistent with our basic assumption of a
finite set of stationary control policies to reduce the complexity of the Markov control
problem. Under the switching constraint that Sn(θ) = o(logn) and assuming the
transition probability function {P g(x)

θ (x,A) : x ∈ S,A ∈ A} to be uniformly recurrent
for every g ∈ G, it is shown in [14] that the “reward regret” R̃n(θ) is asymptotically
equivalent to the more tractable weighted sum (1.7) of expected frequencies of using
suboptimal stationary control laws; i.e.,

(1.12) R̃n(θ) = Rn(θ) + o(logn) as n → ∞.

The constraint on Sn(θ) in (1.9) relates only to switches between two stationary
control laws which are not both optimal when θ is the true parameter. We do not
impose the o(logn) constraint on the expected number of switches between two opti-
mal stationary control laws. In fact, since one cannot infer from the past data which
of these optimal stationary control laws is significantly inferior, one is expected to
keep switching among them to learn their performance, as in [16] for the multiarmed
bandit problem.

1.2. Uncertainty adjustments to the certainty-equivalence rule via se-
quential testing theory. Lai [13] pointed out the usefulness of sequential testing
theory in making uncertainty adjustments of the certainty-equivalence rule, leading
to asymptotically optimal rules when the control set is finite. To illustrate this, he
considered the following bivariate bandit problem. Let Π1,Π2,Π3 be three bivariate
normal populations with respective mean vectors (µ1, ξ), (µ2, µ3), and (µ3, µ2 + ξ)
and with a common known covariance matrix which is equal to the identity ma-
trix. Here θ = (µ1, µ2, µ3, ξ) is the unknown parameter vector and the problem is
to sample X1, X2, . . . sequentially from the three populations in order to maximize
the expected value of the first component of

∑n
i=1Xi as n → ∞. The relevant in-

formation we need for optimal control can be represented by the three hypotheses
Hj : µj = max(µ1, µ2, µ3), j = 1, 2, 3. In other words, we do not need to know
the actual values of µ1, µ2, µ3, ξ but need only to determine which of µ1, µ2, µ3 is
the largest. While information about µ1 can only be obtained by sampling from Π1,
information about µ2 and µ3 can be obtained by sampling from Π2 alone or from Π3
and Π1. Using results from sequential testing theory, Lai [13] constructed an asymp-
totically optimal rule whose regret (1.7) satisfies Rn(θ) = O(1) if µ1 = max(µ2, µ3)
and Rn(θ) ∼ c(θ) logn otherwise, where

c(θ) = 2/{µ1 − max(µ2, µ3)} if µ1 > max(µ2, µ3)

= 2/(µ2 − µ1) if µ2 > max(µ1, µ3)

= 2/(µ3 − µ1) if µ3 = µ2 > µ1 or µ3 > µ1 ≥ µ2

= 2/(µ3 − µ1) + 2/(µ3 − µ2) − 2(µ3 − µ2)/(µ3 − µ1)2 if µ3 > µ2 > µ1.

In section 3 we use sequential testing theory to construct asymptotically efficient
adaptive control rules in controlled Markov chains. These rules are considerably
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simpler than those in [4] which require finiteness of S and Θ for their implementation
and for the analysis that shows their regretRn(θ) to be of the orderO(logn). The rules
in section 3 are applicable to general state spaces S and compact metric spaces Θ, and
we prove in section 4 that they attain the asymptotic lower bound (c(θ) + o(1)) logn
for the regret established in section 2.

In summary, by making use of bandit theory and sequential testing methodol-
ogy, we generalize herein previous work of Agrawal, Tenektetzis, and Ananthanam
[4] from the case of finite Θ and S to compact Θ and general state spaces S while
still assuming finiteness of G, which is crucial for both the asymptotic lower bound
in section 2 and the rules proposed in section 3. This generalization requires certain
constraints on the expected number of switches among the stationary control laws in
G and uniform recurrence assumptions on the transition probability functions. We
construct in section 3 adaptive control rules with regret Rn(θ) having the asymptot-
ically minimal order c(θ) logn, where the constant c(θ) is given in section 2. Using
nonparametric sequential testing theory instead of the parametric likelihood ratio
approach here and assuming G to be countable instead of finite, Lai and Yakowitz
[17] removed the parametric and related assumptions herein and developed adaptive
control rules with regret Rn(θ) = O(αn logn) for any given nondecreasing sequence
of positive numbers αn → ∞ and α2n = O(αn). Earlier, Agrawal and Teneketzis [2]
also used a nonparametric approach to construct adaptive control rules with regret
Rn(θ) = O((logn))1+δ) for any given δ > 0 in the case of finite G, Θ, and S so that
the translation scheme of Agrawal, Teneketzis, and Ananthanam [4] is applicable.

2. Decomposition of the parameter space and an asymptotic lower
bound for the regret of uniformly good rules. Using the same notation as
that introduced at the beginning of section 1, define for g ∈ G the Kullback–Leibler
information number

(2.1) Ig(θ, λ) =
∫ ∫ {

log
p(x, y; g(x), θ)
p(x, y; g(x), λ)

}
p(x, y; g(x), θ)dM(y)dπg

θ (x),

which will be assumed to be finite for all θ, λ ∈ Θ. We shall decompose Θ as the
union of L subsets: Θ = Θ1 ∪ · · · ∪ ΘL, where

(2.2) Θj = {θ ∈ Θ : µθ(gj) = max
g∈G

µθ(g)};

i.e., gj is an optimal stationary control law if θ ∈ Θj . For θ ∈ Θ, let

(2.3) J(θ) = {1 ≤ j ≤ L : µθ(gj) = max
g∈G

µθ(g)(= µ∗
θ)},

(2.4) B(θ) =

λ ∈ Θ : λ /∈
⋃

j∈J(θ)

Θj and Igj (θ, λ) = 0 for all j ∈ J(θ)

 ,

(2.5)

c(θ)

= inf

 ∑
j /∈J(θ)

cj [µ∗
θ − µθ(gj)] : cj ∈ [0,∞), inf

λ∈B(θ)

∑
j /∈J(θ)

cjI
gj (θ, λ) ≥ 1

 (inf ∅ = ∞).

Thus, {gj , j ∈ J(θ)} is the set of all optimal stationary control laws when θ is the
true parameter value, and B(θ) consists of all “bad” parameter values λ /∈ ∪j∈J(θ)Θj
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which are statistically indistinguishable from θ if one only uses the optimal control
laws gj , j ∈ J(θ), because Igj (θ, λ) = 0. Theorem 1 below shows that under certain
regularity conditions (c(θ) + o(1)) logn is an asymptotic lower bound for the regret
(1.7) of uniformly good rules. Note that (2.5) can also be expressed as

(2.6)

c(θ) = inf


∑

j /∈J(θ) αj [µ∗
θ − µθ(gj)]

infλ∈B(θ)
∑

j /∈J(θ) αjIgj (θ, λ)
: αj ≥ 0,

∑
j /∈J(θ)

αj = 1

 (inf ∅ = ∞).

This alternative form of the asymptotic lower bound of Rn(θ)/ logn was obtained by
Agrawal, Teneketzis, and Ananthanam [4] when the state space S and the parameter
space Θ are finite. Theorem 1 uses a different argument which involves the equiva-
lent form (2.5) of (2.6) to establish the result for general state spaces and compact
parameter spaces. We first give some examples to illustrate the computation of c(θ).

Example 1. Consider the multiarmed bandit problem of section 1.1. Here θ =
(θ1, · · · , θL), gj = j (“sample from Πj”) and Ij(θ, λ) = I(θj , λj), where

(2.7) I(a, b) =
∫
p(y; a) log[p(y; a)/p(y; b)]dM(y), µ(a) =

∫
yp(y; a)dM(y).

Assume that I(a, b) < ∞ and that I(a, b) = 0 iff µ(a) = µ(b), analogous to the
assumptions (1.6) and (1.7) of Lai and Robbins [16].

(i) Suppose L = 2,Θ = {(α, β), (β, α)}, and µ(α) 6= µ(β). Thus, it is known
that one population has a specified parameter value α and the other has parameter
value β, but it is not known whether Π1 or Π2 is associated with α. This is the two-
armed bandit problem studied by Feldman [7]. Here I1((α, β), (β, α)) = I(α, β) >
0, I2((α, β), (β, α)) = I(β, α) > 0, and therefore B(θ) = ∅, c(θ) = 0 for θ ∈ Θ. In
fact, Feldman’s procedure has regret Rn(θ) = O(1). Lai and Robbins [15] considered
more general k-armed bandit problems in which B(θ) = ∅ for all θ ∈ Θ and developed
sampling rules with Rn(θ) = O(1).

(ii) Suppose Θ = ∆L, where ∆ is a compact metric space. For θ = (θ1, . . . , θL),
let θ∗ ∈ {θ1, . . . , θL} be such that µ(θ∗) = max1≤i≤L µ(θi). Then J(θ) = {1 ≤ j ≤
L : µ(θj) = µ(θ∗)} and

(2.8)

B(θ) =
{

(λ1, . . . , λL) ∈ Θ : µ(λj) = µ(θ∗) for all j ∈ J(θ), max
1≤i≤L

µ(λi) > µ(θ∗)
}

since I(a, b) = 0 iff µ(a) = µ(b) by assumption. Assume as in (1.7) of [16] that

(2.9) I(θj , b) → I(θj , θ
∗) as µ(b) ↓ µ(θ∗).

Consider the minimization problem in (2.5) which reduces here to finding nonnegative
numbers cj , j /∈ J(θ), to minimize

∑
j /∈J(θ) cj(µ(θ∗)−µ(θj)) subject to the constraints

(2.10) inf
λ∈Bi(θ)

∑
j /∈J(θ)

cjI(θj , λj) ≥ 1, i /∈ J(θ),

where Bi(θ) = {λ ∈ B(θ) : µ(λi) = max1≤s≤L µ(λs)}. For fixed i /∈ J(θ), since
(θ1, . . . , θi−1, b, θi+1, . . . , θL) ∈ Bi(θ) for any b ∈ ∆ with µ(b) > µ(θ∗), (2.9) and
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(2.10) imply that ci ≥ 1/I(θi, θ
∗). Hence c(θ) ≥

∑
j /∈J(θ)(µ(θ∗) − µ(θj))/I(θj , θ

∗),
which is the asymptotic lower bound for Rn(θ)/ logn given in [16], where sampling
rules that attain this lower bound are also constructed for certain parametric families
having the monotonicity property

(2.11) I(a, b) ≥ I(a, θ∗) whenever µ(b) ≥ µ(θ∗) ≥ µ(a).

Under (2.11), I(θi, λi)/I(θi, θ
∗) ≥ 1 for all λ ∈ Bi(θ), and therefore the constraint

(2.10) holds with cj = 1/I(θj , θ
∗), j /∈ J(θ). This choice of cj therefore solves the

minimization problem in (2.5) under the assumptions (2.9) and (2.11), yielding c(θ) =∑
j /∈J(θ)(µ(θ∗) − µ(θj))/I(θj , θ

∗).
Example 2. Consider the following variant of Example 1. Let Π1,Π2,Π3 be

three univariate normal populations with respective means γ, ξ + 1, and ξ2 and com-
mon variance 1, where γ and ξ are unknown parameters. Here Θ = {θ = (γ, ξ) :
−∞ < γ < ∞,−∞ < ξ < ∞}, and the problem is to sample X1, X2, . . . sequen-
tially from the three populations to maximize the expected value of

∑n
i=1Xi as

n → ∞. Therefore, as in Example 1, gj = j (“sample from Πj”), I1((γ, ξ), (γ̃, ξ̃)) =
(γ − γ̃)2/2, I2((γ, ξ), (γ̃, ξ̃)) = (ξ − ξ̃)2/2, I3((γ, ξ), (γ̃, ξ̃)) = (ξ2 − ξ̃2)2/2, and

B(γ, ξ) = {(γ, ξ̃) : max(ξ̃ + 1, ξ̃2) > γ} if γ > max(ξ + 1, ξ2)

= {(γ̃, ξ) : γ̃ > ξ + 1} if ξ + 1 > max(γ, ξ2)

= {(γ̃, ξ̃) : |ξ̃| = |ξ|,max(γ̃, ξ̃ + 1) > ξ2} if ξ2 > max(γ, ξ + 1).

To compute c(θ), we can use arguments similar to those in Example 1 to show that

(2.12) c(γ, ξ) = 2/(ξ + 1 − γ) if ξ + 1 > max(γ, ξ2).

The case γ > max(ξ + 1, ξ2) is considerably more complicated, and it is more conve-
nient to use the representation (2.6), which reduces to

(2.13) c(γ, ξ) = inf
0≤π≤1

π(γ − ξ − 1) + (1 − π)(γ − ξ2)

inf ξ̃:ξ̃+1>γ or ξ̃2>γ π(ξ − ξ̃)2/2 + (1 − π)(ξ2 − ξ̃2)2/2
.

To solve the minimization problem in (2.13), first fix π ∈ [0, 1] and find ξ̃π to minimize
ψπ(ξ̃) := π(ξ − ξ̃)2/2 + (1 − π)(ξ2 − ξ̃2)2/2 subject to ξ̃ ≥ γ − 1 or |ξ̃| ≥ √

γ.
Then find π(γ, ξ) ∈ [0, 1] that minimizes {π(γ − ξ − 1) + (1 − π)(γ − ξ2)}/ψπ(ξ̃π).
Note that dψπ/dξ̃ = −(ξ − ξ̃){π + 2(1 − π)ξ̃(ξ + ξ̃)}, which has zeroes at ξ̃ = ξ

and ξ̃ = 1
2{−γ + [γ2 − 2π/(1 − π)]1/2}. For example, if (γ, ξ) = (1.69,−1), then

π(γ, ξ) = 0.112. This is in sharp contrast to (2.12) or Example 1, for which the
optimizing π is always 0 or 1 if we use the representation (2.6) to evaluate c(θ). In
section 3 we shall consider the case ξ2 > max(γ, ξ + 1).

In the following theorem we use the same notation as that introduced at the
beginning of section 1. We shall assume that the transition probability function
{P g(x)

θ (x,A) : x ∈ S,A ∈ A} is uniformly recurrent for every θ ∈ Θ and g ∈ G; i.e.,
there exist positive constants ag

θ < bgθ such that

(2.14) ag
θ ≤ p(x, y; g(x), θ) ≤ bgθ for almost every (with respect to M) x and y

(cf. [9]). This implies that for every g ∈ G, θ ∈ Θ, and λ ∈ B(θ), there exist positive
constants αg

θ,λ < βg
θ,λ such that

(2.15) αg
θ,λ ≤ p(x, y; g(x), θ)/p(x, y; g(x), λ) ≤ βg

θ,λ for (M -)almost every x and y.
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We consider situations where there are switching costs, for which “uniformly good”
rules are defined by (1.9). The following theorem gives an asymptotic lower bound
for the regret (1.7) of uniformly good rules.

THEOREM 1. Under (2.14), for any uniformly good rule φ,

(2.16) lim infn→∞
∑

j /∈J(θ)

Igj (θ, λ)EθTn(gj)/ logn ≥ 1 for every λ ∈ B(θ)

and therefore

(2.17) lim infn→∞Rn(θ)/ logn ≥ c(θ)

for every θ ∈ Θ.
Proof. Since Rn(θ) =

∑
j /∈J(θ)[µ

∗
θ − µθ(gj)]EθTn(gj) by (1.7), (2.17) follows from

(2.5) and (2.16) (writing EθTn(gj) = cj,n logn and noting that inf ∅ = ∞). To prove
(2.16), it suffices to show that for every λ ∈ B(θ) and ε > 0,

(2.18) lim
n→∞

Pθ

 ∑
j /∈J(θ)

Igj (θ, λ)Tn(gj) ≥ (1 − ε) log n

 = 1.

The proof of (2.18) uses a change-of-measure argument similar to that in the
proof of Theorem 2 of Lai and Robbins [16] on the multiarmed bandit problem. Since
λ ∈ B(θ), λ /∈ ∪j∈J(θ)Θj and therefore J(λ) ∩ J(θ) = ∅. Since φ is uniformly good,
Eλ{n−

∑
i∈J(λ) Tn(gi)} = O(logn) by (1.9). For g ∈ G, if

(2.19)

0 = Ig(θ, λ) =
∫ ∫

p(x, y; g(x), θ) log[p(x, y; g(x), θ)/p(x, y; g(x), λ)]dM(y)dπg
θ (x),

then p(x, y; g(x), θ) = p(x, y; g(x), λ) for M -almost everywhere (a.e.) x and y (not-
ing that dπg

θ/dM > 0 a.e.[M ] by (2.14)), and therefore µθ(g) = µλ(g). Since
λ ∈ B(θ), µ∗

λ > µλ(gi) and Igi(θ, λ) = 0 for all i ∈ J(θ). Hence µθ(gi) = µλ(gi) < µ∗
λ

for all i ∈ J(θ), implying that µ∗
λ > µ∗

θ. For j ∈ J(λ), µλ(gj) = µ∗
λ > µ∗

θ ≥ µθ(gj) and
therefore Igj (θ, λ) > 0. It then follows that for all large n,

(2.20) Pλ

 ∑
j /∈J(θ)

Igj (θ, λ)Tn(gj) < (1 − ε) log n


≤ Pλ

 ∑
j∈J(λ)

Igj (θ, λ)Tn(gj) < (1 − ε) log n


≤ Pλ

 ∑
j∈J(λ)

Tn(gj) ≤ n/2

 = Pλ

n−
∑

j∈J(λ)

Tn(gj) ≥ n/2


≤ 2n−1Eλ

n−
∑

j∈J(λ)

Tn(gj)

 = O(n−1 logn).
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Let Ln =
∑n−1

i=0 log[p(Xi, Xi+1, φi(Xi), θ)/p(Xi, Xi+1;φi(Xi), λ)] and let 0 < δ < ε/2.
Note that

(2.21)

Pλ

 ∑
j /∈J(θ)

Igj (θ, λ)Tn(gj) < (1 − ε) log n,Ln ≤ (1 − δ) log n


=
∫
{∑ j /∈J(θ) Igj (θ,λ)Tn(gj)<(1−ε) log n,Ln≤(1−δ) log n}

e−LndPθ

≥ e−(1−δ) log nPθ

 ∑
j /∈J(θ)

Igj (θ, λ)Tn(gj) < (1 − ε) log n,Ln ≤ (1 − δ) log n

 .

Combining (2.20) and (2.21) yields

(2.22) lim
n→∞

Pθ

 ∑
j /∈J(θ)

Igj (θ, λ)Tn(gj) < (1 − ε) log n,Ln ≤ (1 − δ) log n

 = 0.

Let hg(x, y) = log[p(x, y; g(x), θ)/p(x, y; g(x), λ)]. For −∞ < α < ∞, define the
measure

P̂x,α,g(A) =
∫

A

eαhg(x,y)p(x, y; g(x), θ)M(dy), A ∈ A,

and define the linear operator P̂g(α) on the space of bounded measurable func-
tions f : S → R by P̂g(α)f(x) =

∫
f(y)P̂x,α,g(dy). In view of (2.14) and (2.15),

P̂g(α) has a maximal simple real eigenvalue ρg(α), with associated right eigenfunc-
tion rg(·;α) : S → (0,∞) and left eigenmeasure `g(·;α) : A → [0,∞) normalized so
that

∫
rg(x;α)`g(dx;α) = 1; moreover, rg(·;α) is bounded and uniformly positive for

every fixed α (cf. [10]). For j ∈ J(θ), since λ ∈ B(θ), it follows that Igj (θ, λ) = 0, and
therefore by (2.19), p(x, y; gj(x), θ) = p(x, y; gj(x), λ); i.e., hg(x, y) = 0, for M -a.e. x
and y. Hence

Ln =
n−1∑
i=0

I{φi /∈GJ} log[p(Xi, Xi+1;φi(Xi), θ)/p(Xi, Xi+1;φi(Xi), λ)] a.s. [Pθ],

where GJ = {gj : j ∈ J(θ)}, recalling that the initial distribution of X0 under Pθ is
assumed to be absolutely continuous with respect to M .

Let Λg(α) = log ρg(α) and define a new probability measure Qα on the controlled
Markov chain by the “twisting” transformation (cf. [9], [10]):

Qα(B) = Eθ

IB ∏
0≤i<n:φi /∈GJ

rφi(Xi+1;α)
rφi

(Xi;α)
e−Λφi

(α)+αhφi
(Xi,Xi+1)

 , B ∈ Fn,

where Πi∈∅ = 1 and Fn is the σ-field defined in (1.6). Letting

(2.23) B =

 ∑
j /∈J(θ)

Igj (θ, λ)Tn(gj) < (1 − ε) log n, Ln > (1 − δ) log n, and

n∑
i=1

I{φi 6=φi−1,φi /∈GJ} ≤ δ logn

}
,
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and noting that Ln =
∑

0≤i<n:φi /∈GJ
hφi

(Xi, Xi+1), it then follows that for α > 0,

(2.24)

Pθ(B)

=
∫

B

 ∏
0≤i<n:φi /∈GJ

rφi
(Xi;α)

rφi
(Xi+1;α)

 exp

−αLn +
∑

0≤i<n:φi /∈GJ

Λφi
(α)

 dQα

≤ e−α(1−δ) log n

∫
B

 ∏
0≤i<n:φi /∈GJ

rφi(Xi;α)
rφi

(Xi+1;α)

 exp

 ∑
j /∈J(θ)

Λgj (α)Tn(gj)

 dQα

since Ln > (1 − δ) logn on B. For j /∈ J(θ),

Λgj (0) = 0, (dΛgj/dα)(0) =
∫ ∫

hgj (x, y)p(x, y; gj(x), θ)M(dy)πgj

θ (dx) = Igj (θ, λ).

Therefore, we can choose α > 0 sufficiently small so that Λgj (α)/α ≤ (1+ε/2)Igj (θ, λ).
Since

∑
j /∈J(θ) I

gj (θ, λ)Tn(gj) < (1 − ε) log n on B, it then follows that

(2.25)
∑

j /∈J(θ)

Λgj (α)Tn(gj) < α(1 + ε/2)(1 − ε) log n < α(1 − ε/2) log n on B.

Noting that C := maxg∈G supx∈S rg(x;α) < ∞, D := ming∈G infx∈S rg(x;α) > 0 and
that

∑n
i=1 I{φi 6=φi−1,φi /∈GJ} ≤ δ logn on B, we obtain that

(2.26)
∏

0≤i<n:φi /∈GJ

{rφi(Xi, α)/rφi(Xi+1, α)} ≤ (C/D)δ log n+1 on B.

Indeed, letting i1 < · · · < im denote the elements of {1 ≤ i ≤ n : φi 6= φi−1, φi /∈ GJ},
we have φ0 = φ1 = · · · = φi1−1, φi1 = φi1+1 = · · · = φi2−1, . . . , φim

= φim+1 = · · · =
φn, and therefore the left-hand side of (2.26) can be expressed as

{rφ0(X0, α)/rφn−1(Xn, α)}
m∏

t=1

{rφit
(Xit

, α)/rφit−1(Xit
, α)},

from which (2.26) follows since m ≤ δ logn on B.
From (2.24)–(2.26), it follows that by choosing δ sufficiently small,

(2.27)

Pθ(B) ≤ CD−1 exp({−α(1 − δ) + α(1 − ε/2) + δ log(C/D)} logn) → 0 as n → ∞.

Since φ is uniformly good, (1.9) yields that

(2.28)
Pθ

{
n∑

i=1

I{φi 6=φi−1,φi /∈GJ} > δ logn

}

≤ Eθ

(
n∑

i=1

I{φi 6=φi−1,φi /∈GJ or φi−1 /∈GJ}

)
/(δ logn) → 0

as n → ∞. From (2.22), (2.23), (2.27), and (2.28), the desired conclusion (2.18)
follows.
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3. Construction of asymptotically efficient rules. The main idea behind
the adaptive control rule φ∗ presented in this section is to introduce suitable “uncer-
tainty adjustments” into the certainty-equivalence rule that uses the control law gj(θ̂t)

at time t, where j(θ) is defined in (1.2) and θ̂n is the following weighted maximum
likelihood estimate of θ at time n:

(3.1)

θ̂n = arg max
θ∈Θ

Ln(θ),

Ln(θ) =
∑
g∈G

(Tn(g))−1
∑

1≤t≤n,φ∗
t−1=g

log p(Xt−1, Xt; g(Xt−1), θ),

if the maximizer in (3.1) exists, as is the case when p is a continuous function of θ, since
Θ is assumed to be compact. If the maximizer in (3.1) does not exist, then we define
θ̂n as an εn-maximizer of Ln(θ) in the sense that Ln(θ̂n) ≥ supθ∈Θ Ln(θ) − εn, where
εn are positive numbers such that limn→∞ εn = 0. The asymptotic lower bounds in
section 2 provide valuable insights into how the uncertainty adjustments should be
made and quantify the need for experimentation with the inferior control laws. In
particular, they suggest that the total amount of experimentation with an inferior
control law gj up to time n should be at least of the order {cj(θ) + o(1)} logn, where
the cj(θ) solve the minimization problem that defines c(θ) in (2.5); i.e.,
(3.2)

c(θ) =
∑

j /∈J(θ)

cj(θ)[µ∗
θ − µθ(gj)] and inf

λ∈B(θ)

∑
j /∈J(θ)

cj(θ)Igj (θ, λ) = 1 if B(θ) 6= ∅,

cj(θ) = 0 for all j /∈ J(θ) if B(θ) = ∅.
Example 1 (continuation). We have shown in the multiarmed bandit problem of

Example 1(ii) that cj(θ) = 1/I(θj , θ
∗) if j /∈ J(θ). This suggests that to achieve the

asymptotic lower bound (c(θ) + o(1)) logn for the regret, the sampling rule should
take (1/I(θj , θ

∗)+ o(1)) logn observations, up to stage n, from an inferior population
Πj to determine whether it is indeed inferior. If the sampling rule should indeed
attain the asymptotic lower bound, then it would take n − O(logn) observations,
up to stage n, from the population with mean µ(θ∗), so we can regard the value of
µ(θ∗) as known with relatively negligible uncertainty in this case. The problem of
determining whether Πj has a larger mean than µ(θ∗) then becomes that of testing
the null hypothesis Hj : µ(θj) > µ(θ∗). The theory of optimal stopping and sequential
analysis shows that subject to the constraint that the probability of rejectingHj when
it is true be ≤ α, the expected number of observations from Πj of a sequential test
under the alternative hypothesis is at least {1/I(θj , θ

∗) + o(1)}| logα| as α → 0, and
there are sequential tests based on generalized likelihood ratio statistics or mixture
likelihood ratio statistics that attain this asymptotic lower bound for the expected
sample size. The construction of asymptotically efficient sampling rules in section 4 of
[16] uses this sequential testing theory, with | logα| ∼ | logn|, although the procedure
is described there in terms of certain “upper confidence bounds.”

Example 2 (continuation). Here the cj(θ) are considerably more complicated than
those in Example 1. The means of the normal populations Π1,Π2,Π3 are γ, ξ+1, and
ξ2, involving only two unknown parameters γ (which has to be learned from Π1) and
ξ (which can be learned from Π2 or Π3). If ξ+1 > γ and ξ+1 ≥ ξ2, sampling from the
superior population Π2 would give information about the means of both Π2 and Π3,
and therefore the same argument as that in Example 1 yields c1(γ, ξ) = 2/(ξ+1−γ)2,
c3(γ, ξ) = 0, which in turn gives (2.12) as the solution of the minimization problem
(2.5).
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In the case ξ2 > γ and ξ2 ≥ ξ+1, sampling from the superior population Π3 would
give information about |ξ| but not about the sign of ξ, which has to be learned from
Π2. If ξ2 ≥ ξ + 1 and ξ2 ≥ −ξ + 1 or, equivalently, if ξ /∈ ((−1 −

√
5)/2, (1 −

√
5)/2),

then B(γ, ξ) = {(γ̃, ξ̃) : |ξ̃| = |ξ|,max(γ̃, ξ̃+1) > ξ2} = {(γ̃, ξ) : γ̃ > ξ2}, and the same
argument as in Example 1 yields c(γ, ξ) = 2/(ξ2−γ), c1(γ, ξ) = 2/(ξ2−γ)2, c2(γ, ξ) =
0. On the other hand, if −ξ+1 > ξ2, then B(γ, ξ) = {(γ̃, ξ̃) : |ξ̃| = |ξ|, γ̃ > ξ2 or ξ̃+1 >
ξ2}, and putting this in (2.5) yields

(3.3) c1(γ, ξ) =
1

(ξ2 − γ)2/2
, c2(γ, ξ) =

1
(2ξ)2/2

, c(γ, ξ) =
2

ξ2 − γ
+
ξ2 − ξ − 1

2ξ2
.

In the case γ > max(ξ + 1, ξ2), (2.13) yields

(3.4) c2(γ, ξ) = π(γ, ξ)/ψπ(γ,ξ)(ξ̃π(γ,ξ)), c3(γ, ξ) = (1 − π(γ, ξ))/ψπ(γ,ξ)(ξ̃π(γ,ξ)),

where ψπ(ξ̃), ξ̃π, and π(γ, ξ) are defined in the two sentences following (2.13). For
the case γ = ξ + 1 ≥ ξ2, sampling from Π2 will give information about ξ, from which
one can learn that Π3 has mean ξ2, and B(γ, ξ) = ∅ in this case. If γ = ξ2 ≥ ξ + 1
with ξ /∈ (−(1 −

√
5)/2, (1 −

√
5)/2), then ξ2 ≥ ξ+ 1 and ξ2 ≥ −ξ+ 1, and knowledge

of ξ2 will show that Π2 does not have a larger mean than Π3, so B(γ, ξ) = ∅ in this
case. If γ = ξ2 > ξ + 1 and (−1 −

√
5)/2 < ξ < (1 −

√
5)/2, then −ξ + 1 > ξ2 and

B(γ, ξ) = {(γ,−ξ)}, so putting this in (2.5) yields

(3.5) J(γ, ξ) = {1, 3}, c2(γ, ξ) = 2/(2ξ)2, c(γ, ξ) = (ξ2 − ξ − 1)/(2ξ2).

The main idea behind the uncertainty adjustments, presented below, to certainty-
equivalence rules in controlled Markov chains is to apply sequential testing theory
to assess whether an inferior-looking control law is indeed inferior on the basis of
all the current and past observations. We shall use sequential likelihood ratio tests
of composite hypotheses in general stochastic systems to test the null hypothesis
that θ belongs to Θi, with prescribed error probability of wrongly rejecting the null
hypothesis when it is true and with asymptotically minimal expected waiting time
to reject the null hypothesis when it is false. In the present context, the “waiting
time” has to be interpreted broadly as a weighted sum of the number of times that
an inferior control law gj is used. Because of switching costs and because of the
technical difficulties in controlled Markov chains due to the change of the transition
probability function P g whenever the control law is changed, we shall designate blocks
of successive times to use control law gj for an entire block if the sequential likelihood
ratio test performed at the beginning of the block does not reject the hypothesis that
θ belongs to Θj .

Since θ is unknown, it is natural to replace cj(θ) by cj(θ̂t), where θ̂t is the weighted
maximum likelihood estimate defined in (3.1), as in the “certainty-equivalent” testing
phase of the control scheme described below. This certainty equivalence approach
raises the question concerning how well cj(θ̂t) approximates cj(θ). When one does
not have enough information to estimate θ well, an alternative approach is to ignore
the constants cj(θ) and to experiment equally with each stationary control law, as is
done in the following control scheme during its “evenly allocated” testing phase. The
control scheme takes an integer a ≥ 2 and initializes with a common control law for
times 1, . . . , a.

Outline of control scheme between times ai and ai+1. Let ni be positive integers
such that

(3.6) ni ∼ i/ log i as i → ∞.
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For fixed i, we now describe our control scheme at times n ∈ {ai + 1, . . . , ai+1},
which we partition into m(i) := [(ai+1 − ai)/ni] blocks of consecutive integers, each
block of length ni except possibly the last one whose length may range from ni to
2ni − 1. Label these blocks as Bi

1, . . . , B
i
m(i) so that the mth block begins at time

νi(m) := ai +1+(m− 1)ni for 1 ≤ m ≤ m(i). To begin with, at time ai compute the
weighted maximum likelihood estimate θ̂ai of θ. To this estimate corresponds a set
{gj : j ∈ J(θ̂ai)} of apparently optimal stationary control laws, where J(θ) is defined
in (2.3). We use cj(θ̂ai) to define below the “certainty-equivalent” testing phase
(during the period from time ai + 1 to ai+1), whose objective is to test sequentially
whether θ /∈ ∪j∈J(θ̂ai )

Θj . The certainty-equivalent testing phase is continued until
we either (i) switch to the “evenly allocated” testing phase or (ii) terminate testing
and use the same (apparently optimal) stationary control law up to time ai+1. This
adaptive control rule will be denoted by φ∗. Let Ci denote the set of times belonging
to all those blocks Bi

m that begin with certainty-equivalent testing (at νi(m)). Let

(3.7) C =
∞⋃

s=1

Cs, τn(g) =
n−1∑
t=0

I{t∈C,φ∗
t =g} for g ∈ G.

Thus, τn(g) is the total number of times t < n, within these certainty-equivalent-tested
blocks, that use the control law g ∈ G. For t ∈ C, let

(3.8) ĜJ,t = {gj : j ∈ J(θ̂as)} if t ∈ Cs,

which is the set of apparently optimal stationary control laws used for the certainty-
equivalent test (3.11) below.

The certainty-equivalent testing phase. During the first L or fewer blocks of the
certainty-equivalent testing phase, we use in succession the stationary control laws
gj(j ∈ L) with τai(gj) < ni. Suppose {1 ≤ j ≤ L : j /∈ J(θ̂ai) and τai(gj) <

(log ai)[cj(θ̂ai) ∧ log i]} = {j1, . . . , jN}. The next blocks of stages use gj1 until time
νi(m1) − 1 and then use gj2 until time νi(m2) − 1, etc., where

(3.9) mk = inf{m > mk−1 : τνi(m)(gjk
) ≥ (log ai)[cjk

(θ̂ai) ∧ log i]}, k = 1, . . . , N.

For m ≥ mN , alternate using the stationary control laws gj (one for each block of
consecutive times) that satisfy either (i) j /∈ J(θ̂ai) and

(3.10a) τνi(m)(gj) ≤ (2 log ai){cj(θ̂ai) ∧ log i} + ni and gj has not been eliminated

or (ii) j ∈ J(θ̂ai) and

(3.10b) τνi
(m)(gj) ≤ (2 log ai) log i+ ni.

Sequential testing of the hypotheses Hj : θ ∈ Θj , j /∈ J(θ̂ai), is performed at times
νi(m) with m ≥ mN , and we eliminate gj from further use through time ai+1 once
the hypothesis Hj is rejected. Rejection of Hj occurs at the first time n = νi(m) with
m ≥ mN when

(3.11) inf
λ∈Θj

max

{∫
Π1≤t≤n,t−1∈C,φ∗

t−1 /∈ĜJ,t
p(Xt−1, Xt;φ∗

t−1(Xt−1), θ)dF (θ)

Π1≤t≤n,t−1∈C,φ∗
t−1 /∈ĜJ,t

p(Xt−1, Xt;φ∗
t−1(Xt−1), λ)

,

∫
Π1≤t≤n,Tt−1(φ∗

t−1)≥ai−1/L p(Xt−1, Xt;φ∗
t−1(Xt−1), θ)dF (θ)

Π1≤t≤n,Tt−1(φ∗
t−1)≥ai−1/L p(Xt−1, Xt;φ∗

t−1(Xt−1), λ)

}
≥ iai,
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where inf ∅ = ∞, Πt=∅ = 1, F is a probability measure on Θ such that F (A) > 0 for
all open subsets A of Θ, and C and ĜJ,t are defined in (3.7) and (3.8). Certainty-
equivalent testing is terminated when (3.10a) fails for all j /∈ J(θ̂ai). If only one
stationary control law gj∗ is not eliminated at the termination of certainty-equivalent
testing, we use gj∗ up to time ai+1. Otherwise we switch to the evenly allocated
testing phase.

The evenly allocated testing phase. This testing phase does not use the maximum
likelihood estimate θ̂ai , its associated set J(θ̂ai), and the estimates cj(θ̂ai) that have
been used in (3.9)–(3.11). Sequential testing of the hypotheses Hj : θ ∈ Θj is per-
formed at the times νi(m) for those gj not yet eliminated (during the times νi(m′)
between ai and ai+1 with m′ < m, which include the times of certainty-equivalent
testing) in succession in ascending order of j, and we eliminate gj from further use
through time ai+1 once the hypothesis Hj is rejected. We reject Hj at the test time
n = νi(m) if

(3.12) inf
λ∈Θj

max

{∫
Π1≤t≤n,φ∗

t−1=gj
p(Xt−1, Xt;φ∗

t−1(Xt−1), θ)dF (θ)

Π1≤t≤n,φ∗
t−1=gj

p(Xt−1, Xt;φ∗
t−1(Xt−1), λ)

,

∫
Π1≤t≤n,Tt−1(φ∗

t−1)≥ai−1/L p(Xt−1, Xt;φ∗
t−1(Xt−1), θ)dF (θ)

Π1≤t≤n,Tt−1(φ∗
t−1)≥ai−1/L p(Xt−1, Xt;φ∗

t−1(Xt−1), λ)

}
≥ iai.

The “even” allocation rule alternates using the stationary control laws that have not
been eliminated, one for each block Bi

m of consecutive times. The testing phase
terminates as soon as all except one stationary control law have been eliminated, and
we use the remaining stationary control law up to time ai+1. For example, a typical
pattern of the evenly allocated phase, sampling from four control laws labeled 1, 2, 3, 4,
is

1 · · · 1 2 · · · 2 3 · · · 3 4 · · · 4 1 · · · 1 2 · · · 2↑3 · · · 3 4 · · · 4 1 · · · 1 3 · · · 3 4 · · · 4↓1 · · · 1 3 · · · 3 1 · · · 1∗,

where ↑ denotes the time at which 2 is eliminated, ↓ denotes the time at which 4 is
eliminated, and ∗ denotes the time at which the testing phase terminates with the
elimination of 1, leaving behind only the control law 3.

In the certainty-equivalent testing phase, we consider the maximum of two mix-
ture likelihood ratio statistics instead of combining them into a single mixture likeli-
hood ratio because we have different roles in mind for the two statistics. One of them
has the form

(3.13)

∫ ∏
1≤t≤n,Tt−1(φ∗

t−1)≥ai−1/L p(Xt−1, Xt;φ∗
t−1(Xt−1), θ)dF (θ)∏

1≤t≤n,Tt−1(φ∗
t−1)≥ai−1/L p(Xt−1, Xt;φ∗

t−1(Xt−1), λ)
.

Controls from G that have been used most often as in (3.13) would thus provide
accurate information about many of the characteristics of the unknown parameter
but are incapable of distinguishing the true parameter θ0 from the candidate values in
B(θ0), and therefore may not be able to settle whether Hj : θ ∈ Θj is true. The con-
trols in the complement of ĜJ,t, which make up the other mixture likelihood ratio
statistic, are therefore needed to distinguish θ0 from B(θ0), but they would be used
relatively infrequently. Similar reasoning has led us to replace the usual maximum
likelihood estimate by a weighted version with weights (Tn(g))−1 in (3.1). Since
infλ∈Θj

= 1/ supλ∈Θj
, the infλ∈Θj

in (3.11) is essentially tantamount to taking the
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supremum of the denominator of (3.13) over λ ∈ Θj , which is typically done in gen-
eralized likelihood ratio tests of the composite null hypothesis Hj : θ ∈ Θj . Our
modification of the usual generalized likelihood ratio statistics consists of replacing
supθ∈Θ by an integral with respect to a probability measure on Θ in the numerator
of (3.13) and replacing a single likelihood ratio statistic by the maximum of two like-
lihood ratio statistics. The evenly allocated testing phase does not make use of θ̂ai

and ĜJ,t. To test Hj : θ ∈ Θj , it uses the maximum of (3.13) and another mixture
likelihood ratio statistic, which has the form (3.13) but with Tt−1(φ∗

t−1) ≥ ai−1/L
replaced by φ∗

t−1 = gj and which is therefore based on data generated by the station-
ary control law gj . For the special case of controlled independently and identically
distributed (i.i.d.) processes, further details of the statistical ideas behind the modifi-
cations (3.11) and (3.12) of the classical generalized likelihood ratio statistics, together
with illustrative examples and some variants of the adaptive control rule φ∗, are given
in [8].

Throughout what follows we shall let θ0 denote the true value of the unknown
parameter. We shall also let Eφ

x denote expectation under the probability measure
Pφ

x of the controlled Markov chain starting at x and using control rule φ, assuming
the true value θ0 of the parameter. Theorem 2 below shows that the regret Rn(θ0) of
φ∗ satisfies

(3.14) Rn(θ0) ∼
∑

j /∈J(θ0)

cj(θ0)[µ∗
θ0

− µθ0(gj)] logn

under regularity conditions (C1)–(C5) in addition to those assumed at the beginning
of section 1. Although we still use the notations (2.1)–(2.4) and define the cj(θ) by
(3.2) in Theorem 2, we do not assume condition (2.14) of Theorem 1. Our objective
here is to establish (3.14), irrespective of whether it is an asymptotic lower bound
for the regret of uniformly good rules. For δ > 0, let Bδ(θ0) denote the open δ-
neighborhood of B(θ0); i.e., Bδ(θ0) = {θ ∈ Θ : infλ∈B(θ0) ρ(θ, λ) < δ} (Bδ(θ0) = ∅ if
B(θ0) = ∅), where ρ denotes the metric of the compact metric space Θ.

(C1) For every ε > 0, there exists δ > 0 such that if ρ(θ0, θ) ≤ δ then J(θ) ⊂ J(θ0)
and maxj /∈J(θ0) |cj(θ) − cj(θ0)| < ε. Moreover, there exist ξ and δ∗ > 0 such that
maxj /∈J(θ) |cj(θ)| ≤ ξ if ρ(θ0, θ) ≤ δ∗.

(C2) Ig(θ0, θ) is a continuous function of θ for every g ∈ G.
(C3) maxg∈G I

g(θ0, λ) > 0 for all λ ∈ ∪j∈J(θ0)Θj−{θ0}, infλ∈Θi∩B(θ0) I
gi(θ0, λ) >

0 and infλ∈Θi\Bδ(θ0) maxj∈J(θ0) I
gj (θ0, λ) > 0 for all i /∈ J(θ0) and δ > 0 (inf ∅ = ∞).

(C4) For every θ ∈ Θ and g ∈ G, there exist δθ > 0 and rθ > 2 such that

sup
x∈S

Eg
x

{
sup

λ:ρ(θ,λ)≤δθ

∣∣∣∣ log
p(x,X1; g(x), θ0)
p(x,X1; g(x), λ)

∣∣∣∣rθ
}
< ∞

and, as δ → 0,

sup
x∈S

Pg
x

{
sup

λ:ρ(θ,λ)≤δ

∣∣∣∣ p(x,X1; g(x), θ)
p(x,X1; g(x), λ)

− 1
∣∣∣∣ ≥ ε

}
→ 0 for all ε > 0.

(C5) For every θ ∈ Θ and g ∈ G, as n → ∞,

sup
x∈S

∣∣∣∣Eg
x

{
1
n

n∑
i=1

log
p(Xt−1, Xt; g(Xt−1), θ0)
p(Xt−1, Xt; g(Xt−1), θ)

}
− Ig(θ0, θ)

∣∣∣∣→ 0.
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Conditions (C1) and (C2) are continuity assumptions on cj(θ) at θ = θ0 and on
Ig(θ0, θ). (C3) ensures that under φ∗ one can estimate θ0 consistently by the method of
maximum likelihood, as will be shown in the proof of Theorem 2. From the definition
(2.4) of B(θ0), it follows that maxj∈J(θ0) I

gj (θ0, λ) > 0 if λ /∈ B(θ0) ∪ (∪j∈J(θ0)Θj),
and the last inequality of (C3) requires this to be uniformly bounded away from zero
for λ ∈ Θi\Bδ(θ0) with i /∈ J(θ0). Conditions (C4) and (C5) are natural moment and
ergodicity assumptions on the log-likelihood ratio statistics. The uniformity over
x ∈ S in these assumptions enables us to get around difficulties with controlled
Markov chains whose transition probability function P g(x)

θ (x,A) is changed when the
control law is changed. In section 4 we make use of martingale theory and uniform
integrability to analyze the adaptive control rule φ∗ in the proof of the following.

THEOREM 2. Under (C1)–(C5), for every x ∈ S and j /∈ J(θ0),

lim
n→∞

Eφ∗
x (Tn(gj))/ logn = cj(θ0),

and therefore the regret Rn(θ0) of the rule φ∗ satisfies (3.14). Moreover, Sn(θ0) =
o(logn), where Sn(θ0) is the expected number (1.8) of times that φ∗ switches from one
control law in G to another, not both optimal, up to stage n.

The cj(θ) are obtained by solving a constrained optimization problem in (3.2),
which may be quite difficult in certain cases. Although the certainty-equivalent testing
phase involves J(θ) and cj(θ), these quantities are not used in the evenly allocated
testing phase. In cases where the cj(θ) are difficult to determine or fail to satisfy
the continuity assumption (C1), an obvious modification of the adaptive control rule
φ∗ is to abandon the certainty-equivalent testing phase. Thus, partitioning {ai +
1, . . . , ai+1} into m(i) blocks of consecutive integers so that the mth block Bi

m begins
at time νi(m) := ai +1+(m−1)ni, this modified rule φ̃ performs sequential testing of
the hypotheses Hj : θ ∈ Θj at the times νi(m) for those gj not yet eliminated (during
the times νi(m′) with m′ < m), in succession in ascending order of j, and eliminates
gj from further use through time ai+1 once the hypothesis Hj is rejected. Rejection
of Hj occurs at the test time n = νi(m) if (3.12) holds. The rule φ̃ alternates using
the stationary control laws that have not been eliminated, one for each block Bi

m of
consecutive times. If all except one stationary control law have been eliminated, then
φ̃ uses the remaining stationary control law up to time ai+1. The following theorem
shows that although this simpler rule φ̃ may be less efficient than φ∗, which attains
the asymptotic lower bound (c(θ0) + o(1)) logn for the regret, φ̃ still has a regret of
the order O(logn).

THEOREM 3. Under (C2)–(C5), the rule φ̃ satisfies Rn(θ0) = O(logn) and
Sn(θ0) = o(logn).

4. Martingale inequalities, uniform integrability, and proof of Theo-
rems 2 and 3. We first consider some simple implications of conditions (C1)–(C5).
Let ε > 0 and take 2 < r′

θ < rθ. By (C2) together with (C4) for every θ ∈ Θ we can
choose 0 < δ′

θ ≤ δθ such that

(4.1) sup
λ:ρ(θ,λ)≤δ′

θ

|Ig(θ0, θ) − Ig(θ0, λ)| < ε for all g ∈ G and

(4.2)

sup
x∈S,g∈G

Eg
x

{
sup

λ:ρ(θ,λ)≤δ′
θ

∣∣∣∣ log
p(x,X1; g(x), θ0)
p(x,X1; g(x), λ)

− log
p(x,X1; g(x), θ0)
p(x,X1; g(x), θ)

∣∣∣∣r′
θ

}
≤ εr

′
θ ,
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as will be explained in the next paragraph. Since Θ is compact, there exist finitely
many points θ1, . . . , θK such that

(4.3) Θ = ∪K
k=0{λ : ρ(θk, λ) < δ′

θk
}.

By (C5) we can choose a positive integer D large enough so that

(4.4)

sup
x∈S,g∈G,k≤K

∣∣∣∣Eg
x

{
1
n

n∑
t=1

log
p(Xt−1, Xt; g(Xt−1), θ0)
p(Xt−1, Xt; g(Xt−1), θk)

}
− Ig(θ0, θk)

∣∣∣∣ ≤ ε for all n ≥ D.

Concerning (4.2), first note that by (C4), supx∈S Pg
x(Ω(δ, η;x)) → 0 as δ → 0 for

every fixed η > 0, where Ω(δ, η;x) = {supλ:ρ(θ,λ)≤δ |p(x,X1; g(x), θ)/p(x,X1; g(x), λ)−
1| ≥ η}. For sufficiently small η, | log y| < 2η if |y − 1| < η, and therefore, for
0 < δ < δθ,

sup
x∈S

Eg
x

{
sup

λ:ρ(θ,λ)≤δ

∣∣∣∣ log
p(x,X1; g(x), θ)
p(x,X1; g(x), λ)

∣∣∣∣r′
θ
}

≤ (2η)r′
θ + sup

x∈S
Eg

x

{
sup

λ:ρ(θ,λ)≤δ

∣∣∣∣ log
p(x,X1; g(x), θ)
p(x,X1; g(x), λ)

∣∣∣∣r′
θ

IΩ(δ,η;x)

}
≤ (2η)r′

θ

+ sup
x∈S

{
Eg

x

[
sup

λ:ρ(θ,λ)≤δθ

∣∣∣∣ log
p(x,X1; g(x), θ0)
p(x,X1; g(x), λ)

− log
p(x,X1; g(x), θ0)
p(x,X1; g(x), θ)

∣∣∣∣rθ
]}r′

θ/rθ

×{Pg
x(Ω(δ, η;x))}1−r′

θ/rθ ≤ (2η)r′
θ + o(1) as δ → 0

by (C4), where we have used Hölder’s inequality to obtain the second inequality.
We next make use of martingale theory to analyze the log-likelihood ratio statistics

from the controlled Markov chain using the adaptive control rule φ∗. For t ≥ 0, let Ft

be the σ-field defined by (1.6). The control rule φ∗ uses the same stationary control
law for an entire block of stages νi(m), . . . , νi(m+1)−1, with the choice of the control
law determined at the beginning of the block. Define a sequence of positive integers
hs such that D ≤ hs − hs−1 ≤ 2D − 1 for s > 1 and all the νi(m) with i ≥ D belong
to the sequence, where D is given by (4.4). For example, take h0 = 0, h1 = aD, and
for s > 1 let hs = hs−1 +D except when hs = νi(m), for which we may change the
above recursive definition of hs to hs = hs−1 + D + r, with 0 ≤ r < D being the
remainder obtained when νi(m) − νi(m− 1) is divided by D. Since φ∗ uses the same
stationary control law for hs−1, . . . , hs − 1 on the basis of observations prior to hs−1,
it follows that for hs−1 < t ≤ hs and g ∈ G, {φ∗

t−1 = g} ∈ Fhs−1 . Therefore, by (4.4),

(4.5)

sup
n≥1,g∈G,k≤K

∣∣∣∣∣∣ 1
Thn(g)

n∑
s=1

∑
hs−1<t≤hs

Eφ∗
x

{
log

p(Xt−1, Xt;φ∗
t−1(Xt−1), θ0)

p(Xt−1, Xt;φ∗
t−1(Xt−1), θk)

∣∣∣∣Fhs−1

}

· I{φ∗
t−1=g} − Ig(θ0, θk)

∣∣∣∣∣ I{Thn (g)≥D} ≤ ε,
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noting that Thn
(g) =

∑n
s=1

∑
hs−1≤i<hs

I{φ∗
i =g} and

(4.6)
hs∑

t=hs−1+1

Eφ∗
x

{
log

p(Xt−1, Xt;φ∗
t−1(Xt−1), θ0)

p(Xt−1, Xt;φ∗
t−1(Xt−1), θk)

∣∣∣∣Fhs−1

}
I{φ∗

t−1=g}

= Eg
y


hs−hs−1∑

t=1

log
p(Xt−1, Xt; g(Xt−1), θ0)
p(Xt−1, Xt; g(Xt−1), θk)

 on {φ∗
hs−1

= g,Xhs−1 = y}.

Let

(4.7) `t(θ) = log[p(Xt−1, Xt;φ∗
t−1(Xt−1), θ0)/p(Xt−1, Xt;φ∗

t−1(Xt−1), θ)].

Lemma 1 states a result of [14], and Lemmas 2, 3, and 4 use it to approximate∑hn

t=1 `t(θ) χt, where the χt are indicator variables (taking values in {0, 1}).
LEMMA 1. Let {Zn} be a martingale difference sequence with respect to an in-

creasing sequence of σ-fields {Bn} such that supnE(|Zn|β |Bn−1) ≤ C a.s. for some
nonrandom constants β > 2 and C < ∞. Let χn be Bn−1-measurable variables taking
values in {0, 1} and let #n =

∑n
t=1 χt. Then there exists a universal constant A

depending only on C and β (and not on the distribution of {(χn, Zn) : n ≥ 1}) such
that for any η > 0 and m ≥ 1,

P

{
sup

n:#n≥m

∣∣∣∣∣
n∑

t=1

Ztχt

∣∣∣∣∣ /#n > η

}
≤ A{m−(β−1)η−β + (η2m)−(β−1)},

P

{
max

1≤n≤m

∣∣∣∣∣
n∑

t=1

Ztχt

∣∣∣∣∣ > ηm

}
≤ A{m−(β−1)η−β + (η2m)−(β−1)}.

LEMMA 2. Let β = min0≤k≤K r′
θk

(> 2), where the r′
θ are given by (4.2). Define

`t(θ) by (4.7) and C, τn(g) by (3.7). Then for any g ∈ G and 0 ≤ k ≤ K,

Pφ∗
x

{
sup

n:Thn (g)≥m

∣∣∣∣∣(Thn(g))−1
hn∑
t=1

`t(θk)I{φ∗
t−1=g} − Ig(θ0, θk)

∣∣∣∣∣ > 2ε

}
= O(m−(β−1)),

Pφ∗
x

{
sup

n:τhn (g)≥m

∣∣∣∣∣(τhn
(g))−1

hn∑
t=1

`t(θk)I{t−1∈C,φ∗
t−1=g} − Ig(θ0, θk)

∣∣∣∣∣ > 2ε

}
= O(m−(β−1)).

Proof. Let Zs =
∑

hs−1<t≤hs
`t(θk) − Eφ∗

x {
∑

hs−1<t≤hs
`t(θk)|Fhs−1}. Then

{Zs,Bs, s ≥ 1} is a martingale difference sequence, where Bs = Fhs . Moreover,
since hs − hs−1 ≤ 2D − 1,

sup
s≥1

Eφ∗
x (|Zs|β |Bs−1) ≤ Aβ,D sup

y∈S,g∈G

2D−1∑
t=1

Eg
y|`t(θk)|β

for some positive constant Aβ,D that depends only on β and D. For fixed g ∈ G, let
χs = I{φ∗

hs−1
=g}, which is Bs−1 measurable, and note that

(4.8)
∑

hs−1<t≤hs

`t(θk)I{φ∗
t−1=g} = χs

∑
hs−1<t≤hs

`t(θk),
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since φ∗ uses the same stationary control law at the times hs−1, . . . , hs −1. Moreover,

D

n∑
s=1

χs ≤
n∑

s=1

(hs − hs−1)χs = Thn
(g) ≤ (2D − 1)

n∑
s=1

χs.

Therefore it follows from Lemma 1 that

(4.9) Pφ∗
x

{
sup

n:Thn (g)≥m

∣∣∣∣∣
n∑

s=1

Zsχs

∣∣∣∣∣ /Thn
(g) > ε

}
= O(m−(β−1)).

Since
∑hn

t=1 `t(θk)I{φ∗
t−1=g} =

∑n
s=1 Zsχs+

∑n
s=1

∑
hs−1<t≤hs

Eφ∗
x {`t(θk)|Fhs−1}I{φ∗

t−1=g}
by (4.8), the desired conclusion for Thn

(g) follows from (4.5) and (4.9). The conclusion
for τhn

(g) can be proved similarly, noting that for hs−1 < t ≤ hs, {t − 1 ∈ C, φ∗
t−1 =

g} ∈ Fhs−1 .
LEMMA 3. With β defined in Lemma 2 and δ′

θ given by (4.1) and (4.2), let χn

be Fn−1-measurable random variables taking values in {0, 1} and let #n =
∑n

t=1 χt.
Then for any 0 ≤ k ≤ K,

Pφ∗
x

{
sup

n:#n≥m

[
sup

θ:ρ(θk,θ)≤δ′
θk

n∑
t=1

|`t(θ) − `t(θk)|χt

]
/#n > 2ε

}
= O(m−(β−1)).

Proof. Let Γk = {θ : ρ(θk, θ) ≤ δ′
θk

}. In view of (C4), applying Lemma 1 to
Zt = supθ∈Γk

|`t(θ) − `t(θk)| − Eφ∗
x {supθ∈Γk

|`t(θ) − `t(θk)||Ft−1} yields

(4.10) Pφ∗
x

{
sup

n:#n≥m

(
n∑

t=1

Ztχt

)
/#n > ε

}
= O(m−(β−1)).

Moreover, by (4.2),

(4.11)
n∑

t=1

χtEφ∗
x

{
sup
θ∈Γk

|`t(θ) − `t(θk)|
∣∣∣∣Ft−1

}

≤
(

n∑
t=1

χt

)
sup

y∈S,g∈G
Eg

y

(
sup
λ∈Γk

|`t(λ) − `t(θk)|
)

≤ ε#n.

Since supθ∈Γk

∑n
t=1 |`t(θ) − `t(θk)|χt ≤

∑n
t=1 Ztχt +

∑n
t=1 χtEφ∗

x {supθ∈Γk
|`t(θ) −

`t(θk)||Ft−1}, the desired conclusion follows from (4.10) and (4.11).
LEMMA 4. With the same notation as in Lemma 3, for any 0 ≤ k ≤ K,

Pφ∗
x

{
max

1≤n≤m
sup

θ:ρ(θk,θ)≤δ′
θk

n∑
t=1

|`t(θ) − `t(θk)|χt > 2εm

}
= O(m−(β−1)).

Moreover, for any g ∈ G and 0 ≤ k ≤ K,

sup
τ∈T

Pφ∗
x

{
max

1≤n≤m

∣∣∣∣∣
hn∑
t=1

(`t(θk) − Ig(θ0, θk))I{t>τ,φ∗
t−1=g}

∣∣∣∣∣ > 3εhm

}
= O(m−(β−1)),

where T denotes the class of all stopping times (with respect to {Fn}).
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Proof. By using the second instead of the first inequality of Lemma 1, we can
proceed as in the proof of Lemma 3 to obtain the first conclusion. To prove the second
conclusion, let τ be a stopping time and let σ = inf{s : hs ≥ τ}. Define Zs and Bs as
in the proof of Lemma 2 but change the definition of χs there to χs = I{φ∗

hs−1
=g,s>σ}.

Since

{s > σ} = {s− 1 ≥ σ} = {hs−1 ≥ τ} ∈ Fhs−1 = Bs−1,

χs is Bs−1 measurable. Therefore, by Lemma 1 there exists a constant A (which does
not depend on σ) such that, for all m ≥ 1,

Pφ∗
x

{
max

1≤n≤m

∣∣∣∣∣
n∑

s=1

Zsχs

∣∣∣∣∣ > εm

}
≤ A{m−(β−1)ε−β + (ε2m)−(β−1)}.

Note that for n ≥ σ,
∑hn

t=1 `t(θk)I{φ∗
t−1=g,t>τ} can be written as

∑
τ+1≤t≤hσ

`t(θk)I{φ∗
t−1=g} +

n∑
s=1

χsEφ∗
x

 ∑
hs−1<t≤hs

`t(θk)

∣∣∣∣∣∣Fhs−1

+
n∑

s=1

Zsχs.

Since hs − hs−1 ≥ D, it follows from (4.4) that

max
1≤s≤m

∣∣∣∣∣∣
n∑

s=1

χs

∑
hs−1<t≤hs

{Eφ∗
x [`t(θk)|Fhs−1 ] − Ig(θ0, θk)}

∣∣∣∣∣∣ ≤ εhm.

Since hσ−1 < τ ≤ hσ and hσ − hσ−1 ≤ 2D − 1, the strong Markov property implies
that

Eφ∗
x


 ∑

τ+1≤t≤hσ

|`t(θk)|I{φ∗
t−1=g}

β
∣∣∣∣∣∣∣Fτ

 ≤ Aβ,D sup
y∈S

2D−1∑
t=1

Eg
y|`t(θk)|β

for some positive constant Aβ,D that depends only on β and D. Hence by the Markov
inequality

Pφ∗
x

 ∑
τ+1≤t≤hσ

|`t(θk)|I{φ∗
t−1=g} > εm

 ≤ Cε−βm−β ,

where C = Aβ,D supy∈S

∑2D−1
t=1 Eg

y|`t(θk)|β < ∞. Since the same constants A and C
in the above probability bounds hold for all stopping times τ , these bounds yield the
second conclusion of the lemma.

We shall make use of Lemmas 2–4 to prove the following two lemmas from which
Theorems 2 and 3 follow easily. Recall that GJ = {gj : j ∈ J(θ0)}.

LEMMA 5. With β > 2 defined in Lemma 2, for every η > 0,

(4.12) Pφ∗
x {ρ(θ0, θ̂hn

) ≥ η for some hn ≥ ai} = O((i/ log i)−(β−1)).

Moreover, for any j /∈ J(θ0), as n → ∞,

(4.13) Tn(gj)/ logn → cj(θ0),
n∑

i=1

I{φ∗
i 6=φ∗

i−1,φ∗
i /∈GJ or φ∗

i−1 /∈GJ}/ logn → 0 a.s. [Pφ∗
x ].
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LEMMA 6. For any j /∈ J(θ0), {Tn(gj)/ logn, n ≥ 2} is uniformly integrable under
Pφ∗

x or Pφ̃
x.

Proof of Theorem 2. From (4.13) and Lemma 6, it follows that Eφ∗
x Tn(gj)/ logn →

cj(θ0) for any j /∈ J(θ0). This and (3.2) imply (3.14). The uniform integrability of

n∑
i=1

I{φ∗
i 6=φ∗

i−1,φ∗
i /∈GJ or φ∗

i−1 /∈GJ}/ logn,

which is ≤ 2{1 +
∑

j /∈J(θ0) Tn(gj)}/ logn, follows from Lemma 6. Therefore Sn(θ0) =
o(logn) by (4.13).

Proof of Theorem 3. The desired conclusion on Rn(θ0) follows from Lemma 6,
and that on Sn(θ0) can be proved by an argument similar to the proof of the second
convergence in (4.13) and the associated uniform integrability in Theorem 2.

The proof of Lemmas 5 and 6 makes use of the following lemma, which applies
martingale inequalities to analyze boundary crossing probabilities associated with
(3.11) and (3.12).

LEMMA 7. As in (3.11) and (3.12), let F be a probability measure on Θ such that
F (A) > 0 for all open subsets A of Θ. For ai < n ≤ ai+1, let

(4.14) Un(λ) =

∫ ∏
1≤t≤n,t−1∈C,φ∗

t−1 /∈ĜJ,t
p(Xt−1, Xt;φ∗

t−1(Xt−1), θ)dF (θ)∏
1≤t≤n,t−1∈C,φ∗

t−1 /∈ĜJ,t
p(Xt−1, Xt;φ∗

t−1(Xt−1), λ)
,

(4.15) W̃n,j(λ) =

∫ ∏
1≤t≤n,φ∗

t−1=gj
p(Xt−1, Xt;φ∗

t−1(Xt−1), θ)dF (θ)∏
1≤t≤n,φ∗

t−1=gj
p(Xt−1, Xt;φ∗

t−1(Xt−1), λ)
,

(4.16) Wn(λ) =

∫ ∏
1≤t≤n,Tt−1(φ∗

t−1)≥ai−1/L p(Xt−1, Xt;φ∗
t−1(Xt−1), θ)dF (θ)∏

1≤t≤n,Tt−1(φ∗
t−1)≥ai−1/L p(Xt−1, Xt;φ∗

t−1(Xt−1), λ)
.

If θ0 ∈ Θj, then

Pφ∗
x

{
inf

λ∈Θj

max(Un(λ),Wn(λ)) ≥ iai for some n > ai

}
≤ 2(iai)−1,

Pφ∗
x

{
inf

λ∈Θj

max(W̃n,j(λ),Wn(λ)) ≥ iai for some n > ai

}
≤ 2(iai)−1.

Proof. Note that {t − 1 ∈ C, φ∗
t−1 /∈ ĜJ,t} ∈ Ft−1 by (3.7) and (3.8). Hence

Un(θ0),Wn(θ0) and W̃n,j(θ0), n > ai, are nonnegative martingales with common mean
1. Therefore, if θ0 ∈ Θj , then

Pφ∗
x

{
inf

λ∈Θj

max(Un(λ),Wn(λ)) ≥ iai for some n > ai

}
≤ Pφ∗

x {Un(θ0) ≥ iai for some n > ai} + Pφ∗
x {Wn(θ0) ≥ iai for some n > ai}

≤ {EUai+1(θ0) + EWai+1(θ0)}/(iai).

Replacing Un(λ) by W̃n,j(λ) in the above argument proves the second inequality.
Proof of Lemma 5. We first prove (4.12). By Lemma 3 (with χt = I{φ∗

t−1=g}), for
every g ∈ G and 0 ≤ k ≤ K,
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(4.17)

Pφ∗
x

{
sup
θ∈Γk

n∑
t=1

|`t(θ) − `t(θk)|I{φ∗
t−1=g} ≥ 2εTn(g) for some Tn(g) ≥ m

}
= O(m−(β−1)).

From (4.17) and Lemma 2, it follows that

(4.18)

Pφ∗
x

{
inf

θ∈Γk

(Thn
(g))−1

hn∑
t=1

`t(θ)I{φ∗
t−1=g} ≥ Ig(θ0, θk) − 4ε for all Thn

(g) ≥ m

and every g ∈ G and 0 ≤ k ≤ K

}
≥ 1 −O(m−(β−1)).

By (4.1) and the compactness of Θ, for every ε > 0, there exists δ > 0 such that

(4.19) sup
g∈G

|Ig(θ0, λ) − Ig(θ0, λ′)| < ε if ρ(λ, λ′) ≤ δ.

For i /∈ J(θ0), since infλ∈Θi∩B(θ0) I
gi(θ0, λ) > 0 by (C3), it follows from (4.19) (with

ε sufficiently small) that infλ∈Θi∩Bδ(θ0) I
gi(θ0, λ) > 0 for some δ > 0. This and (C3)

imply that maxg∈G I
g(θ0, λ) > 0 for all λ 6= θ0. Hence given η > 0, we can choose ε

sufficiently small so that

(4.20) max
g∈G

Ig(θ0, θ) ≥ 5Lε if ρ(θ0, θ) ≥ η,

in view of (C2) and the compactness of Θ. Since

Ln(θ0) − Ln(θ) =
∑
g∈G

(Tn(g))−1
n∑

t=1

`t(θ)I{φ∗
t−1=g}

by (3.1), and since `t(θ0) = 0 and Ig(θ0, λ) ≥ 0 for all g ∈ G and λ ∈ Θ, it follows
from (4.18) and (4.20) that
(4.21)

Pφ∗
x

{
sup

θ:ρ(θ0,θ)≥η

Lhn
(θ) < Lhn

(θ0) − ε for all hn ≥ ai

}
≥ 1 −O((i−1 log i)β−1),

noting that Tai(g) ≥ τai(g) ≥ ni−1(∼ i/ log i) because at least ni−1 stages in the
certainty-equivalent testing phase between the times ai−1 and ai use g if τai−1(g) <
ni−1 for every g ∈ G. From (4.21), (4.12) follows.

Combining (4.12) with (C1) yields Pφ∗
x (∩i≥tAi) ≥ 1 −O((t−1 log t)β−1), where

(4.22)

Ai =

{
J(θ̂ai) ⊂ J(θ0), max

j /∈J(θ0)
|cj(θ̂ai) − cj(θ0)| < ε, max

j∈J(θ0)−J(θ̂ai )
|cj(θ̂ai)| ≤ ξ

}
.

Let Γk = {θ : ρ(θk, θ) ≤ δ′
θk

} and wk = F (Γk)(> 0) for 0 ≤ k ≤ K. By Lemma 3,
Pφ∗

x (∩i≥tCi) ≥ 1 −O((t−1 log t)β−1), where

(4.23) Ci =

{
max

0≤k≤K
sup
θ∈Γk

n∑
t=1

|`t(θ) − `t(θk)|I{t−1∈C,φ∗
t−1=g} ≤ 2ετn(g)

for all ai < n ≤ ai+1 and g ∈ G

}
,
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since τai(g) ≥ ni−1 ∼ i/ log i for every g ∈ G. Note that `t(θ0) = 0 and that

(4.24)

∫ ∏
1≤t≤n,t−1∈C,φ∗

t−1 /∈ĜJ,t

p(Xt−1, Xt;φ∗
t−1(Xt−1), θ)dF (θ)

≥


∏

1≤t≤n,t−1∈C,φ∗
t−1 /∈ĜJ,t

p(Xt−1, Xt;φ∗
t−1(Xt−1), θ0)


· w0 inf

θ∈Γ0
exp

−
∑

1≤t≤n,t−1∈C,φ∗
t−1 /∈ĜJ,t

`t(θ)

 .

Suppose Θj ∩ Bδ(θ0) 6= ∅. Let χt = I{t−1∈C,φ∗
t−1 /∈ĜJ,t}. On Ai ∩ Ci, if ai < n ≤

ai+1, then

inf
λ∈Γk

exp

(
n∑
1

χt`t(λ)

)
≥ exp

{
n∑
1

χt`t(θk) − 2ε
n∑
1

χt

}
,

inf
λ∈Γ0

exp

(
−

n∑
1

χt`t(λ)

)
≥ exp

(
−2ε

n∑
1

χt

)
,

so it follows from (4.7), (4.14), and (4.24) that

(4.25) inf
λ∈Θj∩Bδ(θ0)

Un(λ) ≥ w0 exp

{
inf

0≤k≤K:Γk∩Θj∩Bδ(θ0)6=∅

n∑
t=1

(`t(θk) − 4ε)χt

}
.

Since τai(g) ≥ ni−1, it follows from Lemma 2 that Pφ∗
x (∩i≥tDi) ≥ 1−O((t−1 log t)β−1),

where

(4.26)

Di =

{
max
g∈G

max
0≤k≤K

∣∣∣∣∣(τhn
(g))−1

hn∑
t=1

`t(θk)I{t−1∈C,φ∗
t−1=g} − Ig(θ0, θk)

∣∣∣∣∣ ≤ 2ε

for all ai < hn ≤ ai+1

}
.

Let Ω = ∪∞
t=1∩i≥t(Ai∩Ci∩Di). Then Pφ∗

x (Ω) = limt→∞ Pφ∗
x {∩i≥t(Ai∩Ci∩Di)} = 1.

On Ω, for all large i and at the times hn during the certainty-equivalent testing phase
of φ∗ between ai and ai+1, it follows from (3.9), (3.10a), and (4.22) that J(θ̂ai) ⊂ J(θ0)
and

(4.27) (log ai)(c`(θ0) − ε) ≤ τhn(g`) ≤ (2 log ai)(c`(θ0) + ε) + 3ni if ` /∈ J(θ0),

(4.28) τhn
(g`) ≤ 3ξ log ai if ` ∈ J(θ0) − J(θ̂ai),

and from (4.25), (4.26), and (4.28) that
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(4.29)

inf
λ∈Θj∩Bδ(θ0)

logUhn(λ)

≥ inf
0≤k≤K:Γk∩Θj∩Bδ(θ0)6=∅

∑
`/∈J(θ0)

{Ig`(θ0, θk) − 6ε}τhn
(g`) − 6Lε(3ξ log ai) +O(1),

noting that Ig(θ0, λ) ≥ 0 for all g ∈ G and λ ∈ Θ. From (4.1) and (4.29), it follows
that on Ω

(4.30)

inf
λ∈Θj∩Bδ(θ0)

logUhn
(λ)

≥ inf
λ∈Θj∩Bδ(θ0)

∑
`/∈J(θ0)

{Ig`(θ0, λ) − 7ε}τhn(g`) − 6Lε(3ξ log ai) +O(1)

at the times hn during the certainty-equivalent phase of φ∗ between ai and ai+1 for
all large i.

In view of (3.11), (3.12), and Lemma 7, for every ` ∈ J(θ0),

(4.31) Pφ∗
x {g` is eliminated at some testing time between ai and ai+1} ≤ 4(iai)−1.

Hence by the Borel–Cantelli lemma, Pφ∗
x {Ωi for all large i} = 1, where

(4.32)
Ωi

= {g` is not eliminated during all test times between ai−2 and ai+1, for all ` ∈ J(θ0)}.

In the event Ωi, since 1 − a−2 ≥ 3/4 and 3/5 > a−1, we have the following for all
sufficiently large i:

(4.33) Tai−1(g`) ≥ (4/5){(ai − 1 − ai−2)/L} > ai−1/L for all ` ∈ J(θ0).

Note that {Tt−1(g) ≥ ai−1/L} = {t − 1 ≥ τ (i)} = {t > τ (i)}, where τ (i) = inf{s :
Ts(g) ≥ ai−1/L} is a stopping time. Let Nn(g) =

∑n
t=1 I{Tt−1(g)≥ai−1/L,φ∗

t−1=g}, and
define

(4.34)

Λi =

{
max

0≤k≤K
sup
θ∈Γk

hn∑
t=1

|`t(θ) − `t(θk)|I{Tt−1(g)≥ai−1/L,φ∗
t−1=g} ≤ 2εai+1 and

max
0≤k≤K

∣∣∣∣∣
hn∑
t=1

`t(θk)I{Tt−1(g)≥ai−1/L,φ∗
t−1=g} − Ig(θ0, θk)Nhn(g)

∣∣∣∣∣ ≤ 2εai+1

for all ai < hn ≤ ai+1 and all g ∈ G

}
.

Letting Λc denote the complement of an event Λ, it follows from Lemma 4 that

(4.35) Pφ∗
x (Λc

i ) = O(a−i(β−1)).

Therefore by the Borel–Cantelli lemma, Pφ∗
x {Λi for all large i} = 1.
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Suppose Θj\Bδ(θ0) 6= ∅. Then we can use (4.33) and an argument similar to that
leading to (4.25) and (4.30) to show that, for all large i, on Ωi ∩ Λi,

(4.36)

min
1≤m≤m(i)

inf
λ∈Θj\Bδ(θ)

logWνi(m)(λ)

≥ inf
λ∈Θj\Bδ(θ0)

∑
`∈J(θ0)

Ig`(θ0, λ)ai−1/L− 7εai+1 + logw0,

noting that Ig(θ0, λ) ≥ 0. Let Ω∗ = ∪∞
t=1 ∩i≥t (Ωi ∩ Λi). Since

K := inf
λ∈Θj\Bδ(θ0)

∑
`∈J(θ0)

Ig`(θ0, λ) > 0

by (C3), (4.36) with ε > 0 sufficiently small implies that on Ω∗, for all large i and
ai < hn ≤ ai+1,

(4.37) inf
λ∈Θj\Bδ(θ0)

logWhn(λ) > Kai−1/(2L).

Note that

inf
λ∈Θj

max{Uhn
(λ),Whn

(λ)} ≥ min{ inf
λ∈Θj∩Bδ(θ0)

Uhn
(λ), inf

λ∈Θj\Bδ(θ0)
Whn

(λ)}.

By (4.19), for sufficiently small ε,

(4.38)
0 ≤ inf

λ∈Θj∩B(θ0)

∑
`/∈J(θ0)

c`(θ0)Ig`(θ0, λ) − inf
λ∈Θj∩Bδ(θ0)

∑
`/∈J(θ0)

c`(θ0)Ig`(θ0, λ) ≤ ε3/4.

From (4.27), (4.30), (4.37), and (4.38) with ε sufficiently small, it follows that on
Ω∩Ω∗, for all large i, the certainty-equivalent testing phase between times ai and ai+1

rejects Hj at time νi(m) with (cj(θ0) − ε) log ai ≤ τνi(m)(gj) ≤ (cj(θ0) +
√
ε) log ai

for every j /∈ J(θ0) (or equivalently θ0 /∈ Θj). In particular, the upper bound for
τνi(m)(gj) follows from the lower bound in (4.27) together with (3.11), (4.37), and
(4.30), noting that the ε3/4 in (4.38) is much smaller than

√
ε if ε is sufficiently small

and that infλ∈Θj∩B(θ0)
∑

`/∈J(θ0) c`(θ0)I
g`(θ0, λ) ≥ 1 if B(θ0) 6= ∅ by (3.2). Hence on

Ω∩Ω∗, for all large i, the evenly allocated testing phase between times ai and ai+1 is
applied only to controls g` with ` ∈ J(θ0). Since ε can be arbitrarily small, this implies
that Tn(gj) = τn(gj) + O(1) and that Tn(gj)/ logn → cj(θ0) a.s. [Pφ∗

x ] for every
j /∈ J(θ0). This also implies that with probability 1, for all large i, φ∗ only uses rules
from GJ after certainty-equivalent testing between times ai and ai+1. Hence in view
of (4.27) and the use of the same stationary control law for an entire block (of stages)
Bi

m, of size ≥ ni ∼ i/ log i, the desired conclusion on
∑n

1 I{φ∗
i 6=φ∗

i−1,φ∗
i /∈GJ or φ∗

i−1 /∈GJ}
follows.

Proof of Lemma 6. Fix j /∈ J(θ0). The evenly allocated testing phase of φ∗,
which was shown to use eventually only controls from GJ in the proof of the a.s.
convergence of Tn(gj)/ logn in Lemma 5, will play a crucial role here in establishing
uniform integrability of Tn(gj)/ logn. Also the assumption β > 2 will be important
here. Let τt = τat+1(gj) and τ̃t = Tat+1(gj) − τt. It suffices to show that

(4.39) {τt/t, t ≥ 1} and {τ̃t/t, t ≥ 1} are uniformly integrable under Pφ∗
x .
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Take any ε > 0 and define Ai as in (4.22). In the line above (4.22) we have shown
that

(4.40) Pφ∗
x (∆t) ≥ 1 −O(t−(β−1)(log t)2β), where ∆t = ∩i≥[t/ log t]Ai.

From the constraint (3.10a) or (3.10b) in the certainty-equivalent testing phase, it
follows that

(4.41) τt ≤ (2 log at) log t+ 3nt.

Moreover, in view of (4.41) together with (3.10a,b) and (4.22) we have, for all large t,

τ[t/ log t] < 3t log a and τi < 3t(cj(θ0) + ε) log a for all [t/ log t] < i ≤ t on ∆t.

Hence for all large t,

(4.42) τt/t ≤ (3 log a)(log t)I∆c
t
+ (3 log a)(cj(θ0) + ε)I∆t

.

Since Pφ∗
x (∆c

t) = O(t−(β−1)(log t)2β) by (4.40), the uniform integrability of {τt/t, t ≥
1} follows from (4.42).

Labeling the elements of {νi(m) : i ≥ 1, 1 ≤ m ≤ m(i)} as s1 < s2 < · · · (test
times), define

(4.43) σt = sup
{
sn ≤ at+1 : inf

λ∈Θj∩Bδ(θ0)
W̃sn,j(λ) < tat

}
, #t,1 = Tσt(gj),

(4.44) #t,2 =
t∑

i=1

IΩi∩Λi

m(i)∑
m=1

2niI{infλ∈Θj\Bδ(θ0) Wνi(m)(λ)<iai},

(4.45) #t,3 =
t∑

i=1

(ai+1 − ai)(IΩc
i
+ IΛc

i
),

where Ωi and Λi are defined in (4.32) and (4.34). Since νi(m) − νi(m− 1) ≤ 2ni and
since

inf
λ∈Θj

max(W̃n,j(λ),Wn(λ)) ≥ min
{

inf
λ∈Θj∩Bδ(θ0)

W̃n,j(λ), inf
λ∈Θj\Bδ(θ0)

Wn(λ)
}
,

it follows from (3.12), (4.15), and (4.16) that

(4.46) τ̃t(= Tat+1(gj) − τt) ≤ #t,1 + #t,2 + #t,3.

By (4.31) and (4.35) with β > 2, Eφ∗
x (#t,3) =

∑t
i=1O(i−1) = O(log t). Since #t,3 ≥ 0

and Eφ∗
x (t−1#t,3) → 0 as t → ∞, it follows that {#t,3/t, t ≥ 1} is uniformly integrable

under Pφ∗
x .

To prove that {#t,1/t, t ≥ 1} is uniformly integrable under Pφ∗
x , take ε > 0,

choose δ by (4.19) and define θ1, . . . , θK as in (4.3). Letting Γk = {θ : ρ(θk, θ) ≤ δ′
θk

},
we shall modify the use of (4.23) and (4.26) in the proof of Lemma 5 by introducing
(4.47)

σ∗ = sup

{
Tsn(gj) : max

0≤k≤K
sup
θ∈Γk

sn∑
s=1

|`s(θ) − `s(θk)|I{φ∗
s−1=gj} > 2εTsn(gj)

}

∨ sup

{
Tsn

(gj) : max
0≤k≤K

∣∣∣∣∣(Tsn
(gj))−1

sn∑
s=1

`s(θk)I{φ∗
s−1=gj} − Igj (θ0, θk)

∣∣∣∣∣ > 2ε

}
.
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For Tsn
(gj) > σ∗, we have

max
0≤k≤K

sup
θ∈Γk

sn∑
s=1

|`s(θ) − `s(θk)|I{φ∗
s−1=gj} ≤ 2εTsn

(gj)

and

max
0≤k≤K

∣∣∣∣∣Tsn
(gj))−1

sn∑
s=1

`s(θk)I{φ∗
s−1=gj} − Igj (θ0, θk)

∣∣∣∣∣ ≤ 2ε.

Hence an argument similar to that used to derive (4.25) and (4.30) can be used to
show that if Tsn

(gj) > σ∗ then

(4.48) inf
λ∈Θj∩Bδ(θ0)

log W̃sn,j
(λ) ≥

{
inf

λ∈Θj∩Bδ(θ0)
Igj (θ0, λ) − 7ε

}
Tsn

(gj) + logw0,

where w0 = F (Γ0). From (4.48) and (4.43) it follows that

(4.49) #t,1(= Tσt
(gj)) ≤ max{σ∗, 1 + log(tat/w0)/[ inf

λ∈Θj∩Bδ(θ0)
Igj (θ0, λ) − 7ε]},

noting that infλ∈Θj∩Bδ(θ0) I
gj (θ0, λ) − 7ε > 0 by (C3) and (4.19), provided that ε is

chosen sufficiently small. By (4.47) and Lemmas 2 and 3,
∑∞

m=1 Pφ∗
x {σ∗ ≥ m} =∑∞

m=1O(m−(β−1)) < ∞ since β > 2. Therefore Eφ∗
x (σ∗) < ∞ and the uniform

integrability of {#t,1/t, t ≥ 1} follows from (4.49).
To prove the uniform integrability of {#t,2/t, t ≥ 1} under Pφ∗

x , recall that (4.36)
holds on Ωi ∩ Λi for all large i. By (C3) and choosing ε sufficiently small, this implies
that {#t,2, t ≥ 1} is uniformly bounded by some constant.

The case where φ∗ is replaced by φ̃ is even simpler and is similar to the preceding
proof of the uniform integrability of {τ̃t/t, t ≥ 1}.
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BLOCK TRIANGULAR DECOUPLING FOR LINEAR SYSTEMS
OVER PRINCIPAL IDEAL DOMAINS∗
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Abstract. This paper studies in the framework of the so-called geometric approach the block
triangular decoupling problem with state feedback for linear systems defined over a principal ideal
domain with identity. First, various properties of feedback reachability submodules are discussed,
and then under certain assumptions necessary and sufficient conditions for its solvability are obtained.
Further, the pole assignability for decoupled systems is investigated. Finally, a simple example is
given to illustrate the results.

Key words. block triangular decoupling, linear systems over rings, feedback reachability sub-
modules, pole assignability

AMS subject classifications. 93B05, 93B27, 93D15
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1. Introduction. In the so-called geometric approach, various block decoupling
problems for linear systems over the field of real numbers were first studied in [9]
and [13]. In particular, they studied the block decoupling problem with certain as-
sumptions [13] as well as the block triangular decoupling problem [9] and obtained
necessary and sufficient conditions for each problem to be solvable. The results were
given in terms of the largest elements in some families of reachability subspaces sat-
isfying certain conditions.

It seems quite interesting and useful to investigate the corresponding decoupling
problems for systems over rings also in the framework of the geometric approach
because systems over rings are a natural generalization of systems over the field of
real numbers and are used as abstract descriptions of, for instance, systems with
parameters or with time-delay operators. In fact, such systems have been extensively
studied in the last two decades (see, e.g., [1], [3], [7], [11], and [10]).

The present authors [6] and with Munaka [5] have already shown that the results
for the block decoupling problem given in [13] are essentially valid for the correspond-
ing problem for systems over principal ideal domains. So, the purpose of the present
investigation is to discuss the corresponding triangular decoupling problem for sys-
tems over principal ideal domains and to present necessary and sufficient conditions
for the problem to be solvable. Although this problem brings a number of new diffi-
culties to be resolved, it turns out that the results obtained in [9] are still essentially
valid for this new problem. Furthermore, the pole assignability of decoupled systems
is also studied in some detail.

The outline of the paper is as follows. Section 2 gives preliminaries and notions of
reachability submodules and their important properties. In section 3, the block trian-
gular decoupling problem is formulated in the framework of the geometric approach,
and necessary and sufficient conditions for its solvability are obtained. Section 4 con-
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siders the pole assignability of a decoupled system and shows that the reachability of
the original system implies the pole assignability. In section 5 an example is presented
to demonstrate our results, and finally in section 6 some concluding remarks are given.

2. Preliminaries and reachability submodules. Throughout this paper we
consider a system (A, B, C) over a commutative principal ideal domain K with the
identity 1, where A ∈ Kn×n, B ∈ Kn×m, and C ∈ Kl×n denote the system matrix,
the input matrix, and the output matrix, respectively. When the output matrix C is
immaterial, we will simply write (A, B). Let X := Kn, U := Km, and Y := Kl be
free K-modules. Then, system (A, B, C) defines a discrete-time system described by

x(t + 1) = Ax(t) + Bu(t), y(t) = Cx(t),(2.1)

where x(t) ∈ X, u(t) ∈ U , and y(t) ∈ Y are the state, the input, and the output,
respectively. For a given input sequence u = (u(t))∞

t=0 and an initial state x(0) =
x0 ∈ X, we denote by x(t; x0, u) the state at time t resulting via (2.1). The triple
(A, B, C) may also be considered to represent a continuous-time system of the form

dx(t)
dt

= Ax(t) + Bu(t), y(t) = Cx(t)(2.2)

provided that the derivative dx(t)/dt can be suitably defined. However, the develop-
ment to follow in this paper does not depend on whether system (A, B, C) represents a
discrete-time or a continuous-time system, so we may simply consider it as a discrete-
time system. Throughout this paper, the field of real numbers will be denoted by
R.

Systems over principal ideal domains can describe various systems appearing ap-
plications, such as parametrized systems, systems over the integer ring, time-delay
systems, etc.; see, e.g., [1], [7], [11], [10].

Example 2.1. Linearize around the equilibrium point (x1, x2) = (λ, 0) the nonlin-
ear system over R given by x1(t + 1) = x1(t) + x2

1(t) + u1(t),
x2(t + 1) = 2x2(t) + u2(t),

y(t) = x1(t)x2(t) + x1(t),
(2.3)

where λ is an arbitrary real constant number. Then, the resulting linearized system
is described by

x(t + 1) = A(λ)x(t) + B(λ)u(t), y = C(λ)x(t),(2.4)

where

A(λ) =
[

1 λ2

0 2

]
, B(λ) =

[
1 0
0 1

]
, C(λ) =

[
1 λ

]
,

which are considered to be matrices over R[λ], the ring of polynomials in the inde-
terminate λ with coefficients in R. Since R[λ] is a principal ideal domain, the triple
(A(λ), B(λ), C(λ)) of (2.4) is regarded as a linear system over the principal ideal
domain R[λ].

Example 2.2. Consider the linear time-delay system described by

dx(t)
dt

=
p∑

i=0

Aix(t − ih) +
q∑

i=0

Biu(t − ih), y(t) =
r∑

i=0

Cix(t − ih),(2.5)
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where h is a fixed positive number, Ai, Bi, and Ci are n × n, n × m, and l × n
matrices over R, respectively. Now, let σ denote the time-delay operator defined by
(σx)(t) := x(t − h). Then (2.5) can be written in the form

dx

dt
= A(σ)x + B(σ)u, y(t) = C(σ)x,(2.6)

where A(σ), B(σ), and C(σ) are n × n, n × m, and l × n matrices over R[σ]. Thus
system (2.6) can be described as a linear system over the principal ideal domain
R[σ].

Consider a system (A, B) over K with A ∈ Kn×n and B ∈ Kn×m. As in the case
of systems over R [12], the reachable submodule for system (A, B) is given by

〈A| Im B〉 := ImB + A(ImB) + · · · + An−1(ImB) ⊂ X,

where ImB stands for the image of B. That 〈A| Im B〉 is called the reachable sub-
module comes from the fact that for every x̃ ∈ 〈A| Im B〉 there exist a time T ≥ 0
and an input u such that x(T ; 0, u) = x̃. Thus, the pair (A, B) is called reachable if
〈A| Im B〉 = X.

The following definition gives the basic notions in the geometric approach for
linear systems [13], [12].

DEFINITION 2.3. Let ϕ be a submodule of X.
(i) ϕ is said to be (A, B)-invariant if Aϕ ⊂ ϕ+ Im B.
(ii) ϕ is said to be feedback (A, B)-invariant if there exists F ∈ Km×n such

that (A + BF )ϕ ⊂ ϕ. The set of all those F ’s satisfying such inclusion is denoted
by F(ϕ; A, B). (Note that ϕ is feedback (A, B)-invariant if and only if F(ϕ; A, B)
6= ∅.)

An (A, B)-invariant submodule ϕ has the property that for every x(0) ∈ ϕ
there exists an input sequence u such that x(t; x(0), u) ∈ ϕ for t = 0, 1, 2, . . . . A
feedback (A, B)-invariant submodule ϕ has the property that there exists a ma-
trix F ∈ Km×n such that by defining an input sequence u := (Fx(t))∞

t=0 for every
x(0) ∈ ϕ, x(t; x(0), u) belongs to ϕ for t = 0, 1, 2, . . . .

A submodule ϕ ⊂ X is called a direct summand of X if there exists a submodule
ψ ⊂ X such that X = ϕ + ψ and ϕ ∩ ψ = {0}. Then we write X = ϕ ⊕ ψ. We
remark that subspaces of a linear space are always direct summands but submodules
are not necessarily. As will be seen later, this difference causes the main difficulty
in studying systems over K. So the following notion plays an important role in what
follows.

DEFINITION 2.4. Let ψ ⊂ ϕ be submodules of X. The closure Clϕ(ψ) of ψ in ϕ
is defined to be the submodule given by

Clϕ(ψ) := {x ∈ ϕ such that ax ∈ ψ for some nonzero a ∈ K}.

ψ is said to be closed in ϕ if Clϕ(ψ) = ψ.
Remark 2.5. From [1] and [4] we recall the following facts.

(i) A submodule of X is closed in X if and only if it is a direct summand of X.
(ii) If a submodule of X is feedback (A, B)-invariant, then so is its closure in X.

However, (A, B)-invariance does not necessarily imply (A, B)-invariance of its closure.
(iii) Feedback (A, B)-invariance implies (A, B)-invariance, but the converse is

not generally true.
(iv) The sum of two (A, B)-invariant submodules is again an (A, B)-invariant

submodule. Therefore, the family of all (A, B)-invariant submodules contained in
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a given submodule has a unique largest (A, B)-invariant submodule. However, this
property does not hold true for the case of feedback (A, B)-invariant submodules.

(v) The largest (A, B)-invariant submodule contained in a given closed submod-
ule of X is feedback (A, B)-invariant if and only if it is closed in X.

Now, the following two notions of reachability submodules are introduced.
DEFINITION 2.6. Let ϕ be a submodule of X.
(i) ϕ is said to be a reachability submodule for (A, B) if for each x̃ ∈ ϕ there

exist a time T ≥ 0 and an input sequence u = {u(t)}∞
t=0 such that x(t; 0, u) belongs to

ϕ for t = 0, 1, 2, . . . and x(T ; 0, u) = x̃.
(ii) ϕ is called a feedback reachability submodule for (A, B) if there exist F ∈

Km×n and G ∈ Km×m such that ϕ = 〈A + BF | Im(BG)〉.
Remark 2.7. What was called a reachability submodule in the papers [6] and

[5] is renamed in this paper a feedback reachability submodule. Conte and Perdon
[2] introduced the notion of precontrollability submodules for linear systems over a
commutative ring. It is possible to verify that this notion is equivalent to that of
reachability submodules given in Definition 2.6.

A feedback reachability submodule ϕ for (A, B) is the reachable submodule for
the new system (A + BF, BG) resulting from applying a state feedback of the form
u(t) = Fx(t) + Gv(t) to (2.1), where v denotes the new input. In other words, for
each x̃ ∈ ϕ there exist a time T ≥ 0 and an input sequence v = (v(t))∞

t=0 such
that, defining an input sequence u := (Fx(t) + Gv(t))∞

t=0, we have x(t; 0, u) ∈ ϕ
for t = 0, 1, 2, . . . and x(T ; 0, u) = x̃. Therefore, if a submodule of X is a feedback
reachability submodule then it is a reachability submodule. However, a reachability
submodule is not necessarily a feedback reachability submodule (see Remark 2.11),
although these two notions are equivalent for linear systems over the field R. In fact,
Conte and Perdon [2] showed that a submodule is a feedback reachability submodule
if and only if it is a reachability submodule and a feedback (A, B)-invariant submod-
ule.

For feedback reachability submodules, the following lemma can be proved in the
same manner as in [13], except for the sufficiency part of (i).

LEMMA 2.8. Let ϕ be a submodule of X.
(i) ϕ is a feedback reachability submodule for (A, B) if and only if there exists

F ∈ Km×n such that ϕ = 〈A + BF | Im B ∩ϕ〉.
(ii) If ϕ is a feedback reachability submodule for (A, B), then

ϕ = 〈A + BF | Im B ∩ϕ〉

for all F ∈ F(ϕ; A, B).
Proof. Only a proof of the sufficiency of (i) will be given. Since ImB ∩ ϕ is a

submodule of the free K-module X, it is free. Hence, if the rank of Im B∩ϕ is p, there
is a basis {b1, b2, . . . , bp} ⊂ X of Im B ∩ ϕ. For each bi (i = 1, 2, . . . , p) there exists
ui ∈ U (i = 1, 2, . . . , p) such that bi = Bui. Defining G := [u1, . . . , up, 0, . . . , 0] ∈
Km×m, we obtain ImB ∩ ϕ = Im(BG), showing that ϕ is a feedback reachability
submodule for (A, B).

It should be remarked that if ϕ is a feedback reachability submodule, then ϕ is
feedback (A, B)-invariant and hence the set F(ϕ; A, B) is not empty. Furthermore, a
feedback reachability submodule is not necessarily closed in X, and the closure of a
feedback reachability submodule is not always a feedback reachability submodule, as
is seen from the following example.
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Example 2.9. Let K:=R[σ] and X := K2, and set

A :=
[

1 1
0 1

]
, B :=

[
σ 0
0 1

]
, ϕ := Im

[
σ
0

]
.

Then, it is easy to see that ϕ is A-invariant and ϕ ∩ Im B = ϕ. Therefore, ϕ =
〈A| Im B∩ϕ〉, and hence ϕ is a feedback reachability submodule for (A, B) by Lemma
2.8. The closure is given by

ClX(ϕ) = Im
[

1
0

]
6= ϕ,

and hence ϕ is not closed in X. Moreover, ClX(ϕ) is not a feedback reachability
submodule for (A, B). In fact, since ClX(ϕ) is A-invariant and hence satisfies 0 ∈
F(ClX(ϕ); A, B), Lemma 2.8 and the relation

〈A| Im B ∩ ClX(ϕ)〉 = Im
[

σ
0

]
6= ClX(ϕ)

imply that ClX(ϕ) is not a feedback reachability submodule.
It is well known that for systems over R the sum of two feedback reachability

subspaces is again a feedback reachability subspace. However, this statement is not
true for systems over K. Thus there is no guarantee that a largest feedback reachability
submodule in the family of feedback reachability submodules contained in a given
submodule exists. The next example demonstrates that the sum of two feedback
reachability submodules is not a feedback reachability submodule.

Example 2.10. Let K:=R[σ] and X := K3, and set

A :=

 1 1 0
0 1 0
0 0 1

 , B :=

 σ 0 0
0 σ 0
0 1 1

 ,

ϕ1 := Im

 0
σ
1

 , ϕ2 := Im

 0
0
1

 .

Then, it can easily be checked that ϕ1 ∩ Im B = ϕ1 and ϕ2 ∩ Im B = ϕ2, and hence
that 〈A + BF1|ϕ1 ∩ Im B〉 = ϕ1 and 〈A + BF2|ϕ2 ∩ Im B〉 = ϕ2, where

F1 =

 0 0 −1
0 0 0
0 0 0

 ∈ F(ϕ1; A, B), F2 =

 0 0 0
0 0 0
0 0 0

 ∈ F(ϕ2; A, B).

Therefore, by Lemma 2.8 ϕ1 and ϕ2 are feedback reachability submodules. On the
other hand, the closure of the submodule ϕ1 +ϕ2, i.e., the closed submodule

ClX(ϕ1 +ϕ2) = Im

 0 0
1 0
0 1

 ,

is not (A, B)-invariant because for [0 1 0]> ∈ ClX(ϕ1 +ϕ2)

A

 0
1
0

 =

 1
1
0

 /∈ ClX(ϕ1 +ϕ2) + Im B = Im

 σ 0 0
0 1 0
0 0 1

 .
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Thus, by virtue of Remark 2.5, ClX(ϕ1 + ϕ2) is not feedback (A, B)-invariant, and
hence ϕ1 +ϕ2 is not feedback (A, B)-invariant. Therefore, ϕ1 +ϕ2 is not a feedback
reachability submodule for (A, B).

Remark 2.11. In Example 2.10, ϕ1 + ϕ2 is a reachability submodule for (A, B)
but not a feedback reachability submodule for (A, B).

As will be seen later, in investigating systems over K it is vital to look for con-
ditions under which the largest feedback reachability submodule contained in a given
submodule exists. To this purpose, we first introduce the following algorithm.

AGORITHM 2.12. For a given submodule ψ of X, compute the sequence (R(i)) of
submodules of X for (A, B) as{

R(0)(ψ) := 0,
R(i)(ψ) := ψ ∩ (AR(i−1)(ψ) + Im B) (i = 1, 2, . . .).

(2.7)

Then, it is obvious that the sequence (R(i)) is nondecreasing. Thus, since K is a
principal ideal domain, there exists an integer q ≥ 0 such that R(i)(ψ) = R(i+1)(ψ)
for i ≥ q. So set R(ψ) := R(q)(ψ).

Now, the following proposition will be proved.
PROPOSITION 2.13. Let S be a submodule of X and V ∗, the largest (A, B)-

invariant submodule contained in S. If R(V ∗) is feedback (A, B)-invariant, then
R(V ∗) is the largest feedback reachability submodule for (A, B) contained in S, and it
is given as

R(V ∗) = 〈A + BF | Im B ∩ V ∗〉,

where F is an arbitrary element in F(R(V ∗); A, B).
Proof. Assume that R(V ∗) is feedback (A, B)-invariant. Hence, it follows from

Definition 2.3 that F(R(V ∗); A, B) 6= ∅. Then, it is claimed that for any F ∈
F(R(V ∗); A, B)

R(i)(V ∗) =
i∑

j=1

(A + BF )j−1(V ∗ ∩ Im B) (i = 1, 2, . . .).(2.8)

To verify this claim, first notice that

(A + BF )R(i)(V ∗) ⊂ R(V ∗) ⊂ V ∗ (i = 1, 2, . . .).(2.9)

It is clear that (2.8) is true for i = 1. Next, assuming that (2.8) holds true for i = p,
and using (2.9) and (2.7), one obtains

p+1∑
j=1

(A + BF )j−1(V ∗ ∩ Im B) = V ∗ ∩ Im B + (A + BF )R(p)(V ∗)
= V ∗ ∩ [(A + BF )R(p)(V ∗) + Im B]
= V ∗ ∩ (AR(p)(V ∗) + Im B)
= R(p+1)(V ∗).

Thus (2.8) is true for all i, and hence the claim is verified.
Now, it is easily seen from (2.8) and the Cayley–Hamilton theorem that

R(V ∗) = R(n)(V ∗) = 〈A + BF | Im B ∩ V ∗〉.
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As in the proof of the sufficiency of (i) of Lemma 2.8, it is possible to construct a
matrix G ∈ Km×m such that ImB ∩ V ∗ = Im(BG). Hence, R(V ∗) is a feedback
reachability submodule for (A, B). Moreover, it follows from Algorithm 2.12 and the
inclusion V ∗ ⊂ S that

R(V ∗) = R(n)(V ∗) ⊂ V ∗ ⊂ S.

Therefore, R(V ∗) is a feedback reachability submodule for (A, B) contained in S.
To see that R(V ∗) is the largest feedback reachability submodule contained in

S, let ϕ be any feedback reachability submodule for (A, B) contained in S. First,
note that F(ϕ; A, B) 6= ∅ because ϕ is feedback (A, B)-invariant, and so take any
F ∈ F(ϕ; A, B). Then, it is claimed that

R(i)(ϕ) =
i∑

j=1

(A + BF )j−1(ϕ ∩ Im B) (i = 1, 2, . . .).(2.10)

In fact, this can be shown in the same manner as verifying (2.8). Further, it is easily
seen from (2.10) and the Cayley–Hamilton theorem that

R(n)(ϕ) = 〈A + BF | Im B ∩ϕ〉 = ϕ.

Now, since ϕ is an (A, B)-invariant submodule contained in S, one has ϕ ⊂ V ∗, and
hence

ϕ = R(n)(ϕ) ⊂ R(n)(V ∗) = R(V ∗),

showing that R(V ∗) is the largest feedback reachability submodule for (A, B) con-
tained in S.

COROLLARY 2.14. Let S be a submodule of X and V ∗ be the largest (A, B)-
invariant submodule contained in S. If V ∗ is closed in X, then R(V ∗) is the largest
feedback reachability submodule for (A, B) contained in S, and it is given as

R(V ∗) = 〈A + BF | Im B ∩ V ∗〉,
where F is an arbitrary element in F(R(V ∗); A, B). Furthermore, the inclusion
F(V ∗; A, B) ⊂ F(R(V ∗); A, B) is satisfied.

Proof. First, we will show that V ∗ is feedback (A, B)-invariant. Since V ∗ is closed
in X, there exists a basis {x1, x2, . . . , xn} of X such that {x1, x2, . . . , xr} is a basis of
V ∗, where r(≤ n) is the rank of V ∗. Further, since V ∗ is (A, B)-invariant, there exist
z1, z2, . . . , zr ∈ V ∗ and u1, u2, . . . , ur ∈ U := Km such that

Axi = zi − Bui (i = 1, 2, . . . , r).

Now, letting T := [x1, x2, . . . , xn] and defining

F := [u1, u2, . . . , ur, 0m×(n−r)]T−1,

where 0m×(n−r) denotes the m×(n−r) zero matrix, it is easily seen that (A+BF )x ∈
V ∗ for all x ∈ V ∗. Thus, V ∗ is feedback (A, B)-invariant and F ∈ F(V ∗; A, B).

Next, take any F ∈ F(V ∗; A, B). Then for any x ∈ R(V ∗) ⊂ V ∗ one has (A +
BF )x ∈ V ∗, and further

(A + BF )x = Ax + BFx ∈ AR(V ∗) + Im B.



BLOCK TRIANGULAR DECOUPLING OVER PIDs 751

Thus, with the help of Algorithm 2.12,

(A + BF )x ∈ V ∗ ∩ (AR(V ∗) + Im B) = R(V ∗),

which shows that R(V ∗) is feedback (A, B)-invariant and that

F(V ∗; A, B) ⊂ F(R(V ∗); A, B).

Therefore, it follows from Proposition 2.13 that R(V ∗) is the largest feedback reach-
ability submodule for (A, B) contained in S, and it is given as

R(V ∗) = 〈A + BF | Im B ∩ V ∗〉,
where F is an arbitrary element in F(R(V ∗); A, B).

3. Block triangular decoupling. Consider a system (A, B, C) over K, and
suppose that the output matrix C is partitioned into k blocks as

C =


C1
C2
...

Ck

 ,

where Ci ∈ Kli×n and l1 + l2 + · · · + lk = l. Then, system (A, B, C) is represented as
(A, B, {Ci}k

i=1), which defines the following system:{
x(t + 1) = Ax(t) + Bu(t),

yi(t) = Cix(t) (i = 1, 2, . . . , k).

Now, apply to this system a state feedback control of the form

u(t) = Fx(t) +
k∑

i=1

Givi(t),(3.1)

where F ∈ Km×n, Gi ∈ Km×m, and vi(t) are the new inputs. Then, the resulting
closed loop system is easily seen to be (A + BF, B[G1, G2, . . . , Gk], {Ci}k

i=1); i.e., x(t + 1) = (A + BF )x(t) +
k∑

i=1

BGivi(t),

yi(t) = Cix(t) (i = 1, 2, . . . , k).

Accordingly, the feedback reachability submodule ϕi generated by the input vi is
given by

ϕi = 〈A + BF | Im(BGi)〉.
Roughly speaking, the block triangular decoupling problem for (A, B, {Ci}k

i=1) can
be stated as follows [9]: find a state feedback (3.1) such that the resulting closed loop
system (A + BF, B[G1, G2, . . . , Gk], {Ci}k

i=1) should control the output y1, y2, . . . , yk

sequentially; that is to say, v1 controls y1, possibly changing the values of y2, y3, . . . , yk,
then v2 controls y2, possibly changing the values of y3, y4, . . . , yk without allowing
influence on y1, and so forth, with vk controlling yk without allowing influence on
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y1, y2, . . . , yk−1. As in the case of the field R [9], this problem can be described more
precisely as follows: given system (A, B, {Ci}k

i=1), the problem is to find, if possible,
F ∈ Km×n and Gi ∈ Km×m (i = 1, 2, . . . , k) such that the feedback reachability
submodules given by

ϕi = 〈A + BF | Im(BGi)〉 (i = 1, 2, . . . , k)(3.2)

satisfy the following two conditions: the first is

ϕ1 ⊂ X =: Ω 1,(3.3)

ϕi ⊂
i−1⋂
j=1

Ker Cj =: Ω i (i = 2, 3, . . . , k),(3.4)

which requires that vi does not affect the outputs y1, . . . , yi−1, where KerCj stands
for the kernel of Cj , and the second is

ϕi + KerCi = X (i = 1, 2, . . . , k),(3.5)

which requires that vi controls the corresponding output yi completely. Furthermore,
using Lemma 2.8, this problem can be rephrased in a more compact form as follows.

Problem 3.1. Given system (A, B, {Ci}k
i=1) over K, the block triangular decou-

pling problem is to find, if possible, a set {ϕ1,ϕ2, . . . ,ϕk} of feedback reachability
submodules for (A, B) such that

k⋂
i=1

F(ϕi; A, B) 6= ∅,(3.6)

ϕi ⊂ Ω i,(3.7)
ϕi + KerCi = X (i = 1, 2, . . . , k).(3.8)

Such a set {ϕ1,ϕ2, . . . ,ϕk} is called a solution of the problem.
For systems over the field R of real numbers, this problem was first studied by

Morse and Wonham [9] where it was shown that necessary and sufficient conditions
for its solvability are given by

ϕ∗
i + Ker Ci = X (i = 1, 2, . . . , k),(3.9)

where ϕ∗
i is the largest feedback reachability subspace contained in Ω i, and further

that in this case {ϕ∗
1,ϕ

∗
2, . . . ,ϕ

∗
k} is a solution of the problem. Accordingly, if Prob-

lem 3.1 with K = R is solvable then {ϕ∗
1,ϕ

∗
2, . . . ,ϕ

∗
k} is always a solution of it, and

vice versa. Of course, it does not mean that {ϕ∗
1,ϕ

∗
2, . . . ,ϕ

∗
k} is the only solution.

Although the largest feedback reachability subspaces ϕ∗
i always exist for systems over

R, this property does not hold in general for systems over K as stated earlier. How-
ever, Proposition 2.13 and Corollary 2.14 give some sufficient conditions for existence
of such largest submodules for systems over K.

Therefore, in investigating Problem 3.1 in the geometric approach, it is inevitable
to make the assumption that such largest submodules exist, and our main concern
is whether (3.9) also gives necessary and sufficient conditions for Problem 3.1 to
be solvable under this assumption. The answer is yes. However, its proof involves a
number of detailed technical verifications which are not needed for the case of systems
over the field R. First, we make the following assumption.
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Assumption 3.2. For system (A, B, {Ci}k
i=1) over K, it is assumed that there

exists the largest feedback reachability submodule ϕ∗
i for (A, B) contained in Ω i

(i = 1, 2, . . . , k).
It should be remarked from Corollary 2.14 and Proposition 2.13 that this assump-

tion is satisfied either if every largest (A, B)-invariant submodule V ∗
i contained in Ω i

is closed in X or if each submodule R(V ∗
i ) is feedback (A, B)-invariant. Further, it

should be remarked that ϕ∗
i = R(V ∗

i ) if Assumption 3.2 is satisfied. Finally, we note
that ϕ∗

1,ϕ
∗
2, . . . ,ϕ

∗
k satisfy

ϕ∗
k ⊂ ϕ∗

k−1 ⊂ · · · ⊂ ϕ∗
1.(3.10)

Before proving our main theorem, the following lemma will be shown.
LEMMA 3.3. If ϕ ⊂ X is a feedback (A, B)-invariant submodule, then

F(ϕ; A, B) ⊂ F(ClX(ϕ); A, B).

Proof. Take any F ∈ F(ϕ; A, B). Then, for any x ∈ ClX(ϕ) there exists a nonzero
element α ∈ K such that αx ∈ ϕ, and hence α(A + BF )x = (A + BF )(αx) ∈ ϕ.
Therefore, one has (A + BF )x ∈ ClX(ϕ), showing F ∈ F(ClX(ϕ); A, B).

Now, we are ready to prove our main theorem.
THEOREM 3.4. Suppose that system (A, B, {Ci}k

i=1) satisfies Assumption 3.2.
Then the block triangular decoupling Problem 3.1 is solvable if and only if

ϕ∗
i + Ker Ci = X (i = 1, 2, . . . , k).(3.11)

Moreover, in this case the set {ϕ∗
1,ϕ

∗
2, . . . ,ϕ

∗
k} is a solution of the problem.

Proof. First, the sufficiency will be proved. So assume that (3.11) is satisfied.
Then the definition of ϕ∗

i and (3.11) imply that the set {ϕ∗
1,ϕ

∗
2, . . . ,ϕ

∗
k} satisfies (3.7)

and (3.8) with ϕi replaced by ϕ∗
i . Therefore, if {ϕ∗

1,ϕ
∗
2, . . . ,ϕ

∗
k} is shown to satisfy

(3.6), then it is a solution of the problem; hence both the sufficiency and the second
assertion in the theorem are proved simultaneously.

To verify that {ϕ∗
1,ϕ

∗
2, . . . ,ϕ

∗
k} satisfies (3.6), first recall the relation of (3.10),

and choose submodules N0, N1, . . . , Nk through the equations

X = N0 ⊕ ClX(ϕ∗
1),

ClX(ϕ∗
i ) = Ni ⊕ ClX(ϕ∗

i+1) (i = 1, . . . , k − 1),(3.12)
Nk := ClX(ϕ∗

k).

Then it is easy to obtain the relation

X = N0 ⊕ N1 ⊕ · · · ⊕ Nk.(3.13)

Since each Ni is free, it has a basis {xi1, xi2, . . . , xiri
}, where ri denotes the rank of

Ni. So, if matrices Ti ∈ Kn×ri and T ∈ Kn×n are defined by

Ti := [xi1, xi2, . . . , xiri
] (i = 0, 1, . . . , k),

T := [T0, T1, . . . , Tk],

then it is easy to see from (3.13) that T is invertible over K.
Next, since each ϕ∗

i is a feedback reachability submodule for (A, B), it is feedback
(A, B)-invariant and hence satisfies

F(ϕ∗
i ; A, B) 6= ∅.
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So, choosing an Fi ∈ F(ϕ∗
i ; A, B) and defining F ∈ Km×n by

F := [0m×r0 , F1T1, F2T2, . . . , FkTk]T−1,

it is claimed that F ∈ ⋂k
i=1 F(ϕ∗

i ; A, B), i.e., that {ϕ∗
1,ϕ

∗
2, . . . ,ϕ

∗
k} satisfies (3.6). To

verify this, introduce the following feedback reachability submodules for (A, B):

ϕ̃i := 〈A + BF | Im B ∩ϕ∗
i 〉 (i = 1, 2, . . . , k),(3.14)

and we will first show that

ϕ̃i ⊂ Ω i (i = 1, 2, . . . , k).(3.15)

To show (3.15), first notice that

F =
{

0 on N0,
Fi on Ni (i = 1, 2, . . . , k)(3.16)

and further that by Lemma 3.3

Fi ∈ F(ClX(ϕ∗
i ); A, B).(3.17)

Now, (3.12), (3.16), and (3.17) imply that

(A + BF ) ClX(ϕ∗
k) = (A + BFk) ClX(ϕ∗

k) ⊂ ClX(ϕ∗
k),(3.18)

showing F ∈ F(ClX(ϕ∗
k); A, B). Next, suppose that for some j (2 ≤ j ≤ k)

F ∈ F(ClX(ϕ∗
j ); A, B),

or equivalently

(A + BF ) ClX(ϕ∗
j ) ⊂ ClX(ϕ∗

j ).(3.19)

Then, it follows from (3.12), (3.16), (3.17), and (3.19) that

(A + BF ) ClX(ϕ∗
j−1) = (A + BF )(Nj−1 + ClX(ϕ∗

j ))
⊂ (A + BFj−1)Nj−1 + (A + BF ) ClX(ϕ∗

j )
⊂ ClX(ϕ∗

j−1) + ClX(ϕ∗
j )

= ClX(ϕ∗
j−1).(3.20)

Hence, (3.20) together with (3.18) and (3.19) implies that

(A + BF ) ClX(ϕ∗
i ) ⊂ ClX(ϕ∗

i ) (i = 1, 2, . . . , k).

Thus, noticing that ϕ∗
i ⊂ Ω i and that Ω i are closed in X, one obtains

(A + BF )j−1ϕ∗
i ⊂ (A + BF )j−1 ClX(ϕ∗

i ) ⊂ ClX(Ω i) = Ω i,

(j = 1, 2, . . . , n; i = 1, 2, . . . , k),

which together with (3.14) imply that (3.15) holds.
Next, we will prove equalities ϕ∗

i = ϕ̃i (i = 1, 2, . . . , k). First, note that since ϕ̃i

is a feedback reachability submodule contained in Ω i and ϕ∗
i is the largest feedback

reachability submodule in Ω i, one has

ϕ̃i ⊂ ϕ∗
i (i = 1, 2, . . . , k).(3.21)
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To show the converse inclusion, fix i (1 ≤ i ≤ k) and suppose that for some j
(1 ≤ j ≤ n − 1)

(A + BFi)j−1(ImB ∩ϕ∗
i ) ⊂ ϕ̃i.(3.22)

Then,

(A + BFi)j(ImB ∩ϕ∗
i ) ⊂ (A + BFi)ϕ̃i

= [A + BF + B(Fi − F )]ϕ̃i

⊂ (A + BF )ϕ̃i + B(Fi − F )ϕ̃i.(3.23)

Now, for x ∈ ϕ̃i one has

B(Fi − F )x ∈ Im B

and furthermore by noticing Fi ∈ F(ϕ∗
i ; A, B) and using (3.21)

B(Fi − F )x = (A + BFi)x − (A + BF )x
∈ ϕ∗

i + ϕ̃i = ϕ∗
i ,(3.24)

and hence B(Fi − F )ϕ̃i ⊂ Im B ∩ϕ∗
i . Thus, it follows from (3.23) and (3.14) that

(A + BFi)j(ImB ∩ϕ∗
i ) ⊂ (A + BF )ϕ̃i + Im B ∩ϕ∗

i ⊂ ϕ̃i.

Hence, it has been shown that (3.22) holds true for all j = 1, 2, . . . , n because by
(3.14) the inclusion (3.22) is satisfied for j = 1. Now, using Lemma 2.8 one has

ϕ∗
i = 〈A + BFi| Im B ∩ϕ∗

i 〉

=
n∑

j=1

(A + BFi)j−1(ImB ∩ϕ∗
i ) ⊂ ϕ̃i (i = 1, 2, . . . , k),

which together with (3.21) yields the desired result

ϕ∗
i = ϕ̃i (i = 1, . . . , k).(3.25)

Now, (3.14) and (3.25) lead us to the identities

ϕ∗
i = 〈A + BF | Im B ∩ϕ∗

i 〉 (i = 1, 2, . . . , k),

which imply that

F ∈
k⋂

i=1

F(ϕ∗
i ; A, B).

Thus, {ϕ∗
1,ϕ

∗
2, . . . ,ϕ

∗
k} satisfies (3.6).

Finally, to prove the necessity of the theorem, assume Problem 3.1 is solvable
and let {ϕ1,ϕ2, . . . ,ϕk} be an arbitrary solution of the problem. Then, since every
feedback reachability submodule ϕi satisfies (3.7), one has

ϕi ⊂ ϕ∗
i (i = 1, 2, . . . , k).

Hence, this inclusion with (3.8) implies that

X = ϕi + Ker Ci ⊂ ϕ∗
i + Ker Ci ⊂ X (i = 1, 2, . . . , k),

showing that (3.11) holds true. This completes the proof of Theorem 3.4.
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4. Pole assignability. The present section deals with the pole assignability
problem for decoupled systems. As in the case of systems over R, a system (A, B)
over K is said to be pole assignable if for any β1, . . . , βn ∈ K there exists an F ∈ Km×n

such that

det(sIn − A − BF ) =
n∏

i=1

(s − βi),

where In is the n × n identity matrix and det(·) means determinant. It is well known
[8] that a principal ideal domain is a pole-assignable ring; that is to say, (A, B) is pole
assignable if and only if (A, B) is reachable.

It is also well known [12, Theorem 5.1] that if (A, B) is a system over R and if ϕ is
a feedback reachability subspace for (A, B) with dimension r ≥ 1 then for an arbitrary
symmetric set {β1, . . . , βr} of complex numbers there exists an F ∈ F(ϕ; A, B) such
that

det(sIr − (A + BF )|ϕ) =
r∏

i=1

(s − βi),

where (A + BF )|ϕ denotes the restriction of A + BF onto ϕ as mappings. However,
this fact does not hold true for systems over K as seen from the following simple
example.

Example 4.1. Take K:=R[σ], X := K2, and

A :=
[

1 1
0 1

]
, B :=

[
1 0
1 σ

]
, ϕ = Im

[
0
σ

]
.

Then, it is easy to check that system (A, B) is reachable and that ϕ is not closed. Sim-
ple computation shows that ϕ is feedback (A, B)-invariant and any F ∈ F(ϕ; A, B)
must have the form

F :=
[

f1 −1
f2 f3

]
, fi ∈ K (i = 1, 2, 3).

Furthermore, it is not difficult to verify the relation 〈A + BF | Im B ∩ϕ〉 = ϕ, which
together with Lemma 2.8 implies that ϕ is a feedback reachability submodule.

Now, since

A + BF =
[

f1 + 1 0
f1 + σf2 σf3

]
,

it follows that (A + BF )|ϕ = σf3. Therefore, there is no F ∈ F(ϕ; A, B) such that
det(sI1 − (A + BF )|ϕ) = s + 1, showing that −1 cannot be assigned as a pole.

Before going into the detailed discussion, some remarks are in order. First, the
meaning of restriction (A + BF )|ϕ needs to be made more precise. Let H ∈ Kn×n

and ψ ⊂ X := Kn be an H-invariant submodule with rank r ≥ 1. Then, the matrix
representation H0 of H|ψ with respect to a basis {w1, w2, . . . , wr} of ψ is given to be
the matrix H0 ∈ Kr×r uniquely determined through the equation H[w1 w2 · · · wr] =
[w1 w2 · · · wr]H0. Next, matrices over K and various matrix operations in K may
be considered to be those in the quotient field of K whenever it is necessary and
allowable.

First, the following two lemmas are proved, which will play vital roles in what
follows.
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LEMMA 4.2. Let ϕ ⊂ X be a feedback (A, B)-invariant submodule with rank r ≥ 1.
Then, for any F ∈ F(ϕ; A, B),

det(sIr − (A + BF )|ϕ) = det(sIr − (A + BF )| ClX(ϕ)).

Proof. Take a basis {x1, . . . , xr, xr+1, . . . , xn} of X and a set {α1, α2, . . . , αr} ⊂ K
with αi 6= 0 (i = 1, 2, . . . , r) such that {α1x1, α2x2, . . . , αrxr} and {x1, x2, . . . , xr}
are bases of ϕ and ClX(ϕ), respectively. Then for F ∈ F(ϕ; A, B), the matrix
representation of (A + BF )|ϕ with respect to the basis {α1x1, α2x2, . . . , αrxr} is
characterized by

(A + BF )[α1x1, . . . , αrxr] = [α1x1, . . . , αrxr](A + BF )|ϕ.

Now, considering all matrices over K and matrix operations in K as those in the
quotient field of K, one obtains

(A + BF )[x1, . . . , xr]

= [x1, . . . , xr]

 α1 0
. . .

0 αr

 (A + BF )|ϕ

 α−1
1 0

. . .
0 α−1

r

 ,

which leads to the matrix representation

(A + BF )| ClX(ϕ) =

 α1 0
. . .

0 αr

 (A + BF )|ϕ

 α−1
1 0

. . .
0 α−1

r

 .

So, finally one obtains the desired result as follows:

det(sIr − (A + BF )| ClX(ϕ))

= det

sIr −

 α1 0
. . .

0 αr

 (A + BF )|ϕ

 α−1
1 0

. . .
0 α−1

r




= det


 α1 0

. . .
0 αr

 (sIr − (A + BF )|ϕ)

 α−1
1 0

. . .
0 α−1

r




= det(sIr − (A + BF )|ϕ).

LEMMA 4.3. Let ϕ ⊂ X be a feedback (A, B)-invariant submodule with its rank
r ≥ 1. If for arbitrary β1, β2, . . . , βr ∈ K there exists F ∈ F(ϕ; A, B) such that

det(sIr − (A + BF )|ϕ) =
r∏

i=1

(s − βi),(4.1)

then both ϕ and ClX(ϕ) are feedback reachability submodules for (A, B).
Proof. First, we will show that under the given hypothesis ϕ is a feedback reach-

ability submodule for (A, B). Choose an F0 ∈ F(ϕ; A, B) and a basis {x1, x2, . . . , xr}
of ϕ, and set A0 := (A + BF0)|ϕ, or equivalently, let A0 be the r × r matrix over K
determined by

(A + BF0)[x1, x2, . . . , xr] = [x1, x2, . . . , xr]A0.(4.2)
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Further, letting B̂ ∈ Kn×m be such that Im B̂ = Im B ∩ ϕ, define B0 ∈ Kr×m so as
to satisfy

B̂ = [x1, x2, . . . , xr]B0.

Now, note that B(F − F0)ϕ ⊂ Im B ∩ ϕ for any F ∈ F(ϕ; A, B). Hence, for each
F ∈ F(ϕ; A, B) there exists an F1 ∈ Km×r such that

B(F − F0)[x1, x2, . . . , xr] = B̂F1 = [x1, x2, . . . , xr]B0F1.(4.3)

Thus, (4.2) and (4.3) lead to

(A + BF )[x1, x2, . . . , xr] = ((A + BF0) + B(F − F0))[x1, x2, . . . , xr]
= [x1, x2, . . . , xr]A0 + [x1, x2, . . . , xr]B0F1

= [x1, x2, . . . , xr](A0 + B0F1),

showing that the matrix representation of (A+BF )|ϕ is given by A0 +B0F1. There-
fore, (4.1) implies that for arbitrary β1, β2, . . . , βr ∈ K there exists an F1 ∈ Km×r

such that

det(sIr − (A0 + B0F1)) =
r∏

i=1

(s − βi).

Therefore, the system (A0, B0) with its state module Kr is reachable; that is,

〈A0| Im B0〉 = Kr.

Now, using (4.2) one obtains

〈A + BF0| Im B ∩ϕ〉
= Im B̂ + (A + BF0)(Im B̂) + · · · + (A + BF0)n−1(Im B̂)
= [x1, . . . , xr](ImB0) + (A + BF0)[x1, . . . , xr](ImB0) + · · ·

+(A + BF0)n−1[x1, . . . , xr](ImB0)
= [x1, . . . , xr](ImB0) + [x1, . . . , xr]A0(ImB0) + · · ·

+[x1, . . . , xr]An−1
0 (ImB0)

= [x1, . . . , xr]〈A0| Im B0〉
= ϕ.

So, it follows from Lemma 2.8 that ϕ is a feedback reachability submodule for (A, B).
Next, to show that ClX(ϕ) is a feedback reachability submodule for (A, B), first

note from Lemma 4.2 that det(sIr − (A + BF )|ϕ) = det(sIr − (A + BF )|ClX(ϕ)).
Therefore, replacing ϕ with ClX(ϕ) in the previous proof easily leads to the desired
conclusion.

The next theorem will play a key role to study the pole assignability problem for
decoupled systems.

THEOREM 4.4. Let ϕ be a feedback reachability submodule for (A, B) with its rank
r ≥ 1. Then for arbitrary β1, β2, . . . , βr ∈ K there exists an F ∈ F(ϕ; A, B) such that

det(sIr − (A + BF )|ϕ) =
r∏

i=1

(s − βi)(4.4)

if and only if ClX(ϕ) is a feedback reachability submodule for (A, B).
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Proof. The necessity follows from a direct application of Lemma 4.3, and therefore
only the sufficiency will be proved. First choose an F0 ∈ F(ϕ; A, B). Then Lemmas
2.8 and 3.3 imply that there exist G, Ĝ ∈ Km×m such that

ϕ = 〈A + BF0| Im(BG)〉,
ClX(ϕ) = 〈A + BF0| Im(BĜ)〉.

Since ClX(ϕ) is closed in X, there exists a basis {x1, . . . , xr, xr+1, . . . , xn} of X such
that {x1, . . . , xr} is a basis of ClX(ϕ). Noticing that (A + BF0)ClX(ϕ) ⊂ ClX(ϕ)
and Im(BĜ) ⊂ ClX(ϕ), introduce the matrices A0 ∈ Kr×r and B0 ∈ Kr×m uniquely
determined by

(A + BF0)[x1, . . . , xr] = [x1, . . . , xr]A0, BĜ = [x1, . . . , xr]B0.

Then,

ClX(ϕ) = 〈A + BF0| Im(BĜ)〉
= Im(BĜ) + (A + BF0)(Im(BĜ)) + · · ·

+(A + BF0)n−1(Im(BĜ))
= [x1, . . . , xr](ImB0) + (A + BF0)[x1, . . . , xr](ImB0) + · · ·

+(A + BF0)n−1[x1, . . . , xr](ImB0)
= [x1, . . . , xr](ImB0) + [x1, . . . , xr]A0(ImB0) + · · ·

+[x1, . . . , xr]An−1
0 (ImB0)

= [x1, . . . , xr]〈A0| Im B0〉.
Therefore, noticing that {x1, x2, . . . , xr} is a basis of ClX(ϕ) one sees that

〈A0| Im B0〉 = Kr

and hence that the system (A0, B0) with its state module Kr is reachable. So, for
any β1, β2, . . . , βr ∈ K there exists an F1 ∈ Kr×r such that

det(sIr − A0 − B0F1) =
r∏

i=1

(s − βi).(4.5)

Next, let matrices T1 ∈ Kn×r and T ∈ Kn×n be given by

T1 := [x1, . . . , xr], T := [x1, . . . , xr, xr+1, . . . , xn],

respectively, and noticing that T is invertible over K, define

F := F0 + G[F1,0n×(n−r)]T−1.

Then, we claim that this F satisfies (4.4). To clarify this, first notice that F0 ∈
F(ϕ; A, B) and Im(BG) ⊂ ϕ and hence that

(A + BF )ϕ ⊂ (A + BF0)ϕ+ BG[F1,0n×(n−r)]T−1ϕ ⊂ ϕ.

Further, noticing that

(A + BF )T1 = ((A + BF0) + BĜ[F1,0n×(n−r)]T−1)T1

= (A + BF0)T1 + BĜF1

= T1A0 + T1B0F1

= T1(A0 + B0F1),
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one obtains the equality (A + BF )|ClX(ϕ) = A0 + B0F1. Therefore, (4.5) implies
that

det(sIr − (A + BF )| ClX(ϕ)) =
r∏

i=1

(s − βi).

Finally, by virtue of Lemma 4.2 this F satisfies (4.4). This completes the proof of
Theorem 4.4.

Now, we are ready to show the pole assignability of block triangular decoupled
systems.

THEOREM 4.5. Suppose that system (A, B, {Ci}k
i=1) satisfies Assumption 3.2 and

is reachable and further that the block triangular decoupling Problem 3.1 is solv-
able. Then, the decoupled system is pole assignable; in other words, for arbitrary
β1, β2, . . . , βn ∈ K there exists an F ∈ ⋂k

i=1 F(ϕ∗
i ; A, B) such that

det(sIn − A − BF ) =
n∏

i=1

(s − βi)(4.6)

if and only if all ϕ∗
i are closed in X.

Proof. First, notice that since {ϕ∗
1,ϕ

∗
2, . . . ,ϕ

∗
k} is a solution of Problem 3.1 by

Theorem 3.4, for any F ∈ ⋂k
i=1 F(ϕ∗

i ; A, B) there exist G1, G2, . . . , Gk ∈ Km×m such
that the state feedback control law (F, {Gi}k

i=1) of (3.1) achieves the block triangular
decoupling.

To prove the necessity, fix i ∈ {1, 2, . . . , k} and take a basis {x1, x2, . . . , xr, . . . , xn}
of X such that {x1, x2, . . . , xr} is a basis of ClX(ϕ∗

i ), where r is the rank of ClX(ϕ∗
i ).

Note that the matrix T := [x1, . . . , xn] is invertible over K. Let β1, β2, . . . , βn ∈ K be
arbitrary, and choose F ∈ ⋂k

i=1 F(ϕ∗
i ; A, B) to satisfy (4.6). Then, since by Lemma

3.3 F ∈ F(ClX(ϕ∗
i ); A, B), one obtains

A + BF = T

[
(A + BF )| ClX(ϕ∗

i ) ∗
0 ∗

]
T−1,

where ∗ indicates a suitable matrix. Hence, there exists a subset {q(1), . . . , q(r)} ⊂
{1, 2, . . . , n} such that

det(sIr − (A + BF )| ClX(ϕ∗
i )) =

r∏
j=1

(s − βq(j)).

Since {β1, β2, . . . , βn} was arbitrary, Lemmas 4.2 and 4.3 imply that ClX(ϕ∗
i ) is a

feedback reachability submodule for (A, B). Moreover, noticing that Ω i is closed and
ϕ∗

i ⊂ Ω i, one has

ϕ∗
i ⊂ ClX(ϕ∗

i ) ⊂ ClX(Ω i) = Ω i.

Since ClX(ϕ∗
i ) is a feedback reachability submodule contained in Ω i, the supremality

of ϕ∗
i implies ClX(ϕ∗

i ) ⊂ ϕ∗
i . Therefore, ClX(ϕ∗

i ) = ϕ∗
i , showing that ϕ∗

i is closed in
X.

Next, to show the sufficiency of the theorem, first recall the relation ϕ∗
1 ⊃ ϕ∗

2 ⊃
· · · ⊃ ϕ∗

k of (3.10). Noticing that each ϕ∗
i is closed by the hypothesis, introduce

submodules Mi of X such that

ϕ∗
i = Mi ⊕ϕ∗

i+1 (i = 1, 2, . . . , k − 1),
Mk := ϕ∗

k.
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Since (A, B) is reachable and ϕ∗
i is supremal, one has ϕ∗

1 = X and hence

X = M1 ⊕ M2 ⊕ · · · ⊕ Mk.

Each Mi is free, so that there exists a basis {xi1, xi2, . . . , xiri
} of Mi, where ri denotes

the rank of Mi. Now, define

Ti := [xi1, xi2, . . . , xiri ] (i = 1, 2, . . . , k),
T := [T1, T2, . . . , Tk],

and note that T is invertible over K and r1+· · ·+rk = n. Recall
⋂k

i=1 F(ϕ∗
i ; A, B) 6= ∅

because {ϕ∗
1, . . . ,ϕ

∗
k} is a solution of Problem 3.1. So choose any F0 ∈ ⋂k

i=1 F(ϕ∗
i ; A, B)

and set A0 := A + BF0. Then, by Lemma 2.8 there exists Gi ∈ Km×m such that

ϕ∗
i = 〈A0| Im(BGi)〉 (i = 1, 2, . . . , k),

and hence the resulting closed loop system (A0, B[G1, G2, . . . , Gk], {Ci}k
i−1) is a tri-

angularly decoupled system as desired.
As the next step, we will show that the decoupled system (A0, B[G1, G2, . . . , Gk],

{Ci}k
i=1) is arbitrarily pole assignable without destroying its decoupledness. To show

this, first note that matrices T−1A0T and T−1BGi have the following forms:

T−1A0T =


A1 0 · · · 0

∗ A2
. . .

...
...

. . . . . . 0
∗ · · · ∗ Ak

 ,

T−1BGi =

 0(r1+···+ri−1)×m

Bi∗(ri+1+···+rk)×m

 (i = 1, 2, . . . , k),

where Ai ∈ Kri×ri , Bi ∈ Kri×m, and ∗(ri+1+···+rk)×m denotes a suitable (ri+1 + · · ·+
rk)×m matrix. Since F0 ∈ ⋂k

i=1 F(ϕ∗
i ; A, B), the system (T−1A0T, T−1B[G1, . . . , Gk],

{CiT}k
i=1) is also block triangularly decoupled, and hence each subsystem (Ai, Bi)

with its state module Kri (i = 1, . . . , k) is reachable. Therefore, letting {β1, . . . , βn} ⊂
K be an arbitrary set and dividing the set into k subsets {βi1, . . . , βiri

} (i = 1, . . . , k)
in an arbitrary way, there exist Fi ∈ Km×ri such that

det(sIri
− (Ai + BiFi)) =

ri∏
j=1

(s − βij) (i = 1, 2, . . . , k).

Now, define

F := F0 + [G1F1, G2F2, . . . , GkFk]T−1.(4.7)

Then one obtains

(A + BF )ϕ∗
i = (A + BF0)ϕ∗

i + B[G1F1, G2F2, . . . , GkFk]T−1ϕ∗
i

⊂ ϕ∗
i + Im(BGi) ⊂ ϕ∗

i (i = 1, 2, . . . , k),
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and hence F ∈ ⋂k
i=1 F(ϕ∗

i ; A, B), implying that (A+BF, B[G1, G2, . . . , Gk], {Ci}k
i=1)

is still decoupled as desired. Further, since

T−1(A + BF )T
= T−1(A + BF0)T + T−1B[G1F1, G2F2, . . . , GkFk]

=


A1 0 · · · 0

∗ A2
. . .

...
...

. . . . . . 0
∗ · · · ∗ Ak

 +


B1F1 0 · · · 0

∗ B2F2
. . .

...
...

. . . . . . 0
∗ · · · ∗ BkFk



=


A1 + B1F1 0

∗ A2 + B2F2
...

. . . . . .
∗ · · · ∗ Ak + BkFk

 ,

one obtains that

det(sIn − (A + BF )) = det(sIn − T−1(A + BF )T )

=
k∏

i=1

det(sIri
− (Ai + BiFi))

=
k∏

i=1

ri∏
j=1

(s − βij)

=
n∏

i=1

(s − βi).

Therefore, the matrix F given by (4.7) satisfies (4.6), and hence the decoupled system
is arbitrarily pole assignable. This completes the proof of the theorem.

COROLLARY 4.6. Suppose that system (A, B, {Ci}k
i=1) satisfies Assumption 3.2

and the reachable submodule 〈A| Im B〉 has its rank r < n and further that the block
triangular decoupling Problem 3.1 is solvable. Then r poles of the decoupled system
corresponding to the solution {ϕ∗

1,ϕ
∗
2, . . . ,ϕ

∗
k} are arbitrarily assignable; in other

words, for arbitrary β1, β2, . . . , βr ∈ K there exists an F ∈ ⋂k
i=1 F(ϕ∗

i ; A, B) such
that

det(sIr − (A + BF )|〈A| Im B〉) =
r∏

i=1

(s − βi)

if and only if all ϕ∗
i are closed in X.

Proof. This corollary easily follows from Theorems 4.5 and 4.4. In fact, for
the sufficiency, noticing from the hypothesis that ϕ∗

1 = 〈A| Im B〉 is closed in X,
consider the reachable subsystem of (A, B, {Ci}k

i=1) and apply Theorem 4.5 to this
subsystem to complete the proof. For the necessity, first use Theorem 4.4 to see that
ClX(〈A| Im B〉) = ClX(ϕ∗

1) is a feedback reachability submodule, and then noticing
that ClX(ϕ∗

1) ⊂ Ω 1 = X and ϕ∗
1 is the largest feedback reachability submodule in

Ω 1, conclude that ClX(ϕ∗
1) = ϕ∗

1; i.e., ϕ∗
1 is closed in X. Finally, again considering

the reachable subsystem, apply Theorem 4.5 to this subsystem to show that all ϕ∗
i

are closed in X.
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5. Example. As an illustrative example, we will consider block triangular de-
coupling in Problem 3.1 for the following simple system (A, B, {Ci}2

i=1) over K:=R[λ]:

A :=


0 λ −1 0
0 −1 1 1
0 −1 1 0
0 0 0 0

 , B :=


0 0
0 0
1 0
0 1

 ,

C1 :=
[

1 0 0 0
]
, C2 :=

[
0 1 0 0
0 0 0 1

]
.

By simple computation, we see that the system (A, B) is reachable, and that the
largest (A, B)-invariant submodules ψ∗

1 and ψ∗
2 contained, respectively, in Ω 1 = K4

and Ω 2 = Ker C1 are given as

ψ∗
1 = K4, ψ∗

2 = Im


0 0
0 1
0 λ
1 0

 .

Clearly ψ∗
1 and ψ∗

2 are closed in K4, and hence by Corollary 2.14 this system satisfies
Assumption 3.2; that is, there exist the largest feedback reachability submodules ϕ∗

1
and ϕ∗

2 contained, respectively, in Ω 1 and Ω 2. Using Algorithm 2.12, they can be
computed as

ϕ∗
1 = R(ψ∗

1) = ψ∗
1, ϕ∗

2 = R(ψ∗
2) = ψ∗

2.

Furthermore, it is easy to check that {ϕ∗
1,ϕ

∗
2} satisfies (3.11) of Theorem 3.4 and,

hence, that the given system (A, B, {Ci}2
i=1) can be block triangularly decoupled.

Next, a decoupling state feedback (F0, {Gi}2
i=1) of the form

u(t) = F0x(t) +
2∑

i=1

Givi(t)

will be computed. First, it is not difficult to see that such an F0 ∈ F(ϕ∗
1; A, B) ∩

F(ϕ∗
2; A, B) can be chosen as

F0 :=
[

0 λ2 − 2λ + 1 0 λ
0 0 0 0

]
,

and as in the proof of (i) of Lemma 2.8, matrices Gi ∈ K2×2 satisfying ϕ∗
i = 〈A +

BF0| Im(BGi)〉 (i = 1, 2) can be computed as

G1 :=
[

1 0
0 1

]
, G2 :=

[
0 0
0 1

]
.

Now, note that the characteristic polynomial for the block triangularly decoupled
system is

det(sI4 − A − BF0) = s2(s − λ + 1)(s + λ − 1).
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So, following the proof of the sufficiency of Theorem 4.5, all the poles for the block
triangularly decoupled system will be assigned to −1. First, note that a submodule
M1 ⊂ X satisfying ϕ∗

1 = M1 ⊕ϕ∗
2 is given by

M1 := Im


1 0
0 0
0 1
0 0

 .

Further, set M2 := ϕ∗
2 = ψ∗

2. Then clearly K4 = M1 ⊕ M2. Now, defining

T :=


1 0 0 0
0 0 0 1
0 1 0 λ
0 0 1 0

 ,

one easily obtains

T−1(A + BF0)T =


0 −1 0 0
0 −λ + 1 0 0
0 0 0 0
0 1 1 λ − 1

 ,

T−1BG1 =


0 0
1 0
0 1
0 0

 , T−1BG2 =


0 0
0 0
0 1
0 0

 .

Based on this equivalence transformation, introduce the two subsystems (A1, B1) and
(A2, B2), where

A1 :=
[

0 −1
0 −λ + 1

]
, A2 :=

[
0 0
1 λ − 1

]
,

B1 :=
[

0 0
1 0

]
, B2 :=

[
0 1
0 0

]
.

Then since (A1, B1) and (A2, B2) are reachable, we can construct matrices Fi satis-
fying det(sI2 − Ai − BiFi) = (s + 1)2 as

F1 :=
[

1 λ − 3
0 0

]
, F2 :=

[
0 0

−λ − 1 −λ2

]
.

Finally, using (4.7) a desired matrix F ∈ F(ϕ∗
1; A, B) ∩ F(ϕ∗

2; A, B) can be obtained
as

F := F0 + [G1F1, G2F2]T−1 =
[

1 λ + 1 λ − 3 λ
0 −λ2 0 −λ − 1

]
,

which gives det(sI4 − A − BF ) = (s + 1)4. Hence, (F, {Gi}2
i=1) is a desired state

feedback control law that achieves block triangular decoupling and simultaneously
assigns all the poles of the decoupled system to be −1.



BLOCK TRIANGULAR DECOUPLING OVER PIDs 765

6. Conclusions. This paper studied in the framework of geometric approach
the block triangular decoupling problem for linear systems defined over principal ideal
domains. First, various properties of feedback reachability submodules were given,
and then necessary and sufficient conditions for the problem to be solvable were
obtained under the assumption that the largest feedback reachability submodules
contained in some given submodules exist. Finally, the pole assignability for block
triangularly decoupled systems was investigated.

Acknowledgments. The authors thank the referees for their helpful remarks.
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Abstract. In this paper we present a definition of “configuration controllability” for mechanical
systems whose Lagrangian is kinetic energy with respect to a Riemannian metric minus potential
energy. A computable test for this new version of controllability is derived. This condition involves
an object which we call the symmetric product. Of particular interest is a definition of “equilibrium
controllability” for which we are able to derive computable sufficient conditions. Examples illustrate
the theory.

Key words. mechanics, Riemannian geometry, controllability, symmetric product
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1. Introduction. Mechanical systems form a large subset of control systems
which have many diverse applications. These systems are characterized by a rich
structure which has been underexploited in the current controls literature. In this
paper we utilize the structure of a specific class of mechanical systems to obtain con-
trollability results which are meaningful for these systems. These results are important
in two respects. First, they identify the structure of mechanical systems which lends
to controllability of these systems. Second, the results provide computable checks for
useful notions of controllability. One important aspect of our work is that the compu-
tations for checking controllability are performed on the configuration space and not
on the phase space. This is important since the phase space has twice the dimension
of the configuration space for mechanical systems.

Much of the previous work in the area of mechanical control systems has relied on
specific structure of these systems. Bloch and Crouch [2] study mechanical systems
on Riemannian manifolds. Under suitable hypotheses on the inputs and assuming
some group symmetries for the systems under investigation, the authors are able
to use a result of San Martin and Crouch [10] to arrive at a controllability result.
Mechanical systems with nonholonomic constraints are studied by Bloch, Reyhanoglu,
and McClamroch [3]. In this paper the authors are able to show that the systems
considered are controllable if the inputs span a complement to the constraint forces.
In both of the above papers, the results are limited by the hypotheses placed on the
system: symmetries in the first case, and constraints in the second. In this paper
we attempt to develop control theoretic tools for mechanical control systems. We
emphasize mechanical because it is our intent to use the mechanical structure to
advantage in the control problem rather than any additional structure imposed on
the system.

In section 2 we motivate the development of the paper by posing various control-
lability questions for a simple example. In this section we also preview the results
of the paper by stating a simplified form of the most general results. In section 3
we present enough background from the theory of free Lie algebras and Riemannian
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FIG. 1. A planar rigid body with a variable direction thruster (a) and a fixed directional thruster
(b).

geometry that we can use these ideas in section 5. In section 3.2 we introduce the
notion of a symmetric algebra which is new and will be particularly interesting to us.
The symmetric product is defined in section 3.3. This is an interesting object whose
geometric meaning is not fully utilized in this paper. However, it proves to be a useful
computational tool for expressing our controllability results. In section 4 we state a
result of Sussmann [13] which we shall use to prove some controllability results in
section 5. The main results of the paper are stated in section 5. Illustrative examples
are given in section 6.

2. Preliminary statement of results. It is possible to state a subset of the
results of the paper without going through all of the formality needed to state the
most general results. In this section we give some idea of the questions that we answer
in the paper as well as state the results in the case when no potential energy is present.

Consider the planar rigid body system of Figure 1. On this body we consider
two possible sets of forces. In one case we are able to apply a force in any direction
to the body at a point away from the center of mass (case (a) in the figure). In the
other case, we can apply a force which only is in a direction perpendicular to the line
joining the point of application of the force with the center of mass (case (b) in the
figure). The reader may wish to consider the former case as corresponding to having
a thruster on the body whose direction may be varied, while in the second case the
thruster can only provide thrust in one direction. In each of these cases one may
ask certain questions about the controllability of this system. We list some of these
questions below and in parentheses give the name of the general notion corresponding
to this question.

(1) Starting from rest at a given configuration, is it possible to reach an open set
of configurations? (local configuration accessibility)

(2) Starting from rest in a given configuration, is it possible to reach a neighbor-
hood of the initial configuration? (local configuration controllability)

(3) Is it possible to get to these configurations with zero velocity? (equilibrium
controllability)
It is exactly these questions which we address in this paper. Observe that the above
controllability questions have the feature that the initial velocity is assumed to be zero.
This turns out to greatly simplify the controllability computations. We observe that
for this example the linearization is not controllable, so if the system is controllable,
nonlinear tools must be employed.



768 ANDREW D. LEWIS AND RICHARD M. MURRAY

Although we delay answering the above questions for the planar rigid body until
section 6.2, we may state general results for a class of systems smaller than the
general class we consider in the sequel. Let us consider, for the moment, mechanical
systems whose Lagrangian is kinetic energy with respect to a Riemannian metric g on
the configuration manifold Q. Suppose that the inputs are modeled by vector fields
Y = {Y1, . . . , Ym}. We may define the symmetric product between two vector fields
on Q by

〈X : Y 〉 = ∇XY + ∇Y X,

where ∇XY is the covariant derivative of Y with respect to X. If X(Q) denotes the
set of vector fields on Q and if V ⊂ X(Q), we denote by Sym(V) the set of vector fields
on Q obtained by taking iterated symmetric products of vector fields from V. The
usual involutive closure of V will be denoted Lie(V). We shall say that a symmetric
product from Sym(Y) is bad if it contains an even number of each of the vector fields
in Y. Otherwise we shall call a symmetric product from Sym(Y) good. The degree
of an iterated symmetric product of factors from Y will denote the total number of
factors.

Notice that with the Lagrangian given by just kinetic energy, all configurations
with zero velocity are equilibrium points for the unforced mechanical system. We shall
say the system is locally configuration accessible at q ∈ Q if the set of points reachable
starting from q at zero velocity is open in Q. We shall say the system is equilibrium
controllable if, starting from a given configuration at zero velocity, we can reach an
open set of final configurations at zero velocity. Now we may state two results.

THEOREM 2.1. Consider the mechanical control system on the configuration man-
ifold Q whose Lagrangian is the kinetic energy with respect to a Riemannian metric
g and whose input vector fields are Y = {Y1, . . . , Ym}. Then

(i) the system is locally configuration accessible at q if the distribution defined by
Lie(Sym(Y)) has maximal rank at q;

(ii) the system is equilibrium controllable if it is locally configuration accessible
and if every bad symmetric product is a linear combination of good symmetric products
of lower degree.

To prove this result, one basically proceeds as follows. Compute the accessibility
distribution on TQ for the mechanical control system and evaluate at zero velocity.
This will describe the set of states accessible from points of zero velocity. However,
since we are interested in controllability of the configurations, we can project the ac-
cessibility distribution to Q with TτQ, the derivative of the tangent bundle projection.
It turns out that this is exactly the distribution Lie(Sym(Y)). In this way we see that
the conditions in (i) give local configuration accessibility. To prove (ii), we appeal to
the controllability results of Sussmann [13] on local controllability. An application of
Sussmann’s results to the systems we are considering yields (ii).

The sections which follow formalize the above definitions and results and also
generalize them to the case where the system has potential energy.

3. Mathematical preliminaries. In this section we present the necessary math-
ematical ideas that we shall need for our exposition of section 5.

3.1. Free Lie algebras and families of vector fields. In this section we recall
some ideas for Lie algebras as presented by Serre [11]. These ideas will be important
in our adaptation of Sussmann’s conditions for small-time local controllability [13] as
well as for some bracket calculations in section 5.1.
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Let X be a set and let A(X) be the free algebra of associative but not necessar-
ily commutative products of elements in X. Let I be the two-sided ideal of A(X)
generated by elements of the form a · a and a · (b · c) + c · (a · b) + b · (c · a). The
algebra L(X) = A(X)/I is called the free Lie algebra generated by X. The inherited
product on this algebra satisfies the usual Lie bracket properties of a Lie algebra. We
denote by Br(X) the subset of L(X) consisting of brackets whose elements are in X.
This subset generates L(X) as a real vector space. In fact, the following proposition,
whose proof may be found in Jacobson [6], gives a subset of Br(X) which generates
L(X).

PROPOSITION 3.1. Every element of L(X) is a linear combination of repeated
brackets of the form

(1) [Xk, [Xk−1, [. . . , [X2, X1], . . .]]]

where Xi ∈ X, i = 1, . . . , k.
We will need the notion of what we shall call the components of an element u ∈

L(X). Every such element u has a unique decomposition as u = [u1, u2]. In turn, each
of u1 and u2 may be uniquely expressed as u1 = [u11, u12] and u2 = [u21, u22]. This
process may be continued until we end up with elements which are not decomposable.
All such elements ui1,...,im

, ia ∈ {1, 2}, shall be called components of u.
If X = {X0, . . . , Xl}, for B ∈ Br(X ) we define δa(B), a = 0, . . . , l, to be the

number of times that Xa occurs in B. The sum of the δa’s we shall call the degree
of B.

Given a family of vector fields on a manifold M , V ⊂ X(M), we may define a
distribution on M by

DV(x) = spanR{X(x) | X ∈ V}.
Since X(M) is a Lie algebra, we may ask for the smallest Lie subalgebra of X(M)
which contains a family of vector fields V. It is convenient to describe this subalgebra
using the ideas from free Lie algebras presented above.

Let X be a set which is bijective to V with bijection φ. Thus, with each element of
X we associate a vector field in V. We establish a Lie algebra homomorphism, Ev(φ) :
L(X) → X(M), in a natural manner. Thus we define Ev(φ) so that [Ev(φ)(B1),
Ev(φ)(B2)] = Ev(φ)([B1, B2]) for B1, B2 ∈ Br(X) and then extend this to L(X) by
R-linearity. The smallest Lie subalgebra of X(M) which contains V may now be stated
in a simple manner. It is simply the image of L(X) under the homomorphism Ev(φ).
We shall denote this subalgebra by Lie(V) and call it the involutive closure of V.

For x ∈ M we define the map Evx(φ) : L(X) → TxM by

Evx(φ)(u) = (Ev(φ)(u))(x).

We shall say that V satisfies the Lie algebra rank condition (LARC) at x if
Evx(φ)(L(X)) = TxM .

It is possible to talk about the involutive closure and the LARC without using
free Lie algebras. However, since we will have to use free Lie algebras later in the
paper, using them here provides us an opportunity to introduce the ideas in a more
straightforward setting.

3.2. Symmetric algebra. As far as we know, the idea of a symmetric algebra
does not appear in the literature. However, the concept is a natural one and shall be
useful to us. A symmetric algebra is an algebra, A, where the multiplication (which
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we shall denote by (u, v) 7→ 〈u : v〉) satisfies 〈u : v〉 = 〈v : u〉 for u, v ∈ A. A map
σ : A → A′ between symmetric algebras is called a symmetric algebra homomorphism
if σ(〈u : v〉) = 〈σ(u) : σ(v)〉 for each u, v ∈ A.

We now construct a symmetric algebra which is generated by a given set X. To
construct this algebra, let X be a set, and recall that A(X) is the free algebra on X.
The free symmetric algebra on X, denoted S(X), is the quotient algebra obtained by
taking the quotient of A(X) by the two-sided ideal generated by all elements of the
form a · b− b · a, where a, b ∈ A(X). We shall denote the product in S(X) by 〈u : v〉.
Note that, by construction, 〈u : v〉 = 〈v : u〉 for every u, v ∈ S(X). We denote by
Pr(X) the subset of S(X) consisting of the symmetric products whose elements are
in X.

As with free Lie algebras, the finitely generated case is the most interesting to
us. Let Y = {X1, . . . , Xl+1} (the reason for the slightly unusual enumeration will
become clear in section 5.5). For P ∈ Pr(Y ) define γa(P ) to be the number of times
the element Xa occurs in P ∈ Pr(Y ) for a = 1, . . . , l + 1. We shall call the sum of
the γa’s the degree of P .

3.3. Some Riemannian geometry. The kinetic energy of a mechanical system
may be regarded as being determined by a Riemannian metric on the configuration
space. A Riemannian metric g on a manifold M is simply a smooth assignment of
an inner product for each tangent space of the manifold. In a set of coordinates
(x1, . . . , xn) for M , the components of the metric are given by gij = g( ∂

∂xi ,
∂

∂xj ). For
each x ∈ M , we may define isomorphisms ]: T ∗

xM → TxM and [: TxM → T ∗
xM

in the usual manner (see [7]). These maps naturally extend to isomorphisms from
X(M), the set of vector fields on M , to Ω1(M), the set of one-forms on M . In this
case, given a function f ∈ C∞(M), we define gradf = (df)].

A Riemannian manifold is endowed with a unique affine connection (called the
Levi–Cività connection), which is characterized by being torsion free and by its parallel
transportation being metric preserving (see [7]). This affine connection defines ∇XY ,
which is called the covariant derivative of Y with respect to X. In coordinates we
have

∇XY =
(
∂Y i

∂xj
Xj + Γi

jkX
jY k

)
∂

∂xi
.

The Γi
jk are the Christoffel symbols and are given by

Γi
jk =

1
2
gil

(
∂glj

∂xk
+
∂glk

∂xj
− ∂gjk

∂xl

)
.

Here gij is the inverse of the matrix gij . On TM we may define a second-order
vector field called the geodesic spray, which we denote by Zg. This vector field is
characterized by the fact that the projection to M of the integral curves of Zg by the
tangent bundle projection are geodesics. In coordinates we have

Zg = vi ∂

∂xi
− Γi

jkv
jvk ∂

∂vi
.

Here we are denoting by (x1, . . . , xn, v1, . . . , vn) the natural coordinates for TM cor-
responding to coordinates (x1, . . . , xn) for M .

We shall need the concept of a “symmetric subalgebra” of X(M), which is gener-
ated by a family of vector fields V ⊂ X(M). This construction relies on the covariant
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derivative discussed above. We may make X(M) into a symmetric algebra by defining
the symmetric product

〈X : Y 〉 = ∇XY + ∇Y X.

We remark that this product first appeared in the work of Crouch [4] on gradient
dynamical systems. Let V be a family of vector fields on M and X be a set which
is bijective to V with bijection ψ: X → V. As in section 3.2, let S(X) be the
free symmetric algebra on X and Pr(X) be the symmetric products with elements
in X. We may define a symmetric algebra homomorphism from S(X) to X(M) by
extending ψ in the natural way much as we did for Lie brackets in section 3.1. We
denote the resulting map from S(X) to X(M) by Ev(ψ). We also define Evx(ψ)(P ) =
(Ev(ψ)(P ))(x) for x ∈ M . We denote by Sym(V) the image of S(X) under this
homomorphism and call this the symmetric closure of V.

4. Sufficient conditions for small-time local controllability. Sussmann [13]
gives a general result concerning so-called small-time local controllability. We are in-
terested in a version of Sussmann’s result and so will present only as much background
as is necessary to state this result. We consider control systems of the form

(2) ẋ = X(x) + uaYa(x)

on a manifold M , where X,Y1, . . . , Ym are analytic. (Here and in what follows, when
we write uaYa, there will be an implied sum over a from 1 to m.) We shall consider
inputs from the set U of piecewise constant inputs. Let x0 ∈ M , let V be a neighbor-
hood of x0, and let T > 0. We denote by RV (x0, T ) the set of points which can be
reached from x0 in time T while remaining in V using inputs from U . We also denote
RV (x0,≤ T ) = ∪T

t=0RV (x0, t). We say that the system (2) is locally accessible at x0
if RV (x0,≤ T ) contains an open subset of M for each V and for each T sufficiently
small. Furthermore, we say that (2) is small-time locally controllable (STLC) if it is
locally accessible and if x0 is in the interior of RV (x0,≤ T ) for each V and for each
T sufficiently small.

Let X = {X0, . . . , Xm}. An element B ∈ Br(X ) is said to be bad if δ0(B) is
odd and δa(B) is even for each a = 1, . . . ,m. A bracket is good if it is not bad.
Let Sm denote the permutation group on m symbols. For π ∈ Sm and B ∈ Br(X ),
define π̄(B) to be the bracket obtained by fixing X0 and sending Xa to Xπ(a) for
a = 1, . . . ,m. Now define

β(B) =
∑

π∈Sm

π̄(B).

We may state sufficient conditions for STLC.
THEOREM 4.1 (see Sussmann [13]). Consider the bijection φ:X → {X,Y1, . . . , Ym}

which sends X0 to X and Xa to Ya for a = 1, . . . ,m. Suppose that (2) is such that
every bad bracket B ∈ Br(X ) has the property that

Evx(φ)(β(B)) =
m∑

a=1

ξaEvx(φ)(Ca),

where Ca are good brackets in Br(X ) of lower degree than B and ξa ∈ R for a =
1, . . . ,m. Also suppose that (2) satisfies the LARC at x. Then (2) is STLC at x.

Sussmann [13] gives this result as a corollary of a special case originally conjec-
tured by Hermes [5] and proven by Sussmann [12].
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5. Controllability of simple mechanical control systems. In this section
we present the main results of the paper. First we make explicit the class of control
systems that we are considering. All problem data will be assumed to be analytic so
that we may use piecewise constant inputs. The data for the systems that we consider
are an n-dimensional configuration manifold Q; a Riemannian metric g on Q, which
represents the kinetic energy; an R-valued function V on Q, which represents the
potential energy; and m linearly independent one-forms, F 1, . . . , Fm, on Q, which
represent the input forces for the system. We call a system described by this data a
simple mechanical control system. Although the one-forms F 1, . . . , Fm describe the
forces for the problem, it is the vector fields Ya = (F a)], a = 1, . . . ,m, which will
appear in the computations. Nevertheless, it is the one-forms which are basic in the
problem description.

Given a vector field X on Q, we define the vertical lift (see [1]) of X as the vector
field on TQ defined by

X lift(v) =
d

dt

∣∣∣∣
t=0

v + tX(τQ(v))

for v ∈ TQ and where τQ: TQ → Q. If (q1, . . . , qn) are coordinates for Q, we shall
denote the corresponding natural coordinates for TQ by (q1, . . . , qn, v1, . . . , vn). In
coordinates we have

X lift(vq) = Xi(q)
∂

∂vi

for vq ∈ TqQ. We may now define the vector field XL on TQ by XL = Zg −gradV lift ,
where we recall that Zg is the geodesic spray introduced in section 3.3. With this
notation, the Euler–Lagrange equations for the forced system may be shown to be
equivalent to the first-order system

(3) v̇ = XL + uaY lift
a

on TQ. Thus the drift vector field for the system is XL, and the control vector fields
are Y lift

1 , . . . , Y lift
m . It is this first-order affine control system which we study in this

section. We are particularly interested in the following problem.
PROBLEM STATEMENT. Describe the set of configurations reachable from a given

configuration when starting at rest.
Observe that we place no restriction on the final velocities of the system. The

reader will further observe that this problem statement involves only configurations
and not velocities. It would be desirable, therefore, to derive an answer to this problem
in terms of quantities on the configuration space. As we shall see, this can in fact be
done and is one of the more compelling aspects of this approach.

Since the computations in this section are quite involved, let us outline them here
before we begin. The main goal of the computations is to describe the accessibility
distribution for (3) at points of zero velocity in TQ. Thus we need to compute the
involutive closure of the family of vector fields V ′ = {XL, Y

lift
1 , . . . , Y lift

m }. Observe
that since XL = Zg − gradV lift , we may write vector fields in Lie(V ′) as R-linear
combinations of vector fields in V = {Zg, Y

lift
1 , . . . , Y lift

m , gradV lift}. This is made
precise by using free Lie algebras in section 5.1. When we evaluate the brackets which
are used in the computation of the accessibility distribution at zero velocity, only a
small number of them make a contribution, and the rest vanish. The brackets which
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vanish do so in one of two ways. Either they are identically zero or they are polynomial
in the velocity coordinates and so go to zero when the velocity goes to zero. Therefore,
we have three possible classes of brackets: one class which is nonzero when the velocity
is zero, one class which is identically zero, and one class which is not identically zero
but is zero when the velocity is zero. In section 5.1 we categorize these three types
of brackets. There we shall see that the brackets which make a contribution to the
accessibility distribution at zero velocity may be written as linear combinations of
special brackets which we call primitive brackets. The computations in section 5.1
are done at the level of free Lie algebras since this provides a rigorous way to perform
the necessary computations. In section 5.2 we give expressions for primitive brackets
in terms of the geometry of the problem. It is here that the symmetric product
introduced in section 3.3 makes its appearance. In section 5.3 we assemble the results
of sections 5.1 and 5.2 to arrive at the form of the accessibility distribution for (3) at
points of zero velocity. In section 5.4 we provide a precise statement of the types of
controllability we consider, and in section 5.5 we provide computable conditions for
these versions of controllability.

We remark that most of the complexity of this section is a consequence of including
potential energy in the formulation. In [9] the authors provide sufficient conditions for
controllability when there is no potential energy function. Due to space considerations,
some of the free Lie algebra proofs from section 5.1 are omitted. We refer the reader
to the dissertation [8] for these proofs.

5.1. Computations with free Lie algebras. In this section we perform some
calculations with a pair of free Lie algebras which are suited to our purposes. Rather
than just using a generating set which is in one-to-one correspondence with the
set V ′ = {XL, Y

lift
1 , . . . , Y lift

m } of control vector fields and the drift vector field,
we also use a generating set which is in one-to-one correspondence with the set
V = {Zg, Y

lift
1 , . . . , Y lift

m , gradV lift}. The reason for this is that vector fields in V ′

are R-linear combinations of vector fields in V, and as we shall see in section 5.3, it is
comparatively easy to describe the involutive closure of V.

Let X = {X0, . . . , Xm+1}, and let L(X ) be the free Lie algebra generated by
the set X . We can simplify many of our computations for the controllability analysis
of (3) by making simplifications to a set of generators for L(X ). We first need some
notation. Let

Brk(X ) = {B ∈ Br(X ) | the degree of B is k} ,

Brk(X ) =

{
B ∈ Br(X ) | δ0(B) −

m+1∑
a=1

δa(B) = k

}
.

We shall see in section 5.2 that, when we restrict ourselves to zero velocities, only a
small subset of Br(X ) will evaluate to something nonzero. In turn, these brackets
will be seen to be linear combinations of a special class of brackets which we shall call
primitive brackets. Recall from section 3.1 the notion of components in L(X ).

DEFINITION 5.1. Let B ∈ Br0(X ) ∪ Br−1(X ), and let B1, B2, B11, B12, B21,
B22, . . . be the decomposition of B into its components. We shall say that B is prim-
itive if each of its components is in Br−1(X ) ∪ Br0(X ) ∪ {X0}.

The relevant observations that need to be made regarding primitive brackets are
as follows:

Prim1. If B ∈ Br−1(X ) is primitive, then, up to sign, we may write B = [B1, B2]
with B1 ∈ Br−1(X ) and B2 ∈ Br0(X ) both primitive.
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Prim2. If B ∈ Br0(X ) is primitive, then, up to sign, B may have one of two
forms. Either B = [X0, B1] with B1 ∈ Br−1(X ) primitive or B = [B1, B2] with
B1, B2 ∈ Br0(X ) both primitive.
Using these two rules, it is possible to construct primitive brackets of any degree. For
example, the primitive brackets of degrees one through four are, up to sign,

Degree 1 : {Xa | a = 1, . . . ,m},
Degree 2 : {[X0, Xa] | a = 1, . . . ,m},
Degree 3 : {[Xa, [X0, Xb]] | a, b = 1, . . . ,m},
Degree 4 : {[X0, [Xa, [X0, Xb]]] | a, b = 1, . . . ,m}

∪ {[[X0, Xa], [X0, Xb]] | a, b = 1, . . . ,m}.

From Proposition 3.1 we know that to generate L(X ) we need only look at brack-
ets of the form

(4) [Xak
, [Xak−1 , . . . , [Xa2 , Xa1 ]]],

where ai ∈ {0, . . . ,m + 1} for i = 1, . . . , k. We shall see in section 5.2 that brackets
from Brj(X ), where j ≥ 1 or j ≤ −2, will not be of interest to us. In particular,
we shall see that when j ≤ −2 these brackets evaluate identically to zero. Therefore,
in this section we concentrate our attention on brackets in Br0(X ) ∪ Br−1(X ) which
satisfy certain requirements. We state the form of these brackets in the following
lemma.

LEMMA 5.2. Let us impose the condition on elements of Br(X ) that we shall
consider a bracket to be zero if any of its components is in Br−j(X ) for j ≥ 2. Let
B ∈ Br0(X )∪Br−1(X ). Then we may write B as a finite sum of primitive brackets.

The inductive proof is straightforward, and we refer the interested reader to [8].
However, in lieu of a proof an example is illustrative.

Example 5.3. Consider the bracket B = [Xm+1, [X0, [X0, Xa]]] ∈ Br0(X ). This
bracket is in Br0(X ) but is not primitive. However, by Lemma 5.2, we may write B
as a finite sum of primitive brackets. Indeed, by Jacobi’s identity we have

B = [Xm+1, [X0, [X0, Xa]]] = −[[X0, Xa], [Xm+1, X0]] − [X0, [[X0, Xa], Xm+1]]
= [[X0, Xa], [X0, Xm+1]] + [X0, [Xm+1, [X0, Xa]]].

The proof of Lemma 5.2 is essentially a generalization of this example.
Now we relate the free Lie algebra L(X ) with a free Lie algebra which corresponds

to the set V ′ = {XL, Y
lift
1 , . . . , Y lift

m }. As we mentioned above, the reason why we
wish to do this is that the vector fields in V ′ are R-linear combinations of vector
fields in V = {Zg, Y

lift
1 , . . . , Y lift

m , gradV lift}, the latter family of vector fields being
bijective with the set X . Let X ′ = {X ′

0, . . . , X
′
m}. We formally set X ′

0 = X0 −Xm+1
and X ′

a = Xa for a = 1, . . . ,m. We may now write brackets in Br(X ′) as linear
combinations of brackets in Br(X ) by R-linearity of the bracket. We may, in fact, be
even more precise about this.

Let B′ ∈ Br(X ′). We define a subset S(B′) of Br(X ) by saying that B ∈ S(B′) if
each occurrence ofX ′

a in B′ is replaced withXa for a = 1, . . . ,m and if each occurrence
of X ′

0 in B′ is replaced with either X0 or Xm+1. An example is illustrative. Suppose
that

B′ = [[X ′
0, X

′
1], [X

′
2, [X

′
0, X

′
3]]].
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Then

S(B′) = {[[X0, X1], [X2, [X0, X3]]], [[X0, X1], [X2, [Xm+1, X3]]],
[[Xm+1, X1], [X2, [X0, X3]]], [[Xm+1, X1], [X2, [Xm+1, X3]]]}.

Now we may precisely state how we write brackets in Br(X ′).
LEMMA 5.4. Let B′ ∈ Br(X ′). Then

B′ =
∑

B∈S(B′)

(−1)δm+1(B)B.

The proof is by induction and may be found in [8].
We shall be interested only in terms in the above decomposition of B′ which are

in Br0(X ) ∪ Br−1(X ) since, as we shall see in section 5.2, these are the only ones
which will contribute to Ev0q

(φ′)(B′). Here 0q is the zero vector in TqQ.

5.2. Distribution computations for simple mechanical control systems.
In this section we use the simplifications of section 5.1 to get a complete description
of the brackets which contribute to the accessibility distribution for (3) restricted
to Z(TQ), the zero section of TQ. Note that we restrict ourselves to Z(TQ) be-
cause we are interested in determining the reachable points starting with zero initial
velocity. To make the correspondence between the free Lie algebra L(X ) used in
section 5.1 and the accessibility algebra for (3), we use the family of vector fields
V = {Zg, Y

lift
1 , . . . , Y lift

m , gradV lift} and establish a bijection φ from X to V by map-
ping X0 to XL, Xa to Y lift

a for a = 1, . . . ,m, and Xm+1 to gradV lift . Please note that
V is not the family of vector fields which generates the accessibility algebra. The ac-
cessibility algebra is generated by the family V ′ = {XL, Y

lift
1 , . . . , Y lift

m }. We establish
a bijection φ′ from X ′ to V ′ by mapping X ′

0 to XL and X ′
a to Y lift

a for a = 1, . . . ,m.
By Lemma 5.4, each vector field in Lie(V ′) is a R-linear sum of vector fields in Lie(V).
That lemma also completely describes the sum.

Now we shall show that it is possible to compute the brackets from Br(X ) in
terms of the problem data. We first present a lemma which gives the basic structure
of primitive brackets. In this lemma we see that a large number of brackets are
computable in terms of quantities defined on Q. This is worth noting since the
vector fields themselves are defined on TQ. Of particular interest in the lemma is the
appearance of the symmetric product which was introduced in section 3.3.

We need to say a few words about the structure of TQ. We denote by Z(TQ) the
zero section of TQ. Since Q is naturally diffeomorphic to Z(TQ), there is a natural
inclusion of TqQ into T0qTQ for each q ∈ Q. We shall call the image of this inclusion
in T0qTQ the horizontal subspace. We shall call the subspace of T0qTQ which is
tangent to the fiber of TQ at q the vertical subspace and denote it by V0q

TQ. We
have T0q

TQ = TqQ⊕ V0q
TQ for each q ∈ Q. We mention that this notion of vertical

is valid at any point in TQ. However, the definition of horizontal is valid only on
Z(TQ).

LEMMA 5.5. Suppose that B ∈ Brk(X ) is primitive.
(i) If B ∈ Br−1(X ), then Ev(φ)(B) is the vertical lift of a vector field on Q.
(ii) If B ∈ Br0(X ), then U = Ev(φ)(B) has the property that, when expressed

in a local chart, the vertical components of U are linear in the fiber coordinates v and
the horizontal components are independent of v. In particular, we may define a vector
field on Q by UQ: q 7→ U(0q) ∈ TqQ ⊂ T0qTQ. There are two cases to consider.



776 ANDREW D. LEWIS AND RICHARD M. MURRAY

(a) B = [X0, B1] with B1 ∈ Br−1(X ): Define U1 to be the vector field on Q

such that Ev(φ)(B1) = U lift
1 . Then U(0q) = Ev(φ)(B)(0q) = −U1(q). Let U2 ∈ X(Q).

Then [U lift
2 , U ] = (∇U1U2 + ∇U2U1)lift .

(b) B = [B1, B2] with B1, B2 ∈ Br0(X ): Define U1,Q, U2,Q to be the vector fields
on Q corresponding to Ev(φ)(B1),Ev(φ)(B2), respectively. Then Ev(φ)(B)(0q) =
[U1,Q, U2,Q](q).

Proof. The proof is by induction on k. The result is true for k = 1 trivially. If X
and Y are vector fields on Q, it is a straightforward coordinate computation to show
that

[X lift , Y lift ] = 0.

If X is a vector field on Q, we compute

(5) [Zg, X
lift ] = −Y i ∂

∂qi
+

(
∂Y i

∂qj
vj + Γi

jkY
jvk + Γi

kjv
kY j

)
∂

∂vi
.

Inspecting (5) shows that [Zg, X
lift ](0q) = −X(q). Now let Y ∈ X(Q). We compute

(6) [Y lift , [Zg, X
lift ]] =

(
∂Y i

∂qj
Xj +

∂Xi

∂qj
Y j + 2Γi

jkX
jY k

)
∂

∂vi
,

which is the coordinate representation of (∇XY + ∇Y X)lift . This shows that the
lemma is true for k = 2.

Now suppose that the lemma is true for k = 1, . . . , l for l ≥ 2, and let B ∈
Brl+1(X ) be primitive.

(i) Suppose that B ∈ Br−1(X ). Without loss of generality (by Prim1) we may
suppose that B = [B1, B2] with B1 ∈ Br−1(X ) and B2 ∈ Br0(X ). Then, by the
induction hypotheses, we have

Ev(φ)(B1) = αi(q)
∂

∂vi
, Ev(φ)(B2) = λi(q)

∂

∂qi
+ µi

j(q)v
j ∂

∂vi
.

Now we compute

Ev(φ)([B1, B2]) =
(
µi

jα
j − ∂αi

∂qj
λj

)
∂

∂vi
.

Note that the components in the q-direction are zero and the components in the v-
direction are only functions of q. This means that this vector field is the vertical lift
of a vector field on Q. This proves (i).

(ii) Suppose that B ∈ Br0(X ). Without loss of generality (by Prim2) we may
suppose that either (a) B = [X0, B1] with B1 ∈ Br−1(X ) or (b) B = [B1, B2] with
B1, B2 ∈ Br0(X ). Let us deal with the first case. Equation (5) gives Ev(B)(φ)(0q) =
−U1(q), where U1 is the vector field on Q so that Ev(φ)(B1) = U lift

1 . (Such a vector
field exists by (i).) For every vector field U2 onQ we have [U lift

2 , [Zg, U
lift
1 ]] = (∇U1U2+

∇U2U1)lift by (6). This proves (ii(a)).
Now suppose that we have B1, B2 ∈ Br0(X ). Then, by the induction hypotheses,

we have

Ev(φ)(B1) = αi(q)
∂

∂qi
+ βi

j(q)v
j ∂

∂vi
, Ev(φ)(B2) = λi(q)

∂

∂qi
+ µi

j(q)v
j ∂

∂vi
.



CONTROLLABILITY OF MECHANICAL SYSTEMS 777

We compute

Ev(φ)([B1, B2]) =
(
∂λi

∂qj
αj − ∂αi

∂qj
λj

)
∂

∂qi

+
(
∂µi

k

∂qj
αjvk + µi

jβ
j
kv

k − ∂βi
k

∂qj
λjvk − βi

jµ
j
kv

k

)
∂

∂vi
.

The components have the order in v specified by the lemma. Also, it is clear that the
vector fields on Q defined by B1 and B2 are

U1,Q = αi(q)
∂

∂qi
and U2,Q = λi(q)

∂

∂qi
,

respectively. It is easy to see that Ev(φ)(B)(0q) = [U1,Q, U2,Q](q). This completes
the proof of the lemma.

This lemma provides us with a positive step toward computing the value of all
primitive brackets when evaluated using Ev(φ). The following lemma shows that
these are the only brackets that we need to consider.

LEMMA 5.6. (i) Let l ≥ 1 be an integer, and let B ∈ Brl(X ).Then Ev(φ)(B)(0q)=
0 for each q ∈ Q.

(ii) Let l ≥ 2 be an integer, and let B ∈ Brk(X ) ∩ Br−l(X ) for k ≥ 2. Then
Ev(φ)(B) = 0.

The proof of this lemma may be found in [8]. It goes very much like the proof of
Lemma 5.5.

Let us summarize what we have done in this section. First we obtained a char-
acterization of primitive brackets in X when we evaluate them in V via Ev(φ). This
characterization involved Lie brackets and covariant derivatives of the vector fields
Y1, . . . , Ym, gradV . Then we showed in Lemma 5.6 that primitive brackets are the
only ones that we need be concerned with if we are evaluating the vector fields on the
zero section of TQ.

5.3. The form of the accessibility distribution restricted to Z (TQ) for
simple mechanical control systems. In this section we compute the accessibility
distribution for (3) restricted to the zero section of TQ. By Lemma 5.4 we know
that we may write the vector fields in the accessibility distribution in terms of vector
fields in Lie(V). In section 5.2 we saw some hints that we might be able to write
vector fields in Lie(V) in terms of covariant derivatives and Lie brackets of the input
vector fields and gradV . First we resolve this issue by saying exactly what the vector
fields in Lie(V) look like when we restrict them to Z(TQ). We denote by DLie(V) the
distribution defined by

DLie(V)(v) = spanR{U(v) | U ∈ Lie(V)}.

The reader will also wish to recall the ideas from symmetric algebras presented in
section 3.3. We denote Y = {Y1, . . . , Ym}.

The following lemma describes the horizontal and vertical parts of the involutive
closure of V restricted to Z(TQ). The reader may wish to recall our remarks about
the structure of the tangent bundle preceding Lemma 5.5.

LEMMA 5.7. Let q ∈ Q. Then

DLie(V)(0q) ∩ V0q
TQ = (DSym(Y∪{grad V })(q))

lift
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and

DLie(V)(0q) ∩ TqQ = DLie(Sym(Y∪{grad V }))(q).

Proof. From Lemma 5.6 we know that the only brackets from Br(X ) which we
need to consider are the primitive brackets. From Lemma 5.5 we know that the
brackets which are in Br−1(X ) will generate the vertical directions, and the brackets
which are in Br0(X ) will generate the horizontal directions.

First we show that (DSym(Y∪{grad V })(q))
lift ⊂ DLie(V)(0q). This may be done

inductively. Define Sym(1)(Y ∪ {gradV }) = Y ∪ {gradV }, and inductively define

Sym(k)(Y ∪ {gradV } = {〈U1 : U2〉 | Ui ∈ Sym(ki)(Y ∪ {gradV }), k1 + k2 = k}.
Clearly

Sym(Y ∪ {gradV }) =
⋃

k∈Z+

Sym(k)(Y ∪ {gradV }).

It is trivially true that (Sym(1)(Y ∪ {gradV }))lift ⊂ Lie(V). Now suppose that
(Sym(k)(Y ∪ {gradV }))lift ⊂ Lie(V) for k = 1, . . . , l for l ≥ 1. We see that
(Sym(l+1)(Y ∪ {gradV }))lift ⊂ Lie(V) since we may generate all elements of
(Sym(l+1)(Y ∪ {gradV }))lift by considering brackets of the form [U lift

1 , [Zg, U
lift
2 ]],

where Ui ∈ Sym(li)(Y, V ) and l1 + l2 = l + 1. This follows from (6). This shows that
(DSym(Y∪{grad V })(q))

lift ⊂ DLie(V)(0q).
Now we show that DLie(V)(0q) ⊂ (DSym(Y∪{grad V })(q))

lift . To do this we must
show that the image under Ev(φ) of all primitive brackets in Br−1(X ) may be written
as a linear combination of vector fields in Sym(Y ∪ {gradV }). A primitive bracket
in Br−1(X ) may be written as B = [B1, B2] with B1 ∈ Br−1(X ) and B2 ∈ Br0(X )
both being primitive. Therefore, either B2 = [X0, B

′
2] with B′

2 primitive and in
Br−1(X ) or B2 = [B′

2, B
′′
2 ] with B′

2, B
′′
2 ∈ Br0(X ) both primitive. In the first case

Ev(φ)(B) ∈ Sym(k)Y ∪ {gradV }) for some k by (6). In the second case we may use
Jacobi’s identity to obtain

B = −[B′′
2 , [B1, B

′
2]] + [B′

2, [B1, B
′′
2 ]].

We may apply the above argument to the terms [B1, B
′
2] and [B1, B

′′
2 ], repeatedly

using (6) until they are expressed in terms of covariant derivatives. When this is done,
Ev(φ)(B) will then be a R-linear combination of elements in Sym(Y ∪{gradV }). This
shows that DLie(V)(0q) ⊂ (DSym(Y∪{grad V })(q))

lift .
To demonstrate the proposed form of DLie(V) ∩ TqQ, by Lemma 5.5 (ii(b)) we

need only show that Sym(Y ∪ {gradV })(q) ⊂ DLie(V)(0q). But this is clear from
Lemma 5.5 (ii(a)). This completes the proof of the lemma.

Remark 5.8. Note that the constructions in the above lemma depend only upon
{Y1, . . . , Ym, gradV }. The effects of the geodesic spray do not appear explicitly. How-
ever, its contribution is obviously important in the computations performed in sec-
tion 5.2.

From Lemmas 5.4 and 5.7 we know that the vector fields which contribute to
Lie(V ′) when we evaluate on Z(TQ) will be R-linear combinations of vector fields from
Lie(Sym(Y ∪ {gradV })). Thus, to compute these vector fields, we need to figure out
which vector fields need to be “removed” from Lie(Sym(Y∪{gradV })). We present an
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ALGORITHM 7.1.

For i ∈ Z+ do
For B ∈ Br(i)(X ) primitive do

If δm+1(B) = 0 then
If B ∈ Br−1(X ) then

U ∈ C 1
2 (i+1)
ver (Y, V ) where Ev(φ)(B) = U lift

else
U ∈ C(i/2)

hor (Y, V ) where U(q) = Ev0q (φ)(B)
end

else
If B has no components of the form [X0, Xm+1] then

Compute B′ ∈ Br(X ) by replacing every occurrence of X0 and
Xm+1 in B with X ′

0 and by replacing every occurrence of Xa

in B with X ′
a for a = 1, . . . ,m.

Let B′′ = 0.
For B̃ ∈ S(B′) ∩ (Br−1(X ) ∪ Br0(X )) do

Write B̃ as a finite sum of primitive brackets in Br(X ) by
Lemma 5.2.
B′′ = B′′ + (−1)δm+1(B̃)B̃

end
If B ∈ Br−1(X ) then

U ∈ C 1
2 (i+1)
ver (Y, V ) where Ev(φ)(B′′) = U lift

else
U ∈ C(i/2)

hor (Y, V ) where U(q) = Ev0q (φ)(B′′)
end

end
end

end
end

END

FIG. 2. Algorithm for computing Lie(V ′) | Z(TQ).

algorithm which we shall prove determines exactly which R-linear combinations from
Lie(Sym(Y ∪ {gradV })) we need to compute. We define two sequences of families of
vector fields on Q, which we shall denote by C(k)

ver(Y, V ) and C(k)
hor(Y, V ) where k ∈ Z+.

In Figure 2 the algorithm is presented for computing these families. When we have
computed these sequences we define

Cver(Y, V ) =
⋃

k∈Z+

C(k)
ver(Y, V ), Chor(Y, V ) =

⋃
k∈Z+

C(k)
hor(Y, V ).

The distributions defined by these families of vector fields shall be denoted Cver(Y, V )
and Chor(Y, V ), respectively.

We may now state the form of the accessibility distribution Lie(V ′) for (3) when
restricted to the zero section of TQ.
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PROPOSITION 5.9. Let q ∈ Q. Then

DLie(V′)(0q) ∩ V0qTQ = (Cver(Y, V )(q))lift

and

DLie(V′)(0q) ∩ TqQ = Chor(Y, V )(q).

Proof. Studying the algorithm that we have used to compute Cver(Y, V ) and
Chor(Y, V ), the reader will note that we have exactly taken each primitive bracket
B ∈ Br(X ) and computed which R-linear combinations from Br(X ) appear along
with B in the decomposition of some B′ ∈ Br(X ′) given by Lemma 5.4. Since
it is only these primitive brackets which appear in Lie(V ′) | Z(TQ), this will, by
construction, generate DLie(V′) | Z(TQ).

We need to prove that, as stated in the first step of the algorithm, if δm+1(B) = 0,
then Ev0q (φ)(B) ∈ DLie(V′)(0q). To show that this is in fact the case, let B′ ∈ Br(X ′)
be the bracket obtained by replacing Xa with X ′

a for a = 0, . . . ,m. We claim that
the only bracket in S(B′) which contributes to Ev(φ′)(B′) is B. This is true since
any other brackets in S(B′) are obtained by replacing X0 in B with Xm+1. Such
a replacement will result in a bracket which has at least one component which is in
Br−l(X ) for l ≥ 2. These brackets evaluate to zero by Lemma 5.6(ii).

We also need to show that if B has components of the form [X0, Xm+1], then it
will not contribute to Lie(V ′) | Z(TQ). This is clear since, when constructing B′ in
the algorithm, the component [X0, Xm+1] will become [X ′

0, X
′
0], which means that B′

will be identically zero.
It is perhaps useful to construct a few of the families C(k)

ver(Y, V ) and C(k)
hor(Y, V )

to show how the algorithm works. We shall do this for k = 1, 2. Our notation in these
calculations follows that in the algorithm.

Let i = 1. The only primitive brackets in Br(1)(X ) are X1, . . . , Xm+1. For the
brackets B = Xa, a = 1, . . . ,m, δm+1(B) = 0. Note that Ev(φ)(B) = Y lift

a so
Ya ∈ C(1)

ver(Y, V ) for a = 1, . . . ,m. The bracket Xm+1 has no components of the form
[X0, Xm+1], so it is a candidate for providing an element of C(1)

ver(Y, V ). If B = Xm+1,
we compute B′ = X ′

0. Therefore, S(B′) = {X0, Xm+1}. The only element in S(B′)
which is in Br−1(X ) ∪ Br0(X ) is Xm+1. Therefore, B′′ = −Xm+1. We then see
that Ev(φ)(B′′) = −gradV lift , from which we conclude that gradV ∈ C(1)

ver(Y, V ). In
summary,

C(1)
ver(Y, V ) = {Y1, . . . , Ym, gradV }.

Now we look at the case when i = 2. The primitive brackets in Br(2)(X ) are
{[X0, X1], . . . , [X0, Xm+1]}. The brackets B = [X0, Xa], a = 1, . . . ,m, have the prop-
erty that δm+1(B) = 0. We compute Ev0q (φ)(B) = −Ya(q) and so conclude that
Ya ∈ C(1)

hor(Y, V ). The bracket [X0, Xm+1] is not a candidate for providing an element
of C(1)

hor(Y, V ), so we have

C(1)
hor(Y, V ) = {Y1, . . . , Ym}.

In a similar manner we may compute

C(2)
ver(Y, V ) = {〈Ya : Yb〉 | a, b = 1, . . . ,m} ∪ {〈Ya : gradV 〉 | a = 1, . . . ,m}
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and

C(2)
hor(Y, V ) = C(2)

ver(Y, V ) ∪ {[Ya, Yb] | a, b = 1, . . . ,m}
∪ {2〈Ya : gradV 〉 + [Ya, gradV ] | a = 1, . . . ,m}.

To compute the terms 2〈Ya : gradV 〉 + [Ya, gradV ] in C(2)
hor(Y, V ), we have used the

computations of Example 5.3.
It would be interesting to be able to derive an inductive formula for computing

the families C(k)
ver(Y, V ) and C(k)

hor(Y, V ). However, such an inductive formula appears
to be quite complex.

There are some important statements which can easily be made regarding the
distributions Chor(Y, V ) and Cver(Y, V ).

Remark 5.10.
(1) The generators that we have written for C(k)

ver(Y, V ) and C(k)
hor(Y, V ) are not

linearly independent. Thus one should be able to generate these families with fewer
calculations than are necessary to compute the generators we give. One way to do this
is to choose a Philip Hall basis for L(X ′) and compute the image of these brackets
under Ev(φ′). This will work for any given example. However, we are unable to give
the general form for the image of a Philip Hall basis under Ev(φ′).

(2) We claim that Chor(Y, V ) is involutive. Let B′
1, B

′
2 ∈ Br(X ′) be brackets

which, when evaluated under Ev0q (φ
′), give vector fields U1, U2 ∈ Chor(Y, V ). Then

the decomposition of Bi given by Lemma 5.4 has the form B′
i = Bi + B̃i, where

Bi ∈ Br0(X ) and B̃i is a sum of brackets in Brj(X ) for j ≥ 2. Therefore, [B′
1, B

′
2] =

[B1, B2] + B′′, where B′′ is a sum of brackets in Brj(X ) for j ≥ 2. This shows that
[U1, U2] ∈ Chor(Y, V ). Here we have imposed the condition that brackets in Br−j(X )
are taken to be zero for j ≥ 2 (see Lemma 5.2).

(3) An interesting special case, and one that we shall see in the examples in
section 6, is that when V = 0. In this case we have Cver(Y, V ) = Sym(Y) and
Chor(Y, V ) = Lie(Sym(Y)). This is easily seen in the algorithm by following the path
when δm+1(B) = 0.

(4) The calculations of this section and section 5.2 remain valid if we replace
gradV with an arbitrary vector field on Q.

5.4. Controllability definitions for simple mechanical control systems.
It is possible to simply adopt the controllability definitions from nonlinear control
theory since our system may be written as a standard control system on TQ. However,
since we are dealing with simple control mechanical systems, it is of more interest to
us to know what is happening to the configurations. A good example of a question of
interest in mechanics is, “What is the set of configurations which are reachable from
a given configuration if we start at rest?” This is in fact exactly the question that we
pose.

DEFINITION 5.11. A solution of (3) is a pair, (c, u), where c : [0, T ] → Q is
a piecewise smooth curve and u ∈ U such that (c′, u) satisfies the first-order control
system (3).

Note that since XL is a second-order vector field on TQ, every solution of the
control system (3) will be of the form (c′, u) for some curve c on Q. We refer the reader
to [1] for a discussion of second-order, and particularly Lagrangian, vector fields.

Let q0 ∈ Q and let U be a neighborhood of q0. We define

RU
Q(q0, T ) = {q ∈ Q | there exists a solution (c, u) of (3)

such that c′(0) = 0q0 , c(t) ∈ U for t ∈ [0, T ], and c′(T ) ∈ TqQ}
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and denote RU
Q(q0,≤ T ) = ∪T

t=0RU
Q(q0, t). Note that our definitions for reachable

configurations do not require us to get to a point in the reachable set at zero velocity.
They merely ask that we be able to reach that point at some velocity. It is, however,
required that the initial velocity be zero.

We shall say that q ∈ Q is an equilibrium point for L if XL(0q) = 0. Let E(L)
denote the set of equilibrium points for L.

We now introduce our notions of controllability.
DEFINITION 5.12. We shall say that (3) is locally configuration accessible at

q0 ∈ Q if there exists T > 0 such that RU
Q(q0,≤ t) contains a nonempty open set of

Q for all neighborhoods U of q0 and all 0 < t ≤ T . If this holds for any q0 ∈ Q, then
the system is called locally configuration accessible.

We say that (3) is small-time locally configuration controllable (STLCC) at q0
if it is locally configuration accessible at q0 and if there exists T > 0 such that q0 is
in the interior of RU

Q(q0,≤ t) for every neighborhood U of q0 and 0 < t ≤ T . If this
holds for any q0 ∈ Q, then the system is called STLCC.

We shall say that (3) is equilibrium controllable if, for q1, q2 ∈ E(L), there exists
a solution (c, u) of (3), where c : [0, T ] → Q is such that c(0) = q1, c(T ) = q2, and
both c′(0) and c′(T ) are zero.

Note that these definitions may be made to apply to any control system which
evolves on TQ.

5.5. Conditions for controllability of simple mechanical control sys-
tems. In [9] the authors present sufficient conditions for local configuration accessi-
bility in the absence of potential energy. Here, since we have a complete description
of Lie(V ′) | Z(TQ), we can give stronger results.

THEOREM 5.13. The control system (3) is locally configuration accessible at q if
Chor(Y, V )(q) = TqQ.

Proof. Let C denote the accessibility distribution. Since Chor(Y, V )(q) ⊂ C(0q)
by Proposition 5.9 and Chor(Y, V )(q) = TqQ by hypothesis, Z(TQ) must be an
integral manifold of C. Let Λ be the maximal integral manifold which contains
Z(TQ). Since C is the accessibility distribution, Λ must be invariant under the
system (3) and the system must be locally accessible when restricted to Λ. Thus the
set RŨ (0q,≤ T ) is open in Λ for every neighborhood Ũ ⊂ Λ of 0q and for every T
sufficiently small. Now let U be a neighborhood of q, and define a neighborhood of
0q in Λ by Ũ = τ−1

Q (U) ∩ Λ. The set τQ(RŨ (0q,≤ T )) is open in Q for T sufficiently
small since τQ is an open mapping. This proves the theorem.

We also have a partial converse to Theorem 5.13 in the case when there is no
potential energy.

THEOREM 5.14. Suppose that V = 0 and (3) is locally configuration accessible.
Then Chor(Y, V )(q) = TqQ for q in an open dense subset of Q.

Proof. First note that if Chor(Y, V )(q0) = Tq0Q, then Chor(Y, V )(q) = TqQ in a
neighborhood of q0. This proves that the set of points q where Chor(Y, V )(q) = TqQ
is open. Now suppose that Chor(Y, V )(q) ( TqQ in an open subset U of Q. Then
there exists an open subset Ū ⊂ U so that rank(Chor(Y, V )(q)) = k < n for all q ∈ Ū .
However, this contradicts local configuration accessibility. Therefore, there can be no
open subset of Q on which Chor(Y, V )(q) ( TqQ. Thus the set of points q where
Chor(Y, V )(q) = TqQ is dense. This completes the proof.

We may also prove an easy statement about STLCC. We need to say a few
things about “good” and “bad” symmetric products. Let Y = {X1, . . . , Xm+1},
and establish a bijection ψ : Y → Y ∪ {gradV } by asking that ψ(Xa) = Ya for
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a = 1, . . . ,m and ψ(Xm+1) = gradV . If P ∈ Pr(Y ), we shall say that P is bad if
γa(P ) is even for each a = 1, . . . ,m. We say that P is good if it is not bad. Let Sm

denote the permutation group on m symbols. For π ∈ Sm and P ∈ Pr(Y ) define π̄(P )
to be the bracket obtained by fixing Xm+1 and sending Xa to Xπ(a) for a = 1, . . . ,m.
Now define

ρ(P ) =
∑

π∈Sm

π̄(P ).

We may now state the sufficient conditions for STLCC.
THEOREM 5.15. Suppose that Y ∪ {gradV } is such that every bad symmetric

product in Pr(Y ) has the property that

Ev0q
(ψ)(ρ(P )) =

m∑
a=1

ξaEv0q
(ψ)(Ca),

where Ca are good symmetric products in Pr(Y ) of lower degree than P and ξa ∈ R
for a = 1, . . . ,m. Also, suppose that (3) is locally configuration accessible at q. Then
(3) is STLCC at q.

Proof. First recall from the proof of Theorem 5.13 that if (3) is locally con-
figuration accessible at q, then Z(TQ) is an integral manifold for the accessibility
distribution. We let Λ be the maximal integral manifold for the accessibility distribu-
tion which contains Z(TQ). Restricted to Λ, (3) is locally accessible. To show that (3)
is STLCC at q, it clearly suffices to show that (3) is STLC at 0q when restricted to Λ.
We do this by showing that (3) satisfies the hypotheses of Theorem 4.1 if it satisfies
the stated hypotheses on the symmetric products. To do this we shall show that there
is a one-to-one correspondence between bad brackets in Br(X ′) and bad symmetric
products in Pr(Y ) and good brackets in Br(X ′) and good symmetric products in
Pr(Y ).

Suppose that B′ ∈ Br(X ′) is bad. Thus δa(B′) is even for a = 1, . . . ,m and
δ0(B′) is odd. When we evaluate Ev0q (φ

′)(B′), the only terms that will remain in
the decomposition of Ev(φ′)(B′) given by Lemma 5.4 are the terms obtained from
brackets in S(B′) which are in Br0(X ) ∪ Br−1(X ). Since B′ is bad, we must have
δa(B) even and δ0(B) + δm+1(B) odd for each B ∈ S(B′). If δ0(B) is odd, then
δm+1(B) must be even. In this case we get

∑m+1
a=1 δa(B) as even and δ0(B) as odd.

Thus the only brackets in S(B′) which contribute to Ev(φ′)(B′) must be in Br−1(X ).
This will give us a vector in V0qTQ which comes from a symmetric product which is
bad. Now suppose that δ0(B) is even for B ∈ S(B′). Then δm+1(B) must be odd.
In this case

∑m+1
a=1 δa(B) is odd and δ0(B) is even, and again, the only brackets in

S(B′) which contribute to Ev(φ′)(B′) must be in Br−1(X ). We then conclude that
Ev0q (φ

′)(B′) must be of the form (Evq(ψ)(P ))lift , where P ∈ Pr(Y ) is bad.
Now suppose that B′ ∈ Br(X ′) is good. It is clear that if δa(B′) is odd for

any a = 1, . . . ,m, then B′ cannot give rise to a bad symmetric product. Thus we
may suppose that δa(B′) is even for each a = 0, . . . ,m. Now let’s look at what
the brackets look like from S(B′) which contribute to Ev(φ′)(B′). Let B be such
a bracket. We must have δa(B) even for a = 1, . . . ,m and δ0(B) + δm+1(B) even.
If δ0(B) is odd, then δm+1(B) must be odd. Since B is primitive, this means that∑m+1

a=1 δa(B) and δ0(B) are odd. Therefore, B must be in Br0(X ). Now suppose that
δ0(B) is even. Then δm+1(B) must also be even. Thus

∑m+1
a=1 δa(B) and δ0(B) are
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even and so B ∈ Br0(X ). Therefore, good brackets from Br(X ′) do not generate any
bad symmetric products.

Since the system restricted to the integral manifold Λ in the proof of the above
theorem is STLC, the hypotheses of the theorem imply more than STLCC. In fact,
the following corollary is easily seen to be true.

COROLLARY 5.16. Suppose that the hypotheses of Theorem 5.15 hold for each
q ∈ Q. Then the system (3) is equilibrium controllable.

Remark 5.17.
(1) We have shown that it is not necessary to be able to generate all directions

on TQ to obtain controllability in the configuration variables. Indeed, the only ver-
tical directions that we generate are Cver(Y, V ) which need not span V0qTQ. This
means that the notion of configuration controllability is genuinely weaker than are
the standard notions of controllability if we are to simply regard the system (3) as a
typical nonlinear control system.

(2) Corollary 5.16 may be made even stronger if we allow a point q ∈ Q to be an
equilibrium point if gradV (q) is in the span of the inputs at q.

6. Examples of mechanical control systems. In this section we present some
examples. The examples are rather simple and are intended to illustrate the concepts
put forward by the theory. One of the advantages of the conditions for local configura-
tion accessibility given in Theorem 5.13 is that it lends itself to symbolic computation.
Indeed, a Mathematica package was written to facilitate the computations in this
section.

6.1. The robotic leg. This example, although simple, exhibits much of the
subtle behavior that makes the study of mechanical systems interesting. The example
is a rigid body with inertia J which is pinned to ground at its center of mass. The
body has attached to it an extensible massless leg, and the leg has a point mass with
mass m at its tip. The coordinate θ will describe the angle of the body, and ψ will
describe the angle of the leg from an inertial reference frame. The coordinate r will
describe the extension of the leg. Thus the configuration space for this problem is
Q = T2 × R+. See Figure 3. In the coordinates (θ, ψ, r) the Riemannian metric for
the robotic leg is

g = Jdθ ⊗ dθ +mr2dψ ⊗ dψ +mdr ⊗ dr,

the input one-forms are F 1 = dθ−dψ and F 2 = dr, and the potential energy function
is zero. We may compute the input vector fields to be

Y1 =
1
J

∂

∂θ
− 1
mr2

∂

∂ψ
, Y2 =

1
m

∂

∂r
.

Since there is no potential energy present, the distribution Chor(Y, V ) is simply gen-
erated by the vector fields Lie(Sym(Y)).

We will find the following computations to be sufficient:

〈Y1 : Y1〉 = − 2
m2r3

∂

∂r
, 〈Y1 : Y2〉 = 0, 〈Y2 : Y2〉 = 0,

[Y1, Y2] = − 2
m2r3

∂

∂ψ
, [Y1, 〈Y1 : Y1〉] =

4
m3r6

∂

∂ψ
.

The controllability results for the robotic leg are displayed in Table 1.
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FIG. 3. The robotic leg.

TABLE 1
Controllability results for the robotic leg. The first column displays which inputs are present,

the second column indicates whether the system is locally configuration accessible with these inputs,
the third column indicates whether the system with these inputs satisfies the sufficient conditions of
Theorem 5.15 for STLCC, and the last column indicates whether the system with these inputs is
actually STLCC.

Inputs Locally configuration
accessible?

Satisfies sufficient conditions
for STLCC?

STLCC?

Y1 (torque) yes no no

Y2 (extension) no no no

Y1 and Y2 yes yes yes

Remark 6.1.
(1) The linearization of this system at points of zero velocity is not controllable

with any combination of inputs, so the controllability does not follow from linear
results.

(2) When only the input Y2 is present, the equations are

r̈ − rψ̇2 =
1
m
u1,

θ̈ = 0,

ψ̈ +
2
r
ṙψ̇ = 0.

Note that when the initial velocity is zero, the top equation decouples from the bottom
two equations. Physically this means that we are simply moving the leg back and forth
with no effect on the configuration of the body since the initial velocity is zero.

(3) Although the system only violates the sufficient conditions for STLCC with
the input Y1, one may easily see by looking at the r-component of the equations of
motion that the system is, in fact, not STLCC. The reason for this is that, since r̈ ≥ 0,
r will always increase no matter what happens to the other variables. Thus our initial
configuration will never be in the interior of the set of reachable configurations.
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FIG. 4. The configuration of a planar rigid body as an element of SE(2).

FIG. 5. Positions for application of forces on a planar rigid body after simplifying assumptions.

6.2. The forced planar rigid body. In this section we study the planar rigid
body discussed in the introduction with various combinations of forces and torques.
The configuration space for the system is the Lie group SE(2). To establish the
correspondence between the configuration of the body and SE(2), fix a point O ∈ R2

and let {e1 = ∂
∂x , e2 = ∂

∂y } be the standard orthonormal frame at that point. Let
{f1, f2} be an orthonormal frame attached to the body at its center of mass. The
configuration of the body is determined by the element g ∈ SE(2) which maps the
point O with its frame {e1, e2} to the position, P , of the center of mass of the body
with its frame {f1, f2}. See Figure 4. The inputs for this problem consist of forces
applied at an arbitrary point and a torque about the center of mass. Without loss of
generality (by redefining our body reference frame {f1, f2}) we may suppose that the
point of application of the force is a distance h along the f1 body-axis from the center
of mass. The situation is illustrated in Figure 5.

With this convention fixed, we shall use coordinates (x, y, θ) for the planar rigid
body, where (x, y) describe the position of the center of mass and θ describes the ori-
entation of the frame {f1, f2} with respect to the frame {e1, e2}. In these coordinates,
the Riemannian metric for the system is

g = mdx⊗ dx+mdy ⊗ dy + Jdθ ⊗ dθ.

Here m is the mass of the body and J is its moment of inertia about the center of
mass. The inputs are described by the one-forms

F 1 = cos θdx+ sin θdy, F 2 = − sin θdx+ cos θdy − hdθ, F 3 = dθ,
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TABLE 2
Controllability results for the planar rigid body. The first column displays which inputs are

present, the second column indicates whether the system is locally configuration accessible with these
inputs, the third column indicates whether the system with these inputs satisfies the sufficient con-
ditions of Theorem 5.15 for STLCC, and the last column indicates whether the system with these
inputs is actually STLCC.

Inputs Locally configuration
accessible?

Satisfies sufficient conditions
for STLCC?

STLCC?

Y1 (force at CM) no no no

Y2 (force ⊥ to CM) yes no no

Y3 (torque) no no no

Y1 and Y2 yes yes yes

Y1 and Y3 yes yes yes

Y2 and Y3 yes no yes

from which we compute the input vector fields as

Y1 =
cos θ
m

∂

∂x
+

sin θ
m

∂

∂y
,

Y2 = − sin θ
m

∂

∂x
+

cos θ
m

∂

∂y
− h

J

∂

∂θ
, Y3 =

1
J

∂

∂θ
.

Again, as with the robotic leg, there is no potential energy, so the distribution
Chor(Y, V ) may be computed by calculating Lie(Sym(Y)).

The following computations are sufficient to obtain the results that we desire:

〈Y1 : Y1〉 = 0, 〈Y1 : Y2〉 =
h sin θ
mJ

∂

∂x
− h cos θ

mJ

∂

∂y
,

〈Y1 : Y3〉 = − sin θ
mJ

∂

∂x
+

cos θ
mJ

∂

∂y
, 〈Y2 : Y2〉 =

2h cos θ
mJ

∂

∂x
+

2h sin θ
mJ

∂

∂y
,

〈Y2 : Y3〉 = −cos θ
mJ

∂

∂x
− sin θ
mJ

∂

∂y
, 〈Y3 : Y3〉 = 0,

[Y1, Y2] = −h sin θ
mJ

∂

∂x
+
h cos θ
mJ

∂

∂y
, [Y1, Y3] =

sin θ
mJ

∂

∂x
− cos θ

mJ

∂

∂y
,

[Y2, Y3] =
cos θ
mJ

∂

∂x
+

sin θ
mJ

∂

∂y
, [Y2, 〈Y2 : Y2〉] =

2h2 sin θ
mJ2

∂

∂x
− 2h2 cos θ

mJ2

∂

∂y
.

With the computations done, we may proceed to determine configuration con-
trollability for the planar rigid body with various combinations of inputs. The results
are displayed in Table 2.

Remark 6.2.
(1) The linearization of this system around points of zero velocity is not control-

lable so the cases where the system is STLCC do not follow from the linear calcula-
tions.

(2) In this example, in the cases when the system fails to satisfy the sufficient
conditions for STLCC of Theorem 5.15, we are not able to say whether the system is,
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in fact, not STLCC. In fact, when the inputs Y2 and Y3 are present, even though the
system does not satisfy the sufficient conditions of Theorem 5.15, it is easy to see that
it is STLCC. Recent work, beyond the scope of this paper, shows that when only the
input Y2 is present, the system is not STLCC.

(3) In the case when only the input Y1 is present, it is illustrative to represent
the equations in the coordinates (ξ, η, ψ) = (x cos θ + y sin θ,−x sin θ + y cos θ, θ). In
these coordinates the equations have the form

ξ̈ + 2
(
mη2

J
− J +mη2

J

)
η̇ψ̇ +

(
mξη2

J
− ξJ +mξη2

J

)
ψ̇2

=
(
J +mη2

J
− η2

J

)
u1,

η̈ + 2
(
J +mξ2

J
− mξ2

J

)
ξ̇ψ̇ +

(
mηξ2

J
− ηJ +mηξ2

J

)
ψ̇2 = 0,

ψ̈ = 0.

Note that the top equation decouples from the last two equations when the initial
velocity is zero. Since Y1 is directed toward the center of mass, applying this input
will cause the body to move in this direction and none of the other degrees of freedom
are affected.

(4) In the case when the input Y3 is present, the equations have the form

θ̈ =
1
J
u3,

ẍ = 0,

ÿ = 0.

Again, the top equation decouples from the bottom two equations. This time the
coupling is true for all initial velocities, not just zero initial velocity. In this case we
see that the input simply causes a rotation of the body about its center of mass. The
position of the center of mass is not affected if the initial velocity is zero.

6.3. The pendulum on a cart. To illustrate the effects of potential energy,
consider the problem of a pendulum suspended from a cart. The configuration man-
ifold for the system is Q = R × S1. As coordinates we shall use (x, θ) as shown in
Figure 6. In this case the Riemannian metric for the system is

g = (M +m)dx⊗ dx+ml cos θdx⊗ dθ +ml cos θdθ ⊗ dx+ml2dθ ⊗ dθ.

Here M is the mass of the cart and m is the mass of the pendulum. The potential
energy is

V = magl(1 − cos θ),

where ag is the acceleration due to gravity. The input is given by the one-form

F 1 = dx.

The input vector field is then readily computed to be

Y1 =
ml2

m2l2 +Mml2 −m2l2 cos2 θ
∂

∂x
+

ml cos θ
m2l2 +Mml2 −m2l2 cos2 θ

∂

∂θ
.
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FIG. 6. Pendulum suspended from a cart.

To compute Chor(Y, V ) we need the following computations:

〈Y1 : Y1〉 =
16m cos2 θ sin θ

l(m+ 2M −m cos 2θ)3
∂

∂x
+

8(M +m) sin θ
l2(m cos 2θ −m− 2M)3

∂

∂θ
,

〈Y1 : gradV 〉 =
4agm cos θ(m−m cos 2θ − 2M cos 2θ)

l(m cos 2θ −m− 2M)3
∂

∂x

+
4ag(2M2 cos 2θ + 3Mm cos 2θ +m2 cos 2θ −Mm−m2)

l2(m cos 2θ −m− 2M)3
∂

∂θ
.

Note that at all points q ∈ Q except those where θ ∈ {0, π}, the vector fields
{Y1, 〈Y1 : Y1〉} generate the tangent space at q. This means that the system is lo-
cally configuration accessible at these points. Also, at these points the bad symmetric
product 〈Y1 : Y1〉 is not a multiple of Y1, so the system may not be STLCC at these
points. At points where θ ∈ {0, π}, the vector fields {Y1, 〈Y1 : gradV 〉} span TqQ, and
so the system is also locally configuration accessible at these points. Most important,
however, the bad symmetric product vanishes at these two points so the system is
STLCC at these equilibria. This must be so as, at these two points, the linearized
system is controllable.

7. Conclusions and future work. In this paper we have outlined what we
regard as a beginning of a thorough program for analysis and synthesis for simple
mechanical control systems. The first part of such a program is to determine the
pertinent versions of controllability (local configuration accessibility and STLCC) and
determine algebraic tests for these notions of controllability. The conditions that we
present for checking our versions of controllability involve only computations on the
configuration space. In determining these conditions, the symmetric product proved
to play an important role. As we have presented it, the symmetric product is a useful
computational tool. Our recent work provides a fairly complete description of the
geometric role of the symmetric product in the control of mechanical systems. This
will be the subject of an upcoming paper.

In the examples in section 6 some interesting circumstances may be observed.
The most interesting of these is a comparison of the robotic leg with input Y2 and
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the planar rigid body with the inputs Y2 and Y3. In the former case the system does
not satisfy the sufficient conditions for STLCC and may be shown to indeed not be
STLCC. However, in the latter case, even though the sufficient conditions for STLCC
are not met, the system is STLCC. It would be interesting to better understand why
this happens, and perhaps arrive at a stronger condition for STLCC.

Finally we mention that, from a practical point of view, perhaps the most useful
contribution is that of the notion, mentioned in section 5.4, of equilibrium controlla-
bility. If a system satisfies the hypotheses of Theorem 5.15 at each configuration, it
would be interesting to determine a means of generating paths which connect points
in the configuration manifold at zero velocity. Such an algorithm may involve a deeper
understanding of the symmetric product.

In summary, we feel that this paper provides an effective initial understanding of
mechanical control systems, and we hope that it will prove to be a useful foundation
for further work in the area of mechanical control theory.

Acknowledgments. We would like to thank Jerry Marsden and Jim Ostrowski
for helpful conversations. The anonymous reviewers were also very helpful in improv-
ing the presentation of the paper during the review process.
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Abstract. The weighted sensitivity minimization problem for discrete time–varying systems is
treated in a state space framework. Given a controllable and causal (stable) state space realization
of the plant to be controlled, the first step in the solution is the computation of an outer-inner
factorization of the plant. The key algorithmic step here is the solution of a Lyapunov type of
equation running backward in time. Based on the part of the realization of the inner (isometric)
factor related to its output state space we then formulate and solve a Nevanlinna–Pick interpolation
problem. This second step is also characterized by a Lyapunov equation. It is shown that the
solution to the sensitivity minimization problem exists when the solution to this Lyapunov equation
is positive definite for all time instances. Finally, we pay special attention to the minimal disturbance
attenuation level when the latter is assumed to be equal to a constant scalar for all time instances
as well as to a square root implementation of the recursive equations.

Key words. discrete time–varying systems, Nevanlinna–Pick interpolation, outer-inner factor-
ization, Lyapunov equations
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1. Introduction. The sensitivity minimization problem was introduced by
Zames in [1]. This type of problem constitutes a fundamental problem in the area of
robust (H∞) control.

So far, only a limited number of papers have appeared addressing the problem in
a time-varying context. For discrete periodic time-varying systems, we mention the
work of [2] and [3], which presents an algorithm for the operator theoretic solution
outlined in [2]. Basically, this solution is characterized by “lifting up” the periodic
time-variant system into a time-invariant system of big state dimension and then
solving the problem using standard tools developed for time-invariant systems.

This approach fails when the system varies arbitrarily in time. Recently, based
on [7], the sensitivity minimization problem for discrete time–varying systems was
formulated and solved as a Nevanlinna–Pick interpolation (NPI) problem in [8]. In
this way, this approach follows the original strategy of the solution presented in [10].

To formulate the NPI problem in [8], it was assumed that the inverse of the plant
to be controlled is given into a simple partial fraction expansion format. Furthermore,
that paper is restricted to systems of constant state, input, and output dimension.
Both conditions will hamper the application of the outlined solution to practical
circumstances. In a more realistic environment, the starting point in the controller
design is a state space description of the plant P to be controlled. Therefore, the
computation of the specific partial fraction expansion still needs to be performed.
In [11], a procedure has been developed to calculate a state space realization of the
required anticausal part of P−1. This solution requires solving a Riccati equation,
and also it is restricted to the case of constant state dimensions.
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It has been observed that in realistic circumstances as reported in [13], the state
dimension can change. Other examples include mechanical systems, such as a robot
arm, where the degrees of freedom may change during operation. This in combina-
tion with the important class of problems related to multirate sampled data systems
requires the treatment of time-varying systems exhibiting nonconstant state, input,
and output dimensions.

To overcome the above drawbacks of existing methods, we present a solution
to the weighted sensitivity minimization problem for discrete time–varying systems
based on the inner-outer factorization technique developed in [15]. This solution only
requires a state space realization of the plant P and allows varying state, input, and
output dimensions. The key algorithmic steps are two recursive Lyapunov equations,
both running backward in time.

An alternative to the interpolation approach in tackling robust control problems is
the so-called “Riccati” approach, outlined in [9] for the continuous time–invariant case.
Recently, this “standard” robust control problem has been extended to the continuous
time–variant case with constant system dimensions in [4] and to the discrete time–
variant case with varying system dimensions in [5].

Reformulating the sensitivity minimization problem as a standard robust control
problem and solving the latter problem has two major drawbacks:

(1) The reformulation of the sensitivity minimization problem, precisely defined
later on in section 3 (Problem 1), to a standard robust control problem is pictured in
Figure 1. Here we adopt the standard notation such as used in [9]. This “standard”
formulation does, however, violate one of the standard assumptions, namely that (one
of) the diagonal operators of the feedthrough operator of the generalized plant G is
nonzero. Making this formulation of the sensitivity minimization problem conformal
to the standard assumptions substantially complicates the formulas which arise in the
solution to the standard problem under standard assumptions [9].

(2) Even when one is willing to invest the energy in reformulating the sensitivity
minimization problem as a standard robust control problem, the solution remains
characterized by recursive Riccati equations. In [14], it is shown that the numerical
solution of these recursive Riccati equations may diverge due to the accumulation of
round-off errors. Coping with this phenomenon again requires additional precautions
which complicate the overall solution.

In this paper, we overcome both drawbacks by tackling the sensitivity minimiza-
tion problem for discrete time–varying systems with varying system dimensions in
a more direct way. This direct route shows that the solution to this problem only
requires the solution of two (recursive) Lyapunov equations instead of two (recursive)
Riccati equations. These Lyapunov equations do not suffer from the divergence prob-
lems related to the Riccati equations. Both the direct way of addressing the problem
and the solution of the problem via Lyapunov equations make the solution derived in
this paper more robust and elegant compared with existing solutions in a time-variant
context.

The outline of the paper is as follows. After reviewing the nomenclature of linear
time-varying (LTV) systems in section 2, we formulate the sensitivity minimization
problem in section 3. The reformulation of this problem as a NPI problem is done
in section 4. In section 5, we briefly review its solution and mainly focus on the
different viewpoint taken in this paper compared with that in [7]. These include (a)
the formulation of the sensitivity minimization problem without making use of the
generalized point evaluation map as done in [7, 8] and (b) the treatment of varying
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FIG. 1. (a) The closed-loop configuration in the sensitivity minimization problem and (b) the
closed-loop configuration in the formulation of the sensitivity minimization problem as a standard
robust control problem.

system dimensions. A summary of the numerical procedure and a brief highlight of
some computational aspects are given in section 6. Finally section 7 concludes with
some remarks.

2. Preliminaries. In this section, we introduce the notation used in representing
LTV systems and collect the basic results from [15] about outer-inner factorization.

A state space realization of the LTV system P to be controlled is denoted on a
local time scale as

xk+1 = xkAk + ukBk,

yk = xkCk + ukDk,(1)

where xk, uk, and yk are (finite-dimensional) row vectors in, respectively, |CNk , |CMk ,
and |CLk and the matrices {Ak, Bk, Ck, Dk} are bounded matrices of appropriate di-
mensions. Remark that this notation is compatible with the earlier work on LTV
systems as reported in [16, 17, 18, 19].

To denote the state space representation more compactly, we introduce, as in
[16, 17, 18, 19], the dimension space sequences B:

B = · · · × B0 × B1 × · · · ,

where Bk = |CNk and the square box identifies the space of the zeroth entry. In a
similar way, we introduce the dimension space sequence M and N from the integer
sequences {Mk} and {Lk}. It is allowed that some integers in these sequences are
zero. The space of sequences in B with finite 2-norm will be denoted by `B

2 . Next
we stack the sequence of state vectors xk, input vectors uk, and output vectors yk

into ∞-dimensional row vectors x, u, and y, denoted explicitly for the state vector
sequence as

x =
[ · · · x−1 x0 x1 · · · ]

,

where the square identifies the position of the zeroth entry. Let B(−1) denote the
shifted dimension space sequence of B, i.e.,

B(−1) = · · · × B1 × B2 × · · · ,

and let D(M, N ) denote the Hilbert space of bounded diagonal operators `M
2 → `N

2 .
Then we can stack the system operators Ak, Bk, Ck, and Dk into the diagonal
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operators A, B, C, and D as (denoted only explicitly for A)

A = diag
[

· · · A−1 A0 A1 · · ·
]

∈ D(B, B(−1)) , C ∈ D(B, N ) ,

B ∈ D(M, B(−1)) , D ∈ D(M, N ) .

Let the causal bilateral shift operator on sequences be denoted by Z such that[ · · · x−1 x0 x1 · · · ]
Z =

[
· · · x−2 x−1 x0 · · ·

]
;

then a compact notation on a global time scale of the state space representation (1)
is

xZ−1 = xA + uB,
y = xC + uD,

also denoted as P =
[

A C
B D

]
.(2)

With this notation it is possible to represent an LTV system as an operator. Let
the transition operator Φ(j, k) of the system with state space representation (2) be
defined as

Φ(j, k) =

 AkAk+1 · · · Aj−1, j > k,
I, j = k,
undefined, j < k,

and let limj→∞ Φ(j, k) = 0 ∀k < ∞; then the inverse of the operator (I − AZ) exists
and is in U , and the operator representation of the (asymptotically stable) LTV system
P becomes

P = D + BZ(I − AZ)−1C.(3)

This transfer operator is upper triangular and in general the Hilbert space of bounded
upper operators acting from `M

2 to `N
2 is denoted by U(M, N ) or denoted in short

by U . When the dimension Nk of the state vector is finite ∀ k, then the operator
represented as in (3) is locally finite. In the same way as U , we denote the space of
bounded operators by X (M, N ) and the space of bounded lower triangular operators
by L(M, N ). A specific operator in D(M, M) is the identity operator denoted by
IM.

We also need the Hilbert–Schmidt space U2 and D2, which consists of those ele-
ments of U (respectively, D) with square summable norms of their entries.

With the operator representation of P in (3), the closure of the output state space
[20], denoted by Ho(P ), equals

Ho(P ) = D2(B, B)(I − AZ)−1C ⊂ U .

An operator PO ∈ U is left outer if

U2PO = U2,

and an operator PI ∈ U is a right isometry if

PIP
∗
I = I,

where P ∗
I denotes the adjoint of PI .
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Given a causal or upper operator P , the existence of an outer-inner factorization
was first established by Arveson in [21]. Later, van der Veen [15], continuing in this
work, devised a numerical procedure to calculate a realization of the inner and outer
factor given a state realization of P .

Let us recall the existence theorem of the outer-inner factorization, given by
Theorem 5 in [15].

THEOREM 2.1 (see [15, Theorem 5]). Let P ∈ U(M, N ). Then P has a factor-
ization

P = POPI ,

where PI ∈ U(MI , N ) is a right isometry, PO ∈ U(M, MI) is outer, and MI ⊂ M
(entrywise).

The key part of the algorithm to compute the inner-outer factorization is summa-
rized in Proposition 6 of [15]. In the present paper, we state its dual variant, as this is
required in solving the weighted sensitivity minimization problem and considers the
outer-inner factorization. Due to their close relationship, the latter variant is stated
without proof.

PROPOSITION 2.2 (Dual of Proposition 6 in [15]). Let P ∈ U be a locally finite
transfer operator, let P = {A, B, C, D} be a controllable realization of P , and assume
that the realization is asymptotically stable. Let PI be a right isometric factor of P
so that PO = PP ∗

I is left outer. Then the pair (AI , CI) that defines an orthonormal
basis for Ho(PI) satisfies

(i) Y = AY (−1)A∗
I + CC∗

I ,
(ii) 0 = BY (−1)A∗

I + DC∗
I ,

(iii) I = AIA
∗
I + CIC

∗
I ,

(iv) ker(Y.) = ∅,

where Y is some bounded diagonal operator and Y (−1) = ZY Z−1. Conversely, all
solutions (AI , CI) of these equations give a basis representation of Ho(PI).

The computational scheme that can be derived from Proposition 2.2 (see section
6) returns a uniformly observable [23] and asymptotically stable pair (AI , CI).

Finally we end this section with the definition of the notion of uniform positivity
of an Hermitian operator.

An Hermitian operator X is uniformly positive, denoted by X � 0, if

∃ ε > 0 : ‖ uXu∗ ‖ > ε ‖ uu∗ ‖ ∀ u ∈ `2 .

If X is uniformly positive, then it is boundedly invertible.

3. The sensitivity minimization problem. Assume the feedback configura-
tion in Figure 1(a). The plant P is assumed to be in U(M, N ) and to be given by
the following finite-dimensional LTV state space representation:

P =
[

A C
B D

]
,

A ∈ D(B, B(−1)), C ∈ D(B, N ),
B ∈ D(M, B(−1)), D ∈ D(M, N ).

The closed-loop system in Figure 1(a) is described by the systems of equations{
e1 = u1 + e2K,
e2 = u2 − e1P.
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The overall closed-loop system is assumed to be well posed; that is, we can solve
the above system of equations for the internal signals [e1, e2] in terms of the input,
respectively, disturbance signals [u1, u2]. This is indeed the case in which the operator
(I + PK) has a bounded inverse and then the map H from [u1, u2] to [e1, e2] is in
X (M ⊕ N , M ⊕ N ) and given by

H =
[

(I + PK)−1 −P (I + KP )−1

K(I + PK)−1 (I + KP )−1

]
.

An important notion of the closed-loop system is internal stability. This is defined
next.

DEFINITION 3.1. The system P in Figure 1(a) is internally stabilized by the
controller K if and only if H is causal; that is, H ∈ U(M ⊕ N , M ⊕ N ).

The sensitivity map S is defined as the map from u2 to e2; that is,

S = (I + KP )−1.(4)

We are now in a position to state the sensitivity minimization problem.
Problem 1. For a given disturbance attenuation level Γ ∈ D with Γ∗Γ > 0 and

an outer weighting map W ∈ U(N , N ) (W−1 ∈ U(N , N )) with given state space
realization

W = Dw + BwZ(I − AwZ)−1Cw,(5)

find a compensator K (if any exist) such that

(i) the closed-loop system H is internally stable,
(ii) ‖WSΓ−1‖ < 1,(6)

where ‖WSΓ−1‖ is the norm of WSΓ−1 as a bounded operator on N .
Remark 1. An extension of the above problem is treated in section 6. Here we do

not assume the disturbance attenuation level to be specified but additionally consider
the problem of determining the optimal (minimal) Γ for the special case Γ = γI,
where γ is a positive real constant.

4. An NPI problem. In this section, we formulate the sensitivity minimization
Problem 1 as an NPI problem. For that purpose, we need the Youla parametrization
of all internally stabilizing controllers in the present time-varying context. That this
parametrization is valid in this context is stated in our first theorem. Since it is a
special case of Theorem 11 of [6], we state it without proof.

THEOREM 4.1. Let the plant P ∈ U(M, N ); then a controller K internally stabi-
lizes H if and only if there exists a Q ∈ U(N , M) such that

K = (I − QP )−1Q.(7)

With the parametrization of K in (7), the sensitivity map S becomes

S = I − QP.(8)

Suppose that in addition to the stability of P , P has an outer-inner factorization

P = POPI .(9)



SENSITIVITY MINIMIZATION OF DISCRETE LTV SYSTEMS 797

Then we have

WS = W (I − QP )

from (8), and hence

W (I − S) = WQP ∈ U(N , N ).(10)

Using the expression for P in (9), we can state that when

W (I − S)P ∗
I = WQPO ∈ U(N , MI),(11)

we have found, since W−1 ∈ U , a Q ∈ U that parametrizes an internally stabilizing
controller K.

Now we first decompose the product WP ∗
I into a component in U and one in

LZ−1. This is done in our first lemma.
LEMMA 4.2. Let the input-output map W ∈ U be given as in (5), and let the

input-output map PI ∈ U(MI , N ) be given as

PI = BIZ(I − AIZ)−1CI ,

with AI and Aw both asymptotically stable. Then

∃!Xw, Yw ∈ D : WP ∗
I = BwY (−1)

w B∗
I + BwZ(I − AwZ)−1XwB∗

I︸ ︷︷ ︸
∈U

+ (DwC∗
I + BwY (−1)

w A∗
I)(I − Z∗A∗

I)
−1Z∗B∗

I︸ ︷︷ ︸
∈LZ−1

,

with Xw and Yw satisfying

CwC∗
I = Yw − AwY (−1)

w A∗
I ,

Xw = AwY (−1)
w .

Proof. With the expressions for W and PI in Lemma 4.2, WP ∗
I becomes

WP ∗
I = DwC∗

I (I −Z∗A∗
I)

−1Z∗B∗
I +BwZ

[
(I − AwZ)−1CwC∗

I (I − Z∗A∗
I)

−1Z∗ ]
B∗

I .
(12)
It is shown next that there exist operators Xw, Yw ∈ D such that the term between
square brackets can be decomposed as[

(I − AwZ)−1Xw + Yw(I − Z∗A∗
I)

−1Z∗] .(13)

To find these operators Xw and Yw, multiply the left- and right-hand sides of both
terms between square brackets by (I − AwZ) and Z(I − Z∗A∗

I), respectively. This
yields the following sequence of results:

CwC∗
I = XwZ(I − Z∗A∗

I) + (I − AwZ)Yw

= XwZ − XwA∗
I + Yw − AwY (−1)

w Z

= (Xw − AwY (−1)
w )Z + (Yw − XwA∗

I).

Since Xw and Yw are diagonal operators, we have that

Xw = AwY (−1)
w ,

CwC∗
I = Yw − XwA∗

I .
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When we combine these expressions, we conclude that the Yw operator satisfies

CwC∗
I = Yw − AwY (−1)

w A∗
I .

This Stein equation has a unique and bounded solution since AI (and Aw) are asymp-
totically stable. Therefore both Xw and Yw are in D. Replacing the term between
square brackets in (12) with the one obtained in (13) yields

WP ∗
I = DwC∗

I (I−Z∗A∗
I)

−1Z∗B∗
I +BwZ(I−AwZ)−1XB∗

I +BwZYw(I−Z∗A∗
I)

−1Z∗B∗
I .

Since the last term in this expression is equal to

BwY (−1)
w B∗

I + BwY (−1)
w A∗

I(I − Z∗A∗
I)

−1Z∗B∗
I ,

the result of Lemma 4.2 is proved.
With the result of Lemma 4.2, (11) can be written as(

BwY (−1)
w B∗

I + BwZ(I − AwZ)−1XwB∗
I

)
+

(
DwC∗

I + BwY
(−1)
w A∗

I) − (WSΓ−1)ΓC∗
I

)
(I − Z∗A∗

I)
−1Z∗B∗

I ∈ U .

Therefore, since the first term of the summation is in U , (11) reduces to(
(DwC∗

I + BwY (−1)
w A∗

I) − (WSΓ−1)ΓC∗
I

)
(I − Z∗A∗

I)
−1Z∗B∗

I ∈ U .

Introduce the operator J ∈ D2 equal to
(

IN
−IN

)
; then the Hermitian transpose

of this last relationship can also be denoted as

BIZ(I − AIZ)−1
[

CIΓ∗ CID
∗
w + AIY

∗(−1)
w B∗

w

]
J

[
Γ−∗S∗W ∗

I

]
∈ L.

The above exposure shows that the sensitivity minimization problem can be formu-
lated as an NPI problem.

Problem 2. Find the weighted sensitivity map S = (WSΓ−1) ∈ U(N , N ) such
that

(i) BIZ(I − AIZ)−1
[

CIΓ∗ CID
∗
w + AIY

∗(−1)
w B∗

w

]
J

[
S

∗

I

]
∈ L(MI , N ),(14)

(ii) ‖S‖ < 1.(15)

Once the weighted sensitivity map S has been determined, the controller K di-
rectly follows from (4) and is given by

K = (Γ−1S
−1

W − I)P−1.(16)

It should be remarked that this controller need not be causal.

5. Solving the NPI problem. NPI problems in the context of discrete time–
varying systems have been studied and solved in [7]. That paper formulates and treats
the NPI problem based on the so-called generalized “point evaluation map.” In the
present paper we take a different viewpoint. Instead we formulate the interpolation
condition as in (14). As such we do not require the calculation of generalized points
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as in [7], but we directly operate on the state space matrices of the given plant, its
inner factor of an outer-inner factorization, and the given weighting. The calculation
of these generalized points from the state space representation of the given plant
P is still an unresolved problem. This alternative viewpoint leads to an immediate
identification of the output state space of the J-isometric operator to be constructed in
solving the NPI problem. This is highlighted in Lemma 5.2. A further generalization
of the treatment given in [7] is that we allow the system dimensions to vary in time.
Despite this more general context, a number of the key results derived in [7] simply
carry over with minor modifications. As a consequence, we do not include proofs of
the results requiring minor modifications and prove only the lemma’s addressing the
different viewpoint.

As outlined in [7], the solution of NPI problems requires the construction of a
J-inner operator. In the present context of varying system dimension we focus on
the construction of an operator Θ ∈ U(M1 ⊕ N , N ⊕ N ) which is J-isometric in the
following generalized sense [19]:

ΘJΘ∗ = J ′ =
[

IM1

−IN

]
,(17)

where the dimension space sequence M1 still needs to be determined and which
satisfies the interpolation condition

BIZ(I − AIZ)−1 [
CIΓ∗ CID

∗
w + AIY

∗(−1)B∗
w

]
JΘ∗ ∈ L(MI , M1 ⊕ N )(18)

The following series of lemmas list a number of properties of J-isometric operators
which are important in solving the NPI problem 2. In these lemmas we assume the
operator Θ to be partitioned as

Θ =
[

Θ11 Θ12
Θ21 Θ22

]
,

Θ11 ∈ U(M1, N ), Θ12 ∈ U(M1, N ),
Θ21 ∈ U(N , N ), Θ22 ∈ U(N , N ),

and have the following state space realization:

ΘΘΘ =
[

AΘ CΘ
BΘ DΘ

]
=

 AΘ C1 C2
B1 D11 D12
B2 D21 D22

 .(19)

As in [7], the state space realization ΘΘΘ of a J-isometric operator Θ satisfies the fol-
lowing condition.

LEMMA 5.1. Let Θ be an operator in U2 with state space realization as given in
(19), and let the following relationship hold for some Hermitian operator Q ∈ D:

ΘΘΘ
[

Q(−1)

J

]
ΘΘΘ∗ =

[
Q

J ′
]

;(20)

then Θ is J-isometric in the generalized sense given in (17).
The identification of the output state space of the operator Θ by the interpolation

condition (18) is stated in the following lemma.
LEMMA 5.2. Let Θ be an operator in U2 with state space realization (19), and let

(20) hold for some Hermitian operator Q ∈ D; then

D(I − AΘZ)−1CΘJΘ∗ ∈ L2Z−1.
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Proof. Since Θ ∈ U2, its state space realization given in (19) allows us to express
Θ as

Θ = DΘ + BΘZ(I − AΘZ)−1CΘ.

Hence,

(I − AΘZ)−1CΘJΘ∗ = (I − AΘZ)−1CΘJ(D∗
Θ + C∗

Θ(I − Z∗A∗
Θ)−1Z∗B∗

Θ).

Using (20), the right-hand side equals

= (I − AΘZ)−1(−AΘQ(−1) + (Q − AΘQ(−1)A∗
Θ)(I − Z∗A∗

Θ)−1Z∗)B∗
Θ

= (I − AΘZ)−1(−AΘQ(−1)Z(I − Z∗A∗
Θ) + Q − AΘQ(−1)A∗

Θ)(I − Z∗A∗
Θ)−1Z∗)B∗

Θ

= (I − AΘZ)−1(−AΘQ(−1)Z + AΘQ(−1)A∗
Θ + Q − AΘQ(−1)A∗

Θ)(I − Z∗A∗
Θ)−1Z∗B∗

Θ

= (I − AΘZ)−1(−AΘZ + I)Q(I − Z∗A∗
Θ)−1Z∗B∗

Θ

= Q(I − Z∗A∗
Θ)−1Z∗B∗

Θ ∈ L2Z−1.

The key condition on the J-isometric operator solving the NPI Problem 2 is
stipulated in Lemma 5.5. Prior to stating that lemma, we have the following definition
and lemma.

DEFINITION 5.3. The pair ( A , C ) is uniformly detectable if and only if there
exists a bounded operator K ∈ D(N , B(−1)) such that the state space model xZ−1 =
x(A + CK) is asymptotically stable.

LEMMA 5.4. Suppose the pair ( A , C ) is uniformly detectable. Then if there
exists a solution X ∈ D(B, B) and X ≥ 0 of

AX(−1)A∗ + CC∗ = X,(21)

then the state space model xZ−1 = xA is asymptotically stable. Conversely, if the
state space model xZ−1 = xA is asymptotically stable, then there exists a unique
bounded solution X ≥ 0 of (21).

LEMMA 5.5. Let Θ be an operator in U2 with state space realization (19), let (20)
hold for a uniformly positive operator Q ∈ D, and let the pair (AΘ, C2) be uniformly
detectable; then

(i) Θ−1
22 ∈ U(N , N ),

(ii) Θ−1
22 Θ21 ∈ U(N , N ) and ‖Θ−1

22 Θ21‖ < 1.

Proof. (i) From the state space realization of Θ given in the right-hand side in
(19), the state space realization of Θ22 is

Θ22 =
[

AΘ C2
B2 D22

]
.

When the conditions
(a) D22 is invertible,
(b) the operator (AΘ − C2D

−1
22 B2) is asymptotically stable

hold, then since the state space realization of Θ−1
22 equals[

AΘ − C2D
−1
22 B2 −C2D

−1
22

D−1
22 B2 D−1

22

]
,
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we have that item (i) of the lemma is proved. We now prove both conditions (a) and
(b), making use of the following relationships derived from (20):

AΘQ(−1)A∗
Θ + C1C

∗
1 − C2C

∗
2 = Q,(22)

B2Q
(−1)A∗

Θ + D21C
∗
1 − D22C

∗
2 = 0,(23)

B2Q
(−1)B∗

2 + D21D
∗
21 − D22D

∗
22 = −I.(24)

For condition (a), (24) shows that

D22D
∗
22 = I + D21D

∗
21 + B2Q

(−1)B∗
2 .

Since Q � 0 it follows that D22D
∗
22 � 0 and D22 is invertible.

For condition (b), consider the product of operators

(AΘ − C2D
−1
22 B2)Q(−1)(AΘ − C2D

−1
22 B2)∗.

Using (23)–(24), this product can be written as

= AΘQ(−1)A∗
Θ − C2C

∗
2

− [
C2D

−1
22 D−∗

22 C∗
2 + C2D

−1
22 D21D

∗
21D

−∗
22 C∗

2 − C2D
−1
22 D21C

∗
1 − C1D

∗
21D

−∗
22 C∗

2
]
.

And, therefore, using (22) we obtain the following Lyapunov equation:

(AΘ − C2D
−1
22 B2)Q(−1)(AΘ − C2D

−1
22 B2)∗ + (C1 − C2D

−1
22 D21)(C1 − C2D

−1
22 D21)∗

+ C2D
−1
22 D−∗

22 C∗
2 = Q.

(25)
Since the pair (AΘ, C2) is uniformly detectable, also the pair (AΘ − C2D

−1
22 B2,[

C1 − C2D
−1
22 D21 C2D

−1
22

]
) is uniformly detectable. Therefore, since Q � 0, equation

(25) and Lemma 5.4 show that condition (b) holds and therefore item (i) is proved.
(ii) Lemma 5.1 shows that

ΘJΘ∗ = J ′
and, therefore,

Θ21Θ∗
21 − Θ22Θ∗

22 = −I.

This shows that

Θ22Θ∗
22 = I + Θ21Θ∗

21 � 0;

since Θ−1
22 exists this last equation shows that

I − Θ−1
22 Θ−∗

22 = Θ−1
22 Θ21Θ∗

21Θ
−∗
22

and therefore ‖Θ−1
22 Θ21‖ < 1. Since Θ−1

22 ∈ U and Θ21 ∈ U , it follows that Θ−1
22 Θ21 ∈

U .
Lemmas 5.1, 5.2, and 5.5 are used in the next section to calculate a state space

realization of Θ that solves the interpolation condition (18).
In the remaining part of this section, we assume that such a Θ has been calculated

and demonstrate how this Θ allows us to parametrize, as in [7], all solutions to the
NPI Problem 2.



802 MICHEL VERHAEGEN

The first step in the parametrization is to observe that for G1 ∈ U(N , M1) and
G2 ∈ U(N , N ), equation (18) shows that

BIZ(I − AIZ)−1 [
CIΓ∗ CID

∗
w + AIY

∗(−1)B∗
w

]
J

[
Θ∗

11 Θ∗
21

Θ∗
12 Θ∗

22

] [
G∗

1
G∗

2

]
∈ L,

and hence the solution to the interpolation condition (14) requires G1 and G2 to be
selected such that [

S I
]

=
[

G1 G2
] [

Θ11 Θ12
Θ21 Θ22

]
.(26)

From this relationship we parametrize all solutions S to Problem 2 as shown in the
following two theorems. These theorems correspond to Theorems 3.2 and 3.3 of [7],
adapted to the present context of nonconstant state, input and output dimensions.
Since only minor adaptations are required, we state both modifications without proof.

THEOREM 5.6. Let Θ be an operator in U2 satisfying the interpolation condi-
tion (18). Then S satisfies the interpolation condition (14) if and only if S has a
representation of the form

S = (G1Θ12 + G2Θ22)−1(G1Θ11 + G2Θ21)

for some pair of upper triangular operators G1 ∈ U and G2 ∈ U such that (G1Θ12 +
G2Θ22) is invertible with inverse again in U .

THEOREM 5.7. Let Θ be an operator in U2 satisfying the interpolation condition
(18). Let Θ be partitioned as

Θ =
[

Θ11 Θ12
Θ21 Θ22

]
and have a state space realization as in (19) such that (20) is satisfied for Q � 0.
Then

(1) there exist solutions S ∈ U to the NPI Problem 2;
(2) any solution S is given by

S = (SLΘ12 + Θ22)−1(SLΘ11 + Θ21)

with SL ∈ U(N , M1) satisfying ‖SL‖ < 1.

6. Calculation of a state space realization of Θ and a particular S.
Lemma 5.2 shows that the interpolation condition (18) fixes the pair (AΘ, CΘ) of the
state space realization of Θ, namely,[

AΘ CΘ
]

=
[

AI CIΓ∗ CID
∗
w + AIY

∗(−1)B∗
w

]
.(27)

Computing the remaining part (BΘ, DΘ) of the state space representation of Θ is
done in such a way that (20) is satisfied for a uniformly positive diagonal operator Q.
With the specification of (AΘ, CΘ) as in (27), the relationships to be satisfied then
are  AI CIΓ∗ G

B1 D11 D12
B2 D21 D22

  Q(−1)

IN
−IN

  A∗
I B∗

1 B∗
2

ΓC∗
I D∗

11 D∗
21

G∗ D∗
12 D∗

22

 =
[

Q
J ′

]
,

(28)
where G equals CID

∗
w + AIY

∗(−1)B∗
w.
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The relationships to compute ΘΘΘ, which can directly be derived from (28), can be
divided in two parts. One part is the following Lyapunov equation:

AIQ
(−1)A∗

I + CIΓ∗ΓC∗
I − GG∗ = Q.(29)

From this equation the operator Q can be calculated. The other part is the set of
equations

[
B1 D11 D12
B2 D21 D22

]  Q(−1)

IN
−IN

  A∗
I

ΓC∗
I

G∗

 = 0,(30)

[
B1 D11 D12
B2 D21 D22

]  Q(−1)

IN
−IN

  B∗
1 B∗

2
D∗

11 D∗
21

D∗
12 D∗

22

 = J ′,(31)

from which we determine the system matrices
(

B1 D11 D12
B2 D21 D22

)
, given the solution

Q to (29).

6.1. Selecting the minimal scalar γ when Γ = γI in solving for the
operator Q. Consider the following two Lyapunov equations:

AIQ
(−1)
1 A∗

I + γ2CIC
∗
I = Q1,(32)

AIQ
(−1)
2 A∗

I − GG∗ = Q2.(33)

Since AI is asymptotically stable both equations have a unique solution. In addition
Q1 � 0, since the pair (AI CI) is uniformly detectable. We now consider the scaled
Lyapunov equations

AIQ
(−1)
1 A∗

I + CIC
∗
I = Q1,

AIQ
(−1)
2 A∗

I + GG∗ = Q2.

And the relation between the solution of both pairs of Lyapunov equations is

Q1 = γ2Q1, Q2 = −Q2.

In this way Q2 is semipositive definite. Furthermore, let Q1 = S1S
∗
1 and Q2 = S2S

∗
2 ;

then we can easily construct the following square root update mechanisms for the
above Lyapunov equations:[

AIS
(−1)
1 CI

]
T1 =

[
S1 0

]
,[

AIS
(−1)
2 G

]
T2 =

[
S2 0

]
,

with both T1 and T2 diagonal unitary operators satisfying T1T
∗
1 = T2T

∗
2 = I. The

actual solution to the original Lyapunov equation (29) can be derived from these two
square roots and reads

Q =
(
γ2S1S

∗
1 − S2S

∗
2
)
.
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Since Q1 � 0, S1 is invertible and we have that

Q = S1
(
γ2I − S−1

1 S2S
∗
2S−∗

1

)
S∗

1 .(34)

Therefore, let sv(M) denote the singular values of the operator M ; then

Q � 0 ⇔ γ > min sv(S−1
1 S2),

and we see that we can compute the minimal γ directly from the square roots S1 and
S2. We also observe that as in the time-invariant case approaching the optimal γ
leads to a singular solution of the Lyapunov equation. A close approximation of the
minimal scalar disturbance attenuation level γ may be taken as

γ̃opt = min sv(S−1
1 S2) + ε,

where ε is a small positive real number.
Remark 2. In the present time-varying context, there is no need to fix Γ to

γI. The diagonal operator Γ may have varying entries along its diagonal. However,
determining such an optimal time-varying disturbance attenuation level is a very
complex problem even when we assume Γk to be equal to γkI, for γk scalar. This is
because a particular choice of such a γk at a local time instance k has a global effect
on the solution (32), with γ replaced by γk. In addition this global effect of γk on
Q1,j for j ≤ k is implicit rather than explicit.

6.2. Completing the state space realization of Θ. We demonstrate in this
section that the solution presented in [7] to complete the state space realization of ΘΘΘ
using the solution of the Lyapunov equation (29) still holds when the system dimen-
sions are time variant. In addition we present a square root solution. The solution is
discussed on a local time scale.

Let AI,k ∈ ||R Nk×Nk+1 and CI,k ∈ ||R Nk×Lk ; then the Lyapunov equation (29)
with Qk > 0 shows that [12]

Nk ≤ Nk+1 + Lk.

Furthermore, equation (29) shows that the rows of the matrix [ AI,k γkCI,k Gk ] ∈
||R Nk×(Nk+1+2Lk) are independent, and so are the columns of the matrix Qk+1

ILk

−ILk

  A∗
I,k

γkC∗
I,k

G∗
k

 .

Therefore, we can always find a matrix Vk ∈ ||R (Nk+1−Nk+2Lk)×(Nk+1+2Lk) with inde-
pendent rows such that

Vk

 Qk+1
ILk

−ILk

  A∗
I,k

γkC∗
I,k

G∗
k

 = 0.

The compound matrix
[

AI,k γkCI,k Gk

Vk

]
is square and of full rank, as is shown

in the following theorem.
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THEOREM 6.1. Let Vk ∈ ||R (Nk+1−Nk+2Lk)×(Nk+1+2Lk) have independent rows,
and let the following relationship hold:

[
AI,k γkCI,k Gk

Vk

]
︸ ︷︷ ︸

 Qk+1
ILk

−ILk

  A∗
I,k

γkC∗
I,k

G∗
k

V ∗
k

 =
[

Qk 0
0 J ′′

]
,

(35)
with both Qk and Qk+1 positive definite, then the underbraced matrix has full rank.

Proof. The underbraced matrix is square since Vk ∈ ||R (Nk+1−Nk+2Lk)×(Nk+1+2Lk)

and the matrix
[

AI,k γkCI,k Gk

] ∈ ||R Nk×(Nk+1+2Lk). Now suppose that this
matrix is not invertible; i.e.,

∃ [
x1 x2

]
/= 0 :

[
x1 x2

] [
AI,k γkCI,k Gk

Vk

]
= 0.

However, from (35) we derive that

[
x1 x2

] [
AI,k γkCI,k Gk

Vk

]  Qk+1
ILk

−ILk

  A∗
I,k

γkC∗
I,k

G∗
k

 = x1Qk.

Since Qk is nonsingular, x1 = 0 and, as a consequence since Vk has independent rows,
x2 = 0. This is a contradiction and the theorem is proved.

This theorem allows us to determine the inertia of the matrix J ′′. Let #+(Mk)
denote the number of +’s in the inertia of Mk, and similarly let #−(Mk) denote the
number of −’s; then (35) and Theorem 6.1 show that

Nk+1 + Lk = Nk + #+(J ′′),
Lk = #−(J ′′).(36)

Let #+(J ′′) = αk; then we complete the calculation of the state space realization of
Θ by computing the following factorization:

Vk

 Qk+1
ILk

−ILk

 V ∗
k = J ′′ = Uk

[
Iαk

−ILk

]
U∗

k .(37)

Such a factorization with Uk invertible always exists. As a consequence the pair[
BΘ DΘ

]
now follows as [

BΘ DΘ
]

= U−1
k Vk.(38)

We end this section by presenting a square root variant to compute Uk directly from
the square roots S1,k and S2,k.

First note that with an additional singular value decomposition (SVD) of the
matrix S−1

1,k+1S2,k+1 given as

S−1
1,k+1S2,k+1 = US,k+1ΣS,k+1V

∗
S,k+1,

we can write (34) on the time instance k + 1 as

Qk+1 = S1,k+1US,k+1(γ2I − Σ2
S,k+1)

1
2 (γ2I − Σ2

S,k+1)
∗
2 U∗

S,k+1S
∗
1,k+1.
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Let us denote the square root of Qk+1 by SQ,k+1; then we can read off this quantity
from the above expression.

We partition the matrix Vk as
[

V1,k V2,k

]
with V1,k ∈ ||R (Nk+1−Nk+2Lk)×(Nk+1+Lk)

and the matrix Uk as
[

U1,k U2,k

]
with U1,k ∈ ||R (Nk+1−Nk+2Lk)×αk in addition to

defining V ′
1,k as V1,K

[
SQ,k+1

ILk

]
; then we can alternatively denote (37) as

V ′
1,kV ′ ∗

1,k − V2,kV ∗
2,k = U1,kU∗

1,k − U2,kU∗
2,k.(39)

Finally, consider the generalized SVD [22] of the matrix pair
(
V ′

1,k, V2,k

)
, and denote

this decomposition as

V ′
1,k = XkΣV1,kU∗

V1,k, V2,k = XkΣV2,kU∗
V2,k,

where Xk is a square nonsingular (Lk + αk) × (Lk + αk) matrix, ΣVj ,k for j = 1, 2 is
a diagonal matrix with positive or zero entries, and UVj ,k for j = 1, 2 are orthogonal
square matrices. Based on this decomposition the left-hand side of (39) can be written
as

V ′
1,kV ′ ∗

1,k − V2,kV ∗
2,k = Xk

(
Σ2

V1,k − Σ2
V2,k

)
X∗

k .

From this equation we can read off the required factors U1,k and U2,k.

6.3. The state space realization for a particular S . From Theorem 5.7 we
recall that a particular solution S to the NPI Problem 2 is

S = Θ−1
22 Θ21.

With the state space representation for Θ calculated in the previous subsection, the
latter two operators are determined as follows:

Θ21 = D21 + B2Z(I − AIZ)−1CIΓ∗,
Θ22 = D22 + B2Z(I − AIZ)−1G.

Hence, because of Lemma 5.5,

Θ−1
22 = D−1

22 − D−1
22 B2Z(I − (AI − GD−1

22 B2)Z)−1GD−1
22 exists and is ∈ U ,

and the product Θ−1
22 Θ21(∈ U) has the state following state space representation: (AI − GD−1

22 B2) −GD−1
22 B2 −GD−1

22 D21
0 AI CIΓ∗

D−1
22 D−1

22 B2 D−1
22 D21

 .

Consider the following constant similarity transformation: I I 0
0 I 0
0 0 I

  (AI − GD−1
22 B2) −GD−1

22 B2 −GD−1
22 D21

0 AI CIΓ∗

D−1
22 B2 D−1

22 B2 D−1
22 D21

  I −I 0
0 I 0
0 0 I



=

 (AI − GD−1
22 B2) 0 CIΓ∗ − GD−1

22 D21
0 AI CIΓ∗

D−1
22 B2 0 D−1

22 D21

 ;

then Θ−1
22 Θ21 is given as

Θ−1
22 Θ21 = D−1

22 D21 + D−1
22 B2(I − (AI − GD−1

22 B2)Z)−1(CIΓ∗ − GD−1
22 D21).(40)
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6.4. Summary of the computational scheme. The analysis made in the
previous sections can readily be summarized in a computational scheme to solve the
weighted sensitivity minimization problem. In this section, we restrict ourselves to
summarizing the key numerical equations. These are the following recursive equations,
which are all of Lyapunov type running backwards in time:

(a) The computation of the part of the outer-inner factorization of the given
plant P necessary in solving the sensitivity minimization problem is highlighted in
Proposition 2.2. The equations in this proposition are reordered such that the se-
quential calculations occur from top to bottom. This results on a local time scale in
the following equations:

[
BkYk+1 Dk

] [
A∗

I,k

C∗
I,k

]
= 0,

AI,kA∗
I,k + CI,kC∗

I,k = I,

AkYk+1A
∗
I,k + CkC∗

I,k = Yk.

(b) In formulating the interpolation condition (14) for the weighted sensitivity
minimization problem, the quantity Yw,k is required. According to Lemma 4.2, Yw,k

satisfies

Cw,kC∗
I,k + Aw,kYw,k+1A

∗
I,k = Yw,k.

(c) Finally, the key equation in solving the NPI problem is the Lyapunov equation
(29). This equation on a local time scale reads

AI,kQk+1A
∗
I,k + CI,kΓ∗

kΓkC∗
I,k − GkG∗

k = Qk.

All other quantities that are computed in the course of solving the sensitivity mini-
mization problem satisfy local expressions, making use of the solutions of the above
recursive equations. For that reason, these three groups of recursive equations consti-
tute the heart of the computational procedure. The actual solution of these equations
requires the specification of end conditions. These end conditions can be calculated
with a time-invariant solution to the sensitivity minimization problem for the case
the plant becomes time-invariant from a particular time-instant on.

This situation occurs, e.g., in practical engineering problems when changing the
stationary operation condition of industrial plants. Generally, in these operation con-
ditions the system accurately behaves as a linear time-invariant system. Furthermore,
the transition between operation conditions can often be approximated by a linear
time-varying system.

7. Concluding remarks. The solution presented in this paper to the weighted
sensitivity minimization problem is characterized by recursive calculations involving
the system matrices of the given state space model of the plant to be controlled. The
latter is assumed to be controllable and stable.

The key recursive equations are Lyapunov equations which run backward in time.
For the special case the system becomes time-invariant from a specific point in time;
it is possible to find initial conditions for both Lyapunov recursions making use of
standard solutions for time-invariant systems.

The solution presented in this paper is computationally more efficient and elegant
compared with both the lifting approach presented in [3] when the linear system is
periodic as well as the time-varying solution in [4], [5]. Furthermore, the approach
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outlined in this paper is capable of treating varying input and output dimensions. As
a consequence the important class of problems of multirate sampled data systems also
fits within the constructed framework.

Continued research on the extension of the present approach to treat unstable
plants is currently under way. Here we will also consider the problem of making the
disturbance attenuation level time-varying.

Acknowledgment. The author acknowledges Prof. H. Dym of the Weizmann
Institute for fruitful discussions related to Theorem 6.1.
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Abstract. In this paper we analyze the structure of the class of discrete-time linear stochastic
systems in terms of the geometric theory of stochastic realization. We discuss the role of invari-
ant directions, zeros of spectral factors, and output-induced subspaces in determining the systems-
theoretical properties of the stochastic systems. A prototype interpolation problem for recovering lost
state information is discussed, and it is shown how it can be solved via Kalman filtering recursions
tying together the state processes of a family of totally ordered splitting subspaces.
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1. Introduction. It is a somewhat surprising fact that, in the discrete-time case,
the family of minimal state-space representations{

x(t + 1) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t)

(1.1)

of a stationary stochastic vector process {y(t); t ∈ Z} with a rational spectral density
exhibits a remarkably rich structure, affecting the implementation of most estima-
tion algorithms, and that much of this structure is not present in the corresponding
continuous-time setting. This diversity is also reflected in the structure of the corre-
sponding family of matrix Riccati equations, studied in detail in [22] in the context
of invariant directions of matrix Riccati equations [5, 25, 26], a phenomenon that is
not present in the continuous-time case.

As usual, {u(t); t ∈ Z} is a vector-valued white noise process which, passed
through a stable filter with transfer function

W (z) = C(zI − A)−1B + D(1.2)

beginning at the remote past, produces the output process {y(t); t ∈ Z}, say, of di-
mension m and with an m×m spectral density Φ(z) = W (z)W (1/z)′. (Here ′ denotes
transpose, and the white noise u is a zero-mean process such that E{u(t)u(s)′} = Iδts.)

The output process y is of course purely nondeterministic, and we assume that
its spectral density Φ is full rank. The representation (1.1) is a minimal realization
in the sense that the state process x has as few components as possible.
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of Operations Research and Decision Systems, Computer and Automation Institute, Hungarian
Academy of Sciences, Budapest, Hungary (micha@math.elte.hu).

810



OUTPUT-INDUCED SUBSPACES AND INTERPOLATION 811

Obviously W is a rational spectral factor having all its poles strictly inside the
unit circle, implying that the same holds for the eigenvalues of A. Note that we are
not confining ourselves to square spectral factors W , since the dimension p of the
input noise process could be larger than m. In particular, this implies that the state
vector may not be expressible in terms of the output process y(t), t ∈ Z, alone but
that it depends on some unobserved exogenous noise also. Another consequence is
that the number of zeros of W may be fewer than the number of poles of W , even if
D is full rank.

Part of this paper is devoted to the following prototype interpolation problem,
which is of a somewhat different type from the interpolation problem considered in
[23, 24]. Suppose that we observe the state x as well as the output y on some finite
or infinite interval except that there is a blackout of state information on some finite
subinterval (t0, t1). Then the problem is to reconstruct the lost state information in
the least squares sense, given the noisy output and the remaining states information.
This problem provides a framework for studying many important questions concerning
the structure of discrete-time linear stochastic systems.

This interpolation problem is preferably studied in the context of the geometric
theory of stochastic realization (see [17, 18, 14, 15] and references therein), in which
the properties of the state representation (1.1) are expressed in terms of the minimal
Markovian splitting subspace

X = {a′x(0) | a ∈ Rn},(1.3)

where n := dimX is the number of components of x(0) so that x(0) forms a basis
in X. Due to stationarity, it is sufficient to study {x(t); t ∈ Z} at time t = 0. The
family of such X corresponding to a given y will be denoted X. It is known that X

is endowed with a certain partial ordering. This ordering, reviewed in section 2, will
play an important role in this paper.

A basic tool in the analysis of the interpolation problem and, more generally, the
structural properties of the family X of state-space representations is a pair (σ, σ̄) of
shift operators on X, which given any X ∈ X produces a family {X(k) | k ∈ Z} of
totally ordered splitting subspaces. We show that these splitting subspaces are tied
together by Kalman filtering recursions in the sense that we can pass from one state
process x(k) to the next by (forward or backward) Kalman filtering, a remarkable fact
that enables us actually to compute these spaces.

These sequences of splitting subspaces provide a deeper insight into the structure
of the related discrete-time matrix Riccati difference equation. In fact, the corre-
sponding sequence of state covariance matrices constitutes a solution of this Riccati
equation. It is well known that the limits at −∞ and at ∞ are solutions of the
steady-state (algebraic) Riccati equation, but our procedure also enables us to study
the transient behavior of these equations. This should be compared with the corre-
sponding continuous-time results in [13].

The interpolation estimate of x(t) on the interval (t0, t1) turns out to be a linear
combination of x(t0−t)(t) and x(t1−t)(t), the state processes of X(t0−t) and X(t1−t), re-
spectively, in a certain uniform choice of coordinates, enabling us to use these Kalman
recursions to determine the estimate. As t0 → −∞ and t1 → ∞, we obtain the cor-
responding prototype smoothing problem, and the structure of the solution is similar
to those presented in [3] and in [18].

We show that the computational burden of determining the interpolation esti-
mates depends on the dimension of the internal subspace X ∩ H0 of the splitting
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subspace, where H0 is the closure, in the inner product 〈ξ, η〉 := E{ξ, η}, of all ran-
dom variables

{yi(t) | i = 1, 2, . . . , m; t ∈ Z}

of the output process. In fact, we show that if dimX ∩H0 = n−ν, we need only solve
matrix Riccati equations of dimension at most ν × ν rather than n × n to compute
the appropriate filter estimates. Sometimes, however, we need an initial number of
time steps to achieve this reduction and to understand this better we need to study
the structure of the internal subspace X ∩ H0.

In this paper we show among other things that the internal subspace has the
direct sum decomposition

X ∩ H0 = X ∩ {y(−1), . . . , y(−n)} + Y ∗ + X ∩ {y(0), . . . , y(n − 1)},

where the subspace Y ∗ can be determined by algorithms akin to the one used to
compute the maximal output-nulling subspace in geometric control theory [31]. This
decomposition and the theoretical framework in which it is developed give a consider-
able amount of information about the structure of the discrete-time linear stochastic
system (1.1).

First, if the predictable subspace X ∩ {y(−1), . . . , y(−n)} is nontrivial, there is an
a ∈ Rn such that

a′x(t) ∈ {y(t − 1), y(t − 2), . . . , y(t − n)},

and consequently the usual Kalman filtering problem of estimating x(t) given the
data y(t − 1), y(t − 2), . . . , y(0) reaches steady state in a finite number of steps in the
direction a. An analogous statement holds for the initial point smoothing problem
and the smoothable subspace X ∩ {y(0), . . . , y(n − 1)}. Nontrivial such directions a
are known as invariant directions and have been studied extensively in the literature
[5, 25, 26, 22], but the connections to the geometric theory of Markovian splitting
subspaces are presented here for the first time.

Second, the basic reason why discrete-time models (1.1) are more complicated,
and the study of them is more challenging, than in the continuous-time case is that
DD′ varies over X. If DD′ > 0 for all X ∈ X, the results and the analysis of the
(coercive) continuous-time case generally carry over verbatim. This is known as the
regular case. In the regular case there are no invariant directions and Y ∗ = X ∩ H0.
In this paper we give several geometric characterizations of regularity and investigate
the fine structure of the nonregular case.

Third, the zero structure of the transfer function (1.2) plays an important role in
the analysis of the interpolation problem, and it can be studied in terms of output-
induced subspaces, i.e., subspaces of X ∩ H0 with certain invariance properties to be
specified below. The output-induced subspaces also provide a link between stochastic
realization theory and geometric control theory [31, 4] (see Remark 7.3). This program
was initiated in [18, 19] and was continued in [13] and [29], where, in particular, the
connections to geometric control theory are discussed in great detail in continuous
and discrete time, respectively. In this paper we introduce the concept of strictly
output-induced subspaces, a refinement needed to study the discrete-time case. In
particular, Y ∗ is the maximal strictly output-induced subspace, which plays the role
of X ∩H0 in the nonregular case. The zero structure also provides information about
the possible reduction of the Riccati recursions in the interpolation problem.
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The paper is organized as follows. Section 2 is devoted to preliminaries on the
geometric theory of stochastic realization theory and to notations. In section 3 we
introduce the operators σ and σ̄, characterize regularity in terms of them, and es-
tablish the properties of the family {X(k)|k ∈ Z}, and in section 4 we introduce the
interpolation problem and relate it to the results in section 3. Section 5 is about the
zero structure of {X(k)|k ∈ Z} in the regular case. In section 6 we discuss output-
induced subspaces, and in section 7 the role of invariant directions is investigated
and the algorithm for determining Y ∗ is given. Finally, in section 8, the change in
zero structure when applying σ and σ̄ is discussed, and the connections to the zero
dynamics operators and the reduction of the Riccati equations in the interpolation
problem are explained.

2. Preliminaries and notations. Given a stationary purely nondeterministic
m-dimensional stochastic process {y(t); t ∈ Z}, any stochastic realization (1.1) of y
may be represented in a coordinate-free manner by a triplet (X, H, U), where X is
given by (1.3), underscoring the fact that two representations (1.1) are considered
identical if they differ only by the choice of coordinates in X. Here H is the Hilbert
space generated by the random variables

{ui(t) | i = 1, 2, . . . , p; t ∈ Z}
with inner product

〈ξ, η〉 = E{ξ, η},

and the unitary operator U : H → H is the shift determined by

Uui(t) = ui(t + 1).

Then U acts as the shift for all processes in the system, i.e., Uyi(t) = yi(t + 1) and

Uxi(t) = xi(t + 1). We always assume that the matrix
[
B
D

]
has linearly independent

columns so that H is generated also by

{yi(t), xj(t) | i = 1, . . . , m; j = 1, . . . , n; t ∈ Z}.

The Hilbert space H so defined is called the ambient space of X.
For any subspace Y ⊂ H we shall write EY λ to denote the orthogonal projection

of λ ∈ H onto Y . Occasionally we shall misuse notations somewhat by writing EY z
when z is a random vector to denote the vector with components {EY zi}. By EY Z
we shall mean the closure of {EY ζ | ζ ∈ Z}. For any pair of subspaces Y and
Z we write Y + Z to denote direct sum (implying that Y ∩ Z = 0), Y ⊕ Z for
orthogonal direct sum, and Y ∨ Z for the vector sum in the general case, i.e., for
closure{η + ζ | η ∈ Y, ζ ∈ Z}. Moreover, we write Z⊥ to denote the orthogonal
complement H 	 Z of Z in the ambient space H. Finally, we write Z ⊥ Y | X to
denote that Z and Y are conditionally orthogonal given X, i.e., that

〈η − EXη, ζ − EXζ〉 = 0 for all η ∈ Y, ζ ∈ Z.

There are some important subspaces related to the given process y, which are
subspaces of H for each representation (X, H, U) and which are considered fixed in
this analysis. Define the past space H− as the subspace generated by the random
variables

{yi(t) | i = 1, 2, . . . , m; t = −1, −2, −3, . . . }
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and the future space H+ as the subspace generated by

{yi(t) | i = 1, 2, . . . , m; t = 0, 1, 2, . . . },

and let

H0 := H− ∨ H+ ⊂ H(2.1)

be the space generated by all random variables in y. We shall also consider finite-
dimensional subspaces {y(j), . . . , y(k)} spanned by the components of the random
vectors depicted inside the curly brackets. We shall also use the shorthand notation
H−

t−1 and H+
t for U tH− and U tH+, respectively, the past and future spaces shifted

to time t. Then H−
−1 = H− and H+

0 = H+, which is consistent with the asymmetric
definition of past and future.

It is well known that X is a minimal Markovian splitting subspace [17, 18] and
that it can be represented uniquely in terms of a pair (S, S̄) of subspaces such that

S ⊃ H− and S̄ ⊃ H+,(2.2)

U−1S ⊂ S and US̄ ⊂ S̄,(2.3)

and

H = S̄⊥ ⊕ X ⊕ S⊥.(2.4)

Consequently, S and S̄ may be regarded as extensions of the past space H− and
future space H+, respectively, inheriting their invariance properties, and they intersect
perpendicularly so that

X = S ∩ S̄ = ESS̄ = ES̄S.(2.5)

Conversely, S and S̄ can be recovered from X in terms of{
S = H− ∨ X−,

S̄ = H+ ∨ X+,
(2.6)

where X− :=
∨0

t=−∞ U tX and X+ :=
∨∞

t=0 U tX. We shall write X ∼ (S, S̄) to
exhibit the one-to-one correspondence between X and (S, S̄).

Clearly, the ambient space has the representation

H = S ∨ S̄,(2.7)

and S ⊥ S̄ | X, which is equivalent to

ESλ = EXλ for λ ∈ S̄(2.8)

and to

ES̄λ = EXλ for λ ∈ S.(2.9)

In particular, H− ⊥ H+ | X; i.e., X is a splitting subspace.
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We recall that X ∼ (S, S̄) is minimal both in the sense of subspace inclusion
and in the sense of dimension, two concepts of minimality which can be shown to be
equivalent, if and only if

S̄ = H+ ∨ S⊥(2.10)

and

S = H− ∨ S̄⊥(2.11)

[17, 18]. Condition (2.10) is equivalent to X ∩ (H+)⊥ = 0, i.e., to X being observable,
and (2.11) to X ∩ (H−)⊥ = 0, i.e., to X being constructible. Therefore, in view of
(2.5), we have

X = ESH+ = ES̄H−(2.12)

whenever X is minimal.
The space S is actually identical to the subspace generated by the past of the

driving white noise u in (1.1), so u can be constructed from S by Wold decomposition
[14, 15]. Analogously, S̄ corresponds to another white noise process {ū(t); t ∈ Z}, the
future space of which coincides with S̄, and, passed through an antistable filter with
transfer function

W̄ (z) = zC̄(I − zA′)−1B̄ + D̄(2.13)

from the remote future, ū produces a backward realization of y, namely,{
x̄(t − 1) = A′x̄(t) + B̄ū(t − 1),
y(t − 1) = C̄x̄(t) + D̄ū(t − 1).

(2.14)

Here x̄(0) is just another basis in X such that

x̄(t) = P−1x(t),(2.15)

where P is the state covariance

P = E{x(0)x(0)′}.(2.16)

The ambient space H will of course vary over the family X of minimal Markovian
splitting subspaces. If X ⊂ H0, then H = H0 and we say that X is internal. We
write X0 to denote the subclass of internal X ∈ X.

The family X is endowed with a natural partial ordering [18]. We say that X1 ≤
X2 if

‖EX1λ‖ ≤ ‖EX2λ‖ for all λ ∈ H+

or, equivalently,

‖EX2λ‖ ≤ ‖EX1λ‖ for all λ ∈ H−.

In this ordering the predictor space X− := EH−
H+ is the minimal element in X and

X+ := EH+
H− is the maximal element, i.e.,

X− ≤ X ≤ X+ for all X ∈ X.(2.17)

Obviously, both X− ∼ (S−, S̄−) and X+ ∼ (S+, S̄+) are internal.
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This ordering can be used to introduce a uniform choice of bases (or coordinates)
in all X ∈ X. In fact, let x+(0) be an arbitrary choice of basis in X+, and define

x(0) = EXx+(0)(2.18)

for all X ∈ X. This will ensure the invariance of the matrices A and C over the class
of forward minimal realizations (1.1). In the same way, we define

x̄(0) = EX x̄−(0),(2.19)

where x̄−(0) = P−1
− x−(0), x−(0) being formed via (2.18) for X = X− and P− being

the corresponding state covariance (2.16). Then C̄ and A′ will be invariant over the
set of backward realizations (2.14).

Introducing coordinates in this uniform fashion, we can also parameterize the
family X in terms of the corresponding class P of state covariances (2.16). The usual
partial ordering of these positive definite matrices reflects the partial ordering of
splitting subspaces in X introduced above. Consequently, in this parameterization
(2.17) becomes

P− ≤ P ≤ P+ for all P ∈ P(2.20)

(cf. [8]). In the same way, we can parameterize X in terms of the family P̄ of covariance
matrices

P̄ := E{x̄(0)x̄(0)′} = P−1(2.21)

of the backward realizations (2.14). Then (2.17) becomes

P̄+ ≤ P̄ ≤ P̄− for all P̄ ∈ P̄.(2.22)

3. An ordered family of splitting subspaces. A fact of central importance
in this paper is that each splitting subspace X ∈ X can be naturally imbedded in
a doubly infinite sequence of elements in X, which contains finitely many different
splitting subspaces if and only if X ∈ X0; i.e., X is internal. To see this, define
operators σ and σ̄ on X so that, for X ∼ (S, S̄),

σX = EH−∨(U−1S)X,(3.1)

σ̄X = EH+∨(US̄)X.(3.2)

Observe that the operator σ is the geometric counterpart of a one-step-ahead
state predictor given past output and state information. Our first result states, among
other things, that σX is itself a splitting subspace so that σX ∈ X. Remarkably, as
we shall see in section 4, the states corresponding to {σkX} are actually generated
by a Kalman filter. Analogous statements hold for σ̄ with respect to the backward
setting.

THEOREM 3.1. Let X ∼ (S, S̄) be a minimal Markovian splitting subspace. Then
(i) σX and σ̄X are minimal Markovian splitting subspaces and

σX ≤ X ≤ σ̄X.(3.3)

Moreover, they have the same ambient spaces, namely, S ∨ S̄.
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(ii) σX = X if and only if

UX ⊂ X ∨ {y(0)},(3.4)

and σ̄X = X if and only if

U−1X ⊂ X ∨ {y(−1)}.(3.5)

(iii) The fixed points of σ and σ̄ are internal minimal Markovian splitting sub-
spaces.

Proof. We prove all statements involving σ. Then those involving σ̄ follow by
symmetry, replacing H−, S, and U−1 with H+, S̄, and U . Since X ∼ (S, S̄) is a
minimal Markovian splitting subspace, S is U−1-invariant and X = ESH+. Obviously
S(−1) := H− ∨ (U−1S) is also U−1-invariant and S(−1) ⊂ S. Therefore

σX = ES(−1)
ESH+ = ES(−1)

H+

is an observable Markovian splitting subspace. Since, in addition, S(−1) ⊂ S ⊥
H+ ∩ (H−)⊥, σX is minimal [18, Theorem 4.10]. Since

ES(−1)
ESλ = ES(−1)

λ for each λ ∈ H+,

the splitting property (2.8) and the fact that ‖ES(−1)
ξ‖ ≤ ‖ξ‖ imply that σX ≤ X.

Since X and σX are finite dimensional and hence proper [17, 18], their ambient spaces
are

∨∞
t=0 U tS and

∨∞
t=0 U tS(−1), which must coincide in view of the fact that

U−1S ⊂ S(−1) ⊂ S.

In the same way we show that X and σ̄X have the same ambient space. This proves
(i).

Next, we show that if σX = X, then X ⊂ H0. Now, σX = X is equivalent
to X ⊂ H− ∨ U−1S and hence to UX ⊂ S ∨ {y(0)}. However, S = X ⊕ S̄⊥ and
{y(0)} ⊂ H+ ⊂ S̄ ⊥ S̄⊥, so

UX ⊂ [X ∨ {y(0)}] ⊕ S̄⊥.

Since UX ⊥ US̄⊥ ⊃ S̄⊥ we have thus established that σX = X if and only if

UX ⊂ X ∨ {y(0)},(3.6)

which is the first part of (ii). A symmetric argument yields the second part.
Finally, to prove (iii), we note that (3.6) implies that

UEH⊥
0 X ⊂ EH⊥

0 X.

But the subspace EH⊥
0 X is finite dimensional. Since U is a bilateral shift, it has

no eigenvalues [30] and hence cannot have a nontrivial finite-dimensional invariant
subspace. Consequently we must have X ⊂ H0.

COROLLARY 3.2. Let X ∈ X and X ∼ (S, S̄). Then

X(k) =

{
σ−kX for k = 0, −1, −2, . . . ,

σ̄kX for k = 0, 1, 2, . . .
(3.7)



818 ANDERS LINDQUIST AND GYÖRGY MICHALETZKY

defines a sequence {X(k) | k ∈ Z} of elements in X which have the same ambient
space and which are totally ordered with X(0) = X. More precisely,

· · · ≤ X(−2) ≤ X(−1) ≤ X ≤ X(1) ≤ X(2) ≤ · · · .

Moreover, for each k ∈ Z, X(k) ∼ (S(k), S̄(k)), where

S(k) = H− ∨ UkS, S̄(k) = H+ ∨
[
S(k)

]⊥
for k ≤ 0

and

S̄(k) = H+ ∨ UkS̄, S(k) = H− ∨
[
S̄(k)

]⊥
for k ≥ 0.

Here the orthogonal complement ⊥ is taken with respect to the common ambient space
S ∨ S̄.

Proof. This corollary follows from the proof of Theorem 3.1, (2.10), and (2.11). In
fact, it follows by induction that σkX is also a minimal Markovian splitting subspace
and that

σkX = ES(−k)
X for k = 0, 1, 2, . . . ,

where S(−k) := H− ∨ U−kS. The statement about σ̄ follows by symmetry.
Next we show that the sequence {X(k) | k ∈ Z} can be extended to include limits

X(−∞) and X(∞).
THEOREM 3.3. The limits limk→−∞ ES(k)

ξ and limk→∞ ES̄(k)
ξ exist for all ξ ∈ X,

and the spaces

X(−∞) :=
{

lim
k→−∞

ES(k)
ξ | ξ ∈ X

}
,(3.8)

X(∞) :=
{

lim
k→∞

ES̄(k)
ξ | ξ ∈ X

}
(3.9)

are internal minimal Markovian splitting subspaces. Moreover, the sequences of split-
ting subspaces {X(−k) | k = 0, 1, 2, . . . } and {X(k) | k = 0, 1, 2, . . . } converge in a
finite number of steps if and only if X is internal. In that case the number of steps is
no greater than dimX.

Proof. Since {S(−k) | k = 0, 1, 2, . . . } is a nonincreasing sequence of subspaces,
i.e.,

S ⊃ S(−1) ⊃ S(−2) ⊃ S(−3) ⊃ · · · ,(3.10)

it is well known [6, p. 24] that ξ−∞ = limk→∞ ES(−k)
ξ exists for all ξ ∈ X and that

ξ−∞ = ES(−∞)
ξ, where S(−∞) =

⋂∞
k=0 S(−k). Thus X(−∞) is well defined, and since

X = ESH+,

X(−∞) = ES(−∞)
H+.

Therefore, since S(−∞) is U−1-invariant, X(−∞) is an observable Markovian splitting
subspace. But S(−∞) ⊂ S ⊥ H+ ∩ (H−)⊥, and hence X(−∞) is minimal. It remains
to show that X(−∞) is internal. In view of Theorem 3.1, this would follow if X(−∞)

were a fixed point for σ. Next, we prove that this is in fact the case.
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Consequently we want to prove that σX(−∞) = X(−∞), which follows from

H− ∨ U−1S(−∞) = S(−∞).(3.11)

Let us prove (3.11). Since S(−∞) =
⋂∞

k=0 S(−k), U−1S(−k) ⊂ S(−k), and H− ⊂ S(−k),
it is trivial that

H− ∨ U−1S(−∞) ⊂ S(−∞).

It remains to prove the converse. To this end, note that

H− ∨ U−1S(−k) = {y(−1)} ∨ U−1S(−k).

This sum is in general not direct, so we want to reformulate it into such a sum.
Therefore, observe that {y(−1)}∩U−1S(k) is nonincreasing in k and finite dimensional
and thus there is a k0 such that

{y(−1)} ∩ U−1S(k) = {y(−1)} ∩ U−1S(k0) for k ≥ k0.

Let V be a complement of {y(−1)} ∩ U−1S(k0) in {y(−1)}. Then, for k ≥ k0,

H− ∨ U−1S(−k) = V + U−1S(−k)(3.12)

is a direct sum. Now, if ξ ∈ S(−∞) =
⋂∞

k=0(H
− ∨ U−1S(−k)), then

ξ = vk + ηk

with vk ∈ V and ηk ∈ U−1S(−k) is a unique representation for each k ≥ k0. Therefore,
since (3.12) is nonincreasing, vk = v ∈ V and ηk = η ∈ ⋂∞

k=0 U−1S(−k) = U−1S(−∞)

for k ≥ k0. Hence

ξ = v + η ∈ V ∨ U−1S(−∞) ⊂ H− ∨ U−1S(−∞),

proving that X(−∞) is a fixed point.
Next, we assume that X is noninternal and prove that, in this case, all elements

of the sequences {X(−k) | k = 0, 1, 2, . . . } and {X(k) | k = 0, 1, 2, . . . } are noninternal
and that consequently these sequences cannot converge in a finite number of steps, the
limits being internal. To see this, take a ξ ∈ S such that ξ 6= H0. Then U−kξ ∈ S(−k)

but U−kξ /∈ H0, showing that X(−k) is noninternal for k = 0, 1, 2, . . . . A symmetric
argument involving S̄ shows that X(k) is also noninternal for k = 0, 1, 2, . . . .

To prove the converse, first recall that, for any internal X ∼ (S, S̄),

X = (X ∩ X−) ∨ (X ∩ X+)(3.13)

and that S = H− ∨ X. Relation (3.13) is proven in the same way as Lemma 2.9 in
[13] and can also be found in [21]. Hence,

S = H− ∨ (X ∩ X+).(3.14)

Since X = ESH+, the subspace X∩X+ thus uniquely determines the internal splitting
subspace X. In view of (3.14), (3.10) implies that the sequence {X(−k) ∩ X+ |
k = 0, 1, 2, . . . } of finite-dimensional subspaces is nonincreasing. Therefore, it must
converge in a finite number of steps which cannot be larger than dimX, implying via
(3.14) that the same holds for the sequence {X(−k) | k = 0, 1, 2, . . . }.
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We remark that this proof also shows that, if X is internal, the whole sequence
{X(k) | k ∈ Z} cannot have more than dimX + 1 different elements.

As pointed out in the end of the proof of Theorem 3.3, an internal X is completely
characterized by its intersection X ∩ X+ = X ∩ H+ with the future via (3.14). In the
same way,

S̄ = H+ ∨ (X ∩ X−),(3.15)

so X ∈ X0 is also characterized by its intersection X ∩ X− = X ∩ H− with the
past. In particular, we have the following characterizations of σX+ and σ̄X−. Similar
characterizations for arbitrary X are given in section 8.

PROPOSITION 3.4. The intersection of σX+ with the past H− is described by

(σX+) ∩ X− = (X+ ∩ X−) ∨ ({y(−1)} ∩ X−),(3.16)

and the intersection of σ̄X− with the future H+ is described by

(σ̄X−) ∩ X+ = (X− ∩ X+) ∨ ({y(0)} ∩ X+).(3.17)

Proof. First observe that (3.16) is equivalent to

S̄
(−1)
+ = H+ ∨ ({y(−1)} ∩ X−).(3.18)

In fact, that (3.18) implies (3.16) follows from the facts that

S̄
(−1)
+ ∩ X− = (σX+) ∩ X−

and [
H+ ∨ ({y(−1)} ∩ X−)

] ∩ X− = (X+ ∩ X−) ∨ ({y(−1)} ∩ X−),

while the opposite implication follows from the fact that

S̄
(−1)
+ = H+ ∨ [(σX+) ∩ X−] .

Next let us prove (3.18). We have

S̄
(−1)
+ = H+ ∨ (S(−1)

+ )⊥ = H+ ∨ (H− ∨ U−1S+)⊥

= H+ ∨ [
(H−)⊥ ∩ (U−1H+) ∩ (U−1H−)⊥]

= H+ ∨ [
(H−)⊥ ∩ (U−1H+)

]
= H+ ∨ [

(H−)⊥ ∩ (H+ ∨ {y(−1)})
]
,

where in the third step we have used the fact that S⊥
+ = H+ ∩ (H−)⊥. (See, for

example, [18, Example 4.4].) Now suppose that ξ ∈ (H−)⊥ ∩ (H+ ∨ {y(−1)}). Then
ξ = α+β, where α ∈ H+ and β ∈ {y(−1)} ⊂ H−. But α+β ⊥ H−, and consequently

β = −EH−
α ∈ EH−

H+ = X−

so that β ∈ {y(−1)} ∩ X−. Hence S̄
(−1)
+ ⊂ H+ ∨ ({y(−1)} ∩ X−).

Conversely, if β ∈ {y(−1)} ∩ X−, there is an α ∈ H+ such that β = −EH−
α,

which implies that α + β ⊥ H− and that α + β ∈ (H+ ∨ {y(−1)}). Hence

{y(−1)} ∩ X− ⊂ H+ ∨ [
(H−)⊥ ∩ (H+ ∨ {y(−1)})

]
,

which concludes the proof of (3.16) and (3.18).
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The proof of the dual statement is completely symmetric, using the fact that

S
(1)
− = H− ∨ ({y(0)} ∩ X+)(3.19)

is equivalent to (3.17).
Since a minimal internal splitting subspace is completely characterized by its

intersection with X− via (3.15) and by its intersection with X+ via (3.14), Proposition
3.4 has the following corollary, which we shall need later.

COROLLARY 3.5. The splitting subspace X+ is a fixed point of the operator σ if
and only if X− ∩ {y(−1)} = 0. Likewise, X− is a fixed point of the operator σ̄ if and
only if X+ ∩ {y(0)} = 0.

The proof of Proposition 3.4 is easily modified to yield the following amplification,
describing the chains of splitting subspaces {X

(k)
+ } and {X

(k)
− }.

PROPOSITION 3.6. For k = 1, 2, 3, . . . , we have

(σkX+) ∩ X− = (X+ ∩ X−) ∨ ({y(−1), . . . , y(−k)} ∩ X−)(3.20)

or, equivalently,

S̄
(−k)
+ = H+ ∨ ({y(−1), . . . , y(−k)} ∩ X−);(3.21)

and

(σ̄kX−) ∩ X+ = (X− ∩ X+) ∨ ({y(0), . . . , y(k − 1)} ∩ X+)(3.22)

or, equivalently,

S
(k)
− = H− ∨ ({y(0), . . . , y(k − 1)} ∩ X+).(3.23)

We shall now characterize the fixed points of the operators σ and σ̄ in terms of
the matrices D and D̄ in equations (1.1) and (2.14), respectively.

COROLLARY 3.7. Let X ∈ X and let D and D̄ be the corresponding matrices in
the models (1.1) and (2.14). Then σX = X if and only if ker D′ = 0 and σ̄X = X
if and only if ker D̄′ = 0.

Proof. Given (1.1) an elementary calculation yields

x(1) = Ax(0) + BD′(DD′)] [y(0) − Cx(0)] + B2u(0),

where B2 := B − BD′(DD′)]D and (DD′)] is a pseudoinverse of DD′. In particular,
this implies that

E{B2u(0)y(0)′} = BD′ − BD′(DD′)]DD′ = 0.

Since therefore the components of B2u(0) are orthogonal to those of both x(0) and
y(0), (3.4) is equivalent to B2 = 0, which in turn is equivalent to[

B
D

]
[I − D′(DD′)]D] = 0.

But the columns of
[
B
D

]
are—according to our assumption—linearly independent so

(3.4) is equivalent to D′(DD′)]D = I, which holds if and only if DD′ is full rank, i.e.,



822 ANDERS LINDQUIST AND GYÖRGY MICHALETZKY

if (DD′)−1 exists. Then the first statement follows from Theorem 3.1(ii). The second
statement follows by symmetry.

Remark 3.8. In view of Corollary 3.7 we have another proof of the fact that any
fixed point of σ is internal. In fact, we established in the proof above that (3.4) is
equivalent to B2 = 0, which in the case when DD′ is full rank implies that the transfer
function (1.2) of (1.1) must be a square spectral factor and thus correspond to an
internal realization [16, Theorem 5.2].

Theorem 3.1 and Corollary 3.7 give characterizations of precisely which internal
X are fixed points of σ and σ̄. It follows trivially from the definitions (3.1) and (3.2)
that

σX− = X− and σ̄X+ = X+,

which, by Corollary 3.7, implies that D− and D̄+ are always full rank, a well-known
property of the innovations models. The following proposition together with Corollary
3.7 gives a more global picture on this question. (Also see [14].)

PROPOSITION 3.9. Let X ∈ X, and let D and D̄ be the corresponding matrices in
the models (1.1) and (2.14). Then

dim ker D′ = dim(X ∩ {y(0)}) ≤ dim(X+ ∩ {y(0)}) = dim kerD′
+(3.24)

and

dim ker D̄′ = dim(X ∩ {y(−1)}) ≤ dim(X− ∩ {y(−1)}) = dim ker D̄′
−.(3.25)

Proof. Let a ∈ ker D′. Then a′D = 0 so that a′y(0) ∈ X. Conversely, suppose
that a′y(0) ∈ X. Then, since a′Cx(0) ∈ X, we must have a′Du(0) ∈ X ⊥ {u(0)},
implying that a′D = 0. This proves the equalities in (3.24). To prove the inequality,
note that

X ∩ X+ ∩ {y(0)} = X ∩ H+ ∩ {y(0)} = X ∩ {y(0)}.

A symmetric argument yields (3.25).
COROLLARY 3.10. The splitting subspace X+ is a fixed point of the operator σ if

and only if X+ ∩ {y(0)} = 0. Likewise, X− is a fixed point of the operator σ̄ if and
only if X− ∩ {y(−1)} = 0.

Proof. In view of Corollary 3.7, this follows from the last equalities in (3.24) and
(3.25), respectively.

Comparing Corollaries 3.5 and 3.10, we can now see that the two conditions
X+ ∩ {y(0)} = 0 and X− ∩ {y(−1)} = 0 are actually equivalent. We shall refer to
the situation when they are satisfied as the regular case. From Proposition 3.9 and
Corollary 3.7 it readily follows that, in the regular case and only in the regular case,
all X ∈ X0 are fixed points of both σ and σ̄. All this could also have been shown
without using Corollary 3.5 by instead invoking the fact, proven in [14, Theorem 10.2],
that D+ has full rank if and only if D̄− has.

The fact that σX+ = X+ and σ̄X− = X− are the critical conditions in this
analysis is also reflected in the ordering of covariances. In fact,

DD′ = Λ0 − CPC ′ ≥ Λ0 − CP+C ′ = D+D′
+

for all P ≤ P+ so that regularity is equivalent to

Λ0 − CPC ′ > 0 for all P ∈ P
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and analogous in the backward setting. This is also equivalent to all minimal spectral
factors having zeros neither at zero nor at infinity.

We collect the regularity conditions in the following proposition. Some other
characterizations can be found in [22, Theorem 3.2].

PROPOSITION 3.11. The following regularity conditions are equivalent.
(i) Λ0 − CP+C ′ > 0.
(ii) Λ0 − C̄P̄−C̄ ′ > 0.
(iii) X+ ∩ {y(0)} = 0.
(iv) X− ∩ {y(−1)} = 0.
(v) σX+ = X+.
(vi) σ̄X− = X−.
Clearly regularity is a property of the output process y. Therefore, we introduce

the following definition.
DEFINITION 3.12. The process y is regular if the conditions of Proposition 3.11

are satisfied.
The regularity conditions can also be stated in terms of the whole family of

minimal realizations.
PROPOSITION 3.11′. Each of the following regularity conditions is equivalent to

those in Proposition 3.11.
(i)′ Λ0 − CPC ′ > 0 for all P ∈ P.
(ii)′ Λ0 − CP̄C ′ > 0 for all P̄ ∈ P̄.
(iii)′ X ∩ {y(0)} = 0 for all X ∈ X.
(iv)′ X ∩ {y(−1)} = 0 for all X ∈ X.
(v)′ σX = X for all X ∈ X0.
(vi)′ σ̄X = X for all X ∈ X0.
We shall next prove that the operators σ and σ̄ are invertible in the regular case

and that σ̄ = σ−1. In fact, as we shall see in Theorem 3.13 and Corollary 3.14 below,
this property characterizes the regularity of the process y. In section 6 we study the
nonregular case and give a more complete description of the subspaces σX, σ̄X for
any X ∈ X.

In view of Proposition 3.4, a straightforward calculation based on (3.18) shows
that

σ̄σX+ = X+ and σσ̄X− = X−.(3.26)

A natural question is under what conditions these fixed-point properties can be gen-
eralized to arbitrary X ∈ X.

THEOREM 3.13. Let X ∈ X. Then

σσ̄X ≤ X ≤ σ̄σX(3.27)

and

σ̄σX = X ⇐⇒ {y(0)} ∩ X = {y(0)} ∩ X+.(3.28)

Symmetrically,

σσ̄X = X ⇐⇒ {y(−1)} ∩ X = {y(−1)} ∩ X−.(3.29)

Proof. We prove (3.29) and the first inequality in (3.27). Then, the rest follows
by symmetry. First observe that, since X ∩H− = X ∩X− ⊂ X− and {y(−1)} ⊂ H−,
it always holds that

{y(−1)} ∩ X ⊂ {y(−1)} ∩ X−.
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In view of Corollary 3.2, σ̄X ∼ (S(1), S̄(1)), where

S̄(1) = H+ ∨ US̄,

S(1) = H− ∨ (S̄(1))⊥ = H− ∨ [
(H+)⊥ ∩ (US̄⊥)

]
.

Then apply σ to σ̄X to obtain

H− ∨ U−1S(1) = H− ∨ U−1H− ∨ [
(U−1H+)⊥ ∩ S̄⊥]

.

Since U−1H− ⊂ H− and U−1H+ = {y(−1)} ∨ H+, we have

H− ∨ U−1S(1) = H− ∨ [
S̄⊥ ∩ {y(−1)}⊥] ⊂ S,(3.30)

the last of which is a consequence of the condition S = H− ∨ S̄⊥. Hence σσ̄X ≤ X.
To find a condition under which σσ̄X = X, we need to characterize the converse in-
equality. To this end, we consider the converse inclusion of (3.30) and take orthogonal
complements in it to obtain

(H−)⊥ ∩ (S̄ ∨ {y(−1)}) ⊂ (H−)⊥ ∩ S̄.(3.31)

Now, let ξ be an element in the subspace on the left side of (3.31). Then, ξ = α + β,
where α ∈ S̄ and β ∈ {y(−1)} ⊂ H−, and ξ ⊥ H−. Consequently,

β = −EH−
α ∈ EH−

S̄ = X−,

and hence β ∈ {y(−1)} ∩ X−. So if {y(−1)} ∩ X = {y(−1)} ∩ X− holds, β ∈
{y(−1)} ∩ X ⊂ S̄. Therefore, since α ∈ S̄, we have β ∈ S̄, and hence (3.31) holds.

Conversely, suppose that (3.31) holds. Consider a β ∈ {y(−1)}∩X−. Then, there
is an α ∈ S̄ such that β = −EH−

α so that

α + β ∈ (H−)⊥ ∩ (S̄ ∨ {y(−1)}).

Using condition (3.31), we obtain α + β ∈ S̄. But α ∈ S̄, and hence β ∈ S̄. In other
words, (3.31) implies that {y(−1)} ∩ X− ⊂ S̄, and consequently

{y(−1)} ∩ X− = {y(−1)} ∩ X− ∩ S̄ ⊂ {y(−1)} ∩ X,

since X− ∩ S̄ = X− ∩ S ∩ S̄ = X− ∩ X. But the converse inclusion has already been
proven above. Hence we have established (3.29).

COROLLARY 3.14. In the regular case the operators σ and σ̄ are invertible and

σ̄ = σ−1.(3.32)

Proof. This follows from regularity condition (iii) in Proposition 3.11 and (3.28)
in Theorem 3.13.

In particular Corollary 3.14 implies that relations (3.7) can be extended so that

X(j) = σj−kX(k) = σ̄k−jX(k) for all j, k ∈ Z.(3.33)
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4. An interpolation problem. The ordered family of splitting subspaces in-
troduced in section 3 is intimately connected to the following estimation problem.
Given a minimal stochastic system{

x(t + 1) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t)

(4.1)

of the type defined in section 2 and integers t0, t1 such that t0 < t1, find, for each
time t between t0 and t1, the linear least squares estimate1

x̂(t | t0, t1) = E{x(t) | y(s), s ∈ Z; x(τ), τ ∈ Z \ {t0 + 1, . . . , t1 − 1}}(4.2)

of the state x(t) given the whole output process y and the whole state process x except
for times τ such that t0 < τ < t1.

This interpolation problem is a prototype of an estimation problem of the follow-
ing type. The state of a linear stochastic system is being observed both directly and
through a noisy channel. During an interval of time (t0, t1) the direct state informa-
tion is lost, and the problem is to estimate the lost states from the noisy observations
and the remaining state information. Letting t0 → −∞ and t1 → ∞, we obtain a
smoothing problem. In a practical situation one would of course expect the information
to be given on a finite interval containing [t0, t1] and not on all of Z as here. However,
as will be seen in Theorem 4.6 below, our solution will depend only on data from the
interval [t0, t1] and hence applies also to this situation, a remarkable fact that derives
from the Markov property and allows us to use Kalman filtering. Nevertheless, it is
convenient to formulate the problem in terms of infinite data.

In the more compact notation of section 2, the interpolation estimate may be
written

x̂(t | t0, t1) = EH0∨(Ut0X−)∨(Ut1X+)x(t),(4.3)

where X is the splitting subspace corresponding to (4.3) and X− and X+ are the
past and future of X as defined after (2.6). Now, one of the main results of this
section is that the estimate (4.3) can be represented as a linear combination of the
two estimates

x(t0−t)(t) = EH−
t−1∨(Ut0X−)x(t),(4.4)

based on the past information, and

x(t1−t)(t) = EH+
t ∨(Ut1X+)x(t),(4.5)

based on the future information. As we demonstrate below, this is due to the fact
that x(t0−t) and x(t1−t) are state processes of minimal realizations of y, the splitting
subspaces of which bound X from below and from above in the ordering defined in
section 2. In fact, x(t0−t)(t) = U tx(t0−t)(0) and x(t1−t)(t) = U tx(t1−t)(0), where

x(−k)(0) = EH−∨U−kX−
x(0)(4.6)

1Clearly E{� | �} denotes wide sense conditional expectation unless the system is assumed to be
Gaussian.
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and

x(k)(0) = EH+∨UkX+
x(0)(4.7)

are defined for k = 0, 1, 2, . . . . Obviously x(0) = x by both formulas. This relates the
estimates (4.4) and (4.5) to the operators σ and σ̄ defined in section 3.

PROPOSITION 4.1. The family of subspaces {X(k) | k ∈ Z}, defined in terms of
(4.6) and (4.7) by

X(k) = {a′x(k)(0) | a ∈ Rn},(4.8)

is a family of minimal Markovian splitting subspaces such that

X(−k) = σkX and X(k) = σ̄kX(4.9)

for k = 0, 1, 2, . . . , where X = {a′x(0) | a ∈ Rn} and σ, σ̄ are the operators defined by
(3.1) and (3.2). Moreover, for each k ∈ Z, x(k)(0) is the basis in X(k) in the same
uniform choice of coordinates as x(0).

Proof. Let X ∼ (S, S̄). Then S = H− ∨ X− and S̄ = H+ ∨ X+ and so, since
U−1S ⊂ S and US̄ ⊂ S̄,

x(k)(0) =

{
EH−∨UkSx(0) = ES(k)

x(0) for k ≤ 0,

EH+∨UkS̄x(0) = ES̄(k)
x(0) for k ≥ 0,

(4.10)

where S(k) and S̄(k) are defined as in Corollary 3.2. Then the first statement is an
immediate consequence of (4.10) and Corollary 3.2. Moreover, since S(k) ⊂ S for
k ≤ 0,

x(k)(0) = ES(k)
x(0) = ES(k)

ESx+(0) = ES(k)
x+(0)

for the appropriate choice of basis in X+. Similarly, for k ≥ 0, S̄(k) ⊂ S̄ so that

x̄(k)(0) = ES̄(k)
x̄(0) = ES̄(k)

ES̄ x̄−(0) = ES̄(k)
x̄−(0),

where x̄−(0) = P−1
− x−(0) and x−(0) = EX−x+(0), and this proves the second state-

ment.
Consequently, we have established that

x̂(0 | t0, t1) = ES(t0−t)∨S̄(t1−t)
x(0),(4.11)

where X(t0−t) ∼ (S(t0−t), S̄(t0−t)) and X(t1−t) ∼ (S(t1−t), S̄(t0−t)) are elements in X

such that

X(t0−t) ≤ X ≤ X(t1−t)(4.12)

and such that S(t0−t) ⊂ S and S̄(t1−t) ⊂ S̄. The following chain of lemmas deals with
this setup and leads to the first main result of this section.

LEMMA 4.2. Let X ∼ (S, S̄), X1 ∼ (S1, S̄1), and X2 ∼ (S2, S̄2) be minimal
Markovian splitting subspaces such that S1 ⊂ S and S̄2 ⊂ S̄. Then X1 ≤ X ≤ X2 and

x1(0) = EX1x2(0)(4.13)

for any uniform choice x1(0), x2(0) of bases in X1 and X2.
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Proof. Since S̄2 ⊂ S̄, we have

S̄2 ∩ (H−)⊥ ⊂ S̄ ∩ (H−)⊥.

Since X and X2 are minimal, this is equivalent to S⊥
2 ⊂ S⊥ [18, Corollary 4.5] or,

equivalently,

(S̄2 ∨ S2) 	 S2 ⊥ S.(4.14)

In fact, S̄2 ∨ S2 is the ambient space of X2. But (4.14) is equivalent to S̄2 ⊥ S | S2
[18, Proposition 2.1] and also to

ESλ = ESES2λ for all λ ∈ S̄2.(4.15)

Apply EX1 to this. Since X1 ⊂ S1 ⊂ S and H+ ⊂ S̄2, we obtain in particular

EX1λ = EX1ES2λ for all λ ∈ H+.

But X2 is a splitting subspace, so ES2λ = EX2λ for all λ ∈ H+ and X+ ⊂ H+.
Consequently

EX1λ = EX1EX2λ for all λ ∈ X+.

Hence, for an arbitrary choice of basis x+(0) in X+, we have

EX1x+(0) = EX1EX2x+(0),

which is equivalent to (4.13) with x1(0) and x2(0) being the corresponding bases in
X1 and X2. The fact that X1 ≤ X follows immediately from ES1 = ES1ES and [18,
Lemma 6.7]. The relation X ≤ X2 follows analogously from S̄2 ⊂ S̄.

LEMMA 4.3. Let X ∼ (S, S̄), X1 ∼ (S1, S̄1), and X2 ∼ (S2, S̄2) be minimal
Markovian splitting subspaces such that S1 ⊂ S, and S̄2 ⊂ S̄. Then

ES1∨S̄2X ⊂ X1 ∨ X2.(4.16)

Proof. Applying the projection operator ES to H+ ⊂ S̄2 ⊂ S̄ we obtain

ESH+ ⊂ ESS̄2 ⊂ ESS̄ = X.

But since X is observable, X = ESH+, and therefore

X = ESS̄2.(4.17)

Moreover, since S1 ⊂ S, we have ES1H+ = ES1ESH+, and therefore, since X1 and
X are both observable,

X1 = ES1X,(4.18)

which together with (4.17) yields

X1 = ES1 S̄2.(4.19)

Now, it is well known and easy to check that the orthogonal decomposition

A = (EAB) ⊕ (A ∩ B⊥)(4.20)
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holds for all pairs of subspaces A, B. Therefore, in view of (4.19), we have

S1 = X1 ⊕ (S1 ∩ S̄⊥
2 ).(4.21)

A completely symmetric argument yields

S̄2 = X2 ⊕ (S̄2 ∩ S⊥
1 ).(4.22)

Therefore, since X1 ⊥ S⊥
1 and X2 ⊥ S̄⊥

2 , we have

S1 ∨ S̄2 = (S1 ∩ S̄⊥
2 ) ⊕ (X1 ∨ X2) ⊕ (S̄2 ∩ S⊥

1 ).(4.23)

To prove (4.16), take any ξ ∈ X. Then

ξ − ES1ξ ⊥ S1 ⊃ S1 ∩ S̄⊥
2

and, by (4.18) and (4.21),

ES1ξ ∈ X1 ⊥ S1 ∩ S̄⊥
2 .

Consequently, ξ ⊥ S1 ∩ S̄⊥
2 . In the same way we show that ξ ⊥ S̄2 ∩S⊥

1 , and therefore
it follows from (4.23) that

ES1∨S̄2ξ ∈ X1 ∨ X2,

establishing (4.16).
LEMMA 4.4. Let X ∼ (S, S̄), X1 ∼ (S1, S̄1), and X2 ∼ (S2, S̄2) be minimal

Markovian splitting subspaces such that S1 ⊂ S and S̄2 ⊂ S̄, and let x(0), x1(0), and
x2(0) be a uniform choice of bases in X, X1, and X2 with covariances P , P1, and P2,
respectively. Then

EX1∨X2x(0) = (I − L)x1(0) + Lx2(0)(4.24)

for any n × n matrix solution L of the linear system of equations

P − P1 = L(P2 − P1).(4.25)

Proof. Setting x̂(0) := EX1∨X2x(0), we have

x̂(0) = Kx1(0) + Lx2(0)(4.26)

for some n × n matrices K and L. By construction, a′[x(0) − x̂(0)] ⊥ X1 ∨ X2 for all
a ∈ Rn, which in particular implies that

(i) a′[x(0) − x̂(0)] ⊥ X1 for all a ∈ Rn,
(ii) a′[x(0) − x̂(0)] ⊥ X2 for all a ∈ Rn.

Condition (i) together with (4.26) yields

E{x(0)x1(0)′} − KP1 − LE{x2(0)x1(0)′} = 0.

But from Lemma 4.2 it follows that

E{x2(0)x1(0)′} = P1 and E{x(0)x1(0)′} = P1,

and therefore, since P1 is nonsingular,

K = I − L.(4.27)
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In the same way, condition (ii) implies that

P = KP1 + LP2,(4.28)

where again we have used Lemma 4.2 to see that

E{x(0)x2(0)′} = P and E{x1(0)x2(0)′} = P1.

Then (4.24) and (4.25) follow from (4.26)–(4.28).
To show that any solution L of (4.25) yields the same estimate x̂(0), let L1 and

L2 be any two such solutions and let x̂1(0) and x̂2(0) be the corresponding estimates
(4.26). Then

(L1 − L2)(P2 − P1) = 0(4.29)

and

x̂1(0) − x̂2(0) = (L1 − L2) [x2(0) − x1(0)] .(4.30)

Equating the covariances of each side in (4.30), equation (4.29) implies that x̂1(0) =
x̂2(0), as claimed.

This immediately yields the following representation formula for the interpolation
estimate.

THEOREM 4.5. Given the stochastic system (4.1) and t0, t1 ∈ Z such that t0 < t1,
the state estimate

x̂(t | t0, t1) = E{x(t) | y(s), s ∈ Z; x(τ), τ ∈ (−∞, t0] ∨ [t1, ∞)}(4.31)

is given by

x̂(t | t0, t1) = [I − L(t0 − t, t1 − t)] x(t0−t)(t) + L(t0 − t, t1 − t)x(t1−t)(t),(4.32)

where {x(k) | k ∈ Z} is the estimation sequence (4.6)–(4.7) corresponding to x with
covariances {P (k) | k ∈ Z} and L(τ, s) is an arbitrary solution of

P − P (τ) = L(τ, s)
[
P (s) − P (τ)

]
.(4.33)

It remains to design a procedure for determining the estimation sequence {x(k) |
k ∈ Z}. We shall address this question next. For this we need the following important
consequence of the Markov property.

THEOREM 4.6. The state estimate (4.31) depends only on the data from the
interval [t0, t1] or, more precisely, on x(t0), x(t1), and y(t), t = t0, t0 + 1, . . . , t1. In
particular,

x(t0−t)(t) := E{x(t) | x(t0), y(t0), . . . , y(t − 1)} for t > t0,(4.34)

x(t1−t)(t) := E{x(t) | y(t), . . . , y(t1), x(t1)} for t ≤ t1,(4.35)

where {x(k); k ∈ Z} is the sequence of estimation processes defined by (4.6) and (4.7).
Proof. Let X ∼ (S, S̄) be the splitting subspace corresponding to the state process

x. In view of the definition (4.4), the first statement (4.34) is equivalent to

EH−
k−1(y)∨X−

ξ = η for all ξ ∈ UkX and k ≥ 0,(4.36)
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where

η := E{y(0),...,y(k−1)}∨Xξ.

The original statement is obtained from (4.36) by merely applying the shift U t0 . To
prove (4.36) first note that, since S = H− ∨ X−,

H−
k−1 ∨ X− = {y(0), . . . , y(k − 1)} ∨ S

= [{y(0), . . . , y(k − 1)} ∨ X] ⊕ [S 	 X] .

To see this, note that {y(0), . . . , y(k−1)} ⊂ H+ ⊂ S̄ ⊥ S 	X. Moreover, ξ ∈ UkX ⊂
UkS̄ ⊂ S̄, and hence ξ ⊥ S 	 X, which implies (4.36). A completely symmetric
argument yields (4.35).

Note that (4.34) and (4.35) are really forward and backward Kalman estimates
initiated at x(t0) and x(t1), respectively, enabling us to use Kalman filtering tech-
niques to generate them. Due to the fact that the initial conditions are states, these
Kalman filters will have some remarkable properties, especially in the regular case
when the reversibility condition (3.32) holds. This will be further discussed below.

The estimate (4.34) is generated by the recursion{
x(t0−t)(t) = Ax(t0−t+1)(t − 1) + K(t0−t)

[
y(t − 1) − Cx(t0−t+1)(t − 1)

]
,

x(0)(t0) = x(t0),
(4.37)

where

K(−k) = (C̄ ′ − AP (−k)C ′)(Λ0 − CP (−k)C ′)].

Here ] denotes pseudoinverse, and the state covariance

P (−k) = E{x(−k)(0)x(−k)(0)′}
is given by the matrix Riccati equation

{
P (−k−1) = AP (−k)A′ + (C̄ ′ − AP (−k)C ′)(Λ0 − CP (−k)C ′)](C̄ ′ − AP (−k)C ′)′,
P (0) = P.

(4.38)

Note that this is the (invariant) formulation of the Kalman filter used in stochastic
realization theory [1, 8, 16].

In the same way, the estimate (4.35) can be generated by a backward Kalman
filter applied to the backward model{

x̄(t − 1) = A′x̄(t) + B̄ū(t − 1),
y(t − 1) = C̄x̄(t) + D̄ū(t − 1)

(4.39)

of X. Using a similar calculation as that in the forward direction, it is not hard to
see that the process x̄(k)(t) = [P (k)]−1x(k)(t) is the solution of the backward Kalman
filter {

x̄(t1−t)(t) = A′x̄(t1−t−1)(t + 1) + K̄(t1−t−1)
[
y(t) − C̄x̄(t1−t−1)(t)

]
,

x̄(0)(t1) = x(t1),
(4.40)
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where

K̄(k) = (C ′ − A′P̄ (k)C̄ ′)(Λ0 − C̄P̄ (k)C̄ ′)]

and the backward covariance matrix P̄ (k) = (P (k))−1 is given by the matrix Riccati
equation{

P̄ (k+1) = A′P̄ (k)A + (C ′ − A′P̄ (k)C̄ ′)(Λ0 − C̄P̄ (k)C̄ ′)](C ′ − A′P̄ (k)C̄ ′)′,
P̄ (0) = P−1.

(4.41)

Then the process x(t1−t) is given by

x(t1−t)(t) = (P̄ (t1−t))−1x̄(t1−t)(t),

defining x(k) for k ≥ 0.
At least in the regular case, the inverse (Λ0 − CP (−k)C ′)−1 will exist for all

k ∈ Z (Proposition 3.11) and the pseudoinverses can be replaced with inverses. In the
regular case we also have the reversibility property σ̄ = σ−1 (Corollary 3.14) leading
to (3.33). This useful property can be expressed in terms of estimation processes as

E{x(t) | H[t,t1](y), x(t0−t1)(t1)} = E{x(t) | H[t0,t−1](y), x(t0)} = x(t0−t)(t),(4.42)

i.e., tying together forward and backward estimation. This relation illustrates an
important property of the Kalman recursions (4.37) and (4.40), namely, that a con-
secutive application of forward and backward Kalman filtering brings us back through
the same sequence of state processes of totally ordered stochastic realizations. This
remarkable fact, which is due to the invertibility of the operator σ, can also be justi-
fied by elementary calculations expressing x(t0−t+1)(t − 1) in terms of x(t0−t)(t) and
y(t− 1) in (4.37), leading to a backward Kalman filter which is an extension of (4.40)
for negative k = t0 − t. Similarly (4.40) can be reversed to give a forward Kalman
filter identical to (4.37) for positive k = t1 − t.

Given a stochastic realization (4.1) of y and a corresponding splitting subspace
X ∼ (S, S̄), we have thus constructed a sequence of splitting subspaces {X(k); k ∈ Z}
with bases

x(k)(0) =

{
EH−∨(UkS)x(0), k ≤ 0,

P (k)P−1EH+∨(UkS̄)x(0), k ≥ 0,
(4.43)

which are tied together by the Kalman filtering recursions (4.37) and (4.40). Each
such basis vector defines a vector process

x(k)(t) = Ukx(k)(0),

which is the state process of a (forward) realization{
x(k)(t + 1) = Ax(k)(t) + B(k)u(k)(t),
y(t) = Cx(k)(t) + D(k)u(k)(t)

(4.44)

connected with a spectral factor

W (k)(z) = C(zI − A)−1B(k) + D(k).(4.45)
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It is a manifestation of the fact that (4.43) is a uniform choice of bases for the splitting
subspaces {X(k) | k ∈ Z} in the sense defined in section 2, and it is also easy to check
that the system matrices A and C remain constant for all k ∈ Z, while B(k), D(k),
and P (k) will vary. We shall not need to determine {B(k)} and {D(k)}, but we note
that this is easy to do either from the Riccati equation (4.37) or by means of a “fast
algorithm” formulated directly in terms of {B(k), D(k)} as reported in Badawi [2].

Remark 4.7. Let us point out that the Riccati equation (4.38) can be written in
the following form:

P (−k−1) = P (−k) − B(−k){I − (D(−k))′[D(−k)(D(−k))′]]D(−k)}(B(−k))′.

The last term is nothing other than the covariance matrix of that part of the noise
in the state-space equation, i.e., of B(−k)u(−k), which cannot be explained using the
noise in the corresponding observation equation, i.e., via D(−k)u(−k).

A similar statement can be formulated for the Riccati equation (4.41).
In the next section we show that, in the regular case, all spectral factors {W (k) |

k ∈ Z} have the same zeros, and in section 8 we demonstrate that this is no longer
the case in the nonregular case.

5. The zero structure of the estimation sequence in the regular case.
Let us recall that λ ∈ C is an (invariant) zero of a spectral factor

W (z) = C(zI − A)−1B + D

if there are row vectors a and b so that[
a b

] [
A − λI B

C D

]
= 0

or, in other words, [
a b

] [
A B
C D

]
=

[
λa 0

]
.(5.1)

Here a is called a zero direction (of order one) of W . In the regular case, when
DD′ > 0, we may eliminate b in these equations to obtain{

aΓ = λa,

aB2 = 0,

where

Γ := A − BD′(DD′)−1C,

B2 := B − BD′(DD′)−1D,

showing that a is perpendicular to the reachability space

〈Γ | B2〉 = Im(B2, ΓB2, Γ2B2, . . . ).

More generally, the zero directions (of any order) of W are defined using the Jordan
structure of Γ. Then it can be proven that the orthogonal complement 〈Γ | B2〉⊥ of
this space in Rn is spanned by the zero directions of W . Hence, if Π is a matrix whose
rows form a basis in 〈Γ | B2〉⊥, i.e.,

ker Π = 〈Γ | B2〉,(5.2)
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then there is a matrix Λ such that {
ΠΓ = ΛΠ,

ΠB2 = 0.
(5.3)

Conversely, if Π is a matrix satisfying (5.3), then

ker Π ⊃ 〈Γ | B2〉.(5.4)

This fact can also be expressed in terms of a generalization of (5.1): Relation (5.4) is
equivalent to the existence of matrices Λ and M so that

[
Π −M

] [
A B
C D

]
=

[
ΛΠ 0

]
.(5.5)

The row vectors of the maximal solution Π satisfying (5.2) (in the sense of hav-
ing maximal rank) are the generalized zero directions, and the eigenvalues of the
corresponding matrix Λ are of course precisely the finite zeros of W .

Remark 5.1. The matrix equation (5.5) is the appropriate generalization of (5.6)
also in the nonregular case to be discussed in sections 7 and 8; see [20]. Note, however,
that W may have zeros at infinity in the nonregular case, so the eigenvalues of Λ
corresponding to the maximal solution of (5.5) are here the finite zeros of W .

The following lemma enables us to characterize the zero directions in terms of a
connection between the state x and the output y.

LEMMA 5.2. A matrix Π satisfies (5.3) if and only if there are matrices Λ and M
such that

Πx(t + 1) = ΛΠx(t) + My(t).(5.6)

We shall here give a proof which exhibits the connection between the Γ-matrix
and the zero directions and which works in the present regular case. In section 8, we
shall provide an alternative proof which also works in the nonregular case—in fact,
even when the Γ-matrix cannot be defined.

Proof. As mentioned in the proof of Corollary 3.7, the state equation can be
reformulated in the form

x(t + 1) = Γx(t) + BD′(DD′)−1y(t) + B2u(t),(5.7)

which, in the present regular case, is a unique decomposition of x(t + 1) in terms of
x(t), y(t) and B2u(t). Hence

Πx(t + 1) = ΠΓx(t) + ΠBD′(DD′)−1y(t) + ΠB2u(t)

so that if Π satisfies (5.3), then (5.6) is also satisfied with M = ΠBD′(DD′)−1. Con-
versely, if there are Λ and M so that (5.6) holds, then the uniqueness of decomposition
(5.7) implies that (5.3) holds.

Remark 5.3. Since Λ has no zero eigenvalues in the regular case, (5.6) may be
written

ΠPx̄(t − 1) = Λ−1ΠPx̄(t) − Λ−1My(t − 1),
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showing that the zeros of W̄ (z−1) are precisely the eigenvalues of Λ−1. Consequently,
the forward and the backward models have the same zeros although the zero directions
are transformed by the covariance matrix P . In fact, introducing the matrix

Γ̄ = A′ − B̄D̄′(D̄D̄′)−1C̄,

the zeros of W̄ are connected to the reciprocals of the eigenvalues of Γ̄ in a manner
analogous to (5.3).

Let us note the similarity between (5.6) and (3.4). In Theorem 3.1 we proved that
(3.4) implies that X ⊂ H0. In view of this, it is not surprising that (5.6) characterizes
the subspace X ∩ H0. Recall that

X ∩ H0 = (X ∩ X−) ∨ (X ∩ X+),(5.8)

where the sum is direct if and only if H− ∩ H+ = 0, i.e., if and only if

P+ − P− > 0(5.9)

[13, Lemma 2.9]. We note that X∩X− is connected to the stable zeros of W (including
the zeros on the unit circle) and that X ∩ X+ is connected to the antistable zeros
(again including the zeros on the unit circle). If (5.9) holds, these sets of zeros are
disjoint, there being no zeros on the unit circle.

As explained in [13], the subspaces ker(P − P−) and ker(P+ − P ) are isomorphic
to the subspaces X ∩ X− and X ∩ X+, respectively, under the bijection a 7→ a′x(0).
Based on these observations it can be proven that the zeros of W form a subset of
those of W− and W̄+. Let us collect the statements about the zeros of W in the
following theorem. Proofs can be found in [13, 19, 29].

THEOREM 5.4. The subspace ker(P−P−) is invariant under Γ′
− and Γ′. Moreover,

Γ′|ker(P−P−) = Γ′
−|ker(P−P−).(5.10)

The stable zeros of W and W̄ (including the ones on the unit circle) are the eigenvalues
of (5.10), and the corresponding zero directions of W span the subspace ker(P −P−).
Similarly, ker(P̄ − P̄+) is invariant under Γ̄′

+ and Γ̄′. Moreover,

Γ̄′|ker(P̄−P̄+) = Γ̄′
+|ker(P̄−P̄+).(5.11)

The antistable zeros of W and W̄ (including the ones on the unit circle) are the
reciprocals of the eigenvalues of (5.11), and the corresponding zero directions of W̄
span the subspace ker(P̄ − P̄+).

Note that in the nonregular case, to be considered in sections 7 and 8, the matrix
Γ may not be well defined for all X. Nevertheless all other statements of the theorem
remain true.

To obtain coordinate-free versions of Γ′ and Γ̄′ we first observe that, in the regular
case and with Π maximal so that ker Π = 〈Γ | B2〉, (5.6) is equivalent to

U(X ∩ H0) ⊂ X ∩ H0 + {y(0)},(5.12)

where the sum is direct because of the regularity condition (iii)′ of Proposition 3.11.
Similarly,

U−1(X ∩ H0) ⊂ X ∩ H0 + {y(−1)}.(5.13)

Now, following [13], let us introduce the zero dynamics operators in the regular case.
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DEFINITION 5.5 (regular case). Let the operators G : X ∩ H0 → X ∩ H0 and
Ḡ : X ∩ H0 → X ∩ H0 be defined as

G = πU |X∩H0(5.14)

and

Ḡ = π̄U−1|X∩H0 ,(5.15)

where π : (X ∩ H0) + {y(0)} → X ∩ H0 and π̄ : (X ∩ H0) + {y(−1)} → X ∩ H0 are
the oblique projectors projecting parallel to {y(0)} and {y(−1)}, respectively.

In view of Definition 5.5, (5.10) and (5.11) may be written

G|X∩X− = G−|X∩X−

and

Ḡ|X∩X+ = Ḡ+|X∩X+ ,

respectively. Moreover, X ∩X− is invariant under both G and G−, and X ∩X+ under
both Ḡ and Ḡ+. In the nonregular case, the operators G and Ḡ may not be defined
on all of X ∩ H0 but only on a subset of it, a circumstance manifest in the fact that
Γ and Γ̄ cannot be defined as above. However, G− and Ḡ+ are always defined as in
the regular case. This will be further discussed in section 7.

Let us now return to the estimation sequence {x(k) | k ∈ Z}. The following
theorem ensures that no zeros are being lost when we move along the sequence {W (k)}
from k = 0 through negative k.

THEOREM 5.6. If Π is a matrix of zero directions of W (k), it is also a matrix of
zero directions for W (k−j) for j = 0, 1, 2, . . . . Moreover, the zeros are preserved.

Proof. Since Π is a zero direction of W (k), there is a matrix Λ such that

ΠΓ(k) = ΛΠ,

and therefore, in view of (5.7),

Πx(k)(t) − ΛΠx(k)(t − 1) − ΠK(k)y(t − 1) = 0,(5.16)

because B(k)(D(k))′[D(k)(D(k))′]−1 = K(k). Consequently, by (4.37),

Πx(k−1)(t + 1) − ΛΠx(k−1)(t) − ΠK(k−1)y(t)

= ΠΓ(k)x(k)(t) − ΛΠΓ(k)x(k)(t − 1) − ΛΠK(k)y(t − 1)

= Λ
[
Πx(k)(t) − ΛK(k)(t − 1) − ΠK(k)y(t − 1)

]
,

which is zero by (5.16). This together with (5.16) establishes that not only the zero
directions but also the zeros are preserved, since the same matrix Λ can be used in
each step.

By symmetry we also have the following theorem.
THEOREM 5.6

′
. If Π̄ is a matrix of zero directions of W (k), it is also a matrix of

zero directions for W̄ (k+j) for j = 0, 1, 2, . . . . Moreover, the zeros are preserved.
We observe that W (k) and W̄ (k) have the same zeros in view of Remark 5.3.

Theorems 5.6 and 5.6′ show that there is no loss of zeros when we apply a forward or
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backward Kalman filter step in (4.37) or (4.40). By the invertibility condition (3.32),
all the elements in the sequence {W (k) | k ∈ Z} must then have the same zeros. It is
also easy to see that the zero directions are being preserved.

These results illustrate the fact that, in the regular case, all internal minimal
splitting subspaces are fixed points of the operators σ and σ̄. In fact, if X is internal,
then so are σX and σ̄X by construction. Hence they have square spectral factors
[16], which, by Theorems 5.6 and 5.6

′
, have the same zeros. Hence X, σX, and σ̄X

must be the same. This analysis and the fact that in general there may be X ∈ X0
which are not fixed points show that, in the nonregular case, the zeros may change as
you move along the estimation sequence. The precise manner in which this happens
is the topic of section 8.

Remark 5.7. Note that Theorem 5.6 and 5.6
′

imply that in the regular case the
stable and unstable zero directions, i.e., the subspaces ker(P (−k) − P−), ker(P+ −
P (−k)) and ker(P̄ (k) − P̄+), ker(P̄+ − P̄ (k)), remain unchanged as k tends to ∞ in
the forward and backward Riccati equations (4.38) and (4.41). In other words, the
solutions of the Riccati recursions remain constant in the zero directions, providing a
possibility of reducing the size of the Riccati equation. In fact, choosing coordinates
so that the last basis vectors span

ker(P (−k) − P−) ∨ ker(P+ − P (−k)) ⊂ Rn,

the matrices {P (−k)} in the solution of the Riccati recursion (4.38) take the form

P (−k) =
[
P

(−k)
11 P12
P ′

12 P22

]
,(5.17)

where only the upper left matrix block varies with k. Then, substituting (5.17)
into (4.38) we obtain a reduced-order Riccati equation of dimension ν × ν where
ν = n − dim(X ∩ H0). A completely symmetric argument can be applied to the
backward Riccati recursion (4.41).

6. Output-induced subspaces. We have just seen that the matrices Γ and Γ̄
play an important role in the analysis of the estimation sequence x(k). We have also
pointed out that they are easily defined only in the regular case. Therefore, in this
section we shall consider only their coordinate-free versions, G and Ḡ, which have
natural definitions in the general case.

In the regular case, considered in section 5, the zero dynamics operators G and Ḡ
of a splitting subspace X ∈ X were defined on all of its internal subspace X ∩H0. This
is possible due to the direct sum decompositions (5.12) and (5.13). In the nonregular
case these decompositions will fail to exist as we demonstrate in section 7. Therefore,
we must shrink the domains of the zero dynamics operators.

As demonstrated in [29], G can always be defined on X ∩ X−, yielding only the
stable zeros (including those on the unit circle), and Ḡ can always be defined on
X ∩ X+, producing only the antistable zeros (including those on the unit circle and
those at infinity). In fact, this can also be seen from the following representations.
(Also see [29, Lemma 5.1].)

LEMMA 6.1. Let X ∈ X. Then

U−1(X ∩ X+) ⊂ (X ∩ X+) + {y(−1)}(6.1)

and

U(X ∩ X−) ⊂ (X ∩ X−) + {y(0)}.(6.2)
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Proof. We prove (6.2). Then (6.1) follows by symmetry. Obviously,

U(X ∩ X−) ⊂ UX− ⊂ H− ∨ {y(0)}.

Also X ∩ X− ⊂ S̄ ∩ S̄−, which is U -invariant. Therefore,

U(X ∩ X−) ⊂ (H− ∨ {y(0)}) ∨ (S̄ ∩ S̄−).

But {y(0)} ⊂ H+ ⊂ S̄ ∩ S̄− and H− ∩ S̄ ∩ S̄− = X ∩ X−, implying (6.2).
In this paper, however, we would like to define G and Ḡ on the largest possible

spaces. We show that this can be done in such a way that the eigenvalues of G are
precisely the finite zeros of X, and the eigenvalues of Ḡ are the reciprocals of the
nonzero zeros of X (using the definition 1/∞ = 0). Moreover, we want to know on
which subspaces G and Ḡ are invertible so that they can be directly related to each
other. This leads to the topic of output-induced subspaces, introduced in [13] in the
continuous-time setting. We now define it in the discrete-time case. Since, in the
nonregular discrete-time case, the covariance matrix of the observation noise of the
model (4.1) may be singular, the definition used in the continuous-time case must be
somewhat modified.

DEFINITION 6.2. Let X be a Markovian splitting subspace. A subspace Y ⊂ X is
called output induced if

(i) Y ⊂ H0,
(ii) UY ⊂ Y ∨ {y(0), y(1), . . . , y(k)} for some k ≥ 0,
(iii) U−1Y ⊂ Y ∨ {y(−1), y(−2), . . . , y(−k − 1)} for some k ≥ 0.

We say that Y is strictly output induced if it is output induced and k can be chosen
to be zero in (ii) and (iii).

The following proposition is an immediate consequence of the definition and the
finite dimension of X.

PROPOSITION 6.3. The sum of two output-induced (strictly output-induced) sub-
spaces is also output induced (strictly output induced). There exist a maximal output-
induced (strictly output-induced) subspace in the sense of subspace inclusion.

Since any output-induced subspace Y satisfies

Y ⊂ X ∩ H0 = (X ∩ X−) ∨ (X ∩ X+),

let us first consider the subspaces X ∩ X− and X ∩ X+. These, of course, trivially
satisfy condition (i), and, by Lemma 6.1, they also satisfy one of the conditions (ii) and
(iii) with k = 0, as required in the definition of being strictly output induced. Next,
we show that these subspaces also satisfy the remaining condition so that they are
output induced, and we investigate under what conditions they are actually strictly
output induced.

THEOREM 6.4. Let X ∈ X. Then the subspaces X ∩ X+ and X ∩ X− are output
induced. Moreover, X ∩ X+ is strictly output induced if and only if

(σX) ∩ X+ = X ∩ X+,(6.3)

and X ∩ X− is strictly output induced if and only if

(σ̄X) ∩ X− = X ∩ X−.(6.4)

Proof. First we prove that X ∩ X+ is output induced. To this end, in view of
(6.1), it is enough to check that there exists a k ≤ dimX such that

U(X ∩ X+) ⊂ (X ∩ X+) ∨ {y(0), y(1), . . . , y(k)}.(6.5)
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Since

X ∩ X+ = X0− ∩ X+,

where X0− is the tightest lower internal bound [18, 13], we may without loss of
generality assume that X is internal. By Theorem 3.3, there is a k ≤ dimX such that

σkX = σk+1X.

Consequently,

U−kS ⊂ S(−k) ⊂ S(−k−1) = H− ∨ (U−(k+1)S),

from which we have

US ⊂ S ∨ Uk+1H−.

Taking intersection with H+ in both sides and noting that U(S ∩ H+) ⊂ (US) ∩ H+,
we have

U(S ∩ H+) ⊂ [S ∨ {y(0), . . . , y(k)}] ∩ H+

= (S ∩ H+) ∨ {y(0), . . . , y(k)}.

Then (6.5) follows from the fact that X ∩ X+ = S ∩ H+. In the same way, we prove
that there is an ` ≤ dimX such that

U−1(X ∩ X−) ⊂ (X ∩ X−) ∨ {y(−1), y(−2), . . . , y(−` − 1)},(6.6)

implying together with (6.2) that X ∩ X− is output induced.
To characterize the strictly output-induced property we prove that

(σX) ∩ X+ = (X ∩ X+) ∩ [{y(−1)} ∨ U−1(X ∩ X+)
]

(6.7)

and that

(σ̄X) ∩ X− = (X ∩ X−) ∩ [{y(0)} ∨ U(X ∩ X−)] .(6.8)

To this end, let X ∼ (S, S̄), and note that S(−1) := H− ∨ U−1S ⊂ S. Hence

(σX) ∩ X+ = S(−1) ∩ X+ = S(−1) ∩ S ∩ X+

= S(−1) ∩ X ∩ X+ =
[{y(−1)} ∨ U−1S

] ∩ X ∩ X+

But since U−1S = U−1X ⊕ U−1S̄⊥ and {y(−1)} ⊂ U−1S̄ ⊥ U−1S̄⊥,

(σX) ∩ X+ =
[
({y(−1)} ∨ U−1X) ⊕ U−1S̄⊥] ∩ X ∩ X+

= ({y(−1)} ∨ U−1X) ∩ X ∩ X+,

because X+ ⊂ S̄ ⊂ U−1S̄ ⊥ U−1S̄⊥. Moreover, if ξ ∈ ({y(−1)} ∨ U−1X) ∩ X+, then
ξ = α + β, where α ∈ {y(−1)} ⊂ U−1H+ and β ∈ U−1X. Since ξ ∈ H+ ⊂ U−1H+,
we must have β ∈ U−1H+ so that β ∈ U−1(X ∩ H+) = U−1(X ∩ X+). Therefore
(6.7) follows. A symmetric argument yields (6.8).
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Now, (6.7) and (6.8) immediately imply that

(σX) ∩ X+ = X ∩ X+ ⇐⇒ U(X ∩ X+) ⊂ (X ∩ X+) ∨ {y(0)}(6.9)

and

(σ̄X) ∩ X− = X ∩ X− ⇐⇒ U−1(X ∩ X−) ⊂ (X ∩ X−) ∨ {y(−1)},(6.10)

concluding the proof.
COROLLARY 6.5. The subspace X ∩ H0 is the maximal output-induced subspace

of X ∈ X.
Proof. This follows immediately from Theorem 6.4 and (5.8).
COROLLARY 6.6. The subspace X− ∩ X+ is always strictly output induced.
Proof. This follows either from Lemma 6.1 or from (6.3) and the fact that σX− =

X−.
We are now in a position to connect the concept strictly output-induced subspaces

to fixed points of σ and σ̄.
COROLLARY 6.7. An X ∈ X0 is a fixed point of σ if and only if X ∩X+ is strictly

output induced. Likewise, X ∈ X0 is a fixed point of σ̄ if and only if X ∩X− is strictly
output induced.

Proof. In the end of the proof of Theorem 3.3 we pointed out that the internal
Markovian splitting subspaces are uniquely determined by X ∩ X+. Observe that if
X ∈ X0, then σX ∈ X0. Consequently, Theorem 6.4 implies that σX = X if and
only if X ∩ X+ is strictly output induced, and the rest follows by a symmetric argu-
ment.

As we shall see in section 8, these conditions can be formulated in terms of the
stable and unstable zeros of the spectral factor (1.2) corresponding to the splitting
subspace X.

The notion of strictly output-induced subspaces enables us in some cases to char-
acterize the limits X(−∞) and X(∞) of the sequence {X(k) | k ∈ Z} defined in section
3. To this end, let us recall [18] that the tightest internal bounds, X0− and X0+, are
the closest internal X such that

X0− ≤ X ≤ X0+.

More precisely,

X0− := sup{X0 ∈ X0 | X0 ≤ X}
and

X0+ := inf{X0 ∈ X0 | X ≤ X0}.

COROLLARY 6.8. Let X ∈ X, and let X0− and X0+ be its tightest internal bounds.
Then

X(−∞) = X0−

if and only if X ∩ X+ is strictly output induced, and

X(∞) = X0+

if and only if X ∩ X− is strictly output induced.
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Proof. Let us first recall that

S0− = S ∩ H0 = H− ∨ (X ∩ X+)

(cf. [18, Lemma 6.11], [13]). Therefore Theorem 6.4 implies that X0− is the lower
tightest internal bound of σX also if and only if X ∩ X+ is strictly output induced.
By induction, we then have that σ−kX ≥ X0− for k = 0, 1, 2, . . . and hence that
X(−∞) ≥ X0−. But X(−∞) ∈ X0 (Theorem 3.3), and consequently X(−∞) = X0−
follows from the tightness of the bound. The proof for the upper bound is analo-
gous.

Another consequence of Theorem 6.4 is that the splitting subspaces in the se-
quence {X(k) | k ∈ Z} have the same tightest local frame [18] if and only if the
internal subspace X ∩ H0 is strictly output induced. As we shall see in the next
section, this is only true in the regular case.

COROLLARY 6.9. A necessary and sufficient condition for all splitting subspaces
in the family {X(k) | k ∈ Z} to have the same tightest internal bounds is that X ∩ H0
is strictly output induced.

Proof. The proof follows immediately from Corollary 6.8, Proposition 6.3, and
(5.8).

Theorem 6.4 also yields the following alternative characterizations of regularity.
COROLLARY 6.10. The following conditions are equivalent to the regularity con-

ditions of Propositions 3.11 and 3.11
′
.

(vii) X+ is strictly output induced.
(viii) X− is strictly output induced.
(vii)′ X ∩ X+ is strictly output induced for all X ∈ X0.
(viii)′ X ∩ X− is strictly output induced for all X ∈ X0.
(ix)′ All X ∈ X0 are strictly output induced.
(x)′ The internal subspace X ∩ H0 is strictly output induced for all X ∈ X.
Proof. By Corollary 6.7, (vii)′ and (viii)′ are equivalent to conditions (v)′ and

(vi)′ of Proposition 3.11′, and (vii) and (viii) are equivalent to conditions (v) and
(vi) of Proposition 3.11. In view of Proposition 6.3, (ix)′ follows from (vii)′, (viii)′

and (3.13), and (x)′ follows from (vii)′, (viii)′, and (5.8). Clearly either (vii) or (viii)
implies (ix)′ and (x)′.

7. Invariant directions and the maximal strictly output-induced sub-
space. Proposition 6.3 states that, to each X ∈ X, there exists a maximal strictly
output-induced subspace Y ∗. In this section we construct Y ∗ explicitly. Let us recall
that Y ⊂ X ∩ H0 is said to be strictly output induced if

UY ⊂ Y ∨ {y(0)}(7.1)

and

U−1Y ⊂ Y ∨ {y(−1)}.(7.2)

To determine Y ∗, we first construct the subspaces Y, Ȳ ⊂ X ∩H0 satisfying (7.1) and
(7.2), respectively, which are maximal in the sense of subspace inclusion and show
that Y ∗ is precisely the intersection of these.

To this end, we design a procedure which is akin to the one used in geometric
control theory [31] to construct the maximal output-nulling subspace. More precisely,
define two sequences of subspaces {Y0, Y1, Y2, . . . } and {Ȳ0, Ȳ1, Ȳ2, . . . } by

Yk = (σkX) ∩ X ∩ H0(7.3)
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and

Ȳk = (σ̄kX) ∩ X ∩ H0(7.4)

and show that they converge monotonically to Y and Ȳ , respectively, in finitely many
steps. As will be seen below these are precisely the largest spaces on which the zero
dynamics operators may be defined. Obviously, Y0 = Ȳ0 = X ∩ H0. We now give
alternative characterizations of these sequences and obtain iterative solutions of (7.1)
and (7.2), respectively.

LEMMA 7.1. For each k = 1, 2, 3, . . . the subspaces (7.3) and (7.4) can be written

Yk = {ξ ∈ X ∩ H0 | Ukξ ∈ (X ∩ H0) ∨ {y(0), . . . , y(k − 1)}}(7.5)

and

Ȳk = {ξ ∈ X ∩ H0 | U−kξ ∈ (X ∩ H0) ∨ {y(−1), . . . , y(−k)}},(7.6)

respectively. Moreover, the sequences {Yk} and {Ȳk} satisfy the recursions

Yk+1 = {ξ ∈ Yk | Uξ ∈ Yk ∨ {y(0)}}(7.7)

and

Ȳk+1 = {ξ ∈ Ȳk | U−1ξ ∈ Ȳk ∨ {y(−1)}}(7.8)

for k = 1, 2, 3, . . . .
Proof. We prove only (7.5) and (7.7), (7.6) and (7.8) following by a symmetric

argument.
To prove (7.5), observe that

σkX = E(U−kS)∨H−
X ⊂ U−kX ∨ {y(−1), . . . , y(−k)}(7.9)

in view of the decomposition

(U−kS) ∨ H− =
[
(U−kX) ∨ {y(−1), . . . , y(−k)}] ⊕ U−kS̄⊥

and the fact that U−kS̄⊥ ⊂ S̄⊥ ⊥ X.
Consequently, if ξ ∈ Yk, then ξ ∈ X ∩ H0 and

Ukξ ∈ [X ∨ {y(0), . . . , y(k − 1)}] ∩ H0 = (X ∩ H0) ∨ {y(0), . . . , y(k − 1)}.

Conversely, if ξ ∈ X ∩ H0 and Ukξ ∈ (X ∩ H0) ∨ {y(0), . . . , y(k − 1)}, then

E(U−kS)∨H−
ξ = E(U−kX)∨{y(−1),...,y(−k)}ξ = ξ,

proving that ξ ∈ σkX so that ξ ∈ Yk.
Concerning the proof of (7.7), first consider a ξ ∈ Yk such that Uξ ∈ Yk ∨ {y(0)}.

By (7.5) we have

Uk+1ξ = Uk(Uξ) ∈ UkYk ∨ {y(k)}
⊂ (X ∩ H0) ∨ {y(0), . . . , y(k)},

proving that ξ ∈ Yk+1, as can be seen from (7.5).
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Conversely, if ξ ∈ Yk+1, then (7.5) implies that Uk+1ξ has the representation

Uk+1ξ = ζ + λ0 + λ1,

where ζ ∈ X ∩ H0, λ0 ∈ {y(0), . . . , y(k − 1)} and λ1 ∈ {y(k)}. We want to prove that
Uξ − U−kλ1 ∈ Yk, which implies (7.7). To this end, we note that

Uξ − U−kλ1 = U−kζ + U−kλ0.

The left member of this belongs to S̄, while the right member belongs to S, implying
that they are in X and hence in X ∩ H0. Moreover, in view of (7.5), the identity

Uk(Uξ − U−kλ1) = ζ + λ0

implies that Uξ − U−kλ1 ∈ Yk concluding the proof of (7.7).
An immediate consequence of Lemma 7.1 is that

X ∩ H0 = Y0 ⊃ Y1 ⊃ Y2 ⊃ · · ·(7.10)

and that

UYk+1 ⊂ Yk ∨ {y(0)}.(7.11)

Dually, we also have

X ∩ H0 = Ȳ0 ⊃ Ȳ1 ⊃ Ȳ2 ⊃ · · ·(7.12)

and

U−1Ȳk+1 ⊂ Ȳk ∨ {y(−1)}.(7.13)

Since X ∩ H0 is finite dimensional, the chain of inclusions (7.10) implies that there
is a k ≤ dim(X ∩ H0) such that Yk+1 = Yk. Then (7.7) implies that Y` = Yk for all
` ≥ k. Since dim(X ∩H0) ≤ dimX := n, we may refer to this subspace as Yn. Clearly

UYn ⊂ Yn ∨ {y(0)}.

Similarly, Ȳn is the limit of {Ȳk} and satisfies

U−1Ȳn ⊂ Ȳn ∨ {y(−1)}.

THEOREM 7.2. The subspace Yn is the maximal subspace of X ∩ H0 with the
property

UY ⊂ Y ∨ {y(0)},(7.14)

and Ȳn is the maximal subspace in X ∩ H0 such that

U−1Ȳ ⊂ Ȳ ∨ {y(−1)}.(7.15)

In the regular case, Yn = Ȳn = X ∩ H0.
Proof. We have already proved that Yn and Ȳn satisfy (7.14) and (7.15), respec-

tively. To prove maximality, consider a Y ⊂ X ∩ H0 = Y0 satisfying (7.14). We prove
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by induction that Y ⊂ Yk for k = 0, 1, 2, . . . . To this end, assume that Y ⊂ Yi and
show that Y ⊂ Yi+1. If ξ ∈ Y , then

Uξ ∈ Y ∨ {y(0)} ⊂ Yi ∨ {y(0)}.

Consequently, in view of (7.7), ξ ∈ Yi+1, as claimed. The maximality of Ȳn is proven
in the same way. The last statement follows from (5.12) and (5.13).

Remark 7.3. Applying the orthogonal projection operator EX to (7.14), we obtain

FY ⊂ Y ∨ EX{y(0)},(7.16)

where F is the compressed shift operator F := EXU |X . From the systems equations
(1.1) one can infer that F has the matrix representations A′ in the corresponding
basis and that EX{y(0)} has the matrix representations C ′. Therefore, analogously
to the continuous-time case [13], (7.16) is a stochastic version of (A′, C ′)-invariance
in geometric control theory [31, 4]. This connection to geometric control theory is
elaborated upon in [29]. In this context, we note that a similar application of EX to
(7.11) yields

FYk+1 ⊂ Yk ∨ EX{y(0)},

which should be compared to the algorithm in geometric control theory to determine
the maximal output-nulling subspace V∗.

Now, referring back to the regular case and (5.12) and (5.13), we recall that, in
this case, X ∩H0 satisfies (7.14) and (7.15) with direct sum. This enabled us to define
the operators G and Ḡ. In the general case X ∩ H0 ∩ {y(0)} and X ∩ H0 ∩ {y(−1)}
may be nontrivial subspaces. Nevertheless, as we will prove below, Yn and Ȳn satisfy
(7.14) and (7.15) with direct sum decomposition in the right member. This requires
a deeper analysis of so-called invariant directions of a system representation (1.1) of
X [5, 25, 26, 22].

More precisely, there are two kinds of invariant directions. An a ∈ Rn is a
predictable direction if there is a positive integer k such that

a′x(0) ∈ {y(−1), y(−2), . . . , y(−k)}.(7.17)

The smallest k with this property is called the order of the invariant direction a. If a
satisfies (7.17), the Kalman filter estimate x̂ takes the form

a′x̂(t) = a′x(t) =
r∑

i=1

c′
iy(t − i)

in that direction so that the estimation error becomes zero. This manifests itself in
that the filtering Riccati equation can be reduced in dimension after a finite number of
steps. A similar reduction occurs in the fast filtering algorithm [11]; see in particular
[12]. It can be shown [22] that a is a predictable direction if and only if, for some
k ≥ 0,

a ∈ ker(Γ′
−)k ∩ ker(P − P−).(7.18)

Dually, a ∈ Rn is a smoothable direction if there is a positive integer k such that

a′x̄(0) ∈ {y(0), y(1), . . . , y(k − 1)},(7.19)



844 ANDERS LINDQUIST AND GYÖRGY MICHALETZKY

causing a reduction in the backward Kalman filtering algorithms. Again the smallest
k with this property is the order of the invariant direction a, and

a ∈ ker(Γ̄′
+)k ∩ ker(P+ − P )(7.20)

for some k is a necessary and sufficient condition for a to be a smoothable direction.
It can be seen from (7.18) and (7.20) that the order of an invariant direction

cannot be larger than the dimension of X. Although the definition of invariant direc-
tions depends on the particular choice of coordinates in X, a′x(0) and a′x̄(0) in the
definitions (7.17) and (7.19) are independent of the coordinate system. Therefore we
shall refer to these elements of X as the invariant directions of X.

Now, let H� be the frame space

H� = X− ∨ X+,(7.21)

i.e., the closed linear hull of all internal subspaces X ∩ H0 as X ranges over X, and
define the subspace

H0+ = H� ∩ {y(−n), . . . , y(n − 1)}.

In analogy with the continuous-time case [7], H0+ is called the germ space [22], since
it contains all differences of y up to order n at t = 0.

PROPOSITION 7.4. The germ space has the direct sum decomposition

H0+ = X− ∩ {y(−1), . . . , y(−n)} + X+ ∩ {y(0), . . . , y(n − 1)}.(7.22)

Moreover, X− contains no smoothable and X+ no predictable directions.
Proof. The inclusion ⊃ is trivial. To prove the other direction, note that, since y

is purely nondeterministic, the two terms in (7.22) have a zero intersection, and every
ξ ∈ H0+ has a unique representation ξ = ξ−+ξ+ such that ξ− ∈ {y(−1), . . . , y(−n)} ⊂
H− and ξ+ ∈ {y(0), . . . , y(n−1)} ⊂ H+. But in view of decomposition (4.20), ξ− has
an orthogonal decomposition ξ− = ξ̂− + ξ̃− such that ξ̂− ∈ X− and ξ̃− ∈ H− ∩(H+)⊥,
and ξ+ can be written ξ+ = ξ̂++ξ̃+, where ξ̂+ ∈ X+ and ξ̃+ ∈ H+∩(H−)⊥. Therefore,
since

H0 =
[
H− ∩ (H+)⊥] ⊕ H� ⊕ [

H+ ∩ (H−)⊥]
,

the fact that ξ = ξ̃− +(ξ̂− + ξ̂+)+ ξ̃+ ∈ H� shows that ξ̃− = ξ̃+ = 0. Hence ξ− ∈ X−
and ξ+ ∈ X+, establishing the inclusion ⊂.

Consequently, the germ space is spanned by the predictable invariant directions
in X− and the smoothable invariant directions in X+. Moreover, y is regular if and
only if it has a trivial germ space.

PROPOSITION 7.5. Let X ∈ X. Then

X ∩ H0+ = X ∩ {y(−1), . . . , y(−n)} + X ∩ {y(0), . . . , y(n − 1)};(7.23)

i.e., X ∩ H0+ is spanned by the invariant directions of X. Moreover,

X ∩ {y(−1), . . . , y(−n)} ⊂ X− ∩ {y(−1), . . . , y(−n)}(7.24)

and

X ∩ {y(0), . . . , y(n − 1)} ⊂ X+ ∩ {y(0), . . . , y(n − 1)}.(7.25)
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Proof. Let X ∼ (S, S̄). Relations (7.24) and (7.25) follow from the fact that
X ∩ H− = X ∩ X− and that X ∩ H+ = X ∩ X+, respectively. In view of this
and Proposition 7.4, the inclusion ⊃ in (7.23) is immediate. To prove ⊂, take ξ ∈
X ∩ H0+. By Proposition 7.4, there is a unique decomposition ξ = ξ− + ξ+ such that
ξ− ∈ X− ∩ {y(−1), . . . , y(−n)} and ξ+ ∈ X+ ∩ {y(0), . . . , y(n − 1)}. Hence it just
remains to prove that ξ− ∈ X and ξ+ ∈ X. To this end, note that ξ− ∈ H− ⊂ S and
ξ ∈ X ⊂ S, so we must have ξ+ ∈ S. But ξ+ ∈ H+ ⊂ S̄, so ξ+ ∈ S ∩ S̄ = X. Since
ξ ∈ X, we must have ξ− ∈ X also.

We have thus proved that all invariant directions of X− are predictable and all the
invariant directions of X+ are smoothable, while an arbitrary X can have invariant
directions of either kind. In view of (7.18), the predictable directions of X are also
among the predictable directions of X−. In the same way, (7.20) implies that the
smoothable directions of X form a subspace of the smoothable directions of X+ [22].
We call X ∩{y(−1), . . . , y(−n)} the predictable subspace and X ∩{y(0), . . . , y(n− 1)}
the smoothable subspace of X.

THEOREM 7.6. Let X ∈ X. Then we have the following.
(i) The internal subspace X ∩ H0 of X has the direct-sum decomposition

X ∩ H0 = Yn + X ∩ {y(0), . . . , y(n − 1)}.(7.26)

Moreover,

X ∩ X− ⊂ Yn.(7.27)

In particular, Yn contains the predictable directions X ∩ {y(−1), . . . , y(−n)} of X.
(ii) The internal subspace X ∩ H0 of X has the direct-sum decomposition

X ∩ H0 = Ȳn + X ∩ {y(−1), . . . , y(−n)}.(7.28)

Moreover,

X ∩ X+ ⊂ Ȳn.(7.29)

In particular, Ȳn contains the smoothable directions X ∩ {y(0), . . . , y(n − 1)} of X.
(iii) The maximal strictly output-induced subspace of X is given by

Y ∗ = Yn ∩ Ȳn.(7.30)

Moreover,

Yn = Y ∗ + X ∩ {y(−1), . . . , y(−n)}(7.31)

and

Ȳn = Y ∗ + X ∩ {y(0), . . . , y(n − 1)}.(7.32)

In the regular case, Y ∗ = X ∩ H0 for all X ∈ X.
This theorem, the proof of which we defer to the end of the section, shows in

particular that the internal subspace X ∩ H0 can be decomposed as

X ∩ H0 = X ∩ {y(−1), . . . , y(−n)} + Y ∗ + X ∩ {y(0), . . . , y(n − 1)},(7.33)

i.e., as the direct sum of the subspace of predictable directions, the maximal strictly
output-induced subspace, and the subspace of smoothable directions of X. In view
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of Proposition 7.5, X ∩ H0 is also the direct sum of Y ∗ and the germ subspace of X,
i.e.,

X ∩ H0 = Y ∗ + X ∩ H0+.(7.34)

This has the following consequence.
COROLLARY 7.7. The process y is regular if and only if no X ∈ X has invariant

directions.
Remark 7.8. An immediate consequence of the definitions of Yn, Ȳn, and Y ∗ is

that

Y ∗ ⊂ Yn ⊂ (σkX) ∩ H0 and Y ∗ ⊂ Ȳn ⊂ (σ̄kX) ∩ H0

for all k = 0, 1, 2, . . . , showing that the maximal strictly output-induced subspace
of any X ∈ X is contained in each of the internal subspaces of the corresponding
sequence of splitting subspaces {X(k); k ∈ Z}.

From Theorems 7.2 and 7.6(i) we also have the following corollary.
COROLLARY 7.9. The following inclusions hold:

UYn ⊂ Yn + {y(0)},(7.35)

U−1Ȳn ⊂ Ȳn + {y(−1)}.(7.36)

Let us recall that, in the regular case, (5.12) and (5.13) enabled us to define the
zero dynamics operators G and Ḡ on all of the internal subspace X ∩ H0 of X ∈ X.
In the general case, Corollary 7.9 provides the appropriate counterparts of (5.12) and
(5.13).

DEFINITION 7.10 (general case). Let the zero dynamics operators G : Yn → Yn

and Ḡ : Ȳn → Ȳn be defined as

G = πU |Yn
(7.37)

and

Ḡ = π̄U−1|Ȳn
,(7.38)

where π : Yn + {y(0)} → Yn and π̄ : Ȳn + {y(−1)} → Ȳn are the oblique projectors
projecting parallel to {y(0)} and {y(−1)}, respectively.

Note that in the regular case the definitions of π and π̄ coincide with that of
section 4. In fact, we recall from Theorem 7.2 that Yn = Ȳn = X ∩ H0 in this
case. Consequently, the present definitions of G and Ḡ are merely straightforward
generalizations of those in section 4.

THEOREM 7.11. The maximal strictly output-induced subspace Y ∗ is both G-
and Ḡ-invariant. Also G|Y ∗ is invertible, and its inverse is Ḡ|Y ∗ . Furthermore, the
subspaces X ∩ {y(−1)} and X ∩ {y(0)} are the null spaces of G and Ḡ, respectively.
More generally,

ker Gk = X ∩ {y(−1), . . . , y(−k)} for k = 1, 2, 3, . . .

and

ker Ḡk = X ∩ {y(0), . . . , y(k)} for k = 1, 2, 3, . . . .
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In particular, ker Gn is the space of predictable and ker Ḡn the space of smoothable
invariant directions.

Proof. The fact that Y ∗ is strictly output induced and thus satisfies

UY ∗ ⊂ Y ∗ + {y(0)} and U−1Y ∗ ⊂ Y ∗ + {y(−1)}

implies that Y ∗ is both G- and Ḡ-invariant. To prove the last statement, take ξ ∈ Y ∗.
Then

Uξ = Gξ + λ,

where Gξ ∈ Y ∗ and λ ∈ {y(0)}, and therefore U−1Gξ = ξ − U−1λ. Consequently,
since U−1λ ∈ {y(−1)},

ḠGξ = ξ,

proving that G|Y ∗ =
[
Ḡ|Y ∗

]−1. To prove the statement concerning the kernel of G,
observe that ξ ∈ ker G if and only if ξ ∈ Yn and Uξ ∈ {y(0)}. Therefore, since
{y(−1)} ∩ X ⊂ Yn, ker G = X ∩ {y(−1)}. Similar arguments prove the rest.

This again illustrates the fact that G and Ḡ are defined and invertible on all of
X ∩ H0 in the regular case and only in the regular case. The following theorem, the
proof of which is deferred to Appendix A, gives an upper bound for the number of
invariant directions of any X ∈ X. This is a generalization of Theorem 3.8 in [22],
which deals with the internal case.

THEOREM 7.12. The space of predictable directions in X− has the same dimension
µ as the space of smoothable directions in X+, i.e.,

µ := dim(X− ∩ {y(−1), . . . , y(−n)}) = dim(X+ ∩ {y(0), . . . , y(n − 1)}).

Moreover, the dimension of the space of invariant directions of any X ∈ X is no larger
than µ, i.e.,

dim(X ∩ {y(−1), . . . , y(−n)} + X ∩ {y(0), . . . , y(n − 1)}) ≤ µ.

If X is internal, there is equality in this relation.
Proof of Theorem 7.6. We first prove (i). In the same way as in the proof of

Theorem 3.3 we observe that

S(−k) ∩ H0 = H− ∨ (X(−k) ∩ X+),

formed analogously to (3.14), and that X(−k) ∩ X+ converges in a finite number of
steps which cannot exceed n. Consequently,

S(−n) ∩ H0 = S(−2n) ∩ H0.

Therefore, since S(−k) = (U−kS) ∨ H− by definition, we obtain

(UnS) ∩ H0 ⊂ (S ∩ H0) ∨ U2nH− = (S ∩ H0) ∨ {y(0), . . . , y(2n − 1)}.

Now, taking the intersection with H+ and using the shift invariance of H+, we see
that

Un(S ∩ H+) ⊂ (UnS) ∩ H+ ⊂ (S ∩ H+) ∨ {y(0), . . . , y(2n − 1)},
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i.e.,

Un(X ∩ X+) ⊂ (X ∩ X+) ∨ {y(0), . . . , y(2n − 1)}.(7.39)

At the same time, (6.2) in Lemma 6.1 implies that

Un(X ∩ X−) ⊂ (X ∩ X−) ∨ {y(0), . . . , y(n − 1)},

which together with (7.39) and (5.8) yields

Un(X ∩ H0) ⊂ (X ∩ H0) ∨ {y(0), . . . , y(2n − 1)}.

Consequently,

X ∩ H0 ⊂ [
U−n(X ∩ H0) ∨ {y(−1), . . . , y(−n)}] ∨ {y(0), . . . , y(n − 1)},(7.40)

where the first summand is a subspace of S, while the second is contained in H+ ⊂ S̄.
Now, observing that[

U−n(X ∩ H0) ∨ {y(−1), . . . , y(−n)}] ∩ S̄ ⊂ S ∩ H0 ∩ S̄ ⊂ X ∩ H0,

(7.5) implies that the left member equals Yn. Therefore, taking the intersection with
S̄ in (7.40), we obtain

X ∩ H0 ⊂ Yn ∨ {y(0), . . . , y(n − 1)},

which after intersection with X yields

X ∩ H0 = Yn ∨ (X ∩ {y(0), . . . , y(n − 1)}),

the opposite inclusion being trivial. It remains to show that this is a direct sum. To
see this, consider a ξ ∈ Yn ∩ X ∩ {y(0), . . . , y(n − 1)}. Then, by (7.5), Unξ has the
representation

Unξ = ζ + λ,(7.41)

where ζ ∈ X ∩ H0 and λ ⊂ {y(0), . . . , y(n − 1)}. Therefore,

ζ = Unξ − λ ∈ X ∩ {y(0), . . . , y(2n − 1)}
is a smoothable direction of X, so we have that ζ ∈ X ∩ {y(0), . . . , y(n − 1)}.
Consequently, by (7.41), Unξ ∈ {y(0), . . . , y(n − 1)}. However, by assumption,
Unξ ∈ {y(n), . . . , y(2n−1)}, which, by virtue of the strictly nondeterministic property
of y, implies that ξ = 0, concluding the proof (7.26). Since X ∩ X− satisfies (7.14)
(Lemma 6.1), the maximality of Yn implies that X ∩ X− ⊂ Yn. The last statement
now follows from the fact that X ∩ H− = X ∩ X−. This concludes the proof of (i). A
symmetric argument yields (ii).

Next we prove that Y ∗ defined by (7.30) satisfies the inclusion

UY ∗ ⊂ Y ∗ + {y(0)}.(7.42)

To this end, consider a ξ ∈ Y ∗. In view of Lemma 7.1, using the fact Yn = Yn+1, ξ is
seen to have the two representations

ξ = U−n−1ζ + λ = Unζ̄ + λ̄,
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where ζ, ζ̄ ∈ X ∩ H0, λ ∈ {y(−1), . . . , y(−n − 1)}, and λ̄ ∈ {y(0), . . . , y(n)}. Conse-
quently,

Uξ = U−nζ + λ1 + λ0,

where λ0 ∈ {y(0)} and λ1 ∈ {y(−1), . . . , y(−n)} and λ1 + λ0 = Uλ. We prove that
U−nζ + λ1 ∈ Y ∗, thereby proving (7.42). Since for Yn the inclusion (7.11) holds and
ξ ∈ Yn, we obtain that

U−nζ + λ1 ∈ Yn.

On the other hand,

U−nζ + λ1 = U2n+1ζ̄ + Uλ̄ − λ0 ∈ U2n+1(X ∩ H0) ∨ {y(0), . . . , y(n)},

which, in view of Lemma 7.1, gives

U−nζ + λ1 ∈ Yn,

concluding the proof of (7.42).
A similar argument shows that

U−1Y ∗ ⊂ Y ∗ + {y(−1)}.(7.43)

Equations (7.42) and (7.43) establish that Y ∗ is a strictly output-induced subspace.
Since the maximality of Yn and that of Ȳn imply that any strictly output-induced
subspace must be included in both Yn and Ȳn, the intersection Y ∗ is the maximal
strictly output-induced subspace.

Taking intersections with Ȳn on both sides in (7.26) and observing that X ∩
{y(0), . . . , y(n − 1)} ⊂ Ȳn by (ii), we immediately obtain (7.32).

In the same way, (7.31) follows by intersecting (7.28) with Yn and observing the
fact that X ∩ {y(−1), . . . , y(−n)} ⊂ Yn by (i).

8. The change of zero dynamics under σ and σ̄. In Definition 7.10 we
assigned to each X ∈ X two operators G and Ḡ, defined on the appropriate subspaces
of X. Now we will relate the eigenvalues of G and Ḡ to the zeros of W and W̄ , the
spectral factors corresponding to X, justifying the name zero dynamics operators.
Next we analyze the connections between the zero dynamics operators belonging to
different splitting subspaces. Finally, using these operators, we describe completely
the change in the zero structure when applying the prediction operators σ and σ̄.

To this end, we recall from [20] that the finite zeros of W and the corresponding
zero directions are characterized by the solutions of (5.5), i.e.,

[
Π −M

] [
A B
C D

]
=

[
ΛΠ 0

]
,(8.1)

in the sense that the eigenvalues of Λ are zeros of W and the rows of Π span the
subspace of the corresponding generalized zero directions. In order to describe all
finite zeros we need to consider a maximal solution of (8.1) in the sense that Π has
maximal rank or in the sense that the subspace generated by the row vectors of Π is
maximal.

We now give an alternative proof of a generalization of Lemma 5.2 which also
works in the nonregular case.
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LEMMA 8.1. A matrix Π satisfies (8.1) if and only if there are matrices Λ and M
such that

Πx(t + 1) = ΛΠx(t) + My(t).(8.2)

Proof. Equation (8.1) is equivalent to[
Π −M

] [
A B
C D

] [
x(t)
u(t)

]
=

[
ΛΠ 0

] [
x(t)
u(t)

]
,

where x is the state process and u is the driving noise of the stochastic model (1.1).

This is seen by observing that the covariance matrix of
[
x(t)
u(t)

]
is full rank. Together

with the systems equations (1.1) this yields (8.2).
A coordinate-free version of (8.2) is provided by

UY ⊂ Y ∨ {y(0)},(8.3)

where Y consists of the random variables of the form b′Πx(0). This observation allows
us to characterize the zeros of W in terms of the eigenvalues of G.

PROPOSITION 8.2. The eigenvalues of G are precisely the finite zeros of W .
Similarly, the eigenvalues of Ḡ are the finite zeros of W̄ (z−1).

Proof. Consider the maximal solution of (8.1). Then the eigenvalues of Λ are
the finite zeros of W . Moreover, since Yn is the maximal subspace satisfying (8.3)
(Theorem 7.2), z := Πx(0) is a basis in Yn, the space on which G is defined. It then
follows from (8.2) that

Gzi =
∑

j

Λijzj ,

and consequently Λ′ is a matrix representation of G in the basis of z, thus having
the same eigenvalues. This concludes the proof of the first statement. The second
statement follows by symmetry.

This together with Theorem 7.11 illustrates that we have zeros at zero and/or
infinity precisely in the nonregular case and that such zeros are connected to invariant
directions. More precisely, predictable directions correspond to zeros at zero and
smoothable directions to zeros at infinity.

It was proven in [20] and [29], independently and with different methods, that
W and W̄ have the same zeros also in the nonregular case. (A modification of the
argument in Remark 5.3 could also be used to see this.) Therefore, any statement
about the zeros of W also holds for W̄ , and vice versa.

Recall that

X ∩ H0 = (X ∩ X−) ∨ (X ∩ X+),(8.4)

where the sum is direct if and only if X− ∩ X+ = 0 or, equivalently, H− ∩ H+ = 0.
Only in the regular case can we define G and Ḡ on all of X ∩ H0, but in view of
Theorem 7.6(i), X ∩ X− is always contained in the domain of G and X ∩ X+ in the
domain of Ḡ.

THEOREM 8.3. Let G− be the G-operator of X− and Ḡ+ be the Ḡ-operator of
X+. Let (W, W̄ ) be the spectral factors of X ∈ X. Then

G|X∩X− = G−|X∩X−(8.5)
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and

Ḡ|X∩X+ = Ḡ+|X∩X+ .(8.6)

Consequently, the eigenvalues of G|X∩X− are the stable zeros of W (including those on
the unit circle) and that the eigenvalues of Ḡ|X∩X+ are the reciprocals of the antistable
zeros (including those on the unit circle and at infinity). Finally,

G|X−∩X+ =
[
Ḡ|X−∩X+

]−1
,(8.7)

and its eigenvalues are precisely the zeros on the unit circle.
Proof. Referring to (6.2) we see that X ∩ X− is invariant under both G and G−

and hence (8.5) follows. In the same way, (6.1) implies that X ∩X+ is invariant under
both Ḡ and Ḡ+, implying (8.6). This is in harmony with Theorem 5.4 and implies
the statements on stable and unstable zeros. Finally, by Corollary 6.6, X− ∩ X+ is
strictly output induced and is thus contained in Y ∗, on which space G is invertible
(Theorem 7.6). Consequently, the last statement follows.

In particular, we have the following observation, which was previously reported
in [10] and [9]. (In the latter paper the proof is somewhat incomplete, since the
multiplicities are not counted properly.)

COROLLARY 8.4. All minimal spectral factors have the same number of zeros on
the unit circle (counting multiplicity), namely, dimX− ∩ X+ = dimH− ∩ H+.

In section 5 we showed that in the regular case, the zeros, as well as the zero
directions, are preserved as the operators σ and σ̄ are applied. In general this is not
true in the nonregular case. In view of Theorem 8.3, the following two theorems,
relating σ and σ̄ to the operators G and Ḡ, show what happens.

THEOREM 8.5. Let X ∈ X. Then

(σX) ∩ X+ = Ḡ+(X ∩ X+) = Ḡ(X ∩ X+)(8.8)

and

(σ̄X) ∩ X− = G−(X ∩ X−) = G(X ∩ X−).(8.9)

Proof. We prove only (8.8). Then a symmetric argument yields (8.9). First we
show that

σX ⊂ {y(−1)} ∨ U−1X.(8.10)

To this end, observe that H− ∨ U−1S = {y(−1)} ∨ U−1S, which, in view of the fact
that {y(−1)} ⊂ U−1H+ ⊂ U−1S̄, equals ({y(−1)} ∨ U−1X) ⊕ U−1S̄⊥. However,
X ⊥ S̄⊥ ⊃ U−1S̄⊥, and consequently (8.10) follows from the definition (3.1). Now,
consider ζ ∈ (σX) ∩ X+. In view of (8.10), we have the representation

ζ = η + U−1ξ,

where η ∈ {y(−1)} and ξ ∈ X. On the other hand, since U−1ξ = ζ − η ∈ U−1H+, we
see that ξ ∈ H+ ∩ X = X ∩ X+. From the definition of the operator Ḡ+, we have

ζ = Ḡ+ξ, where ξ ∈ X ∩ X+.

Conversely, if ξ ∈ X ∩ X+, Ḡ+ξ ∈ X+ and Ḡ+ξ − U−1ξ ∈ {y(−1)}, implying that
Ḡ+ξ ∈ H− ∨ U−1S = S(−1). Hence,

Ḡ+ξ ∈ (σX) ∩ X+,

which together with (8.6) concludes the proof of the theorem.
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THEOREM 8.6. Let X ∈ X. Then

(σX) ∩ X− = {ξ ∈ X− | G−ξ ∈ X ∩ X−}(8.11)

and

(σ̄X) ∩ X+ = {ξ ∈ X+ | Ḡ+ξ ∈ X ∩ X+}.(8.12)

Proof. We prove (8.11); then (8.12) follows by symmetry. Let ξ ∈ X−. Since
EH−X = X− [18, Lemma 4.6 and Theorem 4.10] and ker EH− |X = X ∩ (H−)⊥ = 0
(see section 2), there is a unique ζ ∈ X such that ξ = EH−ζ. By the definition of G−,

Uξ = G−ξ + η,

where η ∈ {y(0)}, and therefore

U(ζ − ξ) = Uζ − η − G−ξ.

Since G−ξ ∈ X− ⊂ S, Uζ ∈ US̄ ⊂ S̄, and η ∈ H+ ⊂ S̄, the splitting property (2.8)
yields

ESU(ζ − ξ) = EX(Uζ − η) − G−ξ.(8.13)

Now, suppose ξ ∈ (σX)∩X−. Then by definition (3.1), ξ = EH−∨U−1Sλ for some
λ ∈ X. But then, since ξ ∈ H−, ξ = EH−λ, so by uniqueness we must have λ = ζ.
Consequently, ζ − ξ ⊥ H− ∨ U−1S, which in particular implies that U(ζ − ξ) ⊥ S.
Hence, it follows from (8.13) that G−ξ ∈ X, proving that G−ξ ∈ X ∩ X−.

Conversely, suppose that G−ξ ∈ X ∩ X−. Then, by (8.13),

ESU(ζ − ξ) ∈ X.(8.14)

But, since ξ = EH−
ζ,

U(ζ − ξ) ⊥ UH− ⊃ H−.(8.15)

Therefore, since S = H− ⊕ S ∩ (H−)⊥ by (4.20), we have

ESU(ζ − ξ) = ES∩(H−)⊥
U(ζ − ξ) ∈ S ∩ (H−)⊥.(8.16)

Since X ∩ S ∩ (H−)⊥ = X ∩ (H−)⊥ = 0 (see section 2), it follows from (8.14) and
(8.16) that ESU(ζ − ξ) = 0, and hence

U(ζ − ξ) ⊥ S,

which together with (8.15) yields

ζ − ξ ⊥ H− ∨ U−1S.

Consequently, ξ = EH−∨U−1Sζ ∈ σX, and so ξ ∈ (σX) ∩ X− as claimed.
In particular, Theorems 8.5 and 8.6 show that

(σ̄X) ∩ X− ⊂ X ∩ X− ⊂ (σX) ∩ X−;(8.17)
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i.e., stable zeros may be lost as we apply σ̄ and gained as we apply σ. In the same
way,

(σX) ∩ X+ ⊂ X ∩ X+ ⊂ (σ̄X) ∩ X+,(8.18)

showing that antistable zeros may be lost when applying σ and gained when applying
σ̄. This is in agreement with Proposition 3.4 and formulas (6.7) and (6.8).

To determine what zeros are being lost and gained under these operations, we
observe from Theorems 8.5 and 8.6 that the subspaces being added or subtracted
from X ∩ X− and X ∩ X+ must be contained in the kernel of some G- or Ḡ-operator.
Consequently, by Theorem 7.11, the corresponding zero directions are invariant di-
rections.

We may therefore formulate an amplification of statement (8.17), namely, that
zeros at zero together with the corresponding predictable directions may be gained
when applying σ and lost when applying σ̄. In the same way, (8.18) and Theorem
7.11 show that zeros at infinity together with the corresponding smoothable directions
may be lost when applying σ and gained when applying σ̄.

The following corollary is an immediate consequence of Theorems 8.5 and 8.6.
COROLLARY 8.7. Let X ∈ X, and let Yn and Ȳn be defined as in section 7. Then

(σkX) ∩ H0 = Yn ∨ {predictable directions in X−}
= Y ∗ + {predictable directions in X−}

and

(σ̄kX) ∩ H0 = Ȳn ∨ {smoothable directions in X+}
= Y ∗ + {smoothable directions in X+}

for k = n, n + 1, . . . .
Remark 8.8. Theorem 7.11, Remark 7.8, and Corollary 8.7 enable us to generalize

the statement in Remark 5.7 to the nonregular case. The same construction that
was used in this remark to reduce the Riccati equations can be applied here with
modifications which take into account the fact that the internal subspace X(k) ∩H0 is
no longer constant along the sequence of splitting subspaces {X(k)} in the nonregular
case. In view of Remark 7.8, the solutions of the Riccati recursions are constant
from the start in the zero directions of Yn, while they become constant only after
a finite number of steps in the remaining predictable directions by Corollary 8.7.
Consequently, after a finite number of steps the size of the reduced Riccati equations
is ν × ν where ν = n − dim(σnX) ∩ H0. In view of Corollary 8.7 and Theorem 7.12,
the backward Riccati equation can be reduced to the same size.

9. Conclusions. In this paper we discuss the very rich and intricate structure of
discrete-time linear stochastic systems in the context of an interpolation-type problem,
namely, to reconstruct lost state information on a finite interval using the whole
history of the output process and the remaining state information. We show that, at
each time, the (least squares) state estimate can be written as a linear combination of
two filter estimates, which are generated by (forward respectively backward) Kalman
filtering-type recursions with the initial condition being itself a state. Remarkably,
these Kalman filtering recursions generate sequences of state processes from different
stochastic realizations which are totally ordered. When k → ∞ and when k → −∞,
the sequence of splitting subspaces X(k) converge to limits which are internal splitting
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subspaces. These limits are determined by the zero structure of the spectral factor
(1.2).

In the regular case, when there are no zeros at the origin and at infinity, the set
of zeros and zero directions of the spectral factors W (k) corresponding to the splitting
subspaces X(k) remain invariant during these recursions giving a set of invariants. We
show that in the nonregular case the whole set of zeros is no longer invariant but the
finite zeros with finite reciprocals still are.

We have shown that the computational burden of determining the interpolation
estimate depends on the dimension of the internal subspace X ∩ H0, i.e., on the
number of zeros. This leads to the study of output-induced and strictly output-
induced subspaces and zero dynamics operators. In particular, if a′x(0) ∈ X ∩ H0,
then, in the regular case, the solutions of the Riccati equations (4.38) and (4.41) for
the interpolation problem becomes constant in the direction a, allowing for a reduction
in size of the Riccati equations. In fact, if dimX ∩ H0 = n − ν, we need only to solve
Riccati equations of dimension ν × ν rather than n × n in the regular case (Remark
5.7). In the nonregular case the reduction may be even larger after a finite number of
steps (Remark 8.8).

What makes the discrete-time case more complicated than the continuous-time
case is the possibility that the predictable subspace X ∩ {y(−1), . . . , y(−n)} and the
smoothable subspace X ∩ {y(0), . . . , y(n − 1)} are nontrivial. In fact, if these spaces
are zero spaces (the regular case), the structure of the problem is very much like
the continuous-time coercive case, studied in [13], and X ∩ H0 is itself strictly output
induced. If they are not, the matrix D will lose rank, and the matrix Riccati equations
of forward and backward Kalman filtering will become constant in the directions a
for which a′x(0) is an element of these spaces, thus influencing the implementation of
the filtering algorithms, as explained above. These a are called invariant directions.
Nonregularity, and hence invariant directions, are connected with zeros at zero and
at infinity.

In particular, we have demonstrated that X ∩ H0 can be decomposed as a direct
sum of the predictable subspace, the smoothable subspace and the maximal strictly
output-induced subspace, corresponding to the zeros at zero, the zeros at infinity, and
the remaining zeros, respectively. The maximal strictly output-induced subspace Y ∗

equals X ∩H0 in the regular case and plays the role of X ∩H0 in the nonregular case.
We have given several geometric characterizations of regularity (Propositions 3.11 and
3.11′ and Corollaries 6.10 and 7.7). We have also shown that Y ∗ can be determined by
algorithms akin to that used in geometric control theory for determining the maximal
output-nulling subspace.

On the maximal strictly output-induced subspace Y ∗ the forward and backward
zero dynamics operators G and Ḡ, respectively, are inverses of each other. The eigen-
values are the finite zeros with finite reciprocals. The operators G and Ḡ can be
separately extended to a larger subspace. On these subspaces (in the nonregular
case) these operators are in general singular and the invariant directions determine
the kernel of these operators.

Appendix A. Proof of Theorem 7.12.
Let us denote by Ip(X) the predictable directions in X ∈ X under the natural

isomorphism a 7→ a′x(0) and by Is(X) the smoothable directions under the same
isomorphism. Then Theorem 7.11 implies that

Ip(X) = ker(P − P−) ∩ ker(Γ′
−)n and Is(X) = ker(P+ − P ) ∩ ker P−1

+ (Γ̄′
+)nP+.
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In particular,

Ip(X−) = ker(Γ′
−)n and Is(X+) = ker P−1

+ (Γ̄′
+)nP+.

As in [28, p. 53], a straightforward but somewhat tedious calculation yields the
identity

Γ̄+P−1
+ (P+ − P−) = P−1

+ (P+ − P−)Γ′
−.(A.1)

First, we prove that

dim Ip(X−) = dim Is(X+).

To this end, observe that (A.1) implies that

(P+Γ̄n
+P−1

+ )(P+ − P−) = (P+ − P−)(Γ′
−)n.(A.2)

Since it follows from Theorem 8.3 that ker(P+ − P−) ∩ ker Γ′
− = 0, we obtain that if

ξ ∈ ker(Γ′
−)n is nonzero, then (P+ − P−)ξ 6= 0. Thus

(P+ − P−)Ip(X−) ⊂ ker P−1
+ (Γ̄+)nP+,

implying that

dim Ip(X−) ≤ dim Is(X+).

A symmetric argument yields the reverse inequality, proving the first statement in the
theorem and also that

ker P−1
+ (Γ̄+)nP+ = (P+ − P−)Ip(X−).

Consequently, Y := ImP−1
+ (Γ̄′

+)nP+, the counterpart of the maximal strictly output-
induced subspace Y ∗ of X+ under the natural isomorphism, is the orthogonal com-
plement of (P+ − P−)Ip(X−), i.e.,

Y = {a ∈ Rn | a′(P+ − P−)b = 0 for b ∈ Ip(X−)}.

Thus, again invoking that (P+ − P−) is nonsingular on Ip(X−), we obtain the direct-
sum decomposition

Ip(X−) + Y = Rn,

where the two summands are “orthogonal” in the inner product defined by (P+−P−).
In view of the direct-sum decomposition

Is(X+) + Y = Rn(A.3)

we see that both the predictable directions and the smoothable directions under the
natural isomorphisms are mapped to subspaces which are complementary to Y .

Now observe that if a ∈ ker(P −P−) and b ∈ ker(P+ −P ), then a′(P+ −P−)b = 0,
i.e., ker(P −P−) and ker(P+−P ), are also orthogonal in the inner product determined
by (P+ − P−). This inner product is nonsingular on Ip(X−), so we can consider a
(P+ − P−)-orthogonal complement Z of Ip(X) in Ip(X−), i.e.,

Ip(X) + Z = Ip(X−).(A.4)
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Then the (P+ − P−)-orthogonal complement of Ip(X) in Rn is Z + Y , the latter
obviously containing ker(P+ − P ). Consequently

Is(X) ⊂ (Z + Y ) ∩ Is(X+).(A.5)

In the internal case we have equality in this inclusion. Now, the identity (A.3) implies
that

dim(Z + Y ) ∩ Is(X+) = dimZ,

which together with (A.4) and (A.5) yields

dim Ip(X) + dim Is(X) ≤ dim Ip(X−) = µ

with equality in the internal case, concluding the proof of the theorem.

Appendix B. Zero direction of σX and σ̄X .
Theorems 8.5 and 8.6 can be reformulated in terms of (generalized) zero directions.
THEOREM B.1. The antistable zero directions of σX are described by

(σX) ∩ X+ = {a′x̄+(0) | a = Γ̄′
+b, where b ∈ ker(P̄ − P̄+)}.(B.1)

Similarly, the stable zero directions of σ̄X are given by

(σ̄X) ∩ X− = {a′x̄−(0) | a = Γ̄′
−b, where b ∈ ker(P − P−)}.(B.2)

THEOREM B.2. The stable zero directions of σX are described by

(σX) ∩ X− = {a′x−(0) | a ∈ Rn, Γ′
−a ∈ ker(P − P−)}.(B.3)

Similarly, the antistable zero directions of σ̄X are given by

(σ̄X) ∩ X+ = {a′x̄+(0) | a ∈ Rn, Γ̄′
+a ∈ ker(P̄ − P̄+)}.(B.4)

These theorems follow directly from Theorems 8.5 and 8.6, identifying G− and
Ḡ+ with Γ′

− and Γ̄′
+ and X ∩ X− and X ∩ X+ with ker(P − P−) and ker(P̄ −

P̄+), respectively. (Also see [13].) However, we also have the following independent
coordinate-dependent proofs.

Proof of Theorem B.1. We prove (B.1). Then (B.2) follows by symmetry. The
proof of this theorem runs parallel to that of Theorem 8.6. In view of the definition
(3.1) of σX, we need to characterize all ξ ∈ X such that

EH−∨U−1Sξ = E{y(−1)}∨U−1Xξ ∈ X+,

or, in other words, ξ = d′x̄+(0) such that

E{y(−1)}∨U−1Xd′x̄(0) = c′y(−1) + b′x̄(−1) = a′x̄+(0)

for appropriate vectors a, b, c, and d. The equations connecting a, b, c, and d are

d′ [P̄ C̄ ′ P̄A
]

=
[
c′ b′] [

Λ0 C
C ′ P

]
,(B.5)

[
c′ b′] [

C̄
A′

]
= a′,(B.6)
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and [
c′ b′] [

Λ0 C
C ′ P

]
= a′P̄+a.(B.7)

Here the first two equations are projection formulas projecting ξ onto {y(−1)}∨U−1X
and c′y(−1) + b′x̄(−1) onto X+, respectively, and the third equation expresses that
in the latter projection the error is zero. Now, insert (B.6) into (B.7) and rearrange
terms to obtain [

c′ b′] [
Λ0 − C̄P̄+C̄ ′ C − C̄P̄+A
C ′ − A′P̄+C̄ ′ P̄ − A′P̄+A

] [
c
b

]
= 0.

Using the facts that Λ0 − C̄P̄+C̄ ′ = D̄+D̄′
+, C − C̄P̄+A = D̄+B̄′

+, and also P̄ −
A′P̄+A = B̄+B̄′

+ + (P̄ − P̄+), we obtain

[
c′ b′] [

D̄+D̄′
+ D̄+B̄′

+
B̄+D̄′

+ B̄+B̄′
+ + (P̄ − P̄+)

] [
c
b

]
= 0.

Since P̄ ≥ P̄+, this is clearly a positive semidefinite quadratic form, and therefore[
D̄+D̄′

+ D̄+B̄′
+

B̄+D̄′
+ B̄+B̄′

+ + (P̄ − P̄+)

] [
c
b

]
= 0.

The first block equation together with the fact that D̄+D̄′
+ is invertible yields

c = −(D̄+D̄′
+)−1D̄+B̄′

+b.(B.8)

Inserting this into the second block equation we get

(P̄ − P̄+)b = 0.

This shows that, if a′x̄+(0) ∈ (σX) ∩ X+, then there is a b ∈ Rn such that b ∈
ker(P̄ − P̄+) and a = Γ̄′

+b. Conversely, assume that this is satisfied, define c by (B.8),
and set d := a. Now straightforward calculations show that (B.5), (B.6), and (B.7)
are satisfied.

Proof of Theorem B.2. We prove (B.3); then (B.4) follows by symmetry. Recall
that σX = EH−∨U−1SX. Therefore, if a′x−(0) ∈ (σX) ∩ X−, there exists a ξ ∈ X
such that

EH−∨U−1Sξ = a′x−(0).

Apply EH−
to this to see that EH−

ξ = a′x−(0). Hence, by uniqueness of the uniform
choice of bases, ξ = a′x(0). On the other hand,

H− ∨ U−1S = {y(−1)} ∨ U−1S = ({y(−1)} ∨ U−1X) ⊕ U−1S̄⊥,

since {y(−1)} ∈ U−1H+ ⊂ U−1S̄ ⊥ U−1S̄⊥ and S = X ⊕ S̄⊥. Hence, since ξ ∈ X ⊥
S̄⊥ ⊃ U−1S̄⊥,

EH−∨U−1Sξ = E{y(−1)}∨U−1Xξ.

But a′x(0) − a′x−(0) ⊥ H− ⊃ {y(−1)}, so the space (σX) ∩ X− is completely char-
acterized by the condition

a′x(0) − a′x−(0) ⊥ {x(−1)},
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or, in other words,

E{[a′x(0) − a′x−(0)]x(−1)′} = 0.(B.9)

To compute this covariance, note that the error process x(t) − x−(t) satisfies the
forward state equation

x(t + 1) − x−(t + 1) = Γ−[x(t) − x−(t)] + (B − B−D−1
− D)u(t)

so that

E{[x(0) − x−(0)][x(−1) − x−(−1)]′} = Γ−(P − P−).

However, since x−(0) = EH−
x(0) and a′x−(−1) ∈ H−, (B.9) yields a′Γ−(P −P−) = 0

as claimed.
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1979.
[9] M. GREEN, Balanced stochastic realizations, Linear Algebra Appl., 98 (1988), pp. 211–247.

[10] E. J. HANNAN AND D. S. POSKITT, Unit canonical correlations between future and past, Ann.
Statist., 16 (1988), pp. 784–790.

[11] A. LINDQUIST, A new algorithm for optimal filtering of discrete-time stationary processes,
SIAM J. Control Optim., 12 (1974), pp. 736–746.

[12] A. LINDQUIST, Some reduced-order non-Riccati equations for linear least-squares estimation:
The stationary, single-output case, Int. J. Control, 24 (1976), pp. 821–842.

[13] A. LINDQUIST, GY. MICHALETZKY, AND G. PICCI, Zeros of spectral factors, the geometry
of splitting subspaces, and the algebraic Riccati inequality, SIAM J. Control Optim., 33
(1995), pp. 365–401.

[14] A. LINDQUIST AND M. PAVON, On the structure of state-space models for discrete-time stochas-
tic vector processes, IEEE Trans. Automat. Control, AC-29 (1984), pp. 418–432.

[15] A. LINDQUIST, M. PAVON, AND G. PICCI, Recent trends in stochastic realization theory, in
Prediction Theory and Harmonic Analysis: The Pesi Masani Volume, V. Mandrekar and
H. Salehi, eds., North-Holland, Amsterdam, 1983.

[16] A. LINDQUIST AND G. PICCI, On the stochastic realization problem, SIAM J. Control Optim.,
17 (1979), pp. 365–389.

[17] A. LINDQUIST AND G. PICCI, Realization theory for multivariate stationary Gaussian pro-
cesses, SIAM J. Control Optim., 23 (1985), pp. 809–857.

[18] A. LINDQUIST AND G. PICCI, A geometric approach to modelling and estimation of linear
stochastic systems, J. Math. Systems Estim. Control, 1 (1990), pp. 241–333.

[19] GY. MICHALETZKY, Zeros of (non-square) spectral factors and canonical correlations, in Proc.
11th IFAC World Congress, Tallinn, Estonia, 1992, pp. 167–172.

[20] GY. MICHALETZKY AND A. FERRANTE, Splitting subspaces and acausal spectral factors, J.
Math. Systems Estim. Control, 5 (1995), pp. 363–366 (summary; full paper retrieval code:
89459).



OUTPUT-INDUCED SUBSPACES AND INTERPOLATION 859
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ON THE PUISEUX SERIES EXPANSION OF THE LIMIT
DISCOUNT EQUATION OF STOCHASTIC GAMES∗
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Abstract. In this paper we give a new proof of the existence of Puiseux series expansion of the
limit discount equation of finite state stochastic games. Unlike the original proof, due to Bewley and
Kohlberg [Math. Oper. Res., 3 (1976), pp. 197–208], our proof is not algebraic and does not invoke
Tarski’s principle. Instead we use only the theory of functions of complex variables and complex
analytic varieties.
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Introduction. Perhaps the first minimax theorem of modern game theory is due
to von Neumann in 1928 (see [5]). In that classical paper it is shown that a matrix
game possesses a “value”: an optimal gain/loss for players I and II when they are
playing in an antagonistic (zero-sum) fashion. In 1950 Weyl (see [8]) simplified von
Neumann’s proof and demonstrated that if the entries of a matrix game belong to an
ordered field, then the value belongs to the same ordered field.

An important generalization to the infinite horizon dynamic case was proposed
in 1953 by Shapley (see [6]). Shapley established the existence of the value vector in
a class of games analogous to what are now called discounted stochastic games. In
these games the rewards at future stages are discounted by a factor β ∈ [0, 1). Shapley
also observed that even when all of the data of these games lie in the field of rational
numbers, the entries of the value need not be in the same field.

The asymptotic behavior of the value vector as β ↗ 1 has been studied by a
number of authors. In an important contribution Bewley and Kohlberg [1] viewed
Shapley’s “optimality condition” as an elementary sentence in formal logic over the
closed ordered field of real Puiseux series. These authors invoke a powerful theo-
rem from mathematical logic, known as Tarski’s principle, to conclude that in some
neighborhood of β = 1, the value vector belongs to the field of real Puiseux series.
The essentially algebraic nature of Bewley and Kohlberg’s approach and the use of
Tarski’s principle, while ingenious, do not give insight into the manner in which frac-
tional power series solutions arise naturally in this problem. Arguably, this has proved
to be a difficulty for researchers in stochastic games, because Bewley and Kohlberg’s
result has become an important building block in subsequent developments. For in-
stance, Mertens and Neyman [4] used it to prove the existence of the value vector in
the limiting average stochastic games.
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In this paper we offer an alternative proof of the Puiseux series expansion of the
value vector of discounted stochastic games. Our approach is based on the fact that
Shapley’s optimality equation can be viewed as a system of polynomial equations
in several variables. Solution sets of such systems of equations, over the complex
numbers, are called complex analytic varieties. We exploit the geometric structure
of the variety that arises in our case, thereby enabling us to reduce the polynomial
system to one where each polynomial is in the form to which a classical result of
Puiseux (see [2]) can be applied. In this way we obtain the desired fractional power
series expansion. In our approach the Puiseux series play only an auxiliary role,
being used mainly to translate our results on varieties into the language of Bewley
and Kohlberg’s paper [1]. In particular, note that the existence of the limit of the
value vector as β ↗ 1 is now proven as a consequence of the geometric structure of
the varieties and without invoking the Puiseux series expansion. This may be the first
use of techniques from the theory of several complex variables to solve a problem in
game theory. As such, considerable preparation is still required to follow the proof.
However, we believe that our approach is more natural and may shed light on as
yet unsolved problems. In fact Theorem 5.2 already extends Bewley and Kohlberg’s
result to every point in the entire interval [0, 1], and Theorem 4.3 contains geometric
insight that is not apparent in an application of Tarski’s principle.

1. Definitions and preliminaries of matrix games. Any m × n real matrix
A = (aij)

m,n
i,j=1 can be regarded as a two-person, zero-sum matrix game with aij

denoting the amount player II will pay player I if II chooses an action j ∈ {1, 2, . . . , n}
and I chooses an action i ∈ {1, 2, . . . , m}. A mixed (or randomized) strategy for player
I (II) in such a game is an m(n)-component probability vector x(y) whose ith (jth)
entry xi(yj) denotes the probability that player I (II) will choose an action i(j). It was
von Neumann [5] who proved the celebrated “minimax theorem” for matrix games.
It is a consequence of this theorem that there always exists a strategy pair (xo, yo)
satisfying

(1.1) xT Ayo ≤ (xo)T Ayo ≤ (xo)T Ay

for all mixed strategies x(y) of player I (II). The strategies xo, yo are then called
optimal strategies, and the real number val(A) := (xo)T Ayo is called the value of
the matrix game A. It is well known that if bij = kaij + c, for all i, j, k > 0, and
B = (bij)

m,n
i,j=1, then valB = valA + c.

A matrix game A is called completely mixed if all of its optimal strategies are
strictly positive in every component. Extending earlier results of Kaplansky [3], Shap-
ley and Snow [7] have demonstrated the following result.

PROPOSITION 1.1. If A is a matrix game and val A 6= 0, then A has a square
invertible submatrix A, called a Shapley–Snow kernel, such that

(K1) val A = val A = det A/
∑

ijA
ij

= (1T A
−1

1)−1, where A
ij

denotes the
(i, j)th cofactor of A.

(K2) There is a pair (x0, y0) of strategies for A which is optimal for A (after
inserting zeroes) and satisfies

(x0)T = (val A)1T A
−1

and y0 = (val A)A
−1

1,

where 1 = (1, . . . , 1)T .
LEMMA 1.2. If A is a matrix game and val A 6= 0, then A has a square invertible

submatrix A, which will be called a cmv-kernel, such that
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(K0) The matrix game A is completely mixed, and A satisfies condition (K1) of
Proposition 1.1.

Proof. Among the submatrices X of A satisfying valX = valA, let A be minimal
with respect to matrix inclusion. First note that A is completely mixed. Indeed, if
(p, q) is a nonmixed pair of optimal strategies for A, then the matrix A′, corresponding
to the strictly positive entries of p and q, is a proper submatrix of A. By the minimax
condition (1.1), (p, q) is optimal for A′. Hence valA′ = pT A′q = pT Aq = valA, which
contradicts the minimality of A.

Since the matrix game A is completely mixed, Proposition 1.1 (K2) implies that
it has a unique Shapley–Snow kernel equal to A. Hence (K1) follows.

By the above proof the cmv-kernels are simply the minimal “value-wise Shapley–
Snow kernels.” Their utility comes from the fact, proved in Lemma 1.3 below, that
the completely mixed matrix games form an open set in the space of the entries. In
particular the single algebraic formula val(M) = (1M−11)−1 is insensitive to small
perturbations of a completely mixed matrix game M . This fact will be used in the
proof of Lemma 4.1.

LEMMA 1.3. Let M be a completely mixed matrix game. Then every matrix game
of the same size whose entries are sufficiently close to the corresponding entries of
M , is also completely mixed.

Proof. Suppose that (Mi) is a sequence of not completely mixed matrix games of
the same size, whose entries converge to the corresponding entries of M . For every i
choose a pair of nonmixed optimal strategies for Mi and extract a subsequence con-
verging to a pair of vectors (p, q). Since the set of all probability vectors (of a suitable
dimension) having a zero in some entry is closed, and since the minimax condition is
closed, then (p, q) is nonmixed and optimal for M , which is a contradiction.

2. Discounted stochastic games.

2.1. Definitions and preliminaries of stochastic games. A stochastic game
as formulated by Shapley [6] is played in stages. At each stage, the game is in one
of finitely many states, s = 1, 2, . . . , N , in which players I and II are obliged to play
a matrix game R(s) = (r(s, a, b))ms,ns

a,b=1 , once. The “law of motion” is defined by
the probabilities p(s′|s, a, b), where the event {s′|s, a, b} is the event that the game
will enter state s′ at the next stage given that at the current stage the state of the
game is s, and that players I and II choose the ath row and the bth column of R(s),
respectively.

In general, players’ strategies will depend on complete past histories. In this
paper, however, we shall only be concerned with stationary strategies. We may rep-
resent a typical stationary strategy µ for player I by a “composite” vector, µ =
(µ(1), µ(2), . . . , µ(N)), where each µ(s) is a probability distribution on {1, 2, . . . , ms}.
Player II’s stationary strategies ν are similarly defined.

It should be clear that once we specify the initial state s and a strategy pair (µ, ν)
for players I and II, we implicitly define a probability distribution over all sequences
of states and actions which can occur during the game and consequently over all
sequences of payoffs to player I. In particular, if the random variable Rt denotes the
payoff to player I for stage t, then the expected value of Rt given s and (µ, ν)

Eµνs(Rt) := E{Rt|µ, ν, s}

is well defined. The β-discounted stochastic game Γβ is then the game in which the
overall payoff, normalized by a factor of 1 − β, resulting from the strategy pair (µ, ν)
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and a starting state s is evaluated according to

vβ(µ, ν, s) :=
∞∑

t=1

βt−1(1 − β)Eµνs(Rt),

where β ∈ (0, 1) is called the discount factor. A number vs(β) is called the value of
the game Γβ starting in state s if vs(β) = supµ infν vβ(µ, ν, s) = infν supµ fβ(µ, ν, s).
The vector v(β) = (v1(β), v2(β), . . . , vN (β)) is called the value vector. Furthermore,
the pair (µo, νo) is called an optimal strategy pair for players I and II if

vs(β) = vβ(µo, νo, s).

The existence of the value vector and of a pair of optimal stationary strategies was
proved in 1953 in Shapley’s seminal paper on the subject [6]. A key element in Shap-
ley’s proof was the construction of N auxiliary matrix games Rβ(s,u) that depend
on an arbitrary vector u = (u1, u2, . . . , uN ) ∈ RN according to

(2.1) Rβ(s,u) =

[
(1 − β)r(s, a, b) + β

N∑
s′=1

p(s′|s, a, b)us′

]ms,ns

a,b=1

.

In view of the fact that the value of a matrix game always exists, it is possible to
define, for each β ∈ (0, 1), an operator Tβ : RN → RN, the sth component of which
is given by

(2.2) [Tβ(u)]s := val[Rβ(s,u)].

This operator is a contraction operator in the sup-norm with contraction constant
≤ β; see [6]. It therefore follows from Banach’s fixed-point theorem that there exists
a unique fixed point v(β) of Tβ ; that is,

(2.3) v(β) = Tβ(v(β)).

This can be shown to be an equivalent definition of the value vector v(β) introduced
above. Also, any optimal strategy pairs for Rβ(s,v(β)) can be shown to form an
optimal strategy pair for Γβ .

Since {Tβ} is a continuous family of contractions we have the following result.
LEMMA 2.1. The function β 7→ v(β) is bounded and continuous on [0, 1).
Proof. To prove boundedness, note that if M1 ≤ r(s, i, j) ≤ M2 for all s, i, and j,

then Tβ maps the hypercube K = [M1, M2]N into itself. Hence Tβ has a fixed point
in K, which must be v(β).

To prove continuity of v(β) at β0, let β′ < β0 < β′′ < 1 (for β0 6= 0; if β0 = 0,
then β′ = β0) and note that for all β ∈ [β′, β′′] the map Tβ is a contraction with a
constant β′′. Now for any ε > 0 take the closed ball B(ε) = B(v(β0), ε) in RN , and
observe that Tβ0 maps B(ε) into itself. Moreover,

(2.4) Tβ(B(ε)) ⊆ B (Tβ(v(β0)), β′′ε)

for all β ∈ [β′, β′′]. By the continuous dependence of valM on the entries of matrix
M the map

β 7→ Tβ(v(β0))
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(which moves the center of B(ε)) is continuous. This and (2.4) imply that, for all
β close enough to β0, Tβ maps B(ε) into itself (just like Tβ0 does). Hence, for all
β close enough to β0, both Tβ and Tβ0 have their fixed points in B(ε). Since those
fixed points are v(β) and v(β0) and since ε > 0 is arbitrary, this implies that v is
continuous at β0.

Assuming vs(β) 6= 0 for all β and s, in view of Lemma 1.3 we know that for each
fixed β ∈ (0, 1) and each u close enough to v(β) there exist cmv-kernels Rβ(s,u) such
that the fixed-point equation above locally reduces to

vs(β) =
|Rβ(s,v(β))|∑

i

∑
j

[
Rβ(s,v(β))

]
ij

for each s = 1, 2, . . . , N,

where [V ]ij denotes the (i, j)th cofactor of a matrix V.
If we now transform the above equations to

(2.5) vs(β)

∑
i

∑
j

[
Rβ(s,v(β))

]
ij

 − |Rβ(s,v(β))| = 0 ∀s = 1, 2, . . . , N,

then for each fixed combination of the locations of these kernels we can regard this
system as being a system of polynomials in the variables x0 := β, x1 := v1(β), x2 :=
v2(β), . . . , xN := vN (β) of the form

(2.6)

f1(x0, . . . , xN ) = 0,
...

fN (x0, . . . , xN ) = 0.

2.2. Asymptotic result of Bewley and Kohlberg. The behavior of the value
vector v(β) as β ↗ 1 is extremely important in the analysis of the so-called limiting-
average stochastic game Γα, where the overall payoff resulting from the strategy pair
(µ, ν) and starting state s is evaluated according to

vα(µ, ν, s) := lim inf
τ→∞

(
1

τ + 1

) τ∑
t=o

Eµνs(Rt).

In particular, the limit of v(β) as β ↗ 1 is the natural candidate for the value
vector of Γα. Indeed, this was proved by Mertens and Neyman [4], who exploited an
interesting characteristic of v(β) due to Bewley and Kohlberg [1]. We give a direct
proof of the existence of this limit in section 5.

The result of Bewley and Kohlberg [1] can be interpreted as saying that the
solutions to the system of equations (2.5) are given by Puiseux series over the field
of real numbers (see section 3.1 below). As mentioned earlier, for β sufficiently near
1, their proof relies on a result in formal logic known as Tarski’s principle (see [1]).
However, systems of polynomial equations such as (2.6) are precisely the objects of
study in the field of algebraic geometry. This is an old branch of mathematics, and
it is in this setting that Puiseux series originally arose. In fact the use of fractional
power series goes back to Newton. One would therefore expect that the tools of
algebraic geometry would allow a “natural” proof of Bewley and Kohlberg’s theorem.
This indeed turns out to be the case. However, in order to do this some results from
algebraic geometry will be needed.
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3. Puiseux series and systems of polynomial equations.

3.1. Puiseux series. Puiseux series over a field K, equal to either R or C, are
“fractional power series” of the form

∑∞
ν=k cνzν/m, where cν ∈ K, k ∈ Z, m ∈ N\{0},

and the series converges in some annulus, {z ∈ K|0 < |z| < R, R > 0}. The Puiseux
series over K form a field (in fact the Puiseux series over R form an ordered field).
Puiseux series over C are simply called Puiseux series. They arise as the solutions
of particular polynomial equations. Specifically, there is the following classical result
due to Puiseux (see [2, Chapter 1, Theorem 8.14]).

THEOREM 3.1 (Puiseux). Let C{{z}} be the field of all Laurent series with finite
principal part

φ(z) =
∞∑

ν=k

cνzν , k ∈ Z, cν ∈ C,

converging on some punctured disc {z ∈ C : 0 < |z| < r}, where r may depend on the
element φ ∈ C{{z}}. Let

F (z, w) = wn + a1(z)wn−1 + · · · + an(z)

be a polynomial in w of degree n which is irreducible over the field C{{z}}. Then
there exists a Laurent series

φ(ζ) =
∞∑

ν=k

cνζν ∈ C{{ζ}}

such that

F (ζn, φ(ζ)) = 0

as an element of C{{ζ}}. In other words the equation

F (z, w) = 0

can be solved by a Puiseux series

w = φ(z1/n) =
∞∑

ν=k

cνzν/n,

where z1/n is a branch of the nth root function.
The case where F (z, w) is not necessarily irreducible over C{{z}} is covered by

the following result. This result also states that locally all solutions to F (z, w) = 0
are given by Puiseux series.

COROLLARY 3.2. Let

F (z, t) = zm +
m−1∑
k=0

zkgk(t),

where the gk are holomorphic (resp., meromorphic) in a disc D(0, r′). Then there
is r ∈ (0, r′), a positive integer M , and functions ϕ1, . . . , ϕm holomorphic (resp.,
meromorphic) in D(0, r1/M ) such that

F (z, tM ) =
m∏

k=1

z − ϕk(t).
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Note. Only the holomorphic variant will be used.
Proof. It suffices to prove the meromorphic version. Indeed, for each fixed t, the

ϕk(t) are roots of the monic polynomial F (z, tM ). If the coefficients gk are holomor-
phic near t = 0, they are bounded, and hence the roots stay in a bounded set; it
follows that each ϕk has a removable singularity at 0.

We will write M for C{{t}}. Each gk will be regarded as an element of M. Thus
F is a polynomial over the field M, that is, F ∈ M[z]. Note that M (and C{{t}})
can also be identified with the field M0 of germs of meromorphic functions at 0.

Observe that if F = F1F2, where F1, F2 ∈ M[z] are nonconstant monic polyno-
mials satisfying the assertion with

Fj

(
z, tMj

)
=

mj∏
k=1

(z − ϕj,k(t)) (j = 1, 2),

then F also satisfies the assertion, since

F
(
z, tM1M2

)
=

m1∏
k=1

(
z − ϕ1,k

(
tM2

)) m2∏
k=1

(
z − ϕ2,k

(
tM1

))
.

Also observe that, if the assertion is valid for the polynomial F (z, tn), where n is
a positive integer, then it is also valid for F (z, t), since

F
(
z, tMn

)
=

m∏
k=1

(
z − ϕk

(
tM

))
.

We will use induction with respect to the degree of F , the assertion being trivial
if deg F = 1. Let G ∈ M[z] be an irreducible factor of F . Theorem 3.1 says that
the polynomial G(z, tn) ∈ M[z], where n = deg G, has a root ϕ ∈ M. Hence
F (z, tn) = (z − ϕ(t))F1(z, t), where F1 ∈ M[z]. Since F1 is a monic polynomial of
degree n − 1 < deg F , it satisfies the assertion. By the previous observations, the
assertion is satisfied by F (z, tn) and hence by F .

Remark. Another way of stating Puiseux’s theorem is to say that the field of
real Puiseux series is real closed (that is, no proper algebraic extension of the field of
real Puiseux series is ordered). This is precisely the condition Bewley and Kohlberg
needed in order to apply Tarski’s principle and show that the value of a discounted,
two-person, zero-sum stochastic game is given by a Puiseux series over R (see [1,
section 10]).

As it stands, Puiseux’s theorem does not apply to the system (2.6) for several
reasons. First, (2.6) is a system of equations over R and not C. Second, Puiseux’s
theorem applies to polynomial equations of a very special form, and there is no guaran-
tee that the polynomials in (2.6) will have this form. In particular Puiseux’s theorem
involves two variables z and w, whereas the system (2.6) involves N + 1 variables
β, v1(β), . . . , vN (β). Finally, the form of the polynomial system (2.6) depends on the
location of the kernels and hence may be different for different values of β. Of these
problems, the last two can be helped to be overcome by invoking a more general point
of view, namely, that of algebraic geometry.

3.2. Algebraic and analytic varieties. Generally speaking, algebraic geom-
etry over a field F (usually taken to be R or C) is the study of the solution sets of
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systems of polynomial equations of the form

(3.1)

f1(z0, . . . , zN ) = 0,
...

fk(z0, . . . , zN ) = 0,

where, for i = 1, . . . , k, fi is a polynomial of degree di over F and (z0, . . . , zN ) ∈ FN+1.
The solution set of (3.1) is called an algebraic variety over F. Only the case F = C
will concern us at this stage. In this case the variety V defined by (3.1) will be a
subset of CN+1. The study of algebraic varieties over C uses powerful tools from
both abstract algebra and complex analysis. The problem at hand will require the
use of complex analytic methods. In particular the local properties of holomorphic
functions are exploited.

A few preliminary definitions and results will be needed. Most of the definitions
and theorems in this section are taken from [9]. A subset V of CN+1 is analytic near
a point p ∈ CN+1 or is a variety near p if there is a neighborhood U of p and functions
f1, . . . , fk holomorphic on U such that V ∩ U is the zero set of these functions. If V
is analytic near each of its points, then V is called locally analytic or a local variety.
If H is open in CN+1 and V ⊆ H is a local variety, then V is called a variety in H
if V is closed in H (that is, if V is a variety near every point of H). If V and V ′ are
local varieties such that V ′ ⊆ V and V ′ is closed in V, then V ′ is called a subvariety
of V (that is, V ′ is a variety near every point of V ). Note that V is a variety in an
open set H iff V is a subvariety of H. (Compare [9, Chapter 2, section 1].) We will
be mainly interested in the case H = CN+1.

It is easy to see that any intersection or union of a family of varieties in H (or
subvarieties of V ) is also a variety in H (resp., subvariety of V ), provided that the
family is locally finite in H (resp., in V ).

A point p of a local variety V is called a regular or smooth point of V of dimen-
sion d if V is a submanifold of dimension d near p. That is, if V is given in some
neighborhood of p by the zero set of a collection of holomorphic functions f1, . . . , fk

whose Jacobian matrix has rank k; in this case d = n−k. The set of regular points of
V of dimension d is denoted Regd V , where d = 0, 1, 2, . . . . The set of regular points
of any dimension is denoted Reg V . It follows from Proposition 3.3 below that Reg V
is dense in V. The dimension of V is defined by

dimV = max {d : Regd V 6= ∅} .

If Regd V = Reg V then we say that V is purely d-dimensional (or of constant
dimension d) and write dimV ≡ d (see [9, Chapter 2, section 2]).

A local variety V is irreducible if it cannot be written as the union of two local
varieties neither of which is equal to V. Proposition 3.3 below shows how every local
variety can be written as a union of its irreducible subvarieties.

PROPOSITION 3.3 (see [9, Chapter 3, Theorem 1G]). Let V be a local variety, let
M1, M2, . . . be the connected pieces of Reg V , and let Vi denote the V-closure of Mi.
Then V is the union of the Vi. Also

(a) each Vi is an irreducible subvariety of V of constant dimension equal to
dimMi.

(b) the Vi form a locally finite collection of sets in V (i.e., any point p ∈ V has
a neighborhood in CN+1 which intersects only finitely many Vi’s).

The varieties Vi are called the irreducible components or ircomps of V . We will be
mostly interested in the 1-dimensional ircomps. Also note that every 0-dimensional
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local variety consists of isolated points (that is, V = Reg0 V ). Indeed, the connected
pieces of Reg0 V are single isolated points, hence their closures are single isolated
points and, by Proposition 3.3, their union is V.

PROPOSITION 3.4. If X =
⋃

α Vα, where the Vα are purely 1-dimensional varieties
in CN+1 and the union is locally finite in CN+1, then X is a purely 1-dimensional
variety in CN+1.

Proof. This follows from [9, Chapter 2, Lemma 9J] since, by the local finiteness,
the union is countable and X is locally analytic and closed in CN+1.

PROPOSITION 3.5. If V and W are varieties in CN+1, V is irreducible 1-dimen-
sional, and V is not contained in W, then the set V ∩ W is discrete (or empty) in
CN+1.

Proof. The set V ∩ W is analytic in CN+1. Since V ∩ W is a proper subvariety
of V, [9, Chapter 3, Theorem 1J] states that dimV ∩ W < dimV. Hence V ∩ W is
either (−1)-dimensional (that is, empty) or 0-dimensional, in which case it consists of
isolated points. It is also closed in CN+1.

It is convenient to introduce some notation to be used throughout the rest of the
paper. For any c ∈ C define

Hc :=
{
(z0, . . . , zN ) ∈ CN+1 : z0 = c

}
.

This is a hyperplane (dimension N variety) in CN+1. It is in the case W = Hc that
Proposition 3.6 will be applied.

The next result is essential in our approach to the connection with Puiseux series.
It is known in the literature as the Remmert–Stein representation theorem (see [9,
Chapter 3, section 3]). The 1-dimensional case of this theorem states that if a local
variety V has constant dimension 1 and p ∈ V , then V can be locally represented
by a set of equations to which Puiseux’s theorem is applicable. However, V is not
arbitrary: near p it must have a “good” location in the system of coordinates. Our
formulation will follow [9, Theorems 3A(c) and 3D(a)].

PROPOSITION 3.6. Let V be a local variety of constant dimension 1, and let
p = (c0, . . . , cN ) ∈ V . Also, suppose that p is isolated in V ∩ Hc0 . Then we may find

(1) a neighborhood U = D0 × · · · × DN of p, where the Dj are open discs;
(2) positive integers mj;
(3) holomorphic functions fj,k : D0 → C,

with the following property: for every point (z0, . . . , zN ) ∈ V ∩ U one has

(3.2) z
mj

j +
mj−1∑
k=0

zk
j fj,k(z0) = 0 for j = 1, . . . , N.

Proof. We may assume that p is the origin 0 since we can replace zj with zj + cj

without affecting the leading term z
mj

i in (3.2). Thus, 0 ∈ V is isolated in V ∩ CN

but is not isolated in V ∩ CN+1 because 0 /∈Reg0V = ∅ (by 1-dimensionality). Now
the proposition follows from [9, Chapter 2, Theorem 7A(b)] (with n = N + 1 and
κ = N).

The following result reinterprets the preceding proposition in terms of Puiseux
series.

PROPOSITION 3.7. Let V be a local variety of constant dimension 1, and let
p = (c0, . . . , cN ) ∈ V . Also, suppose that p is isolated in V ∩ Hc0 . Then there are a
disc D′

0 = D(c0, r), a positive integer M , and a finite set S of functions holomorphic
in the disc D(0, r1/M ) with the following property. If

(c0 + tM , z1, . . . , zN ) ∈ V ∩ (D′
0 × D1 × · · · × DN ),
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then for each j = 1, . . . , N there is ϕ ∈ S such that

zj = ϕ(t).

Proof. Use Proposition 3.6 and Corollary 3.2 for each j with z = zj , t = z0−c0 and
gk(t) = fj,k(z0) to find corresponding integers Mj and sets Sj . Then set M =

∏
Mj

and

S =
⋃
j

{
ϕ(tM/Mj ) : ϕ ∈ Sj

}
.

4. Proof of main results.

4.1. Outline. Briefly, our approach is as follows. (Detailed proofs of statements
below will be given in subsequent sections.) We want to use the Shapley–Snow equa-
tions to define a finite collection of varieties Vj in CN+1, each corresponding to one
location of N square submatrices in the N ms × ns matrices R(s,v(β)). Since equa-
tions (2.6) are polynomial, each such variety Vj is a variety in CN+1. The existence of
the cmv-kernels implies that for each β there is j such that (β,v(β)) ∈ Vj . Next, using
the contraction property of the Shapley operator for the stochastic game, restricted
to the cmv-kernels of the games Rβ(s,v(β)), we show that in fact (β,v(β)) ∈ Reg1Vj

(j = j(β)). We let V be the union of the closures of those connected components
of the Reg1Vj , which contain a corresponding point of the form (β,v(β)); then, by
Proposition 3.4, V is a variety in CN+1 of constant dimension 1. By Proposition 3.5,
the set where V meets the hyperplane Hc = {(z0, . . . , zN ) ∈ CN+1|z0 = c} is discrete
(for all c ∈ C). For c = 1 this, together with continuity of v, directly implies the
existence of limβ→1 v(β). This also makes it possible to apply Proposition 3.7 which,
along with the Puiseux theorem, readily implies that v has one-sided Puiseux series
developments at every point of the closed interval [0, 1]. (In particular, it is analytic
on [0, 1] except for a finite set.)

Next we use the fact that whether a given submatrix is a Shapley–Snow kernel
is determined by a finite number of inequalities involving meromorphic functions of
the entries. This fact, along with Puiseux developments of v, implies that Shapley–
Snow kernels of Rβ(s,v(β)) can be selected piecewise constant on the interval [0, 1].
Therefore, by Proposition 1.1 (K2), optimal strategies can be selected to have one-
sided Puiseux developments near all points of the interval [0, 1].

4.2. Algebraic varieties and stochastic games. Since we want to compute
the components of v(β) using the cmv-kernels, we need the condition

(4.1) val Rβ(s,v(β)) 6= 0 (β ∈ (0, 1), s = 1, . . . , N).

This can be achieved, without loss of generality, by replacing every reward r(s, i, j)
with r′(s, i, j) = r(s, i, j) + r, where r is large enough. Since v(β) is a bounded
function of β (by Lemma 2.1), if r is large enough, we have v′

s(β) > 0 for all s and β.
Moreover, adding the constant r does not affect the existence of limβ→ 1 v(β) or of
the Puiseux series expansion. In what follows we assume that Γ itself satisfies (4.1).

Consider any fixed collection of nonempty subsets of actions Ks ⊆ {1, . . . , ms}
and Ls ⊆ {1, . . . , ns} such that cardKs = card Ls for all s = 1, . . . , N. Thus we
have a finite sequence of sets κ = (K1, L1, . . . , KN , LN ). By restricting the players’
actions in each state s to Ks and Ls, we obtain a discounted stochastic game, Γβ,κ

with auxiliary Shapley games
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Rβ,κ(s,x) = [Rβ(s,x)ij ]i∈Ks,j∈Ls
.

Let Tβ,κ : RN → RN denote the Shapley operator (2.2) for Γβ,κ.
In the original game Γβ , for each β and x such that for each s valRβ(s, x) 6= 0

select some cmv-kernel of each matrix game Rβ(s,x), given by

Rβ(s,x) = [Rβ(s,x)ij ]i∈Ks(β,x), j∈Ls(β,x) ,

where Ks(β,x) ⊆ {1, . . . , ms} and Ls(β,x) ⊆ {1, . . . , ns}. Recall that
Rβ(s,x) are completely mixed square matrix games. By (4.1) and by Lemma 1.2,
these kernels are defined in particular, for all those (β,x) lying on the graph of v.
Also, let

κ(β) = (K1(β,v(β)), L1(β,v(β)), . . . , KN (β,v(β)), LN (β,v(β))) .

In other words κ(β) correspond to the cmv-kernels of Rβ(s,v(β)).
Now, for a fixed κ, consider the following four systems of N equations in the N +1

variables β, x1, . . . , xN :
(V0) xs = val Rβ(s, x1, . . . , xN ) (s = 1, . . . , N),
(V1) xs = val Rβ,κ(s, x1, . . . , xN ) (s = 1, . . . , N),
(V2) xs = det Rβ,κ(s,x1,...,xN )∑

ij Rij
β,κ(s,x1,...,xN )

(s = 1, . . . , N),

(V3) xs

∑
ij Rij

β,κ(s, x1, . . . , xN ) − det Rβ,κ(s, x1, . . . , xN ) = 0 (s = 1, . . . , N),
where the Rij denote cofactors. To begin with, we make some simple observations
concerning these systems.

(i) The systems (V 0) and (V 1) are defined in (0, 1)×RN . (V0) is a reformulation
of x = Tβ(x), and (V1) is a reformulation of x = Tβ,κ(x). Let CMVκ ⊆
(0, 1) × RN be the set of parameters (β,x), where Rβ,κ(s,x) = Rβ(s,x).
Then (V0) and (V1) are equivalent on CMVκ.

(ii) The system (V2) is defined and analytic in an open subset Uκ ⊆ CN+1. Let
CM+

κ ⊆ (0, 1)×RN denote the set of parameters (β,x), where all the matrix
games Rβ,κ(s, x1, . . ., xN ) (s = 1, . . . , N) are completely mixed and have a
nonzero value. Then

CMVκ ⊆ CM+
κ ⊆ Uκ.

Also, on CM+
κ , (V2) is a simple restatement of (V1), for, by Proposition 1.1

(K2), on CM+
κ each matrix Rβ,κ(s,x) is a Shapley–Snow kernel of itself and

hence (K1) can be applied with A = A = Rβ,κ(s,x).
(iii) The system (V3) is defined and analytic (in fact, algebraic) in CN+1. It thus

defines an analytic variety in CN+1. Call this variety Vκ. Clearly, (V3) is
equivalent to (V2) whenever the denominators in (V2) are nonzero.

From Lemma 1.3 it follows that CM+
κ is an open subset of (0, 1) × RN .

Note that the CMVκ are not necessarily open (or closed). However, for all β ∈
(0, 1) we have, by definition,

(β,v(β)) ∈ CMVκ(β)

and hence ⋃
β

(β,v(β)) ⊆
⋃
κ

Vκ.
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LEMMA 4.1. If p ∈ Vκ ∩CM+
κ , then p ∈ Reg1Vκ. Moreover, in some neighborhood

of p in CN+1, the variety Vκ is the graph of a holomorphic function from an open
subset of C into CN .

Proof. We use the fact that Tβ,κ is a contraction in RN . Let p = (β0, x0
1, . . . , x

0
N ).

Near p, namely, in the set Uκ—which is a neighborhood of p as p ∈ CM+
κ ⊆ Uκ—the

variety Vκ is, in view of remark (iii) above, defined by the system (V2). First rewrite
(V2) directly in the form

Fκ(β, x1, . . . , xN ) − (x1, . . . , xN ) = 0.

Thus, Fκ : Uκ → CN is an analytic (in fact, rational) function, and by remark (ii)
above,

(4.2) Fκ(β, ·) ≡ Tβ,κ(·) for (β, ·) ∈ CM+
κ .

By the complex implicit function theorem it is enough to show that the N×N complex
matrix

(4.3) DC
x1,...,xN

Fκ(β0, x0
1, . . . , x

0
N ) − I

is nonsingular, where DC
x1,...,xN

denotes complex differentiation along the complex
hyperplane H0 = {(x0, . . . , xN ) ∈ CN+1|x0 = 0}. By (4.2), the map Fκ(β0, ·) is a
contraction (in the real sup-norm) from the set {x : (β0,x) ∈ CM+

κ } ⊆ RN into
RN . Let DR denote differentiation along the real directions (and here, as the target-
space is RN , this is equivalent to real differentiation). Since CM+

κ is open, and since
p ∈ CM+

κ , it follows that DR
x1,...,xN

Fκ(p) is also a contraction, and hence the matrix

DR
x1,...,xN

Fκ(β0, x0
1, . . . , x

0
N ) − I

is nonsingular over R. But since Fκ is a holomorphic extension of a real function and
p ∈ RN+1, we have DCFκ(p) = DRFκ(p). (Alternatively, it is enough to note that,
since Fκ is a rational function, both Jacobians can be computed algebraically in the
same way.) Since a real nonsingular matrix is also nonsingular as a complex matrix,
we find that (4.3) is indeed nonsingular and the proof is complete.

We now prove that (β,v(β)) lies in the 1-dimensional regular part of Vκ (for a
suitable κ).

LEMMA 4.2. For all β ∈ (0, 1) we have (β,v(β)) ∈ Reg1 Vκ(β), with κ(β) defined
above, corresponding to some arbitrarily selected cmv-kernels of Rβ(s, v(β)). More
precisely, Reg1Vκ(β) meets the hyperplane Hβ transversally at the point (β,v(β)).

Proof. By Lemma 4.1 it is enough to show that (β,v(β)) ∈ Vκ(β) ∩CM+
κ(β). Since

κ(β) corresponds to the cmv-kernels, we have (β,v(β)) ∈ CMVκ(β) ⊆ CM+
κ(β). To see

that (β,v(β)) ∈ Vκ(β), recall that by (i), (ii), (iii) on CMVκ(β), (V3) is equivalent to
(V0) which, evaluated at (β,v(β)), has the form

(4.4) v(β) = Tβ(v(β)),

which is true by definition. The fact that Reg1Vκ(β) meets Hβ transversally at
(β,v(β)) follows from the second statement of Lemma 4.1.

We are now in a position to define a variety V associated to a discounted stochastic
game.

THEOREM 4.3. There exists a variety V = V (Γ) in CN+1 with the following
properties
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(a) V has constant dimension 1.
(b) For every c ∈ C the intersection of V with the hyperplane Hc = {(z0, . . . , zN ) ∈

CN+1|z0 = c} is a discrete subset of CN+1.
(c) For every β ∈ (0, 1) we have (β,v(β)) = (β, v1(β), . . . , vN (β)) ∈ V.
Proof. By Lemma 4.2, for every β ∈ (0, 1) there is κ(β) such that (β,v(β)) ∈

Reg1Vκ(β). Let Vβ be the closure of the connected component of Reg1 Vκ(β), containing
the point (β,v(β)). (Note that it may frequently happen that Vβ′ = Vβ′′ with β 6=
β′′.) Then, by Proposition 3.3(a), Vβ is an irreducible purely 1-dimensional variety
in CN+1. Also, Vβ is not contained in Hc; otherwise c = β, but in this case the
transversality property in Lemma 4.2 leads to a contradiction. Since Hc is a variety
in CN+1 (defined by the equation x0 = c), Proposition 3.5 states that the set Hc ∩Vβ

is discrete. Let V = V (Γ) be defined by

V =
⋃

β∈(0,1)

Vβ .

By construction, V is a union of certain 1-dimensional ircomps of the Vκ. By Proposi-
tion 3.3(b), and since there are only a finite number of κ’s, the union is locally finite.
Hence, Proposition 3.4 implies that V is a purely 1-dimensional variety in CN+1.
Also, by local finiteness the set Hc ∩ V is discrete.

Remark. The variety V constructed in Theorem 4.3 may not necessarily be unique
since it may depend on the choice of κ(β). However, this fact is not relevant to the
application of Theorem 4.3. The notation V = V (Γ) is therefore a little misleading.
This can be easily remedied if we define V (Γ) as the smallest V satisfying Theorem
4.3. In fact it can be shown that the intersection of all the V ’s satisfying Theorem
4.3 also satisfies that theorem.

THEOREM 4.4. The value vector v(β) converges in CN as β ↗ 1.
Proof. Let V = V (Γ) and H1 be as in Theorem 4.3 (i.e., H1 = Hc, where c = 1).

Since v is a bounded function of β (by Lemma 2.1), take a compact set K ⊆ CN+1

such that (β,v(β)) ∈ K for every β. Then, by Theorem 4.3(b), the set P = H1∩V ∩K
is discrete in CN+1. Also, since K is compact, P is finite. Let P = {p1, p2, . . . pr}.

Next, we claim that

(4.5) dist((t, x), P ) → 0 as (t, x) ∈ V ∩ K, t → 1 and x ∈ CN .

Suppose that it is not so. Then there exist δ > 0 and a sequence (ak) ≡ (tk, xk) with
tk → 1 and ak ∈ V ∩K such that dist(ak, P ) > δ for each k. There is a subsequence of
(tk, xk) converging to a point p = (1, x∞), and p ∈ V ∩ K since V and K are closed.
It follows that p ∈ N. Thus, δ cannot exist.

From (4.5) and Theorem 4.3(c) it follows that

(4.6) dist((β,v(β)), P ) → 0 as β → 1.

In particular, this implies that P is not empty.
Now, since P is finite, take a fixed ε > 0 such that the balls Bj = B(pj , ε) are

disjoint. By (4.6), there exists c < 1 such that for all β > c, (β,v(β)) ∈ Bk for some
k = k(β). But since v(β) is continuous on the interval (c, 1) (Lemma 2.1), k(β) must
be the same for all β > c; otherwise the preimages under the continuous function
β 7→ (β,v(β)) of the Bk would partition the interval (c,1) into at least two disjoint
nonempty open sets. Thus it follows from (4.6) that lim β→1v(β) = pk.

COROLLARY 4.5. The function v can be extended continuously over the interval
[0, 1]. Also, (β,v(β)) ∈ V (Γ) for all β ∈ [0, 1].
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Proof. The first assertion follows directly from Theorem 4.4 (having Lemma
2.1 in mind). The second follows from Theorem 4.4 and the fact that V (Γ) is
closed.

4.3. The connection with Puiseux series. We are now in a position to apply
Proposition 3.7 to the variety V at the point p = (1, v1(1), . . . , vN (1)). In fact we prove
a slightly more general result.

THEOREM 4.6. There is a finite set N ⊆ [0, 1] such that v is analytic on [0, 1]\N
and develops (component-wise) into a real Puiseux series in one-sided neighborhoods
of each point of N .

More precisely, for any c0 ∈ (0, 1] there exist ε > 0 and M ∈ N such that each vj

is an analytic function of u = M
√

c0 − β for β ∈ (c0 − ε, c0], and a similar statement
holds for each c0 ∈ [0, 1), u = M

√
β − c0, and β ∈ [c0, c0 + ε).

Proof. It is sufficient to prove the second part of the theorem. The fact that V
is analytic outside a finite set N can be deduced from this second part by selecting a
suitable finite subcover of [0, 1] and noting that a Puiseux function is analytic except
at the base point. Let V = V (Γ) be as in Theorem 4.3. Let c0 ∈ [0, 1] be fixed, and
denote

p := (c0,v(β)) = (c0, v1(c0), . . . , vN (c0)) = (c0, c1, . . . , cN ).

By Theorem 4.3(b) the set V ∩ Hc0 is discrete. (In fact, V ∩ Hc is discrete for
every c ∈ C.) Hence p is isolated in V ∩Hc0 . Hence Proposition 3.7 is applicable, and
we will follow its notation.

Since v is continuous at c0, there is ε1 > 0 such that if β ∈ [0, 1] and |β −c0| < ε1,
then (β,v(β)) ∈ V ∩ (D′

0 × · · · × DN ).
Let t = αu, where α is chosen so that tM = β − c0; say, α = 1 if we consider

β ≥ c0 and α = e2πi/M if we consider β ≤ c0. Thus, by Proposition 3.7, for any
j ∈ {1, . . . , N} we have

(4.7) if |tM | < ε1, then (∃ϕ ∈ S) vj(c0 + tM ) = ϕ(t) = ϕ(αu).

Since the elements of S are holomorphic, the zero set of ϕ − φ, where ϕ, φ ∈ S and
ϕ 6≡ φ, cannot have 0 as a limit point. Hence, there is ε2 > 0 with ε2 ≤ ε1 such that

(4.8) if ϕ, φ ∈ S and ϕ 6≡ φ and 0 < |tM | < ε2, then ϕ(t) 6= φ(t)

By the continuity of vj and of the ϕ ∈ S, it follows that for each j the choice of
the function ϕ ∈ S in (4.7) must be locally constant for |tM | ∈ (0, ε2). It follows
that the choice of ϕ must be constant for β ∈ I+ = (c0, c0 + ε2) ∩ [0, 1] and for
β ∈ I− = (c0 − ε2, c0) ∩ [0, 1], because the intervals I+ and I− are connected. Thus,
by (4.7),

(4.9) vj(β) = f(u) on I+,

where f(x) = ϕ(αx) and ϕ is a fixed element of S. An analogous result holds on I−.
However, the choice of ϕ (a fixed element of S) may be different on I−. It suffices to
consider the case where I+ 6= ∅ (resp., I− 6= ∅). Since vj is real valued on I+ (resp.,
I−), the power series of f has real coefficients. By continuity, (4.9) holds for u = 0 as
well. By formula (4.9) the theorem is proven.
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5. Connection with analytic matrix games, Shapley–Snow kernels, and
optimal strategies. In this subsection we derive from Theorem 4.6 some results on
Shapley–Snow kernels and optimal strategies. First we present a lemma on analytic
matrix games.

LEMMA 5.1. Let A(t) (−r ≤ t ≤ r) be a family of nonzero-value matrix games
of constant dimension m × n, whose entries are holomorphic in the disc D(0, r′) with
r′ > r. Then it is possible to choose a Shapley–Snow kernel of A(t) for each t ∈ [−r, r]
so that the location of the kernels is piecewise constant.

More precisely, there exist a finite partition [−r, r] = ∪kIk, where the Ik are open
or degenerate disjoint intervals, and sets Kk ⊆ {1, . . . , m} and Lk ⊆ {1, . . . , n} such
that [A(t)ij ]i∈Kk,j∈Lk

is a Shapley–Snow kernel of A(t) for all t ∈ Ik.
Proof. Let A(t) = [aij(t)]

m,n
i,j=1 and consider any submatrix B(t) = [aij(t)]i∈K,j∈L,

where the sets K and L are fixed. The necessary and sufficient conditions for B(t) to
be a Shapley–Snow kernel of A(t) are the following:

(5.1)
det B(t) 6= 0,1T B(t)−11 6= 0, and

(p(t)o, q(t)o) is a pair of optimal strategies for A(t),

where

(5.2) p(t) =
1T B(t)−1

1T B(t)−11
and q(t) =

B(t)−11
1T B(t)−11

and xo denotes a vector of dimension m or n obtained by inserting zeroes in entries
that do not appear in x. (Then one also automatically has val A(t) = val B(t) =
(1T B(t)−11)−1.)

The conditions of (5.1) are equivalent to

(5.3)

det B(t) 6= 0,1T B(t)−11 6= 0,

pi(t) ≥ 0 and qj(t) ≥ 0 (i = 1, . . . , m, j = 1, . . . , n), and

eiA(t)q(t)o ≤ p(t)oA(t)q(t)o ≤ p(t)oA(t)ej (i = 1, . . . , m, j = 1, . . . , n),

where the ek are unit coordinate vectors of appropriate dimension. (One also auto-
matically has

∑
i pi(t) =

∑
j qj(t) = 1 by (5.2).)

We may leave out the case where det B(t) ≡ 0 on D(0, r′). Then the entries
of B(t)−1 are meromorphic on D(0, r′). Hence the formulae in (5.4) involve func-
tions meromorphic in t ∈ D(0, r′). Consequently, each of these formulas becomes
an equality either for all t ∈ [−r, r] or at most for a finite number of values of
t = t0, . . . , tM ∈ [−r, r], and we may assume −r = t0 < · · · < tM = r. On each
interval (tk, tk+1) these functions are continuous, so the relations in (5.3) become >
or < or = and are fixed.

Consequently, if B(t) is a Shapley–Snow kernel for some t ∈ (tk, tk+1), then it is
so for all t ∈ (tk, tk+1). Since a Shapley–Snow kernel exists for each t ∈ [−r, r] (by
Proposition 1.1), if we set I0 = {t0}, I1 = (t0, t1), I2 = {t1}, I3 = (t1, t2), etc., then
the submatrices Kk × Lk can be found.

THEOREM 5.2. There is a finite partition of the interval [0, 1] into subinter-
vals Ik, open or degenerate, such that the Shapley–Snow kernels of the matrix games
Rβ(s,v(β)) can be chosen for each β ∈ [0, 1] in such a way that the location of these
kernels is constant on each Ik.

Proof. By Theorem 4.6 and by compactness, the interval [0, 1] can be divided
into subintervals Ik = [tk, tk+1] (0 = t0 < · · · < ts = 1) so that the entries of the
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Rβ(s,v(β)) are given by analytic functions of u = M
√

β − tk or u = M
√

tk+1 − β,
having holomorphic extensions over a disc D(0, r′) with r′ > M

√
tk+1 − tk. By Lemma

5.1, the interval [0, M
√

tk+1 − tk] has the desired partition, which can be pulled back
to Ik as the real Mth root function M

√ is increasing. Now it is enough to use these
partitions, letting each tk form a degenerated interval.

COROLLARY 5.3. One can choose some optimal stationary strategy pair (u0(β),
v0(β)) of Γβ for each β ∈ [0, 1) in such a way that there exists a set {ck}n

k=0, 0 =
c0 < · · · < cn = 1, satisfying the following:

(i) For β ∈ [0, 1]\{ck}n
k=0, u0 and v0 are analytic functions of β.

(ii) For all k = 1, . . . , n, there exists ε > 0 such that for β ∈ (ck − ε, ck) each
component of u0 and v0 is a real Puiseux function of ck − β.

(iii) For all k = 0, . . . , n − 1, there exists ε > 0 such that for β ∈ (ck, ck + ε) each
component of u0 and v0 is a real Puiseux function of β − ck.

Proof. Let a set {c0, . . . , cM} with 0 = c0 < · · · < cn = 1 contain all the parti-
tion points implied by Theorems 5.2 and 4.6. Let A(s, β) denote some corresponding
Shapley–Snow kernels of Rβ(s, v(β)), whose location, by Theorem 5.2, may be as-
sumed to be constant on each (ck, ck+1).

By subsection 2.1, a pair (u0(β), v0(β)) will be optimal for Γβ if

u0(β) = (p(1, β), . . . , p(N, β)) and v0(β) = (q(1, β), . . . , q(N, β)),

where each (p(s, β), q(s, β)) is an optimal strategy pair for Rβ(s, v(β)).
By Proposition 1.1 we can put

p(s, β) = 1T A(s, β)−1valA(s, β),

(5.4) q(s, β) = A(s, β)−11valA(s, β),

where valA(s, β) = (1T A(s, β)−11)−1.

For β ∈ (ck, ck+1) the entries of A(s, β) depend analytically on β (since v(β) does, by
Theorem 4.6). For β ∈ (ck − ε, ck) (k = 1, . . . , n) or β ∈ (ck, ck + ε) (k = 0, . . . , n − 1)
the entries of A(s, β) are Puiseux functions of |β − ck| (by the same Theorem 4.6).
By the formulas in (5.4), the same can be said about p(s, β) and q(s, β). In addition,
here all functions are real.
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Abstract. In this paper we give a complete description of how the Jacobi theory of conjugate
points can be extended to a regular linear-quadratic control problem where the state end-points are
jointly constrained to belong to a subspace of Rn × Rn and there is a linear pointwise state-control
constraint. We introduce also the definition of semiconjugate point which describes a distinctive
feature of these problems and state the corresponding necessary and sufficient conditions for the
quadratic form to be nonnegative or coercive. In the case in which the constraints and the costs act
separately on the initial and final points we give equivalent characterizations of the coercivity of the
quadratic form by means of the solutions of an associated Riccati equation in both the controllable
and uncontrollable case.
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1. Introduction. Although linear-quadratic (LQ) problems have been studied
since the birth of control theory, there are still interesting questions which wait for
a complete answer. This is the case for the problem we analyze in this paper. It is
an LQ-control problem whose main features are that the state end-points are jointly
constrained to belong to a subspace of Rn × Rn and that there is a linear pointwise
state-control constraint. These kinds of problems arise while studying second-order
optimality conditions in nonlinear problems with mixed state-control constraints of
both equality and inequality type. Second-order conditions are needed in nonlinear
problems both when the candidate solution is not unique (see [13] for a numerical
example) and when an existence theorem cannot be applied (see Example 4.4 and
[13] for numerical examples).

The aim of this paper is to give a complete description of how the Jacobi theory
of conjugate points can be extended to this kind of regular LQ-control problems with
a possibly indefinite cost; here, regular means that a suitable version of the Legendre
condition is fulfilled. We are then able to state necessary and sufficient conditions for
the quadratic form to be nonnegative or coercive. This issue is interesting because
these problems have properties different from the usual ones. For this reason we
introduce the definition of semiconjugate point because the points which characterize
the coercivity and the nonnegativity of the quadratic form are different when the
problem is not controllable or when it does not have at least one fixed end-point.

In the case when the constraints and the costs act separately on the initial and
final points we give an equivalent characterization of the coercivity of the quadratic
form by means of the solutions of the associated Riccati equation in both the con-
trollable and the uncontrollable case. In the case of controllable systems the result
is sharper, and it allows us to solve the associated affine problem; see [22]. These
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grants “Teoria dei sistemi e del controllo” and “Equazioni differenziali ordinarie e applicazioni.”

http://www.siam.org/journals/sicon/35-3/28684.html
†Dipartimento di Matematica e Applicazioni, Via Mezzocannone 8, 80134 Napoli, Italy (stefani@

facec.cce.unifi.it).
‡DiMaDEFAS, Via C. Lombroso 6/17, 50134 Firenze, Italy (pzezza@facec.cce.unifi.it).

876



LQ-CONTROL PROBLEMS 877

Riccati-type conditions can be applied also to problems with boundary conditions
given jointly on both end-points, for example, periodic, by transforming the problem
into another one in double dimension. Here we give a sufficient condition which can
be simply stated and proved.

The previous results, together with the results in [23] (announced in [18]), give
necessary and/or sufficient conditions for a constrained nonlinear optimal control
problem to have a weak local minimum. For a survey, see [21].

Our results extend to the control, setting some classical results for problems in the
calculus of variations, where an important role is played by the Legendre and Jacobi
conditions. They concern the quadratic form obtained as the second variation of a
nonlinear problem. The original results are about the simplest problem in the calculus
of variations, where both end-points are fixed (Jacobi, 1837), and they have been
generalized by Kneser, 1896, to the case of one fixed end-point. The statements are
based on the definition of conjugate (both fixed end-points) or focal point (one fixed
end-point). Until the crucial work by Hestenes [7] and Morse [17], the improvements
concerned only the regularity of the data and of the optimal solution while they
developed an index theory for quadratic forms in Hilbert spaces, and they explain
the connection between the index of the quadratic form and the conjugate (or focal)
points.

Conjugate points and the Riccati equation have been widely studied in connection
with regular LQ problems, especially for problems with at least one end-point fixed.
It is impossible to quote all the results published since the seminal papers by Kalman
[9] and Hestenes [7]. Here we mention the contributions in [5, 6, 8] and [15], where
the Hestenes approach has been used to consider optimal control problems; those in
[3, 10], where the classical approach has been extended to the optimal control setting
but in a rather informal and nonrigorous approach; and those in [4, 16], where an
approach to the Riccati equation closer to ours is used.

As far as conjugate points are concerned, the problem when both end-points
are variable has been analyzed in [26, 27], where, under suitable controllability as-
sumptions, the authors introduce the concept of coupled point, and they state the
corresponding necessary conditions. The calculus of variations case with separate
end-point conditions is studied in [24], where necessary and sufficient conditions for
the coercivity of the quadratic form are given by means of coupled points and, equiv-
alently, by the properties of a solution of the Riccati equation. In [28] the author
gives necessary and sufficient conditions for the case of joint end-points constraints,
still with suitable controllability assumptions.

LQ problems with constraints can be seen as those defining the accessory mini-
mization problem associated with nonlinear optimization problems with state-control
and end-point equality and inequality constraints. There is a large amount of litera-
ture on these problems; for some recent results see, for example, [14, 19, 23, 25] and
the references therein.

In [25], while studying a nonlinear control problem with state-control pure in-
equality constraints and with fixed initial point, Zeidan analyzes the accessory LQ
problem, assuming that the linearized system is controllable. Zeidan gives necessary
conditions for the nonnegativity of the quadratic form by means of conjugate points
and sufficient conditions for its coercivity by the existence of a solution of the Riccati
equation satisfying certain boundary conditions.

In the appendix we summarize an example of an application to an economic model
(Example 4.4). Techniques similar to those that we study here are used in [13], and
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in other papers by the same authors, to analyze some applied examples. The results
we state in this paper widen the class of problems to which these techniques can be
applied and allow us to use either conjugate points or Riccati-type results to check
both necessary and sufficient conditions.

In [29] an abstract Jacobi theory has been presented. We are going to use the
results therein to develop a conjugate point approach to LQ problems in the pres-
ence of constraints. The abstract theory points out that the different definitions of
conjugate, focal, and coupled point can be seen as corresponding to the same object
in different situations. For this reason we go back to the original name of conjugate
point, including in this definition all the previously mentioned cases. To take into
account the situation related to the existence of a focal interval or table we introduce
the definition of semiconjugate point.

The abstract theory analyzes the sign of a form J on an Hilbert space H by means
of its restriction to a family of subspaces depending on a parameter c. The changes of
the index or the nullity of the form are investigated through a value function V which
is the minimum of the form J on a level set of a weakly continuous positive quadratic
form in a subspace belonging to the family. A kind of “continuation principle” is given
in the sense that, roughly speaking, the Jacobi condition states that if V is positive at
level c = 0 and it does not become zero along the family, then at the final level, which
corresponds to the whole space, it is still positive and hence the form is coercive.
Analogously, if the function V is nonnegative at level c = 0 and it does not change
sign, then the form is nonnegative. A detailed analysis is needed to characterize these
points by the properties of the solutions of the Jacobi system.

The Hilbert space we consider is given by the couples made by the initial state
and the control which satisfy the constraints; this is because the initial condition plays
the role of a further control. From this point of view it is quite natural to consider
the family of subspaces obtained by taking as parameter c the time and by setting the
control equal to a reference one after c. This reference control is chosen in a feed-back
form such that the state-control constraint is satisfied for every initial point. With this
choice the subspace at level c = 0 is finite dimensional so that it is easy to check if the
form is nonnegative there. This approach leads to the definition of semiconjugate point
which can usually be given through the solutions of the Jacobi system and through the
transversality conditions which can be obtained by setting the first derivative of the
form constrained to the subspace equal to zero. The transversality conditions include
an extra term which does not appear when the moving end-point is constrained to
be zero. Let us remark that here we consider as fixed the left end-point of the time
interval t = 0, and we take the other one as a parameter. We could very well do the
opposite, doubling all the statements and obtaining symmetric results.

Differently from previous works, we do not assume any kind of controllability
with respect to the boundary conditions here, but we need a surjectivity assump-
tion on the state-control constraint (Assumption 2.2) and a suitable version of the
Legendre–Clebsch condition (Assumption 2.3) which allows us to give the Jacobi sys-
tem only by means of the trajectory and the adjoint covector. Theorems 2.5 and
2.6 give a complete characterization of the coercivity and of the nonnegativity of the
studied quadratic form by means of semiconjugate and conjugate points, including
and extending all the previous results on the subject. Preliminary results has been
announced in [20].

These results concerning conjugate points are crucial in proving the necessary and
sufficient conditions in the framework of Riccati theory. Here we fully analyze only the
case when costs and boundary conditions are given separately on the two end-points.
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Theorem 2.9 states that the coercivity of the form plus a controllability assumption
is equivalent to the existence of a solution of the Riccati equation on the half open
interval (0, T ] with suitable boundary conditions. While, without any controllability
assumption, Theorem 2.10 states the equivalence between the coercivity of the form
and the existence of a solution of the Riccati equation on the closed interval [0, T ]
with suitable inequality-type boundary conditions. Under stronger controllability
assumptions it is possible to characterize also the nonnegativity of the quadratic form
by a solution of the Riccati equation, Theorem 2.11. These theorems include and
extend the previous results on the subject.

For the case of joint costs and boundary conditions we give here only some simple,
partial results in Theorem 2.12 and Corollary 2.13; a complete description will be the
subject of a forthcoming paper. The plan of the paper is the following. In section
2 we describe the main assumptions and results. Subsection 2.1 is dedicated to the
conjugate points, and subsection 2.2 concerns the Riccati equation. All the proofs
and all the needed lemmas are in section 3. In the appendix there are some related
results and examples.

2. Statement of the problem and main results. On a given compact interval
[0, T ] we consider the quadratic form

I(η, u) =
1
2
(η>(0), η>(T ))Γ

(
η(0)
η(T )

)
(2.1)

+
1
2

∫ T

0

{
η>(s)P (s)η(s) + 2u>(s)Q(s)η(s) + u>(s)R(s)u(s)

}
ds,

defined on the subspace of AC([0, T ],Rn) × L2([0, T ],Rm) of the couples (η, u) satis-
fying

η̇(t) = A(t)η(t) + B(t)u(t) almost everywhere (a.e.) t ∈ [0, T ].(2.2)

This subspace is an Hilbert space since it can be identified with

U = Rn × L2([0, T ],Rm)

by (η, u) 7→ (η(0), u). We study the restriction of the quadratic form I to the closed
subspace K of U given by two different types of constraints. The first one is a
boundary condition on the state end-points

N

(
η(0)
η(T )

)
= 0,(2.3)

whereas the second one is a pointwise state-control constraint which is an infinite
dimensional constraint

C(t)η(t) + D(t)u(t) = 0 a.e. t ∈ [0, T ].(2.4)

Γ is a symmetric matrix in M2n×2n, N ∈ Mp×2n. We assume that the data satisfy the
following standard minimal assumptions

A, P ∈ L1([0, T ], Mn×n), B∈ L2([0, T ], Mn×m), Q∈ L2([0, T ], Mm×n),
R∈ L∞([0, T ], Mm×m), C ∈ L2([0, T ], Mk×n), D∈ L∞([0, T ], Mk×m)
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and that P (t) and R(t) are symmetric matrices. When any of this time-dependent
matrix acts on a function, it becomes an operator between Lp spaces, which will be
denoted by the same capital letter. In the following all the equalities between Lp

functions are assumed to hold a.e.
If the quadratic form describes an accessory minimization problem coming from

inequality constraint, then the set of active constraint depends on t. To include this
possibility we have to allow the ranges of the maps C, D to change. This can be done
by assuming the following.

Assumption 2.1. There exists δi ∈ L∞([0, T ],R), δi(t) ∈ {0, 1}, i = 1, . . . , k, such
that the orthogonal projection defined by ∆(t) = diag {δ1(t), δ2(t), . . . , δk(t)} satisfies

∆C = C and ∆D = D.

Our aim is to give necessary and sufficient conditions for the quadratic form to be
coercive or nonnegative on K. Combining these results with those in [23], we obtain
a complete set of necessary and sufficient conditions for a weak local minimum in
presence of equality-type constraints.

Besides the above regularity assumptions on the data, we make two main as-
sumptions which have been considered by several authors also in the nonlinear case
[11, 12]. The first one concerns the regularity of the infinite-dimensional constraint
(2.4). By Assumption 2.1, the map (η(0), u) 7→ Cη +Du is a map from U into Range
∆ ⊂ L2([0, T ],Rk), and it is onto if and only if the following assumption is satisfied
(see Lemma 4.1 in the Appendix). An analogous result has been proved in [19] for
the L∞ case.

Assumption 2.2. There is h > 0 such that

D D>+ (Id − ∆) ≥ h Id.

Under this assumption we can define the operator D] ∈ L∞([0, T ], Mm×k):

D] ≡ D>(DD>+ (Id − ∆))−1
.

Since ∆ is an orthogonal projection, Assumption 2.1 yields

(Id − ∆)(DD>+ (Id − ∆))−1 = (Id − ∆);

hence

D D] = ∆.(2.5)

The maps

Π1 = Id − D]D, Π2 = D]D

are orthogonal projections in L2([0, T ],Rm), and they give an orthogonal decomposi-
tion of U :

U1 = Rn × Range Π1, U2 = {0} × Ker Π1.

The other main assumption we are going to make is a suitable version of the strength-
ened Legendre–Clebsch condition on K; see also [15].
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Assumption 2.3. The quadratic form I satisfies the strengthened Legendre–
Clebsch condition on K; that is, one of the following equivalent statements holds:

there are h0, h1 > 0 such that R + h1Π2 ≥ h0 Id,(2.6)
there is h > 0 such that Π1RΠ1 + Π2 ≥ h Id,(2.7)

there is h > 0 such that Π1RΠ1 ≥ hΠ1.(2.8)

The proof of the equivalence among the statements is in Lemma 4.2 in the ap-
pendix. Notice that when the number of active constraints is equal to the number of
controls, then Π1 ≡ 0 and Assumption 2.3 is empty.

In what follows we use a natural generalization of the definition of controllability
for the linear system (2.2) constrained by (2.4); namely, we will say the following.

DEFINITION 2.1. The constrained system (2.2) and (2.4) is N -controllable at time
t1 if the map

(x, u) 7→ N

(
η(0)
η(t1)

)
is onto Range N , where η is the solution of (2.2) corresponding to u, with η(0) = x
and (η, u) satisfying (2.4). For

N =
(

L 0
0 Id

)
,

the above definition coincides with the usual definition of controllability from a sub-
space, and we say that the constrained system (2.2) and (2.4) is controllable from Ker
L at time t1.

By Assumption 2.1, if we take controls of the form

u = Π1u + Π2u = Π1u − D]Cη,

then the constraint (2.4) is verified independently from the starting point of the trajec-
tory. Thus the solutions of the constrained control system (2.2) and (2.4) correspond
to the solutions of

ξ̇(t) = Ā(t)ξ + B(t)Π1(t)u(t),(2.9)

where

Ā ≡ A − BD]C.(2.10)

This is because if (η, u) is a solution of (2.2) and (2.4), then ξ = η is a solution of
(2.9) with control Π1u; see the beginning of section 3 for a detailed analysis.

Remark 2.1. By the above properties we can give an equivalent definition of
N-controllability without a direct reference to the constraint (2.4). In fact, the sys-
tem (2.2) and (2.4) is N-controllable at time t1 if and only if the system (2.9) is
N-controllable at time t1.

We can now describe how the Jacobi theory of conjugate points can be extended
to these problems. Following [29] we define the conjugate points by means of a family
of problems which are parametrized by the time c ∈ [0, T ]. This family is obtained by
considering the restriction of the functional I to a family of subspaces of K increasing
with c. They are defined by establishing the control values on the interval [c, T ] to be
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equal to the feedback control (2.11) which is taken as reference one for system (2.2).
Hence a special role is played by the solutions of (2.2) corresponding to the feedback
control

u = −D]Cη,(2.11)

which are the solutions of (2.9) corresponding to the null control; they can be described
through the solution Φ(t, c) of the matrix equation

Φ̇(t) = Ā(t)Φ(t) , Φ(c) = Id.

Since the control values are fixed on the interval [c, T ], then the problems of the family
can be considered as problems on [0, c] with new boundary conditions and end-point
cost at time c given by

Nc = N

(
Id 0
0 Φ(T, c)

)
,

Γc =
(

Id 0
0 Φ>(T, c)

)
Γ
(

Id 0
0 Φ(T, c)

)
+

( 0 0

0
∫ T

c

Φ>(s, c)P̄ (s)Φ(s, c)ds

)
,(2.12)

where

P̄ ≡ P − C>(D])>Q − Q>D]C + C>(D])>RD]C.(2.13)

We consider also the case c = 0 that is the restriction of the quadratic functional I to
the subspace of K corresponding to the control which is feedback on the whole [0, T ].
This subspace can be identified with the subspace of Rn given by

K0 ≡
{

x ∈ Rn : N0

(
x

x

)
= 0
}

.

Notice that K0 may be nontrivial if no end-point is fixed. The restriction of I to K0
can be written as a finite-dimensional quadratic form on K0:

I0 : x 7→ 1
2
(x>, x>)Γ0

(
x

x

)
.

We are going to define an Hamiltonian which differs from the usual one because we
have to take into account the functional constraint (2.4). Let us emphasize that the
Hamiltonian is the same for all the problems in the family because the new boundary
conditions, Nc, and the new cost, Γc, on the state end-points do not play any role in
its definition. Thanks to Assumption 2.3, define

S = Π1(Π1RΠ1 + Π2)−1Π1,(2.14)

which plays the role usually played by R−1, and set

Q̄ ≡ Q − RD]C,(2.15)

E = Q̄>SQ̄ − P̄ , F = Ā − BSQ̄ , G = −BSB>.

The true (minimized) Hamiltonian H : R × (Rn)∗ × Rn → R is given by

H(t, γ, x) ≡ −1
2
x>E(t)x + γF (t)x +

1
2
γG(t)γ>.(2.16)
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Notice that the presence of extra terms in the Hamiltonian depends on the pointwise
constraint on the state; in fact, they disappear if C = 0. Two systems are associated
with the Hamiltonian H: the Jacobi system on Rn × (Rn)∗

ζ̇(t) = F (t)ζ(t) + G(t)λ>(t),
(2.17)

λ̇(t) = ζ>(t)E(t) − λ(t)F (t),

and the corresponding matrix system

Ż(t) = F (t)Z(t) + G(t)Λ>(t),
(2.18)

Λ̇(t) = Z>(t)E(t) − Λ(t)F (t).

The solutions of the Jacobi system which satisfy appropriate transversality conditions
describe the extremals, and they correspond to the critical points of the problems in
the family; see Lemma 3.8. Let us introduce the following.

DEFINITION 2.2. For c ∈ [0, T ], an arc ζ is called a c-transversal extremal if there
exists an arc λ such that

(ζ, λ) : [0, T ] → Rn × (Rn)∗

is a solution of the Jacobi system (2.17) satisfying the following transversality condi-
tions:

Nc

(
ζ(0)
ζ(c)

)
= 0,

(−λ(0), λ(c)) = (ζ>(0), ζ>(c))Γc + σNc for some σ ∈ (Rp)∗.

Notice that this definition is given also for c = 0, and it corresponds to the
existence of a critical point x = ζ(0) of I0 restricted to K0. λ(0) is the associated
Lagrange multiplier; see Lemma 3.8.

Remark 2.2. Differently from other authors in the literature, we do not define
the extremals as the solutions of the Jacobi system because there can exist a non-
trivial solution of the Jacobi system corresponding to the zero extremal without any
controllability assumption, as is shown by Example 4.1. There is a one-to-one corre-
spondence between c-transversal extremals and c-transversal solutions of the Jacobi
system if and only if the system (2.9) is Nc-controllable at time c; see Lemmas 3.8
and 3.9.

The existence of nontrivial c-transversal extremals which are also solutions of
(2.2) corresponding to the feedback control is typical of control problems with nonzero
boundary conditions; hence, we need the following definition which characterizes them
(see also Remark 2.3).

DEFINITION 2.3. A c-transversal extremal ζ is said to be degenerate on the interval
[α, β] containing c if

Π1(t)(Q̄(t)ζ(t) + B>(t)λ>(t)) = 0, t ∈ [α, β],

or, equivalently, for t ∈ [α, β]

ζ̇(t) = Ā(t)ζ(t),
λ̇(t) = −λ(t)Ā(t) − ζ>(t)P̄ (t).
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2.1. Conjugate points. This subsection contains our main results concerning
the extension of the Jacobi theory of conjugate points to our problem. Let us first
introduce the definitions of conjugate and semiconjugate points. This distinction is
needed because of the existence of c-transversal degenerate extremals.

DEFINITION 2.4. A point c ∈ [0, T ] is called semiconjugate with zero if there exists
a nontrivial c-transversal extremal. A point c ∈ [0, T ) will be called conjugate with
zero if there exists a nontrivial c-transversal extremal which is not degenerate on [c, β],
c < β ≤ T.

Remark 2.3. When I0 ≥ 0 on K0, the interval between the first semiconjugate
point and the first conjugate point has been called a focal interval in [15] or a table in
[5]. Degenerate extremals do not exist when the right end-point is fixed and the linear
system (2.9) is controllable from {0} on any subinterval (see Lemma 3.10). In this last
case the semiconjugate points are also conjugate and the focal interval (if it exists)
reduces to a point. Recall that the controllability assumption is always satisfied in
the calculus of variations problems.

We are now able to state our main results concerning conjugate points which corre-
spond to the classical Jacobi necessary and sufficient conditions. Under Assumptions
2.2 and 2.3 the following theorems hold.

THEOREM 2.5. The quadratic form I is nonnegative if and only if I0 is nonneg-
ative on K0 and there is no point c ∈ [0, T ) conjugate with zero.

THEOREM 2.6. The quadratic form I is coercive if and only if I0 is positive on
K0 and there is no point c ∈ (0, T ] semiconjugate with zero.

These definitions naturally generalize the previous ones of conjugate and focal
point, while the definition of a point coupled with zero, which has been introduced
in [26] for the calculus of variations and in [27] for an optimal control problem under
controllability assumptions, in our setting can be generalized by the following.

DEFINITION 2.7. A point c ∈ (0, T ] is coupled with zero if there exists a nontrivial
c-transversal extremal which is not degenerate on [c, T ]. This last condition is empty
when c = T.

Because we want to emphasize the point of view of index theory, we prefer Defi-
nition 2.4, since a conjugate point corresponds to the point where the index increases
while a semiconjugate point corresponds to an arc in the nullity.

Lemma 3.13 shows that the existence of a coupled point on the half-closed interval
(0, T ] is equivalent to the existence of a semiconjugate point on the same interval.
This is analogous for the existence of coupled points and conjugate points on the
open interval (0, T ). Thus Theorems 2.5 and 2.6 could have been stated by means of
coupled points.

COROLLARY 2.8. The quadratic form I is nonnegative (coercive) if and only if I0
is nonnegative (positive) on K0 and there is no point c ∈ [0, T ) (c ∈ (0, T ]) coupled
with zero.

This result includes the previous results stated by means of coupled points, in par-
ticular those in [25] where necessary conditions for the nonnegativity of the quadratic
form I are given under controllability assumptions and with fixed initial point.

2.2. The Riccati equation. This section contains our main results concern-
ing Riccati-type results for our problem. The following classical Riccati differential
equation is associated with the Hamiltonian H:

Ẇ (t) = −W (t)F (t) − F>(t)W (t) − W (t)G(t)W (t) + E(t).(2.19)

Notice that when the number of active constraints is equal to the number of controls
then G(t) ≡ 0 and the Riccati equation becomes linear.
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To obtain Riccati-type results for our problem, we consider first the problem with
separate costs and end-points constraints; i.e., we set

N =
(

N0 0
0 NT

)
, Γ =

(
Γ0 0
0 ΓT

)
.

Later, we will state some results for the general case. Let us assume, without loss of
generality, that N0, NT are orthogonal projections in Rn.

Let (Z0, Λ0) be the solution of (2.18) defined by the initial conditions

Z0(0) = Id − N0, Λ0(0) = −(Id − N0)Γ0(Id − N0) + N0.(2.20)

Our main results relate the existence of a solution of the Riccati equation to the
coercivity of I, and they correspond to Theorem 2.6, while there is no analogue to
Theorem 2.5 in the general case. Under Assumptions 2.2 and 2.3 the following hold.

THEOREM 2.9. The following statements are equivalent:
(1) I is coercive on K and the system (2.9) is controllable for every c > 0 from

Ker N0.
(2) I0 > 0 on K0 and there is a symmetric solution W of the Riccati equation

(2.19) on (0, T ] such that

lim
t→0+

W (t)Z0(t) = −(Id − N0)Γ0(Id − N0) + N0(2.21)

and

ΓT − W (T ) > 0 on Ker NT .(2.22)

In the case of unconstrained initial point (i.e., N0 = 0), the controllability assumption
is always satisfied and W is defined on [0, T ], so that the limit condition (2.21) becomes

W (0) = −Γ0.

It is also possible to state necessary and sufficient conditions without any con-
trollability hypothesis.

THEOREM 2.10. The following statements are equivalent:
(1) The quadratic form I is coercive on K.
(2) There is a symmetric solution W of (2.19) on [0, T ] and β ∈ R such that

W (0) = −Γ0 − βN0 and ΓT − W (T ) > 0 on Ker NT .

(3) There is a symmetric solution W of (2.19) on [0, T ] such that

W (0) + Γ0 > 0 on Ker N0 and ΓT − W (T ) > 0 on Ker NT .

Let us remark that when an end-point is fixed, the corresponding inequality con-
dition for the solution of the Riccati equation is empty.

The existence of a solution of the Riccati equation (or Riccati inequality) has
been used to prove sufficient conditions for the nonlinear problem [25, 14].

Although general results for the nonnegativity of I on K cannot be stated, we
can prove the following theorem in the case when the are no degenerate c-transversal
extremals.

THEOREM 2.11. Assume that the system (2.9) is controllable from {0} on each
subinterval and that the right end-point is fixed; then the following statements are
equivalent:

(1) I is nonnegative on K.
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(2) I0 > 0 on K0, and there is a symmetric solution W of the Riccati equation
(2.19) on (0, T ) such that

lim
t→0+

W (t)Z0(t) = −(Id − N0)Γ0(Id − N0) + N0.

(3) There is a symmetric solution W of (2.19) on [0, T ) and β ∈ R such that

W (0) = −Γ0 − βN0.

(4) There is a symmetric solution W of (2.19) on [0, T ) such that

W (0) + Γ0 ≥ 0 on Ker N0.

Theorem 2.11 is of some interest because it includes the well-studied case of
problems in the calculus of variations with one fixed end-point. The analogue of
statement (3) in Theorem 2.10 does not hold with strict inequality, as is shown by
Example 4.3.

The previous theorems are stated for the case when the boundary conditions and
the costs are given separately on the initial and final points. They can be applied also
to problems with boundary conditions given jointly on both end-points, periodic, for
example, by transforming the problem into another one in double dimension. This can
be done by considering an extended system (ξ, ν), where ν satisfies ν̇(t) = 0 subject
to the constraint ξ(0) = ν(0). Then any condition involving ξ(0) may be imposed on
ν(T ), so that the original cost and constraint are imposed on the final values of the
extended system, while the new boundary conditions involve only the initial point.
These necessary and sufficient conditions are stated by means of a 2n × 2n solution
W of a Riccati equation in double dimension,

W =
(

W11 W12
W12

> W22

)
.

The three matrices are a solution of a cascade of differential equations given by a
Riccati differential equation, a linear equation, and an integrator. The properties
of this system will be described in a forthcoming paper. Here we give a sufficient
condition which has a simple formulation and proof. It is not a necessary condition,
as is shown by Example 4.2 in the appendix.

THEOREM 2.12. If there is a symmetric solution W of (2.19) on [0, T ] such that

Γ +
(

W (0) 0
0 −W (T )

)
> 0 on Ker N,(2.23)

then the quadratic form I is coercive on the subspace K.
Of some interest is the case of periodic boundary conditions, i.e., N = (Id, −Id),

when the end-point cost can be imposed on one of the end-points, i.e., Γ =
(

Γ0 0
0 0

)
.

From Theorem 2.12 we obtain the following.
COROLLARY 2.13. If there is a symmetric solution W of (2.19) on [0, T ] such

that

Γ0 + W (0) − W (T ) > 0,

then the quadratic form I is coercive on the subspace K defined by η(0) = η(T ) and
by (2.4).
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3. Proofs of the results. As we said in section 2, we consider the quadratic
form I acting on the Hilbert space U of the couples (x, u) = (initial state, control).

Thanks to Assumptions 2.1 and 2.2, our problem can be equivalently written in a
simpler form. Let us consider a couple (x, u) such that (η, u) satisfies (2.2) and (2.4).
From Assumption 2.2 and by (2.5) we deduce that

u = Π1u + Π2u = Π1u − D]Cη.

Thus η solves also (2.9) with ξ(0) = η(0), as it can be checked by direct substitution,
and we can write u = Π1u − D]Cξ. For the quadratic form J defined by

J(x, u) =
1
2
(x>, ξ>(T ))Γ

(
x

ξ(T )

)
(3.1)

+
1
2

∫ T

0

{
ξ>(s)P̄ (s)ξ(s) + 2u>(s)Π1(s)Q̄(s)ξ(s) + u>(s)Π1(s)R(s)Π1(s)u(s)

}
ds,

where Ā, P̄ , Q̄ are defined, respectively, in (2.10), (2.13), (2.15), we obtain that

I(x, u) = J(x, u) on K.(3.2)

Instead of studying the quadratic form I on K we study the quadratic form J on the
closed subspace H of U defined by

N

(
x

ξ(T )

)
= 0,(3.3)

Du ≡ 0.(3.4)

The equivalence between these two problems is stated in the following.
LEMMA 3.1. The quadratic form I is coercive (nonnegative) on K if and only if

the quadratic form J is coercive (nonnegative) on H.
Proof. Since J(x, u) = J(x, Π1u), the statement on nonnegativity is straight-

forward from (3.2). To prove the statement relative to the coercivity, by (3.2) it is
sufficient to prove that J coercive on H implies that there exists k > 0 such that

J(x, u) ≥ k(||x||2 + ||Π1u||2 + ||D]Cξ||2).
It is not difficult to see that the linear map Ξ : U1 → L2([0, T ],Rm) defined as
(x, Π1u) 7→ D]Cξ, where ξ is the solution of (2.9) such that ξ(0) = x, is continuous.
The result follows from standard computations.

In the following we use some general properties of quadratic forms on Hilbert
spaces stated in [7]. We recall first the basic definition of the Legendre form, sometimes
called elliptic [15].

DEFINITION 3.2. The quadratic form J is said to be Legendre on H if it is weakly
lower semicontinuous on H and if, for every sequence {hn} which converges weakly to
h ∈ H and such that {J(hn)} converges to J(h), {hn} converges strongly to h ∈ H.

In order to prove Theorems 2.5 and 2.6 we use the results in [29], which we briefly
recall. The results concern a Legendre quadratic form J defined on an Hilbert space
H and a family of closed subspaces with some continuity properties by which it is
possible to define a Jacobi-type condition.

DEFINITION 3.3. A one-parameter family {Hc}, c ∈ [0, T ], of closed subspaces of
H is said to be continuous if it has the following properties:

(1) for 0 ≤ c1 ≤ c2 ≤ T, Hc1 ⊂ Hc2 and HT = H.
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(2) for c0 ∈ (0, T ], cl (
⋃

0≤c<c0
Hc) = Hc0 .

(3) for c0 ∈ [0, T ),
⋂

c0<c≤T Hc = Hc0 .
For a given continuous family Hc and for a positive weakly continuous quadratic

form K define

Ωc = {e ∈ Hc : K(e) = 1} .

The study of a Legendre form J can be pursued through the following “value function”
V : [0, T ] → (−∞, +∞] defined as

V (c) = min
e∈Ωc

J(e),

as usually V (c) = +∞ if Ωc = ∅. The use of the min operator instead of the infimum
in the definition of the function V is possible because a Legendre form attains its
minimum on Ωc and hence we have

• J is coercive on Hc ⇐⇒ V (c) > 0,
• J is nonnegative on Hc ⇐⇒ V (c) ≥ 0.

The main result which summarizes the properties of the function V is the following
[29].

THEOREM 3.4. Assume that J is Legendre on H. The function V is nonincreasing
and continuous as an extended-real-valued function

V : [0, T ] → R ∪ {+∞}.

Remark 3.1. For an optimal control problem we can choose K(x, u) = ‖x‖2+‖ω‖2
2,

where w : t 7→ ∫ t

0 u(s)ds. This choice is the usual one in the calculus of variations and
leads us to characterize V (c) as the first eigenvalue of the associated Euler–Lagrange
differential operator.

From the properties of the function V we can deduce that J is coercive on H if
and only if J is positive on H0 and there is no point c ∈ (0, T ] at which V becomes
zero. Moreover, J is nonnegative on H if and only if J is nonnegative on H0 and
there is no point c ∈ [0, T ) at which V changes sign. In our case, using a suitable
family of subspaces, we can link the existence of such points with semiconjugate and
conjugate points.

To apply the above theory it is convenient to see the Hilbert space H as the
Kernel of the linear operator Σ : U1 → Rp, defined by

Σ(x, u) = N

(
x

ξ(T )

)
,

where ξ is the solution of equation (2.9) with initial condition ξ(0) = x.
As a first step we show that our quadratic form is Legendre.
THEOREM 3.5. Under Assumption 2.2, the quadratic form J is Legendre on H if

and only if Assumption 2.3 is satisfied.
Proof. Let

E(x, u) = ‖x‖2 +
∫ T

0
u>(s)Π1(s)R(s)Π1(s)u(s)ds.

The quadratic form J can be written as the sum of a weakly continuous form J − E
plus the form E. J − E is weakly continuous because of the compactness of the
solution operator associated to a linear differential equation. By Theorem 11.5 in [7]
the quadratic form J is Legendre on H if and only if the form E is Legendre on H. On



LQ-CONTROL PROBLEMS 889

the other hand the orthogonal complement of H = Ker Σ in U1 is finite dimensional
as the range of Σ; therefore it follows from Theorem 11.4 in [7] that E is Legendre
on H if and only if it is on U1. It is clear that the strengthened Legendre–Clebsch
condition implies that the form E is coercive and hence Legendre on U1.

Let us prove the converse. If E is Legendre on U1, by Theorem 5.2 in [7] its
nullity and index are finite. Since it is nonnegative, the index must be zero. But, for
this particular form, the nullity also has to be zero because if E(x, u) = 0, then for
all φ ∈ C([0, T ],R) also E(‖φ‖x, φu) = 0; hence the form E is positive on U1. By
Theorem 11.1 in [7] this yields that it is coercive, so that (2.8) holds.

In order to define the family of subspaces {Hc} for our problem let us introduce
the following notation. For c ∈ [0, T ] set

Uc = {(x, u) ∈ U1 : u(t) ≡ 0 for t ∈ [c, T ]} ,

and consider the following one-parameter family of subspaces:

Hc = Uc

⋂
Ker Σ.

A subspace Hc is isomorphic to a subspace of Rn × L2([0, c],Rm); in particular, H0
can be identified with the subspace K0 of Rn defined in section 1 and, moreover,
HT = H.

Since we do not have any controllability assumption on the system (2.9),

Rc ≡ Σ (Uc)

need not be the whole space Rp. Notice that for (x, u) ∈ Uc we have that

Σ(x, u) = N

(
x

ξ(T )

)
= Nc

(
x

ξ(c)

)
,

and hence, with these notations, the system (2.9) is Nc-controllable at time c if and
only if Rc = Range N.

The following lemma describes a property of Rc which is crucial to prove the
continuity of the family {Hc}.

LEMMA 3.6. Under Assumption 2.2, there is a finite partition c0 = 0 < c1 < · · · <
cs = T such that Rc is constant for all c ∈ (ci, ci+1].

Proof. It follows immediately from the definition that the spaces Uc’s have the
following properties:

Uc ⊆ Ud, 0 ≤ c ≤ d ≤ T, cl

 ⋃
0≤c<c0

Uc

 = Uc0 .

Therefore, by the continuity of Σ the corresponding sets Rc’s have the same properties
as the sets Uc’s, and since they also are finite dimensional, the statement follows
immediately.

We can now prove that the family {Hc} satisfies the properties required by Defi-
nition 3.3.

LEMMA 3.7. Under Assumption 2.2 the above-defined family {Hc} is continuous.
Proof. Properties 1 and 3 are immediate.
Property 2. Since Hc0 is a closed subspace, it is clear that cl (

⋃
0≤c<c0

Hc) ⊆ Hc0 ;
we have to prove the converse inclusion. Let c0 ∈ (0, T ]; by Lemma 3.6, there is c1 < c0
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such that Rc = Rc0 for all c ∈ [c1, c0]. Let Ψ : Rc0 → Uc1 be the right inverse of
Σ : Uc1 → Rc1 = Rc0 . Choose a fixed (x, u) ∈ Hc0 . For c1 < c < c0 consider the
truncation of the control u given by

uc(t) = u(t) for t ∈ [0, c] and uc(t) = 0 for t ∈ [c, T ].

(x, uc) need not belong to Hc, but we can define

(xc, vc) = Ψ Σ(0, uc − u) ∈ Uc1

so that Σ(xc, vc) = Σ(0, uc − u) and hence

(yc, wc) = (x − xc, uc − vc)

belongs to Hc. It is easy to see that as c → c0 then (xc, vc) → 0 in Hc1 . Let us
compute

‖(yc, wc) − (x, u)‖2 = ‖xc‖2 + ‖uc − vc − u‖2

= ‖xc‖2 +
∫ c

0
‖vc(s)‖2ds +

∫ c0

c

‖u(s)‖2ds

so that (yc, wc) → (x, u) as c → c0, and the statement is proved.
Since we have shown that the abstract theory in [29] applies to our case, we have

now to determine the relation between the zeros of V and the semiconjugate and
conjugate points. Let us consider the expression of the restriction of J to Uc written
as a quadratic form on [0, c]. It will be denoted by Jc. For (x, u) ∈ Uc we have

J(x, u) = Jc(x, u) =
1
2
(x>, ξ>(c))Γc

(
x

ξ(c)

)
+

1
2

∫ c

0

{
ξ>(s)P̄ (s)ξ(s) + 2u>(s)Π1(s)Q̄(s)ξ(s) + u>(s)Π1(s)R(s)Π1(s)u(s)

}
ds,

where ξ is a solution of (2.9) and Γc is given by (2.12). Let us remark that J0 = I0.
LEMMA 3.8. (x, u) is a critical point for Jc restricted to Hc if and only if there

exists a c-transversal extremal ζ such that

(x, u) = (ζ(0), −S(Q̄ζ + B>λ>)) on [0, c].(3.5)

(ζ, λ) is uniquely determined if and only if the system (2.9) is Nc-controllable at time c.
Moreover ζ is degenerate on [α, β] if and only if the corresponding control is identically
zero on [α, β].

Proof. (x, u) is critical for Jc restricted to Hc if and only if DJc(x, u)(y, v) = 0 for
all (y, v) ∈ Uc such that Σ(y, v) = 0. For c = 0 the above extremality condition can
be easily characterized by the usual Lagrange multiplier rule for a finite-dimensional
problem. That is, there exists a multiplier σ ∈ (Rp)∗ such that

(x>, x>)Γ0

(
Id

Id

)
+ σN0

(
Id

Id

)
= 0,

which can be equivalently written as

(x>, x>)Γ0 + σN0 = (−y, y)
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for some y ∈ (Rn)∗, which is equivalent to the existence of a zero-transversal extremal
with λ(0) = y.

Let us now examine the case c > 0. We can consider Rc as the range of Σ so
that the constraint can be thought as regular and the above extremality condition is
equivalent to the existence of a unique multiplier σ ∈ (Rc)

∗ which can be extended
to a multiplier σ ∈ (Rp)∗ such that DJc(x, u) + σΣ = 0 on Uc. Such an extension is
unique up to a component in the orthogonal of Range N if and only if Rc = Range
N . We can use an equivalent characterization of the critical points by means of the
Hamiltonian H : R × (Rn)∗ × Rn × Rm → R:

H(t, γ, x, w) ≡ γ(Ā(t)x + B(t)Π1(t)w)
(3.6)

+
1
2
(x>P̄ (t)x + 2w>Π1(t)Q̄(t)x + w>Π1(t)R(t)Π1(t)w);

see, e.g., Lemma 5.5 in [23]. The couple (x, u) is a critical point of Jc restricted to
Hc if and only if there exists a multiplier σ ∈ (Rp)∗ and a solution of the adjoint
equation

−λ̇(t) = λ(t)Ā(t) + ξ>(t)P̄ (t) + u>(t)Π1(t)Q̄(t)

satisfying the corresponding transversality conditions

(−λ(0), λ(c)) = (ξ>(0), ξ>(c))Γc + σNc

such that
D4H(t, λ(t), ξ(t), Π1(t)u(t))

= (u>(t)Π1(t)R(t) + λ(t)B(t) + ξ>(t)Q̄>(t))Π1(t) ≡ 0.

Since the operator S defined in (2.14) is such that

S|Range Π1 = (Π1RΠ1|Range Π1)
−1 and S Π1 = Π1S = S,

we obtain

u = Π1u = −S(Q̄ξ + B>λ>).

Substituting the above expression for u in the Hamiltonian H and in the equations
defining ξ and λ, we obtain a solution of the Jacobi system satisfying the transversality
conditions and hence a c-transversal extremal. Notice that two multipliers σ1, σ2 such
that σ1 − σ2 ∈ (Range N)⊥ identify the same λ, and hence if the system (2.9) is Nc-
controllable at time c, then the extremal is uniquely determined.

Let us now prove that ζ is degenerate on [α, β] if and only if the corresponding
control is identically zero on [α, β]. Since S is invertible on Range Π1, u is zero on
[α, β] if and only if Π1(Q̄ζ + B>λ>) = 0.

Remark 3.2. By the strengthened Legendre–Clebsch condition, the Hamilto-
nian H in (2.16) can be obtained by minimization from the Hamiltonian H in (3.6).
Namely,

ŵ(γ, x)(t) = −S(t)(Q̄(t)x + B>(t)γ>)(3.7)

is the unique minimizer of H(t, γ, x, ·) and

H(t, γ, x) ≡ H(t, γ, x, ŵ(γ, x)(t)) = min
w

H(t, γ, x, w).(3.8)

LEMMA 3.9. A c-transversal extremal ζ is trivial if and only if the corresponding
couple (x, u) is zero. Moreover any nonzero c-transversal couple (ζ, λ) corresponds to
a nontrivial c-transversal extremal if the system (2.9) is Nc-controllable at time c.
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Proof. If (x, u) = (0, 0), then ζ is identically zero. Conversely, let ζ = 0; then
ζ̇(t) = −B(t)S(t)B>(t)λ>(t) ≡ 0 yields

λ(t)B(t)S(t)B>(t)λ>(t) ≡ 0.

From the properties of S we obtain that Π1B
>λ> ≡ 0 and hence SB>λ> = u = 0. By

Lemma 3.8, the c-transversal extremal corresponding to (0, 0) is uniquely determined
if and only if Σ is onto Range N ; hence the only trivial c-transversal extremal is the
one that is zero, if and only if Σ is onto Range N .

LEMMA 3.10. Assume that the right end-point is fixed, that is, N =
(

Γ0 0
0 Id

)
,

and that the system (2.9) is controllable from {0} on any subinterval. Then there are
no degenerate c-transversal extremals.

Proof. Assume that ζ is a c-transversal degenerate extremal. Since the right end-
point is fixed, the transversality condition implies that ζ(c) = 0. From the characteri-
zation of degenerate extremal it follows that there exists an interval [α, β] containing
c such that ζ(t) ≡ 0 on [α, β] with a corresponding λ satisfying

λ̇(t) = −λ(t)Ā, Π1B
>λ> = 0

on the same interval. By the controllability assumption λ has to be zero on that
interval and hence the couple (ζ, λ) is trivial.

LEMMA 3.11. If V (c) = 0, then there is a nontrivial c-transversal extremal.
Proof. If V (c) = 0, then 0 is the global minimum for Jc restricted to Hc and the

minimum is attained at a nonzero (x, u). Lemmas 3.8 and 3.9 imply that there exists
a nontrivial c-transversal extremal.

LEMMA 3.12. A c0-transversal extremal ζ which is degenerate on [α, β] is a c-
transversal extremal for every c ∈ [α, β].

Proof. The proof can be carried out by direct computation, taking into account
that for c ∈ [α, β] we have

ζ(c) = Φ(c, c0)ζ(c0),

λ(c) = λ(c0)Φ(c0, c) − ζ>(c)
∫ c

c0

Φ>(s, c)P̄ (s)Φ(s, c) ds.

We are now able to prove the main results.
Proof of Theorem 2.5. Assume that J0 is nonnegative on H0 (i.e., V (0) ≥ 0) and

that there is no point c0 ∈ (0, T ) conjugate with zero. We show the result by proving
that there is no point c1 ∈ [0, T ] such that V (c1) < 0. Assume by contradiction
that there is a point c1 ∈ [0, T ] such that V (c1) < 0; we can find a point c0 at
which V changes its sign. Since V (c0) = 0, then by Lemma 3.11 there exists a
nontrivial c0-transversal extremal. Since V (c) < 0 for c > c0, the index of the
quadratic form Jc is positive. By Lemma 16.3 in [7] there exists a nontrivial critical
point (x, u) ∈ Hc0 which is not a critical point for c > c0. By Lemma 3.12 the
corresponding c0-transversal extremal cannot be degenerate on [c0, β], with β > c0;
that is, c0 is conjugate with zero yielding a contradiction.

Conversely, assume that the form J is nonnegative on H; then the function V is
nonnegative on [0, T ]. It is clear that J0 is nonnegative on H0. Let us show that there
is no point c0 ∈ [0, T ) conjugate with zero. Assume by contradiction that c0 ∈ [0, T )
is conjugate with zero. By Lemma 3.8 it follows that Jc0 has a critical point in Hc0 ,
so that V (c0) ≤ 0. If V (c0) < 0 we have a contradiction. Otherwise V (c0) = 0 and
hence any nontrivial c0-transversal extremal ζ corresponds to a nonzero (x̄, ū) ∈ Hc0

which is a minimizer for Jc0 . It is clear that JT (x̄, ū) = Jc0(x̄, ū) = 0, so that, since V
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is identically zero on the interval [c0, T ], (x̄, ū) is a minimizer also for JT . Therefore
by Lemmas 3.8 and 3.9 ζ is degenerate on [c0, T ], a contradiction.

Proof of Theorem 2.6. Assume that J0 is positive on H0 (i.e., V (0) > 0) and that
there is no point c0 ∈ (0, T ] semiconjugate with zero. Let us show that there is no
point c ∈ (0, T ] such that V (c) = 0. Assume by contradiction that V (c) = 0; then by
Lemma 3.11, there exists a nontrivial c-transversal extremal, a contradiction.

Conversely, assume that the quadratic form J is coercive on H. Then the func-
tion V is strictly positive on [0, T ]. This ensures that quadratic form Jc restricted to
Hc does not have any nonzero critical point; by Lemmas 3.8 and 3.9 the statement
follows.

LEMMA 3.13. There exists a point c ∈ (0, T ] coupled with zero if and only if there
exists a point semiconjugate with zero on the same interval. There exists a point
c ∈ (0, T ) coupled with zero if and only if there is a point conjugate with zero on the
same interval.

Proof. Assume that there exists a point c ∈ (0, T ] coupled with zero; then by
definition there exists a point semiconjugate with zero. Conversely, if there exists a
point c ∈ (0, T ] semiconjugate with zero, then there are two possibilities: either the
extremal is not degenerate on [c, T ] and hence the point c is coupled with zero or it
is degenerate until T and in this case T is coupled with zero.

Let us now prove the second statement. Assume that there exists a point c ∈ (0, T )
coupled with zero. Since the corresponding extremal is not degenerate until T , there
exists a maximal interval [c, c1] with c ≤ c1 < T on which it is degenerate. By Lemma
3.12 it is a c1-transversal extremal corresponding to a conjugate point. The converse
follows immediately from the definitions.

The proof of Corollary 2.8 is now straightforward.
Let us now prove the statements concerning the Riccati theory. For sake of

completeness we prove some standard properties of the solutions of Jacobi system
and Riccati equation. In the following we use the fact that if (ζ, λ) is a solution of
(2.17), then ζ is a solution of (2.9) corresponding to the control ŵ(ζ, λ), where ŵ is
defined in (3.7). Set

g(t, x, w) = x>P̄ (t)x + 2w>Π1(t)Q̄(t)x + w>Π1(t)R(t)Π1(t)w.

LEMMA 3.14. If (ζ, λ) is a solution of (2.17), then the following equality holds:

g(t, ζ(t), ŵ(ζ, λ)(t)) = −d(λζ)
dt

(t).

Proof. From the definition of the Hamiltonian H and its minimum property (3.8)
it follows that

g(t, ζ(t), ŵ(ζ, λ)(t)) = 2H(t, λ(t), ζ(t), ŵ(ζ, λ)(t)) − 2λ(t)ζ̇(t)
= 2H(t, λ(t), ζ(t)) − 2λ(t)ζ̇(t).

Moreover, since H is quadratic,

g(t, ζ(t), ŵ(ζ, λ)(t))

= λ(t)
∂H
∂γ

(t, λ(t), ζ(t)) +
∂H
∂x

(t, λ(t), ζ(t)) ζ(t) − 2λ(t)ζ̇(t)

= −λ̇(t)ζ(t) − λ(t)ζ̇(t).

The statement is proved.
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LEMMA 3.15. Let ξ be a solution of (2.9) corresponding to the control u and let
W be a solution of the Riccati equation (2.19) on an interval I ⊆ [0, T ]. Then

g(t, ξ(t), u(t)) ≥ −d (ξ>Wξ)
dt

(t), t ∈ I.

Moreover, the equality holds if and only if

u = −S(Q̄ + B>W )ξ,(3.9)

and this happens if and only if the couple (ξ, ξ>W ) is a solution of the Jacobi system
(2.17).

Proof. Set λ(t) = ξ>(t)W (t). Easy computations show that

−1
2
ξ>(t)Ẇ (t)ξ(t) = H(t, λ(t), ξ(t)).

By the minimum properties of the Hamiltonian H, (3.8), we have that

1
2
g(t, ξ(t), u(t)) ≥ H(t, λ(t), ξ(t)) − λ(t)ξ̇(t) = −1

2
d (ξ>Wξ)

dt
(t).

Since the Hamiltonian H attains its minimum in a unique point, the equality holds if
and only if

u = −S(Q̄ζ + B>λ>) = −S(Q̄ + B>W )ξ.

A direct computation proves the last statement.
LEMMA 3.16. Let (Z0, Λ0) be the solution of (2.18) defined by the initial conditions

(2.20). If Z0(t) is invertible for t ∈ [a, b], then W = Λ0
>Z−1

0 is a symmetric solution
of the Riccati equation (2.19) on [a, b].

Proof. A direct computation proves that W is a solution of (2.19). Since the
derivative of Λ0Z0 − Z0

>Λ0
> is zero, then from the symmetry of Λ0(0)Z0(0), it follows

that Λ0Z0 = Z0
>Λ0

>. Multiplying the equality by (Z0
>)−1 from the left and by Z−1

0
from the right, we obtain the statement.

Proof of Theorem 2.9. Let (Z0, Λ0) be the solution of (2.18) defined by the initial
conditions (2.20). It is easy to show that each solution (ζ, λ) of the Jacobi system
(2.17) which satisfies the transversality conditions at t = 0 can be uniquely expressed
as (ζ, λ) = (Z0y, y>Λ0), y ∈ Rn.

Let us now prove that 1 ⇒ 2. If J is coercive, then clearly J0 is positive on H0.
Let us prove that Z0(t) is invertible for t 6= 0. Let (ζ, λ) = (Z0y, y>Λ0) , y ∈ Rn. By
Lemma 3.14 we obtain

Jc(ζ(0), ŵ(ζ, λ)) = y>(Z0
>(c)Γc

T − Λ0(c))Z0(c)y,(3.10)

where

Γc
T = Φ>(T, c)ΓT Φ(T, c) +

∫ T

c

Φ>(s, c)P̄ (s)Φ(s, c)ds.

Assume that Z0(c)y = 0; then (3.10) yields Jc(ζ(0), û(ζ, λ)) = 0 and hence from the
coercivity assumption it follows that (ζ(0), û(ζ, λ)) = 0 on [0, c], and it corresponds
to a global minimum for Jc. ζ is a c-transversal extremal for the problem with fixed
right end-point, and by applying Lemma 3.9, whose controllability assumptions are
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satisfied, we deduce that (ζ, λ) is identically zero on [0, c]. If we evaluate the initial
conditions we obtain ζ(0) = (Id − N0)y = 0 and 0 = λ(0) = −y>(Id − N0)Γ0(Id −
N0) + y>N0 = y>N0 and hence y = 0, so that Z0(c) is invertible. Let us define
W = Λ0

>Z−1
0 , which is a symmetric solution of (2.19) by Lemma 3.16. The limit

condition (2.21) is straightforward. Since Z0(T ) is invertible, any w ∈ Ker NT can be
written as w = Z0(T )y. From (3.10) evaluated at c = T, by the coercivity assumption
on J, one obtains immediately (2.22).

Let us now prove that 2 ⇒ 1. By contradiction assume that J is not coercive.
Then from Theorem 2.6 there is a semiconjugate point c ∈ (0, T ] and by Lemma 3.8
there is a nonzero (x, u) ∈ Hc such that

0 = Jc(x, u) = J(x, u) =
1
2
x>Γ0x +

1
2
ξ>(T )ΓT ξ(T ) +

1
2

∫ T

0
g(s, ξ(s), u(s)) ds.

ξ coincides with a c-transversal extremal on [0, c] so that there exists y ∈ Rn such
that ξ = Z0y on [0, c]. From Lemma 3.15 it follows that

0 = Jc(x, u)

≥ 1
2
x>Γ0x +

1
2
ξ>(T )ΓT ξ(T ) +

1
2

lim
t→0+

y>Z0
>(t)W (t)Z0(t)y − 1

2
ξ>(T )W (T )ξ(T )

=
1
2
ξ>(T )(ΓT − W (T ))ξ(T ) ≥ 0.

The two opposite inequalities yield ξ(T ) = 0. Moreover, the above inequality is indeed
an equality and Lemma 3.15 implies that the couple (ξ, ξ>W ) is a solution of (2.17).
Since it has zero final value, it is the zero solution, a contradiction.

Let us now prove that statement 2 implies that Z0(c) is invertible for c ∈ (0, T ]
and hence the constrained control system is controllable at any time c from Ker N0.
For c ∈ (0, T ] and y ∈ Rn, assume that Z0(c)y = 0; hence the trajectory

ξ(t) =
{

Z0(t)y if t ∈ [0, c],
0 if t ∈ [c, T ], u(t) =

{
û(Z0y, y>Λ0) if t ∈ [0, c],
0 if t ∈ [c, T ]

is admissible. Lemma 3.14 yields J(ξ(0), u) = 0, and since we have shown that the
quadratic form is coercive, Z0(0)y = (Id − N0)y = 0. On the other hand, by Lemma
3.15 one obtains

0 = J(ξ(0), u) ≥ 1
2
y>(Id − N0)Γ0(Id − N0)y +

1
2

lim
t→0+

y>Z0
>(t)W (t)Z0(t)y = 0.

Hence, again from Lemma 3.15, since the equality holds, (ξ, ξ>W ) is a solution of (2.17)
which has value zero at t = c. Therefore it is identically zero, so that λ(0) = N0y = 0
also and hence y = 0, which proves that Z0(c) is invertible.

In the case of unconstrained initial point, i.e., N0 = 0, Z0(0) = Id is invertible;
therefore W = Λ0

>Z−1
0 exists on the whole interval and W (0) = −Γ0.

In the next proofs we will reduce our problem to one without boundary con-
straints. This can be done by applying Theorems 13.2 and 13.3 of [7] to obtain the
following.

LEMMA 3.17. Let J be a Legendre form and Q be a nonnegative w-continuous
form such that J is coercive (nonnegative) where Q is zero; then there exists a constant
β > 0 such that J + 1

2βQ is coercive (nonnegative) on the whole space.
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Proof of Theorem 2.10. We can apply Lemma 3.17 with

Q(x, u) = x>N0x + ξ>(T )NT ξ(T ),

which is a w-continuous form since it involves only the state end-points. If we apply
Theorem 2.9 to this special case, we obtain the first formulation of the statement
taking into account that ΓT +βNT −W (T ) is positive on Rn if and only if ΓT −W (T )
is positive on Ker NT . To prove the other equivalent form of the statement let us first
notice that elementary results in perturbation theory yield that, for ε > 0 sufficiently
small, there exists a solution of the Riccati equation such that

W (0) + Γ0 + βN0 = εId and ΓT − W (T ) > 0 on Ker NT .

To prove the converse statement it is sufficient to use Lemma 3.15 in a way analogous
to the proof of Theorem 2.9.

Proof of Theorem 2.11. It is a consequence of Lemma 3.10 that every semiconju-
gate point is also a conjugate point. Hence the function V changes sign at the point
where it becomes zero. The form J is then nonnegative on H if and only if it is coercive
on Hc for c ∈ [0, T ). The prove of the equivalence among the first three statements
can be carried out as in the proofs of Theorems 2.9 and 2.10. Since statement 4 is an
obvious consequence of statement 3, we need only to prove that if statement 4 holds
then the form J is nonnegative on H. This can be done by direct computation on Jc

using Lemma 3.15. Let us underline that the perturbation argument in Theorem 2.10
does not hold.

Let us now go back to the case of mixed boundary conditions and cost.
Proof of Theorem 2.12. Let (x, u) belong to H; then the couple (x, ξ(T )) ∈ Ker N

and by Lemma 3.15 we obtain

2J(x, u) ≥ (x>, ξ>(T ))Γ
(

x

ξ(T )

)
+ x>W (0)x − ξ>(T )W (T )ξ(T )

= (x>, ξ>(T ))
(

Γ +
(

W (0) 0
0 −W (T )

))(
x

ξ(T )

)
≥ 0.

Let us now show that J is not semidefinite but indeed coercive. If J(x, u) = 0, then
(x, ξ(T )) = 0. Moreover, again by Lemma 3.15, the equality holds if and only if
(ξ, ξ>W ) is a solution of the Jacobi equation. Since it is zero at the initial point, it
is identically zero. By (3.9) the couple (x, u) is also trivial; thus J is coercive on
H.

4. Appendix. This section contains two technical results we have been using
and the examples.

Lemma 4.1 states that Assumption 2.2 is equivalent to the regularity of the
infinite-dimensional constraint (2.4) under Assumption 2.1.

LEMMA 4.1. Assume that Assumption 2.1 holds, and let the map Ψ : U → W =
Range ∆ be given by (x, u) 7→ Cη + Du, where η is the solution of (2.2). Ψ is onto if
and only if Assumption 2.2 holds.

Proof. Assume that Assumption 2.2 holds; the right inverse can be written explic-
itly through D] as in [19], taking into account the presence of the projection. Assume
that Ψ is onto. Since it is a map between Hilbert spaces this is equivalent to the
existence of a continuous right inverse of Ψ denoted by Ψ]. Let us first prove that this



LQ-CONTROL PROBLEMS 897

implies that there exists a positive constant h such that ΨΨ> ≥ h Id. By contradiction
assume that there exists a sequence {un} ⊂ U such that

‖un‖ = 1,
∥∥Ψ>un

∥∥2 → 0.

Hence

(Ψ])>Ψ>un = (ΨΨ])>un = un
s→ 0,

a contradiction. Easy computations show that the map Ψ> : W ⊂ L2([0, T ],Rk) → U
is given by v 7→ (ν(0), B>ν + D>v), where ν̇(t) = −A>(t)ν(t) − C>(t)v(t), ν(T ) = 0.
Hence ∥∥Ψ>v

∥∥2
= ν(0)>ν(0) +

∫ T

0
(ν>BB>ν + 2ν>BD>v + v>DD>v)(s) ds.

All the addends where the state ν appears give weakly continuous quadratic forms;
moreover ΨΨ> is coercive and hence Legendre. By Theorem 11.5 in [7] the nonnegative
quadratic form Q : v 7→ ∥∥D>v

∥∥2 is Legendre. The nullity of Q coincides with Dim Ker
D>and therefore is either 0 or +∞. Since Q is Legendre its nullity is finite dimensional
and hence it is 0; that is, Q is positive and hence coercive by Theorem 11.1 in [7].
Since ∆ is an orthogonal projection, the quadratic form on L2([0, T ],Rk) given by

w 7→ ∥∥D>∆w
∥∥2

+ ‖(Id − ∆)w‖2

is coercive. Finally, by Theorem 4.4 in [7] we obtain Assumption 2.2.
Lemma 4.2 shows that the three statements in Assumption 2.3 are equivalent.
LEMMA 4.2. The three statements in Assumption 2.3 are equivalent.
Proof. From (2.6) it follows that

u>Π1RΠ1u ≥ h0‖Π1u‖2;

therefore, since the Πi’s are orthogonal projections,

u>(Π1RΠ1u + Π2u) ≥ h0‖Π1u‖2 + ‖Π2u‖2 ≥ h‖u‖2.

Hence (2.6) yields (2.7). (2.7) implies (2.8), obviously.
Let us now show that (2.8) implies (2.6). Let the L∞ norm of the matrix R(t) be

bounded by M ; from (2.8), by easy computations, we obtain that for all h0, h1 > 0

u>(R + h1Π2 − h0Id)u

= u>(Π1RΠ1 + Π2RΠ2 + 2Π1RΠ2 + h1Π2 − h0Id)u

≥ u>(hΠ1 − MΠ2 + h1Π2 − h0Id)u − 2M‖Π1u‖‖Π2u‖

= (h − h0)‖Π1‖2 + (h1 − h0 − M)‖Π2‖2 − 2M‖Π1u‖‖Π2u‖.

By a suitable choice of h0, h1 the sum in the brackets can be made nonnegative,
proving (2.6).

In the following example we have a coercive quadratic form with a nonzero
c-transversal solution of the Jacobi system which corresponds to the zero extremal.

Example 4.1. Let us consider the quadratic form

I(u) =
1
2

∫ 2

0
u2(s) ds
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on the subspace H of the controls u such that

ξ̇(t) = b(t)u(t), t ∈ [0, 2],

ξ(0) = 0, ξ(2) = 0,

where the function b is identically zero on [0, 1] and positive elsewhere.
I is clearly coercive on H and the solutions of the Jacobi system are given by

(ζ(t), λ(t)) =
(

−λ0

∫ t

0
b2(s) ds, λ0

)
.

For any c ∈ [0, 1] we have nonzero c-transversal solutions (ζ, λ), but they correspond
to the trivial c-transversal extremal so that c is not a point semiconjugate with zero.

The next example shows that the sufficient conditions in Theorem 2.11 are not
necessary.

Example 4.2. Let us consider the quadratic form

I(x, u) = ξ(0)ξ(T ) +
1
2

∫ T

0
u2(s) ds

on the subspace H of the couples (ξ, u) such that ξ̇(t) = 0 and ξ(0) = x. The state
is constant, and hence the form J is clearly coercive because it can be written as
I(x, u) = ‖ξ(0)‖2 + 1

2‖u‖2, but the conditions of Theorem 2.12 are not satisfied. In
fact the solutions of the Riccati equations are also constant, but there is no solution
W which satisfies (

0 1
1 0

)
+
(

W 0
0 −W

)
> 0 on R2.

Let us remark that if we write

I(x, u) = ξ2(0) +
1
2

∫ T

0
u2(s) ds,

which is clearly an equivalent expression for I on H, we can then apply Theorems 2.9
and 2.10, whose conditions are satisfied for W = − 1

2 .
The next example shows why in statement 4 of Theorem 2.11 we do not have

strict inequality as in Theorem 2.10. The perturbation argument cannot be applied
to a solution defined on a half-open interval [0, T ), and hence a solution of the Riccati
equation satisfying W (0) + Γ0 > 0 may not exist on the whole interval [0, T ).

Example 4.3. Let us consider the following form in the calculus of variations

I(x, ξ̇) =
1
2
ξ2(0) +

1
2

∫ 3π
4

0

{
ξ̇2(s) − ξ(s)

}
ds

with ξ(T ) = 0. This form is positive semidefinite, and it has value zero along the arc
ξ(t) = sin(t) + cos(t). All the assumptions of Theorem 2.11 are satisfied, and there
exists a solution of the corresponding Riccati equation which satisfies the suitable
initial condition, namely W (t) = tan(t− π

4 ), defined on the interval [0, 3π
4 ). If we want

W (0) + Γ0 > 0 then we have to perturb the initial conditions by a positive constant
ε. The solution becomes Wε(t) = tan(t − π

4 + ε), which does not exist on the whole
interval [0, 3π

4 ). Clearly if we want W (0) + Γ0 ≥ 0, it is enough to take ε = 0.
We end this section with an example where these results have been applied to

study an economic theory model (see [1, 2]).
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Example 4.4. The model concerns the classical optimal saving problem for a
consumer with increasing marginal utility in an economy characterized by irreversible
investments. If the consumer has a quadratic utility function then the problem over
a finite horizon can be seen as the following optimal control problem:

Maximize JT (c) =
1
2

∫ T

0
e−ρsc2(s) ds,

k̇(t) = αk(t) − c(t), k(0) = k0 > 0,

0 ≤ c(t) ≤ αk(t),

where
• c is consumption,
• k is capital,
• ρ is discount factor, ρ > 0,
• α is instantaneous rate of return, 0 ≤ α ≤ 1.

This example is of some interest because the usual existence theorems do not apply;
hence the candidate optimal solution obtained by the Pontryagin maximum principle
needs to be tested by second-order conditions in order to prove its optimality.

In [1] the following candidate optimal solution is singled out:

ĉ(t) =
{

0, t ∈ [0, t∗),
αk̂(t), t ∈ [t∗, T ],

k̂(t) =
{

k0e
αt, t ∈ [0, t∗),

k0e
αt∗

, t ∈ [t∗, T ],

where

t∗ =
{

0 if ρ ≥ 2α or if ρ < 2α and T ≤ t̄,
T − t̄ if ρ < 2α and T > t̄

and

t̄ =
1
ρ

ln
(

2α

2α − ρ

)
.

By adding some extra controls this problem can be reduced to one with equality
constraints. In [2] it is shown that there are no semiconjugate points in the accessory
problem; therefore the candidate solution provides a local maximum which is also a
global optimum.

The solution has an interesting economic meaning. If this hedonistic consumer has
a discount rate that is small compared with the instantaneous rate of return, ρ < 2α,
and he/she has a long enough life, T > t̄, then he or she accumulates the returns from
investments during a certain period of time and afterwards he or she consumes all the
surplus. Otherwise he or she will consume all the investment returns immediately.
Hence a hedonistic consumer, i.e., with increasing marginal utility, might also be
willing to save.
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Abstract. In this paper we establish necessary conditions for optimal control using the ideas of
Lagrangian reduction in the sense of reduction under a symmetry group. The techniques developed
here are designed for Lagrangian mechanical control systems with symmetry. The benefit of such
an approach is that it makes use of the special structure of the system, especially its symmetry
structure, and thus it leads rather directly to the desired conclusions for such systems.

Lagrangian reduction can do in one step what one can alternatively do by applying the Pontryagin
maximum principle followed by an application of Poisson reduction. The idea of using Lagrangian
reduction in the sense of symmetry reduction was also obtained by Bloch and Crouch [Proc. 33rd
CDC, IEEE, 1994, pp. 2584–2590] in a somewhat different context, and the general idea is closely
related to those in Montgomery [Comm. Math. Phys., 128 (1990), pp. 565–592] and Vershik and
Gershkovich [Dynamical Systems VII, V. Arnold and S. P. Novikov, eds., Springer-Verlag, 1994].
Here we develop this idea further and apply it to some known examples, such as optimal control on
Lie groups and principal bundles (such as the ball and plate problem) and reorientation examples with
zero angular momentum (such as the satellite with moveable masses). However, one of our main
goals is to extend the method to the case of nonholonomic systems with a nontrivial momentum
equation in the context of the work of Bloch, Krishnaprasad, Marsden, and Murray [Arch. Rational
Mech. Anal., (1996), to appear]. The snakeboard is used to illustrate the method.

Key words. constraints, Lagrangian reduction, mechanical systems with symmetry, nonholo-
nomic, optimal control

AMS subject classifications. 49K99, 49R99, 58F05, 70E99, 70H99, 93B29

PII. S0363012995290367

1. Introduction. Recently several papers have appeared exploring the symme-
try reduction of optimal control problems on configuration spaces such as Lie groups
and principal bundles. The mechanical systems which they have modeled vary widely,
ranging from the falling cat and the rigid body with two oscillators to the plate-ball
system as well as the (airport) landing tower problem. Since the Pontryagin maxi-
mum principle is such an important and powerful tool in optimal control theory, it
is frequently employed as a first step in finding necessary conditions for the optimal
controls. Finally, different variants of Poisson reduction on the cotangent bundle T ∗Q
of the configuration space Q are used to obtain the reduced equations of motion for
the optimal trajectories.

This paper develops a Lagrangian alternative to the method of Pontryagin max-
imum principle and Poisson reduction used in many of the above studies. More
importantly, our method can handle the optimal control of nonholonomic mechanical
system such as the snakeboard, which has a nontrivial evolution equation for its non-
holonomic momentum. Our key idea is to link the method of Lagrange multipliers
with Lagrangian reduction. This procedure, which will be referred to as “reduced
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Lagrangian optimization,” is able to handle all the above cases, including the snake-
board. We hope that it will complement other existing methods and may also have
the advantage that it is easier to use in many situations and can solve many new
problems. In the optimal control problems we deal with in this paper, one encounters
degenerate Lagrangians; fortunately this does not cause problems with the technique
of Lagrangian reduction. For more information on these degeneracies, see Bloch and
Crouch [1994].

Our objectives in this paper are limited to presenting reduced Lagrangian opti-
mization in the context of both holonomic and nonholonomic systems that may have
conservation laws or nontrival momentum equations. We use this approach as an
alternative to the Pontryagin maximum principle and Poisson reduction. Although
an assumption of controllability underlies most optimal control problems, we are con-
cerned here with finding necessary conditions for optimality and so do not discuss
controllability explicitly. We do not extensively develop the geometry of the situa-
tion in much detail, and we restrict our attention to regular extremals throughout
the paper without explicit mention. Of course all of these points are of interest in
themselves.

In the course of working on this paper, we have found some related ideas in Mont-
gomery [1990], Vershik and Gershkovich [1994], Bloch and Crouch [1994, 1995], Kelly
and Murray [1995], and Bloch, Crouch, and Ratiu [1994]. The paper by Bloch, Kr-
ishnaprasad, Marsden, and Murray [1996] provides a useful framework for the present
work.

Outline of the paper. In section 2, we recall some basic facts about both
holonomic and nonholonomic mechanical systems with symmetry. We set up a class
of optimal control problems for holonomic mechanical systems on a (trivial) principal
bundle as was done in Montgomery [1990, 1993] and in Krishnaprasad, Yang, and
Dayawansa [1991]. We also set up the corresponding problems for nonholonomic
systems. We will call these “Lagrangian optimal control problems.”

In section 3 we review some aspects of the theory of Lagrangian reduction and use
it to solve the Lagrangian optimal control problem in the holonomic case, showing
that an optimal trajectory is a solution of Wong’s equations (at least for regular
extremals). This provides an alternative derivation to the approach (based on methods
of sub-Riemannian geometry) in Montgomery [1990] and the approach (based on the
Pontryagin maximum principle and Poisson reduction) in Krishnaprasad, Yang, and
Dayawansa [1991].

In section 4 we generalize these results to the case of nonholonomic systems.
Notice in particular that our techniques allow for nonzero values of the momentum
map, which is interesting even for the holonomic case. In section 5 we consider a
number of examples, such as the ball on a plate (as in Bloch, Krishnaprasad, Marsden,
and Murray [1995]) and the snakeboard. We also consider optimal control problems
for systems on Lie groups such as the landing tower problem (see Krishnaprasad [1993]
and Walsh, Montgomery, and Sastry [1994]) and the plate-ball problem considered in
Jurdjevic [1993, 1996].

In the conclusion, we give a few remarks on future research directions.

2. Lagrangian mechanical systems with symmetry. In this section we shall
review, for the convenience of the reader, some notation and results for mechanical
systems with symmetry. We will begin with the case of holonomic systems and then
study the nonholonomic case.
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2.1. Holonomic systems with symmetry.

Notation. A simple Lagrangian system with symmetry consists of a configura-
tion manifold Q, a metric tensor (the mass matrix) 〈〈 , 〉〉, a symmetry group G (a Lie
group), and a Lagrangian L. Assume that G acts on Q by isometries and that the
Lagrangian L is of the form kinetic minus potential energy; i.e.,

L(q, v) =
1
2
‖v‖2

q − V (q),

where ‖ · ‖q denotes the norm on TqQ and V is a G-invariant potential. For more
information, see, for example, Marsden [1992] and Marsden and Ratiu [1994]. Exam-
ples of such systems are the falling cat (Montgomery [1990, 1991]) and the rigid body
with two oscillators (Krishnaprasad, Yang, and Dayawansa [1991]).

The associated equivariant momentum map J : TQ → g∗ for a simple Lagrangian
system with symmetry is given by

〈J(q, v), ξ〉 = 〈〈v, ξQ(q)〉〉 =
∂L

∂q̇i
(ξQ)i,(2.1)

where g∗ is the dual of the Lie algebra g of G, ξQ is the infinitesimal generator of
ξ ∈ g on Q, and 〈 , 〉 is the pairing between g∗ and g (other natural pairings between
spaces and their duals are also denoted 〈 , 〉 in this paper).

Assume that G acts freely and properly on Q, so we can regard Q → Q/G as a
principal G-bundle (Q,B, π,G), where B = Q/G is called the base (or shape) space
and π : Q → B is the bundle projection. On this bundle, we construct the mechanical
connection A as follows: for each q ∈ Q, let the locked inertia tensor be the map
I(q) : g → g∗ defined by

〈I(q)η, ξ〉 = 〈〈ηQ(q), ξQ(q)〉〉.

The terminology comes from the fact that for a coupled rigid body, particle, or elastic
system, I(q) is the classical moment of inertia tensor of the instantaneous rigid system.
The mechanical connection is the map A : TQ → g that assigns to each (q, v) the
“angular velocity of the locked system”

A(q, v) = I(q)−1J(q, v).(2.2)

When there is danger of confusion, we will write the mechanical connection as Amec

(additional connections will be introduced later in the paper). The map A is a con-
nection on the principal G-bundle Q → Q/G; that is, A is G-equivariant and satisfies
A(ξQ(q)) = ξ, both of which are readily verified. The horizontal space of the connec-
tion A is given by

horq = {(q, v) | J(q, v) = 0},

i.e., the space orthogonal to the G-orbits. The vertical space consists of vectors that
are tangent to the group orbits; i.e.,

verq = Tq(Orb(q)) = {ξQ(q) | ξ ∈ g}.

For later use, we would like to say a few words about a general principal connection
and its expression in a local trivialization. As stated above, a principal connection is
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a g-valued one-form A : TQ → g such that A(g · v) = AdgA(v) and A(ξQ(q)) = ξ
for each ξ ∈ g. For example, if Q = G, there is a canonical connection given by the
right invariant one-form which equals the identity at g = e. That is, for v ∈ TgG, we
let AG : TG → g, AG(v) = TRg−1 · v. In a local trivialization, where we can locally
write Q = B×G and the action of G is given by left translation on the second factor,
a connection A as a one-form has the form

A(r, g) = Aloc(r, g)dr + AG

and

A(r, g)(ṙ, ġ) = Aloc(r, g)ṙ + ġg−1 = Adg(Aloc(r, e)ṙ + g−1ġ),

where (ṙ, ġ) is the tangent vector at each point q = (r, g). With abuse of notation, we
denote Aloc(r, e) = Aloc(r). Hence, for a principal connection, we can write

A(r, g)(ṙ, ġ) = Adg(g−1ġ + Aloc(r)ṙ).(2.3)

Holonomic optimal control problems. Now we are ready to formulate an
optimal control problem for a holonomic system on a trivial bundle (B ×G,B, π,G).
As in Montgomery [1990, 1991] and Krishnaprasad, Yang, and Dayawansa [1991],
let us assume that the control is internal to the system, which leaves invariant the
conserved momentum map J and that there is no drift; i.e., µ = J(q, v) = 0. Assume
further that the velocity ṙ of the path in the base space B can be directly controlled;
then an associated control problem can be set up as{

ṙ = u,

g−1ġ = −Aloc(r)u
(2.4)

because, from the results above, the constraint that µ = 0 is nothing but (ṙ, ġ) ∈
hor(r,g), which is equivalent to g−1ġ + Aloc(r)ṙ = 0. Here u(·) is a vector-valued
function.

Let C be a cost function which usually is a positive definite quadratic function in
u and hence C can be written as the square of a metric on B. Then we can formulate
an optimal control problem on Q = B ×G as follows.

OPTIMAL CONTROL PROBLEM FOR HOLONOMIC SYSTEMS. Given two points q0,
q1 in Q, find the optimal controls u(·) which steer from q0 to q1 and minimize∫ 1
0 C(u)dt subject to the constraints ṙ = u, g−1ġ = −Aloc(r)u.

Clearly the above optimal control problem is equivalent to the following con-
strained variational problem.

CONSTRAINED VARIATIONAL PROBLEM FOR HOLONOMIC SYSTEMS. Among all
curves q(t) such that q̇(t) ∈ horq(t), q(0) = q0, q(1) = q1, find the optimal curves q(t)
such that

∫ 1
0 C(ṙ)dt is minimized, where r = π(q).

For example, Krishnaprasad, Yang, and Dayawansa [1991] considered a rigid body
with two (driven) oscillators, which was used to model the drift observed in the
Hubble Space Telescope due to thermoelastically driven shape changes of the solar
panels arising from the day–night thermal cycling during orbit. The bundle used was
(R2 × SO(3),R2, π, SO(3)), and the corresponding optimal control problem was as
follows.

OPTIMAL CONTROL FOR A RIGID BODY WITH TWO OSCILLATORS. Find the con-
trol u(·) = (u1(·), u2(·)) that minimizes

∫ 1
0 ((u1)2 + (u2)2)dt subject to ṙ = u, ġ =

−gAloc(r)u for r1(0) = r1(1) = r2(0) = r2(1) = 0, g(0) = g0, and g(1) = g1 ∈ SO(3).
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For more details on the derivation of this model, see Krishnaprasad, Yang, and
Dayawansa [1991]. Below we will take this optimal control problem as given and focus
on finding the necessary conditions for its optimal trajectories; see Montgomery [1990,
1991] for additional examples.

2.2. Simple nonholonomic mechanical systems with symmetry. Next we
recall some basic ideas and results from Bloch, Krishnaprasad, Marsden, and Murray
[1995] which will help to set the overall context for the optimal control of a simple
nonholonomic system. Assume that we have data as before, namely a configuration
manifold Q, a Lagrangian of the form kinetic minus potential, and a symmetry group
G that leaves the Lagrangian invariant. However, now we also assume we have a
distribution D that describes the kinematic nonholonomic constraints. Thus, D is a
collection of linear subspaces denoted Dq ⊂ TqQ, one for each q ∈ Q. We assume that
G acts on Q by isometries and leaves the distribution invariant; i.e., the tangent of
the group action maps Dq to Dgq. Moreover, we assume that we are in the principal
case where the constraints and the orbit directions span the entire tangent space to
the configuration space: Dq + Tq(Orb(q)) = TqQ for each q ∈ Q.

As discussed in Bloch, Krishnaprasad, Marsden, and Murray [1996], the dynamics
of a nonholonomically constrained mechanical system is governed by the Lagrange–
d’Alembert principle. This principle states that (at least in the case of homogeneous
linear constraints) the equations of motion of a curve q(t) in configuration space are
obtained by setting to zero the variations in the integral of the Lagrangian subject to
variations lying in the constraint distribution and that the velocity of the curve q(t)
itself satisfies the constraints.

The momentum equation. In the case of a simple holonomic mechanical sys-
tem, setting up an optimal control problem uses the momentum map J , the mechanical
connection A as well as the reconstruction of path on Q given a path in Q/G. For
the case of a simple nonholonomic mechanical system, we shall need similar notions,
and they are recalled in the following discussion.

Let the intersection of the tangent to the group orbit and the distribution at a
point q ∈ Q be denoted

Sq = Dq ∩ Tq(Orb(q)).

Define, for each q ∈ Q, the vector subspace gq to be the set of Lie algebra elements
in g whose infinitesimal generators evaluated at q lie in Sq:

gq = {ξ ∈ g : ξQ(q) ∈ Sq}.
Then gD is the corresponding bundle over Q whose fiber at the point q is given by gq.
The nonholonomic momentum map Jnh is the bundle map taking TQ to the bundle
(gD)∗ (whose fiber over the point q is the dual of the vector space gq) that is defined
by

〈Jnh(vq), ξ〉 =
∂L

∂q̇i
(ξQ)i,(2.5)

where ξ ∈ gq.
As examples such as the snakeboard show, in general the tangent space to the

group orbit through q intersects the constraint distribution at q nontrivially.
Notice that the nonholonomic momentum map may be viewed as giving just some

of the components of the ordinary momentum map, namely along those symmetry
directions that are consistent with the constraints.
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It is proven in Bloch, Krishnaprasad, Marsden, and Murray [1996] that if the La-
grangian L is invariant under the group action and that if ξq is a section of the bundle
gD, then any solution q(t) of the Lagrange–d’Alembert equations for a nonholonomic
system must satisfy, in addition to the given kinematic constraints, the momentum
equation

d

dt

(
Jnh(ξq(t))

)
=
∂L

∂q̇i

[
d

dt
(ξq(t))

]i

Q

.(2.6)

When the momentum map is paired with a section in this way, we will just refer to it
as the momentum. Examples show that the nonholonomic momentum map may or
may not be conserved.

The momentum equation in an orthogonal body frame. Let a local triv-
ialization (r, g) be chosen on the principal bundle π : Q → Q/G. Let η ∈ gq

and ξ = g−1ġ. Since L is G invariant, we can define a new function l by writing
L(r, g, ṙ, ġ) = l(r, ṙ, ξ). Define Jnh

loc : TQ/G → (gD)∗ by

〈
Jnh

loc(r, ṙ, ξ), η
〉

=
〈
∂l

∂ξ
, η

〉
.

As with connections, Jnh and its version in a local trivialization are related by the
Ad map; i.e., Jnh(r, g, ṙ, ġ) = Ad∗

g−1Jnh
loc(r, ṙ, ξ).

Choose a q-dependent basis ea(q) for the Lie algebra such that the first m ele-
ments span the subspace gq. We require the basis to be such that the infinitesimal
generators of the first m basis elements are orthogonal in the kinetic energy metric to
the generators of the last k−m basis elements. In a local trivialization, one chooses,
for each r, such a basis at the identity element, and we denote it by

e1(r), e2(r), . . . , em(r), em+1(r), . . . , ek(r).

Define the orthogonal body frame by

ea(r, g) = Adg · ea(r);

thus, by G invariance, the first m elements span the subspace gq. In this basis, we
have

〈
Jnh(r, g, ṙ, ġ), eb(r, g)

〉
=
〈
∂l

∂ξ
, eb(r)

〉
:= pb,(2.7)

which defines pb, a function of r, ṙ, and ξ. It is proven in Bloch, Krishnaprasad,
Marsden, and Murray [1995] that in such an orthogonal body frame, the momentum
equation can be written in the following form:

ṗ = ṙTH(r)ṙ + ṙTK(r)p+ pTD(r)p.(2.8)

Note that in this body representation, the functions pb are invariant rather than
equivariant, as is usually the case with the momentum map, and the momentum
equation is independent of, that is, decouples from, the group variables g.
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The nonholonomic connection. Recall that in the case of holonomic me-
chanical systems, the mechanical connection A is defined by A(vq) = I(q)−1J(vq) or
equivalently by the fact that its horizontal space at q is orthogonal to the group orbit
at q. For the case of a simple nonholonomic mechanical system where the Lagrangian
is of the form kinetic minus potential energy and G acts on Q by isometries and leaves
D invariant, the result turns out to be quite similar.

As Bloch, Krishnaprasad, Marsden, and Murray [1996] point out, in the principal
case where the constraints and the orbit directions span the entire tangent space to the
configuration space (that is, Dq + Tq(Orb(q)) = TqQ), the nonholonomic connection
Anh is a principal connection on the bundle Q → Q/G whose horizontal space at the
point q ∈ Q is given by the orthogonal complement to the space Sq within the space
Dq. Moreover, Bloch, Krishnaprasad, Marsden, and Murray [1996] develop formulas
for Anh similar to those for the mechanical connection; namely,

Anh(vq) = Inh(q)−1Jnh(vq),(2.9)

where Inh : gD → (gD)∗ is the locked inertia tensor defined in a way similar to that
given above for holonomic systems. In an orthogonal body frame, (2.9) can be written
as

Adg(g−1ġ + Anh
loc(r)ṙ) = Adg(Inh

loc(r)
−1p),(2.10)

where Anh
loc and Inh

loc are the representations of Anh and Inh in a local trivialization.
For simplicity in what follows, we shall omit the subscript “loc.”

Control systems in momentum equation form. With the help of the mo-
mentum equations and the nonholonomic mechanical connection, Bloch, Krishnapra-
sad, Marsden, and Murray [1996] provide a framework for studying the general form
of nonholonomic mechanical control systems with symmetry that may have a non-
trivial evolution of their nonholonomic momentum. The dynamics of such a system
can be described by a system of equations of the form of a reconstruction equation
for a group element g, an equation for the nonholonomic momentum p (no longer
conserved in the general case), and the equations of motion for the reduced variables
r which describe the “shape” of the system. In terms of these variables, the equations
of motion have the functional form

g−1ġ = −Anh(r)ṙ + Γ(r)p,
ṗ = ṙTH(r)ṙ + ṙTK(r)p+ pTD(r)p,

M(r)r̈ = δ(r, ṙ, p) + τ,

(2.11)

where (Γ(r) = Inh(r)−1).
The first equation describes the motion in the group variables as the flow of a

left invariant vector field determined by the internal shape r, its velocity ṙ, as well as
the generalized momentum p. The term g−1ġ + Anh(r)ṙ = Γ(r)−1p is interpreted as
the local representation of the body angular velocity. This is nothing more than the
vertical part of the bundle velocity. The momentum equation describes the evolution
of p and is bilinear in (ṙ, p). Finally, the bottom (second-order) equation for r̈ describes
the motion of the variables which describe the configuration up to a symmetry (i.e.,
the shape). The variable τ represents the external forces applied to the system, which
we assume here only affect the shape variables; i.e., the external forces are G invariant.
Note that the evolution of the momentum p and the shape r decouple from the group
variables.
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The optimal control problem for nonholonomic systems on a trivial
bundle. Assume that we have a simple nonholonomic mechanical system with sym-
metry; thus, assume we have data (Q,D, 〈〈 , 〉〉, G, L), where the Lagrangian L is G
invariant and of the form kinetic minus potential energy, the distribution D is G in-
variant, and we are in the principal case where the constraints and the orbit directions
span the tangent space to the configuration space. Let us also assume in this section
that the principal bundle π : Q → Q/G is trivial; all the examples we consider (in-
cluding the snakeboard) have a trivial principal bundle structure. We consider this
simplification as a first step to the general case because in a local trivialization any
principal bundle is a trivial bundle (B×G,B, π,G). Furthermore, we will assume the
following.

(1) Any control forces applied to the system affect only the shape variables, which
leaves the generalized momenta and the momentum equation unchanged. In-
deed, such forces would be invariant under the action of the Lie group G
and so would be annihilated by the variations taken to derive the momentum
equation.

(2) We have full control of the shape variables; that is, the curve r(t) in the shape
space B can be specified arbitrarily using a suitable control force τ .

Given a cost function C which is a positive definite quadratic function of ṙ(t) (so
can be written as the square of a metric on the shape space B), we can formulate an
optimal control problem on Q = B ×G as follows.

OPTIMAL CONTROL PROBLEM FOR NONHOLONOMIC SYSTEMS. Given two points
q0, q1 ∈ Q, find the curves r(t) ∈ B which steer the system from q0 to q1 and which
minimize the total cost

∫ 1
0 C(ṙ)dt, where r = π(q), subject to the constraints g−1ġ =

−Anh(r)ṙ+Γ(r)p and to the momentum equation ṗ = ṙTH(r)ṙ+ ṙTK(r)p+pTD(r)p.
This optimal control problem is clearly equivalent to the following constrained

variational problem.
CONSTRAINED VARIATIONAL PROBLEM FOR NONHOLONOMIC SYSTEMS. Among

all curves q(t) with q(0) = q0, q(1) = q1 and satisfying g−1ġ = −Anh(r)ṙ + Γ(r)p,
where ṗ = ṙTH(r)ṙ+ ṙTK(r)p+ pTD(r)p, find the curves q(t) such that

∫ 1
0 C(ṙ)dt is

minimized, where r = π(q).
Now we are ready to use the method of Lagrange multipliers and Lagrangian

reduction to find necessary conditions for optimal trajectories.

3. Optimal control and Lagrangian reduction for holonomic systems. In
this section we consider reduced Lagrangian optimization in the context of holonomic
systems.

3.1. A review of Lagrangian reduction. We first recall some facts about La-
grangian reduction theory for systems with holonomic constraints (see Marsden and
Scheurle [1993a, 1993b]).

Rigid body reduction. Let R ∈ SO(3) denote the time-dependent rotation
that gives the current configuration of a rigid body. The body angular velocity Ω is
defined in terms of R by

R−1Ṙ = Ω̂,

where Ω̂ is the three-by-three skew matrix defined by Ω̂v := Ω× v. Denoting by I the
(time-independent) moment of inertia tensor, the Lagrangian thought of as a function
of R and Ṙ is given by L(R, Ṙ) = 1

2 〈IΩ,Ω〉, and when we think of it as a function of
Ω alone, we write l(Ω) = 1

2 〈IΩ,Ω〉.
The following statements are equivalent.
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(1) (R, Ṙ) satisfies the Euler–Lagrange equations on SO(3) for L.
(2) Hamilton’s principle on SO(3) holds:

δ

∫
Ldt = 0.

(3) Ω satisfies the Euler equations

IΩ̇ = IΩ × Ω.

(4) The reduced variational principle holds on R3:

δ

∫
l dt = 0,

where variations in Ω are restricted to be of the form δΩ = η̇ + η × Ω, with η an
arbitrary curve in R3 satisfying η = 0 at the temporal endpoints.

An important point is that when one reduces the standard variational principle
from SO(3) to its Lie algebra so(3), one ends up with a variational principle in which
the variations are constrained ; that is, one has a principle of Lagrange–d’Alembert
type. In this case, the term η represents the infinitesimal displacement of particles in
the rigid body. Note that the same phenomenon of constrained variations occurs in
the case of nonholonomic systems.

The Euler–Poincaré equations. Let g be a Lie algebra and let l : g → R be a
given Lagrangian. Then the Euler–Poincaré equations are

d

dt

∂l

∂ξ
= ad∗

ξ

∂l

∂ξ

or, in coordinates,

d

dt

∂l

∂ξa
= Cb

daξ
d ∂l

∂ξb
,

where the structure constants are defined by [ξ, η]a = Ca
deξ

dηe. If G is a Lie group
with Lie algebra g, we let L : TG → R be the left invariant extension of l and let
ξ = g−1ġ. In the case of the rigid body, ξ is Ω̂, where Ω is the body angular velocity.

The basic fact regarding the Lagrangian reduction leading to these equations is
as follows.

THEOREM 3.1 (Euler–Poincaré reduction). A curve (g(t), ġ(t)) ∈ TG satisfies the
Euler–Lagrange equations for L if and only if ξ satisfies the Euler–Poincaré equations
for l.

In this situation, the reduction is implemented by the map (g, ġ) ∈ TG 7→ g−1ġ =:
ξ ∈ g.

One proof of this theorem is of special interest, as it shows how to drop varia-
tional principles to the quotient (see Marsden and Scheurle [1993b] and Bloch, Krish-
naprasad, Marsden, and Ratiu [1996] for more details). Namely, we transform

δ

∫
Ldt = 0

under the map (g, ġ) 7→ g−1ġ to give the reduced variational principle for the Euler–
Poincaré equations: ξ satisfies the Euler–Poincaré equations if and only if

δ

∫
l dt = 0,
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where the variations are all those of the form

δξ = η̇ + [ξ, η]

and where η is an arbitrary curve in the Lie algebra satisfying η = 0 at the endpoints.
Variations of this form are obtained by calculating what variations are induced by
variations on the Lie group itself.

One obtains the Lie–Poisson equations on g∗ by the Legendre transformation:

µ =
∂l

∂ξ
, h(µ) = µ · ξ − l(ξ).

Dropping the variational principle this way is the analogue of Lie–Poisson reduction
in which one drops the Poisson bracket from T ∗G to the Lie–Poisson bracket on g∗.

The reduced Euler–Lagrange equations. The Euler–Poincaré equations can
be generalized to the situation in which G acts freely on a configuration space Q to
obtain the reduced Euler–Lagrange equations . This process starts with a G-invariant
Lagrangian L : TQ → R, which induces a reduced Lagrangian l : TQ/G → R.
The Euler–Lagrange equations for L induce the reduced Euler–Lagrange equations
on TQ/G. To compute them in coordinates, it is useful to introduce a principal
connection on the bundle Q → Q/G. Although any can be picked, a common choice
is the mechanical connection.

Thus, assume that the bundle Q → Q/G has a given (principal) connection A.
Divide variations into horizontal and vertical parts—this breaks up the Euler–La-
grange equations on Q into two sets of equations that we now describe. Let rα be
coordinates on shape space Q/G and Ωa be coordinates for vertical vectors in a local
bundle chart. Drop L to TQ/G to obtain a reduced Lagrangian l : TQ/G → R in
which the group coordinates are eliminated. We can represent this reduced Lagrangian
in a couple of ways. First, if we choose a local trivialization as we have described
earlier, we obtain l as a function of the variables (rα, ṙα, ξa). However, it will also
be convenient to change variables from ξa to the local version of the locked angular
velocity, i.e., the body angular velocity, namely Ω = ξ + Alocṙ, or in coordinates,

Ωa = ξa + Aa
α(r)ṙα.

We will write l(rα, ṙα,Ωa) for the local representation of l in these variables.
THEOREM 3.2 (Lagrangian reduction theorem). A curve (qi, q̇i) ∈ TQ satisfies

the Euler–Lagrange equations if and only if the induced curve in TQ/G with coordi-
nates given in a local trivialization by (rα, ṙα,Ωa) satisfies the reduced Euler–Lagrange
equations:

d

dt

∂l

∂ṙα
− ∂l

∂rα
=

∂l

∂Ωa

(−Ba
αβ ṙ

β + Ea
αdΩ

d
)
,(3.1)

d

dt

∂l

∂Ωb
=

∂l

∂Ωa
(−Ea

αbṙ
α + Ca

dbΩ
d),(3.2)

where

Bb
αβ =

∂Ab
α

∂rβ
− ∂Ab

β

∂rα
− Cb

acAa
βAc

α

are the coordinates of the curvature B of A and Ea
αd = Ca

bdAb
α.
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The first of these equations is similar to the Lagrange–d’Alembert equations for a
nonholonomic system written in terms of the constrained Lagrangian, and the second
is similar to the momentum equation. It is useful to note that the first set of equations
results from Hamilton’s principle by restricting the variations to be horizontal relative
to the given connection.

If one uses the variables (rα, ṙα, pa), where p is the body angular momentum, so
that p = Iloc(r)Ω = ∂l/∂Ω, then the equations become (using the same letter l for
the reduced Lagrangian, an admitted abuse of notation)

d

dt

∂l

∂ṙα
− ∂l

∂rα
= pa

(−Ba
αβ ṙ

β + Ea
αdI

depe

)− pd
∂Ide

∂rα
pe,(3.3)

d

dt
pb = pa(−Ea

αbṙ
α + Ca

dbI
depe),(3.4)

where Ide denotes the inverse of the matrix Iab.
Connections are also useful in control problems with feedback. For example,

Bloch, Krishnaprasad, Marsden, and Sánchez de Alvarez [1992] found a feedback
control that stabilizes rigid body dynamics about its middle axis using an internal
rotor. This feedback controlled system can be described in terms of connections
(Marsden and Sánchez de Alvarez [1996]); a shift in velocity (change of connection)
turns the free Euler–Poincaré equations into the feedback-controlled Euler–Poincaré
equations.

3.2. Reduced Lagrangian optimization for holonomic systems. Let us
assume for the moment that we are dealing with a holonomic system on a trivial
bundle and that the momentum map vanishes. Since we would like to use the method
of Lagrange multipliers to relax the constraints, we define a new Lagrangian by L:

L = C(ṙ) + 〈λ(t), ξ + Aloc(r)ṙ〉(3.5)

for some λ(t) ∈ g∗, where ξ = g−1ġ ∈ g. Clearly L is G invariant and induces a
function l on (TQ/G) × g∗, where

l = C(ṙ) + 〈λ(t), ξ + Aloc(r)ṙ〉(3.6)

THEOREM 3.3 (reduced Lagrangian optimization for holonomic systems). Assume
that q(t) = (r(t), g(t)) is a (regular) optimal trajectory for the above optimal control
problem; then there exists a λ(t) ∈ g∗ such that the reduced curve (r(t), ṙ(t), ξ(t)) ∈
TQ/G with coordinates given by (rα, ṙα, ξa) satisfies the constraints ξ = −Aloc(r)ṙ,
as well as the reduced Euler–Lagrange equations

d

dt

∂l

∂ṙα
− ∂l

∂rα
= 0,(3.7)

d

dt

∂l

∂ξb
=

∂l

∂ξa
Ca

dbξ
d,(3.8)

where l = C(ṙ) + 〈λ(t), ξ + Aloc(r)ṙ〉.
Proof. If (r(t), g(t)) is a (regular) optimal trajectory, then by the method of

Lagrange multipliers, it solves the following variational problem:

δ

∫ 1

0
Ldt = δ

∫ 1

0
(C(ṙ) + 〈λ(t), ξ + Aloc(r)ṙ〉)dt = 0

for some λ(t) ∈ g∗.
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SinceB×G → B is trivial, we can put a trivial connection on this bundle and use it
to split the variations into the horizontal and vertical parts. Then by the Lagrangian
reduction method recalled above, the reduced curve (r(t), ṙ(t), ξ(t)) ∈ TQ/G with
coordinates given by (rα, ṙα, ξa) satisfies the reduced Euler–Lagrange equations stated
above. (When using a trivial connection, the coefficients of A and B vanish and the
reduced Euler–Lagrange equations are called Hamel’s equations).

Now we are ready to generalize one of the results in Krishnaprasad, Yang, and
Dayawansa [1991]. Define the components Aa

α of the mechanical connection by
Aloc(r)ṙ = Aa

αṙ
αea, where {ea} is the basis of g and {ea} is its dual basis. Here

α runs from 1 to n − k and a runs from 1 to k, where n − k is the dimension of the
base space B and k is the dimension of the Lie algebra g. The result deals with the
following problem.

ISOHOLONOMIC PROBLEM FOR TRIVIAL BUNDLES. Minimize
∫ 1
0 C(ṙ) dt, subject

to ṙ = u, ġ = −gAlocu = −gAa
α(r)uαea, for given boundary conditions

(r(0), g(0)) = (0, g0), (r(1), g(1)) = (0, g1).

COROLLARY 3.4. Let the cost function C be quadratic in u, say,

C =
n−k∑

1

cα(uα)2.

If (r(t), g(t)) is a (regular) optimal trajectory with the control ū(t) for the isoholo-
nomic problem, then there exist ρ(t) ∈ T ∗B and λ(t) ∈ g∗ satisfying ṙα = ūα,
ξa = −Aa

α(x)ūα, and the following ordinary differential equations:

ρ̇β = λa
∂Aa

α

∂rβ
ūα,

λ̇b = −Ca
dbλaAd

αū
α,

where

ūβ =
1

2cβ
(ρβ − λaAa

β)

with boundary conditions r(0) = 0, g(0) = g0, r(1) = 0, g(1) = g1.
Proof. According to Theorem 3.3, there exists some λ(t) ∈ g∗ such that the

reduced curve (r(t), ṙ(t), ξ(t)) satisfies the reduced Euler–Lagrange equations for

l = cα(ṙα)2 + 〈λae
a, (ξa + Aa

αṙ
α)ea〉 = cα(ṙα)2 + λa(ξa + Aa

αṙ
α).

After some computations, we find

∂l

∂ṙβ
= 2cβ ṙβ + λaAa

β ,

∂l

∂rβ
= λa

∂Aa
α

∂rβ
ṙα,

∂l

∂ξb
= λb.

Now let

ρβ =
∂l

∂ṙβ
= 2cβ ṙβ + λaAa

β
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and solve for ṙ to give

ṙβ =
1

2cβ
(ρβ − λaAa

β).

Moreover, the reduced Euler–Lagrange equations (3.7) and (3.8) give

ρ̇β =
d

dt

∂l

∂ṙβ
=

∂l

∂rβ
= λa

∂Aa
α

∂rβ
ṙα,

λ̇b =
d

dt

∂l

∂ξb
=

∂l

∂ξa
Ca

dbξ
d = Ca

dbλaξ
d.

After substituting

ṙα = ūα ξd = −Ad
αū

α,

we get the desired equations.

Remarks.
(1) This corollary generalizes the result of Krishnaprasad, Yang, and Dayawansa

[1991] for the trivial principal bundle (R×R×SO(3),R×R, π, SO(3)) (see Theorem 3.3
and Remark 3.2 in Krishnaprasad, Yang, and Dayawansa [1991]).

(2) The reduced equations of motion for ρβ and λb can be written in intrinsic
form as a special case of Wong’s equations in rβ and λb (see the following subsection).

3.3. Optimal control of a holonomic system on a principal bundle.
While the above method seems to work only for the case where the principle bundle
is trivial, it can be easily generalized to an arbitrary principle bundle. In fact, the
proof of the Lagrangian reduction theorem stated above provides all the necessary
techniques. Recall that Marsden and Scheurle [1993b] arrived at the general reduced
Euler–Lagrange equations in two steps:

(1) One first gets the Hamel equations in a local bundle trivialization:

d

dt

∂l

∂ṙα
− ∂l

∂rα
= 0,

d

dt

∂l

∂ξb
=

∂l

∂ξa
Ca

dbξ
d.

(2) One introduces an arbitrary principal connection A (which is not necessarily
the mechanical connection) to split the original variational principle intrinsically and
globally relative to horizontal and vertical parts of the variation δq and derived the
general form from the above form by means of a velocity shift replacing ξ by the
vertical part relative to this connection:

Ωa = Aa
αṙ

α + ξa.

Here Aa
α are the local coordinates of the connection A. The resulting reduced Euler–

Lagrange equations are then as given earlier.
Now we are ready to state a general theorem for the constrained variational

problem on a principal bundle. This problem is as follows.
ISOHOLONOMIC PROBLEM FOR GENERAL BUNDLES (THE FALLING CAT PROB-

LEM). Among all curves q(t) such that q(0) = q0, q(1) = q1, and q̇(t) ∈ horq(t)
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(horizontal with respect to the mechanical connection Amec ), find the optimal curves
q(t) such that

∫ 1
0 C(ṙ)dt is minimized, where r = π(q).

Observe that although this problem is set up using the mechanical connection
Amec, when applying the Lagrangian reduction theorem, one may use an arbitrary
connection A to split the variational principle. This observation is used in the proof
of the following result.

THEOREM 3.5. If q(t) is a (regular) optimal trajectory for the isoholonomic prob-
lem for general bundles, then there exists a λ(t) ∈ g∗ such that the reduced curve
in TQ/G with coordinates given in a local trivialization by (rα, ṙα,Ωα) satisfies the
constraints ξa = −(Amec)a

αṙ
α as well as the reduced Euler–Lagrange equations (3.1)

and (3.2), where

l = C(ṙ) + 〈λ(t), ξ + Aloc(r)ṙ〉
and

Ωa = Aa
αṙ

α + ξa.

Proof. The proof proceeds as in the proof in Marsden and Scheurle [1993b] in the
present context. The needed modifications of what we have done before are minor
and so are omitted.

COROLLARY 3.6. In Theorem 3.5, if we use the mechanical connection Amec

to split the variational principle, then the reduced Euler–Lagrange equations coincide
with Wong’s equations (see Montgomery [1984, 1993] and references therein):

ṗα = −λaBa
αβ ṙ

β − 1
2
∂gβγ

∂rα
pβpγ ,

λ̇b = −λaC
a
dbAd

αṙ
α,

where gαβ is the local representation of the metric on the base space Q/G, that is,

C(ṙ) =
1
2
gαβ ṙ

αṙβ ,

gβγ is the inverse of the matrix gαβ, and pα is defined by

pα =
∂C

∂ṙα
= gαβ ṙ

β ,

and where we write the components of Amec simply as Ab
α and similarly for its cur-

vature.
Proof. Apply Theorem 3.5 to the function l, where

l = C(ṙ) + 〈λ(t), ξ +Aloc(r)ṙ〉
= C(ṙ) + 〈λ(t),Ω〉
= C(ṙα) + λaΩa.

Clearly,

∂l

∂ṙα
=

∂C

∂ṙα
= gαβ ṙ

β ,

∂l

∂rα
=

∂C

∂rα
=

1
2
∂gβγ

∂rα
ṙβ ṙγ ,

∂l

∂Ωa
= λa.
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Since ξa = −Aa
αṙ

α (the constraints) and Ωa = Aa
αṙ

α + ξa, we have Ωa = 0, and the
reduced Euler–Lagrange equations become

d

dt

∂C

∂ṙα
− ∂C

∂rα
= −λa(Ba

αβ ṙ
β),

d

dt
λb = −λa(Ea

αbṙ
α) = −λaC

a
dbAd

αṙ
α.

But

d

dt

∂C

∂ṙα
− ∂C

∂rα
= ṗα − 1

2
∂gβγ

∂rα
ṙβ ṙγ

= ṗα +
1
2
∂gκσ

∂rα
gκβgσγ ṙ

β ṙγ

= ṗα +
1
2
∂gκσ

∂rα
pκpσ

= ṗα +
1
2
∂gβγ

∂rα
pβpγ ,

and so we have the desired equations.
Remark. Recall that in Corollary 3.4, we have the reduced equations

ρ̇β = λa
∂Aa

α

∂rβ
ṙα,

λ̇b = −Ca
dbλaAd

αṙ
α.

But ρβ = λaAa
α + 2cβ ṙβ and hence

ρ̇β = 2cβ r̈β + λ̇aAa
β + λa

∂Aa
β

∂rα
ṙα = λa

∂Aa
α

∂rβ
ṙα.

Therefore,

2cβ r̈β = λa
∂Aa

α

∂rβ
ṙα − λa

∂Aa
β

∂rα
ṙα − (−Ca

dbλaAd
αṙ

α)Ab
β

= λa

(
∂Aa

α

∂rβ
− ∂Aa

β

∂rα
− Ca

bdAd
αAb

β

)
ṙα

= −λaBa
βαṙ

α.

That is, the reduced equations in Corollary 3.4 (and those in Krishnaprasad, Yang,
and Dayawansa [1991]) can be written intrinsically as Wong’s equations after a change
of variables. This should not surprise us, because Marsden and Scheurle derived the
general reduced Euler–Lagrange equations from the Hamel equations using a suitable
change of variables from local trivialization variables to those in which the Lie algebra
variable is replaced by the vertical part of the bundle velocity.

4. Optimal control and Lagrangian reduction for nonholonomic sys-
tems. Now we are ready to use the method of Lagrange multipliers and Lagrangian
reduction to find the necessary conditions for optimal trajectories of nonholonomic
systems in the case of a trivial bundle.
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4.1. The general theorem for optimization. In Bloch, Krishnaprasad, Mars-
den, and Murray [1996], the reconstruction process may be seen in a two-step fashion:
given an initial condition and a path r(t) in the base space, we first integrate the mo-
mentum equation to determine p(t) for all time and then use r(t) and p(t) jointly to
determine the motion g(t) in the fiber. But in studying the optimal control problem,
it is better to treat p as a set of independent variables and the momentum equation
as an additional set of constraints. With this viewpoint, it is possible to write down
the reduced equations of motion for the optimal trajectories.

Since we would like to use the method of Lagrange multipliers to relax the con-
straints, we define a new Lagrangian L:

L = C(ṙ) + 〈λ(t), ξ + A(r)ṙ − Γ(r)p〉(4.1)
+
〈
κ(t), ṗ− ṙTH(r)ṙ − ṙTK(r)p− pTD(r)p

〉
for some λ(t) ∈ g∗ and for some κ(t) ∈ Rm, where m is the number of momentum
functions pb. For simplicity of notation we have written A for Anh. Clearly L is G
invariant and induces a function on (T (Q× Rm)/G) × g∗ × Rm which is also denoted
L.

We formulate the main problem to be studied as follows.
ISOHOLONOMIC PROBLEM FOR NONHOLONOMIC SYSTEMS. Among all curves q(t)

such that q(0) = q0, q(1) = q1, q̇(t) ∈ Dq(t) and in which g−1ġ+A(r)ṙ = Γ(r)p and the
momentum equation, find the optimal curves q(t) such that

∫ 1
0 C(ṙ)dt is minimized,

where r = π(q).
Before we state the theorem and do some computations, we want to make sure

that the readers understand the index convention used in this section.
(1) The first batch of indices is denoted a, b, c, ... and range from 1 to k corre-

sponding to the symmetry direction (k = dim g).
(2) The second batch of indices will be denoted i, j, k, ... and range from 1 to

m corresponding to the symmetry direction along constraint space (m is the
number of momentum functions).

(3) The indices α, β, ... on the shape variables r range from 1 to n− k (n− k =
dim (Q/G), i.e., the dimension of the shape space).

THEOREM 4.1 (reduced Lagrangian optimization for nonholonomic systems). If
q(t) = (r(t), g(t)) is a (regular) optimal trajectory for the above optimal control prob-
lem, then there exist a λ(t) ∈ g∗ and a κ(t) ∈ Rm such that the reduced curve
(r(t), ṙ(t), ξ(t)) ∈ TQ/G with coordinates (rα, ṙα, ξα) satisfies the reduced Euler–
Lagrange equations

d

dt

∂L
∂ṙβ

− ∂L
∂rβ

= 0,

d

dt

∂L
∂ξb

=
∂L
∂ξa

Ca
dbξ

d,

d

dt

∂L
∂ṗj

− ∂L
∂pj

= 0,

as well as

ξ = −A(r)ṙ + Γ(r)p,
ṗ = ṙTH(r)ṙ + ṙTK(r)p+ pTD(r)p.
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Here Ca
db are the structure coefficients of the Lie algebra g and

L = C(ṙ) + 〈λ(t), ξ + A(r)ṙ − Γ(r)p〉(4.2)
+
〈
κ(t), ṗ− ṙTH(r)ṙ − ṙTK(r)p− pTD(r)p

〉
.

Proof. If (r(t), g(t)) is a (regular) optimal trajectory, then by the method of
Lagrange multipliers it solves the following variational problem:

δ

∫ 1

0
Ldt = 0

for some λ(t) ∈ g∗ and some κ(t) ∈ Rm. Since the bundle is trivial, we can
put a flat connection on this bundle and use it to split the variations into hori-
zontal and vertical parts. Then by the Lagrange reduction theorem, the reduced
curve (r(t), ṙ(t), ξ(t)) ∈ TQ/G satisfies the reduced Euler–Lagrange equations stated
above.

4.2. The optimality conditions in coordinates. Now let us work out every-
thing in detail in bundle coordinates. Since

L =
1
2
Cα(ṙα)2 + λa(ξa + Aa

αṙ
α − Γaipi)(4.3)

+κi(ṗi −Hαγiṙ
αṙγ −Kl

iαṙ
αpl −Dlk

i plpk),

we find after some computations that

∂L
∂ṙβ

= Cβ ṙ
β + λaAa

β − κi(2Hαβiṙ
α +Kl

iβpl),

∂L
∂rβ

= λa

(
∂Aa

α

∂rβ
ṙα − ∂Γai

∂rβ
pi

)
− κi

(
∂Hαγi

∂rβ
ṙαṙγ +

∂Kl
iα

∂rβ
ṙαpl +

∂Dlk
i

∂rβ
plpk

)
.

Also, we have

∂L
∂ξb

= λb,

∂L
∂ṗj

= κj ,

∂L
∂pj

= −λaΓaj − κi(Kj
iαṙ

α + 2Dlj
i pl).

By Theorem 4.1, we know that the reduced curve (r(t), ṙ(t), ξ(t)) must satisfy the
following system of differential equations for the given boundary conditions q(0) =
(r0, g0), q(1) = (r1, g1):

d

dt
[Cβ ṙ

β + λaAa
β − κi(2Hαβiṙ

α +Kl
iβpl)]

= λa

(
∂Aa

α

∂rβ
ṙα − ∂Γai

∂rβ
pi

)
− κi

(
∂Hαγi

∂rβ
ṙαṙγ +

∂Kl
iα

∂rβ
ṙαpl +

∂Dlk
i

∂rβ
plpk

)
and

κ̇j = −λaΓaj − κi(Kj
iαṙ

α + 2Dlj
i pl),

λ̇b = Ca
dbλaξ

d = Ca
dbλa(−Ad

αṙ
α + Γdipi),

ṗi = Hαγiṙ
αṙγ +Kl

iαṙ
αpl +Dlk

i plpk.
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Remarks.
(1) The first set of equations can be simplified somewhat as follows:

d

dt

[
Cβ ṙ

β − κi(2Hαβiṙ
α +Kl

iβpl)
]

= λaBa
βαṙ

α − λa

(
∂Γai

∂rβ
+ Ca

dbAb
βΓdi

)
pi

−κi

(
∂Hαγi

∂rβ
ṙαṙγ +

∂Kl
iα

∂rβ
ṙαpl +

∂Dlk
i

∂rβ
plpk

)
,

where Ba
βα are the coordinates of the curvature B of the nonholonomic connection A,

which is used to set up the constrained variational problem. Clearly more work is
needed to establish a better form of the first set of equations as well as the geometry
behind them. However, for the snakeboard, the reduced equations of motion for the
optimal trajectories turn out to be rather simple.

(2) In proving the above theorem, although variations with fixed endpoints for
r(t) can be used, we generally can only hold the initial endpoint fixed for the variations
of p(t) and leave their final endpoints free (which is called “free endpoint problem”
in the language of calculus of variations). However, we will obtain the same system
of differential equations (namely the reduced Euler–Lagrange equations) except the
need to impose some kind of transversality condition at t = 1; e.g., in this case we
need to have κ(1) = 0.

In the following section, we will apply the method of reduced Lagrangian opti-
mization developed in this section to some examples, especially the snakeboard.

5. Examples.

5.1. Optimal control of a homogeneous ball on a rotating plate. Bloch,
Krishnaprasad, Marsden, and Murray [1995] also study a well-known example,
namely the model of a homogeneous ball on a rotating plate, and write down its
equations of motion in a form that is suitable for the application of control theory.
(For more information, also see Naimark and Fufaev [1972] and Yang [1992] for the
affine case and Bloch and Crouch [1992], Brockett and Dai [1992], and Jurdjevic [1993]
for the linear case.)

Fix coordinates in inertial space and let the plane rotate with constant angular
velocity Ω about the z-axis. The configuration space of the sphere is Q = R2 ×SO(3),
parameterized by (x, y, g), g ∈ SO(3), all measured with respect to the inertial frame.
Let ω = (ωx, ωy, ωz) be the angular velocity vector of the sphere measured also with
respect to the inertial frame, let m be the mass of the sphere and mk2 its inertia
about any axis, and let a be its radius.

The Lagrangian of the system is

L =
1
2
m(ẋ2 + ẏ2) +

1
2
mk2(ωx

2 + ωy
2 + ωz

2),

with the affine nonholonomic constraints

ẋ− aωy = −Ωy,
ẏ + aωx = +Ωx.

Note that the Lagrangian here is a metric on Q which is bi-invariant on SO(3) as the
ball is homogeneous. Note also that R2 × SO(3) is a principal bundle over R2 with



OPTIMAL CONTROL FOR NONHOLONOMIC SYSTEMS 919

respect to the right SO(3) action on Q given by

(x, y, g) 7→ (x, y, gh)

for h ∈ SO(3). The action is on the right since the symmetry is a material symmetry.
After some computations, it can be shown (for details, see Bloch, Krishnaprasad,

Marsden, and Murray [1996]) that the equations of motion are

ωx +
1
a
ẏ =

Ωx
a
,

ωy − 1
a
ẋ =

Ωy
a
,

ωz = c,

(where c is a constant), together with

ẍ+
k2Ω

a2 + k2 ẏ = 0,

ÿ − k2Ω
a2 + k2 ẋ = 0.

Notice that the first set of three equations has the form

ġg−1 = −Aloc(r)ṙ + Γloc(r),

where

Aloc =
1
a
e1dy − 1

a
e2dx

and

Γloc =
Ω
a
xe1 +

Ω
a
ye2 + ce3.

Here, r1 = x, r2 = y, and e1, e2, e3 is the standard basis of so(3)−. Also, Aloc is
the expression of nonholonomic connection relative to the (global) trivialization, and
Γloc is the expression of the affine piece of the constraints with respect to the same
trivialization (see Bloch, Krishnaprasad, Marsden, and Murray [1995]).

Now we are ready to apply reduced Lagrangian optimization to find the optimal
trajectories for a homogeneous ball. Clearly the homogeneous ball on a rotating plate
is a simple nonholonomic mechanical system with symmetry as defined earlier which
also has a trivial principal bundle structure (except that the constraint is affine which
can be dealt with in the same way). Also, we can assume that we have full control
over the motion of the center of the ball, i.e., over the shape variables. Now let the
cost function be C(ṙ) = 1

2 [(ẋ)2 + (ẏ2)] and set a = 1 for simplicity; then we can use
the method of Lagrange multipliers and Lagrangian reduction to find the necessary
conditions for the optimal trajectories of the following optimal control problem.

PLATE-BALL PROBLEM. Given two points q0, q1 ∈ R2 × SO(3), find the optimal
control curves (x(t), y(t)) ∈ R2 that steer the system from q0 to q1 and minimize∫ 1

0

1
2
[(ẋ)2 + (ẏ)2]dt ,
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subject to the constraints

ġg−1 = −ẏe1 + ẋe2 + ce3 + Ωxe1 + Ωye2,

where, again, ea is the standard basis of so(3)−.
Following the reduced Lagrangian optimization method developed in the preced-

ing section, we define a new Lagrangian L by

L =
1
2
[(ẋ)2 + (ẏ)2] + λaξ

a + λ1ẏ − λ2ẋ− λ3c− Ωλ1x− Ωλ2y,

where λ(t) ∈ so(3)∗
−. (Note that we use the negative Lie–Poisson structure because

the right action is used.)
By Theorem 4.1, we know that any reduced optimal curve

(x(t), y(t), ẋ(t), ẏ(t), ξa(t))

must satisfy the reduced Euler–Lagrangian equations. Simple computations show
that

∂L
∂ẋ

= ẋ− λ2 = ρ1,

∂L
∂x

= −Ωλ1,

∂L
∂ẏ

= ẏ + λ1 = ρ2,

∂L
∂y

= −Ωλ2,

∂L
∂ξb

= λb.

Therefore,

ρ̇1 = −Ωλ1,

ρ̇2 = −Ωλ2,

and

λ̇b = Ca
dbλaξ

d;

that is,

λ̇1 = λ3ξ
2 − λ2ξ

3 = λ3(ρ1 + λ2 + Ωy) − cλ2,

λ̇2 = −λ3ξ
1 + λ1ξ

3 = λ3(ρ2 − λ1 − Ωx) + cλ1,

λ̇3 = λ2ξ
1 − λ1ξ

2 = −(λ1ρ1 + λ2ρ2) + Ω(λ2x− λ1y).

In the special case where c = 0 (no drift) and Ω = 0 (no rotation) studied in
Jurdjevic [1993], we have

ρ̇1 = 0,
ρ̇2 = 0,
λ̇1 = λ3(ρ1 + λ2),
λ̇2 = λ3(ρ2 − λ1),
λ̇3 = −(λ1ρ1 + λ2ρ2),
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which gives the same result as in Jurdjevic [1993] obtained through the application
of the Pontryagin maximum principle.

5.2. Optimal control of the snakeboard. The snakeboard is a modified ver-
sion of a skateboard in which the front and back pairs of wheels are independently
actuated. The extra degree of freedom enables riders to generate forward motion by
twisting their bodies back and forth, while simultaneously moving the wheels with
the proper phase relationship. For details, see Bloch, Krishnaprasad, Marsden, and
Murray [1996] and the references listed there. Here we will include the computations
shown in that paper for completeness and to make concrete the nonholonomic theory.

The snakeboard is modeled as a rigid body (the board) with two sets of indepen-
dently actuated wheels, one on each end of the board. The human rider is modeled as
a momentum wheel which sits in the middle of the board and is allowed to spin about
the vertical axis. Spinning the momentum wheel causes a counter torque to be exerted
on the board. The configuration of the board is given by the position and orientation
of the board in the plane, the angle of the momentum wheel, and the angles of the
back and front wheels. Thus the configuration space is Q = SE(2)×S1 ×S1 ×S1. Let
(x, y, θ) represent the position and orientation of the center of the board, ψ the angle
of the momentum wheel relative to the board, and φ1 and φ2 the angles of the back
and front wheels, also relative to the board. Take the distance between the center of
the board and the wheels to be r.

The Lagrangian for the snakeboard consists only of kinetic energy terms and can
be written as

L(q, q̇) =
1
2
m(ẋ2 + ẏ2) +

1
2
Jθ̇2 +

1
2
J0(θ̇ + ψ̇)2 +

1
2
J1(θ̇ + φ̇1)2 +

1
2
J2(θ̇ + φ̇2)2,

where m is the total mass of the board, J is the inertia of the board, J0 is the inertia
of the rotor, and Ji, i = 1, 2, is the inertia corresponding to φi. The Lagrangian is
independent of the configuration of the board and hence it is invariant to all possible
group actions.

The rolling of the front and rear wheels of the snakeboard is modeled using non-
holonomic constraints which allow the wheels to spin about the vertical axis and roll
in the direction that they are pointing. The wheels are not allowed to slide in the
sideways direction. This gives constraint one forms

ω1(q) = − sin(θ + φ1)dx+ cos(θ + φ1)dy − r cosφ1dθ,

ω2(q) = − sin(θ + φ2)dx+ cos(θ + φ2)dy + r cosφ2dθ.

These constraints are invariant under the SE(2) action given by

(x, y, θ, ψ, φ1, φ2) 7→ (x cosα− y sinα+ a, x sinα+ y cosα+ b, θ + α, ψ, φ1, φ2),

where (a, b, α) ∈ SE(2). The constraints determine the kinematic distribution Dq:

Dq = span
{
∂

∂ψ
,
∂

∂φ1
,
∂

∂φ2
, a

∂

∂x
+ b

∂

∂y
+ c

∂

∂θ

}
,

where a, b, and c are given by

a = −r(cosφ1 cos(θ + φ2) + cosφ2 cos(θ + φ1)),
b = −r(cosφ1 sin(θ + φ2) + cosφ2 sin(θ + φ1)),
c = sin(φ1 − φ2).
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The tangent space to the orbits of the SE(2) action is given by

Tq(Orb(q)) = span
{
∂

∂x
,
∂

∂y
,
∂

∂θ

}
.

The intersection between the tangent space to the group orbits and the constraint
distribution is thus given by

Dq ∩ Tq(Orb(q)) = a
∂

∂x
+ b

∂

∂y
+ c

∂

∂θ
.

The momentum can be constructed by choosing a section of D ∩ TOrb regarded as a
bundle over Q. Since Dq ∩ TqOrb(q) is one dimensional, the section can be chosen to
be

ξq
Q = a

∂

∂x
+ b

∂

∂y
+ c

∂

∂θ
,

which is invariant under the action of SE(2) on Q. The corresponding Lie algebra
element in se(2), ξq, is

ξq = (a+ yc)ex + (b− xc)ey + ceθ,

where ex is the basis element of the Lie algebra corresponding to translations in
the x direction (and whose corresponding infinitesimal generator is ∂/∂x), etc. The
nonholonomic momentum map is thus given by

p = Jnh(ξq) =
∂L

∂q̇i
(ξq

Q)i

= maẋ+mbẏ + Jcθ̇ + J0c(θ̇ + ψ̇) + J1c(θ̇ + φ̇1) + J2c(θ̇ + φ̇2).

In Bloch, Krishnaprasad, Marsden, and Murray [1996] a simplification is made which
we shall also assume in this paper, namely, φ1 = −φ2, J1 = J2. The parameters
are also chosen such that J + J0 + J1 + J2 = mr2 (which eliminates some terms in
the derivation but does not affect the essential geometry of the problem). Setting
φ = φ1 = −φ2, the constraints plus the momentum are given by

0 = − sin(θ + φ)ẋ+ cos(θ + φ)ẏ − r cosφθ̇,
0 = − sin(θ − φ)ẋ+ cos(θ − φ)ẏ + r cosφθ̇,
p = −2mr cos2(φ) cos(θ)ẋ− 2mr cos2(φ) sin(θ)ẏ

+mr2 sin(2φ)θ̇ + J0 sin(2φ)ψ̇.

Adding, subtracting, and scaling these equations, we can write (away from φ = π/2)

 cos(θ)ẋ+ sin(θ)ẏ
− sin(θ)ẋ+ cos(θ)ẏ

θ̇

+


− J0

2mr
sin(2φ)ψ̇

0
J0

mr2
sin2(φ)ψ̇

 =


−1
2mr

p

0
tanφ
2mr2

p

 .(5.1)

These equations have the form

g−1ġ + Aloc(r)ṙ = Γ(r)p,
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where

Aloc = − J0

2mr
sin(2φ)ex dψ +

J0

mr2
sin2(φ)eθ dψ,

Γ(r) =
−1
2mr

ex +
1

2mr2
tan(φ) eθ.

These are precisely the terms which appear in the nonholonomic connection rela-
tive to the (global) trivialization (r, g). The momentum equation, which governs the
evolution of p, is given by

ṗ =
∂L

∂q̇i

[
d

dt
ξq

]i

Q

= 4mr cos(θ) cos(φ) sin(φ)ẋφ̇+ 4mr sin(θ) cos(φ) sin(φ)ẏφ̇
+2J0 cos(2φ)φ̇ψ̇ + 2mr2 cos(2φ)θ̇φ̇
−2mr cos(θ) cos2(φ)ẏθ̇ + 2mr sin(θ) cos2(φ)ẋθ̇.

Solving for the group velocities ẋ, ẏ, θ̇ from the equations which define the nonholo-
nomic connection, the momentum equation can be rewritten as

ṗ = 2J0 cos2(φ) φ̇ψ̇ − tan(φ) pφ̇.

This version of the momentum equation corresponds to the coordinate form in body
representation, but it contains no terms which are quadratic in p due to the fact that
gq is one dimensional.

These equations describe how paths in the base space, parameterized by r ∈
S1 × S1 × S1 (in fact, the base space is S1 × S1 if we assume φ1 = −φ2), are lifted
to the fiber SE(2). The utility of these equations is that they greatly simplify the
process of solving for the motion of the system given the base space trajectory.

Now we are ready to apply the method of reduced Lagrangian optimization to
find the optimal trajectories for the snakeboard. Clearly the snakeboard is a simple
nonholonomic mechanical system with symmetry as defined earlier and which also has
a trivial principal bundle structure. Moreover, the control forces are only applied to
the shape variables for which we have full control. Let the cost function be C(ṙ) =
1
2 [(ψ̇)2 + (φ̇)2] for simplicity. We can use the method of Lagrange multipliers and
Lagrangian reduction to find the necessary conditions for the optimal trajectories of
the following optimal control problem.

OPTIMAL CONTROL PROBLEM FOR THE SNAKEBOARD. Given two points q0, q1 ∈
SE(2)×S1 ×S1, find the optimal control curves (ψ(t), φ(t)) ∈ S1 ×S1 that steer from
q0 to q1 and minimize

∫ 1
0

1
2 ((ψ̇)2 + (φ̇)2)dt, subject to the constraints

g−1ġ + Aloc(r)ṙ = Γ(r)p,
ṗ = 2J0 cos2(φ)φ̇ψ̇ − tan(φ)pφ̇,

where

Aloc = − J0

2mr
sin(2φ)ex dψ +

J0

mr2
sin2(φ)eθ dψ,

Γ(r) =
−1
2mr

ex +
1

2mr2
tan(φ) eθ.
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Following the general procedures in the previous section, we define a new L by

L =
1
2
((ψ̇)2 + (φ̇)2) + λaξ

a − J0

2mr
λ1 sin(2φ)ψ̇ +

J0

mr2
λ3 sin2(φ)ψ̇

+
1

2mr
λ1p− 1

2mr2
λ3 tan(φ)p+ κṗ− 2J0κ cos2(φ)φ̇ψ̇ + κ tan(φ)pφ̇,

where ξ = g−1ġ ∈ g, λ(t) ∈ g∗, and κ(t) ∈ R1 are Lagrange multipliers. Here ξa

and λa are the components of ξ and λ in the standard basis of se(2) and se(2)∗,
respectively.

By Theorem 4.1, we know that the reduced optimal curves

(ψ(t), φ(t), ψ̇(t), φ̇(t), ξa(t))

must satisfy the reduced Euler–Lagrangian equations for L . After some computations,
we find

∂L
∂ψ̇

= ψ̇ − J0

2mr
λ1 sin(2φ) +

J0

mr2
λ3 sin2(φ) − 2J0κ cos2(φ)φ̇,

∂L
∂ψ

= 0,

∂L
∂φ̇

= φ̇− 2J0κ cos2(φ)ψ̇ + κ tan(φ)p,

∂L
∂φ

= − J0

mr
λ1 cos(2φ)ψ̇ +

J0

mr2
λ3 sin(2φ)ψ̇ − 1

2mr2
λ3 sec2(φ)p

+2J0κ sin(2φ)φ̇ψ̇ + κ sec2(φ)pφ̇,
∂L
∂ṗ

= κ,

∂L
∂p

=
1

2mr
λ1 − 1

2mr2
λ3 tan(φ) + κ tan(φ)φ̇,

∂L
∂ξb

= λb.

Substitute the above calculations into the reduced Euler–Lagrangian equations and
simplify, giving

ψ̈ − J0

2mr
λ̇1 sin(2φ) − J0

mr
λ1 cos(2φ)φ̇+

J0

mr2
λ3 sin(2φ)φ̇

+
J0

mr2
λ̇3 sin2(φ) − 2J0κ̇ cos2 φ φ̇+ 2J0κ sin(2φ)(φ̇)2 − 2J0κ cos2(φ)φ̈ = 0,

φ̈− 2J0κ̇ cos2(φ)ψ̇ − 2J0κ cos2(φ)ψ̈ + κ̇ tan(φ)p+ κ tan(φ)ṗ

= − J0

mr
λ1 cos(2φ)ψ̇ +

J0

mr2
λ3 sin(2φ)ψ̇ − 1

2mr2
λ3 sec2(φ)p.

Also, we have

κ̇ =
1

2mr
λ1 − 1

2mr2
λ3 tan(φ) + κ tan(φ)φ̇,

λ̇1 = λ2ξ
3 = λ2

(
− J0

mr2
sin2(φ)ψ̇ +

1
2mr2

tan(φ)p
)
,
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λ̇2 = −λ1ξ
3 = −λ1

(
− J0

mr2
sin2(φ)ψ̇ +

1
2mr2

tan(φ)p
)
,

λ̇3 = −λ2ξ
1 = −λ2

(
J0

2mr
sin(2φ)ψ̇ − 1

2mr
p

)
,

ṗ = 2J0 cos2(φ) φ̇ψ̇ − tan(φ) pφ̇.

After eliminating λ̇1, λ̇3, κ̇, and ṗ from the first set of two equations, we finally obtain

ψ̈ − J0

2mr
λ1(1 + 3 cos(2φ))φ̇+

3J0

2mr2
λ3 sin(2φ)φ̇

+J0κ sin(2φ)(φ̇)2 − 2J0κ cos2(φ)φ̈ = 0,

φ̈− J0

mr
λ1 sin2 φ ψ̇ +

1
2mr

λ1 tan(φ)p+
1

2mr2
λ3p

− J0

2mr2
λ3 sin(2φ)ψ̇ − 2J0κ cos2(φ)ψ̈ = 0.

5.3. Optimal control on a Lie group. Krishnaprasad [1993] considered the
following optimal control problem on a finite-dimensional Lie group G which has been
used to model various problems in several other papers (e.g., the plate-ball problem
in Jurdjevic [1993] and the landing tower problem in Walsh, Montgomery, and Sastry
[1994]). While it is possible to model this class of problems as a special case of
the optimal control of nonholonomic system on a trivial principal bundle and apply
reduced Lagrangian optimization, it may be useful to provide in this section a more
direct proof that uses simpler machinery.

OPTIMAL CONTROL PROBLEM FOR A LIE GROUP. Given a left-invariant control
system on G, ġ = g · ξu, where ξu = e0 +

∑m
i=1 u

i(t)ei, find the optimal controls u(·)
that steer from g0 to g1 and minimize

∫ 1
0 L(u)dt.

Here {e0, e1, . . . , em} spans an (m + 1)-dimensional subspace of the whole Lie
algebra g of G; m + 1 ≤ n = dim (g); u(·) is a vector-valued control function with
ui(t) ∈ R; L is a cost function on Rm, which is the space of values of controls; and
L(u) = 1

2

∑m
i=1 Ii(u

i)2 with Ii > 0.
To apply the method of Lagrangian reduction, we recast the above optimal control

problem as a constrained variational problem. For simplicity of exposition, we will
deal with the vector space case first, where there is no e0 term, and will take up the
affine case later.

Let C be the m-dimensional subspace of g spanned by {e1, . . . , em}. We make the
following points:

(i) ξu =
∑m

i=1 u
i(t)ei lies in C.

(ii) If we define L1 = L ◦ φ, where L = 1
2

∑m
i=1 Ii(u

i)2 with Ii > 0 and φ =
(e1, . . . , em) with {e1, . . . , em} as the dual basis of {e1, . . . , em}, then L1 :
C → R is nothing but one half of the square of a metric on C which is
intrinsically defined and does not depend on the basis chosen.

(iii) We can extend L1 to be half of the square of a metric L̄ on g such that L̄ = L1
on C. As we will see, the necessary conditions for an optimal control do not
depend on how the extension is done.

(iv) For the affine case, we will simply set ξu − e0 =
∑m

i=1 u
i(t)ei.

Now it should be clear that the original problem is equivalent to the following
constrained variational problem.

CONSTRAINED VARIATIONAL PROBLEM FOR OPTIMAL CONTROL ON LIE GROUPS.
Given an m-dimensional subspace C of g, find the optimal control curves ξ − e0 ∈ C
such that g(0) = g0, g(1) = g1 and minimize

∫ 1
0 L̄(ξ − e0) dt.



926 WANG-SANG KOON AND JERROLD E. MARSDEN

Since we want to use the method of Lagrange multipliers to relax the constraint
on the variations, we define a new Lagrangian

L = L̄(ξ − e0) + λ(t)(ξ − e0) = L̃(ξ) + λ̃(t)(ξ),(5.2)

where λ(t) lies in the annihilator C0 of C; furthermore, τ(ξ) = ξ − e0, L̃ = L̄ ◦ τ , and
λ̃ = λ ◦ τ .

THEOREM 5.1 (optimization theorem for nonholonomic systems on Lie groups).
If ξ̄ is a (regular) optimal control curve in C + e0 = {ξ ∈ g : ξ = ξc + e0, ξc ∈ C}, then
there exists a λ(t) ∈ g∗ such that ξ̄ satisfies the Euler–Poincaré equation

d

dt

(
δL̃

δξ
+ λ

)
= ad∗

ξ

(
δL̃

δξ
+ λ

)
.(5.3)

Proof. If ξ̄(t) is an optimal control curve in C + e0, then by the Lagrangian
reduction method, ξ̄(t) is a solution of the following variational problem:

δ

∫ 1

0
L(ξ)dt = δ

∫ 1

0
(L̃(ξ) + λ̃(ξ))dt = 0

for some λ ∈ g∗, where the variations take the form δξ = Ω̇ + [ξ,Ω] with Ω = g−1 · δg
arbitrary except vanishing at the endpoints. Since

0 = δ

∫ 1

0

(
L̃(ξ) + λ̃(ξ)

)
dt

=
∫ 1

0

(
δL̃

δξ
δξ + λ (δξ)

)
dt

=
∫ 1

0

(
δL̃

δξ
+ λ

)(
Ω̇ + [ξ,Ω]

)
dt

=
∫ 1

0

(
− d

dt

(
δL̃

δξ
+ λ

)
+ ad∗

ξ

(
δL̃

δξ
+ λ

))
Ωdt,

we conclude that ξ̄(t) satisfies

d

dt

(
δL̃

δξ
+ λ

)
= ad∗

ξ

(
δL̃

δξ
+ λ

)
.

COROLLARY 5.2. Given a left-invariant control system on G, ġ = g · ξu, where

ξu = e0 +
m∑

i=1

ui(t)ei.

If ū(·) is an optimal control, then

ūi(t) =
µi(t)
Ii

,

where i = 1, . . . ,m and µi, i = 1, . . . ,m is the solution of the following system of
differential equations:

µ̇i = Ck
jiµkξ

j
u,

where i, j, k = 0, . . . , n− 1 and where Ck
ij are the structure constants of g.
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Proof. Extend {e0, e1, . . . , em} to a basis {e0, . . . , en−1}, and let {e0, . . . , en−1}
be its dual basis.

(i) For i = 1, . . . ,m and ξu ∈ e0 + C, we have

δL̃

δξi
u

=
∂L

∂ui
= Iiu

i

because L̃(ξu) = L ◦ φ ◦ τ(ξu) = L(u) and ξi
u = ui; furthermore,

λi = 0, i = 1, . . . ,m

because λ lies in the annihilator C0.
(ii) If we set

µi =
δL̃

δξi
u

, i = 1, . . . ,m,

and

µi =
δL̃

δξi
u

+ λi, i = m+ 1, . . . , n− 1, 0,

and write out the Euler–Poincaré equation using the above coordinates, we will get
the desired system of differential equations.

Remarks.
(1) From the above computations we can see that the necessary conditions for an

optimal control ū(·) depend only on L and have nothing to do with how the extension
is done, because not only ui(t) = µi(t)/Ii but also µ̇i = Ck

jiµkξ
j
u do not depend on L̄.

(2) The necessary conditions given in Corollary 5.2 are the same as those in
Krishnaprasad [1993]:

ui =
µi

Ii
, i = 1, . . . ,m,

µ̇i = −µkC
k
ij

δh

δµj
, i, j, k = 0, . . . , n− 1,

where

h = µ0 +
1
2

m∑
i=1

µ2
i

Ii
.

This is because Ck
ji = −Ck

ij and

δh

δµj
=


1, j = 0,

µj

Ij
= uj , j = 1, . . . ,m,

0, j = m+ 1, . . . , n− 1

 = ξj
u.

Conclusions. We have found a procedure based on reduced Lagrangian opti-
mization that can be used to directly establish results on

(1) optimal control for left-invariant systems on Lie group with velocity con-
straints,

(2) optimal control for holonomic systems on principal bundles with the con-
straint of the vanishing of the momentum map,
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(3) optimal control for nonholonomic systems on (trivial) principal bundles that
may have a nontrivial evolution of its nonholonomic momentum.

In fact, the first two results can be seen as special cases of the last result even
though we have derived each of them in a parallel way. Recall that in the nonholonomic
case, we have

L = C(ṙ) + 〈λ(t), ξ + A(r)ṙ − Γ(r)p〉(5.4)
+
〈
κ(t), ṗ− ṙTH(r)ṙ − ṙTK(r)p− pTD(r)p

〉
.

In the driftless holonomic case, Dq = TqQ for each q ∈ Q, the momentum is conserved
and assumed to be zero, so the above Lagrangian L reduces to

L = C(ṙ) + 〈λ(t), ξ + A(r)ṙ〉 ,

which is exactly the same Lagrangian used in the second case. As for a system on Lie
group G with velocity constraint (say, g−1ġ =

∑m
i=1 u

iei for simplicity), it can be seen
as a system on (trivial) principal bundle G × Rm whose (nonholonomic) connection
is independent of the shape variable r; i.e.,

ξa = Aa
αṙ

α,

where Aa
α = 1 and ṙα = uα.

Topics for future work.
(1) In the nonholonomic case, we have stated only the result for the case of a

trivial principal bundle. While it is true that all examples known to us have a
trivial bundle structure, it is of interest to generalize the reduced Lagrangian
optimization theorem to the case of an arbitrary principal bundle. Also, we
need to understand better the geometry underlying this procedure. We hope
to address all of these issues in a follow-up paper.

(2) We need to construct algorithms that can effectively find approximate solu-
tions to the system of differential equations that are obtained through reduced
Lagrangian optimization. For example, finite element techniques appear to
be appropriate and will be explored.
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Abstract. In this paper we study the degeneracy phenomenon in optimal control problems
with state constraints. It is shown that this phenomenon occurs because of the incompleteness of
the standard variants of Pontryagin’s maximum principle for problems with state constraints. A new
maximum principle containing additional information about the behavior of the Hamiltonian at the
endtimes is developed. We also obtain some sufficient and necessary conditions for nondegeneracy and
pointwise nontriviality of the maximum principle. The results obtained pertain to optimal control
problems with systems described by differential inclusions and ordinary differential equations.
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1. The degeneracy phenomenon. To illustrate the degeneracy phenomenon,
let us consider the “simplest” optimal control problem with state constraints:

ẋ = f(x, t, u), u ∈ U ;(1.1)

x(t1) = x1;(1.2)

g(x(t)) ≤ 0 ∀ t ∈ [t1, t2];(1.3)

J(u(·)) = k0(x(t2)) → min .(1.4)

Here x ∈ Rn, U ⊂ Rk, the time interval I = [t1, t2] is fixed, x1 is a given initial point,
and the right endpoint x(t2) is free. We suppose that the vector function f and the
scalar functions g, k0 are smooth and ∂g

∂x (x) 6= 0 for all x such that g(x) = 0. The
set of admissible controls consists of all bounded measurable functions u such that
u(t) ∈ U almost everywhere (a.e.) on I.

The problem (1.1)–(1.4) satisfies the hypotheses of several variants of Pontryagin’s
maximum principle (see [1], [2], [3], [4], [5], [6], [7]). Let us apply the standard one.

We define the Hamilton–Pontryagin function H and the HamiltonianH as follows:

H(x, t, u, ψ) = 〈ψ, f(x, t, u)〉,

H(x, t, ψ) = sup
u∈U

H(x, t, u, ψ).

Let the pair x0, u0 solve the problem (1.1)–(1.4). Then Pontryagin’s well-known
maximum principle for problems with state constraints, proven by Dubovitskii and
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Milutin [1], [3], [7], asserts that there exists a number λ0 ≥ 0, a left-continuous
function ψ of bounded variation and a nonnegative bounded regular Borel measure η
on I such that following conditions hold1:

ψ(t) = −λ0
∂k0

∂x
(x0(t2)) +

∫ t2

t

∂H
∂x

(x0(s), s, u0(s), ψ(s)) ds(1.5)

−
∫ t2

t

∂g

∂x
(x0(s)) dη ∀ t ∈ [t1, t2],

H(x0(t), t, ψ(t)) = −
∫ t2

t

∂H
∂t

(x0(s), s, u0(s), ψ(s)) ds(1.6)

+H(x0(t2), t2, ψ(t2)) ∀ t > t1,

H(x0(t), t, u0(t), ψ(t)) a.e.= H(x0(t), t, ψ(t)),(1.7)

supp η ⊂ {t : g(x0(t)) = 0},(1.8)

λ0 + ‖η‖ + sup
t1≤t≤t2

‖ψ(t)‖ 6= 0.(1.9)

Here,

‖η‖ = sup
‖x‖C(I)=1

∫ t2

t1

x(s) dη.

Suppose now that the initial endpoint x1 belongs to the boundary of the state
constraints (1.3), i.e., g(x1) = 0. Then the maximum principle (1.5)–(1.9) degener-
ates. This means that it is satisfied by a collection of Lagrange multipliers λ0, ψ, η
such that λ0 = 0 and ψ(t) = 0 ∀ t ∈ (t1, t2). (We shall call such a collection of La-
grange multipliers trivial.) Indeed, one can take λ0 = 0; η = δt1 , the Dirac measure
concentrated at the point t1; ψ(t1) = − ∂g

∂x (x1), ψ(t) = 0 ∀ t ∈ (t1, t2]. Obviously, in
this case any admissible trajectory satisfies the maximum principle and hence we get
no useful information. Applying to the problem (1.1)–(1.4) any of the above-cited
variants of the maximum principle, we get the same result.

Note that in the general case when an optimal control problem incorporates a
Bolza-type functional, free time, and full endpoint constraints, the maximum principle
may degenerate if one end of an optimal trajectory belongs to the boundary of the
state constraints. Degenerate multipliers exist in any problem with one end fixed on
the state boundary. Moreover, there exist problems in which the trivial collection of
Lagrange multipliers is the only one satisfying the maximum principle.

The following example is due to Dubovitskii and Dubovitskii [8].

1Putting

ψ̂(t) = ψ(t) −
∫
[t1,t)

∂g

∂x
(x0(s)) dη,

one can rewrite the conditions (1.5)–(1.9) in terms of the absolutely continuous function ψ̂.
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Example 1. Consider the following problem:

ẋ1 = tu, |u| ≤ 1;
ẋ2 = u;
x1(0) = 0, x2(0) = 0;
x1(t) ≥ 0 ∀ t ∈ I = [0, 1];
J(u(·)) = x2(1) → min .

It is not difficult to show that the unique solution of this problem is x0(t) ≡ 0 and
u0(t) = 0 a.e. on I. Let λ0, ψ, η be a collection of Lagrange multipliers corresponding
to x0. Then due to the maximum condition (1.7) we have

|tψ1(t) + ψ2(t)| a.e.= tu0(t)ψ1(t) + u0(t)ψ2(t)
a.e.= 0.

From the adjoint equation (1.5) we have ψ2(t) ≡ ψ2(0) ∀ t ∈ I. Let ψ2(0) 6= 0. Then
ψ1(t)

a.e.= −ψ2(0)
t fails to be a function of bounded variation. Thus, ψ2(t) ≡ 0 and

ψ1(t) = 0 ∀ t ∈ (0, 1]. Further, due to (1.5) λ0 = 0. So, there is a unique (up to a
positive multiplier) collection of Lagrange multipliers corresponding to the optimal
pair in this example and it is trivial.

In the present paper we investigate the degeneracy phenomenon. Some results in
this direction have been obtained earlier in [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18] (see section 6). Our contribution to the subject is the following. We show
that the degeneracy phenomenon arises due to the incompleteness of the standard
variants of the maximum principle for problems with state constraints and develop
a new version containing additional information about the Hamiltonian (a new jump
condition at the endtimes). This condition enables one to investigate the degeneracy
phenomenon.

The paper is organized as follows. In section 2 we state our main result—a new
version of the maximum principle (as announced in [19], [20]). It is important to
underline that the Hamiltonian plays the main role in our investigation. That is why
we state the result in Hamiltonian form. In addition, the consideration of the problem
in intrinsic form makes the presentation more descriptive. For simplicity we consider
the problem on a fixed time interval (the free time problem can be investigated analo-
gously [17], [19]). Section 3 contains the technical proof of the main result. In section
4 under some natural controllability assumptions we present sufficient conditions for
nondegeneracy and pointwise nontriviality. In the case in which the state constraint
set is regular at the endpoints, these conditions of controllability turn out to be pre-
cisely the ones necessary for the maximum principle to be informative. In section 5
we consider the free time classical optimal control problem and formulate the results
applicable to it. Furthermore, sufficient conditions for the existence of at least one
nontrivial collection of Lagrange multipliers corresponding to an optimal trajectory
are obtained. Section 6 contains bibliographical comments.

2. The main result. Consider the optimal control problem with state con-
straints in intrinsic form:

ẋ ∈ F (x, t);(2.1)

x(t1) ∈ C1, x(t2) ∈ C2;(2.2)

x(t) ∈ G ∀ t ∈ [t1, t2];(2.3)

J(x(·)) = k0(x(t1), x(t2)) → min .(2.4)
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Here x ∈ Rn; C1, C2, G are nonempty closed subsets of Rn; the time interval
I = [t1, t2] is fixed; k0 : R2n → R1 is a locally Lipschitz function; and the multivalued
mapping F is supposed to be locally Lipschitz with nonempty convex compact values.
We assume also that Clarke’s tangent cone TG(x) has a nonempty interior at any point
x ∈ G [2]. The class of admissible trajectories consists of all Lipschitz continuous
functions x satisfying conditions (2.1)–(2.3).

Denote by ∂f(x) Clarke’s generalized gradient [2] of the locally Lipschitz function
f at the point x, by H(x, t, ψ) = max f∈F (x,t)〈f, ψ〉 the Hamiltonian of the system
(2.1), and by NM (x) Clarke’s normal cone to the set M at the point x [2]. Denote
by N̂M (x) = lim sup

xi
M→x

ξi(xi) = {ξ ∈ Rn : ξ = lim ξi(xi) for some sequences ξi(xi)
and xi → x in M} the cone of limiting normals to M at x, where ξi(xi) is a proximal
normal to M at xi [2], [5], [21], [22], and by

∂̂f(x) = {ξ ∈ Rn : (ξ,−1) ∈ N̂epif (x, f(x))}

the set of limiting subgradients of the locally Lipschitz function f at x [5], [21], [22].
Our main result is the following.
THEOREM 1 (maximum principle). Let x0 be a solution of the problem

(2.1)–(2.4). Then there exists a number λ0 ≥ 0, an absolutely continuous function
ψ, and a bounded regular Borel vector measure η on I such that following conditions
hold:

(a) The absolute continuity condition: the function h(t) = H(x0(t), t, ψ(t)+
∫ t
t1
dη)

is absolutely continuous on I;
(b) the jump condition:

H

(
x0(t), t, ψ(t) +

∫ t

t1

dη

)
= H

(
x0(t), t, ψ(t) +

∫ t

t1

dη − η(t)
)

∀ t ∈ I;

(c) the measure sign condition: the measure η is nonpositive on the set of all
continuous functions y with values in TG(x0(t)); i.e.,∫ t2

t1

y(t) dη ≤ 0 ∀ y ∈ C(I) : y(t) ∈ TG(x0(t)) ∀ t ∈ I;

(d) the Hamiltonian inclusion:

(−ψ̇(t), ḣ(t), ẋ0(t))
a.e.∈ ∂H

(
x0(t), t, ψ(t) +

∫ t

t1

dη

)
;

(e) the transversality condition:(
ψ(t1),−ψ(t2) −

∫ t2

t1

dη

)
∈ λ0∂̂k0(x0(t1), x0(t2)) + N̂C1∩G(x0(t1)) × N̂C2∩G(x0(t2));

(f) the nontriviality condition:

λ0 + ‖ψ(t1)‖ + ‖η‖ 6= 0.

Here η(t) is the atomic component of the measure η at the point t.
The main distinction of the theorem formulated above from the other variants of

the maximum principle consists of condition (b) at the endtimes t1 and t2, which is
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crucial to the nondegeneracy conditions we derive below. Conditions (a) and (b) are
not completely independent. For any t > t1, condition (b) says h(t) = h(t− 0), which
follows from (a). When t = t1, however, condition (b) places a restriction on the atom
η(t1). So, we shall prove condition (a) and then condition (b) at the point t1. The
sense of these two conditions is to take into consideration the energy conservation law.

We should note that the nontraditional transversality condition (e), in which the
right side contains normal cones to intersections of endpoint sets C1 and C2 with the
state constraint set G, appears to be essential to the validity of the jump condition (b)
at the endpoints. Example 2 below shows that Theorem 1 may fail if (e) is replaced
by a traditional transversality condition [2], [4].

Further, using the Radon–Nikodým theorem [23], one can show that there exist
a bounded nonnegative regular scalar Borel measure ν and a ν-integrable function ζ
on I such that the measure η is absolutely continuous with respect to ν and

dη

dν
= ζ(t), ζ(t) ∈ NG(x0(t)) ν — a.e. on I.(2.5)

The inclusions

supp η ⊂ {t ∈ I : x(t) ∈ ∂G}; η(t) ∈ NG(x0(t)) ∀ t ∈ I

are obvious consequences of the measure sign condition. Here ∂G designates the
boundary of the set G.

The following example illustrates the correlation of the new transversality condi-
tion (e) and the jump condition (b) at the endtimes t1, t2.

Example 2. Consider the problem

ẋ ∈ F (x) = {y ∈ R1 : |y| ≤ 1};

x(0) ∈ C1 = {y ∈ R1 : y ≤ 0}, x(1) ∈ C2 = R1;

x(t) ≥ 0 ∀ t ∈ I = [0, 1];

J(x(·)) = x(0) + x(1) → min .

Obviously, x0(t) ≡ 0 is an optimal trajectory. In this example H(x, t, ψ) = |ψ|,
G = {y ∈ R1 : y ≥ 0}. Due to the Hamiltonian inclusion we have |ψ(t) +

∫ t
t1
dη| = 0

a.e. on I. Hence, ψ(t) ≡ ψ(t1) = −η(t1) and η = η(t1)δt1 + η(t2)δt2 .
Consider the transversality condition (e). It gives

(−η(t1),−η(t2)) ∈ λ0(1, 1) + (ξ1, ξ2),

where ξ1 ∈ NC1∩G ⇒ ξ1 ∈ R1; ξ2 ∈ NC2∩G ⇒ ξ2 ≤ 0. Due to the measure sign
condition η(t1) ≤ 0 and η(t2) ≤ 0. Thus, η(t1) = −λ0 − ξ1 ≤ 0, η(t2) = −λ0 − ξ2 ≤ 0.
Putting λ0 = 1, ξ1 = ξ2 = −1, we can satisfy the jump conditions at the endtimes t1,
t2: η(t1) = 0, η(t2) = 0.

Consider now the standard transversality condition [2], [4]:(
ψ(t1),−ψ(t2) −

∫ t2

t1

dη

)
∈ λ0∂k0(x(t1), x(t2)) +NC1(x(t1)) ×NC2(x(t2)).

It gives

(−η(t1),−η(t2)) ∈ λ0(1, 1) + (ξ1, ξ2),
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where ξ1 ∈ NC1(0) ⇒ ξ1 ≥ 0; ξ2 ∈ NC2(0) ⇒ ξ2 = 0. Hence, we can satisfy the
jump conditions at the endtimes t1, t2 only by putting λ0 = ξ1 = ξ2 = 0. But in this
case λ0 = 0, ψ(t) ≡ 0, η = 0, which contradicts the nontriviality condition (f). Thus,
the jump condition (b) at the endtimes cannot be added to the standard maximum
principles [1], [2], [3], [4], [5], [6], [7].

3. Proof of Theorem 1. Let x0 be an optimal trajectory, ρ(x) = min y∈G‖y−x‖
and ρi(x) =

∫
Rnρ(x+ y)wi(y) dy. Here wi is a smooth probabilistic density such that

suppwi ⊂ {x : ‖x‖ ≤ 1
2i }, i = 1, 2, . . . .

Consider now a sequence of auxiliary problems:

ẋ ∈ F (x, t),(3.1)

x(t1) ∈ C1 ∩G, x(t2) ∈ C2 ∩G,(3.2)

‖x(t1) − x0(t1)‖ ≤ 1,(3.3)

Ji(x(·)) = k0(x(t1), x(t2)) +
∫ t2

t1

ϕi(x, t) dt → min .(3.4)

Here ϕi(x, t) = iρi(x) + ‖x− x0(t)‖2, i = 1, 2, . . . .
By virtue of Filippov’s existence theorem, for any i = 1, 2, . . . there exists a solu-

tion xi of auxiliary problem (3.1)–(3.4), and the sequence {xi} is relatively compact in
C(I). Furthermore, any limit point x∗ = limi→∞ xi is a trajectory of the differential
inclusion (3.1).

LEMMA. Let {xi} be a sequence of solutions of (3.1)–(3.4). Then xi ⇒ x0 on I,
ẋi → ẋ0 weakly in L1(I), and iρi(xi(t)) → 0 a.e. on I, i → ∞.

Proof. Let x∗ be some limit point of {xi} and xi → x∗ in C(I), i → ∞. Then
due to the optimality of xi we have

Ji(xi(·)) ≤ Ji(x0(·)) ≤ k0(x0(t1), x0(t2)) +
i

2i
(t2 − t1).(3.5)

Thus,
∫ t2
t1
ρi(xi(t)) dt → 0 and x∗(t) ∈ G ∀ t ∈ I. So the trajectory x∗ satisfies the state

constraints (2.3) and the endpoint constraints (2.2). Hence, due to the optimality of
x0 we have

k0(x0(t1), x0(t2)) ≤ k0(x∗(t1), x∗(t2)).

Substituting this inequality into (3.5), we obtain

k0(xi(t1), xi(t2)) +
∫ t2

t1

ϕi(xi(t), t) dt ≤ k0(x∗(t1), x∗(t2)) +
i

2i
(t2 − t1).

Passing to the limit in the last inequality, we get∫ t2

t1

iρi(xi(t)) dt → 0,
∫ t2

t1

‖x∗(t) − x0(t)‖2 dt = 0.

Hence, iρi(xi(t)) → 0 a.e. on I, i → ∞ and x∗(t) ≡ x0(t). The weak convergence of
{ẋi} to ẋ0 in L1(I) is a consequence of the uniform convergence of {xi} to x0 and of
the uniform boundness of {‖ẋi(t)‖}.
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Due to the lemma above, the inequality in endpoint constraint (3.3) holds strictly
for all sufficiently large numbers i. Hence, it may be neglected in the transversality
conditions of the maximum principle for the problem (3.1)–(3.4). Thus, due to the
Hamiltonian necessary conditions of optimality for the problems without state con-
straints [2]2 with transversality conditions suggested by Mordukhovich [21] (see [5] for
details) we obtain that there exist an absolutely continuous function ψi and a number
λi ≥ 0 such that

(−ψ̇i(t), ḣi(t), ẋi(t))
a.e.∈ ∂H(xi(t), t, ψi(t))(3.6)

−λi
(
i
∂ρi(xi(t))

∂x
+ 2(xi(t) − x0(t)),−2〈xi(t) − x0(t), ∂x0(t)〉, 0

)
,

(ψi(t1),−ψi(t2)) ∈ λi∂̂k0(xi(t1), xi(t2)) + N̂C1∩G(xi(t1)) × N̂C2∩G(xi(t2)),(3.7)

λi + ‖ψi(t1)‖ 6= 0.(3.8)

Here hi(t) = H(xi(t), t, ψi(t)) − λiϕi(xi(t), t),

〈xi(t) − x0(t), ∂x0(t)〉 =
⋃

ξ∈∂x0(t)

〈xi(t) − x0(t), ξ〉.

Further, introducing the absolutely continuous function

ψ̃i = ψi(t) −
∫ t

t1

iλi
∂ρi
∂x

(xi(s)) ds,

the conditions (3.6)–(3.8) can be rewritten as

(− ˙̃
ψi(t), ḣi(t), ẋi(t))

a.e.∈ ∂H

(
xi(t), t, ψ̃i(t) + iλi

∫ t

t2

∂ρi
∂x

(xi(s)) ds
)

(3.9)

−λi(2(xi(t) − x0(t)),−2〈xi(t) − x0(t), ∂x0(t)〉, 0),

(
ψ̃i(t1),−ψ̃i(t2) −

∫ t2

t1

iλi
∂ρi
∂x

(xi(s)) ds
)

∈ λi∂̂k0(xi(t1), xi(t2))(3.10)

+N̂C1∩G(xi(t1)) × N̂C2∩G(xi(t2)),

λi + ‖ψ̃i(t1)‖ 6= 0.(3.11)

Let us normalize the multipliers λi, ψ̃i as follows:

λi + ‖ψ̃i(t1)‖ + iλi

∫ t2

t1

∥∥∥∂ρi
∂x

(xi(s))
∥∥∥ ds = 1.(3.12)

2Using the smooth approximation procedure [17], [24], it is possible to derive our main result
directly from Pontryagin’s maximum principle [25].
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Then, passing to a subsequence, we have λi → λ0 ≥ 0, ψ̃i(t1) → ψ1, and by virtue
of Helly’s theorem [26] the sequence

{
iλi

∂ρi

∂x (xi(·))
}

converges weakly to a bounded
regular Borel vector measure η on I.

Further, due to the Hamiltonian inclusion (3.9) and Proposition 3.2.4(e) in [2] we
have

‖ ˙̃
ψi(t)‖ ≤ κ1(‖ψ̃i(t)‖ + 1) a.e. on I.

Here and in what follows κ1, κ2, . . . denote positive constants. Hence, due to the
Bellman–Gronwall inequality and (3.12) we can suppose ψ̃i ⇒ ψ on I and ˙̃

ψi → ψ̇
weakly in L1(I), i → ∞, where ψ is a Lipschitz continuous vector function. So,
ψ(t1) = ψ1.

Now we prove the measure sign condition (c). For this we show that for any
continuous vector function y on I such that y(t) ∈ TG(x0(t)) ∀ t ∈ I the following
inequality holds:

〈η, y〉 =
∫ t2

t1

y(t) dη ≤ 0.

Using the assumption intTG(x0(t)) 6= ∅ ∀ t ∈ I and Michael’s continuous selection
theorem [27], it is not difficult to prove that there is a sequence of continuous functions
{yi} such that yi ⇒ y, i → ∞ and yi(t) ∈ intTG(x0(t)) ∀ t ∈ I.

Hence, without loss of generality we can assume that there is δ > 0 such that

y(t) ∈ N∗
δ (t) ∀ t ∈ I.(3.13)

Here Nδ(t) = {λy : ‖y − x‖ ≤ δ, x ∈ NG(x0(t)), ‖x‖ = 1, λ ≥ 0} is the conic
δ-neighborhood of the normal cone NG(x0(t)) and N∗

δ (t) its adjoint.
Let us take an arbitrary point τ ∈ I and prove that there is ε(τ) > 0 such that

∂ρi
∂x

(xi(t)) ∈ Nδ/2(τ)(3.14)

for all large enough numbers i and all t such that |t − τ | ≤ ε(τ). Indeed, from the
definition of the function ρi we have

∂ρi
∂x

(xi(t)) =
∫
∂ρ

∂x
(xi(t) + y)wi(y) dy.(3.15)

If x0(τ) ∈ intG, then NG(x0(τ)) = {0} and (3.14) holds, obviously. Suppose that
x0(τ) ∈ ∂G and (3.14) is violated. Then there is a sequence ti → τ , i → ∞ such that
∂ρi

∂x (xi(ti)) 6∈ Nδ/2(τ). Due to (3.15) there is a sequence yi → 0, i → ∞ such that

vi =
∂ρ

∂x
(xi(ti) + yi) 6∈ Nδ/2(τ).(3.16)

According to the properties of the distance function ρ we have ‖vi‖ = 1 and vi ∈
NG(zi), where zi ∈ G is a closest point to xi(ti) + yi (see Proposition 2.5.4 in [2]).
Since xi converges to x0, the sequence {zi} converges to x0(τ), i → ∞.

Passing to a subsequence we obtain

vi → v as i → ∞, ‖v‖ = 1.
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Due to the upper semicontinuity of Clarke’s normal cone NG(x) in the case in which
intTG(x) 6= ∅ we obtain v ∈ NG(x0(τ)), which contradicts (3.16). Thus, the inclusion
(3.14) is proved.

Decreasing the number ε > 0 if necessary, due to (3.13) we get

y(t) ∈ N∗
δ/2(τ) ∀ t : |t− τ | ≤ ε.

This inclusion and (3.14) imply〈
iλi

∂ρi
∂x

(xi(t)), y(t)
〉

≤ 0 ∀ t ∈ I : |t− τ | ≤ ε

for all large enough numbers i.
From this fact and the definition of the measure η, we conclude that for any point

τ ∈ I there is ε(τ) such that∫
I∩[τ−ε(τ),τ+ε(τ)]

y(t) dη ≤ 0,

from where it is not difficult to derive the desired inequality∫ t2

t1

y(t) dη ≤ 0.

Let us prove the nontriviality condition (f); i.e.,

λ0 + ‖ψ(t1)‖ + ‖η‖ 6= 0.

Indeed, let us assume λ0 = 0, ‖ψ(t1)‖ = 0, ‖η‖ = 0. Then from (3.12),

iλi

∫ t2

t1

∥∥∥∂ρi(xi(t))
∂x

∥∥∥ dt → 1, i → ∞.(3.17)

Due to the condition intTG(x0(t)) 6= ∅ there is a continuous vector function g on I
and a number δ > 0 such that ‖g(t)‖ = 1, {y : ‖y − g(t)‖ ≤ 2δ} ⊂ TG(x0(t)) ∀ t ∈ I.
Then, obviously,

〈g(t), y〉 ≤ −2δ‖y‖ ∀ y ∈ NG(x0(t)) ∀ t ∈ I.(3.18)

We show now that ∫ t2

t1

g(s) dη ≤ −δ

2
< 0.

Let δ > 0; then from (3.14) for any point τ ∈ I there is ε(τ) > 0 such that

∂ρi
∂x

(xi(t)) ∈ Nδ/2(τ) ∀ t ∈ I ∩ [τ − ε(τ), τ + ε(τ)]

for all large enough numbers i. Hence, ∀ t ∈ I ∩ [τ − ε(τ), τ + ε(τ)] there exist
z(t) ∈ NG(x0(τ)) with ‖z(t)‖ = 1 and ξ(t) with ‖ξ(t)‖ ≤ δ/2 such that

∂ρi
∂x

(xi(t)) = (z(t) + ξ(t))
∥∥∥∂ρi
∂x

(xi(t))
∥∥∥.(3.19)
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Due to the continuity of g and (3.18) and decreasing ε(τ) > 0 if necessary, we get

〈g(t), z〉 ≤ −δ‖z‖ ∀ z ∈ NG(x0(τ)) ∀ t ∈ I ∩ [τ − ε(τ), τ + ε(τ)].

Thus, by (3.19) we obtain∫ τ+ε(τ)

τ−ε(τ)

〈
g(s),

∂ρi
∂x

(xi(s))
〉
ds ≤ −δ

2

∫ τ+ε(τ)

τ−ε(τ)

∥∥∥∂ρi
∂x

(xi(s))
∥∥∥ ds

for all large enough numbers i.
Using the compactness of the time interval I, it is not difficult to show the exis-

tence of the finite system of disjoint half-open intervals {Ij}, j = 1, . . . , N such that
I = ∪Nj=1Ij and for all large enough numbers i∫

Ij

〈
g(s),

∂ρi
∂x

(xi(s))
〉
ds ≤ −δ

2

∫
Ij

∥∥∥∂ρi
∂x

(xi(s))
∥∥∥ ds.

Hence, ∫ t2

t1

〈
g(s),

∂ρi
∂x

(xi(s))
〉
ds ≤ −δ

2

∫ t2

t1

∥∥∥∂ρi
∂x

(xi(s))
∥∥∥ ds

for all large enough numbers i. According to the definition of the measure η and
(3.17) we have ∫ t2

t1

g(s) dη ≤ −δ

2
< 0.

The nontriviality condition (f) is proved.
Let us denote

pi(t) = H

(
xi(t), t, ψ̃i(t) +

∫ t

t1

iλi
∂ρi
∂x

(xi(s)) ds
)
,

gi(t) = iλiρi(xi(t)) + λi‖xi(t) − x0(t)‖2.

Then hi(t) = pi(t) − gi(t) is an absolutely continuous function ∀ i = 1, 2, . . . . Due to
the endpoint constraints (3.2) we have

pi(t1) = H(xi(t1), t1, ψ̃i(t1)) → H(x0(t1), t1, ψ(t1)),

|gi(t1)| ≤ λi

(
i

2i
+ ‖xi(t1) − x0(t1)‖2

)
→ 0.

So, the sequence {|hi(t1)|} is bounded. Further, due to the Hamiltonian inclusion
(3.9) and (3.12) we have |ḣi(t)| ≤ κ2 ∀ t ∈ I. Therefore, without loss of generality we
can suppose hi ⇒ h on I, ḣi → ḣ weakly in L1(I) as i → ∞, where h is a Lipschitz
continuous function on I.

Let t∗ < t2. Since∫ t

t1

dη = lim
ε→0+

lim
i→∞

∫ t+ε

t1

iλi
∂ρi
∂x

(xi(s)) ds ∀ t < t2
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and gi(t) → 0 a.e. on I, i → ∞ (see the lemma above), one can choose a sequence
τi → t∗ + 0, i → ∞ such that, passing to a subsequence, we get

pi(τi) = H

(
xi(τi), τi, ψ̃i(τi) +

∫ τi

t1

iλi
∂ρi
∂x

(xi(s)) ds
)

→ H

(
x0(t∗), t∗, ψ(t∗) +

∫ t∗

t1

dη

)
, gi(τi) → 0.

Then

h(t∗) = lim
i→∞

hi(τi) = H

(
x0(t∗), t∗, ψ(t∗) +

∫ t∗

t1

dη

)
.

Now let us consider the point t2. Due to the endpoint constraints (3.2), gi(t2) → 0,
and according to the definition of η

h(t2) = lim
i→∞

hi(t2) = H

(
x0(t2), t2, ψ(t2) +

∫ t2

t1

dη

)
.

Thus, H(x0(t), t, ψ(t) +
∫ t
t1
dη) = h(t) ∀ t ∈ I. Hence, the function H(x0(t), t,

ψ(t) +
∫ t
t1
dη) is absolutely continuous on I.

The jump condition (b) is a consequence of the continuity of h for any t > t1.
Let us prove the jump condition (b) for t = t1. We have

hi(t1) = H(xi(t1), t1), ψ̃i(t1)) − iλiρi(xi(t1))

−λi‖xi(t1) − x0(t1)‖2 → H(x0(t1), t1, ψ(t1)).

On the other hand hi(t1) → h(t1) = H(x0(t1), t1, ψ(t1) + η(t1)), i → ∞. Thus, the
jump condition (b) holds for t = t1.

Let us prove the Hamiltonian inclusion (d). As we have proved above, xi ⇒ x0,
ψ̃i ⇒ ψ, hi ⇒ h on I, and ẋi → ẋ0,

˙̃
ψi → ψ̇i, ḣi → ḣ weakly in L1(I). Due to the

definition of the measure η we have∫ t

t1

dη = lim
i→∞

iλi

∫ t

t1

∂ρi
∂x

(xi(s)) ds a.e. on I.

Hence, due to the upper semicontinuity of Clarke’s generalized gradient [2] we obtain

∂H

(
x0(t), t, ψ(t) +

∫ t

t1

dη

)
⊇ lim sup

i→∞
∂H

(
xi(t), t, ψi(t) + iλi

∫ t

t1

∂ρi
∂x

(xi(s)) ds
)

a.e. on I.

Hence, due to the inclusion (3.9) and Mazur’s theorem [1]

(−ψ̇(t), ḣ(t), ẋ0(t)) ∈ ∂H

(
x0(t), t, ψ(t) +

∫ t

t1

dη

)
a.e. on I.

The property (d) is proved.
The transversality condition (e) follows directly from (3.10) and upper semicon-

tinuity of the cone of limiting normals and of the set of limiting subgradients [5], [21],
[22].
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4. The conditions of nondegeneracy and pointwise nontriviality. The
following notion of the controllability of the reference trajectory at the endpoints
plays the central role in our study of the degeneracy phenomenon.

DEFINITION 1. A trajectory x0 of the control system (2.1) is called controllable
at the endpoints (with respect to the state and endpoints constraints) if

H(x0(ti), ti, (−1)ig) > 0(4.1)

∀ g ∈ NG(x0(ti)) ∩ [−N̂Ci∩G(x0(ti))], g 6= 0, i = 1, 2.

The controllability condition (4.1) is a very natural one. Indeed, let the state
constraint set G be regular at the endpoints x1, x2. This means that Clarke’s tangent
cone TG(xi) coincides with the contingent cone KG(xi), i = 1, 2 [2]. Let us sup-
pose that there exists a trajectory x0 of the control system (2.1) satisfying the state
constraints (2.3) and transferring the point x1 to the point x2. Then

lim sup
t

I→ti

x(t) − xi
t− ti

⊆ F (xi, ti) ∩ (−1)i+1KG(xi), i = 1, 2.

Hence, H(xi, ti, (−1)ig) ≥ 0 ∀ g ∈ NG(xi), i = 1, 2. Obviously, if the set G is regular
at the endpoints xi, i = 1, 2 then the controllability condition (4.1) is the generic one.
This means not only that if there is at least one admissible trajectory x0 transferring
the point x1 to the point x2 then using small perturbation Fε(x, t) = F (x, t) + εB,
ε > 0 of the right-hand side of the system we can satisfy (4.1) but also that this
condition is stable under all small enough perturbations of the right-hand side of the
system. Here B denotes the closed unit ball with center at the origin.

THEOREM 2. Let the trajectory x0 satisfying the maximum principle (Theorem
1) be controllable at the endpoints. Then

λ0 + meas
{
t : ψ(t) +

∫ t

t1

dη 6= 0
}
> 0.(4.2)

Proof. Let us suppose that

λ0 = 0 and ψ(t) +
∫ t

t1

dη = 0 a.e. on I.

According to the Hamiltonian inclusion we have

‖ψ̇(t)‖ ≤ κ2

∥∥∥∥ψ(t) +
∫ t

t1

dη

∥∥∥∥ a.e. on I.

Hence, ψ(t) ≡ ψ(t1), measure η is equal to 0 on (t1, t2), and h0(t) ≡ 0. Further,
due to the measure sign condition η(t1) ∈ NG(x1). Hence, ψ(t1) = −η(t1) and due
to the transversality condition η(t1) ∈ NG(x1) ∩ [−N̂C1∩G(x1)], where xi = x0(t1),
i = 1, 2.

It follows from the jump condition that H(x1, t1,−η(t1)) = 0. We have η(t1) = 0
from the previous equality and controllability of the trajectory x0 at the left endpoint.

Let us consider now the right endpoint. Then we obtain similarly that η(t2) ∈
NG(x2) ∩ (−N̂C2∩G(x2)) and H(x2, t2, η(t2)) = 0. Hence, from the controllability of
the trajectory x0 at the right endpoint we have η(t2) = 0.
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Thus, λ0 = 0, ψ(t) ≡ 0, and η = 0. But this contradicts the nontriviality
condition. Hence, the condition (4.2) is proved.

It turns out that in the case in which the set G is regular [2] at the endpoints,
the controllability condition (4.1) is the necessary and sufficient one for the maximum
principle (Theorem 1) to be informative.

THEOREM 3. Let the set G be regular at the endpoints x1, x2 of the trajectory
x0 satisfying the maximum principle. Then the nondegeneracy condition (4.2) holds
for all collections of Lagrange multipliers λ0, ψ, η if and only if the trajectory x0 is
controllable at the endpoints.

Proof. Due to Theorem 2 we need to prove only the necessity.
Suppose that there exists a vector g ∈ NG(x1) ∩ [−N̂C1∩G(x1)], g 6= 0 such that

H(x1, t1,−g) = 0 (the case of the right endpoint is completely analogous). Then we
put λ0 = 0, ψ(t) ≡ g and η = −gδt1 . Obviously, all conditions of Theorem 1 are
satisfied and λ0 + meas

{
t : ψ(t) +

∫ t
t1
dη 6= 0

}
= 0.

THEOREM 4. Let a trajectory x0 satisfying the maximum principle (Theorem 1)
be controllable at the endpoints and

H(x0(t), t, (−1)ig) > 0 ∀ g ∈ NG(x0(t)) : g 6= 0,(4.3)

∀ t ∈ (t1, t2), i = 1, 2.

Then

λ0 +
∥∥∥∥ψ(t) +

∫ t

t1

dη

∥∥∥∥ 6= 0 ∀ t ∈ (t1, t2).(4.4)

Proof. Let us consider the set

T =
{
t ∈ (t1, t2) : ψ(t) +

∫ t

t1

dη = 0
}
.

Suppose that (4.4) is violated. Then λ0 = 0 and T 6= ∅. We prove first that T is open.
Let τ ∈ T . We show that there exists a right-half neighborhood O+

τ of the point τ
such that O+

τ ⊂ T . Let us denote ξ(t) =
∥∥ ∫ t

τ
dη

∥∥. Suppose that ξ(t) 6≡ 0 in some
right-half neighborhood of τ .

Since τ ∈ T and the Hamiltonian inclusion holds, we have

‖ψ̇(t)‖ ≤ κ3(‖ψ(t) − ψ(τ)‖ + ξ(t)),

|ḣ(t)| ≤ κ3(‖ψ(t) − ψ(τ)‖ + ξ(t))

for all t ≥ τ . Therefore, Bellman–Gronwall’s inequality leads to

‖ψ(t) − ψ(τ)‖ ≤ κ4

∫ t

τ

ξ(s) ds, t ≥ τ.(4.5)

The bounded function ξ is nonnegative. Hence∫ σ

τ

∫ t

τ

ξ(s) dsdt ≤
∫ σ

τ

ξ(s)ds ∀σ ∈ [τ, τ + 1].

Due to the assumption τ ∈ T we have h(τ) = 0. Therefore, due to the absolute
continuity of h, (4.5), and the above inequality we obtain

|h(t)| ≤ κ5

∫ t

τ

ξ(s) ds ∀ t ≥ τ.(4.6)
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Now Bellman–Gronwall’s inequality leads to the existence of a sequence {ti} : ti →
τ + 0 as i → ∞ such that

ξ(ti) 6= 0; ξ(ti)−1
∫ ti

τ

ξ(s) ds → 0, i → ∞.

Hence, due to (4.5), (4.6) we obtain

ξ(ti)−1h(ti) → 0, ξ(ti)−1‖ψ(ti) − ψ(τ)‖ → 0, i → ∞.(4.7)

Further, due to the upper semicontinuity of the normal cone NG(x) and (2.5) there
exists g ∈ NG(x0(τ)), ‖g‖ = 1 such that, passing to a subsequence, we obtain

ξ(ti)−1
∫ ti

τ

dη → g, i → ∞.

Due to the assumption τ ∈ T we have

h(ti) = H

(
x0(ti), ti, ψ(ti) − ψ(τ) +

∫ ti

τ

dη

)
.

Dividing both parts of this equality by ξ(ti) and passing to the limit, due to (4.7) we
obtain

H(x0(τ), τ, g) = 0.

Thus, we come to a contradiction with assumption (4.3) for i = 2.
This contradiction proves that ξ(t) ≡ 0 ∀ t ∈ O+

τ for some right-half neighborhood
O+
τ of τ . Due to (4.4) we have

ψ(t) ≡ ψ(τ) ∀ t ∈ O+
τ ⇒ ψ(t) +

∫ t

t1

dη ≡ 0 ∀ t ∈ O+
τ .

Hence, O+
τ ⊂ T . Using similar arguments, one can prove the existence of some left-half

neighborhood O−
τ of the point τ such that O−

τ ⊂ T .
So, we have proved that the set T is open. Now let us prove the closedness of the

set T with respect to interval (t1, t2).
Indeed, let a sequence {ti} converge to τ ∈ (t1, t2), ti ∈ T , i = 1, 2, . . . . Without

loss of generality we can consider two cases: ti → τ + 0 and ti → τ − 0.
Let ti → τ + 0. Then due to the regularity of the measure η we obtain that the

function ψ(t) +
∫ t
t1
dη is continuous from the right. Hence,

ψ(τ) +
∫ τ

t1

dη = lim
i→∞

(
ψ(ti) +

∫ ti

t1

dη

)
= 0.

Thus, τ ∈ T .
Let ti → τ − 0. Then

η(τ) = η(τ) + lim
i→∞

(
ψ(ti) +

∫ ti

t1

dη

)
= η(τ) + ψ(τ) +

∫
[t1,τ)

dη = ψ(τ) +
∫ τ

t1

dη.
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Due to the continuity of the Hamiltonian h(τ) = limi→∞ h(ti) = 0. Hence,

H(x0(τ), τ, η(τ)) = H

(
x0(τ), τ, ψ(τ) +

∫ τ

t1

dη

)
= 0.

Due to the measure sign condition η(τ) ∈ NG(x0(τ)). Therefore, the condition (4.3)
with i = 1 gives η(τ) = 0. So ψ(τ) +

∫ τ
t1
dη = 0 and τ ∈ T .

Thus, we have proved that the set T is closed with respect to the interval (t1, t2).
We have proved above that T is open. The interval (t1, t2) is an arcwise connected
set. Hence, T = (t1, t2). But this contradicts the statement of Theorem 2. Hence,
(4.4) is proved.

We should note that in the problem considered above in Example 2 the state
constraint set G is regular at any point and H(x, g) > 0 ∀ g 6= 0. Hence, according
to Theorem 4 the pointwise nontriviality condition (4.4) holds for any solution of this
problem.

5. The classical optimal control problem. Now let us consider the classical
optimal control problem for systems described by ordinary differential equations with
control parameters. This problem is formulated as follows:

ẋ = f(x, t, u), u ∈ U ;(5.1)

x(t1) = x1, x(t2) = x2, p = (t1, t2, x1, x2);(5.2)

k1(p) ≤ 0, k2(p) = 0;(5.3)

g(x(t)) ≤ 0 ∀ t ∈ I = [t1, t2];(5.4)

J(u, p) = k0(p) → min .(5.5)

Here x ∈ Rn; U is a given closed subset of Rk; smooth vector functions k1, k2, g take
values in spaces of dimensions d1, d2, and m, respectively; and the scalar function
k0 is also supposed to be smooth. As usual, we assume that the set of admissible
controls consists of all bounded measurable functions u, each of them defined on its
own time interval I such that u(t) ∈ U a.e. on I.

Before formulating the maximum principle for the problem (5.1)–(5.5) let us in-
troduce some notations and assumptions.

We define the small Lagrangian l and Hamilton–Pontryagin’s function H as fol-
lows:

l(p, λ) = λ0k0(p) + 〈λ1, k1(p)〉 + 〈λ2, k2(p)〉,

H(x, t, u, ψ) = 〈f(x, t, u), ψ〉.
Here λ = (λ0, λ1, λ2) ∈ Rd1+d2+1, p = (t1, t2, x1, x2) ∈ R2n+2, ψ ∈ Rn.

The Hamiltonian associated with the control system (5.1) is defined by

H(x, t, ψ) = sup
u∈U

〈f(x, t, u), ψ〉.

Let a pair x0, u0 be a solution of the problem (5.1)–(5.5) and I0 = [t1,0, t2,0],
p0 = (t1,0, t2,0, x1,0, x2,0) correspond to it. We suppose that t1,0 < t2,0 and the
following assumptions are fulfilled:
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(H1) The vectors
{∂gj(x0(t))

∂x

}
j: gj(x0(t))=0 are linearly independent ∀ t ∈ I0; g =

(g1, . . . , gm).
(H2) rank ∂k2

∂p (p0) = d2.

∃ y ∈ Rd2 :
∂k2

∂p
(p0)y = 0,

〈
∂k1,i

∂p
(p0), y

〉
< 0,

where k1,i(p0) are all the coordinates of the vector k1(p0) such that k1,i(p0) = 0.
(H3) The state constraints (5.4) are in accordance with the endpoint constraints

(5.3) in some neighborhood of the ends of x0. This means that there exists ε > 0 such
that

{p : ‖p− p0‖ ≤ ε, k1(p) ≤ 0, k2(p) = 0, k0(p) ≤ k0(p0)}

⊂ {p : g(x1) ≤ 0, g(x2) ≤ 0}.
(H4) The sets F (x, t) = {f(x, t, u) : u ∈ U} are convex for all x, t.
The main distinction of the problem (5.1)–(5.5) from (2.1)–(2.4) consists of the

smooth parametric form of the differential, endpoint, and state constraints.
It follows from (H1) that the state constraints set G = {x ∈ Rn : g(x) ≤ 0} is

regular at x0(t) ∀ t ∈ I0 and

NG(x0(t)) = cone
{
∂gj
∂x

(x0(t))
}
j: gj(x0(t))=0

∀ t ∈ I0.

Analogously, (H2) provides the regularity of the endpoint constraint set P = {p ∈
R2n+2 : k1(p) ≤ 0, k2(p) = 0} at p0 and

NP (p0) =
{
z ∈ R2n+2 : z =

d1∑
i=1

αi
∂k1,i(p0)

∂p

+
d2∑
i=1

βi
∂k2,i(p0)

∂p
, β ∈ R1, αi ≥ 0,

d1∑
i=1

αik1,i(p0) = 0
}
.

Note that (H3) holds automatically, if some neighborhood of p0 in P is contained
in {z = (t1, t2, x1, x2) ∈ R2n+2 : xi ∈ G, i = 1, 2}. In this case the normal cones to
the sets P and PG = {p ∈ P : xi ∈ G, i = 1, 2} are the same.

The following result is the modified version of Pontryagin’s maximum principle.
THEOREM 5 (maximum principle). Let the pair x0, u0 solve the problem (5.1)–

(5.5). Then there exist a vector λ = (λ0, λ1, λ2): λ0 ∈ R1, λi ∈ Rdi , i = 1, 2; a
left-continuous vector function ψ of bounded variation; and a bounded nonnegative
m-dimensional regular Borel measure η on I0 such that following conditions hold:

(a) ψ(t) = − ∂l

∂x2
(p0, λ) +

∫ t2,0

t

∂H
∂x

(x0(s), s, u0(s), ψ(s)) ds

−
t2,0∫
t

∂g

∂x
(x0(s)) dη ∀ t ∈ I0;

(b) H(x0(t), t, u0(t), ψ0(t)) = H(x0(t), t, ψ(t)) a.e. on I0;
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(c) the function h(t) = H(x0(t), t, ψ(t)) is absolutely continuous on I0 and

dh(t)
dt

=
∂H
∂t

(x0(t), t, u0(t), ψ(t)) a.e. on I0;

(d) H(x0(t), t, ψ(t)) = H

(
x0(t), t, ψ(t) +

∂g

∂x
(x0(t))η(t)

)
∀ t ∈ I0;

(e) ψ(t1,0) =
∂l

∂x1
(p0, λ),

−h(t1,0) =
∂l

∂t1
(p0, λ), h(t2,0) =

∂l

∂t2
(p0, λ);

(f) supp ηi ⊂ {t ∈ I0 : gi(x0(t)) = 0}, i = 1, 2, . . . ,m;
(g) λ0 ≥ 0, λ1 ≥ 0, 〈k1(p0), λ1〉 = 0;
(h) ‖λ‖ + ‖η‖ 6= 0.
Note that if assumption (H3) is violated, then the endpoint constraint set P

should be considered in intrinsic form. In this case the assertion of Theorem 5 is
valid with the transversality condition analogous to the one in Theorem 1 (see also
[19]). The smooth nonautonomous problem with state constraint g(x, t) ≤ 0 can be
reduced to the autonomous one standardly [25] by introducing an additional variable
ẋn+1 = 1.

DEFINITION 2. A trajectory x0 is called controllable at the endpoints3 (with respect
to the state and endpoint constraints) if

H(x0(ti,0), ti,0, (−1)izi) > 0

∀ zi 6= 0 : ∃z = (z1, z2) ∈ N ∩D, i = 1, 2;

N = NG(x0(t1,0)) ×NG(x0(t2,0)), D =
{
(z1, z2) ∈ R2n : (z1, z2)

= − ∂

∂(x1, x2)
(〈λ1, k1(p0)〉 + 〈λ2, k2(p0)〉), λi ∈ Rdi , i = 1, 2; λ1 ≥ 0

}
.

THEOREM 6. Let pair x0, u0 satisfy the maximum principle. Then for all collec-
tions of Lagrange multipliers

λ0 + meas {t ∈ I0 : ψ(t) 6= 0} > 0

if and only if the trajectory x0 is controllable at the endpoints.
THEOREM 7. Let pair x0, u0 satisfy the maximum principle and the trajectory x0

be controllable at the endpoints. Let ∀ t ∈ (t1,0, t2,0) ∃ui(t) ∈ U :

(−1)i
〈
∂gj
∂x

(x0(t)), f(x0(t), t, ui(t))
〉
> 0

∀ j : gj(x0(t)) = 0, i = 1, 2.

3This notion of controllability at the endpoints is a little bit weaker than the one introduced in
[9].
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Then

λ0 + ‖ψ(t)‖ 6= 0 ∀ t ∈ (t1,0, t2,0).

The proofs of Theorems 5–7 are analogous to the ones of Theorems 1–4 above.
Some details of these proofs concerning time-transversality conditions and problems
formulated in the class of generalized controls can be found in [14].

Finally, let us consider the case in which maximum principle degenerates. In this
case under some controllability conditions it is possible to guarantee the existence of
at least one nontrivial collection of Lagrange multipliers.

THEOREM 8. Let the pair x0, u0 satisfy the maximum principle (Theorem 5) and

N = NG(x0(t1,0)) × NG(x0(t2,0)). Suppose that ∀ z = (z1, z2) ∈ N ∩ Im
[
∂k2(p0)
∂(x1,x2)

]∗
,

z 6= 0 ∃i = 1, 2 such that the following condition holds:

H(x0(ti,0), ti,0, (−1)izi) > 0.(5.6)

Then there exists at least one nontrivial collection of Lagrange multipliers λ, ψ, η
(i.e., such that λ0 + meas {t : ψ(t) 6= 0} > 0) corresponding to x0.

Proof. Let λ = (λ0, λ1, λ2), ψ, η be a collection of Lagrange multipliers corre-
sponding to x0.

If (4.2) holds, then λ, ψ, η are desired Lagrange multipliers.
Suppose now that λ0 = 0, ψ(t) = 0 ∀ t ∈ (t1,0, t2,0). Then η = η1δt1,0 + η2δt2,0

(ηj = η(tj,0), j = 1, 2) and the conditions of the maximum principle lead to

∂l

∂xj
(p0, λ) = −∂g

∂x
(x0(tj,0))ηj , j = 1, 2;(5.7)

H(x0(tj,0), tj,0, (−1)j
∂g

∂x
(x0(tj,0))ηj) = 0, j = 1, 2.(5.8)

Consider the following auxiliary mathematical programming problem:

χ(p) = 〈g(x1), η1〉 + 〈g(x2), η2〉 → max ,

k0(p) ≤ k0(p0), k1(p) ≤ 0, k2(p) = 0.

Due to (H3) p0 is a local solution of this problem. Hence, by virtue of the Lagrange
multiplier rule there exist γ ≥ 0, β = (β0, β1, β2) ∈ Rd1+d2+1 such that

γ
∂g

∂x
(xj,0)ηj =

∂l

∂xj
(p0, β), j = 1, 2;

β0 ≥ 0, β1 ≥ 0, β0k0(p0) = 0; 〈β1, k1(p0)〉 = 0; γ + ‖β‖ 6= 0.

If γ = 0, then β 6= 0 and, hence, p0 satisfies the Lagrange multiplier rule for the
problem

k0(p) → min ,(5.9)

k1(p) ≤ 0, k2(p) = 0.(5.10)

In this case by virtue of (H2) β0 > 0. Hence, λ̃ = (β0, β1, β2), ψ̃(t) = 0, η̃ = 0 is a
nontrivial collection of Lagrange multipliers corresponding to x0.
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Suppose that γ 6= 0. Then, setting γ = 1, due to (5.7) we obtain

∂g

∂x
(xj,0)ηj =

∂l

∂xj
(p0, β) = − ∂l

∂xj
(p0, λ), j = 1, 2.(5.11)

Hence,

∂l

∂xj
(p0, λ+ β) = 0, j = 1, 2.

If λ+β 6= 0, then p0 satisfy the Lagrange multipliers rule for (5.9), (5.10). Hence,
due to (H2), β0 > 0 and λ̃ = (β0, λ1 + β1, λ2 + β2), ψ̃(t) ≡ 0, η̃ = 0 is a nontrivial
collection of Lagrange multipliers corresponding to x0.

If λ + β = 0, then β0 = 0, λ1 = −β1 = 0, λ2 = −β2 6= 0. Hence, by (5.11) and
(H2),

z = (z1, z2) =
(
∂g

∂x
(x1,0)η1,

∂g

∂x
(x2,0)η2

)
=

[
∂k2(p0)
∂(x1, x2)

]∗
β2 6= 0.

Due to (5.8) this equality contradicts assumptions (5.6) of the theorem.
Let us consider now the problem of Example 1. In this case the optimal trajectory

x0(t) ≡ 0 is not controllable at the left endpoint and any corresponding collection of
Lagrange multipliers is trivial. The question arises as how to modify it to exhibit
the degeneracy phenomenon. In our opinion, if the optimal trajectory fails to be
controllable at the endpoints the class of admissible Lagrange multipliers should be
generalized. Some results in this direction can be found in [15], [17]. Here we restrict
ourselves to an illustrative example.

Example 3. Following a suggestion of Maurer we introduce a small parameter
α < 0 in the problem of Example 1:

ẋ1 = tu, |u| ≤ 1,

ẋ2 = u;

x1(0) = 0, x2(0) = 0, x1(1) ≥ α;

x1(t) ≥ α ∀ t ∈ [0, 1];

J(u(·)) = x2(1) → min .

Then the optimal pair xα, uα is the following:

xα1 (t) =

 − t2

2
, t ∈ [0,

√−2α];

−α, t ∈ [
√−2α, 1];

xα2 (t) =

{ −t, t ∈ [0,
√−2α];

−√−2α, t ∈ [
√−2α, 1];

uα(t) =

{ −1 a.e. on [0,
√−2α];

0 a.e. on [
√−2α, 1].

Let us apply Theorem 5. The easy calculations give the Lagrange multipliers λα0 , λα1 ,



THE DEGENERACY PHENOMENON 949

ψα, ηα corresponding to xα, uα:

λα0 = 1, λα1 = 1;

ψα1 (t) =


1√−2α

, t ∈ [0,
√−2α];

1/t, t ∈ [
√−2α, 1];

ψα2 (t) = −1;

dηα = 1/t2dt, t ∈ (
√−2α, 1];

supp ηα = (
√−2α, 1].

In the limit as α → −0, we obtain

λα0 → λ0 = 1, λα1 → λ1 = 1;

ψα(t) → ψ(t) =
(

1
t
,−1

)
∀ t ∈ (0, 1];

ηα → η : supp η = (0, 1], dη =
1
t2
dt.

The obtained collection λ0, λ1, ψ, η satisfies all the conditions of Theorem 5 except
the conditions for ψ to be a function of bounded variation and the measure η to be
bounded.

6. Bibliographical notes. The first version of Pontryagin’s maximum principle
for problems with state constraints was obtained by Gamkrelidze in 1959 (see [25],
[28]) under a priori assumptions on an optimal trajectory. (It is supposed that the
reference trajectory consists of the finite number of boundary and interior arcs and
corresponding control is regular.) This maximum principle contains no measures and
is the nondegenerate one.

The present paper deals with the degeneracy phenomenon arising in a framework
of the Dubovitskii–Milutin version of Pontryagin’s maximum principle proven in 1963
[29] for trajectories without any a priori assumptions (see also [1], [3]).

The first conditions which guarantee the nondegeneracy of this maximum princi-
ple for classical optimal control problem with state constraints were obtained in [16],
[18], and [9]. A maximum principle with pointwise nontriviality conditions of the type
as in Theorem 7 above was obtained in [16], [18] under a controllability assumption
along the reference trajectory. The maximum principle with zero atomic components
of the measure at the endpoints was obtained in [9] under the controllability condition
at the endpoints similar to (4.1). These results showed the importance of assumptions
of controllability and accordance of state and endpoint constraints for strengthened
nontriviality conditions. We should note that the assumption of accordance for state
and endpoint constraints were used but not formulated explicitly in [16].

The results obtained in [9], [16] were generalized and strengthened in [8], [10],
[11], [14].

In [12], [13] the maximum principle with new time-transversality conditions was
obtained. It was proved that this maximum principle holds with nontriviality condi-
tion (4.2) under controllability conditions at the endpoints similar to (4.1).

The results obtained in [12], [13] are close to the ones obtained in [8], [9], [10],
but the methods used are essentially different. As in present paper a perturbation
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technique is used in [12], [13] to derive a new version of the maximum principle with-
out any controllability assumptions and then controllability conditions are used to
prove the strengthened nontriviality conditions, whereas in [8], [9], [10] the controlla-
bility conditions are used from the beginning to obtain the nondegenerate maximum
principle.

Nondegenerate first-order necessary optimality conditions for differential inclu-
sions problem were obtained in [15] in the case when the support function of the
right-hand side is smooth in x (these results are analogous to [12], [13]). Moreover,
[15] contains the maximum principle with unbounded measures for trajectories which
are weakly controllable at the endpoints. These results were generalized to a more
natural class of problems with locally Lipschitz support function in [17] (this paper
contains main technical devices used in present investigation).

The present paper summarizes and synthesizes the essence of previous works [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18]. The principal distinction of the
result obtained here is the following. The maximum principle for problems with state
constraints is obtained with additional jump condition at the endtimes without any a
priori assumptions. This condition is a new one (even in the smooth case of classical
optimal control problem) and enables one to describe the degeneracy phenomenon.

The paper [30] deals with the degeneracy phenomenon for the classical optimal
control problem on the fixed time interval I = [t1, t2]. The state constraint set is
given by the time-dependent inequality g(x, t) ≤ 0, the left endpoint x1 is fixed on
the state boundary and the right endpoint constraint is given by the inequality. The
right-hand side f of the control system satisfies (H4) and is measurable in t.

The main result of [30, Proposition 2.1] asserts that if there is an admissible
control u′ such that

lim
ε→0+

ess sup
t1≤s<t1+ε

〈
∂g

∂x
(x1, t1), (f(x1, s, u

′(s)) − f(x1, s, u0(s)))
〉
< 0,(6.1)

then the maximum principle [2] holds with the following nontriviality condition:

λ0 + ‖λ1‖ +

∣∣∣∣∣
∫

(t1,t2]
dη

∣∣∣∣∣ 6= 0.(6.2)

Here u0 is the optimal control; λ0, λ1 are the Lagrange multipliers corresponding to
the functional and right endpoint inequality constraint, respectively; η is the measure
arising in the maximum principle.

This assertion follows from [12], [13] (see Proposition), and also from Theorem 5
above if (H3) is valid and the function f is smooth in t. To our knowledge it is a new
one in the measurable in t case.

Consider condition (6.1). If the function f is continuous in t uniformly in u, the
state constraint is autonomous, and the left endpoint x1 is fixed, then (6.1) is more
restrictive than (4.1) for i = 1 (or similar controllability condition at the left endpoint
introduced earlier in [9]). Indeed, (4.1) follows from (6.1) in this case. On the other
hand (6.1) is an a priori assumption on the behavior of an optimal control u0 near
t1 while (4.1) is an assumption on the controllability of the system at the endpoints
and is the checkable one. Condition (6.1) is equivalent to (4.1) under the additional
assumption that the reference trajectory lies on the state boundary in some right
neighborhood O+

t1 of t1 [30] or that the corresponding control u0 is continuous on
O+
t1 .
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Some normality conditions (normality means λ0 > 0) are also suggested in [30].
Note that a sufficient condition for λ0 > 0 has been obtained earlier by Maurer [31]
by expressing a regularity condition in optimization in terms of control problems.

Acknowledgment. We are very grateful to the anonymous referees for helpful
suggestions.
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Abstract. A general setting is developed which describes controlled invariance for nonlinear
control systems and which incorporates the previous approaches dealing with controlled invariant
(co -) distributions. A special class of controlled invariant subspaces, called controllability cospaces,
is introduced. These geometric notions are shown to be useful for deriving a (geometric) solution to
the dynamic disturbance decoupling problem and for characterizing the so-called fixed dynamics for
noninteracting control. These fixed dynamics are a central issue in studying noninteracting control
with stability. The class of quasi-static state feedbacks is used.

Key words. nonlinear systems, controlled invariance, quasi-static state feedback

AMS subject classifications. 93C10, 93B27, 93C60, 93C35
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1. Introduction. During the last two decades, nonlinear control theory was
developed thanks to the increasing number of researchers involved in this area. A
main goal of the research in the 1980s was the generalization of the so-called geometric
approach which proved to be particularly efficient for linear time-invariant systems
(see [48], [4] for an overview). In this linear theory, controlled invariance plays a
fundamental role in both static and dynamic feedback control problems. The goal of
generalizing the linear approach to the nonlinear case was only partially reached: the
situation is quite well understood when regular static feedback synthesis problems are
considered; limits of the standard (geometric) notions became clear at the end of the
1980s in the study of such problems as

• control problems involving dynamic feedback,
• the inversion of a nonlinear system, the definition of its rank, and so on.

Alternative (algebraic) tools have been developed from 1985 on [19] and a definition
of the rank of a system was provided by a differential algebraic theory [20].

The goal of this paper is to introduce a generalized notion of controlled invari-
ance. The motivation is to clarify the geometric structure of nonlinear systems and
to develop a geometric framework to tackle synthesis problems via dynamic feedback.
In particular, we answer the two following questions:

Question 1. Does there exist any geometric solution to the dynamic disturbance
decoupling problem (DDDP)?
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TABLE 1
(Geometric) solution to the DDP.

Static feedback Dynamic feedback
Linear systems E ⊂ V∗

Nonlinear systems P ⊂ ∆∗ ?

TABLE 2
Decoupling zero structure.

Feedback Invertible decoupling matrix Noninvertible decoupling matrix
dim (P∗)

(Quasi-) Static Isidori and Grizzle [32] ?

Dynamic dim (∆mix) dim (∆mix(Σp))
Wagner [47] Zhan, Tarn, and Isidori [50]

Question 2. Does there exist a geometric structure of nonlinear systems which
displays the rank, the so-called decoupling zeros (under dynamic feedback), and the
like?

The answer to such questions is of major importance since these questions moti-
vate the search for geometric solutions to any other synthesis problem which involves
dynamic feedback. Such solutions will contribute to the completion of the extension
to nonlinear systems of the linear geometric theory [48], [4].

DDDP, considered in Question 1, is a special control problem involving dynamic
feedback and was first stated and studied in [26], [25], [44], where an (algebraic) solu-
tion was provided based on the inversion algorithm. Also, a geometric interpretation
was given by using (nonintrinsic) standard controlled invariant (co-)distributions on
an extended state space and then projecting these (co-)distributions on the original
state space to obtain intrinsic objects. Parallel results can be found in [42], [41], [27].
The generalization of controlled invariance which is introduced in this paper is shown
to give a natural geometric solution to the DDDP, i.e., without taking recourse to
nonintrinsic objects defined on an extended state space that are rendered intrinsic
after projection. Of course, it goes without saying that the objects defined in this
paper and the geometric objects defined in [26], [25], [44] carry the same information
concerning the solvability of the DDDP. Recall that in the special case of linear sys-
tems, DDDP is equivalent to DDP (static feedback disturbance decoupling problem).
The state of the art is summarized in Table 1, where notations are borrowed from
[48], [29], [38].

One contribution of the paper is the completion of Table 1.
Question 2 originated in [30]. Standard controlled invariant distributions cannot

be used to characterize the rank of a system in a straightforward manner. The rank
was introduced in [19] based on a differential algebraic analysis. A geometric interpre-
tation of the rank may be found in [45], based on controllability distributions defined
on a certain extended state space. Contributions which parallel the geometric and
algebraic approaches can be found in [49].

Generalized controlled invariance introduced in this paper is shown to give a
natural and intrinsic geometric characterization of the rank. It further displays new
(geometric) structures of a nonlinear system. We focus on the structure related to the
so-called decoupling zeros (under quasi-static feedback [12], [13], [14]). We summarize
once again the state of the art in Table 2, and we borrow the notations from the given
references.



GENERALIZED CONTROLLED INVARIANCE 955

TABLE 3
Controlled invariance.

Feedback References
u = α(x) + v Brockett

Isidori et al.
u = α(x) + β(x)v Hirschorn

Nijmeijer and van der Schaft
u = α(x, v, v̇, . . . , v(k)) ?

In this paper, Table 2 is completed thanks to the controllability cospaces intro-
duced in what follows. Moreover, throughout the text, the new geometric structures
are compared with the standard ones. Both embody different and complementary
properties.

The study of controlled invariance for nonlinear systems of the form

ẋ = f(x) + g(x)u,(1)

where x ∈ Rn, u ∈ Rm was initiated in [8]. In this paper invariants were sought under
feedback transformations of the form

u = α(x) + v.(2)

Later on, controlled invariance was tackled by various authors [31], [24], [36], [37].
The group of feedback transformations acting on (1) was enlarged to transformations
of the form

u = α(x) + β(x)v,(3)

where β(x) is square and locally invertible. These works yielded the definition of
a controlled invariant distribution. The key was found for the solution of synthesis
problems, such as the disturbance decoupling problem and the noninteracting control
problem, via regular (or invertible) static state feedback (see [29], [38] for an overview).
The study of controlled invariance under the class of feedbacks (3) remains active; see
[10], [22], [11], [43], [49] for recent contributions. A special class of controlled invariant
distributions is given by controllability distributions [39], [33], [34]. They became a
basic tool for solving the noninteracting control problem with or without stability.
Indeed, the controllability distributions allow us to characterize the fixed dynamics of
the decoupled system via static feedback [32].

In this paper, a generalized notion of controlled invariance is introduced by allow-
ing an enlarged class of feedback transformations acting on (1), namely the class of
quasi-static feedbacks u = α(x, v, v̇, . . . , v(k)). This class of feedbacks describes intrin-
sic properties of the system with respect to the solvability of synthesis problems via
dynamic feedback as disturbance decoupling or noninteracting control. In this sense,
quasi-static feedbacks are considered a mathematical tool rather than a new class of
feedbacks to be used in practical applications. The various contributions to the study
of controlled invariance are summarized in Table 3. This table will be completed in
this paper. Preliminary results can be found in [28].

Quasi-static feedback has been used in [40] to derive canonical forms (see also
[46]) and was formalized in [12], [13], [14], where the input-output decoupling problem
under quasi-static state feedback was solved as well. Practical applications of quasi-
static feedback can be found in [16].
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In what follows we consider a nonlinear control system (1), where the entries of
f(x) and g(x) are meromorphic functions from Rn to R. Recall that a meromorphic
function is the quotient of two analytic functions. This allows us to derive properties
of the system under consideration on an open and dense subset of the state space.
Different classes of systems can also be treated:

• C∞ systems, where all results should be explicitly stated as local results, valid
around a regular point, where regularity is to be defined in an appropriate
way, depending on the problem under consideration;

• analytic systems, in which case the results are also valid on some open dense
submanifold of the state space.

In the rest of this paper we use mainly a function field formalism. It is assumed that
rank g(x) = m and that n ≥ 1.

The organization of the paper is as follows. In section 2 we define the general-
ized notion of invariance with respect to the dynamics (1). Section 3 is devoted to
controlled invariance and related properties. A geometric necessary and sufficient con-
dition for the existence of a solution to DDDP is obtained. Controllability cospaces
and their applications as well as the fixed modes or decoupling zero dynamics under
quasi-static feedback are treated in section 4.

2. Invariant subspaces. We follow the notations and setting of [18]. Let K
denote the field of meromorphic functions of {x, u(k), k ≥ 0}. E is the formal vector
space spanned by {dη | η ∈ K} over K. The notation dx stands for {dx1, . . . , dxn} and
du(k) for {du(k)

1 , . . . , du
(k)
m }. Let X := spanK{dx} and U := spanK{du, du̇, . . . , du(k) |

k ≥ 0}.
Throughout this paper we employ the following terminology. A vector ω ⊂ E

is called exact if there exists a φ ∈ K such that ω = dφ. A subspace Ω ⊂ E of
dimension r is called exact if there exist functions φ1, . . . , φr ∈ K such that Ω =
spanK{dφ1, . . . , dφr}. Given subspaces Ω1 ⊂ Ω2 ⊂ E , (Ω2/Ω1) is said to be exact if
there exist functions φ1, . . . , φd ∈ E , with d = dim(Ω2)−dim(Ω1), such that Ω2 = Ω1⊕
spanK{dφ1, . . . , dφd}, or, in other words, (Ω2/Ω1) is isomorphic to an exact subspace
of E . Consider a subspace Ω ⊂ E . Then clearly {0} ⊂ Ω is exact. Furthermore, if
Ω1 ⊂ Ω, Ω2 ⊂ Ω are exact, then Ω1 + Ω2 ⊂ Ω is also exact. Hence there exists a
unique maximal exact subspace in Ω.

Consider a subspace Ω ⊂ X . Define

Ω̇ = spanK{ω̇ | ω ∈ Ω},(4)

where ω =
∑n

i=1 ωi(x, u, u̇, . . . , u(n−1))dxi and time derivation is defined by

ω̇ =
n∑

i=1

(ωidẋi + ω̇idxi).

Thus ω̇ ∈ spanK{dx, du}.
DEFINITION 2.1. A subspace Ω ⊂ X is said to be invariant with respect to (1) if

Ω̇ ⊂ Ω + spanK{du}.(5)

Remark 2.2. Let Kk be the field of meromorphic functions of x, u, . . . , u(k) and
define

K′ =
⋃
k∈N

Kk.



GENERALIZED CONTROLLED INVARIANCE 957

Then (5) is equivalent to the statement that (Ω + spanK′{du(k) | k ≥ 0}) is a differ-
ential vector space, with the derivation defined above.

Example 2.3. Let Ω be an integrable invariant codistribution for (1) in the sense
of, e.g., [29], [38], and let (x1, x2) be a local system of coordinates such that Ω =
span{dx1}. Then in the coordinates (x1, x2), (1) takes the form (cf. [29], [38])

ẋ1 = f1(x1) + g1(x1)u,
ẋ2 = f2(x1, x2) + g2(x1, x2)u.

(6)

Interpreting Ω as a subspace of spanK{dx}, we then obtain

Ω̇ = spanK{dẋ1} = spanK{d(f1(x1) + g1(x1)u)} ⊂ Ω + spanK{du}.(7)

Hence Ω is invariant in the sense of Definition 2.1.
When a given subspace is not invariant, it is interesting to know whether or not

there exists a feedback transformation that renders it invariant. This is the topic of
the next section.

3. Controlled invariant subspaces. In this section we define and characterize
the controlled invariance of subspaces Ω ⊂ X under quasi-static state feedback. In
subsection 3.1 we first define quasi-static state feedback, based on [12], [13], [14]. In
subsection 3.2 we give a definition of controlled invariance under quasi-static state
feedback. In subsection 3.3 some properties of controlled invariance under regular
static state feedback (3) are given. Conditions for controlled invariance of subspaces
Ω ⊂ X under quasi-static state feedback are investigated in subsection 3.4. We make
some remarks about the smallest controlled invariant subspace containing some given
subspace in subsection 3.4.2. As shown in section 3.5, this subspace allows us to
characterize the solvability conditions of the DDDP.

3.1. Quasi-static state feedback. Consider the nonlinear system (1). A gen-
eralized static state feedback for (1) is a feedback of the form

u = φ(x, v, . . . , v(r)),(8)

where v ∈ Rm denotes the new controls. Let Kv denote the field of meromorphic
functions of {x, {v(k) | k ≥ 0}}, and define the formal vector space Ev := spanKv

{dξ |
ξ ∈ Kv}. As in [12], [13], we define the following filtrations [3] of Ev:

V−1 := spanKv
{dx},

Vk := spanKv
{dx, dv, . . . , dv(k)} (k ≥ 0),

(9)

U−1 := spanKv
{dx},

Uk := spanKv
{dx, dφ, . . . , dφ(k)} (k ≥ 0).

(10)

The filtrations Uk and Vk are said to have bounded difference [3] if there exists an
s ∈ N such that for all k ≥ −1

Uk ⊂ Vk+s,

Vk ⊂ Uk+s.
(11)

DEFINITION 3.1 ([12], [13], [14]). u given by (8) is said to be a quasi-static state
feedback for (1) if the filtrations Uk and Vk have bounded difference.
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Remark 3.2. It is easily verified that a regular static state feedback (3) is a
quasi-static state feedback.

The following result is also easily proven.
PROPOSITION 3.3. Let u given by (8) be a quasi-static state feedback. Then there

locally exists a function ψ(x, u, . . . , u(r)) such that

v = ψ(x, u, . . . , u(r)).(12)

Remark 3.4. In [17] a definition of quasi-static state feedback is given for gener-
alized systems (systems of the form ẋ = f(x, u, u̇, . . . , u(s)), y = h(x, u, u̇, . . . , u(s))).
This definition is the same as Definition 3.1 with the extra requirement that x is a
state (in the sense of [17]) of the closed-loop system.

3.2. Controlled invariance. Consider the control system (1) together with a
quasi-static state feedback (8) and define V := spanKv

{dv(k) | k ≥ 0}. We denote by
Θ(k) the time derivative of order k of Θ along the trajectories of the system (1) and
by Θ[k] the time derivative of order k of Θ along the trajectories of the closed-loop
system (1), (8). We will write Θ̇ for Θ(1).

DEFINITION 3.5. A subspace Ω ⊂ X is said to be controlled invariant for (1) if
there exists a quasi-static state feedback (8) such that for (1), (8) one has

Ω[1] ⊂ Ω + V.(13)

The definition of controlled invariance given in Definition 3.5 is in accordance
with the well-known definition of a controlled invariant codistribution. Recall from
[29], [38], e.g., that a codistribution Ω is controlled invariant if there exists a regular
static state feedback (3) such that

Lf+gαΩ ⊂ Ω,

L(gβ)∗i
Ω ⊂ Ω (i = 1, . . . ,m).

(14)

Let ω ∈ Ω. Then for (1), (3) we have

ω[1] = Lf+gαω +
m∑

i=1

(viL(gβ)∗i
ω + 〈ω, (gβ)∗i〉dvi) ∈ Ω + V(15)

when we interpret Ω as a subspace of spanK{dx}.
Example 3.6. Consider a nonlinear system given by

ẋ1 = u1, ẋ2 = x3u1 + x2, ẋ3 = u2.

Let Ω = spanK{u1dx3 + dx2} and

u1 = v1, u2 = (v2 − x3(v̇1 + v1) − x2)/v1,

where v = (v1, v2)T is the new input. This is a quasi-static feedback since

v1 = u1, v2 = u1u2 + x3(u̇1 + u1) + x2.

This feedback renders Ω invariant, since we have

Ω[1] = spanKv
{v̇1dx3 + v1d((v2 − x3(v̇1 + v1) − x2)/v1) + d(x3v1 + x2)} ⊂ V.
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The following theorem gives a necessary condition for controlled invariance. For
(1), let G denote the distribution spanned by the input vector fields. Define the
subspace G⊥ ⊂ X by

G⊥ = {ω ∈ X | 〈ω, g〉 ≡ 0 ∀g ∈ G}.(16)

THEOREM 3.7. Let Ω ⊂ X . Then Ω is controlled invariant only if

˙̂
(Ω ∩ G⊥) ⊂ Ω.(17)

Proof. By definition of G⊥,
˙̂

(Ω ∩ G⊥) ⊂ X . Controlled invariance of Ω then
implies (17).

Remark 3.8. Let Ω be an integrable codistribution. Using (15), it may be shown
that (17) (with Ω interpreted as a subspace of X ) is equivalent to the well-known
conditions Lf (Ω ∩ G⊥) ⊂ Ω, Lgi(Ω ∩ G⊥) ⊂ Ω (i = 1, . . . ,m) for controlled invariance
of Ω (cf. [29], [38]).

3.3. Characterization of controlled invariant subspaces under regular
static state feedback. In this subsection we investigate under what conditions a
subspace Ω ⊂ X is controlled invariant under regular static state feedback. Recall
from subsection 3.2 that a regular static state feedback is a special sort of quasi-static
state feedback. A first result is the following.

PROPOSITION 3.9. Consider a d-dimensional subspace Ω ⊂ X . Assume that Ω is
controlled invariant under a quasi-static state feedback of the form u = φ(x, v). Then
Ω admits a basis ω1, . . . , ωd with

ωi =
n∑

j=1

ωij(x)dxj .(18)

Proof. Assume that Ω = spanK{ω̃1, . . . , ω̃d}, with

ω̃i =
n∑

j=1

ω̃ij(x, u)dxj(19)

Let A(x, u) be the matrix with entries ω̃ij (i = 1, . . . , d; j = 1, . . . , n). Viewing Ω as
a linear subspace (over K) of X ⊕ spanK{du}, it may be characterized by

Ω = rowspanK (A(x, u) 0) .(20)

Similarly, Ω + Ω̇ is characterized by

Ω + Ω̇ = rowspanK

(
A(x, u) 0
B(x, u, u̇) (Ag)(x, u)

)
,(21)

where

B(x, u, u̇) =
n∑

i=1

∂A

∂xi
(x, u)ẋi(x, u) +

m∑
j=1

∂A

∂uj
u̇j +A(x, u)

(
fx(x) +

n∑
i=1

∂g

∂xi
u

)
,(22)

with fx the Jacobian of f . Since Ω is rendered invariant via u = φ(x, v) there exist
matrices P (x, v, v̇) and Q(x, v) such that

B(x, φ, φ̇)dx+ (Ag)(x, φ)dφ = P (x, v, v̇)A(x, φ)dx+Q(x, v)dv(23)
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or, equivalently,

B(x, φ, φ̇) = P (x, v, v̇)A(x, φ) − (Ag)(x, φ)φx(x, v),

(Ag)(x, φ)φv(x, v) = Q(x, v).
(24)

Since φv(x, v) is invertible, this yields

B(x, φ, φ̇) = P (x, v, v̇)A(x, φ) −Q(x, v)φv(x, v)−1φx(x, v).(25)

Since u = φ(x, v) is a quasi-static state feedback, by Proposition 3.3 there locally
exists a function ψ(x, u) such that φ(x, ψ(x, u)) = u. This yields in particular that

ψx(x, u) = −φv(x, ψ(x, u))−1φx(x, ψ(x, u)).

Hence (25) yields

B(x, u, u̇) = P̃ (x, u, u̇)A(x, u) + Q̃(x, u)ψx(x, u),(26)

where P̃ (x, u, u̇) = P (x, ψ(x, u), ψ̇(x, u, u̇)) and Q̃(x, u) = Q(x, ψ(x, u)). Taking par-
tial derivatives with respect to u̇i, we obtain

∂A

∂ui
=
∂P̃

∂u̇i
A(x, u) (i = 1, . . . ,m).(27)

Obviously,

∂2P̃

∂u̇i∂u̇j
= 0 (i, j = 1, . . . ,m).

Hence there exist matrices Ri(x, u) (i = 1, . . . ,m) such that

∂A

∂ui
= Ri(x, u)A(x, u).(28)

Using arguments from the theory of linear time-varying ordinary differential equations
this yields that A(x, u) is of the form

A(x, u) = Φ(x, u)Ψ(x),

where Φ(x, u) is a square invertible matrix. Hence

Ω = rowspanK (A(x, u) 0) = rowspanK (Ψ(x) 0) ,(29)

which establishes our claim. If Ω = rowspanK
(
A(x, u, . . . , u(`)) 0

)
with ` > 1, the

claim is established by using the same arguments together with an induction argu-
ment.

From the above proposition it follows that the set of subspaces Ω ⊂ X that are
controlled invariant under a quasi-static state feedback u = φ(x, v) may be identified
with the set of “classical” controlled invariant codistributions. The following theorem
gives a characterization of controlled invariance in our generalized framework.

THEOREM 3.10. Let Ω ⊂ X be a subspace such that

(Ω + Ω̇)/Ω is exact(30)
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and admits a basis satisfying (18). Then Ω is controlled invariant under a quasi-static
state feedback u = φ(x, v) if and only if

˙̂
(Ω ∩ G⊥) ⊂ Ω.(31)

Moreover, if the conditions above are satisfied, then φ(x, v) rendering Ω invariant may
be chosen of the form (3).

Proof. The necessity was proven in Theorem 3.7. To establish the sufficiency,
assume that (31) holds. Note that Ω + Ω̇ ⊂ spanK{dx, du}. Let Ω̃ ⊂ X be such that
Ω = (Ω ∩ G⊥) ⊕ Ω̃. Assume that ˙̃Ω ∩ X 6= {0}. This implies that there is an ω̃ ∈ Ω̃,
ω̃ 6= 0, such that ˙̃ω ∈ X and hence ω̃ ∈ (Ω ∩ G⊥), which gives a contradiction. Thus

˙̃Ω ∩ X = {0}.(32)

By (30), there exists v1(x, u) such that

Ω + Ω̇ = Ω ⊕ spanK{dv1}.(33)

Since (31) and (32) hold, we must have that (∂v1/∂u) has full row rank. Then there
exists a function v2(u) such that (∂v/∂u) is square and invertible, where v = (vT

1 vT
2 )T .

By (33) we now have that

Ω[1] ⊂ Ω + V.(34)

Moreover, since (∂v/∂u) is invertible, there exists a ψ(x, v) such that u = ψ(x, v).
Hence ψ defines a quasi-static state feedback and thus Ω can be rendered invariant
via quasi-static state feedback. Since we are dealing with a control system (1) that
is affine in u, it is easily seen that v can be taken affine in u and thus ψ can be
taken affine in v. This implies that Ω can be rendered invariant via a static state
feedback (3).

Remark 3.11.
(i) If Ω is exact, then clearly also (Ω + Ω̇)/Ω is exact. Hence the set of sub-

spaces Ω ⊂ X such that (Ω + Ω̇)/Ω is exact incorporates the standard integrable
codistributions.

(ii) The exactness of (Ω + Ω̇)/Ω is not necessary for controlled invariance. This
can be seen from the following counter example. Take the system ẋ1 = u1, ẋ2 = u2,

ẋ3 = 0, and Ω = spanK{dx1 +x2dx3}. It is straightforward to check that
˙̂

(Ω ∩ G⊥) ⊂
Ω and that (Ω + Ω̇)/Ω is not exact. However, with the regular static state feedback
u1 = v1 − x3v2, u2 = v2 we obtain

Ω̇ = spanK{dv1 − x3dv2} ⊂ Ω + V
and hence Ω is controlled invariant.

3.4. Some characterizations of controlled invariance. In this subsection,
conditions are derived for controlled invariance of a subspace under a quasi-static
state feedback.

3.4.1. The general case: A sufficient condition. Let us consider a general
subspace Ω ⊂ X . Define by induction

Ω̂0 := 0,
Ω0 := Ω,

Ω̂k+1 := maximal exact subspace in Ωk + Ω̇k
Ωk

,

Ωk+1 := Ωk + Ω̂k+1.
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Furthermore, define

k∗ := max{k ≥ 1 | dim(Ω̂k) > dim(Ω̂k−1)}.

THEOREM 3.12. Let Ω ⊂ X . If

(i)
˙̂

(Ω ∩ G⊥) ⊂ Ω,

(ii) Ωk∗−1 + Ω̇k∗−1
Ωk∗−1

is exact,

then Ω is controlled invariant for (1).
Proof. From the definition of k∗ there exist vector-valued dv1, . . . , dvk∗ in E , where

each dvi is nonempty, such that

Ω̂1 = spanK{dv1} ⊂ Ω0 + Ω̇0
Ω0

,

Ω̂2 = spanK{dv̇1, dv2} ⊂ Ω1 + Ω̇1
Ω1

,

...

Ω̂k∗ = spanK{dv(k∗−1)
1 , dv

(k∗−2)
2 , . . . , dvk∗} ⊂ Ωk∗−1 + Ω̇k∗−1

Ωk∗−1
.

(35)

Note that from (ii) the last inclusion in (35) is in fact an equality. We now have

Ω̇ ⊂ Ω0 + Ω̂1 + Ω̇0 + ˙̂Ω1 = Ω1 + Ω̇1 ⊂ · · ·
⊂ Ωk∗−1 + Ω̇k∗−1 = Ωk∗−1 + spanK{dv(k∗−1)

1 , . . . , dvk∗}
⊂ Ω + spanK{dv(k) | k ≥ 0}.

(36)

It remains to be shown that v defines a quasi-static state feedback. From the above
construction, one has

v1 = φ1(x, u),
v2 = φ2(x, v1, v̇1, u),

...
vk∗ = φk∗(x, {v(j)

i | 1 ≤ i ≤ k∗ − 1, 0 ≤ j ≤ k∗ − i}, u).

(37)

From (i), (∂(φ1, . . . , φk∗)/∂u) has full row rank on an open and dense subset of
Rn × R(k∗−1)(k∗−i+1) × Rm. By the implicit function theorem, for every point of this
open and dense subset there exists a neighborhood of this point and a function ψ such
that u = ψ(x, v, v̇, . . . , v(k∗)). By applying this feedback, one has

Ω[1] ⊂ Ω + spanK{dv(k) | k ≥ 0}.

Remark 3.13. Theorem 3.12 gives only sufficient conditions for the controlled
invariance of a subspace Ω ⊂ X . In Theorem 3.7 it was shown that (i) is also a
necessary condition. But the condition (ii) is not. This is shown by the following
example.

Example 3.14 (see [30]). We consider a nonlinear system on R4 with three inputs
u1, u2, u3 given by

ẋ1 = u1, ẋ2 = x4 + u2, ẋ3 = x3u1 + u2, ẋ4 = u3.
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Let Ω = spanK{dx1 − u1dx3, dx4}. Then Ω is not exact, and Ω̇ is given by

Ω̇ = spanK{(1 − u1x1)du1 − u1du2 − u̇1dx3 − u2
1dx1, du3}.

Ω is rendered invariant by u1 = v1, u2 = − v̇1
v2
1
x1 −v1x1 +v2, and u3 = v3. One obtains

k∗ = 1, but Ω+Ω̇
Ω is not exact.

3.4.2. The smallest controlled invariant subspace containing a given
subspace. Given a subspace Π ⊂ X , it is unclear whether (or under what conditions)
there exists a smallest controlled invariant subspace containing Π. This is due to the
fact that for two controlled invariant subspaces Ω1,Ω2 ⊂ X , we do not necessarily have
that Ω1 ∩ Ω2 is controlled invariant, so that we cannot use the “standard” arguments
(as in, e.g., [48], [29], [38]). In this subsection we will give some comments on this
question.

We will use the following notation. Given a subspace Π ⊂ X , we define

Π∗ := X ∩ (Π + Π(1) + · · · + Π(n−1)).(38)

In what follows, we will need the following lemma.
LEMMA 3.15. Consider a subspace Ω ⊂ X satisfying (Ω ∩ G⊥) = {0}. Then we

have for all k ∈ N:

X ∩ (Ω(1) + · · · + Ω(k)) = {0}.(39)

Proof. Let d := dim(Ω), and let ω1, . . . , ωd be a basis of Ω, with

ωi =
n∑

j=1

ωij(x, u, . . . , u(r))dxj (i = 1, . . . , d).(40)

Let A(x, u, . . . , u(r)) be the (d, n)-matrix with entries ωij (i = 1, . . . , d; j = 1, . . . , n).
Since ω1, . . . , ωd forms a basis of Ω, the matrix A has full row rank over K. We may
now characterize Ω by

Ω = rowspanK(A(x, u, . . . , u(r)) 0 · · · 0),(41)

while Ω(k) (k = 1, 2, . . .) may be characterized by

Ω(k) = rowspanK(Xk0 Xk1 · · · Xkk−1 (Ag) 0 · · · 0)(42)

for certain matrices Xk0, . . . , Xkk−1. Now assume that (Ag) is not right invertible
over K. This implies that there exists a nonzero row vector ηT := (η1 · · · ηd) such that

ηT (Ag) = 0.(43)

This gives that ω :=
∑d

j=1 ηjωj satisfies

〈ω, τ〉 = 0 (∀τ ∈ G),(44)

which contradicts the fact that (Ω ∩ G⊥) = {0}. Hence we have that (Ag) is right
invertible over K. Next, let ω ∈ X ∩ (Ω(1) + · · · + Ω(k)) (k ∈ {1, 2, . . .}). Since
ω ∈ (Ω(1) + · · · + Ω(k)), we may represent ω by a row vector

(ηT
1 · · · ηT

k )



X10 (Ag) 0 · · · · · · 0
X20 X21 (Ag) · · · · · · 0

...
...

...
. . .

...
...

...
...

. . .
...

Xk0 Xk1 Xk2 · · · Xkk−1 (Ag)

 .
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The fact that ω ∈ X implies that necessarily

(ηT
1 · · · ηT

k )



(Ag) 0 0 · · · · · · 0
X21 (Ag) 0 · · · · · · 0

...
...

...
. . .

...
...

...
...

. . .
...

Xk1 Xk2 Xk3 · · · Xkk−1 (Ag)

 = 0,

and thus

ηT
i (Ag) = 0,

which give ηT
i = 0, since (Ag) is right invertible. Thus ω = 0, which establishes our

claim.
PROPOSITION 3.16. Let Ω ⊂ X be a subspace satisfying

˙̂
(Ω ∩ G⊥) ⊂ Ω. Then

Ω∗ = Ω.

Proof. Let Ω̃ be such that

Ω = (Ω ∩ G⊥) ⊕ Ω̃.(45)

By hypothesis we have

˙̂
(Ω ∩ G⊥) ⊂ Ω.(46)

We now prove by induction that we have

(Ω ∩ G⊥)(k) ⊂ Ω + Ω̃(1) + · · · + Ω̃(k−1) (k = 1, 2, . . .).(47)

By (46), we have that (47) holds for k = 1. Next assume that (47) holds for k =
1, . . . , `− 1. Then

(Ω ∩ G⊥)(`) = ((Ω ∩ G⊥)(`−1))(1)
IH⊂ (Ω + Ω̃(1) + · · · + Ω̃(`−2))(1)

= (Ω(1) + Ω̃(2) + · · · + Ω̃(`−1))
(45)
= (

˙̂
(Ω ∩ G⊥) + Ω̃(1) + · · · + Ω̃(`−1))

(46)⊂ (Ω + Ω̃(1) + · · · + Ω̃(`−1)),

which establishes (47). Using (47) and the modular distributive rule (see, e.g., [48,
section 0.3]) we obtain

Ω∗ = X ∩ (Ω + Ω(1) + · · · + Ω(n−1))

= X ∩ (Ω + (Ω ∩ G⊥)(1) + Ω̃(1) + · · · + (Ω ∩ G⊥)(n−1) + Ω̃(n−1))

⊂ X ∩ (Ω + Ω̃(1) + · · · + Ω̃(n−1)) = Ω + X ∩ (Ω̃(1) + · · · + Ω̃(n−1)).

(48)

Since by definition of Ω̃ we have that (Ω̃∩G⊥) = {0}, we obtain from (48) and Lemma
3.15 that

Ω∗ ⊂ Ω.(49)
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Furthermore, we have by definition of Ω∗ that

Ω ⊂ Ω∗.(50)

Hence we have that Ω∗ = Ω, which establishes our claim.
COROLLARY 3.17. Consider a subspace Π ⊂ X , and let Ω ⊂ X be a controlled

invariant subspace containing Π. Then Π∗ ⊂ Ω.
Proof. Using the definition of Π∗, the fact that Π ⊂ Ω and combining the results

of Theorem 3.7 and Proposition 3.16, we obtain

Π∗ = X ∩ (Π + Π(1) + · · · + Π(n−1)) ⊂ X ∩ (Ω + Ω(1) + · · · + Ω(n−1)) = Ω∗ = Ω,

which establishes our claim.
The subspace Π∗ defined in (38) is, by Corollary 3.17, a candidate for being the

smallest controlled invariant subspace containing Π. If Π is exact, it can be shown
that indeed it is. This may be shown in the following way. Let r = dim Π and choose
meromorphic functions h1(x), . . . , hr(x) such that Π = spanK{dh1, . . . , dhr}. Next
consider the system

ẋ = f(x) + g(x)u,
y = h(x).

(51)

Then for this system, Π∗ = X ∩Y, where Y = spanK{dy, . . . , dy(n−1)}. (The subspace
X ∩Y was introduced in [9] for the study of the minimal order input-output decoupling
problem.) If the system (51) is right invertible, one can construct a quasi-static state
feedback which renders Π∗ invariant by using the construction in [41]. If (51) is not
right invertible, the same construction, together with Lemma 1 from [35], may be used
to show that Π∗ is controlled invariant. Summarizing, we have the following result.

THEOREM 3.18. Consider a subspace Π ⊂ X which is exact. Then Π∗ := X ∩
(Π + · · · + Π(n−1)) is the smallest controlled invariant subspace containing Π.

An application of the subspace Ω∗ = X ∩ Y is given in Section 3.5, where we
consider the DDDP.

It has been shown that a “standard” controlled invariant codistribution is a con-
trolled invariant subspace in the sense of Definition 3.5. If ∆∗ denotes the largest
controlled invariant distribution contained in kerdh, then ∆∗⊥ ∩ X is a controlled
invariant subspace containing the differential of the output. Since Ω∗ = X ∩ Y is
the smallest controlled invariant subspace containing spanK{dy}, one has ∆∗⊥ ∩ X ⊃
Ω∗. These two different geometric structures are displayed in the lattice diagram in
Figure 1.

In the special case of linear systems, this lattice diagram is simplified since ∆∗⊥ ∩
X = Ω∗.

3.4.3. A special case. Let us consider a subspace Ω ⊂ X such that

Ω = Ω ∩ G⊥ + Φ∗,(52)

where Φ is an exact subspace of X .
PROPOSITION 3.19. Let Ω ⊂ X satisfy (52); then Ω is controlled invariant if and

only if

˙̂
(Ω ∩ G⊥) ⊂ Ω.(53)
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FIG. 1. Lattice diagram: (geometric) structure of nonlinear systems.

Proof. By Theorem 3.7 we only need to show the sufficiency. Clearly Φ∗ is
controlled invariant (see Theorem 3.18). Hence there exists a quasi-static feedback
(8) such that

Φ[1]
∗ ⊂ Φ∗ + V.

Now (53) implies that

Ω[1] ⊂ Ω + V,
and hence Ω is controlled invariant.

The following proposition gives conditions for the existence of a subspace Φ ⊂ X
such that (52) holds.

PROPOSITION 3.20. Let Ω ⊂ X be a subspace such that (53) holds. Then there
exists an exact subspace Φ ⊂ Ω satisfying (52) if and only if

Ω = Ω ∩ G⊥ + Φ̂∗,(54)

where Φ̂ is the largest exact subspace in Ω.
Proof. Assume that (54) holds. Taking Φ = Φ̂, we then have (52). Conversely,

assume that there exists an exact subspace Φ ⊂ X such that (52) holds. Clearly
Φ∗ ⊂ Φ̂∗. Now Φ̂ ⊂ Ω implies by Proposition 3.16 that Φ̂∗ ⊂ Ω. Thus

Ω = Ω ∩ G⊥ + Φ∗ ⊂ Ω ∩ G⊥ + Φ̂∗ ⊂ Ω.

Hence (54) is verified.

3.5. Dynamic disturbance decoupling. A fundamental application of con-
trolled invariance is disturbance decoupling [48], [29], [38]. In this section, generalized
controlled invariance is shown to yield a geometric condition that characterizes the
solvability of the dynamic feedback disturbance decoupling problem (DDDP). DDDP
is stated as follows.

Consider a perturbed system Σq given by

Σq :
{
ẋ = f(x) + g(x)u+ p(x)q,
y = h(x),(55)

where q represents a disturbance. Find, if possible, a dynamic state feedback such
that the disturbance q does not affect the output y.
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Let P denote the distribution spanned by the disturbance vector fields. Define
the subspace P⊥ by

P⊥ = {ω ∈ X | 〈ω, p〉 = 0 ∀p ∈ P}.(56)

The following result gives a necessary and sufficient condition for DDDP to be
solvable.

THEOREM 3.21. DDDP is solvable if and only if there exists a controlled invariant
subspace Ω such that

spanK{dy} ⊂ Ω ⊂ P⊥.(57)

Proof. From Theorem 2.3 in [41] it follows that DDDP is solvable if and only if
it is solvable by quasi-static state feedback. Thus, to prove Theorem 3.21, it suffices
to show that the DDP is solvable by quasi-static state feedback.

Sufficiency. Controlled invariance of Ω implies that there exists a quasi-static
state feedback u = φ(x, v, . . . , v(r)) such that

Ω[1] ⊂ Ω + V.(58)

By (57) and (58), one has

dy[k] ⊂ Ω + V ∀k ≥ 0.(59)

Thus in the closed loop system the output y is decoupled from the disturbance.
Necessity. Suppose that the quasi-static state feedback u = φ(x, v, . . . , v(r)) solves

the DDP. Then for the system Σq fed back with u = φ(x, v, . . . , v(r)), one has

dy[k] ⊂ spanKv
{dx, dv, . . . , dv(r+k−1)} ∀k ≥ 0.(60)

Define the sequence Ωµ as

Ω0 = P⊥,

Ωµ+1 = {ω ∈ Ωµ | ω[1] ∈ Ωµ + V} ∀µ ≥ 1,
(61)

and

Ω = lim
µ→∞ Ωµ.

Obviously Ω[1] ⊂ Ω+V. Thus, Ω is a controlled invariant subspace. Since spanK{dy} ⊂
Ω and Ω ⊂ P⊥, (57) also holds.

Condition (57) in Theorem 3.21 is not constructive. The corresponding construc-
tive condition is obtained when considering the smallest controlled invariant subspace
containing the differential of the output Ω∗. From Theorem 3.18, Ω∗ is given by X ∩Y.
An immediate consequence of Theorem 3.21 is then as follows.

COROLLARY 3.22. The DDDP is solvable if and only if

Ω∗ ⊂ P⊥.(62)

Remark 3.23. Theorem 3.21 gives the nonlinear feedback analogon of Theorem
4.2 in [48] for the linear (D)DDP. Also, it gives the dynamic feedback analogon of
condition (3.1) in [29] and Proposition 7.8 in [38] for the nonlinear DDP. In this way
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TABLE 4
(Geometric) solution to DDP (complete).

Static feedback Dynamic feedback
Linear systems P ⊂ V∗

Nonlinear systems P ⊂ ∆∗ Ω∗ ⊂ P⊥

it is established that our generalized notion of controlled invariance is the natural
generalization to the nonlinear dynamic feedback case of the linear notion of controlled
invariance defined in [48]. It may be checked that condition (62) is equivalent to the
geometric conditions (44) in [26] and (4.5) in [44]. Further, (62) is exactly the same
as the condition for solvability of the DDDP derived in [41]. However, in [41] the
concept of controlled invariance was missing.

Table 1, which displayed the various solutions of the DDP, is now completed in
Table 4.

4. Controllability cospaces. In this section, we study controllability cospaces
under quasi-static state feedback. These controllability cospaces form a special class of
the controlled invariant subspaces defined previously. They parallel the dynamic con-
trollability distributions [45]. In subsection 4.1 we first define controllability cospaces.
An algorithm which characterizes these cospaces is then given in subsection 4.2, and
some properties of these controllability cospaces are discussed. In subsection 4.3 we
derive an algorithm computing the smallest controllability cospace containing a given
exact subspace. Applications of controllability cospaces are treated in subsections 4.4
and 4.5. In particular, the fixed modes or decoupling zero dynamics under quasi-static
feedback are characterized using controllability cospaces.

4.1. Definition of controllability cospaces. Controllability cospaces are vec-
tor spaces that are autonomous after having applied a certain quasi-static state feed-
back u = ψ(x, v, . . . , v(r)) and zeroing certain input channels vj , where j ∈ J ⊂
{1, . . . ,m}. Such nonregular transformations are not defined for every element in Kv.
One possibility to circumvent this problem is to consider the module spanA{dx} over
the ring of analytic functions rather than the linear space over the field of meromor-
phic functions. Another way is chosen here; it consists in taking a particular basis of a
given subspace of spanK{dx} so that its time derivative is well defined when applying
nonregular feedback. Such a basis always exists. More precisely, let Θ ⊂ X be a
subspace which admits a basis θ1, . . . , θd with

θi =
n∑

k=1

αik(x, v, . . . , v(ν))
βik(x, v, . . . , v(ν))

dxi,

where αik and βik are in A, the ring of analytic functions of {x, v(k) | k ≥ 0}.
Obviously, we can choose another basis for Θ, θ̃1, . . . , θ̃d, in the module spanA{dx}
over the ring A by taking

θ̃i =

(
n∏

k=1

βik

)
θi.

DEFINITION 4.1. A subspace C⊂X is said to be a controllability cospace for (1) if
there exist a quasi-static state feedback (8) and a set of integers J ⊂ {1, . . . ,m} such
that for (1), (8) one has

C[1] ⊂ C + V(63)
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and

C = max{Θ ⊂ X | spanK{θ̃[1]i |vj=0,j∈J } ⊂ Θ},(64)

where θ̃i is defined as above.
This means that C is the largest autonomous subspace in X of the closed loop sys-

tem. Moreover, by this definition, it is clear that a controllability cospace is controlled
invariant. The following example illustrates the above definition.

Example 4.2. Consider again the nonlinear system given in Example 3.14. Let C
= spanK {dx1, d(x2 − x3), dx4 − u1dx3}, and suppose that u1 = v1 + c, where c is a
nonzero constant, u2 = v2 and u3 = v3 + v̇1x3 +(v1 +c)2x3 +(v1 +c)v2. This feedback
is quasi-static since v1 = u1 − c and v2 = u2 and v3 = u3 − u̇1x3 − u2

1x3 − u1u2.
From this, it is easy to show that

C[1] = spanK{dv1, dx4 − u1dx3, dv3 + (x3(v1 + c) + v2)dv1 + x3dv̇1} ⊂ C + V

and

C[1] |v1=0,v3=0= spanK{dx4 − u1dx3} ⊂ C.

Furthermore

C = max{Θ ⊂ X | Θ[1] |v1=0,v3=0⊂ Θ}.

Hence C is a controllability cospace in the sense of Definition 4.1.

4.2. Controllability cospace algorithm. First of all, we give an algorithm
characterizing controllability cospaces called the controllability cospace algorithm.
Some properties of a general controllability cospace are then derived. Let C be a
given subspace and define a sequence Sµ according to

S0 := X ,
Sµ+1 := spanK{ω ∈ Sµ | ω̇ ∈ Sµ + Ċ} (µ ∈ N).

(65)

The sequence Sµ is decreasing. Thus, there exists a µ∗ ∈ N such that Sµ∗ = Sµ∗+k

for all k ∈ N. Define S∗ := Sµ∗ .
Algorithm (65) yields a necessary condition for a subspace C of X to be a con-

trollability cospace. This is shown in the following lemma.
LEMMA 4.3. Let C ⊂ X . If C is a controllability cospace, then C = S∗.
Proof. Assume that C is a controllability cospace. Let {ω̃i} be a basis for C in

the module spanA{dx} over the ring A. Then by definition there exists a quasi-static
state feedback (8) and a set of integers J ⊂ {1, . . . ,m} such that C[1] ⊂ C + V and
C[1] = spanK{ω̃[1]

i |vj=0,j∈J } ⊂ C. From (65), it follows that S∗ satisfies

S∗ = spanK{ω ∈ X | ω̇ ∈ S∗ + Ċ}.(66)

Let ω ∈ C. We have ω̇ ∈ Ċ and hence ω ∈ S∗. This implies that C ⊂ S∗. Now,
Ṡ∗ ⊂ S∗ + Ċ. By the feedback, which yields C[1] ⊂ C, one has S∗[1] ⊂ S∗. Since C is
the largest subspace in X such that C[1] ⊂ C, one has S∗ ⊂ C.

In the next section, we give an algorithm computing the smallest controllability
cospace containing a given subspace based on algorithm (65).
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4.3. The smallest controllability cospace containing a given subspace.
In general, the intersection of two controllability cospaces is not a controllability
cospace. Thus it is unclear if there exists a smallest controllability cospace containing
some given subspace. However, if an exact subspace Π ⊂ X is given, then there exists
a smallest controllability cospace containing Π.

Consider a nonlinear system given by (1). By Theorem 3.18, Π∗ is the smallest
controlled invariant subspace containing Π. The next theorem will relate Π∗ to the
smallest controllability cospace containing Π.

THEOREM 4.4. Define the sequence Dµ by

D0 = X ,
Dµ+1 = spanK{ω ∈ Dµ | ω̇ ∈ Dµ + Π̇∗} (µ ∈ N).

(67)

Then D∗ = limµ→∞ Dµ is the smallest controllability cospace containing Π.
Proof. Note that

D∗ = spanK{ω ∈ X | ω̇ ∈ D∗ + Π̇∗}.(68)

Let r = dimΠ. The fact that Π is exact implies that there exist meromorphic functions
ϕ1(x), . . . , ϕr(x) such that Π = spanK{dϕ1, . . . , dϕr}. Consider the system (1) with
a “dummy” output ϕ = (ϕ1, . . . , ϕr)T . We decompose the output ϕ as ϕ = (ϕ̃, ϕ̂)T

so that the system (1) with the output ϕ̃ is right invertible. Define ρ := dim(ϕ̃).

Construct a quasi-static state feedback u = φ(x, v, . . . , v(r)) by taking vi = ϕ̃
(n

′
i)

i ,
where {n′

i} is the set of orders of zeros at infinity [18] for i = 1, . . . , ρ and vi = wi for
i = ρ + 1, . . . ,m. This feedback always renders Π∗ invariant. Thus, D∗ is rendered
invariant too; i.e., D[1]

∗ ⊂ D∗ + V. Let now {ω̃i} be a basis for D∗ in the module
spanA{dx} over the ring A. If we set vi = 0 for i = 1, . . . , ρ one obtains

D[1]
∗ = spanK{ω̃[i]

i |vj=0,j=1,···,ρ} ⊂ D∗.

Hence D∗ is a controllability cospace. In order to prove that D∗ is the smallest
controllability cospace containing Π, we consider another controllability cospace D
such that D ⊃ Π. By definition D is controlled invariant, and, according to Lemma
4.3, D satisfies

D = spanK{ω ∈ X | ω̇ ∈ D + Ḋ}.(69)

Since Π∗ is the smallest controlled invariant subspace containing Π, this implies that
D ⊃ Π∗. From (68) and (69), one has D∗ ⊂ D.

COROLLARY 4.5. Consider a nonlinear system of the form (51). Define the
sequence Cµ according to

C0 = X ,
Cµ+1 = spanK{ω ∈ Cµ | ω̇ ∈ Cµ + Ω̇∗} (µ ∈ N).

(70)

Then C∗ = limµ→∞ Cµ is the smallest controllability cospace containing spanK{dh(x)}.
Proof. Clearly, Ω∗ = X ∩ Y is the smallest controlled invariant subspace con-

taining the differential of the outputs. The result then immediately follows from
Theorem 4.4.

Remark 4.6. When specialized to linear systems, the sequence Cµ (70) turns out
to be equal to the dual of the sequence Rµ (the sequence computing the maximal



GENERALIZED CONTROLLED INVARIANCE 971

S
S
S

�
�

�
�

�
�

uC∗S
S
S

u∆∗⊥ ∩ X

u X

uR∗⊥ ∩ X

uΩ∗

uspanK{dy}

u0

FIG. 2. Lattice diagram: (Geometric) structure of nonlinear systems (continued; see Figure 1).

controllability subspace in the kernel of the output mapping). A proof of this can be
found in the appendix.

The geometric structure of a nonlinear system as presented in Figure 1 can now be
completed. Let R∗ be the largest controllability distribution contained in the kernel
of the output. As an immediate consequence, R∗⊥ ∩ X is a controllability cospace in
the sense of Definition 4.1. Figure 2 displays further geometric structures of nonlinear
systems.

4.4. The block input-output decoupling problem. We now use the smallest
controllability cospace C∗, previously defined, to solve a quasi-static state feedback
input-output decoupling problem. For this, we consider the system (1) together with
the partitioned output blocks yi for i = 1, . . . , k, given by

yi = hi(x).(71)

The problem can be stated as follows: find a quasi-static state feedback and a partition
of the new control v = (vT

1 , . . . , v
T
k )T such that the new input vi affects only the

output yi.
Define Ci∗ and Ωi∗ to be the smallest controllability cospace and the smallest

controlled invariant subspace, respectively, both containing spanK{dhi(x)}.
First, let us give the following property which is derived from Theorem 5.1 in [42].
PROPERTY 4.7. Consider system (51), and assume that dim(G⊥) = n−m. Let ρ

be its differential output rank. Then

dim(G⊥ + Ω∗) = dim(G⊥ + C∗) = (n−m+ ρ).(72)

Moreover, if the system (51) is right invertible, then

dim(G⊥ + Ω∗) = dim(G⊥ + C∗) = (n−m+ p).(73)

This property is a generalization of a known result on linear systems. It gives a
geometric interpretation of the rank of a system. The property was also derived by
Respondek in [45] using dynamic controllability distributions.

COROLLARY 4.8. The block input-output decoupling problem via quasi-static (or
dynamic) state feedback for the system (1), (71) is solvable if and only if

dim
(G⊥ + C∗

G⊥

)
=

k∑
i=1

dim
(G⊥ + Ci∗

G⊥

)
.(74)
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Condition (74) coincides with the condition given by Di Benedetto, Grizzle, and
Moog [18], in the case of the dynamic block decoupling problem. Indeed, if ρ denotes
the rank of the system (1), (71) and ρi denotes the rank of the subsystem (1) with
the output yi, then by Property 4.7, (74) is equivalent to

ρ =
k∑

i=1

ρi.(75)

By applying the structure algorithm to the system (1), (71), a quasi-static feedback
which decouples the system is obtained [14].

Further, controllability cospaces also allow us to characterize the fixed dynamics
with respect to any quasi-static feedback. This will be the topic of the next section.

4.5. Fixed modes by quasi-static state feedback. The problem of noninter-
action with stability of nonlinear systems by means of static feedback has first been
considered by Isidori and Grizzle [32]. They have shown that there exists a fixed
internal dynamics called P ∗ dynamics whose stability is a necessary condition for
solving the noninteracting control problem with stability via static feedback. In the
case where the P ∗ dynamics are unstable, Wagner has shown [47] that there exists a
well-defined dynamics called ∆mix dynamics which cannot be eliminated by any reg-
ular dynamic feedback that renders the considered system noninteractive. The ∆mix

dynamics must then be asymptotically stable if noninteracting control with stability
is to be achieved by means of dynamic state feedback. Glumineau, Moog, and Tarn
[21] used a dynamic compensator to remove a one-dimensional interconnection zero
dynamics and showed that such a compensator is able to cancel only the fixed dynam-
ics which have a certain linearity property. A sufficient condition to solve the problem
of noninteracting control with stability by means of dynamic state feedback was given
in [5], [6], [7]. In these references, the problem of dynamic feedback noninteracting
control with stability is solved if some regularity assumptions are satisfied, the ∆mix

dynamics are asymptotically stable and each decoupled subsystem is asymptotically
stabilizable.

All results above are valid under the assumption that the decoupling matrix A(x)
is nonsingular. In the case where A(x) is singular and the system is square and
invertible, Zhan, Tarn, and Isidori [50] introduced the so-called canonical dynamic
decoupling algorithm to construct a canonical dynamic extension (Σp). They have
shown that the dynamically decoupled system is stable only if the ∆mix dynamics of
the canonical dynamic extension is stable, which is an intrinsic property of the given
system. These different contributions are summarized in Table 2.

In this section, we investigate the case where the decoupling matrix is not nec-
essarily invertible and study the noninteracting control problem with stability by
means of quasi-static feedback. The goal is to show that the controllability cospaces
introduced before are able to describe intrinsic geometric conditions with respect to
quasi-static feedbacks, analogous to the above ones. Preliminary results may be found
in [1].

Let us consider a square invertible nonlinear affine system (Σ) of the form

Σ :

 ẋ = f(x) +
m∑

i=1

gi(x)ui, x ∈ Rn, ui ∈ R,

yi = hi(x), i = 1, . . . ,m, yi ∈ R.
(76)

Let {n′
i} be the set of orders of zeros at infinity [18], where n

′
1 > n

′
2 > · · · > n

′
m.
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Permute if necessary yi such that the corresponding order of zero at infinity is n
′
i. Let

Ci∗ be the smallest controllability cospace containing spanK{dhi(x)}. A first result is
the following.

LEMMA 4.9. Suppose that the system (76) can be decoupled by a quasi-static state
feedback u = ψ(x, v, . . . , v(s)). Then there always exist coordinates ξ = (ξ0, ξ1, . . . , ξm, ξ̂)
such that the system (76) has the following form:

ξ̇0 = f0(ξ0),

ξ̇1 = f1(ξ0, ξ1, v1),
...

ξ̇m = fm(ξ0, ξm, vm),
˙̂
ξ = f̂(ξ, v, v̇, . . . , v(s)),
yi = hi(ξ0, ξi).

(77)

The system (77) will be referred to as a standard decomposed system, analogous
to [23]. To prove Lemma 4.9, we first need the following property of Ci∗.

LEMMA 4.10. For a scalar output yi = hi(x), Ci∗ is an exact subspace.
Proof. Let Ωi∗ be the smallest controlled invariant subspace containing spanK{dhi}.

If ∆∗
i is the maximal controlled invariant distribution in ker{dhi(x)}, we have Ωi∗ =

∆∗⊥
i . Now let R∗

i be the maximal controllability distribution in ker{dhi(x)}. Clearly
R∗⊥

i is a controllability cospace containing spanK{dhi(x)}, and thus Ci∗ ⊂ R∗⊥
i . From

[29] we have

R∗
i = ∆∗

i ∩
[f,R∗

i ] +
m∑

j=1

[gj ,R∗
i ] + G

(78)

and thus

R∗⊥
i = Ωi∗ + [f,R∗

i ]
⊥ ∩ (

m⋂
j=1

[gj ,R∗
i ]

⊥) ∩ G⊥

= {ω ∈ X | ∃ω1 ∈ Ωi∗, ∃ω2 ∈ G⊥ such that ω = ω1 + ω2

and (∀τ ∈ R∗
i )(∀σ ∈ {f, g1, . . . , gm})(〈[σ, τ ], ω2〉 = 0)}.

(79)

Let ω ∈ R∗⊥
i . Then there exist ω1 ∈ Ωi∗ and ω2 ∈ G⊥ such that ω = ω1 + ω2, and

∀τ ∈ R∗
i , ∀σ ∈ {f, g1, . . . , gm}, one has 〈[σ, τ ], ω2〉 = 0. Compute

ω̇ = ω̇1 + ω̇2.

Clearly ω̇1 ∈ Ω̇i∗. Furthermore,

ω̇2 = Lfω2 +
m∑

j=1
(ujLgj

ω2 + 〈ω2, gj〉duj)

= Lfω2 +
m∑

j=1
ujLgj

ω2.
(80)

Now, let τ ∈ R∗
i and σ ∈ {f, g1, . . . , gm}. Then

〈τ,Lσω2〉 = Lσ〈τ, ω2〉 − 〈[σ, τ ], ω2〉
= Lσ〈τ, ω2〉 = Lσ〈τ, (ω − ω1)〉 = 0,

(81)
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where the last equality follows from the fact that ω ∈ R∗⊥
i and ω1 ∈ Ωi∗ ⊂ R∗⊥

i . By
(80), (81), we then have ω̇2 ∈ R∗⊥

i , and hence

˙̂R∗⊥
i ⊂ Ω̇i∗ + R∗⊥

i .

By construction, Ci∗ is the largest subspace in X which verifies Ċi∗ ⊂ Ci∗ + Ω̇i∗. This
implies R∗⊥

i ⊂ Ci∗. So Ci∗ is the annihilator of R∗
i , which is defined to be involutive

[39], [29]. Hence Ci∗ is exact, which establishes our claim.
Proof of Lemma 4.9. By Lemma 4.10, Ci∗ is an exact subspace. Thus, Ċi∗ as well

as
∑n

′
i−1

j=0 C(j)
i∗ is also exact. Let us define C0 as the uncontrollable subspace of (Σ)

which is the subspace H∞ introduced in [2]. It is obvious that for each i = 1, . . . ,m

C0 =
n

′
i−1∑

j=0

C(j)
i∗ ∩

∑
k=6=i

n
′
k−1∑
j=0

C(j)
k∗ .

Let {dξ0} be a basis of C0; thus ξ̇0 = f0(ξ0). For an invertible system, we can construct

a quasi-static state feedback which decouples system (Σ) by taking vi = y
(n

′
i)

i . For

i = 1, . . . ,m, choose dξi such that {dξ0, dξi} is a basis of
∑n

′
i−1

j=0 C(j)
i∗ . Then one has

ξ̇i = fi(ξ0, ξi, vi).

Complete the new coordinates by choosing ξ̂ such that {dξ0, dξ1, . . . , dξm, dξ̂} is lin-
early independent. Without loss of generality, ξ̂ can be chosen so that span{dξ̂} ⊂ X .
Thus, one has

˙̂
ξ = f̂(ξ, v, v̇, . . . , v(s)),

and (77) is established.
Now we may state the following theorem.
THEOREM 4.11. For a square invertible nonlinear system, the dimension of the

fixed dynamics with respect to any quasi-static state feedback is

n− dim

X ∩
m∑

i=1

∑
j≥0

C(j)
i∗

 .(82)

Moreover, if the origin is an equilibrium point for Σ and the quasi-static state feedback
rendering (76) noninteractive preserves this equilibrium point, then the induced fixed
dynamics are

˙̂
ξ = f̂(0, . . . , 0, ξ̂, 0, . . . , 0),(83)

where ξ̂ is as defined in Lemma 4.9.
Proof. From the proof of Lemma 4.9, the dimension of the fixed dynamics with

respect to any quasi-static feedback which decouples the system is

n− dim

 m∑
i=1

n
′
i−1∑

j=0

C(j)
i∗

 .(84)
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From the definition of the structure at infinity, one gets

dim

 m∑
i=1

n
′
i−1∑

j=0

C(j)
i∗

 = dim

X ∩
m∑

i=1

∑
j≥0

C(j)
i∗

 .(85)

Thus (82) is established. Once the system is in standard decomposed form (77),
and analogously to [23], any decoupling quasi-static state feedback is of the form
vi = αi(ξ0, ξi, wi, . . . , w

(ν)
i ). Hence, if the αi’s preserve the equilibrium, the second

statement in Theorem 4.11 is immediate.
The asymptotic stability of dynamics (83) is a necessary condition for noninter-

acting control with internal stability by quasi-static state feedback.
The next example illustrates Theorem 4.11.
Example 4.12. Let us consider a nonlinear system given by

ẋ1 = u1, ẋ2 = x4 + x3u1, ẋ3 = x3 + x4, ẋ4 = u2, ẋ5 = x1 + x2,

y1 = x1, y2 = x2.

We have {n′
i} = {2, 1}. Permute then yi, and thus C1∗ = {dx2} and C2∗ = {dx1}.

The quasi-static feedback which decouples the system is u1 = v1 and u2 = v2 − (x3 +
x4)v1 − x3v̇1, where (v1, v2) is a new input vector. It is clear that C0 = 0. We choose
dξ1 = {dx2, d(x4 + x3u1)} as a basis of {C1∗ + Ċ1∗}, and thus

ξ̇1 =
(
ξ̇11
ξ̇12

)
=
(
ξ12
v2

)
.(86)

Now choose {dξ2} = {dx1} as a basis of C2∗, and one has

ξ̇2 = v1.(87)

We complete our coordinate transformation by taking

ξ̂ =
(
ξ̂1
ξ̂2

)
=
(
x4
x5

)
.

So in the new coordinates (ξ1, ξ2, ξ̂), the considered system becomes

ξ̇11 = ξ12,

ξ̇12 = v2,

ξ̇2 = v1,
˙̂
ξ1 = v2 − (ξ12 − ξ̂1) − ξ̂1v1 − (ξ12 − ξ̂1)v̇1/v1,
˙̂
ξ2 = ξ2 + ξ11,
y1 = ξ2,
y2 = ξ11.

(88)

Clearly, dim(ξ̂) = 2 = n−dim(X ∩(
∑m

i=1
∑

j≥0 C(j)
i∗ )) = n−dim(span{dx1, dx2, dx4 +

u1dx3}). Thus, the dimension of the fixed dynamics equals two. Since the origin is
an equilibrium point, the fixed dynamics are then

˙̂
ξ1 = ξ̂1,
˙̂
ξ2 = 0.

(89)
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TABLE 5
Decoupling zero structure (complete).

Feedback A(x) invertible A(x) noninvertible
(Quasi-) Static dim (P∗)

Isidori and Grizzle [32] n − dim
(

X ∩
(

m∑
i=1

∑
j≥0 C∗(j)

i

))
Dynamic dim (∆mix) dim (∆mix(Σp))

Wagner [47] Zhan, Tarn, and Isidori [50]

Similarly to Wagner’s and Battilotti’s results, in the case where no quasi-static
state feedback can render the system simultaneously noninteractive and stable, a
suitable dynamic feedback may still solve the problem. This reduces to the results in
Zhan, Tarn, and Isidori [50].

Table 2, which displays the dimension of the various decoupling zero dynamics,
is now completed in Table 5.

5. Conclusions. A generalized notion of controlled invariance under quasi-static
state feedback for nonlinear systems was introduced. It was shown that this notion
coincides with the standard notion of a controlled invariant distribution under regular
static state feedback. Using the generalized notion of controlled invariance, a condition
for the controlled invariance of not necessarily integrable codistributions was derived.
For a subspace Ω ⊂ X , we gave sufficient conditions for controlled invariance under
quasi-static state feedback. Furthermore, a necessary and sufficient condition for
controlled invariance was also given for a special class of subspaces Ω. The generalized
controlled invariance was applied to the DDP by dynamic feedback. A necessary and
sufficient condition for solvability of this DDDP was obtained.

For a controllability cospace C ⊂ X , some properties were derived by means of
the controllability cospace algorithm. Moreover, the smallest controllability cospace
containing the differential of the output mapping allowed us to solve the block input-
output decoupling problem. It also characterized the dimension of the fixed dynamics
with respect to any quasi-static state feedback in the case of one to one decoupling.

This paper leaves some interesting open questions, which are topics for further
research. A first question is related to necessary and sufficient conditions for controlled
invariance for a general class of subspaces. A second question is whether (or under
what conditions) there exists a smallest controlled invariant subspace containing some
given subspace. It seems that for the answer to both questions a better understanding
of quasi-static state feedback is needed.

Finally, let us remark that throughout the paper we have restricted ourselves to
“Kalmanian” systems and to subspaces Ω ⊂ X . However, the definition of controlled
invariance and the characterizations of controlled invariance in this paper can, mutatis
mutandis, be translated to non-Kalmanian systems and subspaces Ω ⊂ X × U .

Appendix. According to Remark 4.6, we will prove that the sequence (70) com-
puting C∗ is the same as the one computing R∗⊥

(the dual of R∗, the maximal
controllability subspace in kernel of the output) for linear time-invariant systems. We
proceed by induction. First, we recall some basic operations that we need.

Consider a linear system given by

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm,

y = Cx.
(90)
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Identify elements of Rn with column vectors while elements of Rn⊥
, its dual, are

identified with row vectors. Thus, ω =
∑n

i=1αidxi ∈ Rn⊥
is identified with the row

vector α := (α1, . . . , αn) ∈ Rn. With this notation,

ω̇ = αdẋ = αAdx+ αBdu ∈ (Rn × Rm)⊥(91)

is identified with the row vector (αA αB).
Let a subspace V ⊂ Rn be given. Then

(AV )⊥ = {ω ∈ span{dx} |< ω,Av >= 0∀v ∈ V }
= {α ∈ Rn | αAv = 0, ∀v ∈ V } = {α ∈ Rn | αA ∈ V ⊥}
=: −1AV ⊥

(92)

if ω = αdx ∈ (AV )⊥ ∩ B⊥, where B = ImB. Then

ω̇ = αAdx+ αBdu = αAdx ' αA ∈ V ⊥.(93)

The two sequences to be compared are{ R⊥
0 := X ,

R⊥
µ+1 := V∗⊥

+ −1AR⊥
µ ∩ B⊥ (µ ∈ N)

(94)

and { C0 := X ,
Cµ+1 := {ω ∈ Cµ | ω̇ ∈ Cµ + V̇∗⊥} (µ ∈ N),

(95)

where V∗ is the maximal controlled invariant subspace in KerC for the system (90).
For step 0, it is obvious that R⊥

0 = C0. Suppose that R⊥
µ = Cµ for µ = 0, . . . , `. Let

ω ∈ R⊥
`+1, thus there exist ω1 ∈ V∗⊥

and ω2 ∈ −1AR⊥
` ∩ B⊥ such that ω = ω1 + ω2.

By (93), ω̇2 ∈ R⊥
` = C` and hence R⊥

`+1 ⊂ C`+1. To show the other inclusion, let
ω ∈ C`+1; then

ω̇ ∈ C` + V̇∗⊥
= R⊥

` + V̇∗⊥
.(96)

Thus there exists ω1 ∈ V∗⊥
and ω2 ∈ R⊥

` such that ω̇ = ω̇1 + ω2. Let now ω̇0 =
˙︷ ︸︸ ︷

ω − ω1 = ω2. So ω̇0 ∈ R⊥
` . This implies that

ω0 ∈ {ω = αdx | ω̇ ∈ R⊥
` } = {αdx | αAdx+ αBdu ∈ R⊥

` }
= {α | αA ∈ R⊥

` } ∩ B⊥ = −1AR⊥
` ∩ B⊥.

(97)

So ω = ω1 + ω0 ∈ R⊥
`+1, which yields that C`+1 ⊂ R⊥

`+1. Thus, we have that
Cµ = R⊥

µ for all µ ∈ N, which establishes our claim.
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FINITE-DIMENSIONAL FILTERS. PART I: THE WEI–NORMAN
TECHNIQUE∗
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Abstract. This two-part paper deals with necessary or sufficient conditions for the existence of
finite-dimensional filters. In this first part, we set the problem and propose a construction of such
filters by the Wei–Norman technique. After having formulated the problem of finite-dimensional
filters in terms of finite-dimensional realizations of input-output mappings, we specify the dependence
with respect to the initial measure. We show how different notions of dependence imply different
properties of the so-called estimation algebra E: E is homomorphic to a Lie algebra of vector fields;
E contains only operators of order less than or equal to two; E is finite dimensional and contains
only operators of order less than or equal to two. These results depend on a precise definition of a
finite-dimensional realization, especially on what concerns the domain of the output function. The
last (and most stringent) condition on E will be shown to be almost sufficient to recover a family
of finite-dimensional realizations thanks to the proof of a Baker–Campbell–Hausdorff formula which
allows us to apply the Wei–Norman technique in a quite general setting.

Key words. finite-dimensional filter, estimation Lie algebra, bilinear stochastic partial differ-
ential equation, Baker–Campbell–Hausdorff formula.

AMS subject classifications. 93E11, 60G35, 22E15, 47D06

PII. S0363012994270904

1. Introduction. The filtering problem for systems with correlated noises of the
form (see [11, 48]){

dxt = f(xt)dt + g(xt)dvt + g̃(xt)dyt, x0  µ0,

dyt = h(xt)dt + dwt, y0 = 0,
(1)

where x ∈ Rn, f(x) ∈ Rn, g(x) = (g1(x), ..., gm(x)) ∈ (Rn)m, g̃(x) = (g̃1(x), ..., g̃m(x))
∈ (Rn)m, y ∈ Rp, h(x) ∈ Rp is the characterization of the conditional law Πt of xt

knowing Yt, the σ-field generated by {ys | 0 ≤ s ≤ t}, or at least of some statistics
〈Πt, φ〉 such as the conditional mean or variance.

Under quite general assumptions, the reference probability method allows us to
define an unnormalized conditional law σt which satisfies a (generally) infinite-dimen-
sional bilinear stochastic partial differential equation (PDE): the Duncan–Mortensen–
Zakai equation (Zakai equation, for short) [47, 44, 15, 37]

dσt(φ) = σt

(
1
2

m∑
k=1

L2
gk
φ+ Lfφ− 1

2

(
‖h‖2 +

p∑
i=1

Lg̃i
hi

)
φ

)
dt

+
p∑

i=1

σt(Lg̃i
φ+ hiφ) ◦ dyi

t, σ0 = µ0.

(2)

Remark. For any vector field X, we make use of the Lie derivative notation

LXφ(ξ) = X ·φ(ξ) = 〈dφ,X〉 (ξ) = lim
t→0

φ(ΦX
t (ξ)) − φ(ξ)

t
,(3)
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where ΦX
t denotes the local flow generated by X. Of course, we have Lk

Xφ =
LX(Lk−1

X φ) ∀ k ≥ 1 with the convention L0
Xφ = φ.

As was noticed by Brockett [9, 8], the solution of (2) usually defines an input
output map

Fµ0 : R+ × C0(R+,Rp) → M+(Rn),(4)

where µ0 is the initial law and M+(Rn) denotes the space of nonnegative bounded mea-
sures on Rn. Then, in the spirit of system theory, we can define a finite-dimensional
realization (FDR) of such an input-output map. This is just a specific way to formu-
late finite-dimensional filtering problems.

Such problems find their origin in the linear Gaussian case, where the solution
σt of the Zakai equation evolves in the set of unnormalized Gaussian measures and
where the corresponding finite number of parameters satisfies a stochastic differential
equation, driven by the observations, on a finite-dimensional manifold. The extension
of this property to nonlinear systems, or non-Gaussian initial laws, has given rise to the
notion of finite-dimensional filters (FDFs). After the example of Beneš [3] a few others
were discovered [5, 45, 39, 4, 28, 25, 14] and also [27, 13, 18] in a different setting. The
estimation Lie algebra E associated with the Zakai equation [9, 10] plays a crucial role
in the study, thus enhancing the existing links with geometric or algebraic methods
[8, 10, 31, 29, 19]. Results of nonexistence are mostly obtained [34, 26], even in the
case of the finite-dimensional computation of some statistics [11, 20, 21]. Nevertheless,
whenever FDFs are known to exist, the estimation Lie algebra is a powerful tool in
the computation of a solution [3, 34, 33, 45, 25, 46]. Other approaches use analytic
methods [2, 35, 36], geometric tools [1, 26], classical probabilistic methods [28, 24], or
Malliavin stochastic calculus of variations [30, 25, 32].

In this paper, we restrict ourselves to the problem of the existence of an FDF for
the conditional law and more generally to the study of FDRs of bilinear stochastic
PDEs very similar to equation (2) as in [26]. Our aim is to give tools for explicit
computation of such realizations. We focus on the role of the initial measure to define
specific families of FDRs {Fµ0 | µ0 ∈ M0}, parametrized by a set of initial measures
M0. According to the more or less strong dependence of the elements of the FDR on
µ0 ∈ M0, this yields a classification of estimation Lie algebras based on the following
results.

1. A necessary condition for the existence of an FDR for one single initial law
µ0 is the existence of a nontrivial homomorphism from E to a Lie algebra of vector
fields on a finite-dimensional manifold. This property, known as the conjecture of
Brockett, has already been sketched out in the case of finite-dimensional statistics for
the cubic sensor problem (section 3) [20, 21].

2. For bilinear stochastic bilinear PDEs admitting FDRs for every Dirac initial
law with an additional regularity property (conic or regular FDR), we show in section 4
that E contains only operators of order less than or equal to two. The proof relies on
a characterization of C∞-differential operators satisfying the maximum principle to
be found in [6] for instance. As was noticed in [26], E is generally infinite dimensional.

3. For bilinear stochastic bilinear PDEs admitting regular FDRs parametrized
by Dirac measures and uniform with respect to the dynamics and initial condition
(namely the same regular FDR holds for all Dirac initial law up to the output func-
tion), we show in section 5 that E is finite dimensional and has a basis consisting of
one operator of order less than or equal to two and operators of order less than or
equal to one. It turns out that such uniform realizations may generally be extended
to many more initial laws than the Dirac ones.
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4. In section 5, these results are used to compute FDRs uniform with respect
to the dynamics and initial condition under additional regularity and algebraic as-
sumptions. The key point is a extension of the Baker–Campbell–Hausdorff formula
to linear partial differential operators, which is proved in the appendix.

In Part II, we shall propose another means of constructing FDRs by invariance
group technique developed in [12], and we shall relate both methods.

2. Problem statement. Let (yt)t≥0 be a standard p-dimensional Brownian
motion, and let ◦dyt denote its “Stratonovitch differential.” For µ0 ∈ M+(Rn), the
space of nonnegative bounded measures on Rn, we consider the following stochastic
bilinear PDE:

dνt(φ) = νt(M0φ)dt+
p∑

i=1

νt(Miφ) ◦ dyi
t ∀φ ∈ D(Rn), ν0 = µ0.(5)

Here D(Rn) denotes the space of smooth functions on Rn with compact support, and
M0, M1, . . . , Mp are the linear differential operators defined by{

M0φ = Lφ+Hφ,

Miφ = Lg̃i
φ+ hiφ, i = 1, . . . , p ∀ φ ∈ D(Rn),

(6)

L being a smooth diffusion operator (L1 = 0), g̃1, . . . , g̃p being smooth vector fields
on Rn, and H,h1, . . . , hp being smooth functions from Rn to R.

Remark. In the filtering problem stated in the introduction, the Zakai equation
is a particular case of equation (5) with

Lφ =
1
2

m∑
k=1

L2
gk
φ+ Lfφ and H = −1

2

(
‖h‖2 +

p∑
i=1

Lg̃ihi

)
.(7)

Assumption 1. For all µ0 ∈ M+(Rn), we assume that there exists an input-output
map

Fµ0 : R+ × C0(R+,Rp) → M+(Rn)(8)

which satisfies the following property: for all p-dimensional Brownian motion (yt)t≥0,
equation (5) has a unique solution (νt)t≥0 given by

with probability one (w.p.1) ∀ t ≥ 0, νt = Fµ0(t; ys, s ≤ t).(9)

In particular, uniqueness for the solution of equation (5) is thus assumed.
Remark. Other notions of input-output mappings can be considered, such as

Fµ0(t; ys, s ≤ t) = νt(φ) ∈ R (conditional statistics).
This input-output map Fµ0 can be realized in finite dimension when it can be

written νt = θ(ξt), where ξt is driven by (ys)s≥0 and evolves on a finite-dimensional
manifold M and θ is a nonnegative output function.

DEFINITION 2.1. An output function θ on a finite-dimensional manifold M is a
map

θ : Dom(θ) → D′(Rn),(10)

where Dom(θ) is an open set of M and D′(Rn) is the space of distributions such that
for every φ ∈ D(Rn) the function

Dom(θ) → R,
ξ 7→ 〈θ(ξ), φ〉(11)
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is of class C∞ (on the open set Dom(θ)) and has continuous partial derivatives of all
order on Dom(θ). A nonnegative output function is an output function with values
in M+(Rn).

A well-known example of such an output function is given by the Gaussian family

θ(m,σ) =
1

σ
√

2π
exp

(
− (x−m)2

2σ2

)
dx ∈ M+(Rn) ⊂ D′(R)

with Dom(θ) = R × (0,+∞) ⊂ M = R2 such that for every φ ∈ D(R) the function

(m,σ) 7→ 〈θ(ξ), φ〉 =
1√
2π

∫ +∞

−∞
exp

(
−z2

2

)
φ(m+ σz) dz

is of class C∞ and has continuous partial derivatives of all order on R2 (thus a fortiori
on Dom(θ) = R × [0,+∞)).

DEFINITION 2.2. An FDR of the input-output map Fµ0 given by (8) consists of
a collection (M , ξ0, b0, b1, . . . , bp, θ), where

1. M is a smooth finite-dimensional manifold,
2. ξ0 ∈ M ,
3. b0, b1, . . . , bp are smooth vector fields on M ,
4. θ is a nonnegative output function on M ,

such that, if (yt)t≥0 is a Brownian motion, the Stratonovitch stochastic differential
equation

dξt = b0(ξt)dt+
p∑

i=1

bi(ξt) ◦ dyi
t, ξt|t=0 = ξ0,(12)

is conservative (that is, w.p.1 has a solution for all time or w.p.1 has infinite explosion
time) with a solution satisfying

w.p.1 ∀ t > 0, ξt ∈ Dom(θ)

and

w.p.1 ∀ t ≥ 0, θ(ξt) = Fµ0(t; ys, s ≤ t) = νt.(13)

We shall also say that system (1) admits an FDF if the corresponding Zakai equa-
tion (2) admits an FDR.

Remark. With the above definition, note that the deterministic point ξ0 neces-
sarily belongs to Dom(θ).

This definition can be extended to the case of a family of input-output maps,
corresponding to the case where we want to specify the dependence with respect to
the initial measure µ0. Clearly, if {Fµ0 | µ0 ∈ M0} is a given family of input-output
maps, the corresponding family of FDRs, if it exists, is denoted by (Mµ0 , ξµ0

0 , bµ0
0 ,

bµ0
1 , . . . , bµ0

p , θµ0).
However, particular subclasses of families of stochastic realizations may be useful

and will receive particular attention.
DEFINITION 2.3. Given M0 ⊂ M+(Rn) and a family of input-output maps {Fµ0 |

µ0 ∈ M0}, an FDR of {Fµ0 | µ0 ∈ M0}, uniform with respect to the dynamics (resp.,
to the dynamics and initial condition), is a family of FDRs for which Mµ0 , bµ0

0 , bµ0
1 ,

. . . , bµ0
p (resp., Mµ0 , bµ0

0 , bµ0
1 , . . . , bµ0

p , and ξµ0
0 ) do not depend on µ0 ∈ M0.
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Of course, when a family of FDRs is uniform with respect to the dynamics and
initial condition, then only the nonnegative output function θ may depend upon the
initial law µ0.

FDFs give rise to FDRs, and examples of FDRs, uniform with respect to the
dynamics, are given by the Kalman–Bucy filter [23] and by Beneš [3], while examples
of FDRs, uniform with respect to the dynamics and initial condition, are given by
Beneš and Karatzas [5], Makowski [28], Wong [45], Lévine [25], and Yau [46].

An important tool in the study of FDRs is the following estimation Lie algebra.
DEFINITION 2.4. The estimation Lie algebra of equation (5), noted E, is the R-

vector space of linear differential operators generated by M0, . . . , Mp (defined by (6))
with respect to the Lie bracket defined by

[N1, N2]φ = N1(N2φ) − N2(N1φ) ∀ φ ∈ D(Rn).

Let x0 ∈ Rn. If N is any smooth linear partial differential operator, N(x0) denotes the
linear partial differential operator with constant coefficients, obtained by freezing at x0
all the coefficients of N . E(x0) denotes the vector space consisting of all partial differ-
ential operators with constant coefficients of the form N(x0) for N ∈ E. If N ∈ E, its
dual operator N? is given by 〈λ,Nφ〉 = 〈N?λ, φ〉 for all φ in D(Rn) and λ ∈ D′(Rn).

3. FDRs and the homomorphism property. The conjecture of Brockett is
as follows: if the system (1) admits an FDF for the conditional law or for condi-
tional statistics, there should exist a nontrivial Lie algebra homomorphism from the
estimation Lie algebra to a Lie algebra of vector fields [8].

In this section, we assume that the input-output map Fµ0 given by (8) admits
an FDR given by Definition 2.2.

DEFINITION 3.1. B denotes the Lie algebra of vector fields on M generated by the
vector fields b0, . . . , bp given by Definition 2.2.

Proofs of the conjecture of Brockett are discussed and outlined by Hazewinkel,
Marcus, and Sussmann in [20] and also by Hijab [21] in the case of existence of FDFs
for conditional statistics of the cubic sensor. It should be noted that the construction
of the homomorphism is different according to both authors, especially because of
the choice of various ideals of B used to quotient this latter algebra. However, both
methods can be extended to other systems than the cubic sensor. The proof of the
conjecture in [11] is quite different since it relies on a specific dependence of a family
of FDRs upon Dirac initial measures.

In the spirit of these previous works, we shall exhibit an ideal J of B as well as a
nontrivial Lie algebra homomorphism from E to a quotient B \ J of B. But here the
definition of the set J is different from others and does not obviously imply that it is
an ideal of B. In fact, this latter property holds because we are dealing with universal
FDRs (in the terminology of [11]), that is, the realizations of the process νt and not
only of some statistics 〈νt, φ〉. This homomorphism will be useful in the next sections.

DEFINITION 3.2. Let θ be an output function on a finite-dimensional manifold M
and X be a smooth vector field on M . We define a new output function LXθ by

〈LXθ(ξ) , φ〉 = LX (〈θ(·) , φ〉)|ξ(14)

for all ξ ∈ Dom(θ) and φ ∈ D(Rn).
Note that LXθ indeed is an output function because LXθ(ξ) is a weak limit of

distributions.
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PROPOSITION 3.3. If the input-output map Fµ0 given by (8) admits an FDR
given by Definition 2.2, then the subset

J = { j ∈ B | w.p.1 ∀ t > 0, Ljθ(ξt) = 0 }(15)

is a Lie ideal of B. Furthermore, there exists a surjective Lie algebras homomorphism
from E to B \ J .

The proof relies on the following lemma which can be found in [26, proof of
Theorem 3.1 and equations (12), (16), pp. 80–82].

LEMMA 3.4. If the input-output map Fµ0 given by (8) admits an FDR given by
Definition 2.2, we have w.p.1 for all t > 0:

M?
i θ(ξt) = Lbi

θ(ξt), i = 0, . . . , p,

[M?
j , M

?
i ]θ(ξt) = L[bi, bj ]θ(ξt), i, j = 0, . . . , p,

· · · = · · ·
(16)

In these latter equalities,
• the left-hand side represents the differential operator (on Rn) M?

i , or [M?
j , M

?
i ],

acting on the measure (on Rn) θ(ξt);
• the right-hand side represents the derivative of the mapping ξ 7→ θ(ξ) along

the vector field bi (see (14)) or along [bi, bj ], evaluated at the point ξ = ξt.
Since B is generated by linear combinations of iterated brackets of the vector

fields b0, . . . , bp and E by linear combinations of iterated brackets of the operators
M0, . . . , Mp, the following corollary of equations (16) is clear.

COROLLARY 3.5. If the input-output map Fµ0 given by (8) admits an FDR given
by Definition 2.2, then for any E ∈ E, there exists at least one b ∈ B such that

w.p.1 ∀ t > 0, Lbθ(ξt) = E?θ(ξt).(17)

Conversely, for any b ∈ B, there exists at least one E ∈ E such that equation (17) is
satisfied.

The following remark will be quite useful in what follows.
Remark. By Definition 2.2 (and the remark following it), we know that the

deterministic point ξ0 belongs to Dom(θ).
Therefore, thanks to Definition 2.1 (the assumption that the mapping (11) has

continuous partial derivatives of all order on Dom(θ)), we can extend the equality (17)
at t = 0. This provides the following deterministic relationship: if the input-output
map Fµ0 given by (8) admits an FDR given by Definition 2.2, then for any E ∈ E ,
there exists at least one b ∈ B such that

Lbθ(ξ0) = E?θ(ξ0).(18)

Conversely, for any b ∈ B, there exists at least one E ∈ E such that equality (18) is
satisfied.

Note that (18) is satisfied with b = bi and E = Mi for i = 0, . . . , p.
Now we turn to the proof of Proposition 3.3.
Proof of Proposition 3.3. Let j ∈ J , b ∈ B be given. To prove that J is an ideal

of B, we shall show that

w.p.1 ∀ t > 0, L[b, j]θ(ξt) = LbLjθ(ξt) − LjLbθ(ξt) = 0.(19)

First, we show that w.p.1 ∀ t > 0, LbLjθ(ξt) = 0. In [26], the Itô–Stratonovitch
formula is applied to the semimartingale Ljθ(ξt) in the nuclear space of distributions
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[42] as follows:

w.p.1 ∀ t > 0, dLjθ(ξt) = Lb0Ljθ(ξt)dt +
p∑

i=1

LbiLjθ(ξt) ◦ dyi
t .(20)

But j belongs to J , so that the semimartingale Ljθ(ξt) is zero. Therefore, so are the
absolutely continous part and the martingale parts, and this gives

w.p.1 ∀ t > 0, Lbi
Ljθ(ξt) = 0, i = 0, . . . , p .(21)

Now, since b ∈ B can be written as a linear combination of iterated brackets of the
vector fields b0, . . . , bp, iterations of the Itô–Stratonovitch formula and proper linear
combinations of the above equations provide the expected result:

w.p.1 ∀ t > 0, LbLjθ(ξt) = 0 .(22)

Second, we show that w.p.1 ∀ t > 0, LjLbθ(ξt) = 0, and this is not as straightfor-
ward here as above.

We know from Corollary 3.5 that there exists E ∈ E such that (17) is satis-
fied. Therefore, if we apply the Itô–Stratonovitch formula enough times to this latter
equation, followed by appropriate linear combinations, we find that

w.p.1 ∀ t > 0, LjLbθ(ξt) = LjE
?θ(ξt).

We now show that the last term LjE
?θ(ξt) is zero.

On the one hand, by (14), we have the following for ξ ∈ Dom(θ):

∀ φ ∈ D(Rn), 〈LjE
?θ(ξ), φ〉 = Lj (〈E?θ(.) , φ〉)|ξ by def. of Lj

= Lj (〈θ(.) , Eφ〉)|ξ by duality

= 〈Ljθ(ξ) , Eφ〉 by def. of Lj

= 〈E?Ljθ(ξ) , φ〉 by duality.

Thus, with ξ = ξt, we get

w.p.1 ∀ t > 0, LjLbθ(ξt) = LjE
?θ(ξt) = E?Ljθ(ξt).

On the other hand, since j ∈ J , we have

w.p.1 ∀ t > 0, Ljθ(ξt) = 0,

so that for almost all ω ∈ Ω and for all t > 0, the measure (on Rn) Ljθ(ξt(ω)) is zero.
Now, E? is a differential operator on the state-space Rn (acting on measures on Rn)
and thus for almost all ω ∈ Ω and for all t > 0 we have

E?Ljθ(ξt) = E?0 = 0.

Combining the last three equalities we get the expected result:

w.p.1 ∀ t > 0, LjLbθ(ξt) = LjE
?θ(ξt) = E?Ljθ(ξt) = E?0 = 0 .

To end the proof, we define the surjective homomorphism from E to B \ J as
follows:

Υ(E) = { b ∈ B | w.p.1 ∀ t > 0, Lbθ(ξt) = E?θ(ξt) }.(23)
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It is indeed easily seen that Υ(E) belongs to B\J and, by making use of Corollary 3.5,
that Υ is a surjective homomorphism.

COROLLARY 3.6. If the input-output map Fµ0 given by (8) admits an FDR given
by Definition 2.2 such that θ(ξt) is not constant, then there exists a nontrivial Lie
algebras homomorphism from the estimation Lie algebra to an algebra of vector fields
on a finite-dimensional manifold.

Proof. With the previous notations, we choose for manifold a leaf N of the
foliation generated by the involutive distribution η → J (η) (by the Frobenius theorem
[22, p. 25], since this latter distribution is of fixed dimension if we restrict η to the
open subset of M consisting of points η where the subspace J (η) of M has maximal
dimension).

We now exhibit a Lie algebra homomorphism from B \ J to the Lie algebra of
vector fields on N .

Let η∗ ∈ N and (η1, . . . , ηr) be a coordinate system on a neighborhood V of η∗
such that N = { η ∈ V | η1(η) = η1(η∗), . . . , ηk(η) = ηk(η∗) }. Thus, if j belongs to
J , we have

j =
k∑

i=1

ji(η)
∂

∂ηi
.

Since J is an ideal, an easy computation provides for any a ∈ B [22, pp. 45–46]:

a =
k∑

i=1

ai(η1, . . . , ηr)
∂

∂ηi
+

r−k∑
i=1

ak+i(ηk+1, . . . , ηr)
∂

∂ηk+i
.

Let C be a class of B \ J : there exists c ∈ B such that any a ∈ C satisfies c− a ∈ J .
In coordinates, this means that there exist r − k functions ck+1(ηk+1, . . . , ηr), . . . ,
cr(ηk+1, . . . , ηr) on V such that any a in C can be written

a =
k∑

i=1

ai(η1, . . . , ηr)
∂

∂ηi
+

r−k∑
i=1

ck+i(ηk+1, . . . , ηr)
∂

∂ηk+i
.

Thus c =
∑r−k

i=1 ck+i(ηk+1, . . . , ηr) ∂
∂ηk+i is uniquely determined by the class C, and

we can in this way assign c to C and thus define υ(C) = c.
It is easily seen that υ is a Lie algebras homomorphism from B \ J to the Lie

algebra of vector fields on the manifold N . On the other hand, υ is not trivial because
υ = 0 means that B ⊂ J , or equivalently that θ(ξt) is constant.

To end the proof, we note that since Υ in (23) is a surjective homomorphism from
E to B \ J 6= 0, then Υ ◦ υ is a nontrivial homomorphism from E to the Lie algebra
of vector fields on the manifold N .

4. FDRs for Dirac initial laws. Although the estimation Lie algebra E of a
system admitting an FDF is necessarily homomorphic to a Lie algebra of vector fields
on a finite-dimensional manifold, it appears that, for all the known cases of systems
admitting FDFs, the estimation Lie algebra E has much stronger properties: it is
either both finite dimensional and made of operators of order less than or equal to
two [23, 3, 5, 45, 4, 28, 14, 25, 41, 46] or made only of operators of order less than or
equal to two [26].

We shall prove in this section and the following one that these last properties of
E can be related to the existence of FDRs for the family {Fµ0 | µ0 ∈ D0}, where D0
is the set of Dirac measures.
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First, a technical difficulty arises because Dirac measures are extremal measures
in the cone of nonnegative measures. Indeed, we shall prove that, when an FDR exists,
the parametrization of the nonnegative output function θ is almost always singular
around any point ξ0 such that θ(ξ0) ∈ D0.

LEMMA 4.1. Let x0 ∈ Rn be such that
1. the second-order part of the operator M0 given in equation (6) is not zero at
x0, that is M0(x0) is a constant linear differential operator of order equal to
two (but may be degenerate),

2. Fδx0 , given by (8), admits an FDR.
Then the initial point ξ0 given in Definition 2.2 is necessarily a boundary point of the
open domain Dom(θ) of the nonnegative output function θ; that is, ξ0 ∈ ∂Dom(θ).

Proof. Let us note M0(x0) =
∑n

i,j=1 sij
∂2

∂xixj
+ · · ·, where S = (sij)i,j=1,...,n

is a nonnegative symmetric matrix. Let us choose φ ∈ D(Rn) nonnegative such
that φ(x) = (x − x0)′S(x − x0) in a neighborhood of x0. Since θ is a nonnegative
output function and φ ≥ 0, we have 〈θ(ξ), φ〉 ≥ 0. On the other hand, we have
〈θ(ξ0), φ〉 = 〈δx0 , φ〉 = φ(x0) = 0.

Now, assume that ξ0 is not a boundary point of the open domain Dom(θ). There-
fore, all first-order partial derivatives of the mapping (11) are zero at ξ0. In partic-
ular, we have 〈Lb0θ(ξ0), φ〉 = 0, while on the other hand, we know from (16) that
M?

0 θ(ξ0) = Lb0θ(ξ0). Therefore,

(M0φ)(x0) = 〈δx0 ,M0φ〉 = 〈θ(ξ0),M0φ〉 = 〈M?
0 θ(ξ0), φ〉 = 〈Lb0θ(ξ0), φ〉 = 0,

where φ is such that (M0φ)(x0) =
∑n

i,j=1 s
2
ij > 0, which contradicts the assumption

on M0. Thus, ξ0 is a boundary point of the open domain Dom(θ).
In what follows, it appears that the shape of Dom(θ) in the neighborhood of the

boundary point ξ0 is important to specify.
DEFINITION 4.2. The tangent cone at ξ0 is the cone of vectors v of the tangent

space Tξ0M at ξ0 such that there exists a smooth path γ : [0, T ] → M satisfying
1. γ(0) = ξ0,
2. T > 0 and γ(t) ∈ Dom(θ) for all t ∈ (0, T ],
3. γ′(0) = v.

This indeed defines a cone (since v may be replaced by λv, λ > 0 by changing the path
parametrization) that we note K(ξ0).

DEFINITION 4.3. The FDR of Definition 2.2 is said to be
• conic if b0(ξ0) belongs to the interior

◦
K (ξ0) of the tangent cone K(ξ0),

• regular if the tangent cone K(ξ0) contains an open half-space T+
ξ0
M and if

b0(ξ0) belongs to T+
ξ0
M .

With this definition, a regular FDR is conic.
The following proposition gives a necessary condition for Fδx0 to have a conic or

a regular FDR.
PROPOSITION 4.4. Let x0 ∈ Rn be such that the input-output map Fδx0 given by

(8) admits a conic FDR. Then E(x0) contains no operators of order greater than two;
that is,

E(x0) ⊂ R − span
{

1,
∂

∂xi
, i = 1, . . . , n,

∂2

∂xi∂xj
, i, j = 1, . . . , n

}
.(24)

Moreover, if the FDR is not only conic but also regular, then

E(x0) ⊂ RM0(x0) + R − span
{

1,
∂

∂xi
, i = 1, . . . , n

}
.(25)
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We need a lemma based on a characterization of the operators satisfying the
maximum principle [6].

LEMMA 4.5. Let R be a smooth differential operator on Rn such that for all
smooth nonnegative function φ and for all x0 ∈ Rn, we have

φ(x0) = 0 ⇒ (Rφ)(x0) ≥ 0 (resp.,= 0).(26)

Then R is a differential operator of order less than or equal to two (resp., of order
less than or equal to one).

Proof. Let us write R under the form

R =
∑

α=(α1,...,αn)∈Nn

rα
∂α1+···+αn

∂xα1
1 · · · ∂xαn

n
.(27)

Let x0 ∈ Rn be given.
Let Q be a nonnegative symmetric matrix, let λ ∈ R, and let β = (β1, . . . , βn) ∈

Nn be such that | β |= β1 + · · · + βn > 2. Then, let φ be a smooth nonnegative
function such that in a neighborhood of x0 we have

φ(x) =
(x− x0)′Q(x− x0)

2
+

λ

β1!...βn!
(x1 − (x0)1)β1 · · · (xn − (x0)n)βn .(28)

By (27) and (28) we have

(Rφ)(x0) =
∑

|α|=2

rα(x0)Qα + λrβ(x0).

In the notation Qα, one has to understand the following: when | α |= 2, there exists
• either i 6= j such that αi = αj = 1 (and all others αk = 0) and thenQα = Qi,j ,
• or i such that αi = 2 (and all others αk = 0) and then Qα = Qi,i.

Now, if (Rφ)(x0) ≥ 0, then∑
|α|=2

rα(x0)Qα + λrβ(x0) ≥ 0.

This inequality being true for all λ ∈ R, we must have rβ(x0) = 0 and this latter
equality holds for all β = (β1, . . . , βn) ∈ Nn such that | β |= β1 + · · · + βn > 2. Thus,
R is a differential operator of order less than or equal to two at x0 (and then on all
Rn since x0 is arbitrary).

Now, if (Rφ)(x0) = 0, we know that rβ(x0) = 0 for all β = (β1, . . . , βn) ∈ Nn

such that | β |= β1 + · · · + βn > 2. Thus, we simply have∑
|α|=2

rα(x0)Qα = 0.

This equality being true for all Q nonnegative symmetric matrices, we must have
rα(x0) = 0 for all α such that | α |= 2. Thus, R is a differential operator of order less
than or equal to one at x0 (and then on all Rn since x0 is arbitrary). This ends the
proof of Lemma 4.5.

Proof of Proposition 4.4. Let E ∈ E be given and b ∈ B be such that (18) is
satisfied by the remark following Corollary 3.5.
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Assume that the FDR is conic. Since b0(ξ0) ∈ ◦
K (ξ0), there exists ε 6= 0 such that

b0(ξ0) + εb(ξ0) ∈ ◦
K (ξ0). Let γ be a corresponding path in Dom(θ) (apart from the

starting point ξ0 ∈ ∂Dom(θ)), with γ′(0) = b0(ξ0) + εb(ξ0). We prove that

R = M0 + εE

and thus E itself is a differential operator of order less than or equal to two.
Let x0 be given and let φ be a nonnegative smooth function such that φ(x0) = 0.

By the remark following Corollary 3.5, we have both (Lb0θ)(ξ0) = M?
0 θ(ξ0) and

(Lbθ)(ξ0) = E?θ(ξ0), so that

(Rφ)(x0) = 〈Lb0+εbθ(ξ0), φ〉 .
We now prove that the above right-hand side is nonnegative.

The function

% : t ∈ [0, T ] 7→ 〈θ(γ(t)), φ〉 ∈ R.

has the following properties:
1. It is smooth on (0, T ] with continous derivatives of all order on [0, T ].
2. It is nonnegative since φ is nonnegative.
3. It satisfies %(0) = 0 since

%(0) = 〈θ(γ(0)), φ〉 = 〈θ(ξ0), φ〉 = 〈δx0 , φ〉 = φ(x0) = 0.

By continuity of %′(t) at t = 0, we have

〈Lb0+εbθ(ξ0), φ〉 =
〈
Lγ′(0)θ(ξ0), φ

〉
= lim

t↓0
%′(t) = lim

t↓0

1
t

∫ t

0
%′(s)ds.

We evaluate the last term sign by∫ t

0
%′(s)ds = lim

η↓0

∫ t

η

%′(s)ds = lim
η↓0

(%(t) − %(η)) = %(t) − 0 ≥ 0.

Thus, we get 〈Lb0+εbθ(ξ0), φ〉 ≥ 0.
We conclude that R = M0 + εE, and thus E itself is a differential operator of

order less than or equal to two by Lemma 4.5.
Assume that the FDR is regular. Then there exists an open half-space T+

ξ0
M in

the tangent space Tξ0M of M at ξ0 such that we can split

Tξ0M = T+
ξ0
M ⊕ T 0

ξ0
M ⊕ T−

ξ0
M,

where T+
ξ0
M = −T−

ξ0
M and T 0

ξ0
M = ∂T+

ξ0
M = T+

ξ0
M ∩ T−

ξ0
M .

By symmetry (a(ξ0) ∈ T+
ξ0
M ⇐⇒ −a(ξ0) ∈ T−

ξ0
M) and by continuity (T 0

ξ0
M =

∂T+
ξ0
M = T+

ξ0
M ∩ T−

ξ0
M), we get for all smooth function φ and for all x0 ∈ Rn by the

study here above,

φ ≥ φ(x0) = 0 ⇒


〈Laθ(ξ0), φ〉 ≥ 0 if a(ξ0) ∈ T+

ξ0
M,

〈Laθ(ξ0), φ〉 ≤ 0 if a(ξ0) ∈ T−
ξ0
M,

〈Laθ(ξ0), φ〉 = 0 if a(ξ0) ∈ T 0
ξ0
M.
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Now, since b0(ξ0) ∈ T+
ξ0
M , there exists ρ ∈ R such that ρb0(ξ0) + b(ξ0) ∈ T 0

ξ0
M . Thus

we have
φ ≥ φ(x0) = 0 ⇒ 〈Lρb0+bθ(ξ0), φ〉 = 0.

But by the remark following Corollary 3.5, we also have
((ρM0 + E)φ) (x0) = 〈Lρb0+bθ(ξ0), φ〉 .

We conclude that R = ρM0 + E is a differential operator of order less than or equal
to one by Lemma 4.5. Therefore, for any E ∈ E there exists a real ρ such that

E = ρM0 + a first-order differential operator.
This ends the proof of Proposition 4.4.

The following proposition is an easy corollary.
PROPOSITION 4.6. If the family of input-output maps {Fµ0 | µ0 ∈ D0}, given by

(8), admits a family of regular FDRs, then the estimation Lie algebra E contains only
operators of order less than or equal to two. In particular, we have for all x0 in Rn,
dim E(x0) ≤ (n+1)(n+2)

2 < + ∞.
Let us stress the fact that the assumption under which Proposition 4.6 holds

differs from that of [11, p. 88], where it is assumed that the diffusion ξt depends on
the point x0 of Rn through a relationship of the form ξ0 = ψ(x0). Moreover, this
last result on dim E(x0) is to be compared with results in [11, 26] asserting that the
estimation Lie algebra is finite dimensional when estimated on any point x0 ∈ Rn.

In [26], Lévine notices that estimation Lie algebras with this last property are
not necessarily finite dimensional. The example given relies upon the use of the time-
varying Kalman–Bucy filter, where the variable t is considered as a state variable
(in fact, note that any estimation Lie algebra E , where M0 is a differential operator
of order less than or equal to one is generally infinite dimensional, though finite
dimensional when estimated on any point of Rn since it is made of operators of
order less than or equal to one). Nevertheless this trick allows us to exhibit a class of
systems (1) (and therefore of operators (6)) such that there exist FDFs for every Dirac
initial law (and therefore FDRs for every Dirac measure) but that the estimation Lie
algebra is not finite dimensional. Here is an example.

Consider the following system with state z = (x, t) ∈ R2 and observation y ∈ R: dxt = dvt, x0 deterministic,
dt = dt, t0 deterministic,
dyt = h(t)xtdt + dwt, y0 = 0.

(29)

It is clear that there exists for each Dirac initial law an FDF given by the (time-
varying) Kalman–Bucy filter. On the other hand, the estimation Lie algebra is gen-
erally infinite dimensional. Indeed, we have M0 =

1
2
∂2

∂x2 +
∂

∂t
− 1

2
h2(t)x2,

M1 = h(t)x,
(30)

and it is easily seen that

[M0,M1] = h(t)
∂

∂x
+ h′(t)x,

[[M0,M1],M1] = h2(t),

adM0([[M0,M1],M1]) = [M0, [[M0,M1],M1]] =
d

dt
h2(t),

ad2
M0

([[M0,M1],M1]) = [M0, adM0([[M0,M1],M1])] =
d2

dt2
h2(t).
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Thus, a k-iterate Lie bracket as above is of the form

adk
M0

([[M0,M1],M1]) = [M0, [M0, [...[M0, h
2(t)]...]]] =

dk

dtk
h2(t).(31)

If we choose h such that all derivatives of h2 are linearly independent, then the
estimation Lie algebra is infinite dimensional.

Although such estimation Lie algebras have a certain finite-dimensional property,
we shall see in the next chapter how to specify the dependency on the initial laws to
have finite-dimensional estimation Lie algebras.

5. Uniform families of FDRs. In filtering theory it is remarkable that almost
all the systems (except, for instance, those from [26] seen at the end of the previous
section or the conditionally Gaussian processes of [18]) for which an FDF has been
found have two particularities:

• they admit FDFs which depend on a broad class of initial measures only through
the output function (any nonnegative measure in [28] or almost any nonnegative
measure in [5] for linear systems, the domain of an operator of L1(R2) in [45], any
probability measure in [25]),

• their estimation Lie algebra is finite dimensional (and contains only operators
of order less than or equal to two).

It can be checked that all the FDFs in [45, 5, 28, 25] lead to families of FDRs for
which the nonnegative output function θµ0 associated with the initial law µ0 is of the
form

〈θµ0 , φ〉 =
∫
dµ0(x0)

〈
θδx0 , φ

〉
,(32)

where θδx0 is the nonnegative output function of a family of FDRs, uniform with
respect to the dynamics and initial condition. Indeed, in all these examples, the family
of input-output maps {Fµ0 | µ0 ∈ M0} is parametrized by a set M0 like L1(Rn) which
is too big to be parametrized by some finite-dimensional manifold (unlike the Dirac or
the Gaussian measures), and then it is a reasonable choice to have the FDRs depend
on µ through the nonnegative output function and not through the diffusion ξt by
its starting point ξ0 (like in the Kalman–Bucy filter or in [11]).

When M0 = D0, the set of Dirac measures, the following proposition yields the
structure of the estimation Lie algebra.

PROPOSITION 5.1. If the family of input-output maps {Fµ0 | µ0 ∈ D0} given by
(8) admits a regular FDR uniform with respect to the dynamics and initial condition,
then E is finite dimensional and of the form

E = RM0 + R,(33)

where R is a finite-dimensional subalgebra of differential operators of order less than
or equal to one.

Proof. Once we prove that E is finite dimensional, then it is clear that (33) holds
by a straightforward application of Proposition 4.6.

Thus, to show that E is finite dimensional, we first exhibit a Lie ideal J of B
such that E is isomorphic to B \ J , then show that this latter vector space is finite
dimensional.

We introduce the following family of Lie ideals of B (Lie ideals by Proposition 3.3):

Jx0 = { j ∈ B | w.p.1 ∀ t ≥ 0, Ljθ
δx0 (ξt) = 0 },
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and we define the Lie ideal J of B by

J =
⋂

x0∈Rn

Jx0 .

Now, we define a homomorphism Λ from E to B \ J as follows. Let E ∈ E . We
can always write

E =
∑
k≤l

p∑
i1=0

. . .

p∑
ik=0

ei1,...,ik
[Mi1 , [ . . . ,Mik

] . . . ].(34)

It is then clear by Lemma 3.4 that we have

∀ x0 ∈ Rn w.p.1 ∀ t > 0, Lbθ
δx0 (ξt) = E?θδx0 (ξt),(35)

where b ∈ B is defined by

b =
∑
k≤l

p∑
i1=0

. . .

p∑
ik=0

ei1,...,ik
[ bi1 , [ . . . , bik

] . . . ] .(36)

Thus, we can assign to E ∈ E a nonempty subset Λ(E) of B by

Λ(E) = { b ∈ B | w.p.1 ∀ t > 0, Lbθ
δx0 (ξt) = E?θδx0 (ξt) } .(37)

What is more, it is easily seen that Λ(E) belongs to B \ J .
The above-defined mapping Λ is one to one:
• Λ is injective because Λ(E) = J implies, by the definitions of Λ(E) and J ,

that for all x0 ∈ Rn, one has E?δx0 = 0 and thus E = 0,
• Λ is onto, because for any b ∈ B, we can always write it as in (36) and then

E ∈ E given by (34) is such that Λ(E) is the class of b.
Therefore, E is isomorphic to B \ J .

We now prove that B\J is finite dimensional. For this, we consider the following
linear mapping $:

$ : B → Tξ0M, b 7→ b(ξ0) .(38)

We study Ker$. Let b ∈ B such that b(ξ0) = 0 and, since Λ is onto, let E ∈ E
be such that Λ(E) is the class of b. As a consequence of (37) for t = 0, E satisfies
Lbθ

δx0 (ξ0) = E?δx0 for all x0 ∈ Rn. Since b(ξ0) = 0, then

∀ x0 ∈ Rn, 0 = Lb(ξ0)θ
δx0 (ξ0) = Lbθ

δx0 (ξ0) = E?δx0

and therefore E = 0. We have just shown that Ker$ ⊂ Λ(0) = J , and thus B \ J ⊂
B \ Ker$.

Moreover, by (38), there exists an injection, derived from $, from B \ Ker$ to
Tξ0M , and we obtain

E ' B \ J ⊂ B \ Ker$ ↪→ Tξ0M.

Since the last mapping is an injection, we finally get

dimE ≤ dimM < +∞.(39)

This ends the proof.
Now we shall prove that the above necessary conditions of Proposition 5.1 for the

existence of certain classes of FDRs are almost sufficient.
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THEOREM 5.2. Assume that
1. E is finite dimensional and given by (33), where R is a finite-dimensional

subalgebra of differential operators of order less than or equal to one,
2. E is a solvable Lie algebra, with a basis {F0, F1, F2, . . . , Fq} such that F0 = M0

and Fi = R − span{Fi, . . . , Fq } is a Lie ideal of Fi−1 for i = 0, . . . , q,
3. the first-order part of each operator F1, . . . , Fq defines a complete vector field

on Rn,
4. for all φ ∈ D(Rn), there exists a unique solution u ∈ C∞(]0,+∞[×Rn) ∩

C0([0,+∞[×Rn) of the PDE
∂u

∂t
= M0 u, u(0, x) = φ(x).(40)

Then the family of input-output maps {Fµ0 | µ0 ∈ D0} given by (8) admits a regular
FDR, uniform with respect to the dynamics and initial condition.

Remark. The Lie algebra E can be finite dimensional without being solvable,
as is the case for E = { d2

dx2 , x
2}L.A.. However, Tam, Wong, and Yau prove in [41]

that finite-dimensional estimation algebra from filtering problems (without correlated
noise) are solvable when the second-order part of the infinitesimal generator of the
signal is the Laplacian on Rn and the drift is a gradient vector field.

First, we shall define the collection of output functions.
LEMMA 5.3. Suppose that the assumptions of Theorem 5.2 are satisfied. Then

there exists a family of nonnegative output functions
(
θδx0

)
x0∈Rn on Dom(θ) =]0,

+∞[×Rq which satisfy〈
∂θδx0

∂ξi
(ξ), φ

〉
=
〈
θδx0 (ξ), e−ξ0 adF0 · · · e−ξi−1adFi−1Fiφ

〉
,(41)

where F0 = M0. Here, adM (N) = [M,N ] and et adM is the linear operator et adM

=
∑+∞

j=0
tj adj

M

j! of the finite-dimensional Lie algebra E.
Proof. If F1 = X1 + c1, . . . , Fq = Xq + cq is a basis of R, where X1, . . . , Xq

are (operators of order one identified with) complete vector fields and c1, . . . , cq are
smooth functions, then the evolution equations

∂u

∂t
= Fi u = (Xi + ci)u, u(0, x) = φ(x),(42)

generate positive transition groups (P 1
t )t∈R, . . . , (P q

t )t∈R on C∞(Rn) given by

P i
t φ (x) = exp

(∫ t

0
ci(ΦXi

s (x)) ds
)
φ (ΦXi

t (x)) .(43)

Moreover, if (P 0
t )t≥0 is the transition semigroup on D(Rn) generated by the evolution

equation (40), let us define the map θδx0 from ]0,+∞[×Rq to M+(Rn) by〈
θδx0 (ξ), φ

〉
=
(
P q

ξq · · · (P 0
ξ0 φ)

)
(x0) = P q

ξq · · · P 0
ξ0 φ (x0).(44)

The function
〈
θδx0 (·), φ〉 is clearly continuous on [0,+∞[×Rq and smooth on ]0,

+∞[×Rq since it can be expressed by the formula〈
θδx0 (ξ), φ

〉
= exp

(∫ ξq

0
cq(ΦXq

s (x0)) ds

)
× · · · × exp

(∫ ξ1

0
c1(ΦX1

s ◦ ΦX2
ξ2 ◦ · · · ◦ ΦXq

ξq (x0)) ds

)
× (P 0

ξ0φ)(ΦX1
ξ1 ◦ · · · ◦ ΦXq

ξq (x0)) .
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To prove (41), we put

φ0 = φ ∈ D(Rn), φ1 = P 0
ξ0 φ0 ∈ C∞(Rn), . . . , φq = P q

ξq φq−1 ∈ C∞(Rn)

so that if ε0, . . . , εq is the canonical basis of Rq+1, we have〈
θδx0 (ξ), φ

〉− 〈θδx0 (ξ + tεi), φ
〉

t
=
(
P q

ξq · · ·P i
ξi

P i
t φi − φi

t

)
(x0).

When t tends to zero, this last term converges to (P q
ξq · · ·P i

ξi Fiφi)(x0) since the
operators P 1

t , . . . , P q
t are easily seen to be continuous on C0(Rn) for the pointwise

convergence. Therefore, we have for i = 0, . . . , q:〈
∂θδx0

∂ξi
(ξ), φ

〉
=

∂

∂ξi

〈
θδx0 (·), φ〉|ξ = P q

ξq · · · P i
ξi Fi φi (x0) .(45)

By Theorem A.1 in the Appendix, the Baker–Campbell–Hausdorff formula (A.57)
applies to Fi φi for i = 1, . . . , q. Indeed, we have

F1 φ1 = F1 P
0
ξ0 φ0

= P 0
ξ0 (e−ξ0 adF0F1 φ0)

since φ0 = φ, F0φ0, . . . , Fqφ0 all belong to D(Rn) on which P 0
ξ0 is defined (see

Theorem A.1). Now, with φ1, . . . , φq ∈ C∞(Rn), we show in the same way for
i = 1, . . . , q,

Fi φi = Fi P
i−1
ξi−1 φi−1

= P i−1
ξi−1 e

−ξi−1 adFi−1Fi φi−1

= · · ·
= P i−1

ξi−1 · · · P 0
ξ0 e−ξ0 adF0 · · · e−ξi−1 adFi−1 Fiφ .

After reporting this last expression in (45), we find (41).
Now, there remains to prove that all partial derivatives of

〈
θδx0 (ξ), φ

〉
have limits

on [0,+∞[×Rq (see Definition 2.1). For this, we can notice that in (41) the term
e−ξ0adF0 · · · e−ξi−1adFi−1Fi is an analytic expression in (ξ0, . . . , ξi−1) since E is finite
dimensional. Therefore, we can write

e−ξ0 adF0 · · · e−ξi−1 adFi−1 Fi =
q∑

j=0

αij(ξ0, . . . , ξi−1)Fj ,(46)

where αi0, . . . , αiq are analytic functions. As a consequence of (41), we have〈
∂θδx0

∂ξi
(ξ), φ

〉
=

q∑
j=0

αij(ξ0, . . . , ξi−1)
〈
θδx0 (ξ), Fj φ

〉
so that the first partial derivatives of

〈
θδx0 (·) , φ 〉 have limits on [0,+∞[×Rq since〈

θδx0 (·) , φ 〉 is continuous on [0,+∞[×Rq. If we iterate the procedure, we prove
that this is the case for all partial derivatives, so that θδx0 is an output function on
]0,+∞[×Rq.
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Proof of Theorem 5.2. If we show that there exist p+ 1 vector fields b0, b1, . . . ,
bp on Rq such that equation (12) is conservative on ]0,+∞[×Rq (with ξt|t=0 = 0) and
that 〈

Lbi
θδx0 (ξ), φ

〉
=
〈
θδx0 (ξ), Miφ

〉
, i = 0, . . . , p,(47)

then (Rq+1, 0, b0, b1, . . . , bp, θδx0 )x0∈Rn is a family of regular FDRs, uniform with re-
spect to the dynamics and initial condition, for the family of input-output maps
{Fµ0 | µ0 ∈ D0} given by (8).

Indeed, it would only remain to show that
〈
θδx0 (ξt), φ

〉
satisfies equation (5). But

(47) and (12) provide the result thanks to the (ordinary) Itô–Stratonovitch formula
since for all φ ∈ D(Rn), w.p.1, we have

d
〈
θδx0 (ξt), φ

〉
= Lb0

〈
θδx0 , φ

〉
|ξt
dt +

p∑
i=1

Lbi

〈
θδx0 , φ

〉
|ξt

◦ dyi
t

=
〈
Lb0θ

δx0 (ξt), φ
〉
dt +

p∑
i=1

〈
Lbiθ

δx0 (ξt), φ
〉 ◦ dyi

t

=
〈
θδx0 (ξt),M0φ

〉
dt +

p∑
i=1

〈
θδx0 (ξt),Miφ

〉 ◦ dyi
t.

We define the vector fields b0, . . . , bp on Rq+1 as images of left-invariant vector
fields on a Lie group as follows.

Since the Lie algebra E is finite dimensional, then it is the Lie algebra of a simply
connected Lie group G [17]. Moreover, if G denotes the Lie algebra of left-invariant
vector fields of the Lie group G and TeG the tangent space to G at the neutral element
e of G, there is a series of isomorphisms

E ' G ' TeG.(48)

Let us denote by g0, . . . ,gq the images of F0, . . . , Fq in G. The exponential mapping
from TeG to G satisfies Φg

t (τ) = τ etg(e) for all τ ∈ G and g ∈ G. Denoting gi =
gi(e) ∈ TeG, the following mapping Ψ from Rq+1 to G is analytic:

Ψ(ξ0, . . . , ξq) = eξqgq · · · eξ0g0 = Φgq

ξq · · · Φg0
ξ0 (e) .(49)

Moreover, since E is solvable, then G is also solvable and, thanks to the choice of the
basis {F0, F1, . . . , Fq}, Ψ is shown to be one to one with analytic inverse [7, p. 240].
Then, to the vector fields g0, . . . , gq we associate the following vector fields on Rq+1:
a0 = Ψ−1

? (g0), . . . , aq = Ψ−1
? (gq). They satisfy〈

Laiθ
δx0 (ξ), φ

〉
=
〈
θδx0 (ξ), Fi φ

〉 ∀ ξ ∈ [0,+∞[×Rq .(50)

Indeed, for ξ in ]0,+∞[×Rq and i = 0, . . . , p, we have〈
Laiθ

δx0 (ξ), φ
〉

= Lai

〈
θδx0 (·) , φ〉|ξ

= LΨ−1
? (gi)

〈
θδx0 (·) , φ〉|ξ

= Lgi

〈
θδx0

(
Ψ−1(·)) , φ〉|Ψ(ξ)

= d
dt |t=0

〈
θδx0

(
Ψ−1(Φgi

t (Ψ(ξ)))
)
, φ
〉
.

(51)
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Now, since Ψ is an analytic diffeomorphism of Rq+1, there exist analytic functions
r0, . . . , rq (which depend on ξ0, . . . , ξq) such that for all t

Φgi

t (Ψ(ξ)) = eξqgq · · · eξ0g0 etgi = e(ξ
q+rq(t))gq · · · e(ξ0+r0(t))g0 .(52)

Therefore, by (51) we have〈
Laiθ

δx0 (ξ), φ
〉

=
d

dt |t=0

〈
θδx0

(
ξ0 + r0(t), . . . , ξq + rq(t)

)
, φ
〉

=
q∑

j=0

drj
dt

(0)
〈
∂θδx0

∂ξj
(ξ), φ

〉

=
〈
θδx0 (ξ), F̃i φ

〉
,

where

F̃i =
q∑

j=0

drj
dt

(0) e−ξ0 adF0 · · · e−ξj−1 adFj−1 Fj .(53)

We now prove that F̃i = Fi for i = 0, . . . , q, and for this purpose we focus on
equation (52), which defines the functions r0, . . . , rq. Denoting τ = eξqgq · · · eξ0g0 , we
obtain the following equality:

τ gi =
q∑

j=0

eξqgq · · · eξjgj
drj
dt

(0) gj e
ξj−1gj−1 · · · eξ0g0

in the tangent space Tτ (G) after differentiation in t. Here, g gi denotes the tangent
mapping at e, estimated on the tangent vector gi, of the left action on the Lie group G:
h 7→ g h (this notation is convenient because it allows easy and theoretically justified
manipulations). Multiplying this last equation by e−ξqgq · · · e−ξ1g1 , we finally get

gi =
q∑

j=0

drj
dt

(0) e−ξ0g0 · · · e−ξj−1gj−1 gj e
ξj−1gj−1 · · · eξ0g0 ,

where, as in any Lie group, e−ξj−1gj−1 gj e
ξj−1gj−1 = e−ξj−1 adgj−1 gj [16, p. 175], so

that

gi =
q∑

j=0

drj
dt

(0) e−ξ0 adg0 · · · e−ξj−1 adgj−1 (gj) .

Therefore, by the Lie isomorphisms (48) and by comparing this latter equality with
(53), this proves that F̃i = Fi.

Now, if Mi =
∑q

j=0 fij Fj , we define p + 1 vector fields b0, . . . , bp on Rq+1 by
bi =

∑q
j=0 fij aj . By (50), the vector fields b0, . . . , bp satisfy (47).

Since g0, . . . , gq are left-invariant vector fields on the Lie group G, then the
stochastic differential equation

dgt =

 q∑
j=0

f0jgj

 (gt) dt +
p∑

i=1

 q∑
j=0

fijgj

 (gt) dyi
t, g0 = e(54)
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is conservative [40]. It is easily seen that ξt = Ψ−1(gt) is a solution of the stochastic
differential equation (12), thus proving that it is conservative. Moreover, the solution
ξt is of the form (t, ηt). Indeed, (49) implies that

∂Ψ
∂ξj

= eξqgq · · · eξjgj gj e
ξj−1gj−1 · · · eξ0g0

= eξqgq · · · eξ0g0e−ξ0g0 · · · e−ξj−1gj−1 gj e
ξj−1gj−1 · · · eξ0g0

= eξqgq · · · eξ0g0e−ξ0 adg0 · · · e−ξj−1 adgj−1 (gj)

= Ψ(ξ0, . . . , ξq)e−ξ0 adg0 · · · e−ξj−1 adgj−1 (gj);

that is,
∂

∂ξ0
= Ψ−1

? (g0),

∂

∂ξ1
= Ψ−1

?

(
e−ξ0 adg0 g1

)
,

· · · = · · ·
∂

∂ξq
= Ψ−1

?

(
e−ξ0 adg0 · · · e−ξq−2 adgq−2 gq

)
.

By the property of the basis {F0, F1, F2, . . . , Fq} of the solvable Lie algebra E (see
assumption 2 of Theorem 5.2), we have

bi(ξ) ∈ R − span
{

∂

∂ξ1
, . . . ,

∂

∂ξq

}
∀ i = 1, . . . , q.(55)

Since b0 = a0 = ∂
∂ξ0 , it is clear that ξt is of the form (t, ηt) so that the stochastic

differential equation (12) is conservative on ]0,+∞[×Rq.
Remarks.
• This uniform FDR is minimal in the sense that the dimension q of the manifold

is minimal by the inequality (39).
• Under the assumptions of Theorem 5.2, let µ0 in M+(Rn) be such that for all

ξ ∈]0,+∞[×Rq there exists a neighborhood V such that x0 7→ supξ∈V |〈θδx0 (ξ), φ〉|
belongs to L1(µ0) for any φ in D(Rn) (in order to apply Lebesgue’s dominated con-
vergence theorem). Then an easy extension of the proof provides an FDR for Fµ0 ,
where the nonnegative output function θµ0 is defined by

〈θµ0(ξ), φ〉 =
∫

Rn

dµ0(x0)
〈
θδx0 (ξ), φ

〉
.

• If M0 is a first-order differential operator, everything remains valid with P 0
t

defined like P 1
t , . . . , P

q
t .

Appendix A. A Baker–Campbell–Hausdorff formula.We are providing a
variation of the Baker–Campbell–Hausdorff formula which gives, under proper as-
sumptions, the exponential expression of a product of exponentials in a Lie group [7,
sections 6, 7]. Our formulation is close to that of Wei and Norman [43] but in the field
of semigroups of operators, namely a sort of exponential of differential operator. The
proof of the formula does not appeal to functional spaces theory as in [33, 45] for the
particular cases treated but does appeal to partial differential calculations as in [38].

THEOREM A.1. Let Y and Z be two smooth linear differential operators on Rn.
Let D be a set of smooth functions φ such that the PDE

∂u

∂t
= Y u, u(0, x) = φ(x)(A.56)
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has a unique solution u(t, x) in C∞(I × Rn), where I =]0,+∞[ or I = R. In such a
case, we denote u(t, x) by Pt φ (x).

If the Lie algebra O of differential operators generated by Y and Z is finite di-
mensional and if OD ⊂ D, then we have the following relation:

∀ t ∈ I, ∀ φ ∈ D, Z (Pt φ) = Pt (e−t adY Z φ).(A.57)

Here, adY (Z) = [Y, Z] and et adY is the linear operator et adY =
∑+∞

j=0
tj adj

Y

j! of the
finite-dimensional Lie algebra O.

Proof. Suppose that for any X ∈ O we show that

∀ t ∈ I, ∀ φ ∈ D, et adY X (Pt φ) = Pt (X φ) .(A.58)

Then, if we replace X by e−t adY Z, the theorem is proved.
With the definition of D, equation (A.58) means that the function u defined by

u(t, x) = et adY X (Pt φ)(x) satisfies (A.56) with initial condition u(0, x) = Xφ. Since
this last property of u is straightforward, let us compute ∂u

∂t . If {W1, . . . , Wq} is a
basis of O, then e−t adY X can be written as et adY X =

∑q
j=1 zj(t)Wj , where z1, . . . ,

zq are smooth functions of t and therefore

u(t, x) =
q∑

j=1

zj(t)Wj(Pt φ)(x).(A.59)

The function u is smooth on I × Rn and we have

∂u

∂t
=

q∑
j=1

∂

∂t
(zj(t)Wj (Pt φ)) =

q∑
j=1

dzj(t)
dt

Wj (Pt φ) +
q∑

j=1

zj(t)
∂

∂t
(Wj Pt φ).

Now, Pt φ (x) is smooth in both variables (t, x) so that we can swap the differentiations
∂
∂t in the variable t and Wj in the variable x to get

∂u

∂t
=

q∑
j=1

dzj(t)
dt

Wj (Pt φ) +
q∑

j=1

zj(t)Wj
∂

∂t
(Pt φ) .

To compute dzj(t)
dt , note that Zt = et adY X is the solution of the linear differential

equation dZt

dt = [Y, Zt], Z0 = Z in the finite-dimensional real vector space O, so that
dZt

dt = [Y, Zt] =
∑q

j=1 zj(t) [Y, Wj ]. Since dZt

dt =
∑q

j=1
dzj(t)

dt Wi, we have
q∑

j=1

dzj(t)
dt

Wj =
q∑

j=1

zj(t) [Y, Wj ].

Therefore,
∂u

∂t
=

q∑
j=1

zj(t) [Y, Wj ] (Pt φ) +
q∑

j=1

zj(t)Wj Y (Pt φ)

=
q∑

j=1

zj(t)Y Wj (Pt φ)

= Y

 q∑
j=1

zj(t)Wj

 (Pt φ)

= Y et adY X (Pt φ) = Y u.

This ends the proof.
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[4] V. BENEŠ, New exact nonlinear filters with large Lie algebras, Systems Control Lett., 5 (1985),
pp. 217–221.
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[17] J. DIEUDONNÉ, Éléments d’Analyse, tome 5, Gauthier-Villars, Paris, 1977.
[18] U. HAUSSMANN AND E. PARDOUX, A conditionally almost linear filtering problem with non-

gaussian initial condition, Stochastics, 23 (1988), pp. 241–275.
[19] M. HAZEWINKEL AND S. MARCUS, Some results and speculations on the role of Lie algebras

in filtering, in Stochastic Systems: The Mathematics of Filtering and Identification and
Applications, M. Hazewinkel and J. Willems, eds., D. Reidel, Dordrecht, the Netherlands,
1981, pp. 591–604.

[20] M. HAZEWINKEL, S. MARCUS, AND H. SUSSMANN, Nonexistence of exact finite dimensional fil-
ters for conditional statistics of the cubic sensor problem, Systems Control Lett., 3 (1983),
pp. 331–340.

[21] O. HIJAB, A realization theory for nonlinear stochastic systems, in Proc. IEEE Conference on
Decision and Control, San Antonio, TX, 1983, pp. 98–903.

[22] A. ISIDORI, Nonlinear Control Systems: An Introduction, 2nd ed., Springer-Verlag, Berlin,
1989.

[23] R. KALMAN AND R. BUCY, New results in linear filtering and prediction theory, Trans. ASME
Ser. D. J. Basic Engrg., 83 (1961), pp. 95–108.

[24] T. KURTZ AND D. OCONE, Unique characterization of conditional distributions in nonlinear
filtering, Ann. Probab., 16 (1988), pp. 80–107.
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variations stochastique, J. Funct. Anal., 41 (1981), pp. 8–36.

[31] S. MITTER, On the analogy between mathematical problems of non-linear filtering and quantum
physics, Ricerche Automat., 10 (1979), pp. 163–216.

[32] D. OCONE, Stochastic Calculus of Variations for Stochastic Partial Differential Equations,
preprint.

[33] D. OCONE, Topics in Nonlinear Filtering Theory, Ph.D. thesis, Massachusetts Institute of
Technology, Cambridge, MA, 1980.

[34] D. OCONE, Finite dimensional Lie algebras in nonlinear filtering, in Stochastic Systems:
The Mathematics of Filtering and Identification and Applications, M. Hazewinkel and
J. Willems, eds., D. Reidel, Dordrecht, the Netherlands, 1981, pp. 629–636.

[35] E. PARDOUX, Stochastic partial differential equations and filtering of diffusion processes,
Stochastics, 3 (1979), pp. 127–167.

[36] E. PARDOUX, Nonlinear filtering, prediction and smoothing, in Stochastic Systems: The Math-
ematics of Filtering and Identification and Applications, M. Hazewinkel and J. Willems,
eds., D. Reidel, Dordrecht, the Netherlands, 1981, pp. 529–558.
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Abstract. This two-part paper deals with necessary or sufficient conditions for the existence
of finite-dimensional filters. In the first part, we set the problem and proposed a construction of
finite-dimensional filters by the Wei–Norman technique. In this second part, we show how geometric-
methods offer another approach that is more powerful, as we shall see. The invariance group of a
parabolic equation is introduced and its action on initial data enhanced. This is applied to the
problem of finite-dimensional realization of bilinear stochastic PDEs and further simplified by the
introduction of a Riemannian framework. We end by an analysis of partially observed systems having
finite-dimensional filters, with emphasis on the case of systems with correlated noise.
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Notation.
A(F ): subgroup of the group G(F ) of (global) diffeomorphisms of F = R× Rn × R, consisting

of diffeomorphisms g of the form (26); that is, g(s, x, u) = (α(s), β(s, x), δ(s, x)u).
SA(F ): semigroup of A(F ) consisting of diffeomorphisms g such that g−1(R+×Rn×(0, +∞)) ⊂

R+ × Rn × (0, +∞)}; that is, α−1(R+) ⊂ R+ and δ > 0.
UP : subset of C∞(R+ × Rn), consisting of functions u(t, x), solutions of ∂u

∂t
= M?

0 u.
SAP (F ): symmetry semigroup of UP , consisting of diffeomorphisms g ∈ SA(F ) such that for

all u ∈ UP , g ·u ∈ UP :

SAP (F ) ⊂ SA(F ) ⊂ A(F ).

Ac(F ): set of complete smooth vector fields Z on F of the form (37); that is, Z = ζ0(s) ∂
∂s

+∑n
i=1 ζi(s, x) ∂

∂xi
+ ζn+1(s, x)u ∂

∂u
.

SAc
P (F ): set of complete infinitesimal symmetries of UP ; that is, set of vector fields Z in Ac(F )

such that ΦZ
r belongs to SAP (F ), for all r ∈ R,

Ac(F ) ⊂ SAc
P (F ) ⊂ X c(F ) ⊂ X (F ).

1. Introduction. In this second part we present geometric methods which are
powerful to analyze a stochastic partial bilinear partial differential equation (PDE),
such as the Zakai equation, and, should the occasion occur, to build a finite-dimensional
realization (FDR). The range of application of such methods will be shown to be
broader than the Wei–Norman techniques developed in Part I.

In section 2, we motivate the introduction of invariance groups by treating the case
of the one-dimensional heat equation and, after stating the problem in section 3, we
formalize in section 4 the notions behind the example developed above and introduce
basic definitions, notations, and properties for the next sections. In section 5, we show
how such invariance group techniques may bring an answer to the FDR problem and
state our main result. In section 6, we compare main theorems from Parts I and II. A
Riemannian geometric framework is introduced in section 7, which greatly simplifies

∗Received by the editors July 8, 1994; accepted for publication (in revised form) April 8, 1996.
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FIG. 1. Action of a group transformation on a function.

the analysis of the FDR problem. In section 8, a systematic treatment of the finite
dimensional filter (FDF) problem by this latter technique is presented.

2. Motivation. The set of planar motions which keep a geometric figure invari-
ant forms a group, the symmetry group of the figure (square, triangle, circle, etc.). In
the case of an algebraic equation, a symmetry group or invariance group consists of
transformations of the base space which permute solutions. (This is one of the basic
concepts of Galois’s theory.) In some cases, the knowledge of such a group may help
solving the equation as in the classical example of the “bisquared” equation:

x4 + bx2 + c = 0 ⇐⇒ z = x2 and z2 + bz + c = 0 .

In the case of ordinary differential equations (ODEs), it was pointed out by Lie that
all the special techniques to solve certain classes of ODEs had their origin in a general
method related to the existence of a continuous invariance group for these ODEs (see
the introduction of [16]). Basically, this (local) group consists of geometric trans-
formations of the product space “independent variables” × “dependent variables,”
and its action on functions consists in transforming their graph as in Figure 1, these
transformed graphs being graphs of solutions of the original ODE.

Continuous groups are interesting because they can be found by some calculation
algorithms. It is indeed a crucial fact of Lie theory that “the nonlinear conditions
expressing the invariance of a system of differential equations under the action of
a group of transformations may, in the case of continuous groups, be replaced by
linear but simpler equivalent conditions” [16]. The latter represent the infinitesimal
invariance of the system under the action of the infinitesimal generators of the group.

All the Lie theory can be extended to PDEs [17, 16, 4]. The case of evolution
equations, where the variable t plays a specific role, is particularly interesting to us.

Indeed, Rosencrans in [20] utilizes the invariance group of a linear evolution equa-
tion of the form ut = Au, where A is a differential operator “acting on the space
variables,” not to find new solutions from one of them, but to exhibit solutions of
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other evolution equations of the form wt = (A + P )w. The set of possible operators
P is shown to form a Lie algebra, called the perturbation algebra. We illustrate this
in the case of the one-dimensional heat equation.

PROPOSITION 2.1. Let (gr,r′)(r,r′)∈R2 be the family of two-parameter diffeomor-
phisms of R× R× R defined by

gr,r′(t, x, u) = (e−2rt− r′, e−rx, u) .(1)

The action of the diffeomorphism gr,r′ on a function u(t, x) defines a new function
gr,r′ ·u by the relation

gr,r′(graph(u)) ⊃ graph(gr,r′ ·u)(2)

(see Figure 1), and its expression is given by

(gr,r′ ·u)(t′, x′) = u(e2r(t′ + r′), erx′) .(3)

The family (gr,r′)(r,r′)∈R2 is actually a two-parameter group of diffeomorphisms,
and the mapping

gr,r′ 7→ gr,r′ ·u(4)

defines a group action. Moreover, (gr,r′) is an invariance group of the one-dimensional
heat equation ut = uxx.

If u is a solution of the heat equation with initial data φ, then for r ∈ R, r′ ≥ 0,
gr,r′ ·u is also a solution of the heat equation but with initial data (gr,r′ ·u)(0, x′) =
u(e2rr′, erx′). What is more, the group action (4) of gr,r′ for r ∈ R, r′ ∈ R+ induces
a group action

gr,r′ 7→ ĝr,r′φ(5)

by mapping the initial data φ to the latter initial data:

(ĝr,r′φ)(x′) = (gr,r′ ·u)(0, x′) = u(e2rr′, erx′) .(6)

To this group action corresponds a Lie infinitesimal action. The infinitesimal genera-
tors of the two-parameter group of diffeomorphisms (gr,r′)(r,r′)∈R2 form a Lie algebra
generated by the vector fields ∂

∂t and 2t ∂
∂t + x ∂

∂x . The one-parameter group of diffeo-
morphisms ΦZ

s (t, x, u) generated by the vector field

Z = −a ∂
∂t

− b

(
2t
∂

∂t
+ x

∂

∂x

)
(7)

belongs to the two-parameter group of diffeomorphisms (gr,r′)(r,r′)∈R2 and may be writ-
ten

ΦZ
s (t, x, u) =

(
te−2bs − a

1 − e−2bs

2b
, e−bsx, u

)
= gr(s),r′(s)(t, x, u) ,(8)

where r(s) = bs, r′(s) = a(1 − e−2bs)/2b. Then, for a ≥ 0, (ĝr(s),r′(s))s≥0 defines a
semigroup of operators with infinitesimal generator

a
d2

dx2 + bx
d

dx
.(9)



FINITE-DIMENSIONAL FILTERS. PART II 1005

In particular, if u(t, x) is the solution of the heat equation with initial data φ, then a
solution to the Cauchy problem

∂w

∂s
= a

∂2w

∂x2 + bx
∂w

∂x
, w(0, x) = φ(x)(10)

is given by

w(s, x) = u

(
a
e2bs − 1

2b
, e−bsx

)
.(11)

Proof. For a given function u(t, x), we have

gr,r′(graph(u)) = {gr,r′(t, x, u(t, x)) | (t, x) ∈ Dom(u)}
= {(e−2rt− r′, e−rx, u(t, x)) | (t, x) ∈ Dom(u)}
= {(t′, x′, u(e2r(t′ + r′), erx′)) | (t′, x′) ∈ gr,r′ (Dom(u))}.

This justifies the expression of (gr,r′ ·u)(t′, x′) in (3).
Note that the family (gr,r′)r,r′∈R2 is generated by the subfamilies

gr,0(t, x, u) = (e−2rt, e−rx, u) and g0,r′(t, x, u) = (t− r′, x, u)(12)

since we have the relations{
gr,0 ◦ g0,r′(t, x, u) = (e−2r(t− r′), e−rx, u) = gr,r′(t, x, u),

g0,r′ ◦ gr,0(t, x, u) = (e−2rt− r′, e−rx, u) = gr,e2rr′(t, x, u) .
(13)

It is thus a two-parameter group of diffeomorphisms. The mapping (4) does define a
group action since, on the one hand, we have

gq,q′ (gr,r′(graph(u))) ⊃ gq,q′ (graph(gr,r′ ·u)) ⊃ graph(gq,q′ ·(gr,r′ ·u))
and, on the other hand,

gq,q′ (gr,r′(graph(u))) = gq,q′ ◦ gr,r′ (graph(u)) ⊃ graph ((gq,q′ ◦ gr,r′)·u))
so that

gq,q′ ·(gr,r′ ·u) = (gq,q′ ◦ gr,r′)·u.(14)

If ut = uxx, we deduce from (3) that

∂gr,r′ ·u
∂t′

(t′, x′) = e2r ∂
2u

∂x2 (e2r(t′ + r′), erx′) =
∂2gr,r′ ·u
∂x′2 (t′, x′) .

Therefore, the two-parameter group of diffeomorphisms (gr,r′)r,r′∈R2 is an invariance
group of the one-dimensional heat equation ut = uxx.

Let u be a function with domain Dom(u) = [0,+∞) × R. Its image gr,r′ ·u
by the diffeomorphism gr,r′ has the domain Dom(gr,r′ ·u) = [−r′,+∞) × R by the
formula (3). If u is solution of the heat equation with initial data u(0,·) = φ, then for
r ∈ R and r′ ≥ 0, gr,r′ ·u is also a solution of the heat equation, but for other initial
data (gr,r′ ·u)(0, x′) = u(e2rr′, erx′). The group action (4) of gr,r′ for r ∈ R, r′ ≥ 0,
clearly induces a group action on the initial data.
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To this group action corresponds a Lie infinitesimal action as follows. It is well
known from elementary Lie group theory [16] that the infinitesimal generators of the
two-parameter group of diffeomorphisms (gr,r′)r,r′∈R2 form a Lie algebra generated
by the vector fields{

∂
∂r |r=0gr,0(t, x, u) = (−2t,−x, 0) = −2t ∂

∂t − x ∂
∂x ,

∂
∂r′ |r′=0g0,r′(t, x, u) = (−1, 0, 0) = − ∂

∂t .

The one-parameter group of diffeomorphisms ΦZ
s (t, x, u) generated by the vector field

Z = −a ∂
∂t − b(2t ∂

∂t + x ∂
∂x ) is the flow of the differential equation

dt

ds
= −a− 2bt ,

dx

ds
= −bx , du

ds
= 0 .(15)

One finds t(s) = t(0)e−2bs − a(1 − e−2bs)/2b, x(s) = e−bsx(0), u(s) = u(0), hence the
expression of ΦZ

s (t, x, u) in (8). The comparison of (8) and (1) yields the expressions
r(s) = bs and r′(s) = a(1 − e−2bs)/2b.

For a ≥ 0 and s ≥ 0, we have r′(s) ≥ 0, and (ĝr(s),r′(s))s≥0 does define a semigroup
of operators on the initial data since (5) is a group action ((gr(s),r′(s))s≥0 extends to
the initial data its action on the solutions of the heat equation). If u is the solution of
the heat equation with initial data φ, then the infinitesimal generator of this semigroup
may be computed by

d

ds |s=0
ĝr(s),r′(s)φ(x′) =

d

ds |s=0
u(e2r(s)r′(s), er(s)x′)

=
d

ds |s=0
u

(
ae2bs 1 − e−2bs

2b
, ebsx′

)
=

d

ds |s=0
u

(
a
e2bs − 1

2b
, ebsx′

)
= a

∂u

∂t
(0, x′) + bx′ ∂u

∂x
(0, x′)

= a
∂2u

∂x2 (0, x′) + bx′ ∂u
∂x

(0, x′)

= a
∂2φ

∂x2 (x′) + bx′ ∂φ
∂x

(x′) .

In particular, a solution of the Cauchy problem (10) is given by

w(s, x′) = ĝr(s),r′(s)φ(x′)
= gr(s),r′(s) ·u(0, x)
= u(e2r(s)r′(s), er(s)x′)

= u

(
ae2bs 1 − e−2bs

2b
, ebsx′

)
.

The link between these techniques and the filtering problem appears when one
writes the Zakai equation for the density as dpt = (M?

0 +
∑p

i=1M
?
i ẏi(t))ptdt. Baras in

[2] utilizes this form to define a notion of equivalence between two filtering problems.
He gives general conditions, related to the existence of a common invariance group,
under which the solution of a filtering problem may be computed from the solution
of the other problem.
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Here, we extend the method to the resolution of valued functions stochastic evo-
lution equations. We first consider the unperturbed equation dpt = M?

0 ptdt (when
yt ≡ 0) and its invariance group. The generators of this latter group may be used to
describe the deformations of solutions of the unperturbed equation for each trajectory
of the process (yt) and yield an accurate description of the structure of the resulting
finite realization.

3. Problem statement. Let (yt)t≥0 be a standard p-dimensional Brownian
motion and let ◦dyt denote its “Stratonovitch differential.” For p0 ∈ C∞(Rn), we
consider the following stochastic bilinear PDE:

with probability one (w.p.1) ∀ t ∈ R+ , dpt = M?
0 ptdt+

p∑
i=1

M?
i pt◦dyi

t , pt|t=0 = p0.

(16)
Here D(Rn) denotes the space of smooth functions on Rn with compact support and
M0, M1, . . . , Mp are the linear differential operators defined by M0φ = Lφ+Hφ,

Miφ = Lg̃i
φ+ hiφ , i = 1, . . ., p, ∀ φ ∈ D(Rn) ,

(17)

L being a smooth diffusion operator (L1 = 0), g̃1, . . . , g̃p smooth vector fields on Rn

and H, h1, . . . , hp smooth functions from Rn to R.
Assumption 1. M0 (or L) is nondegenerate elliptic; that is, if

M0 =
1
2

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
+H(x),(18)

the symmetric matrix (aij(x))i,j=1,...,n is positive definite for all x ∈ Rn.
Remark. In the filtering problem stated in the introduction of Part I, the Zakai

equation is a particular case of equation (16) with

Lφ =
1
2

m∑
k=1

L2
gk
φ+ Lfφ and H = −1

2

(
‖h‖2 +

p∑
i=1

Lg̃i
hi

)
.(19)

DEFINITION 3.1. Let Π consist of all functions p0 ∈ C∞(Rn) such that there
exists an input-output map

Fp0 : R+ × C0(R+,Rp) → C∞(Rn)(20)

which satisfies the following property: for all p0 ∈ Π and p-dimensional Brownian
motion (yt)t∈R+ , the stochastic bilinear PDE (16) has a unique solution (pt)t∈R+ in
C∞(Rn) given by

w.p.1 ∀ t ∈ R+ , pt = Fp0(t; ys, s ≤ t) .(21)

The definition of an FDR for the input-output map Fp0 is the same as in Part I
except for the output function θ. Indeed, θ must be a smooth map from Dom(θ) ⊂ M
to C∞(Rn); that is, the following function (ξ, x) ∈ Dom(θ) ×Rn 7→ θ(ξ)(x) ∈ R must
be smooth.

DEFINITION 3.2. An FDR of the input-output map Fp0 given by (20) consists of
a collection (M , ξ0, b0, b1, . . . , bp, θ), where
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1. M is a smooth finite-dimensional manifold,
2. ξ0 ∈ M ,
3. b0, b1, . . . , bp are smooth vector fields on M ,
4. θ is a smooth map from Dom(θ) ⊂ M to C∞(Rn); that is, the following

function (ξ, x) ∈ Dom(θ) × Rn 7→ θ(ξ)(x) ∈ R must be smooth,
such that if (yt)t≥0 is a Brownian motion, the Stratonovitch stochastic differential
equation (SDE)

dξt = b0(ξt)dt+
p∑

i=1

bi(ξt) ◦ dyi
t , ξt|t=0 = ξ0(22)

is conservative (that is, w.p.1 has a solution for all time or w.p.1 has infinite explosion
time) with solution satisfying

w.p.1 ∀ t > 0 , ξt ∈ Dom(θ)

and

w.p.1 ∀ t ≥ 0 , θ(ξt) = Fp0(t; ys, s ≤ t) = νt .(23)

4. Symmetry semigroup and infinitesimal symmetries. In this section,
we formalize the notions behind the example developed above and introduce basic
definitions, notations, and properties for the next sections (see also [7]). The symmetry
semigroup consists of a class of point transformations of

F = R× Rn × R(24)

which permute graphs of the solutions of the parabolic equation ut = M?
0u. If sym-

metry groups commonly used in the study of symmetries of differential equations
[17, 16, 4, 20] are local, we must consider here global groups because the Zakai equa-
tion is defined on all Rn.

DEFINITION 4.1. Let D(M?
0 ) be the subspace of C∞(Rn) consisting of functions

p0 such that the following PDE

∂u

∂t
= M?

0u , u(0, ·) = p0(25)

has a unique solution u(t, x) ∈ C∞(R+ ×Rn). Let (Pt)t∈R+ be the nonnegative (since
M?

0 is a second-order differential operator) semigroup on D(M?
0 ) generated by equation

(25).
For p0 ∈ D(M?

0 ), Pp0 denotes the function Pp0(t, x) = (Ptp0) (x) defined on
R+ × Rn. The set of solutions of equation (25) is UP ⊂ C∞(R+ × Rn), consisting of
functions of the form Pp0 for p0 ∈ D(M?

0 ).
We now introduce groups and semigroups (that is, only stable by composition of

diffeomorphisms, not by inversion) of F as follows.
DEFINITION 4.2. Let G(F ) denote the group of (global) diffeomorphisms of F =

R× Rn × R, and let A(F ) be the subgroup of diffeomorphisms g of the form

g : R× Rn × R → R× Rn × R,
(s, x, u) 7→ (α(s), β(s, x), δ(s, x)u) .(26)

Let SA(F ) ⊂ A(F ) be the semigroup defined by

SA(F ) = {g ∈ A(F ) | g−1(R+ × Rn × (0,+∞)) ⊂ R+ × Rn × (0,+∞)} .(27)
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If g is given by (26), this can be rewritten as

g ∈ SA(F ) ⇐⇒ g ∈ A(F ) and α−1(R+) ⊂ R+ and δ > 0 .(28)

We recall that a natural action of SA(F ) on C∞(R+ ×Rn) is given as in [16, 17].
For any function h, graph(h) will denote its graph.

PROPOSITION 4.3. For any u ∈ C∞(R+ × Rn) and g ∈ SA(F ), there exists a
unique function g ·u ∈ C∞(R+ × Rn) such that g (graph(u)) ⊃ graph(g ·u). Moreover,
if g1 and g2 belong to SA(F ), we have

(g1 ◦ g2)·u = g1 ·(g2 ·u).(29)

If g is given by (26) and m defined by m(s, x) = (α(s), β(s, x)), we have

g ·u (s, x) = (δ × u)(m−1(s, x)) ∀ (s, x) ∈ R+ × Rn .(30)

The symmetry semigroup SAP (F ) of UP is defined by

SAP (F ) = { g ∈ SA(F ) | ∀ u ∈ UP , g ·u ∈ UP } .(31)

Example. For r ∈ R+, Φ
∂

∂s−r ∈ SA(F ) and we have

Φ
∂

∂s−r ·u (s, x) = u(s+ r, x).(32)

What is more, Φ
∂

∂s−r ∈ SAP (F ) since, if u satisfies (25) with initial data u(0, ·) = p0,

then Φ
∂

∂s−r ·u satisfies (25) with initial data u(r, ·) = Prp0.
Remark. In this formal definition of a symmetry semigroup, we are interested in

global transformations of the state-space. For the local definition and results, we send
the reader to [8]. (Some results are recalled in the appendix.)

It is easy to see that SAP (F ) is a semigroup by equation (29). Moreover, it
is noticed in [20] that since any function in UP is characterized by its initial data
u(0, ·) ∈ D(M?

0 ), then SAP (F ) induces an action on D(M?
0 ) as follows.

PROPOSITION 4.4. For any p0 ∈ D(M?
0 ) and g ∈ SA(F ), let us define

ĝ ·p0 = (g ·Pp0)(0, ·) ∈ D(M?
0 ).(33)

If g ∈ SAP (F ), then ĝ is a nonnegative linear endomorphism of D(M?
0 ). Moreover, if

g1 and g2 belong to SAP (F ), we have for all p0 ∈ D(M?
0 ) the following homomorphism

property:

ĝ1◦g2 ·p0 = ĝ1 ·(ĝ2 ·p0) .(34)

Proof. If g ∈ SAP (F ) and p0 ∈ D(M?
0 ), then g ·Pp0 belongs to UP ; that is,

g·Pp0 = P p̃0 for some p̃0 ∈ D(M?
0 ). But p̃0(x) = P p̃0(0, x) = g·Pp0(0, x) = (ĝ ·p0) (x),

so that ĝ ·p0 belongs to D(M?
0 ) and thus

∀ p0 ∈ D(M?
0 ) , ∀ g ∈ SAP (F ) g ·(Pp0) = P (ĝ ·p0) .(35)

By (33), it is clear that ĝ ·p0 is linear in p0, since each Pt is a linear operator, and
nonnegative as soon as p0 is nonnegative, since each Pt is a nonnegative linear operator
(see Definition 4.1).

For g1, g2 ∈ SAP (F ), we have by equation (29)

ĝ1◦g2 ·p0 = ((g1◦g2)·Pp0) (0, ·) = (g1 ·(g2 ·Pp0)) (0, ·) ,
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where g2 ·Pp0 = P (ĝ2 ·p0) by (35), so that

ĝ1◦g2 ·p0 = (g1 ·P (ĝ2 ·p0)) (0, ·) = ĝ1 ·(ĝ2 ·p0).

Example. By the example following Proposition 4.3 and by (32), we have for
r ∈ R+:

Φ
∂

∂s−r ∈ SAP (F ) and ∀ p0 ∈ D(M?
0 ) , Φ̂

∂
∂s−r ·p0 = Prp0.(36)

Now we turn to infinitesimal aspects. Since we are interested in global diffeomor-
phisms, not all infinitesimal generators are to be considered but only those which are
complete vector fields.

Let X (F ) be the Lie algebra of smooth vector fields on F = R × Rn × R and
X c(F ) be the set of complete smooth vector fields on F . We recall that a complete
vector field is a vector field whose flow can be defined for all time (no explosion in
finite time): if Z ∈ X c(F ), its global flow on F will be denoted (ΦZ

r )r∈R. The set
X c(F ) is stable neither by addition, nor by Lie bracketing.

DEFINITION 4.5. Ac(F ) ⊂ X c(F ) is the set of complete smooth vector fields Z
on F of the form

Z = ζ0(s)
∂

∂s
+

n∑
i=1

ζi(s, x)
∂

∂xi
+ ζn+1(s, x)u

∂

∂u
.(37)

The vector field Z in Ac(F ) of global flow (ΦZ
r )r∈R is said to be a complete infinitesimal

symmetry of UP if ΦZ
r belongs to SAP (F ) for all r ∈ R. We denote by SAc

P (F ) the
set of complete infinitesimal symmetries of UP .

It should be noted that when Z ∈ SAc
P (F ), ΦZ

r belongs to SAP (F ) for all r ∈ R
and not only for all r ∈ R+.

PROPOSITION 4.6. Let Z be a complete infinitesimal symmetry of UP . If Z is
given by (37), then ζ0(0) = 0, and for any p0 ∈ D(M?

0 ) and x ∈ Rn we have

d

dr |r=0

(
Φ̂Z

r ·p0

)
(x) = −

n∑
i=1

ζi(0, x)
∂p0

∂xi
(x) + ζn+1(0, x)p0(x)

def=
(
Ẑ0p0

)
(x).(38)

Proof. If ΦZ
r (s, x, u) = (αr(s), βr(s, x), δr(s, x)u), we have α−1

r (R+) ⊂ R+ and
α−1

−r(R+) ⊂ R+ by (28) applied to ΦZ
r and to ΦZ

−r. Since α−1
−r = αr by the group

property, this implies that αr(R+) = R+. But αr is a global diffeomorphism of
R, hence it is monotonous and therefore it is a strictly increasing function. Then,
the relation αr(R+) = R+ implies that 0 is a fixed point of αr, so that ζ0(0) =
d
dr |r=0αr(0) = 0. Now equation (38) comes from the classic computation (see [16, 17,
20])(

Φ̂Z
r ·p0

)
(x) =

(
ΦZ

r ·p0
)
(0, x)

= (δr × Pp0)
(
α−1

r (0), βr(α−1
r (0), ·)−1(x)

)
by (30)

= (δr × Pp0) (0, β−r(0, x)) since α−r(0) = 0
= δr (0, β−r(0, x)) × p0 (β−r(0, x))
=
(
1 + rζn+1(0, x) + o(r)

)
×p0

(
x1 − rζ1(0, x) + o(r), . . . , xn − rζn(0, x) + o(r)

)
= p0(x) + r

(
ζn+1(0, x)p0(x) −

n∑
i=1

ζi(0, x)· ∂p0

∂xi
(x)

)
+ o(r).
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5. Application to FDR. Unlike Part I, we are concerned here with FDRs of
mappings having values in a set of smooth functions (densities) rather than measures
(laws). We keep the same notations, however.

A general means of constructing FDRs is given by the following proposition (which
will be further simplified in section 7).

PROPOSITION 5.1. Assume that
1. there exist p complete infinitesimal symmetries Z1, . . . , Zp of UP such that

the first-order differential operators associated by (38) satisfy

∀ p0 ∈ D(M?
0 ) , Ẑ1

0p0 = M?
1 p0 , . . . , Ẑp

0p0 = M?
p p0;(39)

2. the subalgebra of X (F ) generated by the vector fields Z1, . . . , Zp and ∂
∂s is

finite dimensional.
Then there exists an FDR, uniform with respect to the dynamics and initial condition,
of the family of input-output maps {Fp0 | p0 ∈ D(M?

0 ) ∩ Π}.
Example. For the one-dimensional linear system (dxt = dvt, dyt = xt + dwt) we

have

M0 =
1
2
d2

dx2 − 1
2
x2(= M?

0 ) and M1 = x(= M?
1 ).

If Z = −s ∂
∂x + xu ∂

∂u we have

ΦZ
r (s, x, u) =

(
s, x− sr, u exp(xr − sr2/2)

)
,

ΦZ
r ·u(s, x) = exp(xr + sr2/2)u(s, x+ sr).

1. If u is solution of ∂tu−M?
0u = 0, an easy computation shows that for all r,

v = ΦZ
r ·u is a solution of ∂tv−M?

0 v = 0; thus, Z is a complete infinitesimal symmetry
of the PDE, ∂tu−M?

0u = 0.
By (38), we have Ẑ0p0 = xp0 = M?

1 p0.
2. Z and ∂

∂s generate a four-dimensional Lie algebra with basis: Z, ∂
∂s , ∂

∂x , u ∂
∂u .

Proof of Proposition 5.1. First, let us define the manifold M of the FDR.
The manifold M is the subgroup of G(F ) generated by the global flows (ΦZ1

r )r∈R,

. . . , (ΦZp

r )r∈R, and (Φ
∂

∂s
r )r∈R. By [18, pp. 99–105, Theorem VII], it can indeed be

equipped with a unique manifold structure that makes it a Lie group since the vector
fields Z1, . . . , Zp and ∂

∂s of X (F ) are complete (by Assumption 1) and generate a
finite-dimensional Lie algebra (by Assumption 2).

We denote by M the finite-dimensional subalgebra of vector fields on F generated
by the vector fields Z1, . . . , Zp and ∂

∂s . The Lie group M is a Lie transformation
group (in the terminology of [18, p. 99, Definition IV]), and thus there exists an
isomomorphism Z 7→ Z+ from M to the Lie algebra of right-invariant vector fields
on the Lie group M : this isomomorphism is such that if Z ∈ M, then ΦZ

r ∈ G(F )
coincides with the exponential exp(rZ+) ∈ M . In particular, the following mapping
is smooth:

r ∈ R 7→ ΦZ
r = exp(rZ+) ∈ M .(40)

Second, let us define the output functions (θp0 ,Dom(θp0)) of the FDR. We take

Dom(θp0) = M ∩ SA(F );
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that is, all g ∈ M such that g−1(R+ × Rn × (0,+∞)) ⊂ R+ × Rn × (0,+∞) (see
Definition 4.2). The map θp0 is defined from D(M?

0 ) to D(M?
0 ) as follows (see (33)):

∀ p0 ∈ D(M?
0 ) , ∀ g ∈ Dom(θp0) , θp0(g) = ĝ ·p0 .(41)

This map is smooth because by (33) and (30) we have, if g is given by (26),

(ĝ ·p0)(x) = (g ·Pp0)(0, x) = (δ × Pp0)(α−1(0), β(α−1(0), ·)−1(x)),

where Pp0 is smooth by assumption and where the following mapping is smooth by
[18, p. 99, Definition IV]:

M × R× Rn × R → R× Rn × R,
(g, s, x, u) 7→ g(s, x, u) = (α(s), β(s, x), δ(s, x)u).(42)

Third, let us exhibit a conservative stochastic differential equation on M having
values in Dom(θ).

Let the vector fields b0, b1, . . . , bp on M be given by

b0 =
∂

∂s

+

, b1 = Z1+
, . . . , bp = Zp+ .

The SDE

dgt =
∂

∂s

+

·gt dt+
p∑

i=1

Zi+ ·gt ◦ dyi
t , g0 = IdF ,(43)

is conservative on M , since b0, b1, . . . , bp are right-invariant vector fields on the Lie
group M by [22, Lemma 2.2].

We now prove that the solution gt belongs to Dom(θ), that is, belongs to SA(F ).
For this, we write gt(s, x, u) = (αt(s), βt(s, x), δt(s, x)u) and, by (28), we just have to
show that α−1

t (R+) ⊂ R+ and that δ > 0. It is clear that δt(s, x) > 0 by continuity
since δ0(s, x) = 1 and since δt(s, x) 6= 0 (gt belongs to a group, hence is invertible).
Thus, we must study αt(s).

Since the mapping (42) is smooth, so is the map fz(g) = g(z) for z ∈ F and
g ∈ M . By (40), we have for any Z ∈ M:

(Z+fz)(g) =
d

dr |r=0
fz(exp(rZ+) ◦ g) =

d

dr |r=0
ΦZ

t (g(z)) = Z(g(z)) .

Therefore, for any z = (s, x, u) ∈ F , we can apply the Itô–Stratonovitch formula to
fz(gt) to get w.p.1 for all t ≥ 0:

dgt(s, x, u) =
(
∂

∂s

+

fz

)
(gt) dt+

p∑
i=1

(Zi+fz)(gt) ◦ dyi
t

=
∂

∂s
(gt(s, x, u)) dt+

p∑
i=1

Zi(gt(s, x, u)) ◦ dyi
t .

Denoting, for i = 1, . . . , p, Zj = ζ0
j (s) ∂

∂s +
∑n

i=1 ζ
i
j(s, x)

∂
∂xi

+ ζn+1
j (s, x)u ∂

∂u , then
αt(s) satisfies

dαt(s) = dt+
p∑

i=1

ζ0
i (αt(s)) ◦ dyi

t

= dt+
1
2

p∑
i=1

((ζ0
i )′ζ0

i )(αt(s))dt+
p∑

i=1

ζ0
i (αt(s)) dyi

t , α0(s) = s .
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By the diffeomorphism theorem [19, p. 139], the (Itô) SDE

dαt = dt+
1
2

p∑
i=1

((ζ0
i )′ζ0

i )(αt)dt+
p∑

i=1

ζ0
i (αt) dyi

t

generates a stochastic flow of diffeomorphisms and thus, in particular, we have αt(R) =
R. On the other hand, we know from Proposition 4.6 that ζ0

j (0) = 0: therefore, when
α0(s) = s ≥ 0 (resp. α0(s) = s ≤ 0), αt(s) cannot escape from R+ (resp. R−) [11, p.
149]. Thus αt(R+) ⊂ R+ and αt(R−) ⊂ R−, so that α−1

t (R+) ⊂ R+.
Fourth, we prove that (23) is satisfied. For this, we start by showing that

Dom(θp0) = M ∩ SA(F ) ⊂ SAP (F ),

which will allow us to use the homomorphism property (34). By Assumption 1 and
the Definition 4.5 of complete infinitesimal symmetries of UP , the flows (ΦZ1

r )r∈R, . . . ,

(ΦZp

r )r∈R all belong to SAP (F ). On the other hand, the whole flow (Φ
∂

∂s
r )r∈R cannot

belong to SAP (F ) because for r ∈ R+, Φ
∂

∂s
r 6∈ SA(F ). However, for r ∈ R+ we know

by (36) that Φ
∂

∂s−r ∈ SAP (F ). Therefore, M ∩ SA(F ) ⊂ SAP (F ).
Now, we apply the Itô–Stratonovitch formula to θp0(gt)(x) (for notation reasons,

we shall forget the term x in what follows):

w.p.1 ∀ t ∈ R+ , dθp0(gt) =
(
∂

∂s
·θp0

)
(gt) dt+

p∑
i=1

(
Zi ·θp0

)
(gt) ◦ dyi

t .

For i = 1, . . . , p we have by (34)

θp0(ΦZi

r (g)) = θp0(ΦZi

r ◦ g) = Φ̂Zi

r ◦ g ·p0 = Φ̂Zi

r ·(ĝ ·p0) = Φ̂Zi

r ·(θp0(g))

so that (
Zi ·θp0

)
(g) =

d

dr |r=0
Φ̂Zi

r ·(θp0(g)) = Ẑi
0(θp0(g)) = M?

i θ
p0(g) .

In the same way, (36) provides(
∂

∂s
·θp0

)
(g) =

d

dr |r=0+
Φ̂

∂
∂s−r ·(θp0(g)) =

d

dr |r=0+
Pr(θp0(g)) = M?

0 θ
p0(g)

and therefore

w.p.1 ∀ t ∈ R+ , dθp0(gt) = M?
0 θ

p0(gt)dt+
p∑

i=1

M?
i θ

p0(gt) ◦ dyi
t .

We conclude by uniqueness of smooth solutions of equation (16) for p0 ∈ Π.
The following theorem is the main result of Part II. (It will be compared with the

main theorem of Part I.)
THEOREM 5.2. Assume that

1. the estimation algebra is finite dimensional and can be written

E = RM0 + Q,(44)

where Q is a (finite-dimensional) subalgebra of differential operators on Rn of order
less than or equal to one;
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2. the vector fields Z1, . . . , Zp on R× Rn × R defined hereafter

Zj = ζ0
j (s)

∂

∂s
+

n∑
i=1

ζi
j(s, x)

∂

∂xi
+ ζn+1

j (s, x)u
∂

∂u
(45)

are complete. For each j = 1, . . . , p the coefficients ζ0
j (s), ζ1

j (s, x), . . . , ζn+1
j (s, x)

are given by

exp(sadM0)(Mj) = − ζ0
j (s)M0 −

n∑
i=1

ζi
j(s, x)

∂

∂xi
+ ζn+1

j (s, x).(46)

Then, there exists an FDR of {Fp0 | p0 ∈ D(M?
0 ) ∩ Π}, uniform with respect to the

dynamics and initial condition.
Proof. It suffices to prove that the assumptions of Proposition 5.1 are satisfied.

To begin with, note that the assumptions of the theorem may be rewritten as follows
by taking the dual expressions of all equalities.

1. The estimation algebra is finite dimensional, and we have

E? = RM?
0 + R,(47)

where R(= Q?) is a (finite-dimensional) subalgebra of differential operators on Rn of
order less than or equal to one.

2. The vector fields T 1, . . . , T p on R× Rn × R defined hereafter

T j = ζ0
j (s)

∂

∂s
−

n∑
i=1

ζi
j(s, x)

∂

∂xi
+

(
ζn+1
j (s, x) +

n∑
i=1

∂ζi
j

∂xi
(s, x)

)
u
∂

∂u
(48)

are complete. For each j = 1, . . . , p the coefficients ζ0
j (s), ζ1

j (s, x), . . . , ζn+1
j (s, x) are

given by

exp(sadM?
0
)(M?

j ) = − ζ0
j (s)M?

0 +
n∑

i=1

ζi
j(s, x)

∂

∂xi
+

n∑
i=1

∂ζi
j

∂xi
(s, x) + ζn+1

j (s, x).(49)

We shall point out why the vector fields T 1, . . . , T p are complete. The equations of
the flow of T j are 

ṡ = ζ0
j (s),

ẋ = −
n∑

i=1

ζi
j(s, x)

∂

∂xi
,

u̇ =
(
ζn+1
j (s, x) +

∑n
i=1

∂ζi
j

∂xi
(s, x)

)
u,

and they generate a solution defined for all time, since this is the case for the following
equations of the flow of Zj (s is not changed, just invert time for x, u satisfies a linear
equation): 

ṡ = ζ0
j (s),

ẋ =
n∑

i=1

ζi
j(s, x)

∂

∂xi
,

u̇ = ζn+1
j (s, x)u.

For the proof, we then proceed as follows. We shall make use of some notions
recalled in Appendix B, particularly the notion of perturbation algebra PM?

0
of M?

0
presented in Proposition B.1 (where A has to be replaced by M?

0 ).
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1. We prove that the vector fields T 1, . . . , T p are complete infinitesimal sym-
metries of UP , such that the first-order differential operators associated by (38) satisfy

∀ p0 ∈ D(M?
0 ) , T̂ 1

0p0 = M?
1 p0 , . . . , T̂ p

0p0 = M?
p p0.(50)

By (49) evaluated at s = 0, we have

M?
j = exp(0 × adM?

0
)(M?

j )

= − ζ0
j (0)M?

0 +
n∑

i=1

ζi
j(0, x)

∂

∂xi
+

n∑
i=1

∂ζi
j

∂xi
(0, x) + ζn+1

j (0, x)

= T̂ j
0 by (38) and (48).

Now, we show that the vector fields T 1, . . . , T p are complete infinitesimal symmetries
of UP .

By Assumption 1 for each i = 1, . . . , p the Lie algebra generated by M?
0 and M?

i

is finite dimensional. Thus, by the characterization of the perturbation algebra in
Proposition B.1 in the appendix, we see that M?

1 , . . . , M?
p belong to PM?

0
. Thus, by

the above equalities we have

T̂ 1
0 = M?

1 ∈ PM?
0
, . . . , T̂ p

0 = M?
p ∈ PM?

0
.

On the other hand, the equalities (48) and (49) may be rewritten, with the notation
of (B.86),

T̂ 1
t = exp(tadM?

0
)(M?

1 ), . . . , T̂ p
t = exp(tadM?

0
)(M?

p ).

These two latter equations precisely mean, by Proposition B.1 and especially (B.87),
that the vector fields T 1, . . . , T p are (local) infinitesimal symmetries of UP . Since,
by completeness, ΦT i

r is a global diffeomorphism of Rn for all r ∈ R, this implies that
for all u ∈ UP , ΦT i

r ·u ∈ UP . This means that T 1, . . . , T p belong to SAc
P (F ). The

first assumption of Proposition 5.1 is thus satisfied.
2. It remains to prove the second assumption of Proposition 5.1, namely that

the subalgebra of X (F ) generated by the vector fields T 1, . . . , T p and ∂
∂s is finite

dimensional. But ∂
∂s is an infinitesimal symmetry of UP since ∂t − M?

0 is invariant
by time translations and the result then follows from Theorem 2.1 in [8]. (This result
is recalled in Proposition B.1 in the appendix, where A has to be replaced by M?

0
and states that (nontrivial) infinitesimal symmetries form a finite-dimensional Lie
algebra.)

The assumptions of Proposition 5.1 are thus satisfied and this completes the
proof.

6. Comparison between Part I and Part II main theorems. Under the
common assumption that M0 is nondegenerate elliptic, Theorem 5.2 is stronger than
the main theorem of Part I recalled here below.

THEOREM 6.1. Assume that
1. E is finite dimensional and given by

E = RM0 + R,
where R is a finite-dimensional subalgebra of differential operators of order less than
or equal to one;
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2. E is a solvable Lie algebra, with a basis {F0,F1,F2,. . . ,Fq} such that F0 = M0
and Fi = R− span{Fi, . . . , Fq } is a Lie ideal of Fi−1 for i = 0,. . . ,q,

3. the first-order part of each operator F1, . . . , Fq defines a complete vector
field on Rn,

4. for all φ ∈ D(Rn), there exists a unique solution u ∈ C∞(]0,+∞[×Rn) ∩
C0([0,+∞[×Rn) of the PDE

∂u

∂t
= M0 u , u(0, x) = φ(x) .(51)

Then the family of input-output maps {Fµ0 | µ0 ∈ D0} given by (20) admits a regular
FDR, uniform with respect to the dynamics and initial condition.

If we suppose that the assumptions 1, 2, 3, and 4 of this latter theorem are
satisfied, then the assumptions of Theorem 5.2 are automatically satisfied:

1. the estimation algebra E can be written as in (44), with Q = R? by 1,
2. we have by 2 the following expression:

exp(sadM0)(Mj) =
q∑

i=1

αi
j(s)Fi =

q∑
i=1

αi
j(s)Xi +

q∑
i=1

αi
j(s)ci(52)

so that the vector fields Z1, . . . , Zp are given by

Zj = −
q∑

i=1

αi
j(s)Xi +

(
q∑

i=1

αi
j(s)ci(x)

)
u
∂

∂u
.(53)

The equations of the flow of Zj are therefore

ṡ = 0,

ẋ = −
q∑

i=1

αi
j(s)Xi(x),

u̇ =

(
q∑

i=1

αi
j(s)ci(x)

)
u,

(54)

so that if s(0) = s0, Zj is complete on R × Rn × R as soon as the vector field
X =

∑q
i=1 α

i
j(s0)Xi(x) is complete on Rn. By a theorem of Palais [18, Theorem III,

pp. 91–97], X appears to be complete as the sum of complete vector fields generating
a finite-dimensional Lie algebra of vector fields.

7. A Riemannian geometric point of view. In this section, we take advan-
tage of the Riemannian structure induced by the operator M0.

Thanks to the assumption that M0 is nondegenerate elliptic, it is well known that
we can introduce a Riemannian metric g on Rn as follows (see [17, 13, 15, 9]).

LEMMA 7.1. If (aij(x))i,j=1,...,n denotes the inverse matrix of (aij(x))i,j=1,...,n in
(18), then

g =
n∑

i,j=1

aij(x)dxidxj(55)

defines a Riemannian metric g on Rn, that we shall note g = met(M0). Moreover, if
∆g is the Laplace–Beltrami operator (Laplacian) on the Riemannian manifold (Rn, g),
then we can write

M0 =
1
2
∆g +B +H,(56)
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where B is a smooth vector field on Rn (which depends not only on b1, . . . , bn in (18)
but also on aij, i, j = 1, . . . , n).

The first assumption of Theorem 5.2 may be replaced by the equivalent formula-
tion that M1, . . . , Mp belong to the perturbation algebra PM0 of M0 (see Appendix
B, where A has to be replaced by M0). This is interesting since geometric charac-
terizations of PM0 may be found in [9]. This is the point of view that we develop
here.

We utilize the geometric objects recalled in Appendix A (see also [9]). We identify
a smooth differential operator of order less than or equal to one with the sum of a
smooth vector field and of a smooth function.

PROPOSITION 7.2. Assume that (Rn, g) is complete. Let us write M1 = X1 +m1,
. . . , Mp = Xp +mp. If

X1
0 = X1 ∈ Hg(Rn), . . . , Xp

0 = Xp ∈ Hg(Rn)(57)

and if there exist p sequences (X1
i )i≥1, . . . , (Xp

i )i≥1 in Ig(Rn) such that
1. for j = 1, . . . , p,

Xj
1 = KM0X

j
0 + ∇g(mj − g(Xj

0 , B))

(or = −ηg(X
j
0)B + [B,Xj

0 ] + ∇gm
j),

(58)

2. for j = 1, . . . , p,

Xj
2 = KM0X

j
1 +

1
2
∇g(LXj

0
HM0 + ηg(X

j
0)HM0)

(or = [B,Xj
1 ] + ∇g(g(X

j
1 , B) + 1

2LXj
0
HM0 + 1

2ηg(X
j
0)HM0) ),

(59)

3. for j = 1, . . . , p and i ≥ 1,

Xj
i+2 = KM0X

j
i+1 +

1
2
∇g(LXj

i
HM0)

(or = [B,Xj
i+1] + ∇g(g(X

j
i+1, B) + 1

2LXj
i
HM0) ).

(60)

Then, there exists an FDR of {Fp0 | p0 ∈ D(M?
0 ) ∩ Π}, uniform with respect to the

dynamics and initial condition.
Proof. By Proposition 3.2 in [8] (recalled in Theorem B.3 in the appendix, where

A has to be replaced by M0), the above assumptions imply that M1, . . . , Mp belong
to the perturbation algebra PM0 of M0. Thus, the first assumption of Theorem 5.2 is
satisfied by Proposition 3.1 in [8] (recalled in Proposition B.1).

By (B.97), the sequence (Xj
i )i≥0 is such that

adi+1
M0

(M j) = ηg(X
j
i )M0 +Xj

i + function.

Since Xj
i ∈ Ig(Rn) for i ≥ 1 and thus ηg(X

j
i ) = 0, this implies that

exp(sadM0)(Mj) = Mj +
+∞∑
i=0

si+1

(i+ 1)!
adi+1

M0
(M j)

= sηg(X
j
0)M0 +Xj +

+∞∑
i=1

si+1

(i+ 1)!
Xj

i + function,
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so that by comparing with (46), we see that necessarily ζ0
j (s, x) = sηg(X

j
0) = sλ. The

flow of the vector field Zj is thus given by
ṡ = λs,
ẋ1 = ζ1(s, x),

. . .
ẋn = ζn(s, x),
u̇ = ζn+1(s, x)u.

Thus, if s(0) = s0, the vector field Zj on R × Rn × R is complete as soon as the
time-varying vector field X =

∑n
k=1 ζ

k(eλts0, x) ∂
∂xk

on R × Rn is complete. But for
each fixed t, X belongs to Hg(Rn) and the result follows from Lemma C.1 in the
appendix.

COROLLARY 7.3. Assume that (Rn, g) is complete and that M1 = h1, . . . , Mp =
hp. If

X1
1 = ∇gh1 ∈ Pg(Rn), . . . , Xp

1 = ∇ghp ∈ Pg(Rn)(61)

and if there exists p sequences (X1
i )i≥2, . . . , (Xp

i )i≥2 in Ig(Rn) such that
1. for j = 1, . . . , p,

Xj
2 = KM0X

j
1

(or = [B,∇ghj ] + ∇g(LBhj) ),
(62)

2. for j = 1, . . . , p and i ≥ 1,

Xj
i+2 = KM0X

j
i+1 + 1

2∇g(LXj
i
HM0)

(or = [B,Xj
i+1] + ∇g(g(X

j
i+1, B) + 1

2LXj
i
HM0 ).

(63)

Then, there exists an FDR of {Fp0 | p0 ∈ D(M?
0 ) ∩ Π}, uniform with respect to the

dynamics and initial condition.

8. Application to filtering. For the relation between FDFs and FDRs, we
follow Part I. By Proposition 7.2 and Corollary 7.3, we see that the construction of
FDRs by the methods developed above imposes strong constraints on the geometry
of the Riemannian space (Rn, g), particularly on the Lie algebras Pg(Rn) of parallel
vector fields and Hg(Rn) of infinitesimal homothetic transformations. For the sake
of simplicity, we shall assume in this section that the Riemannian space (Rn, g) is
complete.

Remark. Saying that the Riemannian space (Rn, g) is complete amounts to saying
that Rn equipped with the distance

d(x, y) = inf
{∫ 1

0

√
g(γ̇(s), γ̇(s))ds | γ : [0, 1] → Rn , γ(0) = x , γ(1) = y

}
(64)

is complete or that any bounded closed subset of (Rn, d) is compact [14]. This latter
property is satisfied as soon as there exists k > 0 such that

∀ z ∈ Rn , ∀ x ∈ Rn ,
n∑

i,j=1

aij(x)zizj ≥ k‖z‖2 .(65)
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Indeed, for any path γ such that γ(0) = x and γ(1) = y, we have

k‖x− y‖ ≤
∫ 1

0
‖γ̇(s)‖ds ≤

∫ 1

0

√√√√ n∑
i,j=1

aij(γ(s))γ̇i(s)γ̇j(s)ds

so that, by taking the infimum on all such paths, we get

k‖x− y‖ ≤ d(x, y) .(66)

Let K be a bounded closed subset of (Rn, d). The topologies of (Rn, d) and (Rn, ‖ ‖)
being the same [14], K also is a closed subset of (Rn, ‖ ‖). By (66), K is a bounded
closed subset of (Rn, ‖ ‖) and thus a compact of (Rn, ‖ ‖). It is also a compact of
(Rn, d) since the topologies are the same.

It may be noted that the inequality (65) is “opposite” to the one expressing the
uniform ellipticity of M0 since (65) may be written as

∀ z ∈ Rn , ∀ x ∈ Rn ,
n∑

i,j=1

aij(x)zizj ≤ k‖z‖2 .(67)

8.1. The case without correlated noises. In this case, the operators M1,
. . . , Mp are functions h1, . . . , hp. By Corollary 7.3, the construction of FDRs by the
methods developed above necessitates that their gradients should belong to the Lie
algebra Pg(Rn) of parallel vector fields of (Rn, g). Necessarily the Lie algebra Pg(Rn)
of parallel vector fields of (Rn, g) is not reduced to zero, and this is a strong condition
as can be seen from Proposition B.4.

8.1.1. Flat metrics on Rn and gradient drifts. This case is particularly
studied in [23, 10]. We shall omit the reference to the metrics g and note ∇g = ∇
and ∆g = ∆. Here, we have

Pg(Rn) = R− span{∇x1, . . . ,∇xn},
that is, all the “constant” vector fields on Rn. By Definition B.2, we have M0 = 1

2∆ + ∇ϕ− 1
2

∑p
i=1 h

2
i ,

KM0 = 0,
HM0 = ∆ϕ+ ‖∇ϕ‖2 +

∑p
i=1 h

2
i .

The following class of systems having FDFs is already known [3, 23, 10].
PROPOSITION 8.1. If ∆ϕ + ‖∇ϕ‖2 is quadratic, then there exists an FDF to

compute the unnormalized conditional density associated with a system of the form{
dxt = ∇ϕ(xt)dt+ dvt , x0  p0(x)dx,

dyt = (Cxt +D)dt+ dwt

(68)

when the density p0 of x0 belongs to D(M?
0 ).

Proof. This is a straightforward application of Corollary 7.3 with

Xj
2 = 0 and Xj

i+2 =
1
2
∇g(LXj

i
HM0) ∈ Pg(Rn)

since HM0 is quadratic and Xj
i is a constant vector field (that is, belongs to Pg(Rn))

as can be seen by induction.
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8.1.2. Flat metrics on Rn and other drifts. Here, we still have Pg(Rn) =
R− span{∇x1, . . . ,∇xn}, but we no longer have KM0 = 0.

PROPOSITION 8.2. Let K be a skew-symmetric matrix. If ∆ϕ + ‖∇ϕ +Kx‖2 is
quadratic, then there exists an FDF to compute the unnormalized conditional density
associated with a system of the form{

dxt = (∇0ϕ(xt) +Kxt)dt+ dvt , x0  p0(x)dx,

dyt = (Cxt +D)dt+ dwt

(69)

when the density p0 of x0 belongs to D(M?
0 ).

Proof. We have by Definition B.2 M0 = 1
2∆ + (Kx+ ∇ϕ) − 1

2

∑p
i=1 h

2
i ,

KM0 = 2K,
HM0 = ∆ϕ+ ‖Kx+ ∇ϕ‖2 +

∑p
i=1 h

2
i .

The proof is a straightforward application of Corollary 7.3 with

Xj
2 = 2K∇hj ∈ Pg(Rn) and Xj

i+2 = 2KXj
i+1 +

1
2
∇g(LXj

i
HM0) ∈ Pg(Rn)

since HM0 is quadratic and Xj
i is a constant vector field (that is, belongs to Pg(Rn))

as can be seen by induction.
In the one-dimensional case, we do not find new finite filters (since all vector fields

are gradients and K = 0). In the multidimensional case, the systems we find have
already been studied by Yau in [25, Theorem 7] and by Haussmann and Pardoux in
a more general setting with stochastic coefficients [12].

8.1.3. Other metrics. Here, we no longer have Pg(Rn) = R−span{∇x1, . . . ,∇xn}.
If Pg(Rn) is not zero, it can be written as R − span{∇gz1, . . . ,∇gzr} by Proposi-
tion B.4.

PROPOSITION 8.3. Assume that
1. h1, . . . , hp belong to R− span{1, z1, . . . , zr},
2. ∆ϕ+ ‖∇ϕ‖2 is quadratic in the variables z1, . . . , zr;

then there exists an FDF to compute the unnormalized conditional density associated
with a system of the form{

xt diffusion process with generatorL = 1
2∆g + ∇gϕ , x0  p0(x)dx,

dyt = h(xt)dt+ dwt

(70)
when the density p0 of x0 belongs to D(M?

0 ).
Proof. We have by Definition B.2, M0 = 1

2∆g + ∇gϕ− 1
2

∑p
i=1 h

2
i ,

KM0 = 0,
HM0 = ∆gϕ+ ‖∇gϕ‖2 +

∑p
i=1 h

2
i is quadratic in z1, . . . , zr.

The proof follows that of Proposition 8.1.

8.2. The case with correlated noises. Here, the operators M1 = Lg̃1 + h1,
. . . , Mp = Lg̃p

+ hp are not all functions, as was the case with uncorrelated noises,
but some of them are differential operators of order equal to one. By Proposition 7.2,



FINITE-DIMENSIONAL FILTERS. PART II 1021

the construction of FDRs by the methods developed here above necessitates that g̃1,
. . . , g̃p should belong to the Lie algebra Hg(Rn) of infinitesimal homothetic transfor-
mations of (Rn, g). The conditions for having Hg(Rn) 6= 0 are less restrictive than
those for having Pg(Rn) 6= 0 since Pg(Rn) ⊂ Hg(Rn). This is why this case is more
favorable for the existence of FDFs.

8.2.1. Flat metrics on Rn and gradient drifts. Here, H(Rn) consists of
vector fields T of the form

T = µ

n∑
i=1

x̃i ∂

∂x̃i
+

n∑
i=1

 n∑
j=1

αij x̃
j

 ∂

∂x̃i
+

n∑
i=1

βi
∂

∂x̃i
,

where µ, β1, . . . , βn belong to R and α is any skew-symmetric matrix. Moreover, we
have by Definition B.2, M0 = 1

2∆ + ∇ϕ− 1
2

∑p
i=1

(
h2

i + Lg̃i
hi

)
,

KM0 = 0,
HM0 = ∆ϕ+ ‖∇ϕ‖2 +

∑p
i=1

(
h2

i + Lg̃i
hi

)
.

PROPOSITION 8.4. Let
1. g̃1, . . . , g̃p be vector fields of the form

g̃j(x) = Kjx+Gj , K
′
j = −Kj , j = 1, . . . , p ,(71)

2. h1, . . . , hp and ϕ be such that

∆ϕ+ ‖∇ϕ‖2 +
p∑

i=1

(
h2

i + Lg̃ihi

)
(72)

and h1(x) − Lg̃1ϕ(x), . . . , hp(x) − Lg̃pϕ(x) are all affine functions.
Then there exists an FDF to compute the unnormalized conditional density associated
with a system of the form{

dxt = ∇ϕ(xt)dt + dvt + g̃(xt) ◦ dyt , x0  p0(x)dx,

dyt = h(xt)dt + dwt

(73)

when the density p0 of x0 belongs to D(M?
0 ).

Proof. The proof is a straightforward application of Proposition 7.2 with Xj
0 =

g̃j ∈ Ig(Rn), Xj
1 = ∇(hi − Lg̃i

ϕ) ∈ Pg(Rn) and Xj
i+1 = 1

2∇(LXj
i
HM0) ∈ Pg(Rn)

since HM0 is affine and Xj
i is a linear vector field (as all infinitesimal homothetic

transformations of Rn).
Remark. If g̃1(x) = G1, . . . , g̃p(x) = Gp, the previous result still holds when (72)

is not affine but even quadratic.

8.2.2. Flat metrics on Rn and other drifts. Here, we no longer haveKM0 = 0.
PROPOSITION 8.5. Let

1. g̃1, . . . , g̃p be constant vector fields,
2. K be a skew-symmetric matrix, h1, . . . , hp and ϕ be such that

∆ϕ+ ‖Kx+ ∇ϕ‖2 +
p∑

i=1

(
h2

i + Lg̃i
hi

)
(74)

is quadratic and that for all i = 1, . . . , p, hi(x) − Lg̃i
ϕ(x) is an affine function.
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Then there exists an FDF to compute the unnormalized conditional density associated
with a system of the form{

dxt = (∇ϕ(xt) +Kxt)dt + dvt + g̃ ◦ dyt , x0  p0(x)dx,

dyt = h(xt)dt + dwt

(75)

when the density p0 of x0 belongs to D(M?
0 ).

Proof. The proof is a straightforward application of Proposition 7.2 with Xj
0 =

g̃j ∈ Pg(Rn), Xj
1 = ∇(hi − Lg̃i

ϕ) ∈ Pg(Rn), and Xj
i+1 = 1

2∇g(LXj
i
HM0) ∈ Pg(Rn)

since HM0 is quadratic and Xj
i is a constant vector field (that is, belongs to Pg(Rn)),

as can be seen by induction.

8.2.3. Other metrics. We shall not treat this case, which does not lead to
amenable formulations for the results.

8.3. Examples of FDFs. The following examples are straightforward applica-
tions of Proposition 8.4 (and the remark following, for the first of them).

PROPOSITION 8.6. If there exist δ, ε such that the function

f ′(x) + f2(x) + (δx+ ε)f(x)(76)

is quadratic, then there exists a finite filter for the system{
dxt = f(xt)dt + dvt + dyt , x0  p0(x)dx,

dyt = (f(xt) + δxt + ε) dt + dwt , y0 = 0 .
(77)

We do not detail this case since it can more or less be found in [26].
Remark. It can be easily seen that there is no quadratic f satisfying the above

assumptions but that any affine function does. Setting f(x) = ax + b + 1/u(x), we
find a family of solutions

f(x) = ax+ b+
exp(−(a+ ε/2)x2 + (2b+ δ)x)

c+
∫ x

0
exp(−(a+ ε/2)z2 + (2b+ δ)z)dz

.

For instance, there exists an FDF for the system
dxt =

1
e−xt + 1

dt + dvt + dyt , x0  p0(x)dx

dyt = − e−xt

e−xt + 1
dt + dwt , y0 = 0 .

(78)

PROPOSITION 8.7. If there exist δ, ε such that the function

(1 + x2)(f ′(x) + f2(x)) + x (2(δx+ ε) + 1) f(x) + δ2x2(79)

is an affine function, then there exists a finite filter for the system{
dxt = f(xt)dt + dvt + xt ◦ dyt , x0  p0(x)dx,

dyt = (xtf(xt) + δxt + ε) dt + dwt , y0 = 0 .
(80)
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Remark. Setting f(x) = b + 1/u(x), it can be shown by computation that any
f(x) of the form

f(x) = −δ +
(1 + x2)−ε− 1

2 exp(2δ arctanx)

a+
∫ x

0
(1 + z2)−ε− 1

2 exp(2δ arctan z)dz
(81)

is such that (79) is quadratic.
For instance, there exists an FDF for the system

dxt =
1

(1 + x2
t )(arctanxt + a)

dt + dvt + xt ◦ dyt , x0  p0(x)dx,

dyt =
(

xt

(1 + x2
t )(arctanxt + a)

− 3
2

)
dt + dwt , y0 = 0,

(82)

where a 6∈] − π/2, π/2[, when p0 ∈ D(M?
0 ).

Appendix A. On the Riemannian geometric framework. Here, we review
the necessary mathematical background (our references are [14, 1]). We assume from
now on that Rn is equipped with a Riemannian metric g.

DEFINITION A.1. Let T be an r-form ((0, r) tensor field), X, X1, . . . , Xr be
vector fields and f a smooth function on Rn. The Lie derivation (of tensors) LX is
characterized by the following relations.

LXf = Xf = 〈df,X〉 ,
LXX1 = [X,X1],

LX(T (X1, . . . , Xr)) = (LXT )(X1, . . . , Xr) +
r∑

i=1

T (X1, . . . , LXXi, . . . , Xr).

The inner product iX is defined by

(iXT )(X2, . . . , Xr) = T (X,X2, . . . , Xr).

DEFINITION A.2. Let X, Y , and Z be vector fields ((1, 0) tensor fields), ω be a
one-form ((0, 1) tensor field), and f be a smooth function on Rn.

1. DZ denotes the covariant derivation and AZ the derivation AZ = LZ −DZ .
2. AZ induces a (1, 1) tensor field by AZX = −DXZ whose adjoint A?

Z is
defined by g(A?

ZX,Y ) = g(X,AZY ).
3. Ωg is the volume form on (Rn, g).
4. The divergence of X is the function divgX which satisfies LXΩg = divgX Ωg.
5. Z[ is the one-form defined by duality by Z[(X) = g(Z,X).
6. ω] is the vector field defined by duality by g(ω], X) = ω(X).
7. The gradient of f is the vector field ∇gf = (df)] such that g(∇gf,X) = Xf .
8. The Laplacian (or Laplace–Beltrami operator) ∆g is given by ∆gf =

divg(∇gf).
DEFINITION A.3. We note by Pg(Rn) the Lie algebra of parallel vector fields of

(Rn, g), namely,

Pg(Rn) = {X ∈ X (Rn) | LXg = 0 and dX[ = 0}
= {X ∈ X (Rn) | AX = 0}.(A.83)

We note by Ig(Rn) the Lie algebra of infinitesimal isometries of (Rn, g), namely,

Ig(Rn) = {X ∈ X (Rn) | LXg = 0}.(A.84)
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We note by Hg(Rn) the Lie algebra of infinitesimal homothetic transformations of
(Rn, g), namely,

Hg(Rn) = {X ∈ X (Rn) | ∃λ ∈ R , LXg = λg}.(A.85)

If LXg = ρg, we note ρ = ηg(X). It is clear that Pg(Rn) ⊂ Ig(Rn) ⊂ Hg(Rn).

Appendix B. Recalls on the perturbation algebra of a parabolic opera-
tor. In this section, we make a brief recall of the main results in [8], and we broaden
their validity by relaxing an analyticity assumption in [8].

Let A be an elliptic operator, assumed to have smooth coefficients, and be non-
degenerate elliptic:

A =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
+ c(x).

Above in the paper, we make use of the following results with either A = M0 or
A = M?

0 .
PROPOSITION B.1 (see [8]). Let Z ∈ X(F ) be of the form (37) and let Ẑt be

defined, for all t, as a smooth differential operator on Rn: for all p ∈ C∞(Rn),

(
Ẑtp
)

(x) = −Z0(t)Ap(x) −
n∑

i=1

Zi(t, x)
∂p

∂xi
(x) + Zn+1(t, x)p(x).(B.86)

Then, there exists a finite-dimensional Lie algebra PA, the perturbation algebra of
the parabolic operator ∂t −A, of linear partial differential operators of order less than
or equal to one on Rn such that Z is a (local) infinitesimal symmetry of the parabolic
PDE ∂tu−Au = 0 if and only if

Ẑ0 ∈ RA⊕ PA and ∀ t ∈ R , Ẑt = exp(tadA)(Ẑ0) .(B.87)

Moreover, Λ(Z) = Ẑ0 is an anti-isomorphism from the set of such (local) infinitesimal
symmetries to RA ⊕ PA. In particular, (local) infinitesimal symmetries of the form
(37) form a finite-dimensional Lie algebra.

Let O be linear partial differential operators of order less than or equal to one on
Rn. Then O ∈ PA if and only if the Lie algebra {A,O}L.A. of smooth differential
operators on Rn generated by A and O is of the form {A,O}L.A. = RA ⊕ Q, where
Q is a finite-dimensional Lie algebra consisting of linear partial differential operators
of order less than or equal to one on Rn.

Proof. We simply prove here that the assumption on the analyticity of the coeffi-
cients of A in [8] may be relaxed and replaced by the assumption that the coefficients
of A are smooth.

This analyticity condition was used in the proof of Proposition 2.2 in [8], and we
follow the notations of this proof.

Let U (2) be the second jet space of R× Rn, with coordinates denoted by

u(2) = (u, (ut, uxi
, 1≤i≤n), (utt, utxj

, 1≤j≤n, uxixj
, 1≤i≤j≤n)).

If (t0, x0) ∈ R × Rn and v is a smooth function on a neighborhood of (t0, x0), the
two-jet of v (or second prolongation of v) at (t0, x0) is the collection pr(2)[v](t0, x0) of
partial derivatives of v at (t0, x0) up to order two.
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Let Γ be the smooth map on R× Rn × U (2) given by

Γ(t, x, u(2)) = ut −
n∑

i,j=1

aij(x)uxixj
−

n∑
i=1

bi(x)uxi
− c(x)u.(B.88)

We have

Γ(t, x, pr(2)[v](t, x)) = (∂t −A)v(t, x).

Γ is of maximal rank and, to prove that it is nondegenerate in the sense of [16,
Definition 2.70], it remains to be proven that it is locally solvable in the sense of [16,
Definition 2.70]. This latter condition is satisfied if, for any (t0, x0, u

(2)
0 ) ∈ R× Rn ×

U (2) such that Γ(t0, x0, u
(2)
0 ) = 0, there exists a smooth function v on a neighborhood

of (t0, x0) such that
Γ(t, x, pr(2)[v](t, x)) = 0 for all (t, x) in a neighborhood of (t0, x0)

(v is a solution of (∂t −A)v = 0),
Γ(t0, x0, pr(2)[v](t0, x0)) = u

(2)
0 .

Let (t0, x0, u
(2)
0 ) ∈ R× Rn × U (2) be given and let us exhibit such a function v.

First, since the symmetric matrix (aij(x0))i,j=1,...,n is not degenerate, it is easily
seen that there exists f ∈ C∞(Rn) whose derivatives up to four satisfy

pr(2)[f ](x0) =
(
u0, (u0

xi
, 1≤i≤n), (u0

xixj
, 1≤i≤j≤n)

)
,

(Af)(x0) = u0
t ,

(A2f)(x0) = u0
tt,

(∂xj
Af)(x0) = u0

txj
, j = 1, . . . , n .

(B.89)

Second, given a smooth function ψ on Rn with compact support included in an
open ball Ω = B(x0, r) and having constant value one in a neighborhood of x0, we
exhibit (for T > t0) a smooth function v in C∞([t0, T ] × Ω) such that

(∂t −A)v(t, x) = 0 ∀ (t, x) ∈]t0, T [×B(x0, r),(B.90)

v(t, x) = 0 ∀ (t, x) ∈]t0, T [×S(x0, r) =]t0, T [×∂B(x0, r),(B.91)

v(t0, x) = ψ(x)f(x) ∀ x ∈ B(x0, r).(B.92)

Indeed, the above problem has a unique solution v ∈ C∞([t0, T ] × Ω) since the as-
sumptions of [5, Theorem X.10] are satisfied:

• the smooth elliptic differential operator A is strictly elliptic on the bounded open
set Ω:

∑n
i,j=1 aij(x)ζiζj ≥ α‖ζ‖2 , x ∈ Ω , ζ ∈ Rn , α > 0, because A is nondegenerate

elliptic with smooth coefficients,
• the open set Ω is bounded and has a smooth frontier ∂Ω = S(x0, r),
• aij , bi, c, and v(t0, ·) = ψf belong to C∞(Ω),
• the compatibility relations, ∀ k ∈ N , Akv(t0, ·) = 0 on ∂Ω, are satisfied since

v(t0, ·) = ψf has compact support included in that of ψ, therefore in the open ball Ω,
and is thus zero in a neighborhood of ∂Ω.
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Third, the function v answers the question since by (B.90) (extended down to
t = t0, since v ∈ C∞([t0, T ] × Ω)), by (B.89), and by (B.92) it satisfies

v(t0, x0) = f(x0) = u0,

∂tv(t0, x0) = Av(t0, x0) = (Af)(x0) = u0
t ,

∂xj
v(t0, x0) = ∂xj

f(x0) = u0
xi
,

∂2
ttv(t0, x0) = ∂tAv(t0, x0) = A∂tv(t0, x0) = (A2f)(x0) = u0

tt,

∂2
txj
v(t0, x0) = ∂xj

∂tv(t0, x0) = ∂xj
(Af)(x0) = u0

txj
,

∂2
xixj

v(t0, x0) = ∂2
xixj

f(x0) = u0
xixj

.

This ends the proof by relaxing the analyticity assumption.
We can characterize the perturbation algebra in geometric terms when A has the

form

A =
1
2
∆g + U + c,(B.93)

where U is a smooth vector field on Rn and where c is a smooth function.
DEFINITION B.2. If A is given by (B.93), the skew-symmetric (1, 1) tensor field

KA and the function HA are defined by

KA = AU −A?
U and HA = divgU + g(U,U) − 2c.(B.94)

If U = ∇gϕ, then KA = 0 and HA = ∆gϕ+ ‖∇gϕ‖2 − 2c.
Remark. The case U = ∇gϕ is related to the so-called exact estimation algebra

extensively studied in [24, 23, 10, 6].
We identify a smooth differential operator of order less than or equal to one with

the sum of a smooth vector field and of a smooth function.
THEOREM B.3 (see [9]). The operator X +m ∈ X (Rn) ⊕ C∞(Rn) belongs to PA

if and only if there exists a sequence (Xi)i∈N in Hg(Rn) which satisfies one of the
equivalent following inductions:

X0 = X,

X1 = KAX0 + ∇g(m− g(X0, U))

(or = −ηg(X0)U + [U,X0] + ∇gm ),

Xi+2 = KAXi+1 + 1
2∇g(LXiHA + ηg(Xi)HA)

(or = −ηg(Xi+1)U + [U,Xi+1] + ∇g(g(Xi+1, U) + 1
2LXiHA + 1

2ηg(Xi)HA) )
(B.95)
or 

X0 = X,

X[
1 = −iX0(dU

[) + d(m− g(X0, U)),

X[
i+2 = −iXi+1(dU

[) + 1
2d(LXiHA + ηg(Xi)HA),

(B.96)

where the skew-symmetric (1, 1) tensor field KA and the function HA are defined in
(B.94). Moreover, we have

adk+1
A (X +m) = ηg(Xk)A+Xk+1 + function.(B.97)
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PROPOSITION B.4. Assume that (Rn, g) is complete. If PA is not reduced to
constants, then Hg(Rn) is not trivial. If PA contains a nonconstant function, then
Pg(Rn) is not trivial.

If dimPg(Rn) = r 6= 0, there exist x̃1, . . . , x̃r smooth functions such that ∇x̃1,
. . . , ∇x̃r is an orthonormal basis of Pg(Rn). Let h ∈ PA.

1. If 0 < r < n, h necessarily is a linear combination of 1, x̃1, . . . , x̃r.
2. If r = n, h necessarily is a linear combination of 1, x̃1, . . . , x̃n and ‖x̃‖2.

Proof. If PA is not reduced to constants, then either X0 or X1 in (B.95) is not
zero, so that Hg(Rn) is not trivial (this holds true even if (Rn, g) is not complete).

By Theorem B.3, we know that if h ∈ PA, then X0 = ∇gh ∈ Hg(Rn). Then,
either Ig(Rn)  Hg(Rn) and then Pg(Rn) 6= 0 (since (Rn, g) is complete and by
Lemma A.3 in [8]) or Ig(Rn) = Hg(Rn) and then ∇gh ∈ Pg(Rn) (since any gradient
vector field T in Ig(Rn) is in fact in Pg(Rn) because we have both AT = A?

T and
AT +A?

T = 0 [8, 9]).
If dimPg(Rn) = r 6= 0, such x̃1, . . . , x̃r exist by Lemma A.3 in [8]. If r < n, then

∇gh ∈ Hg(Rn) ⇐⇒ ∇gh ∈ Pg(Rn) by the same argument as above, so that the
result is clear. If r = n, then by Lemma A.3 in [8] (Rn, g) is isometric to Rn flat so
that Hg(Rn) = Ig(Rn) ⊕ R∇‖x̃‖2. This ends the proof.

Appendix C. A lemma on completeness of time-varying vector fields.
The following lemma is used in the proof of Proposition 7.2.

LEMMA C.1. Assume that (Rn, g) is complete. Let H1, . . . , Hk be a basis of
Hg(Rn) and α1(t), . . . , αk(t) be piecewise continuous functions. Then the ODE

ẋ(t) =
k∑

l=1

αl(t)Hl(x(t)) , x(0) = x0(C.98)

has a solution defined for all time t.
Proof. The sketch of the proof is as follows.
Let T > 0 and C(T ) = supl=1,...,k sup0≤t≤T |αl(t)|.

1. When α1(t), . . . , αk(t) are constant functions, we know that (C.98) has a
solution defined for all time t. We shall show that, for 0 ≤ t ≤ T ,

d(x0, x(t)) ≤ teγC(T )tC(T )φ(x0),(C.99)

where γ depends only on H1, . . . , Hk and φ(x) depends only on the Riemannian
structure.

2. We shall also prove that there exists λ ≥ 0 (depending only on the structural
constants of the Lie algebra Hg(Rn)) such that, for 0 ≤ t ≤ T ,

φ(x(t)) ≤ et(λ+γ)C(T )φ(x0).(C.100)

3. When α1(t), . . . , αk(t) are piecewise constant functions, we know that (C.98)
has a solution defined for all time t. We shall show that, for 0 ≤ t ≤ T ,

d(x0, x(t)) ≤ C(T )tet(2γ+λ)C(T )φ(x0)

4. When α1(t), . . . , αk(t) are piecewise continuous functions, we shall show
that (C.98) has a solution defined at least up to time T .

Since (Rn, g) is complete, Hg(Rn) consists of complete vector fields [14], and
therefore (C.98) has a solution defined for all time t when α1(t), . . . , αk(t) are constant
functions. What is more, we have

d(x0, x(t)) ≤
∫ t

0

√
g(ẋ(s), ẋ(s))ds,
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where g(ẋ(s), ẋ(s)) = g(
∑k

l=1 αlHl(x(s)),
∑k

l=1 αlHl(x(s)) satisfies a linear differen-
tial equation in the variable s since

∑k
l=1 αlHl is an infinitesimal homothetic trans-

formation. Thus

d(x0, x(t)) ≤
√√√√g

(
k∑

l=1

αlHl(x0),
k∑

l=1

αlHl(x0)

)∫ t

0
esηg(

∑k
l=1 αlHl)ds

≤ tetγC(T )C(T )

√√√√ k∑
l,m=1

g(Hl, Hm)(x0)

and the first point is proved with γ =
∑k

l=1 |ηg(Hl)| and φ(x) =
√∑k

l,m=1 g(Hl, Hm)(x).
It is easy to see that the g(Hl, Hm)(x(t)) satisfy a linear differential system in

the variable t whose coefficients depend linearly on ηg(
∑k

l=1 αlHl), on α1, . . . , αk,
and the structural constants of the Lie algebra Hg(Rn). Thus, there exists λ ≥ 0,
depending only upon these structural constants, such that

k∑
l,m=1

g(Hl, Hm)(x(t)) ≤ e2t(λ+γ)C(T )
k∑

l,m=1

g(Hl, Hm)(x0).

This leads to φ(x(t)) ≤ et(λ+γ)C(T )φ(x0) and the second point is proved.
Now, when α1(t), . . . , αk(t) are piecewise constant functions, we can piece to-

gether the previous inequalities as (C.99) obtained for d(x(tq), x(tq+1)) on each inter-
val [tq, tq+1], where α1(t), . . . , αk(t) are constant. This gives, for 0 ≤ t ≤ T ,

d(x0, x(t)) ≤ C(T )
∑

q

(tq+1 − tq)eγC(T )(tq+1−tq)φ(x(tq)).

Since by (C.100) an easy induction yields

φ(x(tq)) ≤ e(λ+γ)C(T )(tq−tq−1)φ(x(tq−1)) ≤ e(λ+γ)C(T )tqφ(x0),

we obtain the following estimate for 0 ≤ t ≤ T :

d(x0, x(t)) ≤ C(T )tet(2γ+λ)C(T )φ(x0).

The third point being proved, we turn to the last one. When α1(t), . . . , αk(t) are
piecewise continuous functions, we know that (C.98) has a solution defined at least
up to a positive time. Let τ > 0 be the first time when x(t) leaves the nonempty
(when C(T ) > 0) bounded open set

Ω = {x ∈ Rn, d(x0, x) < 2C(T )TeT (2γ+λ)C(T )φ(x0)}.
We shall prove that τ ≥ T . Indeed, by [21, p. 106], since Ω is included in a bounded
closed set (hence compact on the complete Riemannian manifold (Rn, g) [14]), the
whole trajectory (x(t), 0 ≤ t ≤ τ ∧ T ) may be approximated by trajectories of (C.98)
with α1(t), . . . , αk(t) being piecewise constant functions. Thus, for 0 ≤ t ≤ τ ∧T , we
have by continuity

d(x0, x(t)) ≤ C(T )tet(2γ+λ)C(T )φ(x0) ≤ C(T )TeT (2γ+λ)C(T )φ(x0).

If τ < T , this leads to a contradiction with the definition of τ .
We have shown that, for any time T > 0, the ODE (C.98) has a solution defined

at least up to time T . This proves the assertion of the lemma.
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Abstract. We study a stochastic control problem for the optimization of observations in a
partially observable stochastic system. Using a method of discontinuous time transformation, we
associate with the original problem with unbounded controls a problem that has bounded controls.
This latter problem allows us to construct nearly optimal nonanticipative Lipschitz Markov controls
with finite observation power for the original problem. Since the controlled observation equation
may degenerate, we also derive a corresponding filtering result and show a separation property of
the optimal controls.
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separation principle, discontinuous time transformation
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Introduction. The most common way to formulate a control problem is to let
the control affect only the evolution of the state while possible partial observations of
the state are supposed to be continuously available.

Many practical situations, however, lead to the possibility that the observations
also can be controlled in a way that affects both their timing as well as their quality.
This then leads to a control problem where one tries to choose the control in a way to
maximize the information content of the observations regarding the state while at the
same time also taking into account a possible penalization of the control effort. Since
the information content of the observations can be measured by the state estimation
covariance, maximization of the information content can be obtained by minimizing
this estimation covariance.

Problems of optimization of observations were mainly studied in the East (see,
e.g., [1], [2], [9], [11]); a first study in the West appears in [4]. In a stochastic context
only the linear case has been studied so far. More precisely, in [9] the authors consider
the following linear model:

(0.1a) dxt = atxt dt+ bt dw
(1)
t ,

(0.1b) dyt = At(ut)xt dt+Bt dw
(2)
t ,

where ut is the observation control and (w(1)
t ) and (w(2)

t ) are independent standard
Wiener processes. In this linear case the estimation covariance γ does not depend on
the observations and so the optimal control becomes a deterministic time function.

The purpose of this paper is an attempt to extend the investigations to the non-
linear case. As a first step in this direction we consider a model related to (0.1), where
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the coefficients depend on an unknown parameter and the observation noise is more
realistically considered as an endogenous noise induced by the observations them-
selves; the observation power is restricted to be finite at all times with bounded total
observation energy. Contrary to the linear case, the observation covariance here de-
pends on the observations and the control problem itself becomes a stochastic control
problem.

The structure of the paper is as follows: in section 1 we present our control
model and study the associated filter problem which, due to the possibility that the
(controlled) observation equation may degenerate, cannot be approached directly by
standard techniques. In section 2 we then formulate the full control problem and show
a separation property, namely, that among the optimal controls there is one depending
on the observations through the filter values. This control problem is a nonstandard
nonlinear problem with finite but unbounded controls. In section 3, using a stochastic
version of the so-called method of discontinuous time transformation (see [10] for a
deterministic context), we therefore derive an auxiliary problem with bounded controls
and study the relationship between the original and the auxiliary control problems.
While the auxiliary problem can be shown to admit an optimal solution, for the
original problem there may not exist an optimal nonanticipative solution. On the
other hand, the auxiliary problem gives also the possibility to derive a nearly optimal
nonanticipative Lipschitz Markov (feedback) control for the original problem. Finally,
in the concluding remarks we recall some of the delicate points of our approach.

1. The model and the associated filter process.

1.1. The model. On a given finite time interval [0, T ] consider a partially ob-
served process (xt, yt) that satisfies the following linear system, parametrized by an
unknown parameter θ and with a control in the observations:

(1.1a) xt = x0 +
∫ t

0
as(θ)xs ds+

∫ t

0
bs(θ) dw(1)

s ,

(1.1b) yt =
∫ t

0
As(θ)xs dvs + ηt.

In this system, where for simplicity of presentation we consider all processes to be
scalar valued, (w(1)

t ) is a standard Wiener process with respect to a given filtration
(Ft) with Ft ⊇ Fy

t := σ{ys, s ≤ t}; x0 is F0-measurable with distribution N (m0, σ0)
and independent of (w(1)

t ). The observation control process (vt) is an Fy
t -adapted

absolutely continuous and almost surely (a.s.) nondecreasing process with v0 = 0
that thus has almost everywhere (a.e.) a derivative ut = v̇t that we assume satisfies
the restrictions

(1.2a) 0 ≤ ut < +∞ (finite observation power),

(1.2b)
∫ T

0
utdt = vT ≤ M < +∞ (finite observation energy).

The additive observation disturbance consists of an endogenously induced noise, due
to the observation itself and represented by the (conditionally) Gaussian Fy

t -martingale
(ηt), whose quadratic variation satisfies the compatibility condition

(1.3) 〈η〉t = B2 vt (B 6= 0)
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and is independent of (w(1)
t ) and x0. Although other reasonable models could possibly

be posited, in this first approach to the control of the observations in the nonlinear
stochastic case we assume a compatibility condition in the form of (1.3), which im-
plicitly states that drift and noise in the observation equation are both linear in the
control (see the ensuing equivalent representation of model (1.1) in (1.6) below). By
considering more complex situations, the control may enter the diffusion term in a
nonmultiplicative way so that the absolute continuity of the drift with respect to the
quadratic variation of the noise in the observation equation may be lost with ensuing
additional problems for the filter. Note also that we may let the constant B in (1.3) be
substituted by a time function Bt; dividing the observations by the (known) function
Bt then reduces this more general case to the one treated here.

As a consequence of (1.3), there exists an Ft-standard Wiener process (w(2)
t ),

independent of (w(1)
t ) and x0, so that the following representation holds:

(1.4) ηt = B

∫ t

0
(us)1/2dw(2)

s .

For this representation (1.4) and analogous ones later, as is usually done we implicitly
assume that, where necessary, the underlying probability space is sufficiently enlarged
to support all required Wiener processes. (For an explicit construction of such an
enlargement see, e.g., section 1.4.4 in [5].)

The dependence of ut on the observation history implies that (1.1b) is actually
an equation in (yt). To ensure that (1.1b) is well defined, we shall thus assume that
ut as a function of the observation history yt

0 := {ys, s ≤ t} is such that it satisfies a
Lipschitz property in the sense that for a nondecreasing and right continuous function
K(t), 0 ≤ K(t) ≤ 1, and some nonnegative constants L1, L2 we have for all t ≥ 0

(1.5) |ut(yt
0) − ut(ỹt

0) |2 ≤ L1

∫ t

0
|ys − ỹs|2dK(s) + L2|yt − ỹt|2.

Furthermore, taking the Bayesian point of view, the unknown parameter θ is con-
sidered an F0-measurable random variable, independent of x0, (w

(1)
t ), and (ηt) and

taking a finite number of possible values θi (i = 1, . . . , k) with prior probabilities
pi = P (θ = θi). Finally, at(θ), bt(θ), and At(θ) are continuous and bounded functions
of t for all θ.

In the setting just described, system (1.1) can equivalently be represented as

(1.6a) dxt = at(θ)xt dt+ bt(θ) dw
(1)
t ,

(1.6b) dyt = At(θ)xtut dt+B · (ut)1/2dw
(2)
t , y0 = 0,

(1.6c) dθ = 0.

Remark 1.1. Since the value of ut corresponds to the power applied to the obser-
vation of the signal xt, conditions (1.2) imply that we require this power to be finite
at each t with bounded total observation energy, which indeed corresponds to the
actual physical situation. The fact that the additive observation noise in (1.1b), or
equivalently in (1.6b), is given by an endogenously generated noise due to the obser-
vation itself justifies the assumption of a compatibility condition such as (1.3). The
Gaussian assumption for this noise can be justified for those cases when the power ut,
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applied for observing xt, is sufficiently large; take, e.g., an optical noise that is Poisson
with intensity proportional to the power of the observation so that for large values of
this power it can be approximated by a Gaussian. In a sense, the observation noise in
(1.1b) or (1.6b) is thus a minimum-level noise, to which some independent exogenous
Gaussian noise could possibly be added as well. Note finally that the observation
inaccuracy is due not only to the additive observation noise but also to the averaging
of the signal xt as implied by the first term on the right of the observation equation
(1.1b) or (1.6b). The averaging due to the choice of vt (equivalently of ut) thus affects
both the timing and the quality of the observations: in the limit, when the observa-
tion power tends to infinity, ut tends to a δ-function thus determining only the timing
of the observations with no averaging of the signal. Note also that the observation
power may tend to infinity, while the total observation energy remains still bounded
by M .

Before going on to describe the full control problem, we study the filter process
associated with the given partially observed control model.

1.2. The filter process. For i = 1, . . . , k consider

(1.7a) mi
t := E{xt| Fy

t , θ
i},

(1.7b) γi
t := E{(xt −mi

t)
2| Fy

t , θ
i},

(1.7c) πi
t := P{θ = θi| Fy

t },

and let the “filter process” Xt be given by the following set of triplets:

(1.8) Xt := {mi
t, γ

i
t , π

i
t}i=1,...,k.

The main purposes of this subsection are to derive a stochastic differential equation
for Xt and to show that, under the assumptions of subsection 1.1, it has a unique
solution. We point out that these results will not simply be a direct application of
known filtering results since, due to the possibility that ut may be equal to zero on
intervals of positive length, the observation equation may degenerate. The main result
of this section is the following theorem.

THEOREM 1.2. The filter process (Xt) in (1.8) satisfies, for a given control vt

(equivalently ut) and i = 1, . . . , k,

(1.9a) dmi
t = at(θi)mi

tdt+B−2At(θi)γi
t [dyt −At(θi)mi

tdvt], mi
0 = m0 = E(x0),

(1.9b) dγi
t = 2at(θi)γi

tdt+ b2t (θ
i)dt−B−2[At(θi)γi

t ]
2dvt, γi

0 = σ0 = Cov(x0),

(1.9c) dπi
t = πi

t

At(θi)mi
t −

k∑
j=1

πj
tAt(θj)mj

t

 B−2dξt, πi
0 = pi,

where

(1.10) ξt :=
∫ t

0

dys −
k∑

j=1

πj
sAs(θj)mj

sdvs
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is an Fy
t -conditionally Gaussian martingale with quadratic variation

(1.11) 〈ξ〉t = vt(yt
0).

Furthermore, the system (1.9) can be represented in compact form as

(1.12) dXt = Ft(Xt)dt+Bt(Xt)utdt+Gt(Xt)u
1/2
t dwX

t

for suitable functions F , B, and G related to the coefficients in (1.9) and where (wX
t )

is an Ft-standard Wiener process. Finally, for any given control (vt) or (ut), the
solution of (1.9) (or (1.12)) is unique.

To prove this theorem (the proof will be given below) we shall need an inter-
mediate result for an auxiliary filtering problem that will allow us to cope with the
possible degeneracy of the original (controlled) filtering model. To derive the auxiliary
problem we use an absolutely continuous time transformation. More precisely, for a
given control vt (recall that v0 = 0) let

(1.13) Γt := vt +
∫ t

0
I{s : v̇s = 0} ds,

which is an Fy
t -adapted absolutely continuous process with strictly positive derivative

and satisfying ΓT ≤ M + T (see (1.2)). On the interval [0,ΓT ] it admits thus the
inverse function

(1.14) νs = inf{τ : Γτ > s} = inf{τ : Γτ = s},

which satisfies 0 ≤ νs ≤ T and is absolutely continuous with

(1.15) ν̇s =
1

Γ̇t |t=νs

=
1

(v̇t + I{t : v̇t = 0})|t=νs

> 0.

Furthermore, for each s ∈ [0, T ], νs is an Fy
t -stopping time and, as a process, (νs)

is adapted to Fy
νs

= σ{yτ : 0 ≤ τ ≤ νs}. Consider now the time-transformed
observation process

(1.16) ȳs = yνs
,

which by (1.1) satisfies

(1.17) dȳs = Aνs
(θ)xνs

dvνs
+ dηνs

.

Note that (ηνs) is a continuous, Fy
νs

–conditionally Gaussian martingale with quadratic
variation 〈η〉νs = B2vνs such that

(1.18)
d

ds
〈η〉νs

=
B2v̇νs

v̇νs
+ I{s : v̇νs

= 0} = B2I{s : v̇νs
6= 0}.

The process (ηνs) may thus degenerate and so, using a regularization procedure, we
define

(1.19) η̃s := ηνs
+B

∫ s

0
I{τ : v̇ντ

= 0} dwτ ,
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where (wt) is an Ft-standard Wiener process, independent of (w(1)
t ) and (ηt). This

process (η̃t) is thus a conditionally Gaussian martingale with respect to Fy
νs

= F ȳ
s ,

that has continuous trajectories and nondegenerate quadratic variation

(1.20)
〈η̃〉s = 〈η〉νs

+B2
∫ s

0
I{τ : v̇ντ

= 0} dτ

= B2
∫ s

0
I{τ : v̇ντ

6= 0} dτ +B2
∫ s

0
I{τ : v̇ντ

= 0} dτ = B2s.

Since (η̃s) is independent of (w(1)
s ), in what follows we shall consider an Ft-Wiener

process (w̃(2)
s ), independent of (w(1)

s ), and represent (η̃s) as η̃s = B w̃
(2)
s . On the

other hand, since for the process (w(1)
νs ) we have 〈w(1)〉νs

= νs, we may also consider
an Fs-standard Wiener process (w̃(1)

s ), independent of (w̃(2)
s ), and obtain (w(1)

νs ) as

(1.21) w(1)
νs

=
∫ s

0
(ν̇τ )1/2dw̃(1)

τ .

Defining finally for s ≤ ΓT (see (1.15))

(1.22a) ãs(θ) :=
aνs

(θ)
(v̇t + I{t : v̇t = 0})|t=νs

= aνs
(θ) ν̇s,

(1.22b) b̃s(θ) := bνs(θ),

(1.22c) Ãs(θ) :=
Aνs(θ) v̇t |t=νs

(v̇t + I{t : v̇t = 0})|t=νs

= Aνs
(θ) I{s : v̇νs

6= 0},

consider on [0, T +M ] the process-pair (x̃s, ỹs) defined, for 0 ≤ s ≤ ΓT , by

(1.23a) dx̃s = ãs(θ)x̃sds+ b̃s(θ)(ν̇s)1/2dw̃(1)
s , x̃0 = x0,

(1.23b) dỹs = Ãs(θ)x̃sds+B dw̃(2)
s , ỹ0 = 0,

(1.23c) dθ = 0

and by putting dx̃s = dỹs = dθ = 0 for ΓT < s < T+M . Note that from the foregoing
we immediately have

(1.24) x̃s := xνs ,

(1.25) ȳs =
∫ s

0
I{τ : v̇ντ

6= 0} dỹτ

so that ȳs defined in (1.16) is F ỹ
s -measurable and therefore

(1.26) Fy
νs

= F ȳ
s ⊆ F ỹ

s .

Analogously to (1.7) now consider

(1.27a) m̃i
s := E{x̃s| F ỹ

s , θ
i},
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(1.27b) γ̃i
s := E{(x̃s − m̃i

s)
2| F ỹ

s , θ
i},

(1.27c) π̃i
s := P{θ = θi| F ỹ

s }.
We have the following proposition.

PROPOSITION 1.3. The process X̃s := {m̃i
s, γ̃

i
s, π̃

i
s}i=1,...,k satisfies on [0, T ] (for

a given control)

(1.28a) dm̃i
s = ãs(θ)m̃i

sds+B−2Ãs(θi)γ̃i
s [dỹs − Ãs(θi)m̃i

sds], m̃i
0 = mi

0 = m0,

(1.28b) dγ̃i
s = 2ãs(θi)γ̃i

sds+ b̃2s(θ
i) ν̇sds−B−2[Ãs(θi)γ̃i

s]
2ds, γ̃i

0 = γi
0σ0,

(1.28c) dπ̃i
s = πi

s

Ãs(θi)m̃i
s −

k∑
j=1

π̃j
sÃs(θj)m̃j

s

 B−2dξ̃t, π̃i
0 = πi

0 = pi,

where

(1.29) ξ̃s :=
∫ s

0

dyτ −
k∑

j=1

π̃j
τ Ãτ (θj)m̃j

τdτ

 .
Remark 1.4. From (1.22c) and (1.25) we have

(1.30)
∫ s

0
Ãτ (θi)m̃i

τdỹτ =
∫ s

0
Aντ

(θi)m̃i
τdȳτ ,

(1.31)
∫ s

0
Ãτ (θi)γ̃i

τdỹτ =
∫ s

0
Aντ (θi)γ̃i

τdȳτ

so that, besides being F ỹ
s -adapted, the process X̃s in Proposition 1.3 can also be

considered F ȳ
s -adapted. Since

(1.32) E
{
x̃s|F ỹ

s

}
= E

{
E
{
x̃s|F ỹ

s , θ
} |F ỹ

s

}
=

k∑
i=1

m̃i
sπ̃

i
s,

it thus follows that (see (1.26))

(1.33) E
{
x̃s|F ȳ

s

}
= E

{
E
{
x̃s|F ỹ

s

} |F ȳ
s

}
= E

{
x̃s|F ỹ

s

}
.

Proof of Proposition 1.3. Note that the partially observed system (x̃s, ỹs) defined
in (1.23) is nondegenerate and corresponds to the so-called “conditionally Gaussian”
case. For the first two sets of components in (1.28) we may thus make use of Theorem
12.1 in [8], whose assumptions can easily be seen to be satisfied; in fact (see (1.22a))

(1.34)

∫ T+M

0
|ãs(θ)| I{s : s ≤ ΓT }ds =

∫ T+M

0
|aνs

(θ)| ν̇s I{s : s ≤ ΓT }ds

=
∫ T

0
|as(θ)|ds < +∞,



OPTIMIZATION OF OBSERVATIONS 1037

and analogously (see (1.22c))

(1.35)

∫ T+M

0
Ã2

s(θ) I{s : s ≤ ΓT }ds =
∫ T+M

0
A2

νs
(θ) I{s : s ≤ ΓT }dvνs

=
∫ T

0
A2

s(θ)dvs < +∞.

Furthermore, the function b̃s(θ) is continuous and (ν̇s)1/2 is integrable.
For the components (π̃i

t) in (1.28) we make use of the general (innovations form)
nonlinear filtering equation of Theorem 8.1 in [8], putting, for a generic i ≤ k and all
t ≥ 0,

(1.36) hs = hs(θ) := I{θ = θi}.
The assumptions of Theorem 8.1 in [8] are satisfied, and equation (8.10) in [8] with
H = D = 0 then leads to

(1.37)
dπ̃i

s = B−2
[
πs

(
I{θ = θi}Ãs(θ)x̃s

)
− πs

(
I{θ = θi})πs

(
Ãs(θ)x̃s

)]
×
[
dỹs − πs

(
Ãs(θ)x̃s

)
ds
]
,

where πs(Z) := E(Z|F ỹ
s ). Noting now that

(1.38)
πs

(
I{θ = θi}Ãs(θ)x̃s

)
= E

{
E
{
I{θ = θi}Ãs(θ)x̃s|F ỹ

s , θ
}

|F ỹ
s

}
= Ãs(θi)m̃i

s π̃
i
s

and analogously

(1.39) πs

(
Ãs(θ)x̃s

)
=

k∑
j=1

Ãs(θj)m̃j
s π̃

j
s,

it follows that (1.37) is exactly (1.28c). We are now in a position to come to the proof
of Theorem 1.2.

Proof of Theorem 1.2. Note first that, by (1.16), (1.24), and (1.33),

(1.40) mi
t = E

{
x̃Γ(t)|F ȳ

Γ(t), θ
i
}

= E
{
x̃Γ(t)|F ỹ

Γ(t), θ
i
}

= m̃i
Γ(t).

Analogously,

(1.41) γi
t = γ̃i

Γ(t), πi
t = π̃i

Γ(t).

From (1.40) and (1.28a) we obtain

(1.42)

mi
t = m̃i

Γ(t) = m̃i
0 +

∫ Γ(t)

0
ãs(θi)m̃i

s ds+B−2
∫ Γ(t)

0
Ãs(θi)γ̃i

s [dỹs − Ãs(θi)m̃i
s ds].

We now evaluate the integrals in this last expression, namely (see (1.22) and (1.16)
with (1.25)),

(1.43)
∫ Γ(t)

0
ãs(θi)m̃i

s ds =
∫ Γ(t)

0
aνs(θ

i)m̃i
s ν̇sds =

∫ t

0
aτ (θi)mi

τ dτ,
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(1.44)

∫ Γ(t)

0
Ãs(θi)γ̃i

s [dỹs − Ãs(θi)m̃i
s ds]

=
∫ Γ(t)

0
Aνs

(θi)γ̃i
s [Aνs

(θ)v̇νs
ν̇sx̃s ds+ dηνs

−Aνs
(θi)v̇νs

ν̇sm̃
i
s ds]

=
∫ t

0
Aτ (θi)γi

τ [Aτ (θ)xτ dvτ + dητ −Aτ (θi)mi
τ dvτ ]

=
∫ t

0
Aτ (θi)γi

τ [dy −Aτ (θi)mi
τ dvτ ].

Substituting (1.43) and (1.44) into (1.42) we obtain (1.9a). The remaining equations
for (γi

t) and (πi
t) in (1.9) follow analogously.

Coming to the statement of Theorem 1.2 concerning the process (ξt) note that,
according to Theorem 7.12 in [8], the process (ỹs) defined in (1.23) admits the repre-
sentation

(1.45) ỹs =
∫ s

0
E
{
Ãτ (θ)x̃τ |F ỹ

τ

}
dτ + w̃s =

∫ s

0

k∑
j=1

Ãτ (θj) m̃j
τ π̃

j
τ dτ + w̃s,

where (w̃s) is an F ỹ
s -standard Wiener process and the second equality follows from

(1.39). As a consequence

(1.46) w̃s =
∫ s

0

dỹs −
k∑

j=1

Ãτ (θj) m̃j
τ π̃

j
τ dτ

 .
On the other hand, from the definition of (ξt) in (1.10) and from (1.16), (1.15), (1.22),
and (1.25), it then follows that

(1.47)

ξt =
∫ t

0

dys −
k∑

j=1

As(θj)mj
sπ

j
s dvs


=
∫ Γ(t)

0

dȳs −
k∑

j=1

Ãνs
(θj) m̃j

sπ̃
j
s I{s : v̇νs

6= 0}ds


=
∫ Γ(t)

0
I{s : v̇νs

6= 0}
dỹs −

k∑
j=1

Ãνs
(θj) m̃j

sπ̃
j
s ds


=
∫ Γ(t)

0
I{s : v̇νs

6= 0} dw̃s,

from which

(1.48) 〈ξ〉t =
∫ Γ(t)

0
I{s : v̇νs

6= 0}ds =
∫ Γ(t)

0
dvνs

= vνΓ(t) = v(t).

It follows that there exists an Ft-Wiener process (wx
t ) such that

(1.49) dξt = u
1/2
t dwx

t .
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On the other hand, the driving random process in (1.9a) can, using (1.10) and (1.49),
be expressed as

(1.50)

[dyt− At(θi)mi
tdvt]

=

dyt −
k∑

j=1

πj
tAt(θj)mj

tdvt

+

 k∑
j=1

πj
tAt(θj)mj

t −At(θi)mi
t

 dvt

= u
1/2
t dwx

t +

 k∑
j=1

πj
tAt(θj)mj

t −At(θi)mi
t

 utdt.

Equation (1.12) now follows from (1.9), thus concluding the first part of the proof of
the theorem.

Concerning the uniqueness, we start from the equation (1.9b) for (γi
t). Its solution

is uniformly bounded, implying the local Lipschitzianity (with integrable Lipschitz
constant) of the right-hand side in (1.9b). Coming to (1.9a) for (mi

t), its uniqueness
follows from the linearity inmi

t of the right-hand side. Finally concerning the equation
for (πi

t), consider the auxiliary process (πi
t∧tn

), where

(1.51) tn := inf{t : max
i

|mi
t| = n} ∧ T,

for which it is easily seen that tn ↑ T . Due to the linearity of its right-hand side, the
equation for (πi

t∧tn
) now admits a unique solution that coincides with (πi

t) for t ≤ tn.
If, besides (πi

t), there is also a solution (π̂i
t), then πi

t∧tn
= π̂i

t∧tn
so that, by tn ↑ T

and the continuity of πi
t, it follows that πi

t = π̂i
t ∀t ∈ [0, T ].

2. The control problem.

2.1. Formulation of the control problem. The purpose of the control prob-
lem is to choose the control vt, or equivalently ut, in (1.1) to maximize the information
content of the observations regarding the state. This information content can be mea-
sured by the precision of the estimation of xt on the basis of the observation history
yt
0 := {ys; 0 ≤ s ≤ t}, which is given by the inverse of the conditional estimation

covariance

(2.1)

γt = Cov(xt| Fy
t ) = E


(
xt −

k∑
i=1

πi
tm

i
t

)2

| Fy
t


=

k∑
i=1

πi
t

(
γi

t + (mi
t)

2)−
(

k∑
i=1

πi
tm

i
t

)2

.

The control objective can therefore be seen as minimizing γt for each t. More gen-
erally, taking into consideration also a possible penalization of the control effort, we
shall consider as control objective the minimization of the following (finite-horizon)
functional:

(2.2) J(u) = E

{∫ T

0

[
f0

t (γt) + f1
t (γt)ut

]
dt+ φ0(γT )

}
,
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where f0, f1, and φ0 are continuous functions of polynomial growth in γ. Note that
the filter components γi

t and πi
t are uniformly bounded; on the other hand, by (1.10),

equation (1.9a) can (see also the proof of Theorem 1.2) be rewritten as

(2.3)
dmi

t = at(θi)mi
t dt

+ B−2At(θi)γi
t

 k∑
j=1

πj
tAt(θj)mj

t −At(θi)mi
t

 utdt+B−2At(θi)γi
tdξt,

from which it follows that, for a given control ut, mi
t possesses uniformly bounded

moments of all orders. By (2.1) and the polynomial growth property of f0, we thus
have the existence of the expectation
(2.4)

E{f0
t (γt)} = E{E{f0

t (γt)|Fy
t }}

= E

f0
t

 k∑
i=1

πi
t (γi

t + (mi
t)

2) −
(

k∑
i=1

πi
tm

i
t

)2 := E{F 0
t (Xt)},

with Xt as in (1.8). Analogously, for the remaining two terms in (2.2) we have

(2.5) E
{
f1

t (γt)ut

}
= E

{
F 1

t (Xt)ut

}
,

(2.6) E
{
φ0(γT )

}
= E

{
Φ0(XT )

}
.

From (2.4)–(2.6), which implicitly define the functions F 0, F 1, and Φ0, we have that
the criterion function in (2.2) is well defined for any control (ut) satisfying (1.2) and
that J(u) can equivalently be represented as

(2.7) J ′(u) = E

{∫ T

0

[
F 0

t (Xt) + F 1
t (Xt)ut

]
dt+ Φ0(XT )

}

for suitable functions F 0, F 1, and Φ0 that inherit the polynomial growth property of
f0, f1, and φ0 (the prime distinguishing the representation (2.3) from that in (2.2)).

2.2. The separation property. So far the admissible controls were assumed
to be Fy

t -adapted. In line with stochastic control under partial state observation one
may investigate whether among the possible Fy

t -adapted optimal controls there is one
that is FX

t - adapted, namely, a function of the observations through the filter values.
This is in fact so, and for this purpose consider the two classes of controls

(2.8)
L0 := {u : ut is Fy

t -adapted, is Lipschitz in the sense of (1.5), and satisfies (1.2)},

(2.9) L1 := {u ∈ L0 : ut is in particular FX
t -adapted}.

Given these two classes of controls and recalling (2.2) and (2.7), we have the following
separation theorem, which allows us to consider, instead of the original control system
(1.1) with admissible controls in L0 and criterion functional J(u) according to (2.2),
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the equivalent problem for the filter system (1.12), admissible controls in L1, and
criterion functional J ′(u) (see (2.7).

THEOREM 2.1. Let γ0 = Cov(x0) > 0 and f1
t (γt) ≥ 0. Then the strong principle

of separation holds, namely,

(2.10) inf
u∈L1

J ′(u) = inf
u∈L0

J(u).

Proof. Since L1 ⊆ L0, we immediately have

(2.11) inf
u∈L1

J ′(u) ≥ inf
u∈L0

J(u),

so we need to show only the opposite inequality. For this purpose, defining

(2.12) NA :=
{
t : sup

i≤k
|At(θi)| = 0

}
,

consider the subclasses of controls

(2.13a) L̄0 = {u ∈ L0 : ut = 0 for t ∈ NA},

(2.13b) L̄1 = {u ∈ L1 : ut = 0 for t ∈ NA}.
For u ∈ L0 let

(2.14) ūt := ut I{t /∈ NA} ∈ L̄0,

and we have

(2.15) J(ū) ≤ J(u).

Analogously for u ∈ L1. In fact, it is easily seen from (1.9) that u(·) and ū(·) generate
the same process Xt =

{
mi

t, γ
i
t , π

i
t

}
i=1,...,k

, while due to the nonnegativity of f1
t (γ)

and of ut, one has

(2.16)
∫ T

0
f1

t (γt)ūt dt ≤
∫ T

0
f1

t (γt)ut dt.

It follows that

(2.17) inf
u∈L̄0

J(u) ≤ inf
u∈L0

J(u),

and, since L̄0 ⊆ L0, we have

(2.18) inf
u∈L̄0

J(u) = inf
u∈L0

J(u)

and, analogously,

(2.19) inf
u∈L̄1

J ′(u) = inf
u∈L1

J ′(u).

Now let ū denote a control with ūt = 0 for t ∈ NA; in particular, we may think of
ū ∈ L̄0. Corresponding to any such given control ū, the σ-algebra Fy

t generated by
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ys for 0 ≤ s ≤ t is contained in that FX
t generated by Xs =

{
mi

s, γ
i
s, π

i
s

}
i=1,...,k

for
0 ≤ s ≤ t. In fact, since γ0 > 0, passing to its inverse, we have from (1.9b) that
γt > 0 for all t ∈ [0, T ]. Furthermore, on the complement of NA there exists at least
one value of i ∈ {1, . . . , k} for which At(θi)γi

t 6= 0; consequently, taking into account
the continuity of At(θi)γi

t , one can choose a measurable function i(t) with values in
{1, . . . , k} so that

(2.20) At(θi(t))γi(t)
t 6= 0 for t ∈ N̄A,

where N̄A denotes the complement of NA. This set N̄A can then be represented in
the form N̄A = ∪k

i=1N̄i, where

(2.21) N̄i := {t : i(t) = i}, i = 1, . . . , k,

with At(θi)γi
t 6= 0 for t ∈ N̄i, and we have

(2.22) I{t /∈ NA} =
∑

i

I{t /∈ Ni}.

Recalling then that ūt = 0 for t ∈ NA, for the observation process we have

(2.23) yt =
∫ t

0
I{s /∈ NA} dys =

k∑
i=1

∫ t

0
I{s /∈ Ni} dys.

On the other hand, from (1.9a) we obtain

(2.24)

∫ t

0
B−2As(θi)γi

s dys

=
∫ t

0

(
dmi

s − as(θi)mi
s ds

)
+
∫ t

0
B−2A2

s(θ
i)γi

sm
i
s ūs ds.

Multiplying the integrands by
(
B−2As(θi)γi

s

)+
I{s /∈ Ni}, where (·)+ denotes the

generalized inverse, it follows that

(2.25)

∫ t

0
I{s /∈ Ni} dys =

∫ t

0

(
B−2As(θi)γi

s

)+
I{s /∈ Ni}

[
dmi

s − as(θi)mi
sds
]

+
∫ t

0
I{s /∈ Ni}As(θi)mi

s ūs ds,

from which, taking (2.23) into account, we obtain for yt the following representation:

(2.26)
yt =

k∑
i=1

∫ t

0
I{s /∈ Ni}

{(
B−2As(θi)γi

s

)+ [
dmi

s − as(θi)mi
sds
]

+As(θi)mi
s ūs ds

}
.

This representation shows that, given a control ū with ūt = 0 for t ∈ NA, the process
(yt) is also FX

t -adapted and so Fy
t ⊆ FX

t . As a consequence, we have that L̄0 ⊆ L̄1
so that by (2.18) and (2.19)

(2.27) inf
u∈L1

J ′(u) = inf
u∈L̄1

J ′(u) ≤ inf
u∈L̄0

J(u) = inf
u∈L0

J(u),

which is the desired opposite inequality.
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3. The auxiliary control problem and nearly optimal Lipschitz Markov
controls. Our original control problem now consists of controlling the filter process

Xt =
{
mi

t, γ
i
t , π

i
t

}
i=1,...,k

evolving according to (1.12) in order to minimize (see (2.7))

(3.1) J ′(u) = E

{∫ T

0

[
F 0

t (Xt) + F 1
t (Xt)ut

]
dt+ Φ0(XT )

}
.

As follows from Theorem 2.1, we may limit ourselves to considering controls from the
class L1 so that they satisfy also the constraints (1.2), i.e.,

(3.2)
∫ T

0
utdt ≤ M < +∞, 0 ≤ ut < +∞.

It is a nonlinear control problem with unbounded controls, so an optimal solution
may not exist. Using the so-called method of discontinuous time transformation (see
[10] in a deterministic context, where it is used for the representation of generalized—
in particular, discontinuous—solutions in problems with impulse control) next we
transform this original problem into an auxiliary problem with bounded controls for
which an optimal solution can be shown to exist.

3.1. Method of discontinuous time transformation. To describe the method,
let u ∈ L1 and consider similarly to section 1.2 the function

(3.3) Γt := t+
∫ t

0
usds = t+ vt

as well as its inverse

(3.4) νs = Γ−1
s = inf {τ : Γτ > s},

which is an FX
νs

-adapted process defined on [0,ΓT ], where, due to (3.2), ΓT ≤ T +M .
Furthermore, it is absolutely continuous since, for any s1, s2 with s1 ≤ s2, we have

(3.5) 0 < νs2 − νs1 ≤ s2 − s1,

so it is almost everywhere differentiable on [0,ΓT ] with derivative (see (3.3))

(3.6) ν̇s =
[
Γ̇t

]−1

|t=νs

= (1 + ut)−1
|t=νs

,

which is FX
νs

-adapted and satisfies

(3.7) 0 < ν̇s ≤ 1.

Then considering the process-pair

(3.8) Zs := Xνs
, µs := vνs

,

where (see section 1.1)

(3.9) vt =
∫ t

0
uτdτ,

we have the following lemma.
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LEMMA 3.1. Let the process (Xt) satisfy (1.12) for some u ∈ L1. Then there
exists an Fνs

-Wiener process (wZ
s ) such that the process-triple (Zs, µs, νs) satisfies,

for s ∈ [0,ΓT ],

(3.10a)
dZs = αsFνs(Zs)ds+ (1 − αs)Bνs(Zs)ds

+ (1 − αs)1/2Gνs
(Zs)dwZ

s , Z0 = X0,

(3.10b) dµs = (1 − αs) ds, µ0 = 0,

(3.10c) dνs = αsds, ν0 = 0,

where the functions F , B, and G are as in (1.12), the control α is given by

(3.11) αs = ν̇s,

and it is FZ
s -adapted and satisfies 0 < αs ≤ 1. Furthermore, the solution of (3.10) is

unique.
Proof. By (3.7) we have 0 < αs ≤ 1. By (1.12) the process Zs = Xνs satisfies

(3.12) Zs = Xνs = X0 +
∫ νs

0
Ft(Xt)dt+

∫ νs

0
Bt(Xt)utdt+

∫ νs

0
Gt(Xt)u

1/2
t dwX

t .

Taking into account the identities

(3.13) νΓt = t, Γνs = s

valid for t ∈ [0, T ] and s ∈ [0,ΓT ], we derive next a representation for the integrals in
the right-hand side of (3.12), namely, performing the change of variables t = ντ ,

(3.14)
∫ νs

0
Ft(Xt)dt =

∫ Γνs

0
Fντ (Xντ )dντ =

∫ s

0
Fντ (Xντ )ατdτ,

(3.15)

∫ νs

0
Bt(Xt)utdt =

∫ νs

0
Bt(Xt)

ut

1 + ut
(1 + ut) dt

=
∫ Γνs

0
Bντ (Xντ )

(
1 − 1

1 + ut

)
|t=ντ

dΓντ

=
∫ s

0
Bντ (Xντ ) (1 − ατ ) dτ,

(3.16)
∫ νs

0
Gt(Xt)u

1/2
t dwX

t =
∫ Γνs

0
Gντ (Xντ )u1/2

ντ
dwX

ντ
.

The process wX
ντ

is an FX
ντ

-adapted, conditionally Gaussian martingale with continu-
ous trajectories and quadratic variation

(3.17) 〈wX〉ντ = ντ =
∫ τ

0
αudu.



OPTIMIZATION OF OBSERVATIONS 1045

There exists therefore an Fνs
-Wiener process wZ

s such that

(3.18) wX
ντ

=
∫ τ

0
(α(u))1/2dwZ

u .

Substituting (3.18) into (3.16) we then obtain (see also (3.6) and (3.11))

(3.19)

∫ νs

0
Gt(Xt)u

1/2
t dwX

t =
∫ s

0
Gντ (Xντ )

(
uντ

1 + uντ

)1/2

dwZ
τ

=
∫ s

0
Gντ

(Xντ
) (1 − ατ )1/2dwZ

τ .

Using (3.14), (3.15), and (3.19) in (3.12) we obtain (3.10a) for Zs. Analogously, for
the process µs we obtain

(3.20)
µs =

∫ νs

0
utdt =

∫ Γνs

0
uντ dντ

=
∫ s

0

uντ

1 + uντ

dτ =
∫ s

0
(1 − ατ )dτ.

The uniqueness of a strong solution of (3.10) follows analogously to that of system
(1.12) (see Theorem 1.2).

Next we shall establish a relationship converse to Lemma 3.1. Therefore consider
(3.10) as a system controlled by a process αs that is FZ

s -adapted and satisfies 0 <
αs ≤ 1 for 0 ≤ s ≤ S, where S is an FZ,µ

s -stopping time given by

(3.21) S := Sν ∧ Sµ,

with

(3.22a) Sν := inf{s : νs = T},

(3.22b) Sµ := inf{s : µs = M}.

By the fact that (see (3.10)) νs + µs = s, we have S ≤ T +M .
Define A as the class of FZ

s -adapted controls α satisfying αs ∈ (0, 1] for s ∈ [0, S]
and where, if S = Sµ, we extend its definition, letting αs = 1 for Sµ < s ≤ T +M .
We then have the following lemma.

LEMMA 3.2. Given (3.10), let α ∈ A. Then, putting Γt := inf{s : νs > t},
there exists an FZ,µ

Γt
-adapted control (ut) satisfying (1.2) (see also (3.2)) and an FZ,µ

Γt
-

Wiener process (wX
t ) such that, for t ≤ T , the processes

(3.23) Xt := ZΓt
, vt := µΓt

satisfy (1.12) with vt =
∫ t

0 uτdτ . The control (ut) is furthermore given by

(3.24) ut = Γ̇t − 1 = α−1
Γt

− 1

and FZ,µ
Γt

= FX,v
t .
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Proof. From its definition in (3.24), the control ut is trivially FZ,µ
Γt

-adapted and
satisfies (1.2a). Furthermore, under the assumptions of the lemma, we have

vt =
∫ t

0
uτdτ =

∫ t

0

(
α−1

Γt
− 1
)
dτ =

∫ t

0

1 − αΓτ

αΓτ

dτ

=
∫ t

0
(1 − αΓτ

)dΓτ =
∫ Γτ

0
(1 − αs) ds = µΓτ

≤ M

so that (1.2b) also is satisfied and vt = µΓt
. It remains to show that Xt = ZΓt

satisfies
(1.12). For this purpose note that, based on (3.14) and (3.15) as well as (3.24), we
may write

(3.25)
∫ Γt

0
Fνs

(Zs)αs ds =
∫ t

0
Fτ (ZΓτ

) dτ,

(3.26)
∫ Γt

0
Bνs

(Zs) (1 − αs) ds =
∫ t

0
Bτ (ZΓτ

)uτ dτ,

and, finally, based on (3.19)

(3.27)

∫ Γt

0
Gνs(Zs) (1 − αs)1/2 dwZ

s =
∫ t

0
Gτ (ZΓτ )

(
uτ

1 + uτ

)1/2

dwZ
Γτ

=
∫ t

0
Gτ (ZΓτ

)u1/2
τ dwX

τ ,

where (see also (3.18) and (3.24))

(3.28) wX
t =

∫ t

0

dwZ
Γτ

(1 + uτ )1/2

is a continuous FZ,µ
Γt

= FX,v
t -martingale with quadratic variation

〈wX〉t =
∫ t

0

dΓτ

1 + uτ
= t,

and therefore an FX,v
t -Wiener process.

The results obtained in the two lemmas above allow us to consider, instead of the
original controlled system (1.12) with unbounded controls, the system (3.10) where
the controls are bounded. We are now going to define more precisely the control
problem corresponding to this latter system, which we shall call the auxiliary control
problem.

3.2. The auxiliary control problem. This auxiliary problem concerns the
controlled system (Zs, µs, νs) satisfying (3.10) with controls from an enlarged class
A0 consisting of the controls in A (defined in Lemma 3.2), where we also allow the
value αs = 0, i.e.,

(3.29) A0 := {α ∈ A | 0 ≤ αs ≤ 1}.
This enlargement of the class of controls guarantees, as we shall see, the existence
of an optimal solution for the auxiliary problem. On the other hand, through the
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correspondence (3.24), this is equivalent to allowing unbounded controls in the original
problem.

As a cost functional to be minimized we consider

(3.30) J(α) = E

{∫ S

0

[
αsF

0
νs

(Zs) + (1 − αs)F 1
νs

(Zs)
]
ds+ Φ̄0

νS
(ZS)

}
,

where S is the FZ,µ
s -stopping time defined in (3.21) and (3.22), F 0 and F 1 are as in

(3.1) or (2.7), and the terminal cost function is given by

(3.31) Φ̄0
ν(Z) =

{
Φ0(Z) if S = Sν ,

Φ0(ψT (ν, Z)) +
∫ T

ν
F 0

s (ψs(ν, Z)) ds if S = Sµ,

with ψs(ν, Z) being the solution on [ν, T ] of the deterministic equation

(3.32) ψ̇s = Fs(ψs),

having initial condition ψν(ν, Z) = Z. F is as in (1.12) (see also (3.10a)), and F 0, F 1,
and Φ0 are the same as in J ′(u) (see (3.1) or (2.7)).

Remark 3.3. The function ψs(ν, Z) satisfies ψν(ν, Z) = Z, is continuous in all
variables, and has linear growth with respect to Z, since the function Fs(X) is con-
tinuous and Lipschitz in X for each s.

3.3. Relationship between the original and auxiliary problems. In this
section we will show the correspondence existing between the cost functionals J ′(u)
in (3.1) and J(α) in (3.30). We have in fact the following proposition.

PROPOSITION 3.4. If u ∈ L1 is given and α is according to (3.11) and (3.6), or
α ∈ A is given, S = Sν , and u is according to (3.24), then

(3.33) J ′(u) = J(α).

When α ∈ A but S = Sµ so that νS < T , then (3.33) continues to hold with u
according to (3.24) if (see the definition of the class A before Lemma 3.2) one puts
αs = 1 for Sµ < s ≤ T +M .

Proof. For the first part of the statement note the following: given a control u ∈ L1
and letting (see (3.11)) αs = ν̇s, then since (see (3.8) and (3.9)) µs =

∫ νs

0 uτ dτ and
u ∈ L1 satisfies (3.2), we have S = Sν = ΓT with Γ(·) as in (3.3) or, equivalently, as
in the statement of Lemma 3.2. As a consequence we have

(3.34) νS = T, ZS = XT ,

and, by considerations analogous to those leading to (3.14) and (3.15), we then obtain

(3.35)
∫ T

0
F 0

t (Xt) dt =
∫ S

0
F 0

νs
(Zs)αs ds,

(3.36)
∫ T

0
F 1

t (Xt)ut dt =
∫ S

0
F 1

νs
(Zs) (1 − αs) ds.

On the other hand, given a control α ∈ A, if S = Sν , the same relations (3.34)–
(3.36) hold. Combining these considerations with Lemmas 3.1 and 3.2 we obtain the
first part of the proposition. The second part follows immediately, taking (3.31) into
account.
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Remark 3.5. The previous equivalence considerations are valid for α ∈ A, i.e.,
such that αs > 0. For the purpose of obtaining existence of an optimal solution for the
auxiliary problem, we shall allow also controls in A0 (see (3.29)) so that αs might be
equal to zero on some subintervals of [0, S]. Correspondingly, on these subintervals,
νs will be constant implying that its inverse Γt = inf{s : νs > t} jumps. Consequently
also Xt = ZΓt and vt = µΓt will jump and can therefore not be a solution of (1.12) for
any measurable control. In other words, while the auxiliary control problem admits
an optimal solution, there may not exist a corresponding optimal solution for the
original problem. We shall therefore determine nearly optimal (ε-optimal) solutions
for the original problem.

Letting

(3.37) AL
0 := {α ∈ A0 : αt = αt(Zt, µt) a Lipschitz function}

and, analogously, for AL, we first prove the following.
PROPOSITION 3.6. For any control α ∈ AL

0 there exists a sequence of controls
αk ∈ AL obtained as

(3.38) αk
s =

1
(k + 1)

+
k

(k + 1)
αs,

where s ∈ [0, S] if S = Sν and s ∈ [0, T +M ] if S = Sµ, such that

(3.39) lim
k→∞

J(αk) = J(α).

Proof. Given α ∈ AL
0 , let S be the corresponding stopping time defined according

to (3.21) and (3.22). Define the sequence αk ∈ AL as in (3.38). Also let

(3.40) Sk := Sk
ν ∧ Sk

µ,

where Sk
ν and Sk

µ are defined according to (3.22) with ν = νk and µ = µk that corre-
spond to αk via (3.10). The sequence αk is monotonically decreasing and converges
to α.

Let us first show that the sequence Sk converges for all ω to S. In fact, since
αk

s ≥ αs and

αk+1
s − αk

s =
(αs − 1)

(k + 1)(k + 2)
≤ 0

for the stopping times Sk
ν = inf

{
s : νk

s =
∫ s

0 α
k
τdτ = T

}
, we have

(3.41) Sk
ν ≤ Sk+1

ν ≤ Sν ,

and analogously for Sk
µ = inf

{
s : µk

s =
∫ s

0 (1 − αk
τ ) dτ = M

}
we get

(3.42) Sµ ≤ Sk+1
µ ≤ Sk

µ.

We can now prove that limk→∞ Sk
ν = Sν . From (3.41) the limit of Sk

ν exists and,
denoting it by S̄ν , we have S̄ν ≤ Sν . By the uniform convergence of αk to α we have
that νk

s converges to νs uniformly on compact subintervals of [0, Sν ], where, we recall,
Sν ≤ T +M . In addition

νk
Sk

ν
= T, νSν

= T.
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Let us determine the value of νS̄ν
. From

νk
Sk

ν
− νS̄ν

= νk
Sk

ν
− νSk

ν
+ νSk

ν
− νS̄ν

,

the uniform convergence of νk
s to νs, and the continuity of νs it follows that

(3.43) νS̄ν
= lim

k→∞
νk

Sk
ν

= T.

Now suppose that S̄ν < Sν for some ω; then (3.43) contradicts the definition of
Sν as the stopping time according to (3.22), and consequently limk→∞ Sk

ν = Sν .
Analogously we obtain limk→∞ Sk

µ = Sµ and finally

lim
k→∞

Sk = lim
k→∞

(
Sk

ν ∧ Sk
µ

)
= Sν ∧ Sµ = S.

Consider next the sequence (Zk
s ), with Zk

s obtained as solutions of (3.10) correspond-
ing to α = αk. For each given N > 0 determine the sequence of stopping times
θN,k = min{S, Sk, τN , τN,k}, k = 1, 2, . . . , where

(3.44a) τN = inf{s : ||Zs|| = N},

(3.44b) τN,k = inf{s : ||Zk
s || = N}.

The properties of the coefficients in the right-hand side of (3.10) guarantee that the
trajectories of Zk

s are a.s. continuous so that, for any α ∈ AL
0 and any k,

(3.45) τN , τN,k ↑ ∞ a.s. as N → ∞.

Consider next the sequences of processes Zk
s∧θN,k as well as Zs∧θN,k . By the continuity

and the local Lipschitzianity with respect to Z of the functions in the right-hand side
of (3.10) as well the uniform convergence of νk

s → νs and of αk
s → αs on compact

subsets of [0, Sν ], we obtain

(3.46)

sup
τ≤s∧θN,k

E ||Zk
τ∧θN,k − Zτ∧θN,k ||2

≤ C1

∫ s∧θN,k

0
sup
τ≤u

E ||Zk
τ∧θN,k − Zτ∧θN,k ||2du+ C2εk,

where limk→∞ εk = 0. Applying the Gronwall–Bellman inequality to (3.45) we get
for all s ≤ S

(3.47) lim
k→∞

sup
τ≤s∧θN,k

E ||Zk
τ − Zτ ||2 = 0.

Together with k now also let N ↑ ∞; then θN,k → S a.s., implying that for all s < S
we have the convergence in L2 of Zk

s to Zs and, by the continuity of Zk
s in s = S, also

of Zk
Sk to ZS .
This convergence in turn implies the convergence in probability of Zk

s to Zs for all
s ∈ [0, S] as well as that of Zk

Sk to ZS . In addition we have the uniform integrability
of Zk

s on Ω × [0, T + M ] and of Zk
Sk on Ω since, by the linear growth in Z of the

functions in the right-hand side of (3.10), we have for p ≥ 1

(3.48)
∫ T+M

0
E ||Zk

s ||pds ≤ L < ∞, E ||Zk
Sk ||p ≤ L < ∞.
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As a consequence, and due to the polynomial growth in Z of the functions F 0, F 1, and
Φ̄0, we may pass to the limit in (3.30), thus concluding the proof of the proposition.

Combining the result of Proposition 3.6 with that of Proposition 3.4 we immedi-
ately obtain the following corollary.

COROLLARY 3.7. For any control α ∈ AL
0 there exists a sequence of Lipschitz

Markov (feedback) controls uk
t = uk

t (Xt, vt) satisfying (1.2) such that

(3.49) lim
k→∞

J ′(uk) = J(α).

Proof. From (3.38) we immediately have that, if αt = αt(Zt, µt) with αt(·)
Lipschitz, αk also is Lipschitz. Recall next that the uk corresponding to αk is defined
by (3.24) and (see Lemma 3.2) satisfies (1.2). Using the relationship (3.23) as well
as the fact that αk

s ≥ 1
1+k , for such a uk we then have uk

t = uk
t (Xt, vt) with uk

t (·)
Lipschitz. The result then follows by combining the previous considerations with
Proposition 3.4.

3.4. Nearly optimal Lipschitz Markov controls. In this section we study
first the existence of an optimal solution for the auxiliary control problem in the
class A0 as well as the existence of a nearly optimal Lipschitz Markov control for the
original problem. We then return to the relationship between the original and the
auxiliary control problems, showing the usefulness of the auxiliary problem to obtain
a nearly optimal Lipschitz Markov control in the original problem.

For the first part we have the following theorem.
THEOREM 3.8. In the class A0 there exists an optimal control for the auxiliary

problem, and it is of the Markov (feedback) type

(3.50) α0
s = α0

s(Zs, µs).

Furthermore, for any ε > 0 there exists a Lipschitz Markov control α0,ε
s (Zs, µs) ∈ A0

such that

(3.51) J(α0) = inf
α∈A0

J(α) ≥ J(α0,ε) − ε.

Proof. Concerning the existence of an optimal solution in A0 note first that, under
our assumptions, the set

(3.52) K(ν, Z) =
{
αF + (1 − α)B, 1 − α, α, (1 − α)GGT

αF 0 + (1 − α)F 1

}
|α∈[0,1]

is, for all (ν, Z), bounded, closed, and convex. This allows us to apply known re-
sults on the existence of optimal controls—in particular, Theorem 5.15 in [3]—since
the functions F,B,GGT , F 0, and F 1 satisfy the growth conditions required in that
theorem and the admissible control set A0 is not empty. More precisely, according
to Theorem 5.15 in [3] we have that in the auxiliary problem there exists an optimal
control in the class A0 and it is furthermore of the Markov (feedback) type, namely,
as in (3.50). The existence of a Lipschitz Markov control can be obtained by using,
e.g., results in [7] (see also [6]).

Before coming to the main result of the second part of this section, for later
convenience we state the following lemma, whose proof can be obtained via a trun-
cation argument analogous to that used in the proof of Theorem 2.1 concerning the
uniqueness of the solution of (1.9).
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LEMMA 3.9. Any Lipschitz Markov control ut = ut(Xt, vt) belongs to the class
L1; in particular, as a function of yt

0 it is Lipschitz in the sense of (1.5).
THEOREM 3.10. The following equality holds between the optimal values of the

original and the auxiliary control problems

(3.53) inf
u∈L0

J(u) = inf
u∈L1

J ′(u) = inf
α∈AL

0

J(α)

with AL
0 as defined in (3.37).

Furthermore, given an ε-optimal control αε ∈ AL
0 , let k be so large that for the

control uk,ε, obtained via (3.24) from a Lipschitz control αk,ε ∈ AL that in turn is
obtained from αε via (3.38), we have

(3.54) J ′(uk,ε) ≤ J(αε) + ε.

Then uk,ε belongs to L1 and is a 4ε-optimal Lipschitz Markov control for the original
problem.

Proof. The first equality in (3.53) follows from Theorem 2.1. For the second
equality note first that, letting uε be an ε-optimal control in L1, αε be the corre-
sponding control in A0 obtained according to (3.11) and (3.6), and α0 and α0,ε be
the optimal and nearly optimal controls of Theorem 3.8 and using Proposition 3.4 we
obtain

(3.55)

inf
u∈L1

J ′(u) ≥ J ′(uε) − ε = J(αε) − ε ≥ inf
α∈A0

J(α) − ε

= J(α0) − ε ≥ J(α0,ε) − 2ε ≥ inf
α∈AL

0

J(α) − 2ε.

On the other hand let αε ∈ AL
0 be ε-optimal. Starting from this αε, construct the

Lipschitz control αk,ε ∈ AL according to (3.38), and let uk,ε be the corresponding
Lipschitz Markov control obtained according to (3.24). Then, using Corollary 3.7
and the fact that (see Lemma 3.9) if uk,ε

t = uk,ε
t (Xt, vt) is Lipschitz as a function of

(Xt, vt), then it is also in L1, we have for k sufficiently large

(3.56) inf
α∈AL

0

J(α) ≥ J(αε) − ε ≥ J ′(uk,ε) − 2ε ≥ inf
u∈L1

J ′(u) − 2ε.

Combining (3.55) with (3.56) one obtains

(3.57) inf
u∈L1

J ′(u) + 2ε ≥ inf
α∈AL

0

J(α) ≥ inf
u∈L1

J ′(u) − 2ε,

from which, due to the arbitrariness of ε > 0, the second equality in (3.53) follows.
From (3.55) and (3.56) one also obtains

(3.58) J ′(uk,ε) ≤ inf
u∈L1

J ′(u) + 4ε,

i.e., the 4ε-optimality of uk,ε.

Concluding remarks. From Theorem 3.10 we have that the optimal value
infu∈L0 J(u) of the original control problem can be determined by solving the aux-
iliary problem. However, as mentioned in Remark 3.5, while the auxiliary problem
admits an optimal control, there may not exists a control for the original problem for
which the optimal value is achieved. There are essentially two reasons for this:
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- The filter process Xt corresponding to the optimal solution of the auxiliary
problem may jump, so it can be represented as solution of (1.12) only if we
allow the control also to have infinite power.

- Even if we allow infinite control power, the representation of the possible jumps
of the filter process by means of (1.22) may require anticipative impulse controls.

In fact, due to the linearity in the control α of the Hamilton–Jacobi–Bellman
equation of the auxiliary control problem, there will be intervals on which the optimal
control α0

s for this latter problem will be either zero or one.
If α0

s = 1, for the corresponding control u0
t of the original problem, obtained from

α0 via (3.24), we have u0
t = 0, and this motivated the extended study of the filter

problem in section 1.2.
If, however, α0

s = 0 on some interval [s1, s2], the corresponding ν0
s (see (3.10c))

is constant, implying a jump for the inverse function Γ0
t = inf{s : ν0

s > t}. Since
(see Lemma 3.2) Xt = ZΓt

, vt = µΓt
, this then implies that Xt and vt also jump and

can therefore be a solution of (1.12) only if we allow controls ut with infinite power.
This implies an impulse control for the original problem at the moment t1 = νs1 ,
leading (see (1.1b)) to a discrete observation with intensity (see the relation vt = µΓt

in (3.23)) ∆vt1 = s2 − s1. Since s2 is FZ,ν
s2

= FX,v

t+1
-measurable, this ∆vt1 cannot be

determined on the basis of the observations up to time t1; i.e., the control would be
anticipative.

Our approach, based on the search of a nearly optimal control, avoids this prob-
lem. In fact, the control uk,ε ∈ L1 obtained according to Theorem 3.10 (namely,
obtained via (3.24) from a nearly optimal control αk,ε of the auxiliary problem that
belongs to AL and thus satisfies αk,ε > 0) has finite power, is FX,v

t -measurable,
and allows us to approximate arbitrarily closely the optimal value infu∈L0 J(u) =
infu∈L1 J

′(u) of the objective function of the original problem.
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Abstract. Modeling of physical systems consists of writing the equations describing a phe-
nomenon and yields as a result a set of differential-algebraic equations. As such, state-space models
are not a natural starting point for modeling, while they have utmost importance in the simulation
and control phase. The paper addresses the problem of computing state variables for systems of
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considered is the behavioral one, as put forward in [J. C. Willems, Automatica J. IFAC, 22 (1986),
pp. 561–580; Dynamics Reported, 2 (1989), pp. 171–269; IEEE Trans. Automat. Control, 36 (1991),
pp. 259–294].

Key words. behavioral system theory, state map, differential-algebraic equations

AMS subject classifications. 93A30, 93B25

PII. S0363012994268412

1. Introduction. The usual procedure in modeling consists of tearing and zoom-
ing: a system is viewed as an interconnection of subsystems, and modeling consists
of describing the subsystems and the interconnection laws. This procedure is often
executed hierarchically, with the subsystems in turn viewed as an interconnection.
The net result of such a modeling procedure will be a model which involves manifest
variables (often called external variables), which are the variables whose behavior we
try to model, and latent variables (often called internal variables), which are the vari-
ables describing the subsystems. The formalization of this modeling procedure is the
philosophy underlying the behavioral approach to systems theory. These ideas have
been explained in detail in [8, 9, 10].

As should be apparent, the resulting model will typically involve many algebraic
relations (for example, interconnection constraints, resistors laws, spring and damper
characteristics, kinematic constraints), combined with differential equations. These
may be first-order (for example, inductors, capacitors, the dynamics of dampers),
second-order (for example, the dynamics of masses), or higher-order (for example,
subsystems whose dynamic laws have been obtained from an identification procedure).

A state-space model is hence not the natural end result of the modeling phase,
while its importance for simulation or for control design is undisputed. This is one
of the reasons why the notion of state is one of the most investigated ones in system
theory and why its characterization and construction have been the subject of many
papers since the beginning of this discipline. The problem that we deal with in this
paper is that of computing state variables, from which a state-space model is easily
recovered, starting from an arbitrary set of linear differential-algebraic equations.

The paper is organized as follows. In section 2 a set of definitions and results
pertaining to the behavioral framework is introduced. In section 3 the consequences
of the property of Markovianity, the key to the notion of state, are worked out. In
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section 4 the problem at hand is formally stated. In section 5 operators on polynomials
are introduced which will be used in sections 6–9, in which state functions for systems
of differential-algebraic equations are computed. As we shall see, the systems may be
in kernel, in image, or in hybrid form.

The proofs and some of the notation are collected in the appendices.

2. The behavioral framework. In this section we give a brief introduction to
behavioral system theory, with emphasis on the definitions and results pertaining to
the problem at hand, referring the reader to [8, 9, 10] for a thorough exposition.

In the behavioral framework a system is defined as a triple Σ = (T, W, B), with
T the time set, W the signal space, and B the behavior of the system, B ⊆ WT .

Effectively, a system consists of a family of trajectories which take their value
in the signal space. In this paper we consider continuous-time (T = R) systems
whose variables take values in a finite-dimensional real vector space, W = Rq. A
dynamical system will be called linear if B is a linear vector subspace of (Rq)R, the
latter equipped with the usual vector space structure induced by that of Rq, and time
invariant if the following holds ∀ t ∈ R:

(w(·) ∈ B) =⇒ (w(· + t) ∈ B).(2.1)

In many instances systems are described by differential equations, say,

f1

(
w,

d

dt
w, . . . ,

dL

dtL
w

)
= f2

(
w,

d

dt
w, . . . ,

dL

dtL
w

)
.(2.2)

A concrete representation of the behavior of a linear, time-invariant, continuous-time
differential system (R, Rq, B) is then given as the solution set of a system of linear,
constant coefficient differential equations:

R0w + R1
d

dt
w + R2

d2

dt2
w + · · · + RL

dL

dtL
w = 0(2.3)

with constant matrices Ri ∈ R•×q. Equation (2.3) is what we call a kernel represen-
tation of such a system. A shorthand notation for (2.3) is

R

(
d

dt

)
w = 0,(2.4)

where R(ξ) := R0+R1ξ+ · · ·+RLξL ∈ R•×q[ξ]. Note that (2.4) may involve algebraic
equations in addition to ordinary differential equations.

The behavioral framework takes into account the nonuniqueness of the represen-
tation of behaviors. This is natural, given the connections between this approach
and the actual procedure of modeling physical systems, in which different, although
equivalent, sets of equations describing the same phenomenon may be produced.

The formalization of this equivalence concept is given as follows. Two kernel
representations R1( d

dt )w = 0 and R2( d
dt )w = 0 with R1, R2 ∈ R•×q[ξ] are equivalent—

that is, the behaviors associated with them are the same—if and only if there exist
polynomial matrices F1, F2 with a suitable number of columns such that R1 = F1R2
and R2 = F2R1; in particular, if R1 and R2 are of full row rank, this means that there
exists a unimodular polynomial matrix F such that R1 = FR2 (see [10, p. 263]).

As already explained in the introduction, (2.4) is not the most natural result of
a modeling process, since normally a number of auxiliary latent variables will have
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been introduced. The natural counterpart of (2.4) to cope with this is

R

(
d

dt

)
w = M

(
d

dt

)
`,(2.5)

where M ∈ R•×d[ξ] and where ` ∈ (Rd)R are the latent variables. The set of equations
(2.5) is called a latent variable or a hybrid representation of the latent variable system
(R, Rq, Rd, Bf ), where the full behavior Bf is composed of trajectories (w, `) satisfying
(2.5) and inducing the external or manifest behavior Bext := πwBf by projection on the
external variables. Actually the external behavior induced by a latent variable system
may be described (modulo some closedness problems pointed out in [6] and discussed
in detail in the following) in terms of the external variables only by eliminating the
latent variable, a procedure discussed in the following.

Of course the problem arises what sort of solution we want to use for (2.4) and
(2.5). Restricting ourselves to C∞ (infinitely differentiable signals) would leave out
interesting functions such as steps, etc. The space of distributions is a bit too large,
leaving us with the problem of defining the value of a solution at a point. The space
Lloc

1 of locally integrable functions is large enough to accommodate steps, ramps, and
so on and still concrete enough to avoid the problems we would have with distributions.
Therefore, in (2.4) and (2.5) w and ` are to be intended in Lloc

1 and equality in the
sense of distributions.

Let us focus now on the elimination of the latent variable from (2.5).
Hybrid representations involve two kind of variables, namely, the manifest and

the latent variables; and associated with a hybrid representation are two behaviors,
the full behavior Bf , consisting of trajectories with both the latent and the external
variables, and the external behavior Bext, composed of trajectories in the manifest
variables only.

At the level of trajectories, the relationship between Bf and Bext is the following:
any trajectory in Bext is induced by a trajectory in Bf via the projection operator
πw((w, `)) = w. At the level of representations and of the equations representing the
behaviors, things are more complicated. Take a hybrid representation

R

(
d

dt

)
w = M

(
d

dt

)
`.(2.6)

By premultiplication by a unimodular matrix U we can bring (R | −M ) to the
form

U ( R | −M ) =
(

R′
1 0

R′
2 −M ′

2

)
(2.7)

with M ′
2 of full row rank. Unimodularity of U implies that the full behavior repre-

sented by (2.6) is not altered by the change of representation and coincides with the
behavior represented by

R′
1

(
d

dt

)
w = 0,(2.8)

R′
2

(
d

dt

)
w = M ′

2

(
d

dt

)
`.(2.9)

A natural candidate for representing the external behavior corresponding to (2.6)
would be R′

1(
d
dt )w = 0, since if w ∈ Bext of (2.6), then R′

1(
d
dt )w = 0. In fact, for
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discrete-time systems it has been shown in [10, p. 234] that the analogue of (2.8) in
discrete time is indeed a kernel representation of the manifest behavior; this result
is referred to in behavioral system theory as the latent variable elimination theorem.
However, in the continuous-time case there are difficulties. Take, for example, the
hybrid representation

w1 = w2,

d

dt
w2 = `.(2.10)

Note that the second equation imposes a smoothness requirement on w2 not present
in the first one: the external behavior does not coincide with the one described by
w1 = w2. When situations like the one exemplified above do not occur, the latent
variable ` is said to be properly eliminable (cf. [6]). Necessary and sufficient conditions
for proper eliminability are given in [6].

If the latent variable is not properly eliminable, Bext is described by R′
1(

d
dt )w = 0

of (2.8) along with some smoothness constraints. These constraints on w cannot be
represented by equations involving w alone and the need to circumvent this difficulty
arises. The most natural way to do this is to drop them, that is, to consider the
closure of Bext in the topology of Lloc

1 . This choice has much to recommend it besides
its simplicity: it allows to keep Lloc

1 as the natural function space in which to operate,
and in this way the latent variable can always be eliminated. We summarize this in
the following theorem.

THEOREM 2.1. Let (2.6) be a hybrid representation. There exists a unimodular
matrix U such that

U ( R | −M ) =
(

R′
1 0

R′
2 −M ′

2

)
(2.11)

with M ′
2 of full row rank. Then{
w ∈ Lloc

1 (R; Rq) | R′
1

(
d

dt

)
w = 0

}
= πw(Bf )

closure

= {w | ∃ ` s.t. (2.6) holds}closure
(2.12)

with the closure taken in the topology of Lloc
1 (R; Rq).

Proof. See the appendix.
In the following, unless otherwise stated, we will take (2.12) to be the manifest

behavior induced by (2.6).
The important notions of controllability and observability emerge in the behav-

ioral context as follows. The time-invariant system (R, Rq, B) is said to be controllable
if for all w1, w2 in B, there exists a T ≥ 0 and a w ∈ B such that w(t) = w1(t) for
t < 0 and w(t + T ) = w2(t) for t ≥ 0. The notion of observability deals with la-
tent variable systems and refers to the possibility of deducing the latent variables
from the manifest ones. Thus (2.5) defines an observable system if there exists a map
F : (Rq)R 7→ (Rd)R such that ((w, `) ∈ Bf ) =⇒ (` = F (w)). For linear latent variable
systems this is equivalent to ((0, `) ∈ Bf ) =⇒ (` = 0).

The question when a system (2.4) is controllable can be answered effectively in
terms of R. Indeed, (2.4) is controllable if and only if rank(R(λ)) = rank(R) for all
λ ∈ C, as shown in [9, p. 238]. (Here one should view R(λ) as a matrix over the
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field of complex numbers and R as a matrix over the field of real rational functions.)
Analogously, (2.5) will be observable if and only if M(λ) is right prime (equivalently,
if and only if M(λ) is of full column rank for all λ ∈ C), as shown in [9, p. 239].
Actually, controllability can also be characterized in terms of (2.5). Take R = I in
(2.5), yielding

w = M

(
d

dt

)
`.(2.13)

Let B be the manifest behavior of (2.13). (More precisely, in view of questions related

to closedness, B = M( d
dt )C∞(R, Rd)

closure

, with the closure taken with respect to
the topology of Lloc

1 (R, Rq).) This yields the dynamical system (R, Rq, B), and for
obvious reasons we will call (2.13) an image representation of B. By the already
mentioned latent variable elimination theorem, B admits a kernel representation as
(2.4). However, not every system (2.4) has an image representation. This is the case
if and only if the system is controllable! (See [9, p. 238].)

Finally, let us introduce the notion of input and output. Consider a system (2.4)
with R(ξ) of full row rank. Possibly permuting the components of w, assume R
partitioned as R := ( P | −Q ), with P square, nonsingular, and P−1Q proper.
Such a partition of R always exists and can be found as follows. By unimodular
premultiplication by a suitable U , bring R in row reduced form (see [3, p. 382]). Let
R′

hc be the highest row coefficient matrix of R′ := UR. R′
hc has full row rank, and

therefore there exists at least one g × g nonzero minor, corresponding to a choice
of the k1th, k2th, . . . , kgth column of Rhc. The minor of R corresponding to this
column selection is of maximal degree among the g×g minors of R. This implies that
if we take P to be the matrix formed by the k1th, k2th, . . . , kgth column of R, P is
nonsingular and P−1Q is proper, −Q being the complementary matrix of P in R.

The partition of R induces a corresponding partition of w in (y, u) so that (2.4)
may be rewritten as

P

(
d

dt

)
y = Q

(
d

dt

)
u.(2.14)

This is an input-output representation of the behavior of (2.4), with y the output
variables and u the input variables.

It is important to note that the selection of P and Q of (2.14) is not unique, in
general. This implies that for a system whose behavior is described by (2.4), different
selections of inputs and outputs can be given. This corresponds to different selections
of R′

hc to form a nonzero minor in the procedure sketched above. Anyway, it is
possible to prove (see [10, p. 243]) that the number of outputs, and consequently the
number of inputs, in any representation (2.4) of the behavior of the system is unique
and coincides with rank(R).

3. State, Markovianity, and first-order representations. Let (R, Rq, B) be
a time-invariant dynamical system. We will call it Markovian if

(w1, w2 ∈ B) ∧ (w1, w2 continuous at 0) ∧ (w1(0) = w2(0))(3.1)

implies ((w1 ∧ w2)) ∈ B); w1 ∧ w2 stands for concatenation:

(f1 ∧ f2)(t) :=
{

f1(t), t < 0,

f2(t), t ≥ 0.
(3.2)
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Thus in a Markovian system trajectories passing in a continuous way through the
same point at t = 0 can be concatenated. The very much related notion of state refers
to systems with latent variables. Thus let (R, Rq, Rd, Bf ) be a time-invariant latent
variable system. Then it is a state system if

((w1, `1), (w2, `2) ∈ Bf ) ∧ (`1(0) = `2(0)) ∧ (`1, `2 continuous at t = 0)

=⇒ ((w1, `1) ∧ (w2, `2)) ∈ Bf ).(3.3)

We call (3.3) the axiom of state. If (3.3) holds, then the latent variable is called the
state. Thus in a state model trajectories passing in a continuous way through the
same state at t = 0 can be concatenated. The continuity requirement is inspired by
the fact that we are dealing with solutions of (2.4) and (2.5) in Lloc

1 , in which case
the simple requirement `1(0) = `2(0) is of little consequence.

Usually a Markovian or a state variable is denoted by x. We will do so in the
following discussion.

It is easy to prove that if the behavior is described by a set of first-order differential
equations, as

f

(
x,

d

dt
x

)
= 0,(3.4)

then it is Markovian; similarly, if it can be described by a set of differential equations
which is first order in the latent variables and zeroth order in the manifest variables,
as

f

(
w, x,

d

dt
x

)
= 0,(3.5)

then it is a state model (see [9, p. 191]). For linear differential systems this is, in fact,
necessary and sufficient, as shown by the following proposition.

PROPOSITION 3.1. Let ΣS be a system as in (2.5). Then it is a state-space
system if and only if there exist matrices E, F , and G such that Bf has the kernel
representation

Gw + Fx + E
d

dt
x = 0.(3.6)

Analogously, (R, Rq, B) as in (2.4) is Markovian if and only if there exist matrices E
and F such that B has the kernel representation

Fx + E
d

dt
x = 0.(3.7)

Proof. See the appendix.
Remark 3.1. The above proposition constitutes an example of application of the

following fact. Equation (2.4) determines a representation of the behavior B, but it is
not the unique possible representation of B. In fact, if U is a unimodular matrix, then
UR determines the same behavior. This allows us to obtain representations which
put certain properties in evidence, just like the state property above.

Remark 3.2. A state-space system induces, by projection of Bf on the external
variable w, an external behavior B := πwBf . Therefore it will be called a state-space
representation or a state-space model of B.
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Besides state-space models of B whose full behavior is described by equations
of the form (3.6), state-space models with driving variables and input/state/output
models can be defined.

A state-space model with driving variables is described by

d

dt
x = Ax + Bv,

w = Cx + Dv,(3.8)

where x is a state variable for B = {w ∈ Lloc
1 | ∃ x ∈ Lloc

1 , v ∈ Lloc
1 , s.t. (3.8) holds}

and v is composed of free but latent variables which generate, together with the initial
conditions, the state trajectory and the external signal. We call v the driving variable.

By integrating the state property and the input-output structure in the same
representation, an input/state/output representation is obtained. It can be computed
from a state representation (3.6) by partitioning the w variables in inputs u and
outputs y and rearranging the equations (3.6) so that a representation

d

dt
x = Ax + Bu,

y = Cx + Du(3.9)

is obtained.
Let ΣS = (R, Rq, Rn, Bf ) be a state-space system and (R, Rq, B) be its external

(i.e., manifest) behavior. We will call Σs minimal if whenever ΣS′ = (R, Rq, Rn′
, B′

f ) is
another state-space model with the same external behavior (R, Rq, B), then n ≤ n′. It
is possible to prove (see [10, p. 270]) that ΣS is minimal if and only if it is observable
(with the state viewed as the latent variable) and state trim (meaning that for all
x0 ∈ Rn there exists a (w, x) ∈ Bf

⋂ C∞ such that x(0) = x0). Observability, in
particular, implies that there then exists a F ∈ Rn×q[ξ] such that ((w, x) ∈ Bf ) =⇒
(x = F ( d

dt )w). Actually it can further be shown (see [10, p. 271]) that if ΣS and
ΣS′ = (R, Rq, Rn′

, B′
f ) are two minimal state space systems with the same external

behavior, then there exists a nonsingular matrix S ∈ Rn×n such that

((w, x) ∈ BS and (w, x′) ∈ BS′) =⇒ (x′ = Sx).(3.10)

4. Problem statement. The question arises of how to compute a set of state
variables when a system is given either in kernel or in hybrid form.

This question may be stated as: Given a set of equations in either kernel or hybrid
form, how do we determine a state map X( d

dt )? More precisely, given R, determine
the integer n and X ∈ Rn×q[ξ] such that

R

(
d

dt

)
w = 0,(4.1)

X

(
d

dt

)
w = x(4.2)

defines a (minimal) state-space system with external behavior given by (4.1). The
problem is to derive X from R. Similarly we want to derive a state map X for the
external behavior of a system represented in hybrid form or image form. In this case,
in view of the closedness problems discussed in the previous section, we will interpret
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the external behavior associated with the hybrid or image representation under study,
in the sense of Theorem 2.1.

Remark 4.1. It is of utmost importance at this point to note that the external
behavior of the state-space system described by (4.1), (4.2) is assumed to be described
by (4.1); that is, the equations (4.2) do not impose any smoothness constraint on the
trajectories defined by (4.1). Therefore, when dealing with state-space representations
of a given external behavior B, we will consider the (latent) state variable x induced
by the state map to be properly eliminable.

The next section introduces the tools that we will use to deal with the problem
of computing state maps for the various sorts of representations introduced so far.

5. Operators on polynomials. The behavioral framework for linear differen-
tial systems is intimately connected to polynomial matrix algebra. These connections
are also reflected in the results which will be presented in the following sections,
related to the characterization of state maps.

This section is devoted to the introduction of some notational conventions related
to polynomials and rational functions.

Any rational function can be written in a unique way as the sum of a polynomial
and of a strictly proper rational function. That is, given q ∈ R(ξ), there exist unique
p ∈ R[ξ] and s ∈ R+(ξ), the set of strictly proper rational functions, such that
q = p + s. Now define

( )+ : R(ξ) 7→ R[ξ](5.1)

as

(q(ξ))+ := p(ξ).(5.2)

On the set of rational functions in the indeterminate ξ, multiplication by ξ−1 defines
a map ξ−1 : R(ξ) 7→ R(ξ) in the obvious way.

DEFINITION 5.1. The shift-and-cut operator σ+ is defined as

σ+ : R(ξ) 7→ R[ξ],

σ+ := ( )+ ◦ ξ−1.(5.3)

The definition of σ+ is extended to vectors and matrices of rational functions in a
componentwise manner.

Iterated application of σ+ will be considered in the following and denoted as

σk
+ :=

k−times︷ ︸︸ ︷
σ+ ◦ σ+ ◦ · · · ◦ σ+ .(5.4)

In the following, special importance will be given to the action of σ+ on vector
polynomials. Therefore, let us examine in detail what the result is of the application
of σ+ to a vector polynomial p ∈ R1×q[ξ]. Write

p(ξ) := pδξ
δ + pδ−1ξ

δ−1 + · · · + p1ξ + p0.(5.5)

Then

σ+(p(ξ)) = pδξ
δ−1 + pδ−1ξ

δ−2 + · · · + p1;(5.6)



STATE MAPS FOR LINEAR SYSTEMS 1061

that is,

σ+(p(ξ)) = ξ−1(p(ξ) − p0).(5.7)

Now let R ∈ Rg×q[ξ] be given, and assume R := R0 + R1ξ + · · · + RLξL. Define
Rk, k = 0, . . . , L, as R0 := R and Rk := σk

+R = σ+Rk−1, k = 1, . . . , L. Define the
Ξ-matrix RΞ as

RΞ := col(Rk)k=1,...,L =


R1

R2

...
RL

 .(5.8)

Connected to RΞ is the important notion of Ξ-space. Let r1, r2, . . . , rg denote
the rows of R. Then define the R-vector space ΞR as

ΞR := 〈σk
+(ri)〉, k ∈ N, i = 1, . . . , g,(5.9)

where 〈 〉 denotes the span over R. The Ξ-space of R is most easily constructed as the
R-vector space generated by the rows of RΞ. Note that RΞ need not define a basis of
the Ξ-space of R.

Introduce now on ΞR the equivalence relation R∼ defined as follows: p, q ∈ ΞR are
equivalent modulo R, written p

R∼ q, if and only if there exists r(ξ) ∈ R1×g[ξ] such that
p(ξ) − q(ξ) = r(ξ)R(ξ). It is easily verified that R∼ is indeed an equivalence relation.

Note that the vector space structure on ΞR induces a vector space structure on the
set of equivalence classes induced by R∼ on ΞR. We will denote this set of equivalence
classes as ΞR (mod R). That is,

ΞR (mod R) = {[p] ∈ 2ΞR | q ∈ [p] iff ∃ r ∈ R1×g[ξ] s.t. p = q + rR}.(5.10)

The following example illustrates the above notions.
Example 5.1. Let

R :=

 ξ2 + 2ξ − 1 ξ + 1

ξ − 1 ξ2 − 3

 ,(5.11)

and consider its first row, ( ξ2 + 2ξ − 1 ξ + 1 ). The shift-and-cut operator acts on
this row as

σ+ ( ξ2 + 2ξ − 1 ξ + 1 ) = ( ξ + 2 1 ) .(5.12)

The ΞR space is the vector space spanned by

( ξ + 2 1 ) , ( 1 0 ) , ( 1 ξ ) , ( 0 1 ) ,(5.13)

which actually form a basis for this space. It is easily verified that the vectors (5.13),
interpreted as representing elements of ΞR (mod R), are linearly independent as well,
and therefore form a basis of ΞR (mod R).

Note that selecting from the rows of RΞ a maximal set of linearly independent
rows and considering these as representatives of elements of ΞR (mod R) do not
necessarily yield a basis for ΞR (mod R), as made explicit by the following example.
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Example 5.2. Let

R =

 1 0 −1
0 1 ξ3

0 0 ξ

 .(5.14)

A maximal set of linearly independent rows of RΞ is

( 0 0 ξ2 ) , ( 0 0 ξ ) , ( 0 0 1 ) ,(5.15)

but the first and the second element of this set are equivalent to zero modulo R, since
( 0 0 ξ2 ) = ( 0 0 ξ ) R and ( 0 0 ξ ) = ( 0 0 1 )R.

Equipped with these notions, we are now ready to consider the problem of the
determination of state-inducing maps for systems in kernel form.

6. State maps for systems in kernel form. The systems we will consider in
this section are those described by equations (2.4). For some systems of this kind the
problem of computing a state map is trivial, namely, those corresponding to a behavior
coinciding with the zero trajectory only. These systems can be characterized as those
corresponding to a right prime polynomial matrix R; this can be readily shown by
resorting to the Smith form of R. In the following we assume that R is not right
prime.

The main result of this section is a characterization of state-inducing polynomial
matrices for systems in kernel form. As a preliminary result, we first consider the
conditions under which a trajectory is concatenable with the zero one. These condi-
tions correspond to a system of linear equations involving w and its derivatives and
define a polynomial differential operator which, in fact, corresponds to a state map.
As we will see, the rows of this polynomial matrix have a nice interpretation in terms
of the shift-and-cut operator defined in the previous section.

Before stating Proposition 6.1, we observe the following smoothness result. Con-
sider the polynomial matrices R1, R2, . . . , and observe that if w ∈ Lloc

1 is a solution
of (2.4) in the sense of distributions, then

Rk

(
d

dt

)
w(6.1)

is continuous for k = 1, 2, . . . . In order to see this, let

R(ξ) = R0 + R1ξ + · · · + RLξL;(6.2)

then (2.4) implies

d

dt

(
R1 + · · · + RL

dL−1

dtL−1

)
w = −R0w.(6.3)

Since the right-hand side is in Lloc
1 , this implies that(

R1 + · · · + RL
dL−1

dtL−1

)
w = R1

(
d

dt

)
w(6.4)

is absolutely continuous. Proceeding recursively yields the absolute continuity of (6.1).
Note that this implies that RΞ( d

dt )w is also absolutely continuous.
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PROPOSITION 6.1. Let a kernel representation as in (2.4) be given, and let B
be its behavior. A trajectory w ∈ B is concatenable with the zero trajectory; that is,
0 ∧ w ∈ B if and only if (

RΞ

(
d

dt

)
w

)
(0) = 0.(6.5)

Proof. See the appendix.
This yields the main result of this section.
THEOREM 6.2. The polynomial matrix X ∈ R•×q[ξ] defines a state-inducing map

for (2.4); i.e.,

R

(
d

dt

)
w = 0,

X

(
d

dt

)
w = x(6.6)

defines a state-space system with external behavior Ker R( d
dt ) if and only if there exists

a matrix A ∈ R•×• and a polynomial matrix B(ξ) ∈ R•×•[ξ] such that

RΞ(ξ) = AX(ξ) + B(ξ)R(ξ)(6.7)

and the latent variable x is properly eliminable from the system with latent variable
(6.6).

Proof. See the appendix.
Remark 6.1. Proper eliminability of x = X( d

dt )w in the system with latent vari-
able (6.6) can be checked as follows (cf. [6, Theorem 2.5]). Without loss of generality,
assume R(ξ) to be of full row rank g, and let X(ξ) have n rows. x is properly eliminable
if and only if there exists an (n + g) × (n + g) submatrix of maximal determinantal
degree of (

R 0g×n

X −In

)
,(6.8)

which includes the last n columns of (6.8).
Remark 6.2. In the discrete-time case, an analogue of Proposition 6.1 has been

given in [7, p. 1075]. A necessary condition for a state map, analogous to (6.7), has
been given in the continuous-time case (with a solution space other than Lloc

1 ) in [5,
p. 77]. In the context of discrete-time output nulling representations

x(k + 1) = Ax(k) + Bw(k),

0 = Cx(k) + Dw(k),(6.9)

a procedure similar to using the shift-and-cut operator to obtain RΞ from R has been
used in [1, p. 3643].

Remark 6.3. If the rows of X of (6.7) are interpreted as representative of elements
of ΞR (mod R), Theorem 6.2 can be restated as follows: X defines a state-inducing
map for (2.4) if and only if the span over R of its rows contains ΞR (mod R) and the
latent variable x is properly eliminable from (6.6). This, together with the smooth-
ness result given at the beginning of this section, yields the following corollary of
Theorem 6.2.
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COROLLARY 6.3. The polynomial matrix X ∈ R•×q[ξ] defines a minimal state-
inducing map for (2.4) if and only if its rows, considered as representative of elements
of ΞR (mod R), form a basis for ΞR (mod R).

Remark 6.4. Note that in the scalar case (R ∈ R[ξ], R 6= 0) the above theorem
corresponds to the usual method of stacking the lower-order derivatives of each com-
ponent to reduce a system of equations of high order to a system of equations of order
one, as made explicit by the following example.

Example 6.1. Let q = 1 and a system be described by

p

(
d

dt

)
w = 0(6.10)

with

p(ξ) := p0 + p1ξ + · · · + pLξL,(6.11)

with pL 6= 0.
The Ξp space is generated by

p1 + p2ξ + p3ξ
2 + · · · + pLξL−1, p2 + p3ξ + · · · + pLξL−2, . . . , pL−1 + pLξ, pL,(6.12)

which in fact constitutes a basis for the space; another basis for Ξp could be chosen
as

ξL−1, ξL−2, . . . , ξ, 1.(6.13)

In fact, it can be verified that both (6.12) and (6.13) are bases of Ξp (mod p). Therefore
a minimal state is induced by the first L − 1 derivatives of w, as made apparent by
(6.13), or by the differential operators associated with the polynomials (6.12). That
is, both

x :=



dL−1

dtL−1 w

dL−2

dtL−2 w
...

d
dtw
w

(6.14)

and

x :=



(p1 + p2
d
dt + p3

d2

dt2 + · · · + pL
dL−1

dtL−1 )w

(p2 + p3
d
dt + · · · + pL

dL−2

dtL−2 )w
...

(pL−1 + pL
d
dt )w

pLw

(6.15)

define minimal state variables.
Remark 6.5. Note that computation of a first-order kernel representation of a

state system is easy once the state map is given and amounts to solving a linear
system of equations. In fact, once the polynomial matrix X ∈ Rn×q[ξ] has been
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computed, the equations may be recovered in the following way. Find matrices E, F
in R(n+g)×n, G ∈ R(n+g)×q, and T ∈ R(n+g)×g[ξ] which solve the equation

(ξE + F )X(ξ) + G = T (ξ)R(ξ).(6.16)

An input/state/output representation is easily computed from the kernel represen-
tation of the state system obtained in this way. Note that for simple cases these
computations can be done by inspection.

In the context of the nonuniqueness of representation of behaviors pointed out in
section 2, a question arises with respect to Theorem 6.2. That is, given two equivalent
kernel representations of the same system, which we assume to correspond to full
row rank polynomial matrices, what relationships hold between the corresponding
Ξ-spaces?

The following result holds.
PROPOSITION 6.4. Let a kernel representation (2.4) be given with R of full row

rank, and let an equivalent representation be obtained as UR, U unimodular. Then
there exist a constant full column rank matrix A and a polynomial matrix B such that
(UR)Ξ = ARΞ + BR.

Proof. See the appendix.
COROLLARY 6.5. Let a kernel representation (2.4) be given with R of full row

rank, and let an equivalent representation be obtained as UR, U unimodular. For
each polynomial matrix Ξ̄UR whose rows form a basis of ΞUR and every polynomial
matrix Ξ̄R whose rows form a basis of ΞR there exists a polynomial matrix C and a
constant nonsingular matrix T such that Ξ̄UR = T Ξ̄R + CR.

Minimal (in the sense of the minimal possible dimension of the state space) states
are induced by the choice of a polynomial matrix X whose rows form a basis of
ΞR (mod R). A natural question arises as to when minimality of the state space is
already guaranteed by directly applying σ+ to the equations describing the system.
The following result holds.

PROPOSITION 6.6. Let a kernel representation such as (2.4) be given. Then the
nonzero rows of RΞ define a basis for ΞR (mod R) if and only if R is in row reduced
form. Whence if R is in row reduced form and X is composed of the nonzero rows of
RΞ,

R

(
d

dt

)
w = 0,

X

(
d

dt

)
w = x(6.17)

defines a minimal state representation.
Proof. See the appendix.
COROLLARY 6.7. Let (2.4) be given with R of full row rank. The minimal dimen-

sion of the state space of the system associated to R equals the McMillan degree of R,
i.e., the maximal degree of the rank(R) × rank(R) minors of R. In the row reduced
case, this equals the sum of the row degrees of R.

Let us now give two examples illustrating the procedure of state construction.
Example 6.2. Consider the system with behavior described by

dn

dtn
w1 + · · · + p1

d

dt
w1 + p0w1 = qn

dn

dtn
w2 + · · · + q1

d

dt
w2 + q0w2,(6.18)
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where wi, i = 1, 2, are scalar functions. Defining

pi := σi
+(p) = ξn−i + pn−1ξ

n−i−1 + · · · + pi(6.19)

and analogously for qi, it is easy to see that

fi := ( pi −qi )(6.20)

i = 1, . . . , n, form a basis for Ξ(p −q ) (mod ( p −q )). Stacking the f i vectors
yields a polynomial minimal state-inducing matrix.

Example 6.3. Let a system be described by

d2

dt2
w1 − d

dt
w2 = 0,(6.21)

which corresponds to R(ξ) = ( ξ2 −ξ ). The space ΞR is generated by ( ξ −1 ) and
( 1 0 ), as is easily seen applying the shift-and-cut operator to R(ξ). Then a state is
defined as

x :=
(

d
dtw1 − w2

w1

)
,(6.22)

which corresponds to the input/state/output equations

d

dt
x =

(
0 0
1 0

)
x +

(
0
1

)
w2.

w1 = x2.

We summarize the above results in the following algorithms.
ALGORITHM 1 (Construction of a state map for a kernel representation).

Data: R ∈ Rg×q[ξ], of degree L.
Output: X ∈ R•×q[ξ] inducing, through x = X( d

dt )w, a state for the system
described by R( d

dt )w = 0.
Step 1. Set R0 := R and compute Rk+1 := σ+(Rk),

for k = 0, 1, . . . , L − 1.
Step 2. Find x1, . . . , xn ∈ R1×q[ξ] such that 〈x1, . . . , xn〉

equals the space spanned by the rows of RΞ.
Step 3. X = col(x1, . . . , xn).
Step 4. Stop.

ALGORITHM 2 (Construction of a minimal state map for a kernel representation).
Data: R ∈ Rg×q[ξ], of degree L.
Output: X ∈ R•×q[ξ] inducing, through x = X( d

dt )w, a minimal state
for the system described by R( d

dt )w = 0.
Step 1. As in Algorithm 1.
Step 2. Find x1, . . . , xn forming a basis of ΞR (mod R).
Comment: The computation of the vectors xi can be accomplished

by computing RΞ and reducing each of its rows modulo R
with standard polynomial operations.

Step 3. X := col(xk)k=1,...,n.
Step 4. Stop.
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ALGORITHM 3 (Verification of a state map).
Data: R ∈ Rg×q[ξ], of degree L and X ∈ Rn×q[ξ].
Output: True if X is a state map for the system

described by R, False otherwise.
Step 1. Compute RΞ as in Algorithm 1.
Step 2. Find a constant matrix A and a polynomial matrix B

such that RΞ(ξ) = AX(ξ) + B(ξ)R(ξ).
Comment: The computation of A and B can be accomplished

with standard polynomial operations.
Step 3. If A and B exists, then
Step 4. If x is properly eliminable from

R

(
d

dt

)
w = 0,

X

(
d

dt

)
w = x,

then Output:=True else Output:=False.
Comment: Proper eliminability can be checked as described in Remark 6.1.
Step 5. Stop.

Remark 6.6. The algorithms described above are of immediate interest for the
simulation problem, where by “simulation” we mean a procedure for selecting an
arbitrary element of the behavior B, followed by an algorithm for computing it. Before
getting to the simulation issue, let us describe how to construct a driving variables
representation for a kernel description (2.4). Compute RΞ and consider the following
set of equations in the unknowns A, B, C, D, P ∈ R•×g[ξ], P ′ ∈ Rq×g[ξ], U ∈ R•×q[ξ]:

ξRΞ = ARΞ + BU + PR,

Iq = CRΞ + DU + P ′R.(6.23)

Then the equations

d

dt
x = Ax + Bv,

w = Cx + Dv(6.24)

represent the external behavior of (2.4) with a state-space model with driving variable
v, as can be seen applying the latent-variables-elimination theorem. Note that A, B,
C, D, U , P , and P ′ in (6.23) are easily obtained by inspection from R and RΞ.

Note that (6.24) leads to the following simulation procedure. Given R, compute
(6.24) and choose a vector x0 ∈ Rn and a v ∈ Lloc

1 (R, Rm). Generate a trajectory x
satisfying the first block of equations of (6.24) with the initial conditions x(0) = x0.
Then w ∈ B can be computed according to the second block of equations (6.24).

7. State maps for systems in hybrid form. As pointed out in the intro-
duction, hybrid representations are the most natural result of a modeling process.
Therefore the characterization of state maps for such representations which we give
in this section is especially interesting for applications.

Following Theorem 2.1, given a hybrid representation (2.6), we will consider the
problem of computing a state map for the closure of the external behavior described
by (2.6). To this purpose, let us make some preliminary comments.
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First, note that when considering the simulation or control of a system, the state
variables will in general be chosen as function of both the external and the latent
variables. In fact, although the former are the quantities we are interested in, in a
hybrid representation the two kinds of variables enter the description of the system
on an equal footing; this is exemplified by the fact that (2.6) can be considered as a
kernel description of the full behavior.

Second, a characterization of w-induced state maps can be given as follows. As
discussed in Theorem 2.1, the closure of the external behavior of (2.6) is described
by (2.8). This implies that the computation of a w-induced state map for the closure
of the external behavior of a hybrid representation (2.6) can be performed as follows.
First, the ` variable is eliminated by computing a suitable unimodular matrix U such
that premultiplying the equations by U yields (2.11). Then a set of generators of the
Ξ-space of R′

1 of (2.8) is computed, as discussed in section 6.
Note that the computation of w-induced state maps for the closure of the external

behavior is obtained by elimination of the latent variables, therefore modifying the
original equations. This modification is not a desirable feature of a state construction
algorithm: the state variables should reflect as much as possible the physical structure
of the system as put in evidence by the original equations.

These considerations motivate us to restrict our attention in the remainder of this
section to the characterization of (w, `)-induced state maps.

As a third consideration, note that there are hybrid representations for which
the determination of a state variable is trivial, namely, the hybrid representations
for which the closure of the external behavior corresponds to Lloc

1 (R, Rq). These
representations are characterized as follows. Note that ∀ w ∈ Lloc

1 (R, Rq) there exists
an ` ∈ Lloc

1 (R, Rd) such that (2.6) holds if and only if M(ξ) has full row rank. In the
following we will implicitly assume that the systems we are dealing with are not of
this kind, and that a nontrivial external behavior corresponds to (2.6).

As a fourth consideration, let us characterize the situations where a state variable
for the closure of the external behavior is a state variable for the full behavior as well.
This happens if and only if the dimension of the minimal state spaces for the closure
of the external and the full behavior are the same. An efficient way of checking this
is given in the following proposition.

PROPOSITION 7.1. Let a system be described in hybrid form as in (2.6), and let
` be observable from w. The dimensions of the minimal state spaces for the closure
of the external and for the full behavior respectively are the same if and only if there
exists an input-output selection in (w, `) such that the variables ` are all outputs for
the full behavior.

Proof. See the appendix.
Remark 7.1. The above proposition implies that if there exists an input-output

selection on (w, `) such that the latent variables can all be chosen as outputs, a
polynomial differential operator X is a state map for the closure of the external
behavior if and only if it is a state map for the full behavior.

Remark 7.2. Existence of an input-output selection on (w, `) such that ` is entirely
composed of outputs can be checked as follows. Assume that ( R | −M ) has full
row rank g. Then ` can be chosen as entirely composed of outputs for the full behavior
if and only if one of the rank((R | −M ))×rank((R | −M )) minors of maximal
degree among all such minors, contains −M as a submatrix.

This procedure is summarized for future use in the following algorithm.
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ALGORITHM `-outputs (Verification if ` may be chosen as consisting entirely
of outputs for the full system).

Data: ( R | −M ) ∈ Rg×(q+d)[ξ] of full row rank.
Output: True if there exists an input-output partition such that `

is entirely composed of outputs, False otherwise.
Step 1. Compute n, the maximal degree of the nonzero

rank((R | −M )) × rank((R | −M )) minors of (R | −M ) .
Step 2. For every subset Pi of columns of R such that (Pi | −M )

has rank((R | −M )) columns, compute the maximal degree
of its nonzero rank((R | −M )) × rank((R | −M )) minors,
let it be ni.

Step 3. If there exists i such that ni = n, then True else False.
Step 4. Stop.

Now assume that ` is observable but that in any selection of inputs and outputs
for the full system some components of ` have to be chosen as inputs. Analogously
to what has been done in section 6 for the case of kernel representations, we will first
characterize the concatenability of external trajectories. Note that concatenability
conditions that involve both w and ` are, in general, more restrictive than concaten-
ability conditions involving the external variable only: even if a full trajectory cannot
be concatenated with zero at t = 0, it could still be possible to concatenate the cor-
responding external trajectory with the zero one. Therefore, the idea that we pursue
in the following is to derive the concatenability conditions for the external trajecto-
ries starting from the concatenability conditions for the full trajectories. According to
Proposition 6.1, the concatenability conditions of full trajectories can be characterized
using the matrix (R −M )Ξ. As we will see, to derive concatenability conditions for
the external trajectory we project (R −M )Ξ down with a suitably defined linear
map. We call this process the reduction of ( R −M )Ξ.

The reduction process involves introducing some new concepts.
Assume that the full row rank matrix (R | −M ) (ξ) =

∑L
j=0 ( Rj −Mj ) ξj

has g rows. Consider(
( R | −M )Ξ

0g×(d+q)

)
= col(σk

+(( R | −M )))k=1,...,L+1(7.1)

and the matrix T := col(Mi)i=0,...,L.
Define E := {r ∈ R1×(L+1)g | rT = 0}. E is the set of constant left annihilators

of T ; in fact, E is a vector space.
The following example clarifies the notions just introduced.
Example 7.1. Consider

( R | −M ) (ξ) =
(

ξ 1 | −1
ξ ξ2 + 1 | −ξ + 1

)
.(7.2)

In this case

( R | −M )Ξ =


1 0 0
1 ξ −1
0 0 0
0 1 0

(7.3)
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and

T =


1

−1
0
1
0
0

 .(7.4)

The space E is obtained as

E = 〈( 0 0 1 0 0 0 ) , ( 0 0 0 0 1 0 ) ,

( 0 0 0 0 0 1 ) , ( 1 1 0 0 0 0 ) , ( 1 0 0 −1 0 0 )〉.(7.5)

Let us now examine the conditions under which a trajectory (w, `) ∈ Bf is ex-
ternally concatenable with zero; that is, 0 ∧ w ∈ Bext. These conditions correspond
to a system of linear equations involving w, `, and their derivatives and define a
polynomial differential operator which is in fact a state map. The rows of the corre-
sponding polynomial matrix turn out, as stated in the following proposition, to have
an interpretation in terms of a set of generators of E, and of the matrix(

( R | −M )Ξ
0g×(d+q)

)
.

PROPOSITION 7.2. Let an hybrid representation (2.6) be given with ` observable
from w. Assume that for every input-output partition of (w, `) there exists at least
one component of ` chosen as input.

A trajectory (w, `) ∈ Bf is externally concatenable with zero, that is, 0∧w ∈ Bext,
if and only if given any set {v1, . . . , vs} of generators of E, there holds(

vi

(
( R | −M )Ξ

0g×(d+q)

)(
d

dt

)(
w
`

))
(0) = 0,(7.6)

i = 1, . . . , s.
Proof. See the appendix.
We can now state the main result regarding systems in hybrid form with ` ob-

servable from w.
THEOREM 7.3. Let a system be described in hybrid form as in (2.6), and let ` be

observable from w. Assume that for every input-output partition of (w, `) there exists
at least one component of ` chosen as input. The matrix X ∈ R•×(q+d)[ξ] defines a
(w, `)-induced state map for the closure of the external system corresponding to (2.6);
that is,

( R −M )
(

d

dt

)(
w
`

)
= 0,

X

(
d

dt

)(
w
`

)
= x(7.7)

define a state model for the closure of the external behavior corresponding to (2.6) if
and only if for each constant matrix V whose rows generate E there exist a constant
matrix A and a polynomial matrix B such that

V

(
( R | −M )Ξ

0

)
= AX + B ( R | −M )
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and the variable x does not impose smoothness constraints on the trajectories of the
closure of the external behavior of (2.6).

Remark 7.3. To check whether x does not impose smoothness constraints on
the trajectories of the closure of the external behavior, we can proceed as follows.
Assume without loss of generality that ( R −M ) is of full row rank g, and note that
by unimodular transformations (7.7) can be brought to the form

R′
1

(
d

dt

)
w = 0,

R′
2

(
d

dt

)
w = `,

X1

(
d

dt

)
w = −X2

(
d

dt

)
` + x,(7.8)

where R′
1 ∈ Rg′×q, R′

2 ∈ Rd×q, Xi ∈ Rn×•, i = 1, 2, X = ( X1 X2 ), and g = g′ + d.
Again using unimodular transformations, we can modify this description to

R′
1

(
d

dt

)
w = 0,(7.9)

R′
2

(
d

dt

)
w = `,(7.10)

(X1 + X2R
′
2)
(

d

dt

)
w = x.(7.11)

Note that, given (7.9), (7.11), proper eliminability of x could be checked following the
procedure illustrated in Remark 6.1. However, this property can be checked on the
basis of the original equations, since each (g′ + n) × (g′ + n) minor of(

R′
1 0

X1 + X2R
′
2 −In

)
(7.12)

corresponds uniquely to a (g′ + n + d) × (g′ + n + d) minor ofR′
1 0 0

R′
2 −Id 0

X1 X2 −In

(7.13)

and therefore to a (g′ + n + d) × (g′ + n + d) minor of(
R −M 0
X1 X2 −In

)
,(7.14)

obtained from a submatrix including the d columns corresponding to ` (that is, the
columns of (7.14) from the (q +1)th up to the (q + d)th one). Therefore x is properly
eliminable from the equations (7.7) if and only if among all (g+n)×(g+n) submatrices
of (7.14) which include the d columns corresponding to ` (that is, the columns of (7.14)
from the (q +1)th up to the (q +d)th one), there exists one of maximal determinantal
degree which includes all columns corresponding to x (that is, the columns of (7.14)
from the (q + d + 1)th up to the (q + d + n)th one).
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Remark 7.4. Theorem 7.3 may be restated as follows: if no input-output partition
of (w, `) exists such that ` consists entirely of outputs for the full behavior, X defines
a state-inducing map if and only if x does not impose any smoothness constraint on
the trajectories of the closure of the external behavior, and the span over R of the
rows of X contains the vector space{

r

(
col(σi

+ ( R | −M ))i=1,...,L

0g×(q+d)

)
| r ∈ E

}
(mod (R | −M )),(7.15)

defined as the set of equivalence classes determined by the equivalence
(R|−M)∼ on the

vector space {
r

(
col(σi

+ ( R | −M ))i=1,...,L

0g×(q+d)

)
| r ∈ E

}
.(7.16)

This equivalent formulation, together with Proposition 7.1, yields the following char-
acterization of minimality:

COROLLARY 7.4. X defines a (w, `)-induced minimal state map for the external
system corresponding to (2.6) if and only if either (1) there exists an input-output
selection in (w, `) in which ` is entirely composed of outputs for the full behavior and
the rows of X form a basis for ( R | −M )Ξ (mod (R −M )) or (2) the rows of
X form a basis for the vector space{

r

(
col(σi

+ ( R | −M ))i=1,...,L

0g×(q+d)

)
| r ∈ E

}
(mod ( R | −M )).(7.17)

Remark 7.5. State-space equations are straightforwardly computed once the state
map is given, analogously to the kernel representations case.

The results exposed up to this point suggest the following algorithm for the com-
putation of a state map for a system in hybrid form with ` observable from w.

ALGORITHM 4 (Construction of a state map for the external behavior of a
system in hybrid form with ` observable from w).

Data: ( R | −M ) ∈ Rg×(q+d)[ξ], of degree L and full row rank,
M right prime.

Output:] X ∈ R•×(d+q)[ξ] inducing through x = X( d
dt )
(
w
`

)
a state

for the external behavior of the system described in hybrid form
by ( R | −M ).

Step 1. Set ( R | −M )0 := ( R | −M ) and compute
( R | −M )k+1 := σk

+ ( R | −M ), k = 1, . . . , L + 1.
Step 2. Invoke algorithm `-outputs (cf. Remark 7.2).
Step 3. If True then

Step 4. X := col((R | −M )k)k=1,...,L.
Step 5. Stop.

Step 6. Else
Step 7. Compute v1, . . . , vs in R1×g(L+1) such that 〈v1, . . . , vs〉

equals the space {r ∈ R1×(L+1)g | rcol(Mi)i=0...L = 0}.
Step 8. S := col((R | −M )k)k=1,...,L+1.
Step 9. X := V S.
Comment. Due to the smoothness result given at the beginning of

section 6, X defines a properly eliminable latent variable.
Step 10. Stop.
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The following example illustrates the construction of a state-inducing map for a
hybrid representation with observable latent variables.

Example 7.2. Let 0 1 1
d
dt − 1 d

dt + 1 1
d
dt

d
dt − 1 d

dt


w1

w2

w3

 =


d
dt − 1 0

d
dt 1

0 1

( `1
`2

)
(7.18)

be a hybrid representation of Bext. It is easy to see that `1 can be chosen as an output
for the full system, but in any input-output partition of (w, `), `2 has to be chosen as
an input.

The matrix

S =
(

( R | −M )Ξ
03×5

)
is

S =


0 0 0 −1 0
1 1 0 −1 0
1 1 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,(7.19)

and the matrix T is

T =


−1 0
0 1
0 1
1 0
1 0
0 0

 .(7.20)

E can be computed as

E = 〈( 0 1 −1 0 0 0 ) , ( 1 0 0 1 0 0 ) , ( 0 0 0 1 −1 0 ) ,

( 0 0 0 0 0 1 )〉,(7.21)

and this yields

X =


0 0 0 −1 0
0 0 −1 −1 0
0 0 0 0 0
0 0 0 0 0

(7.22)

as a state-inducing map for the external behavior of the system described by (7.18).
By choosing X as X =

( 0 0 0 −1 0
0 0 −1 −1 0

)
a minimal state is obtained.

Remark 7.6. The results exposed up to this point provide us with a technique for
computing state maps for systems in hybrid form for which ` is not observable from
w. For ease of exposition, we will limit the investigation to the case in which M is of
full column rank d; the case in which M has column rank d′ < d can be dealt with
similarly. Note that any non–right prime matrix M can be factored as M = M̄F , with
M̄ a right prime matrix and F a full row rank matrix;. The following result holds.
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PROPOSITION 7.5. Let a hybrid representation of a latent variable system (2.6)
be given. Let M be factored as M = M̄F , with F a full row rank right divisor of M
and M̄ right prime. Then the closure of the external behavior of (2.6) and the closure
of that of

R

(
d

dt

)
w = M̄

(
d

dt

)
`(7.23)

are the same.
Proof. See the appendix.
Let us examine the consequences of Proposition 7.5: given a system with ` nonob-

servable from w, factoring out of M an appropriate right divisor F yields a hybrid
representation of a system which has the same external behavior of the original one
(modulo the usual closedness issues) and the latent variable observable from the man-
ifest ones. This provides us with a technique to tackle the problem of construc-
tion of state maps for nonobservable systems. The underlying idea is the following:
given (R | −M ) with M non–right prime, extract a full row rank right factor G
from M , getting a representation (R −M̄ ) with the same external behavior and
M̄ right prime. Computation of a polynomial matrix Xobs that induces a state for
this system can be accomplished according to Algorithm 4. Now partition Xobs as
Xobs := ( Xw X` ).

Now note that ∀ ¯̀∈ Lloc
1 (R, Rd) such that (w, ¯̀) belongs to the full behavior as-

sociated with ( R −M̄ ) there exists ` ∈ Lloc
1 (R, Rd) such that G( d

dt )` = ¯̀. Moreover,
(w, `)T ∈ Bf (( R | −M )).

This suggests that

x := Xobs

(
d

dt

)(
w
¯̀

)
= Xobs

(
d

dt

)(
w

G( d
dt )`

)
= ( Xw X`G )

(
d

dt

)(
w
`

)
is a good candidate for a state for the closure of the external behavior of the system
associated with ( R | −M ).

PROPOSITION 7.6. Let ( R | −M ) be given, with M a non–right prime matrix
of full column rank. Let M = M̄G, with G a full row rank matrix and M̄ right prime.

Assume that Xobs := ( Xw Xl ) is a state-inducing map for the external behavior
of the system in hybrid form associated with ( R −M̄ ). Then

X := ( Xw XlG )(7.24)

defines a state-inducing map for the closure of the external behavior of the system
described in hybrid form by ( R | −M ).

Proof. See the appendix.
Remark 7.7. Minimal state maps are obtained by choosing Xobs to be a minimal

state-inducing map for the system associated with ( R −M̄ ).
The above proposition is illustrated in the following example.
Example 7.3. Let the following system in hybrid form be given:(

d
dt 1
d
dt

d
dt

3
+ 1

)
w =

(
d
dt − 1

d
dt

2 − d
dt

)
`.(7.25)

The system has ` nonobservable from w, since ξ−1 is a nontrivial greatest right factor
for M(ξ). The associated system with ` observable from w is( d

dt 1
d
dt

d
dt

3
+ 1

)
w =

(
1
d
dt

)
`.(7.26)
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Computing a state-inducing map for the full system described by (7.26) yields

( R | −M )Ξ =


1 0 0
1 ξ2 −1
0 0 0
0 ξ 0
0 0 0
0 1 0

(7.27)

and the matrix T is

T = ( 1 0 0 1 0 0 0 0 )T
.(7.28)

T has left nullspace described by

1 0 0 −1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(7.29)

and therefore a (minimal) state-inducing map for the external observable behavior is
obtained multiplying (

( R | −M )Ξ
02×5

)
on the left by the first three rows of (7.29), yielding 1 − d

dt 0

1 d2

dt2 −1
0 1 0

 .(7.30)

The last column of this matrix corresponds to Xobs,` as in Proposition 7.6. The state
for the external behavior of the nonobservable system is therefore induced by 1 − d

dt 0

1 d2

dt2 −( d
dt − 1)

0 1 0

 .(7.31)

The following equations can be written for the state induced by the map in (7.31):
d
dt 1 0

0 d
dt 0

1 0 d
dt

0 0 1

x +


−1 1 0
0 1 0

−1 0 0
0 −1 0

(w
`

)
= 0.(7.32)

8. State maps for systems in image form. Image representations

w = M

(
d

dt

)
`,(8.1)

where w ∈ (Rq)R, ` ∈ (Rd)R, M ∈ Rq×d[ξ], of the behavior of a linear time-invariant
differential system have been introduced in section 2 in connection with the notion
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of controllability: the behavior of a system has an image representation if and only if
the system is controllable.

In this section we consider the determination of state maps for the external be-
havior of systems whose full behavior is described by (8.1). These may be considered
to be a special case of systems representable in hybrid form, with R = Iq. There-
fore, before stating the results pertaining to image representations, let us make some
important considerations in the light of the results given in the previous section.

Let us restrict attention to the case in which M(ξ) of (8.1) is right prime; i.e.,
the latent variable ` is observable from w. Note that in a system whose behavior is
described by (8.1), the latent variables can be chosen as playing the role of outputs
in the full behavior. This is most easily seen by considering that for full column rank
M a suitable subset R1 of the columns of the q × q identity matrix exists such that

( R1 M )(8.2)

is nonsingular and, arranging the columns of a complementary canonical basis of R1
in Rq in a matrix R2, we have

( R1 M )−1
R2(8.3)

proper. Then the external variables corresponding to R2 can be chosen as inputs,
while those corresponding to R1 and the latent variable ` can be chosen as outputs
for the full behavior.

This result, together with Proposition 7.1, allows us to conclude that for observ-
able image representations the dimensions of the minimal state space for the closure
of the external and for the full behavior are equal.

Consider now the problem of determining a state-inducing map for an observable
image representation. The following theorem is an immediate consequence of the
considerations made so far.

THEOREM 8.1. Let a system be represented in image form with ` observable
from w. A polynomial • × (q + d) matrix X defines a state map for the system
(8.1) (i.e., w = M( d

dt )`, x = X( d
dt )
(
w
`

)
defines a state system) if and only if there

exist a constant matrix A ∈ R•×• and a polynomial matrix B ∈ R•×q such that
( Iq −M )Ξ = AX + B ( Iq −M ) and the variable x is properly eliminable from

( Iq −M )
(

d

dt

)(
w
`

)
= 0, X

(
d

dt

)(
w
`

)
= x.(8.4)

Note that σk
+ ( Iq | −M ) = ( 0q×q −σk

+M ), k ∈ N, and therefore any state
map for the system (8.1), after suitable rearrangement of the equations, may be
considered to be ` induced. This suggests the following algorithm for the computation
of a state map for the external behavior of the system described by (8.1). Note that
it is effectively a restatement of Algorithm 4.

ALGORITHM 5 (Construction of a state map for the external behavior of a
system in image form with ` observable from w).

Data: M ∈ Rq×d[ξ], of degree L, M right prime.
Output: X ∈ R•×d[ξ] inducing through x = X( d

dt )` a state for the
external behavior of the system described in image form by (8.1).

Step 1. Set M0 := M and compute
Mk+1 := σk

+M , k = 1, . . . , L.
Step 2. X := col(Mk)k=1,...,L.
Step 3. Stop.
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Remark 8.1. The case in which M of (8.1) is not right prime, i.e., the case in
which ` is not observable from w, can be dealt with in a manner completely analogous
to that described in Remark 7.6.

As noted above, σk
+ ( Iq | −M ) = ( 0q×q −σk

+M ), k ∈ N, and therefore the
structure of the space ΞM is particularly important for the determination of state
maps. In view of the results exposed in the next section, let us pursue further in-
vestigation of the structure of the space ΞM . Without loss of generality (possibly,
permuting the rows) consider M(ξ) partitioned as

M =
(

N
D

)
(8.5)

with D nonsingular and ND−1 proper. Equivalently, choose D as a nonsingular d×d
submatrix of M of maximal determinantal degree.

Let us state the following two propositions, which are of independent interest and
yield the main result regarding the structure of the space ΞM .

PROPOSITION 8.2. Let N ∈ Rp×d[ξ], D ∈ Rd×d[ξ], det(D) 6= 0, be two polynomial
matrices such that ND−1 is proper. Then ΞN ⊆ ΞD.

Proof. See the appendix.
PROPOSITION 8.3. Let D ∈ Rd×d[ξ] be a nonunimodular polynomial matrix with

det(D) 6= 0. Then ΞD = {r ∈ R1×d[ξ] | rD−1 strictly proper}.
Proof. See the appendix.
The next proposition states the main result regarding the structure of the space

ΞM .
PROPOSITION 8.4. ΞM = ΞD = {r ∈ R1×d[ξ] | rD−1 is strictly proper}.
Proof. See the appendix.
The interest in considering state maps for systems represented in image form

arises not only from the controllability issue but also from the connections among
image representations and the notion of transfer function as given in the behavioral
framework. This is the subject of next section.

9. Transfer functions and state maps. The purpose of this section is to make
contact with the algebraic approach to the realization problem, put forward in [4] and
extensively studied by Fuhrmann [2].

Consider the input-output system

P

(
d

dt

)
y = Q

(
d

dt

)
u(9.1)

with P ∈ Rp×p[ξ], Q ∈ Rp×m[ξ], det(P ) 6= 0, and P−1Q proper. The function
G := P−1Q ∈ Rp×m(ξ) is called the transfer function of (9.1).

The latent variable system

u = D

(
d

dt

)
`,

y = N

(
d

dt

)
`(9.2)

with D ∈ Rm×m[ξ], N ∈ Rp×m[ξ], det(D) 6= 0, and ND−1 proper defines an input-
output system with transfer function G = ND−1.

It can be shown that two systems have the same transfer function if and only
if they have the same controllable part (see [9, p. 248]). The (unique) controllable
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system which has a given transfer function G ∈ Rp×m
+ (ξ) can be obtained by making

a left coprime factorization G = P−1Q of G and considering (9.1) or by making a
right factorization G = ND−1 and considering (9.2); if the latter factorization is right
coprime, then (9.2) will be an observable image representation of the controllable
system with transfer function G (see [9, pp. 249, 250]).

Note that the algorithms described in sections 6 and 8 can be directly applied in
order to obtain a state-space realization of a system with a given transfer function.

Transfer functions play a prominent role in control theory, since they provide a
natural framework in many engineering applications. The concept of realization as
put forward in [4], associated with the notion of an input-output map, is intimately
connected with the notion of transfer function. Not surprisingly, therefore, many
formalizations of the notion of state starting from an input-output or transfer function
point of view have been given in the past.

The algorithms proposed in our paper are very akin to those of Fuhrmann [2]. The
module structure on which his approach is based, has many connections with left and
right factorizations of transfer functions. In particular, the state space corresponding
to a right factorization ND−1 of a transfer function is defined therein to be isomorphic
to the vector space KD defined as

KD := {f ∈ R1×d[ξ] | fD−1 ∈ R1×d
+ (ξ)}(9.3)

(cf. [2, Lemma 2-15, p. 11, and Theorem 10-2, p. 41]). The connection with the result
of Proposition 8.4 is evident.

10. Conclusions. In modeling physical systems the most natural way of pro-
ceeding is to write a set of high-order differential equations possibly with algebraic
constraints among the variables. When it comes to simulation of the corresponding
system, however, state-space equations are the most natural representation to use.
Therefore the need arises to compute the latter from the former. In this paper a
characterization of state-inducing maps has been given for systems given in kernel or
in hybrid representations. This characterization suggests immediately algorithms to
actually perform a computation of the state function from which state-space equations
are easily recovered.

Appendix A. Notation.
N natural numbers (0 is not included).
Z+ nonnegative integers.
R real numbers.
2A set whose members are the subsets of A.
R[ξ] polynomials with real coefficients.
R+(ξ) proper rational functions.
ei the ith vector of a canonical basis vector in R1×•.
Rg×q g × q real matrices.
R•×q real matrices with q columns.
col(r1, . . . , rn) the matrix 

r1
r2
...

rn

 .

diag(xk)k=1,...,r r × r diagonal matrix with diagonal elements xk.
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Rg×q[ξ] g × q polynomial matrices in the indeterminate ξ.
R•×q polynomial matrices in the indeterminate ξ with q columns.
Rg×q

+ (ξ) g × q matrices of strictly proper rational functions.
(W )T maps from W to T .
C∞(R, Rq) infinitely differentiable functions from R to Rq.
Lloc

1 (R; Rq) locally integrable functions from R to Rq.
〈r1, . . . , rn〉 space spanned by the vectors ri.
πw projection on the w variables: πw(w, `) := w.
◦ composition of maps.
[p] equivalence class with representative p.

Appendix B. Proofs.

B.1. Proof of Theorem 2.1. That w ∈ πw(Bf )
closure

implies R′
1(

d
dt )w = 0

is easy to see. To prove the converse, let B1 be the behavior of R′
1(

d
dt )w = 0, and

observe that B1
⋂ C∞ is dense in B1. Let M ′

2 ∈ Rn1×n2 [ξ]. Obviously M ′
2(

d
dt ) maps

C∞(R, Rn2) into C∞(R, Rn1). Since M ′
2 is of full row rank, this map is surjective. (In

order to see this, use the Smith form of M ′
2.) Hence for all w ∈ B1

⋂ C∞ there exists

a (w, `) ∈ Bf

⋂ C∞. This shows B1 = πw(Bf )
closure

.

B.2. Proof of Proposition 3.1. We will prove only the Markovian case, the
state-space case being entirely equivalent. The “if” part is trivial. To show the “only
if” case, assume that (2.4) satisfies the concatenability condition. Without loss of
generality we can assume that R has full row rank. Also, there exists a unimodular
U ∈ R•×•[ξ] such that R′ := UR is in row reduced form, meaning that the matrix
formed by the coefficients of the highest powers in ξ of the rows of R′(ξ) has full row
rank. It is easy to see that systems with kernel representations defined by R and R′

are the same. We will now show that R′ is a first order polynomial matrix. Assume
the contrary. Write R′ in input-output form:

P

(
d

dt

)
w1 = Q

(
d

dt

)
w2(B.1)

with det(P ) 6= 0 and P−1Q proper. The assumption that R′ is not first order implies
that P is not. From the assumption that R( d

dt )w = 0 is Markovian, it follows that
also P ( d

dt )w1 = 0 is. Now let w′
1, w′′

1 be solutions of P ( d
dt )w = 0 with w′

1(0) = w′′
1 (0).

Since det(P ) 6= 0, w′
1 and w′′

1 are also C∞ and by the state property are concatenable.
In order to obtain a contradiction it suffices therefore to prove Proposition 3.1 for
autonomous systems. This, however, is an immediate consequence of the following
lemma.

LEMMA B.1. Let the autonomous system R( d
dt )w = 0 with R ∈ Rq×q[ξ], detR 6= 0,

be Markovian. Then this system admits the kernel representation

Fw + E
d

dt
w = 0(B.2)

with E, F ∈ Rq×q and det(Eξ + F ) 6= 0
Proof. Let B be the behavior of R( d

dt )w = 0. Let P ( d
dt )w = 0 be the corresponding

representation in row reduced form, as in the above proof. Write it as

P0w + P1
d

dt
w + · · · + PL

d

dt
w = 0.(B.3)
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We need to prove that it is first order. Assume that this is not the case and that
PL 6= 0 and L ≥ 2.

Denote with Lk, k = 1, . . . , q, the highest order of differentiation of wk in (B.3).
Note that there is at least one Lk ≥ 2. Introduce the auxiliary variables zk

i defined as

zk
i :=

diwk

dti
,(B.4)

k = 1, . . . , q, i = 0, . . . , Lk − 1, and define

z :=
(
z1
0 z1

1 . . . z1
L1−1 . . . zq

0 . . . zq
Lq−1

)
.(B.5)

Now consider the system with latent variable z, described by the equations

d

dt
z = Fz,

wk = zk
0 , k = 1, . . . , q,(B.6)

where the entries of the
∑q

k=1 Lk × ∑q
k=1 Lk matrix F are determined from (B.3)

and the definitions (B.4). Equations (B.6) represent a system in hybrid form with
latent variable z; it external behavior coincides with that described by (B.3), as can
be checked by applying the latent-variable-elimination theorem.

However, the external behavior of (B.6) does not enjoy the Markovianity property.
In fact, (B.6) has exactly one solution (w, z) for each initial condition vector(

z1
0(0) z1

1(0) . . . z1
L1−1(0) . . . zq

0(0) . . . zq
Lq−1(0)

)
.(B.7)

This contradicts Markovianity, since two solutions (w, z), (w′, z′) of (B.6) with zk
0 (0) =

z′k
0 (0), k = 1, . . . , q, cannot be concatenated unless also zk

j (0) = z′k
j (0), j = 1, . . . , Lk−

1, k = 1, . . . , q.

B.3. Proof of Proposition 6.1. The behavior described by R( d
dt )w(t) = 0

with w ∈ Lloc
1 is the set of all w for which∫ +∞

−∞
wT (t)

(
R

(
− d

dt

)T
)

f(t)dt = 0(B.8)

for all testing functions f(t) (that is, f is a C∞ vector-valued function with compact
support).

(Only if) Assume that w ∈ B and 0 ∧ w ∈ B. Define Rk := σk
+(R). We will show

that (Rk( d
dt )w)(0) = 0 for k = 1, 2, . . . . Consider∫ +∞

−∞
(0 ∧ w)T (t)

(
R

(
− d

dt

)T
)

f(t)dt.(B.9)

This obviously equals ∫ +∞

0
wT (t)

(
R

(
− d

dt

)T
)

f(t)dt.(B.10)

Since Rk( d
dt )w is locally integrable ∀ k = 1, . . . , deg(R), (B.10) may be integrated by

parts and equals∫ +∞

0

(
R

(
d

dt

)
w(t)

)T

f(t)dt +
L∑

k=1

L∑
j=k

(−1)k−1(w(j−k)(0))T RT
j f (k−1))(0).(B.11)
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But since w ∈ B, the integral in (B.11) is zero. Since 0 ∧ w ∈ B, (B.9) and hence
(B.11) are also zero, and therefore so is the double sum in (B.11). Hence, due to the
arbitrariness of the testing function f ,(

Rk

(
d

dt

)
w

)
(0) = 0(B.12)

∀ k = 1, . . . , deg(R).
(If) Assume that w ∈ B satisfies (Rk( d

dt )w)(0) = 0 for k = 1, 2, . . .. We want to
show that 0∧w ∈ B. To prove this, we have to prove that the integral (B.9) is zero for
all testing functions f . Proceeding as above, integrating by parts, (B.11) is obtained.
Now the claim is obtained by noting that since w ∈ B, R( d

dt )w = 0 holds and therefore
the integral is zero, while the double sum in (B.11) is zero by assumption.

B.4. Proof of Theorem 6.2. Let us first prove the following
LEMMA B.2. Let B be the behavior of (2.4). Let X1, X2 ∈ R•×q[ξ]. Assume that

for all w ∈ B⋂ C∞(R, Rq) there holds{(
X1

(
d

dt

)
w

)
(0) = 0

}
=⇒

{(
X2

(
d

dt

)
w

)
(0) = 0

}
.(B.13)

Then there exist A ∈ R•×• and B ∈ R•×•[ξ] such that

X2(ξ) = AX1(ξ) + B(ξ)R(ξ).(B.14)

Proof. We will prove this lemma only in the case that (2.4) defines a controllable
system. The general case is left to the reader. Using the Smith form for R it follows
that there exist unimodular matrices U and V such that URV = ( I 0 ). Let v :=
V −1( d

dt )w. Then w ∈ B if and only if ( I 0 ) v = 0. Define X ′
1 := X1V and

X ′
2 := X2V . Partition v, X ′

1, and X ′
2 as

(
v1
v2

)
, ( X ′

11 X ′
12 ), ( X ′

21 X ′
22 ), with the

partition induced by ( I 0 ). Then for any v2 ∈ C∞ there holds{(
X ′

12

(
d

dt

)
v2

)
(0) = 0

}
=⇒

{(
X ′

22

(
d

dt

)
v2

)
(0) = 0

}
.(B.15)

This implies that there exists a matrix A ∈ R•×• such that

X ′
22

(
d

dt

)
= AX ′

12

(
d

dt

)
.(B.16)

This yields that X ′
2 is of the form

X ′
2(ξ) = AX ′

1(ξ) + B(ξ) ( I 0 ) .(B.17)

Now postmultiply by V −1.
This lemma yields the claim of the theorem as follows.
(Only if) Assume that X( d

dt ) is a state map. Then x = X( d
dt )w is properly

eliminable from

R

(
d

dt

)
w = 0,

X

(
d

dt

)
w = x.(B.18)
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Moreover, (X( d
dt )w)(0) = 0 implies that w is concatenable with the zero trajectory.

Proposition 6.1 states that concatenability with zero is equivalent to (RΞ( d
dt )w)(0) =

0. One has to apply now the above lemma with X1 = X and X2 = RΞ.
(If) Assume that (6.7) holds. Recall (cf. the beginning of section 6) that RΞ( d

dt )w
is absolutely continuous. Now consider w ∈ B such that X( d

dt )w is continuous at
t = 0. Then RΞ = AX + BR implies that (BR)( d

dt )w is continuous at t = 0, so
that (RΞ( d

dt )w)(0) = (AX( d
dt )w)(0) + (BR( d

dt )w)(0) and (X( d
dt )w)(0) = 0 imply

(RΞ( d
dt )w)(0) = 0 since (BR)( d

dt )w = 0 and (BR)( d
dt )w is continuous at t = 0.

Therefore by Proposition 6.1 one concludes that 0 ∧ w ∈ B. By assumption, x =
X( d

dt )w is properly eliminable from (B.18), and therefore (B.18) defines a state-space
system with external behavior Ker R( d

dt ).

B.5. Proof of Proposition 6.4. The claim follows directly by applying the
second of the lemmas below. To get to that result, let us first consider the following
lemma.

LEMMA B.3. Let p ∈ R1×q[ξ], R ∈ Rq×g[ξ]. Then

σ+(pR) = (σ+p)R + p(0)(σ+R).(B.19)

Proof. Let p = ( p1 . . . pq ), pi =
∑n

j=0 pjiξ
j , and R = col(Ri)i=1,...,q, Ri ∈

R1×g[ξ]. Note that

pR =
q∑

i=1

 n∑
j=0

pjiξ
jRi

(B.20)

and therefore that

σ+(pR) = σ+

 q∑
i=1

 n∑
j=0

pjiξ
jRi

 ,(B.21)

which is equivalent to
∑q

i=1 σ+(
∑n

j=0 pjiξ
jRi). This is equivalent to

q∑
i=1

 n∑
j=1

pjiξ
j−1Ri + p0iσ+(Ri)

 ,(B.22)

which yields
∑q

i=1(σ+pi)Ri +
∑q

i=1 p0i(σ+Ri) and the claim.
This lemma explains how σ+ acts on vector multiples of a given matrix. The next

one shows how σ+ acts on unimodular matrix multiples.
LEMMA B.4. Let R, R′ be matrices related as

R = UR′(B.23)

for a unimodular U . Then

RΞ = V R′
Ξ + BR′(B.24)

with V a constant full column rank matrix and B a polynomial matrix.
Proof. The proof follows trivially from Lemma B.3 and the fact that a unimodular

matrix U has det(U(0)) 6= 0.
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B.6. Proof of Proposition 6.6. Let us first prove that the nonzero rows of RΞ
form a basis of ΞR if and only if R is in row reduced form.

Define R′
Ξ to be the submatrix of RΞ consisting of the nonzero rows of RΞ. Let

us prove sufficiency. Assume that R′
Ξ has not full row rank. Then there exists at least

one row which is a linear combination of the others. Since RΞ := col(Rk)k=1,...,L, the
highest coefficient vector of this row is the same as that of the corresponding row of
R, and is a linear combination of the highest coefficient vectors of the other rows of R.
But this contradicts row reducedness. The proof of necessity goes along the same lines.

Note that the result just proven implies necessity of the claim of the proposition.
Let us prove sufficiency. Let module(R) be the module of R1×q[ξ] generated by the
rows of R. We have to prove that the intersection of ΞR and module(R) consists of
the zero vector only.

We prove this as follows. Let νi, i = 1, . . . , g, be the degree of the ith row Ri of
R, and assume that the rows of R have been ordered so that ν1 = ν2 = · · · = νg′ >
νg′+1 ≥ · · · ≥ νg.

Let now y ∈ ΞR

⋂
module(R). Note first that, since y ∈ ΞR, deg(y) ≤ ν1 − 1.

Then note that y ∈ module(R) implies y = xR for some x = ( x1, . . . , xg ) ∈ R1×g[ξ].
From the predictable degree property of R [3, p. 387], we conclude that deg(y) =
max1≤i≤g, xi 6=0{deg(xi) + νi} and therefore, since deg(y) ≤ ν1 − 1, that xi = 0,
1 ≤ i ≤ g′.

Assume now that xi = 0 for g′ + 1 ≤ i ≤ ḡ < g, xḡ+1 6= 0. By the predictable
degree property of R, deg(y) ≥ νḡ+1. Since y ∈ ΞR, y =

∑g
j=1

∑νj

i=1 αij(σi
+Rj), for

suitable scalars αij ∈ R. Since deg(y) ≥ νḡ+1, at least one of the αij ’s with 1 ≤ j ≤ ḡ
must be nonzero, since the only generators of ΞR of degree ≥ νḡ+1 are to be found
among the vectors (σi

+Rj), 1 ≤ j ≤ ḡ. This implies that the highest coefficient of y
is a linear combination of the first ḡ rows of Rhc, the highest row coefficient matrix
of R. On the other hand, since xi = 0 for 1 ≤ i ≤ ḡ, and xḡ+1 6= 0, the highest
coefficient of y = xR is a linear combination of the last g − ḡ rows of Rhc. But this
implies that the first ḡ and the last g − ḡ rows of Rhc generate the same vector; this,
by row reducedness, is possible if and only if this vector is zero. Therefore xi = 0 for
all i; that is, y = 0 as was to be proven.

B.7. Proof of Proposition 7.1. The system represented by (2.6) has ` observ-
able from w. Therefore it allows a representation of the form

N

(
d

dt

)
w = `,

R′
1

(
d

dt

)
w = 0,(B.25)

with R′
1 of full row rank. Now partition R′

1 as ( P1 Q1 ) with P−1
1 Q1 proper. This

induces a partition (y, u) on w in inputs u and outputs y. The proposition follows
immediately from examining the minors of(

P1 Q1 0
N1 N2 −I

)
.(B.26)

In fact, sufficiency can be proven as follows. Since (y, `) consists of outputs for the
full system, it follows that (

P1 0
N1 −I

)
(B.27)



1084 PAOLO RAPISARDA AND J. C. WILLEMS

has maximal degree among the minors of (B.26). By Corollary 6.7 this implies that the
minimal dimension of the state space for the full behavior equals deg(det(

(
P1 0
N1 −I

)
)) =

deg(det(P1)). Now note that deg(det(P1)) equals the minimal dimension of the state
space for the external behavior since det(P1) has maximal degree among the minors
of R′

1. This yields the claim.
As for necessity, note that if the minimal dimensions of the state space for the

external and the full behavior are the same, deg(det(P1)) equals the maximal degree
of the minors of (B.26). Since det(

(
P1 0

N1 −I

)
) has degree deg(det(P1)), it has maximal

degree among the minors of (B.26) and therefore the corresponding partition of the
(w, `) variables, that is, (y, `), is a set of outputs for the full system.

B.8. Proof of Proposition 7.2. Before proving the proposition, let us point
out the following general result. Assume that in a hybrid representation ` is observable
from w; then w(t) = 0 ∀ t < 0 implies `(t) = 0 ∀ t < 0. This is proven as follows.
Observability implies that there exists a polynomial differential operator F ( d

dt ) such
that F ( d

dt )w = `; then for t < 0 (F ( d
dt )w)(t) = (F ( d

dt )0)(t) = 0.
Let us turn to the proof of the proposition.
(Only if) External concatenability with zero is equivalent to∫ +∞

−∞

(
0 ∧ w

`

)T

(t)
(

( R −M )T

(
− d

dt

))
f(t)dt = 0(B.28)

for every testing function f .
Observability of ` from w and the remark made above imply that integration can

be considered in [0, +∞) only:∫ +∞

0

(
w
`

)T

(t)
(

( R −M )T

(
− d

dt

))
f(t)dt = 0.(B.29)

Note that since ` is a locally integrable function, there exists an absolutely con-
tinuous function L such that d

dtL = ` almost everywhere.
Then R( d

dt )w = M( d
dt )` may be written as

R

(
d

dt

)
w = M

(
d

dt

)
d

dt
L,(B.30)

and if

( R −M ) = ( R0 −M0 ) + ( R1 −M1 ) ξ + · · · + ( RL −ML ) ξL,(B.31)

(B.30) corresponds to the polynomial matrix

( R −M )′ := ( R0 0 ) + ( R1 −M0 ) ξ + · · ·
+ ( RL −ML−1 ) ξL + ( 0 −ML ) ξL+1,(B.32)

which is more conveniently written as
∑L+1

j=0 ( Rj −Mj−1 ) ξj , defining M−1 := 0,
RL+1 := 0.

Equation (B.29) corresponds then to

∫ +∞

0

(
w
L
)T

(t)

L+1∑
j=0

(−1)j ( Rj −Mj−1 )T dj

dtj
f(t)

 dt = 0.(B.33)
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Analogously to what has been done at the beginning of section 6 it is possible
to prove that the Ξ-matrix of (B.32) induces an absolutely continuous function. It is
then possible to integrate by parts the left-hand side of (B.33), and this yields∫ +∞

0

L+1∑
j=0

( Rj −Mj−1 )
(

w
L
)(j)

(t)

T

f(t)dt

−
L+1∑
j=1

((
( Rj −Mj−1 )

(
w
L
)(j−1)

)
(0)

)T

f(t)

+
L+1∑
j=2

((
( Rj −Mj−1 )

(
w
L
)(j−2)

)
(0)

)T
d

dt
f(t) + · · ·

+(−1)L+1
(

( 0 −ML )
(

w
L
)

(0)
)T

f (L)(0),(B.34)

where g(j) denotes the jth derivative of a function g (and the function itself in case
j = 0).

Equation (B.34) can be rewritten as∫ +∞

0

L+1∑
j=0

( Rj −Mj−1 )
(

w
L
)(j)

(t)

T

f(t)dt

+
L+1∑
k=1

L+1∑
j=k

(−1)k

(
( Rj −Mj−1 )

(
w
L
)(j−k)

(0)

)T
 f (k−1)(0).(B.35)

Since (0∧w, `) ∈ Bf , (B.35) equals zero for all testing functions f . Now note that
the integral in (B.35) is zero, since (w, `) ∈ Bf . Therefore (0 ∧ w, `) ∈ Bf implies

L+1∑
k=1

L+1∑
j=k

(−1)k

(
( Rj −Mj−1 )

(
w
L
)(j−k)

(0)

)T
 f (k−1)(0) = 0.(B.36)

Arbitrariness of the testing function f then yields the set of equations
L+1∑
j=k

(−1)k

(
( Rj −Mj−1 )

(
w
L
)(j−k)

)
(0) = 0,(B.37)

k = 1, . . . , L + 1, which is more conveniently written as
L∑

j=k

(
( Rj −Mj )

(
w
`

)(j−k)
)

(0) = Mk−1L(0), k = 1, . . . , L,

0 = MLL(0).(B.38)

In matrix form, (B.38) reads as

((
( R −M )Ξ

0

)(
d

dt

)(
w
`

))
(0) =


M0
M1
...

ML

L(0).(B.39)
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Now let V := col(v1, . . . , vs), with {vi}i=1,...,s a set of generators of E. Multiply both
sides of (B.39) by V . This yields

V

((
( R −M )Ξ

0

)(
d

dt

)(
w
`

))
(0) =

((
V

(
( R −M )Ξ

0

))(
d

dt

)(
w
`

))
(0) = 0,

(B.40)
which is the claim of the proposition.

(If) Assume that((
V

(
( R −M )Ξ

0

)(
d

dt

))(
w
`

))
(0) = 0,(B.41)

where V is a set of generators of E.
Then in particular

(
V

(
( R −M )Ξ

0

)(
d

dt

)(
w
`

))
(0) = V


M0
M1
...

ML

L(0),(B.42)

with L such that d
dtL = ` almost everywhere. Equation (B.42) is equivalent to

V

(( ( R −M )Ξ
0

)(
d

dt

)(
w
`

))
(0) −


M0
M1
...

ML

L(0)

 = 0(B.43)

and therefore

((
( R −M )Ξ

0

)(
d

dt

)(
w
`

))
(0) −


M0
M1
...

ML

L(0)(B.44)

belongs to the vector space generated by the columns ofM0
...

ML

 ;

that is, there exist αi ∈ R, i = 1, . . . , d, such that (B.44) equals
M0
M1
...

ML


α1

...
αd

 .(B.45)

Consider now the function L̄ defined as follows: L̄(t) := L(t) ∀t 6= 0 and

L̄(0) := L(0) +

α1
...

αd

 .
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Then d
dt L̄ = ` almost everywhere and

((
( R −M )Ξ

0

)(
d

dt

)(
w
`

))
(0) −


M0
M1
...

ML

 L̄(0) = 0.(B.46)

Now consider (0 ∧ w, 0 ∧ `). To show that it belongs to the full behavior, we prove
that

R

(
d

dt

)
(0 ∧ w) = M

(
d

dt

)
d

dt
(0 ∧ L̄).(B.47)

Using the notation introduced in (B.32), note that (B.47) holds if and only if

∫ +∞

−∞

(
0 ∧ w
0 ∧ L̄

)T

(t)

L+1∑
j=0

(−1)j ( Rj −Mj−1 )T djf

dtj
(t)

 dt = 0,(B.48)

that is, if and only if∫ +∞

0

(
w
L̄
)T

(t)

L+1∑
j=0

(−1)j ( Rj −Mj−1 )T djf

dtj
(t)

 dt = 0.(B.49)

The Ξ-matrix of (B.32) induces an absolutely continuous function. Therefore (B.49)
can be integrated by parts and, with manipulations completely analogous to those of
the necessity part of the proof, this yields

∫ +∞

0

L+1∑
j=0

( Rj −Mj−1 )
(

w
L̄
)(j)

(t)

T

f(t)dt

+
L+1∑
k=1

L+1∑
j=k

(−1)k

(
( Rj −Mj−1 )

(
w
L̄
)(j−k)

(0)

)T
 f (k−1)(0).(B.50)

The integral is zero, since d
dt L̄ = ` and (w, `) ∈ Bf by assumption. The double sum is

zero, since by assumption each addendum of the outermost sum is zero (cf. (B.46)).
The claim follows.

B.9. Proof of Theorem 7.3. Note first that Lemma B.2 holds also for the
kernel representation ( R −M ) ( d

dt )
(
w
`

)
= 0 of the full behavior. Let us now prove

necessity. If X( d
dt ) is a (w, `)-induced state map for the external behavior, then x

is properly eliminable, and (X( d
dt )
(
w
`

)
)(0) = 0 implies external concatenability with

zero. Proposition 7.2 states that external concatenability with zero is equivalent to(
V

(
( R −M )Ξ

0

) (
d

dt

)(
w
`

))
(0) = 0.

Now apply Lemma B.2 with X1 = X and

X2 = V

(
( R −M )Ξ

0

)
.
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Sufficiency is proven as follows.(
V

(
( R −M )Ξ

0

))(
d

dt

)(
w
`

)
is an absolutely continuous function (cf. the remark made at the beginning of section
6). Since (

V

(
( R −M )Ξ

0

))(
d

dt

)
= AX

(
d

dt

)
+ B ( R −M )

(
d

dt

)
,(B.51)

for each (w, `) ∈ Bf such that (X( d
dt )
(
w
`

)
)(0) = 0 and such that X( d

dt )
(
w
`

)
is continuous

at t = 0, (
V

(
( R −M )Ξ

0

))(
d

dt

)(
w
`

)
(0) = 0

holds, since

B ( R −M )
(

d

dt

)(
w
`

)
= V

(
( R −M )Ξ

0

))(
d

dt

)(
w
`

)
− AX

(
d

dt

)(
w
`

)
is continuous at t = 0. Then Proposition 7.2 can be applied, and external con-
catenability with zero follows. Moreover, since x is properly eliminable, the external
behavior of the state-space representation is the same as that of the original hybrid
representation. This concludes the proof.

B.10. Proof of Proposition 7.5. Consider the system described by (2.6). Fol-
lowing Theorem 2.1, computation of a kernel description of (the closure of) its external
behavior is done by determining a unimodular matrix U such that UM =

( 0
M ′

2

)
, with

M ′
2 of full row rank. Partitioning U , R, and M according to the number of rows of

M ′
2 as

U :=
(

U11 U12
U21 U22

)
, M :=

(
M1
M2

)
, R :=

(
R1
R2

)
,(B.52)

the description of the external behavior is given as R′
1(

d
dt )w = 0, with R′

1 = U11R1 +
U12R2.

Now assume M = M̄F , with F a full row rank right factor of M . Note that

0 = U11M1 + U12M2 = U11M̄1F + U12M̄2F = (U11M̄1 + U12M̄2)F(B.53)

if and only if U11M̄1 + U12M̄2 = 0 by the fact that F has full row rank. Therefore U
eliminates the latent variable in the description R( d

dt )w = M̄( d
dt )`, and R′

1(
d
dt )w = 0

describes the closure of the external behavior of this system as well.

B.11. Proof of Proposition 7.6. G is a nonsingular d×d matrix and therefore
∀ ¯̀∈ Lloc

1 (R; Rd) ∃ ` ∈ Lloc
1 (R; Rd) such that ¯̀= G( d

dt )`. Therefore(
Xobs

(
d

dt

)(
w
¯̀

))
(0) = 0 ⇐⇒

(
Xobs

(
d

dt

)(
w

G
(

d
dt

)
`

))
(0) = 0

⇐⇒
(

( Xobs,w Xobs,lG )
(

d

dt

)(
w
`

))
(0) = 0.
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Since Xobs induces a state map, (Xobs( d
dt )
(
w
¯̀
)
)(0) = 0 implies that (w, ¯̀) is exter-

nally concatenable with zero; moreover, external concatenability in zero for (w, ¯̀) is
equivalent to external concatenability in zero for (w, `), as ¯̀ = G( d

dt )`. Let us now
prove that x = X( d

dt )
(
w
`

)
does not impose additional smoothness constraints on the

trajectories of the external behavior of (R −M ) ( d
dt )
(
w
`

)
= 0. By unimodular trans-

formations, which preserve the proper eliminability of a latent variable, we can bring
the equations

R

(
d

dt

)
w = M

(
d

dt

)
`,

Xw

(
d

dt

)
= −(X`G)

(
d

dt

)
` + x(B.54)

to the form

R′
1

(
d

dt

)
w = 0,

R′
2

(
d

dt

)
w = G

(
d

dt

)
`,

Xw

(
d

dt

)
= −(X`G)

(
d

dt

)
` + x(B.55)

and, again by unimodular operations, to

R′
1

(
d

dt

)
w = 0,

R′
2

(
d

dt

)
w = G

(
d

dt

)
`,

(Xw + X`R
′
2)
(

d

dt

)
w = x.(B.56)

Observe that x = (Xw + X`R
′
2)(

d
dt )w is a state variable for the behavior Ker R′

1(
d
dt )

and therefore that it is properly eliminable from

R′
1

(
d

dt

)
w = 0,

(Xw + X`R
′
2)
(

d

dt

)
w = x;(B.57)

the claim follows.

B.12. Proof of Proposition 8.2. Let Ni be the ith row of N . Since NiD
−1

is proper, there exists a rational vector ni :=
∑∞

k=0 nikξ−k such that NiD
−1 = ni.

Write D = D0+D1ξ+· · ·+DLξL and Ni = Ni0+Ni1ξ+· · ·+NiL′ , L′ ≤ L. Ni = niD
yields the following equalities:

Ni0 = ni0D0 + ni1D1 + · · · + niLDL,

Ni1 = ni0D1 + ni1D2 + · · · + niL−1DL,

...
NiL′ = ni0DL′ + ni1DL′+1 + · · · + niL−L′DL.(B.58)
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These equalities imply Ni = ni0D+ni1σ+(D)+· · ·+niLσL
+(D) and therefore σ+(Ni) =

ni0σ+(D) + ni1σ
2
+(D) + · · · + niL−1σ

L
+(D). Then σ+(Ni) ∈ ΞD, and the same holds

for σ2
+(Ni), σ3

+(Ni), . . . . This yields the claim.

B.13. Proof of Proposition 8.3. The inclusion ΞD ⊆ {r | rD−1 is strictly
proper} can be proven as follows. Let Di be the ith row of D, Di =

∑L
k=0 DikξL.

Then σ+Di = ξ−1Di − ξ−1Di0, and therefore σ+DiD
−1 = ξ−1ei − ξ−1Di0D

−1 ∈
R1×d

+ (ξ). Analogously, σ2
+Di = ξ−2Di − ξ−2Di0 − ξ−1Di1 and therefore σ2

+DiD
−1 =

ξ−2ei − ξ−2Di0D
−1 − ξ−1Di1D

−1 ∈ R1×d
+ (ξ) and similarly for all iterations of σ+ and

for all rows of D.
The opposite inclusion may be proven as follows. Take r ∈ {r′ | r′D−1 is strictly

proper}. Then there exists n ∈ R1×d
+ (ξ) such that r = nD. Write

n =
∞∑

k=1

nkξ−k,(B.59)

nk ∈ R1×d, and denote

D := D0 + D1ξ + · · · + DLξL(B.60)

and

r := r0 + r1ξ + · · · + rL′ξL′
,(B.61)

where without loss of generality we can assume L′ ≤ L − 1. r = nD yields, equating
powers of ξ,

r0 = n1D1 + n2D2 + · · · + nLDL,

r1 = n1D2 + n2D3 + · · · + nL−1DL,

...
rj = n1Dj+1 + n2Dj+2 + · · · + nL−jDL,(B.62)

...

and this implies

r = n1σ+(D) + n2σ
2
+(D) + · · · + nLσL

+(D)(B.63)

and therefore that r ∈ ΞD, as we were to prove.

B.14. Proof of Proposition 8.4. The first equality follows from the fact that
ΞM = ΞN + ΞD and from Proposition 8.2. The second equality can be proven by
applying Proposition 8.3.
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Abstract. Stochastic control problems on a finite horizon with exponential cost criteria are
considered. By taking a kind of singular limit a Hamilton–Jacobi–Isaacs equation is obtained. Its
solution is characterized as the lower value function of a deterministic differential game related to
robust control of nonlinear systems.

Key words. risk-sensitive control, small noise limit, H∞-control, Hamilton–Jacobi–Isaacs equa-
tion, differential game
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Introduction. The large deviation treatment for risk-sensitive control problems
has been considered by several authors (cf. [2], [9], [10], [11], [13], [14], [15]) in relation
to H∞-control theory since Whittle’s works [22] and [23]. It has been noticed that
the large deviation theory of Freidlin–Wentzell in stochastic control problems with
the criterion function of the exponential of an additive cost function may link with
deterministic control problems called H∞- or robust-control. In the case of finite-time
horizon with full observation, Fleming and McEneaney [9] and, independently, James
[13] have given rigorous treatment to the problem. However, those cases are limited
by growth conditions which do not cover the linear exponential quadratic Gaussian
(LEQG) model. The case has been treated directly. The infinite-horizon case has
been considered by Fleming and McEneaney [10] and Fleming and James [11]. By
taking a small noise limit, they obtained a deterministic differential game related to
H∞-control theory.

In the present paper we deal with the case of finite-time horizon and relax the
growth conditions assumed in [9], [13], [15] so that the LEQG model can be included.
We shall comment on this point further in discussion of the assumption (1.14) at the
end of subsection 1.2.

Our research is based on [18], where risk-sensitive control problems for nonlinear
systems, including the LEQG case, have been treated in a rather general setting, and
no breakdown problems and large time asymptotics of the value function have been
considered.

More precisely, we consider the controlled stochastic differential equation (SDE)
with a small parameter ε > 0:{

dXs =
√
εσ(Xs)dBs + b(Xs)ds+ c(Xs, zs)ds,

X0 = x
(0.1)
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and take up the following value function of a risk-sensitive control problem:

J∗
ε (t, x;T, θ) = inf

z.
Ex

[
exp

(
θ

ε
ΦT−t

)]
, 0 ≤ t ≤ T,(0.2)

where

Φs =
∫ s

0
{V (Xτ ) + φ(Xτ , zτ )}dτ.(0.3)

The Bellman equation of J∗ can be formally written as LεJε + inf
z∈Z

{
ci(x, z)DiJε +

θ

ε
(V (x) + φ(x, z))

}
= 0, [0, T ) ×RN ,

Jε(T, x) = 1,
(0.4)

where

LεJε =
∂Jε

∂t
+
ε

2
aijDijJε + biDiJε.

Taking a transformation Jε = exp( θ
εwε), we obtain{

Lεwε +Q0(x,∇wε) + V (x) = 0,
wε(T, x) = 0,

(0.5)

where

Q0(x, p) ≡ Q0(x, p; θ)

=
θ

2
aijpipj + inf

z∈Z
{ci(x, z)pi + φ(x, z)}.

The existence of a nonnegative solution of (0.5) has been shown under the main
assumption (1.14), which indicates the condition on a risk-sensitive parameter for no
breakdown. In the present paper we first consider the asymptotic behavior of the
solution wε of (0.5) as ε → 0. To this end, as was done in [9], [13], [15], we employ
viscosity methods introduced by Crandall and Lions and developed recently to a large
extent (cf. [3], [4], [5], [7], [8], and references therein). Owing to a stability theorem
on viscosity solutions, a limit nonlinear equation is obtained by obtaining estimates
independent of ε on wε and its first derivatives (cf. section 2). It is to be noted that we
cannot expect that wε is globally Lipshitz, which comes from the fact that we cover
the case of polynomial growth V (x), and we utilize some techniques used in [18] to
get the estimates.

There are some difficulties in characterizing the limit value, which comes from
the fact that the control region is noncompact and the cost functions are unbounded.
Those assumptions are necessary to include the LEQG case. We shall take up a more
specialized case (cf. section 2.1) than that of section 1 and show that the limit value
is characterized as the lower value function of a differential game whose Hamilton–
Jacobi–Bellman equation is written as

∂w

∂t
+ biDiw +Q0(x,∇w) + V = 0,

w(T, x) = 0.
(0.6)
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Following Varaiya [21], Roxin [19], Elliott and Kalton [6], we have formulated a de-
terministic differential game and shown that the lower value function of the game
formulated in this way is the unique nonnegative viscosity solution of (0.6) along the
line of Evans and Souganidis [8]. However, because of the noncompactness of the
control region and the unboundedness of the cost functions, the finiteness of the lower
value function is nontrivial. We need assumption (2.5) (a counterpart of (1.14) for the
specialized case) to show it. Moreover, to prove that the lower value function satisfies
(0.6) in a viscosity sense, we shall obtain some hitting time estimates on controlled dy-
namics and develop some technical tricks to show its continuity. We refer to [16], [17],
[20], and the references therein, where viscosity solutions of Hamilton–Jacobi–Isaacs
equations are directly considered.

1. A small noise limit on risk-sensitive control.

1.1. Setting up. We shall formulate a risk-sensitive control problem depending
on a parameter ε > 0 and then consider a problem taking a limit as ε → 0. Let
(Ω,F , P ) be a probability space with filtration Ft, t ≥ 0, Bt a standardN -dimensional
Ft Brownian motion process, and zt a progressively measurable process taking its
value on a Borel subset Z of RN1 . We consider the following SDE with a parameter
ε > 0: {

dXi
s =

√
εσi

j(Xs)dBj
s + bi(Xs)ds+ ci(Xs, zs)ds, i = 1, ..., N,

X0 = x.
(1.1)

We then introduce the value function J∗
ε with a risk-sensitive parameter θ > 0 as

follows:

J∗
ε (t, x;T, θ) = inf

A0
T −t

Ex

[
exp

(
θ

ε
ΦT−t

)]
, 0 ≤ t ≤ T,(1.2)

where

Φs =
∫ s

0
{V (Xτ ) + φ(Xτ , zτ )}dτ(1.3)

and A0
T−t is the totality of (Ω,F ,Fs, P,Bs, zs)0≤s<T−t such that (1.1) has a unique

solution for 0 ≤ s < T − t. Note that in this paper we employ the summation conven-
tion that if the same indices appear twice in a term, then the symbol of summation
is omitted. We assume the following conditions:

σ, b, c, V, and φ are smooth;(1.4)
σ and b satisfy a global Lipshitz condition;(1.5)
σ, b, and V and all their derivatives are dominated by(1.6)

M(1 + |x|2)m for some m > 0,M > 0;
|c(x, z)| ≤ c0(z) for some locally bounded function c0(z);(1.7)
V (x) ≥ 0 and lim

|x|→∞
V (x) = ∞;(1.8)

φ(x, z) ≥ 0, lim
|z|→∞

φ(x, z) = ∞, lim
|z|→∞

|c(x, z)|
φ(x, z)

= 0, uniformly in x;(1.9)

aijξiξj ≥ ν|ξ|2, ξ ∈ RN , ∃ν > 0,(1.10)
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where aij = (σσ∗)ij and σ∗ stands for a transposed matrix of the matrix σ. The
above-defined value function J∗ is considered to satisfy formally the following Bellman
equation: LεJε + infz∈Z

{
ci(x, z)DiJε +

θ

ε
(V (x) + φ(x, z))

}
= 0, [0, T ) ×RN ,

Jε(T, x) = 1,
(1.11)

where

LεJε =
∂Jε

∂t
+
ε

2
aijDijJε + biDiJε

and Di = ∂
∂xi , Dij = ∂2

∂xi∂xj . Then, by taking a transformation Jε = e
θ
ε wε , we obtain

the equation {
Lεwε +Q0(x,∇wε) + V (x) = 0,
wε(T, x) = 0,

(1.12)

where

Q0(x, p) ≡ Q0(x, p; θ)

=
θ

2
aijpipj + inf

z∈Z
{ci(x, z)pi + φ(x, z)}.(1.13)

We furthermore assume that

−k1

2
aijpipj ≤ Q0(x, p) ≤ −k2

2
aijpipj , p ∈ RN ,(1.14)

for some k1, k2 > 0 and∣∣∣∣∂Q0(x, p)
∂p

∣∣∣∣ ≤ M1|p| +M2,

∣∣∣∣∂Q0(x, p)
∂x

∣∣∣∣ ≤ M1|p|2 +M2(1.15)

for some locally bounded functions M1 and M2. For examples satisfying conditions
(1.14) and (1.15) we refer to [18, section 1.5]. Note that according to [18] we have the
following theorem.

THEOREM 1.0 (see [18]). Under the assumptions (1.4)–(1.10), (1.14), and (1.15)
the equation (1.12) has a nonnegative solution wε ∈ C1+ α

2 ,2+α([0, T )×RN )∩C([0, T ]×
RN ). Moreover, under those conditions the value function J∗

ε defined by (1.2) has a
finite value.

We shall consider the limit equation of (1.12) as ε tends to zero. It can be formally
written as 

∂w

∂t
+ biDiw +Q0(x,∇w) + V = 0,

w(T, x) = 0.
(1.16)

To deduce the equation as the limit of (1.12) we employ viscosity methods (cf. [4], [7],
[12]) and then obtain the following theorem.

THEOREM 1.1. Let wε be a nonnegative solution of (1.12) obtained by Theorem
1.0. Then there exists a subsequence of {wε} converging uniformly on each compact
set to a continuous function w(t, x), which is a viscosity solution of equation (1.16).
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Discussion on assumption (1.14). We address here assumption (1.14) and
compare it with the literature. Suppose that we are in the LEQG case, where (1.4) to
(1.10) and (1.15) are satisfied. Assumption (1.14) remains a restriction which is to be
interpreted as a smallness condition on θ. Such a restriction is unavoidable. Indeed,
we consider the case where N = 1, Z = R1, σ ≡ 1, b(x) ≡ 0, c(x, z) = z, V (x) = 1

2x
2,

and φ(x, z) = 1
2z

2, namely the case

Xs = x+
√
εBs + zs,

Φs =
∫ s

0

1
2
(X2

s + z2
s)ds.

In this case Q0(x, p) turns out to be Q0(x, p) = − 1−θ
2 p2, and assumption (1.14) is

reduced to the form

θ < 1.(1.14′)

Moreover, the Bellman equation (1.12) reads
∂wε

∂t
+
ε

2
∂2wε

∂x2 − 1 − θ

2

∣∣∣∣∂wε

∂x

∣∣∣∣2 +
1
2
x2 = 0,

wε(T, x) = 0.
(1.12′)

Note that the solution to (1.12′) has the following explicit form:

wε(t, x) =
1
2
P (t)x2 +

ε

2

∫ T

t

P (s)ds,

provided that the Riccati equation

dP

dt
− (1 − θ)P 2 + 1 = 0, P (T ) = 0,(P)

has a solution on [0,T ]. However, if θ > 1, there may appear a conjugate point (a
finite escape time) of T in the equation. In fact, the solution P (t) to (P) is nothing
but

P (t) =
1√
θ − 1

tan(
√
θ − 1(T − t)),

and t0 satisfying
√
θ − 1(T − t0) = π

2 is the finite escape time. Thus we see that (P)
has no solution on [0,T ] for T such that T > π

2
√

θ−1
if θ > 1 and the condition (1.14′)

is to be expected. Such an assumption is unnecessary when V and φ are bounded or
have linear growth (these are the assumptions in [9], [13], [15]) since the value function
(1.2) never diverges in that case and equation (1.12) has a solution regardless of the
size of θ. We furthermore consider the case where the controlled process is defined by

dXs =
√
εdBs − αXs + zs, X0 = x,

with α > 0. Here it remains the case that N = 1 and Z = R1. Besides, if V (x)
and φ(x, z) are same as above, then the size of the risk-sensitive parameter ensuring
the existence of the solution of the Bellman equation becomes larger than the above;
indeed, we can see that it is θ < 1 + α2. However, our theorem deals with the case
of polynomial growth V (x). So, if the growth of V (x) is faster than the quadratic
growth, then the effect of such b(x) = −αx disappears and we still need assumption
(1.14).
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1.2. Proof of Theorem 1.1. We first give an L∞
loc estimate for a solution wε of

(1.12) by using the Feynman–Kac formula. Namely, we shall prove the following.
LEMMA 1.2. Let wε be a nonnegative solution of (1.12) given by Theorem 1.0;

then 0 ≤ wε(t, x) ≤ cR,T on [0, T ] × BR for each R > 0, where cR,T is a constant
independent of ε and BR = {x; |x| < R}.

Proof. Let ψε(t, x) be a solution of the following linear equation: Lεψε − k2

ε
V ψε = 0,

ψε(T, x) = 1.
(1.17)

It is easy to see that ψε(t, x) ≥ 0, and therefore we may set

w̃ε(t, x) = − ε

k2
logψε(t, x).

Then w̃ε(t, x) satisfies the following nonlinear equation: Lεw̃ε − k2

2
aijDiw̃εDjw̃ε + V (x) = 0,

w̃ε(T, x) = 0.
(1.18)

Because of (1.14), we see that w̃ε(t, x) is a supersolution of (1.12) and dominates its
solution wε(t, x) (cf. the proof of Theorem 1.1 in [18]). Hence we obtain

wε(t, x) ≤ w̃ε(t, x)(1.19)

= − ε

k2
logEx

[
exp

(
−k2

ε

∫ T−t

0
V (Ys)ds

)]
by the Feynman–Kac formula, where Ys is a solution of the SDE{

dYs =
√
εσ(Ys)dBs + b(Ys)ds,

Y0 = x.
(1.20)

Jensen’s inequality and (1.19) imply that

wε(t, x) ≤ Ex

[∫ T−t

0
V (Ys)ds

]
.(1.21)

Standard moment estimates for the solution of the SDE (1.20) give an L∞
loc estimate

of the right-hand side of (1.21) because of the assumptions (1.5) and (1.6). Thus we
obtain the estimate 0 ≤ wε(t, x) ≤ cR,T on [0, T ] ×BR, where cR,T is independent of
ε such that 0 ≤ ε ≤ 1.

The following lemma, obtained by using the gradient estimate for a solution wε

of (1.12), plays a key role in the proof of Theorem 1.1.
LEMMA 1.3. Let wε be a solution of (1.12) given by Theorem 1.0 for each ε > 0;

then {wε(t, x)}1≥ε>0 are equicontinuous on [0, T ] ×BR for each R > 0.
Proof. For the proof of this lemma we note that the following estimates are valid

for uε(t, x) = wε(T − t, x):

∂uε

∂t
≥ 0,(1.22)

t

(
|∇uε|2 + γ

∂uε

∂t

)
≤ tKR,γ + LR,γ [0, T ] ×BR, γ >

2
k2ν

,(1.23)

where KR,γ and LR,γ are constants independent of ε.
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Estimate (1.22) is obtained in [18]. As for (1.23), we can follow the proof of
Lemma 1.5 in [18]. In fact, we set

Γ(F ) =
ε

2
aijDijF +

∂Q

∂pi
(x,∇u)DiF − ∂F

∂s
+
F

s
,(1.24)

where F = t(|∇uε|2+γ ∂uε

∂t ) and Q(x, p) = bipi+Q0(x, p), perform the same procedure
as the proof of Lemma 1.5 in [12], and obtain the estimate (1.23). Now we shall
complete the proof of Lemma 1.3. We have 0 ≤ uε(t, x) ≤ Ex[

∫ t

0 V (Ys)ds] by (1.21),
and, consequently, standard moment estimates for the solution of the SDE imply that
for each η > 0 there exists δR such that Ex[

∫ t

0 V (Ys)ds] < η for t < 2δR, x ∈ BR.
Take (t1, x1) and (t2, x2) such that

|x1 − x2| + |t1 − t2| < η, |t1 − t2| < δR, (ti, xi) ∈ [0, T ] ×BR, i = 1, 2.

Then, if t1 < δR or t2 < δR, we have

|uε(t1, x1) − uε(t2, x2)| ≤ 2Ex

[∫ 2δR

0
V (Ys)ds

]
≤ 2η.

If t1, t2 > δR, then from the estimates (1.22) and (1.23) it follows that |uε(t1, x1) −
uε(t2, x2)| ≤ c

′
Rη for some constant c

′
R.

Proof of Theorem 1.1. Lemmas 1.1 and 1.2 and the Ascoli–Arzelà theorem imply
that there exists a subsequence {wεk

} of {wε} converging uniformly on each compact
set to a continuous function w(t, x). Moreover, the stability theorem on viscosity
solutions (cf. [4]) asserts that w(t, x) is a viscosity solution of (1.16), since the classical
solution wε(t, x) of (1.12) is obviously that of viscosity sense.

2. Interpretation of the limit.

2.1. Differential games. We are going to characterize the solution w(t, x) of
the limit equation (1.16) as the lower value function of a differential game. To this
end we confine ourselves to the case where Z = RN1 :

ci(x, z) = Bi
k(x)zk, φ(x, z) =

1
2
Sijz

izj ,(2.1)

where (Sij) is a symmetric smooth matrix such that

Sij(x)ξiξj ≥ µ|ξ|2 ∀ξ ∈ RN , µ > 0,(2.2)

and (Bi
k(x)) is a bounded and smooth N × N1 matrix. We assume also (1.4)–(1.6),

(1.8), and (1.10). In this case Q0(x, p) has the following form:

Q0(x, p) =
θ

2
aijpipj + inf

z∈RN

{
Bi

kz
kpi +

1
2
Sijz

izj

}
(2.3)

=
θ

2
aijpipj − 1

2
(BS−1B∗)ijpipj ,

where B∗ stands for the transposed matrix of B. Then equation (1.16) reads
∂w

∂t
+ biDiw − 1

2
(BS−1B∗ − θa)ijDiwDjw + V = 0,

w(T, x) = 0.
(2.4)
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Moreover, we assume that

k2a
ijpipj ≤ (BS−1B∗ − θa)ijpipj ∀p ∈ RN .(2.5)

Then conditions (1.14) and (1.15) are satisfied under these assumptions. Thus we see
that Theorem 1.1 applies to the present case. Following Varaiya [21], Roxin [19], and
Elliot and Kalton [6], we shall formulate a differential game. Let At be the set of all
measurable functions z1(·) : [0, t] RN such that∫ t

0
|z1(s)|2 ds < ∞,(2.6)

and let Bt be the one of all measurable functions z2(·) : [0, t]  RN1 satisfying
(2.6) replaced by z2(s). Let U be a map U : At  Bt such that whenever for each
0 ≤ σ ≤ t and z1, z̃1 ∈ At, z1(s) = z̃1(s) almost everywhere (a.e.) on 0 ≤ s ≤ σ, then
(Uz1)(s) = (Uz̃1)(s) a.e. on 0 ≤ s ≤ σ. The totality of such maps is denoted by Γt.
We consider the criterion

I(t, x;T ; z1, Uz1) =
∫ T−t

0
Ψ(X(s), z1(s), (Uz1)(s))ds(2.7)

for z1 ∈ AT−t and U ∈ ΓT−t, where

Ψ(x, z1, z2) = − 1
2θ
z∗
1a

−1(x)z1 +
1
2
z∗
2S(x)z2 + V (x)(2.8)

and X(s) is the solution of the ordinary differential equation (ODE){
dX(s) = {b(X(s)) + z1(s) +B(X(s))(Uz1)(s)}ds,
X(0) = x.

(2.9)

We define the lower value function w(t, x) by

w(t, x) = inf
U∈ΓT −t

sup
z1∈AT −t

I(t, x;T ; z1, Uz1).(2.10)

We regard Q0(x, p) as

Q0(x, p) = sup
z1∈RN

{
z1 · p− 1

2θ
z∗
1a

−1z1

}
+ inf

z2∈RN1

{
(Bz2) · p+

1
2
z∗
2Sz2

}
(2.11)

and equation (1.16) as the Hamilton–Jacobi equation associated with the differential
game (2.10), where we denote by z1 · p the inner product of z1 and p. Then we have
the following theorem.

THEOREM 2.1. We assume (1.5), (1.6), (1.8), and (1.10). Let w(t, x) be the lower
value function of a differential game defined by (2.10). Then w(t, x) is the unique
nonnegative viscosity solution of equation (2.4).

As a corollary of Theorem 1.1 and 2.1 we have the following.
COROLLARY. Let wε(t, x) be a nonnegative solution of (1.12) with Q0(x, p) defined

by (2.3) whose existence is assured by Theorem 1.0; then wε(t, x) converges uniformly
on each compact set to the lower value function w(t, x) of the differential game defined
by (2.10) as ε tends to zero.
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2.2. Finiteness of the lower value function. We first prove the following
lemma.

LEMMA 2.1. The lower value function w(t, x) defined by (2.10) has a nonnegative
finite value.

Proof. Note that V (x) ≤ M(1 + |x|2)m by assumption (1.6), and set

χ(x) = |x|2l,(2.12)

where l > max{m+1
2 , 1}. Then there exists a constant c such that

b · ∇χ− 1
2
(∇χ)∗(BS−1B∗ − θa)∇χ+ V ≤ c ∀x ∈ RN(2.13)

since

−1
2
(∇χ)∗(BS−1B∗ − θa)∇χ ≤ −k2

2
(∇χ)∗a∇χ ≤ −2k2νl

2|x|4l−2

because of (2.5) and (1.10). Therefore, for each z1 ∈ RN ,

b · ∇χ+ z1 · ∇χ− 1
2θ
z∗
1a

−1z1 − 1
2
(∇χ)∗BS−1B∗∇χ+ V ≤ c.(2.14)

For each control z1(·) ∈ AT−t we consider the ODE{
dX(s) = {b(X(s)) + z1(s) −BS−1B∗∇χ(X(s))}ds,
X(0) = x.

(2.15)

Since b and BS−1B∗∇χ are smooth, (2.15) has a local solution X(s). We shall see
that the solution is a global one up to T − t and that Û defined by

Ûz1(s) = −S−1B∗∇χ(X(s))(2.16)

belongs to ΓT−t. Set

ζR = inf{s : X(s) /∈ BR}(2.17)

for the local solution X(s) of (2.15). Then

χ(X(s ∧ ζR)) − χ(x)(2.18)

=
∫ s∧ζR

0
{b · ∇χ+ z1(τ) · ∇χ− (∇χ)∗BS−1B∗∇χ}(Xτ )dτ

≤
∫ s∧ζR

0

(
|b||∇χ| +

1
2θ
z∗
1a

−1z1

)
dτ

−
∫ s∧ζR

0

{
1
2
(∇χ)∗(BS−1B∗ − θa)∇χ+

1
2
(∇χ)∗BS−1B∗∇χ

}
(X(τ))dτ

≤
∫ s∧ζR

0

(
c1(1 + |Xτ |)|∇χ|(X(τ)) +

ν

2θ
|z1(τ)|2

)
dτ

− ν

(
k2 +

θ

2

)∫ s∧ζR

0
|∇χ|2(X(τ))dτ
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for some positive constant c1. Thus we obtain the following inequality

c2

∫ s∧ζR

0
|X(τ)|4l−2dτ ≤ χ(x) +

ν

2θ

∫ s

0
|z1(τ)|2dτ + c3s(2.19)

for some positive constants c2 and c3, from which∫ T−t

0
|X(τ)|4l−2dτ < ∞(2.20)

follows, by letting R tend to ∞ and s tend to T − t, since z1(·) ∈ AT−t. It implies
that

∫ T−t

0 |(Ûz1)(s)|2ds < ∞ and that (2.15) has a global solution up to T − t. Now
from (2.14) it follows that

χ(X(T − t)) − χ(x)(2.21)

=
∫ T−t

0
{b · ∇χ+ z1(s) · ∇χ− (∇χ)∗BS−1B∗∇χ}(X(s))ds

≤
∫ T−t

0

1
2θ
z∗
1(s)a−1z1(s) − 1

2
(∇χ)∗BS−1B∗∇χ(X(s))ds

−
∫ T−t

0
V (X(s))ds+ c(T − t),

which implies that∫ T−t

0
Ψ(X(s), z1(s), Ûz1(s))ds ≤ χ(x) + c(T − t)(2.22)

for each z1(·) ∈ AT−t. Hence we obtain our present lemma, since w(t, x) is obviously
nonnegative.

2.3. Dynamic programming principle. We shall prove the following lemma.
LEMMA 2.2. For each 0 ≤ t0 < t < T , x ∈ RN , and R > 0,

w(t0, x0)

= inf
U∈Γt−t0

sup
z1∈At−t0

{∫ tR−t0

0
Ψ(X(s), z1(s), Uz1(s))ds + w(tR, X(tR − t0))

}
,

(2.23)

where τR = inf{s; |X(s) − x0| ≥ R} and tR = t0 + (t− t0) ∧ τR.
Proof. For each δ there exists U ∈ ΓT−t0 such that

sup
z1∈AT −t0

I(t0, x0;T ; z1, Uz1) ≤ w(t0, x0) + δ.(2.24)

Note that w(t0, x0) < ∞ for each (t0, x0) ∈ [0, T ] × RN by Lemma 2.1. Denote the
right-hand side of (2.23) by w̃(t0, x0); then by definition for each U ∈ ΓT−t0 satisfying
(2.24) we have

w̃(t0, x0) ≤ sup
z1∈At−t0

{∫ tR−t0

0
Ψ(X(s), z1(s), Uz1(s))ds + w(tR, X(tR − t0))

}
,

(2.25)
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and consequently there exists ẑ1 ∈ At−t0 such that

w̃(t0, x0) ≤
∫ tR−t0

0
Ψ(X(s), ẑ1(s), U ẑ1(s))ds + w(tR, X(tR − t0)) + δ.(2.26)

For each z̃1 ∈ AT−tR
define z1 ∈ AT−t0 by

z1(s) =

{
ẑ1(s), 0 ≤ s ≤ (t− t0) ∧ τR,
z̃1(s− (t− t0) ∧ τR), (t− t0) ∧ τR ≤ s ≤ T − t0,

(2.27)

and then define Ũ by

Ũ z̃1(s) = Uz1((t− t0) ∧ τR + s), 0 ≤ s ≤ T − tR.(2.28)

Then

w(tR, X(tR − t0)) ≤ sup
z̃1∈AT −tR

∫ T−tR

0
Ψ(X̃(s), z̃1(s), Ũ z̃1(s))ds,(2.29)

where X̃(s) is governed by the ODE{
dX̃(s) = (b(X̃(s)) + z̃1(s) +BŨz̃1(s))ds,
X̃(0) = X(tR − t0)

(2.30)

and X(s) is the solution of{
dX(s) = (b(X(s)) + z1(s) +BUz1(s))ds, 0 ≤ s ≤ t− t0,

X(0) = x0.
(2.31)

The right-hand side of (2.29) is finite because of (2.24) and Lemma 2.1, and there
exists z̃0

1 ∈ AT−tR
such that

w(tR, X(tR − t0)) ≤
∫ T−tR

0
Ψ(X̃(s), z̃0

1(s), Ũ z̃0
1(s))ds+ δ.(2.32)

Define z0
1 ∈ AT−t0 by

z0
1(s) =

{̂
z1(s), 0 ≤ s ≤ (t− t0) ∧ τR,
z̃0
1(s− (t− t0) ∧ τR), (t− t0) ∧ τR ≤ s ≤ T − t0.

Then from (2.26) and (2.32) it follows that

w̃(t0, x0) ≤
∫ T−t0

0
Ψ(X0(s), z0

1(s), Uz0
1(s))ds+ 2δ,(2.33)

where X0(s) denotes the trajectory associated with z0
1 and Uz0

1 , and so (2.24) implies
that

w̃(t0, x0) ≤ w(t0, x0) + 3δ(2.34)

for each δ > 0. Hence w̃(t0, x0) ≤ w(t0, x0).
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Now let us prove the converse inequality. For each (t1, x) ∈ [t0, T ]×RN and δ > 0
there exists U (t1,x) ∈ ΓT−t1 such that

sup
z̃1∈AT −t1

I(t1, x;T ; z̃1, U (t1,x)z̃1) ≤ w(t1, x) + δ.(2.35)

Furthermore, there exists U0 ∈ Γt−t0 such that

sup
z1∈At−t0

{∫ tR−t0

0
Ψ(X(s), z1(s), U0z1(s))ds + w(tR, X(tR − t0))

}
≤ w̃(t0, x0) + δ.

(2.36)

For ẑ1 ∈ AT−t0 define z1 and z̃1 by

z1(s) = ẑ1(s), 0 ≤ s ≤ t− t0,(2.37)

and

z̃1(s) = ẑ1((t− t0) ∧ τR + s), 0 ≤ s ≤ T − tR,(2.38)

where τR is defined by τR = inf{s; |X(s) − x0| ≥ R} and X(s) is a solution of the
ODE {

dX(s) = (b(X(s)) + ẑ1(s) +BU0ẑ1(s))ds,
X(0) = x0

(2.39)

for U0 ∈ Γt−t0 . Define U ∈ ΓT−t0 by

Uẑ1(s) =

{
U0z1(s), 0 ≤ s ≤ tR − t0,

U (tR,X(tR−t0))z̃1(s− (tR − t0)), tR − t0 ≤ s ≤ T − t0.
(2.40)

In (2.35) we set t1 = tR and x = X((t− t0) ∧ τR); then

sup
z̃1∈AT −tR

∫ T−tR

0
Ψ(X̃(s), z̃1(s), U (tR,x)z̃1(s))ds ≤ w(tR, x) + δ,(2.41)

where x = X(tR − t0) and X̃(s) is a solution of{
dX̃(s) = (b(X̃(s)) + z̃1(s) +BU (tR,x)z̃1(s))ds,
X̃(0) = X((t− t0) ∧ τR).

(2.42)

Define X̂(s) by

X̂(s) =

{
X(s), 0 ≤ s ≤ tR − t0,

X̃(s− (tR − t0)) tR − t0 ≤ s ≤ T − t0.
(2.43)

Then (2.36) and (2.41) imply that

w̃(t0, x0) + δ ≥
∫ T−t0

0
Ψ(X̂(s), ẑ1(s), U ẑ1(s))ds− δ(2.44)

for each δ, and therefore we obtain

w̃(t0, x0) + 2δ ≥ sup
ẑ1∈AT −t0

∫ T−t0

0
Ψ(X̂(s), ẑ1(s), U ẑ1(s))ds(2.45)

≥ w(t0, x0)

for all δ > 0. Hence, the other inequality w̃(t0, x0) ≥ w(t0, x0) holds.
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2.4. Continuity of the lower value function. Let AT−t(L) be a set defined
by

AT−t(L) =

{
z1 ∈ AT−t :

∫ T−t

0
|z1(s)|2ds ≤ L

}
;(2.46)

then we have the following lemma.
LEMMA 2.3. For each R there exists a constant L = L(R) such that

w(t, x) = inf
U∈ΓT −t

sup
z1∈AT −t(L)

∫ T−t

0
Ψ(X(s), z1(s), Uz1(s))ds(2.47)

for x ∈ BR, 0 ≤ t ≤ T .
Proof. For each control z1 ∈ AT−t, we consider the solution of the ODE (2.15)

and define Û by (2.16). Then we have

χ(X(T − t)) − χ(x)(2.48)

≤
∫ T−t

0

{
c1(1 + |X(s)|)|∇χ|(X(s)) +

1
2θ
z∗
1a

−1z1 − 1
2
(Ûz1)∗SÛz1

}
ds

− 1
2

∫ T−t

0
(∇χ)∗(BS−1B∗ − θa)∇χ(X(s))ds

≤
∫ T−t

0

{
1
2θ
z∗
1a

−1z1 − 1
2
(Ûz1)∗SÛz1

}
ds

− k′

2

∫ T−t

0
|X(s)|4l−2ds+ c′(T − t)

for some positive constants k′, c′ > 0. Note that∫ T−t

0
V (X(s))ds ≤M

∫ T−t

0
(1 + |X(s)|2)mds

≤c′′(T − t) +
k′′

2

∫ T−t

0
|X(s)|4l−2ds

hold for some constants c′′ > 0 and 0 < k′′ < k′ since l > m+1
2 . Therefore, from

(2.48) it follows that∫ T−t

0

{
− 1

2θ
z∗
1a

−1z1 +
1
2
(Û)∗SÛz1 + V (X(s))

}
ds

≤ χ(x) + (c′ + c′′)(T − t) − k′ − k′′

2

∫ T−t

0
|X(s)|4l−2ds.

In case

χ(x) + (c′ + c′′)(T − t) <
k′ − k′′

2

∫ T−t

0
|X(s)|4l−2ds,(2.49)

we have ∫ T−t

0
Ψ(X(s), z1(s), Ûz1(s))ds < 0.(2.50)
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On the other hand, if (2.49) does not hold, then setting λ = ‖BS−1B∗‖∫ T−t

0
Ψ(X(s), z1(s), Ûz1(s))ds(2.51)

≤
∫ T−t

0

{
− 1

2θν
|z1(s)|2 +

(
4l2λ+

k′′

2

)
|X(s)|4l−2ds+ c′′(T − t)

}
≤ − 1

2θ

∫ T−t

0
|z1(s)|2ds+

(8l2λ+ k′′)
k′ − k′′ (χ(x) + (c′ + c′′)(T − t)) + c′′(T − t).

Therefore, if we take − 1
2θ

∫ T−t

0 |z1(s)|2ds so large that the right-hand side of (2.51)
becomes negative for all x ∈ BR, then (2.50) always holds. Thus we obtain our present
lemma, since w(t, x) ≥ 0.

Let K = K(R) be a constant defined by

K =
1
µ

sup
x∈BR

(χ(x) + cT ),(2.52)

where c is the constant that appeared in (2.13). Define a set ΓT−t(K) by

ΓT−t(K) =

{
U ∈ ΓT−t : sup

z1∈AT −t(L)

∫ T−t

0

(
1
2
|Uz1(s)|2 − ν

2µθ
|z1(s)|2

)
ds ≤ K

}
.

(2.53)

Then we have the following lemma.
LEMMA 2.4. For x ∈ BR, 0 ≤ t ≤ T ,

w(t, x) = inf
U∈ΓT −t(K)

sup
z1∈AT −t(L)

∫ T−t

0
Ψ(X(s), z1(s), Uz1(s))ds.(2.54)

Proof. If U ∈ ΓT−t ∩ ΓT−t(K)c, then there exists z1 ∈ AT−t(L) such that∫ T−t

0

{
1
2
|Uz1(s)|2 − ν

2µθ
|z1(s)|2

}
ds >K(R)(2.55)

≥ 1
µ

(χ(x) + cT ).

Therefore ∫ T−t

0
Ψ(X(s), z1(s), Uz1(s))ds(2.56)

≥ − ν

2θ

∫ T−t

0
|z1(s)|2ds+

µ

2

∫ T−t

0
|Uz1(s)|2ds

>χ(x) + cT.

Since w(t, x) ≤ χ(x) + c(T − t) by (2.22) we obtain our lemma.
Now we can see the continuity of the lower value function.
LEMMA 2.5. The lower value function w(t, x) is Hölder continuous on [0, T ] ×

RN .
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Proof. Let us take x ∈ BR, z1 ∈ AT−t(L), and U ∈ ΓT−t(K) and consider the
following equation: {

dX(s) = (b(X(s)) + z1(s) +BUz1(s))ds,
X(0) = x.

Then we have

|X(s) − x| ≤ M

∫ s

0
|X(s) − x|ds+ c1s+

∫ s

0
(|z1(s)| + |BUz1(s)|)ds

≤ M

∫ s

0
|X(s) − x|ds+ c2s

1
2 , 0 ≤ s ≤ T − t,

for some positive constants c1 and c2 since∫ T−t

0
|Uz1(s)|2ds ≤ 2K +

ν

µθ

∫ T−t

0
|z1(s)|2ds ≤ 2K +

νL

µθ
.

Standard arguments using the Gronwall inequality imply that

|X(s) − x| ≤ c3s
1
2 , 0 ≤ s ≤ T − t.(2.57)

Let us choose x1, x2 ∈ BR, 0 ≤ t1 < t2 ≤ T , such that |x1| + c3|t2 − t1| 1
2 < R. For

each ε > 0 there exists Û ∈ ΓT−t2(K) such that

w(t2, x2) + ε > sup
z̃1∈AT −t2

I(t2, x2;T ; z̃1, Û z̃1).(2.58)

For each z1 ∈ AT−t1(L) define ẑ1 ∈ AT−t2(L) by

ẑ1(s) = z1(t2 − t1 + s), 0 ≤ s ≤ T − t2,

and for some y0 ∈ RN1 define U ∈ ΓT−t1(K) by

Uz1(s) =

{
y0, 0 ≤ s ≤ t2 − t1,

Û ẑ1(s− (t2 − t1)), t2 − t1 ≤ s ≤ T − t1.

Let X1(s) be the solution of{
dX1(s) = (b(X1(s)) + z1(s) +BUz1(s))ds, 0 ≤ s ≤ T − t1,

X1(0) = x1,

and let X2(s) be the solution of{
dX2(s) = (b(X2(s)) + ẑ1(s) +BÛẑ1(s))ds, 0 ≤ s ≤ T − t2,

X2(0) = x2.

Then we have

|X2(s) −X1(t2 − t1 + s)| ≤ c4|x2 −X1(t2 − t1)|(2.59)

≤ c5(|x2 − x1| + |t2 − t1| 1
2 ), 0 ≤ s ≤ T − t2,
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because ẑ1(s) = z1(t2 − t1 + s) and Û ẑ1(s) = Uz1(t2 − t1 + s) for 0 ≤ s ≤ T − t2.
Since for each ε > 0 there exists z1 ∈ AT−t(L) such that

w(t1, x1) ≤ I(t1, x1;T, z1, Uz1) + ε,

we obtain by (2.58)

w(t1, x1)−w(t2, x2) ≤ I(t1, x1;T ; z1, Uz1) − I(t2, x2;T ; ẑ1, Û ẑ1) + 2ε

=
∫ T−t2

0
{Ψ(X1(t2 − t1 + s), ẑ1(s), Û ẑ1(s)) − Ψ(X2(s), ẑ1(s), Û ẑ1(s))}ds

+
∫ t2−t1

0
Ψ(X1(s), z1(s), Uz1(s))ds+ 2ε

≤ c6(|x2 − x1| + |t2 − t1| 1
2 ) + 2ε.

On the other hand, for each ε > 0 there exists U ∈ ΓT−t1(K) such that

w(t1, x1) + ε > sup
z1∈AT −t1

I(t1, x1;T ; z1, Uz1).(2.60)

For each ẑ1 ∈ AT−t2 and some z0 ∈ RN define z1 ∈ AT−t1 by

z1(s) =

{
z0, 0 ≤ s ≤ t2 − t1,

ẑ1(s− (t2 − t1)), t2 − t1 ≤ s ≤ T − t1.

Now define Û ∈ ΓT−t2 by

Û ẑ1(s) = (Uz1)(s+ t2 − t1).

Let X1(s) be the solution of{
dX1(s) = (b(X1(s)) + z1(s) +BUz1(s))ds, 0 ≤ s ≤ T − t1,

X1(0) = x1,

and let X2(s) be the solution of{
dX2(s) = (b(X2(s)) + ẑ1(s) +BÛẑ1(s))ds, 0 ≤ s ≤ T − t2,

X2(0) = x2.

Then we obtain (2.59) for these X1(s) and X2(s) in the same way as above. Since for
each ε > 0 there exists ẑ1 ∈ AT−t2 such that

w(t2, x2) ≤ I(t2, x2;T : ẑ1, Û ẑ1) + ε,

we have by (2.60)

w(t2, x2) − w(t1, x1) ≤ I(t2, x2;T ; ẑ1, Ûz1) − I(t1, x1;T ; z1, Uz1) + 2ε

≤
∫ T−t2

0
{Ψ(X2(s), ẑ1(s), Uz1(s)) − Ψ(X1(t2 − t1 + s), ẑ1(s), Û ẑ1(s))}ds

−
∫ t2−t1

0
Ψ(X1(s), z1(s), Uz1(s))ds+ 2ε

≤ c7(|x2 − x1| + |t2 − t1| 1
2 ) + 2ε.

Thus we see that w(t, x) is Hölder continuous.
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2.5. Viscosity solution.
PROPOSITION 2.6. The lower value function w(t, x) defined by (2.10) is a viscosity

solution of (2.4).
Proof. Let φ ∈ C∞((0, T ) × RN ) be a function such that w − φ attains its

maximum at (t0, x0). Then we shall prove that

∂φ

∂t
(t0, x0) +H(x0,∇φ(t0, x0)) ≥ 0,(2.61)

where H(x, p) = b · p+Q0(x, p) + V (x), p ∈ RN . Suppose that (2.61) does not hold.
Then there exists δ > 0 such that

∂φ

∂t
(t0, x0) +H(x0,∇φ(t0, x0)) ≤ −δ < 0,

and so in a neighborhood G of (t0, x0),

∂φ

∂t
(t0 + s, x) +H(x,∇φ(t0 + s, x)) ≤ −δ

2
< 0, (t0 + s, x) ∈ G.(2.62)

Therefore, for each z1 ∈ RN ,

∂φ

∂t
+ b · ∇φ+ z1 · ∇φ− 1

2θ
z∗
1a

−1z1 − 1
2
(∇φ)∗BS−1B∗∇φ+ V

≤ − δ

2
− 1

2θ
(z1 − θa∇φ)∗a−1(z1 − θa∇φ) < 0, (t0 + s, x) ∈ G.

(2.63)

Let X(s) be the solution of the ODE{
dX(s) = (b(X(s)) + z1(s) −BS−1B∗∇φ(t0 + s,X(s)))ds,
X(0) = x0,

(2.64)

and set

Uz1(s) = −S−1B∗∇φ(t0 + s,X(s))(2.65)

and

f(x, z1, z2) = b(x) + z1 +Bz2, z1 ∈ RN , z2 ∈ RN
1 .(2.66)

Then by (2.63) we have

∂φ

∂t
(t0 + s,X(s)) + f(X(s), z1(s), Uz1(s)) · ∇φ(t0 + s,X(s))(2.67)

+ Ψ(X(s), z1(s), Uz1(s))

≤ − 1
2θ

(z1(s) − θa∇φ(t0 + s,X(s)))∗a−1(z1(s) − θa∇φ(t0 + s,X(s))) − δ

2
,

(t0 + s, x) ∈ G.

Take t and R such that G0 = [t0, t) ×BR(x0) ⊂ G, and set

ξ(s, x) =
1
2
|x− x0|2 + (s− t0)(2.68)
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and

τ = inf{s : (t0 + s,X(s)) /∈ G0} ≡ (t− t0) ∧ τR.(2.69)

Then for each z1(s)

ξ(t0 + τ,X(τ)) =
∫ τ

0

{
∂ξ

∂s
(t0 + s,X(s)) + f(X, z1, Uz1) · ∇ξ(t0 + s,X(s))

}
ds

= τ +
∫ τ

0
(z1(s) − θa∇φ) · ∇ξ(t0 + s,X(s))ds

+
∫ τ

0
(b+ θa∇φ−BS−1B∗∇φ) · ∇ξ(t0 + s,X(s))ds

≤ c1τ +
1
2θ

∫ τ

0
(z1(s) − θa∇φ)∗a−1(z1(s) − θa∇φ)(t0 + s,X(s))ds

+
θ

2

∫ τ

0
(∇ξ)∗a∇ξ(t0 + s,X(s))ds

≤ c2

(
δ

2
τ +

1
2θ

∫ τ

0
(z1(s) − θa∇φ)∗a−1(z1(s) − θa∇φ)(t0 + s,X(s))ds

)
for some positive constants c1 and c2 since b, a, ∇φ, BS−1B∗, and ∇ξ are bounded
in G. Now from ξ(t0 + τ,X(τ)) ≥ (t− t0) ∧ R2

2 we obtain

c−1
2 (t− t0) ∧ R2

2
≤ δ

2
τ +

1
2θ

∫ τ

0
(z1(s) − θa∇φ)∗a−1(z1(s) − θa∇φ)(t0 + s,X(s))ds

(2.70)

for each z1(s), which implies that

0 < inf
z1∈At−t0

[
δ

2
τ +

1
2θ

∫ τ

0
(z1(s) − θa∇φ)∗a−1(z1(s) − θa∇φ)(t0 + s,X(s))ds

]
.

(2.71)

Thus from (2.67) it follows that

sup
z1∈At−t0

∫ τ

0

{
∂φ

∂t
+ f(X, z1, Uz1) · ∇φ(t0 + s,X(s)) + Ψ(X, z1, Uz1)

}
ds < 0.

(2.72)

Hence

inf
U∈Γt−t0

sup
z1∈At−t0

∫ τ

0

{
∂φ

∂s
+ f(X, z1, Uz1) · ∇φ+ Ψ(X, z1, Uz1)

}
ds < 0.(2.73)

On the other hand, w − φ attains its local maximum at (t0, x0), and we have

w(t0, x0) − φ(t0, x0) ≥ w(t0 + σ,X(σ)) − φ(t0 + σ,X(σ))(2.74)

for sufficiently small σ. Therefore, by (2.23) in section 2.3,

inf
U∈Γt−t0

sup
z1∈At−t0

[∫ τ

0
Ψ(X, z1, Uz1)ds+ φ(t0 + τ,X(τ)) − φ(t0, x0)

]
≥ 0,(2.75)
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which means

inf
U∈Γt−t0

sup
z1∈At−t0

∫ τ

0

{
∂φ

∂s
+ f(X, z1, Uz1) · ∇φ+ Ψ(X, z1, Uz1)

}
ds ≥ 0.(2.76)

It contradicts (2.73).
On the other hand, let φ ∈ C∞((0, T )×RN ) be a function such that w−φ attains

its local minimum at (t0, x0). Then we shall prove that

∂φ

∂t
(t0, x0) +H(x0,∇φ(t0, x0)) ≤ 0.(2.77)

Suppose that (2.77) fails to hold. Then there exists δ > 0 such that

∂φ

∂t
(t0, x0) +H(x0,∇φ(t0, x0)) > δ > 0.(2.78)

Then in a neighborhood G of (t0, x0),

∂φ

∂t
(t0 + s, x) +H(x,∇φ(t0 + s, x)) >

δ

2
, (t0 + s, x) ∈ G.(2.79)

Since

sup
z1∈RN

{
z1 · ∇φ− 1

2θ
z∗
1a

−1z1

}
=
θ

2
(∇φ)∗a∇φ,(2.80)

inf
z2∈RN1

{
(Bz2) · ∇φ+

z∗
2Sz2
2

}
= −1

2
(∇φ)∗BS−1B∗∇φ,(2.81)

and θ
2 (∇φ)∗a∇φ is continuous, there exists ẑ1 ∈ RN and a neighborhood Ĝ ⊂ G of

(t0, x0) such that

∂φ

∂t
+ b · ∇φ+ ẑ1 · ∇φ− 1

2θ
ẑ∗
1a

−1ẑ1 + (Bz2)∇̇φ+
1
2
z∗
2Sz2 + V

≥δ

4
+

1
2
(z2 + S−1B∗∇φ)∗S(z2 + S−1B∗∇φ) > 0 in Ĝ

(2.82)

for each z2 ∈ RN1 . Take a control ẑ1(s) ≡ ẑ1 and consider the ODE{
dX̂(s) = (b(X̂(s)) + ẑ1 +BUẑ1)ds,
X̂(0) = x0

(2.83)

for U ∈ Γt−t0 . Then

∂φ

∂t
+ f(X̂, ẑ1, U ẑ1) · ∇φ+ Ψ(X̂, ẑ1, U ẑ1)(2.84)

≥δ

4
+

1
2
(Uẑ1 + S−1B∗∇φ)∗S(Uẑ1 + S−1B∗∇φ), (t0 + s, X̂(s)) ∈ Ĝ

for each U ∈ Γt−t0 . Define G0 = [t0, t) × BR(x0) ⊂ Ĝ, and let τ = inf{s : (t0 +
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s, X̂(s)) /∈ G0}. Take a function ξ defined by (2.68); then

ξ(t0 + τ, X̂(τ)) =
∫ τ

0

{
∂ξ

∂s
+ f(X̂, ẑ1, U ẑ1) · ∇ξ(t0 + s, X̂(s))

}
ds

(2.85)

=
∫ τ

0
{1 + b · ∇ξ + ẑ1 · ∇ξ + (BUẑ1) · ∇ξ}ds

≤ c1

(
τ +

∫ τ

0
|Uẑ1 + S−1B∗∇φ|ds

)
≤ c2

(
δ

4
τ +

1
2

∫ τ

0
(Uẑ1 + S−1B∗∇φ)∗S(Uẑ1 + S−1B∗∇φ)ds

)
for some positive constants c1 and c2. Thus we see in the same way as above

inf
U∈Γt−t0

(
δ

4
τ +

1
2

∫ τ

0
(Uẑ1 + S−1B∗∇φ)∗S(Uẑ1 + S−1B∗∇φ)ds

)
(2.86)

> c−1
2 (t− t0) ∧ R2

2
> 0.

Hence,

inf
U∈Γt−t0

sup
z1∈At−t0

∫ τ

0

{
∂φ

∂s
+ f(X, z1, Uz1) · ∇φ+ Ψ(X, z1, Uz1)

}
ds > 0.(2.87)

Since w − φ attains its local minimum at (t0, x0),

w(t0, x0) − φ(t0, x0) ≤ w(t0 + σ,X(σ)) − φ(t0 + σ,X(σ))

for sufficiently small σ. Therefore from (2.23) it follows that

0 ≥ inf
U∈Γt−t0

sup
z1∈At−t0

[∫ τ

0
Ψ(X, z1, Uz1)ds+ φ(t0 + τ,X(τ)) − φ(t0, x0)

]
≥ 0

= inf
U∈Γt−t0

sup
z1∈At−t0

∫ τ

0

{
∂φ

∂s
+ f(X, z1, Uz1) · ∇φ+ Ψ(X, z1, Uz1)

}
ds,

which contradicts (2.87).

2.6. Uniqueness of the positive solution. Let us set

Λij = (BS−1B∗ − θa)ij ;(2.88)

then there exist positive constants k1, k2 > 0, such that

k2|ξ|2 ≤ Λijξiξj ≤ k1|ξ|2 ∀ξ ∈ RN(2.89)

by our assumptions. Equation (2.4) reads
∂w

∂t
+ b · ∇w − 1

2
(∇w)∗Λ∇w + V (x) = 0,

w(T, x) = 0.
(2.90)
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Let w(t, x) be a nonnegative viscosity solution of (2.90), and set

wR(t, x) = inf
z∈AT −t

[∫ t̃R−t

0

{
1
2
z(s)∗Λ−1z(s) + V (X(s))

}
ds+ w(t̃R, X(t̃R − t))

]
,

(2.91)

where t̃R = t+ (T − t) ∧ ζR and X(s) is the solution of{
dX(s) = (b(X(s)) + z(s))ds,
X(0) = x

(2.92)

for z ∈ AT−t.
LEMMA 2.7. For each R wR(t, x) = w(t, x).
Proof. It is easy to see that wR is a viscosity solution of the Dirichlet problem

∂wR

∂t
+ b · ∇w − 1

2
(∇wR)∗Λ∇wR + V = 0 in (0, T ) ×BR,

wR(t, x) = w(t, x), x ∈ ∂BR, 0 < t < T,

wR(T, x) = 0,

(2.93)

and the proof is seen in Fleming and Soner [12, cf. Theorems 7.1 and 16.1, Chapter
II]. Since it is known that the viscosity solution of (2.93) is unique (cf. [4]), we see
that wR(t, x) = w(t, x) for each R.

LEMMA 2.8. Let X(s) be a solution of (2.92); then

|X(s)|2 ≤ c1|x|2 + c2|T − t| + c3

∫ s

0
|z(ζ)|2dζ, 0 ≤ s ≤ T − t,(2.94)

where c1, c2, and c3 are positive constants.
Proof.

|X(s)|2 − |X(0)|2 = 2
∫ s

0
{b(X(ζ)) ·X(ζ) + z(ζ) ·X(ζ)}dζ(2.95)

≤ 2M
∫ s

0
(1 + |X(ζ)|)|X(ζ)|dζ +

∫ s

0
(|z(ζ)|2 + |X(ζ)|2)dζ

≤ Ms+
∫ s

0
|z(ζ)|2dζ + (3M + 1)

∫ s

0
|X(ζ)|2dζ.

Set m(s) = |X(s)|; then standard arguments using the Gronwall inequality for m(s)
imply our present lemma.

PROPOSITION 2.9. A nonnegative viscosity solution of (2.90) is unique.
Proof. By Lemma 2.7 for each R

w(t, x) = inf
z∈AT −t

[∫ t̃R−t

0

{
1
2
z(s)∗Λz(s) + V (X(s))

}
ds+ w(t̃R, X(t̃R − t))

]
.

(2.96)

Fix (t, x) and take R sufficiently large such that

w(t, x) <
1

2k1c3
(R2 − c1|x|2 − c2(T − t)).
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Suppose that sup0≤s≤T−t |X(s)| ≥ R; then by Lemma 2.8

c−1
3 (R2 − c1|x|2 − c2(T − t)) ≤

∫ ζR

0
|z(s)|2ds

and consequently∫ t̃R−t

0

{
1
2
z(s)∗Λ−1z(s) + V (X(s))

}
ds+ w(t̃R, X(t̃R − t))(2.97)

≥
∫ t̃R−t

0

1
2
z(s)∗Λ−1z(s) ≥ 1

2k1c3
(R2 − c1|x|2 − c2(T − t))

> w(t, x).

Thus we have

w(t, x) = inf
z∈AT −t

∫ T−t

0

{
1
2
z(s)∗Λ−1z(s) + V (X(s))

}
ds,(2.98)

which implies uniqueness of a viscosity solution of (2.90).
Theorem 2.1 is a direct consequence of Propositions 2.6 and 2.9.
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Abstract. The concept of estimation algebra introduced independently by Brockett and Mitter
has been playing a fundamental role in the investigation of finite-dimensional nonlinear filters. Mitter
conjectured that the observation terms hi(x) are polynomials of degree one if the corresponding
estimation algebra is finite dimensional. Chiou, Leung, and the present authors classify all finite-
dimensional estimation algebra of maximal rank with dimension of the state space less than or equal
to three. In this paper, we prove the Mitter conjecture for finite-dimensional estimation algebra of
maximal rank with arbitrary state space dimension. In the course of our proof, we show that the
Ω = ( ∂fj

∂xi
− ∂fi

∂xj
) matrix, where f denotes the drift term, has special linear structure which generalizes

our previous result in [J. Chen and S. S.-T. Yau, Math. Control Signals Systems, 9 (1996), to appear].
We also give a structure theorem for η =

∑n
i=1

∂fi
∂xi

+
∑n

i=1 f2
i +

∑m
i=1 h2

i .

Key words. finite-dimensional nonlinear filter, Mitter conjecture, estimation algebras

AMS subject classifications. 17B30, 35J15, 60G35, 93E11

PII. S0363012994272836

1. Introduction. The idea of using estimation algebras to construct finite-
dimensional nonlinear filters was first proposed in Brockett and Clark [Br–Cl], Brock-
ett [Br], and Mitter [Mi]. The concept of estimation algebras has proved to be an
invaluable tool in the study of nonlinear filtering problems. In 1983, Brockett pro-
posed classifying all finite-dimensional estimation algebras. As a first step to attack
this problem, Mitter conjectured that the observation terms hi(x) are affine polyno-
mials. In [Ch2–Ya], Chiou and Yau first introduced the concept of estimation algebra
of maximal rank. The purpose of this paper is to show that Mitter conjecture is true
for all finite-dimensional estimation algebras of maximal rank. In [Wo], the concept
of Ω is introduced, defined as the matrix whose (i, j) entry is ∂fj

∂xi
− ∂fi

∂xj
, where f is the

drift term of the state evolution equation. Recently, Yau [Ya] has studied a filtering
system such that all entries of Ω are constants. He was able to classify all finite-
dimensional estimation algebras of maximal rank and proved Mitter conjecture for
such a filtering system. If the dimension of the state space is two or three, then Chiou
and Yau [Ch2–Ya] and Chen, Leung, and Yau [C–L–Y] have shown, respectively, that
all entries of Ω are constants as long as the estimation algebra is of maximal rank
and finite dimensional. Thus finite-dimensional estimation algebra of maximal rank
is completely classified if the dimension of the state space is at most three.

In [Ch1–Ya], we have shown that Ω is an affine matrix in the sense that every entry
in Ω is an affine polynomial if the estimation algebra is of maximal rank and finite-
dimensional. This is a fundamental step in classifying finite-dimensional estimation
of maximal rank. In fact we proved that Ω has a special affine structure. The purpose
of this paper is to give affirmative solution to Mitter conjecture for finite-dimensional
estimation algebra of maximal rank. The following is our main theorem.
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MAIN THEOREM. Let E be a finite-dimensional estimation algebra of maximal
rank. Let k be the quadratic rank of E (cf. Definition 2.2 below). Then

(1) the observation terms hi(x), 1 ≤ i ≤ m, are affine polynomials.
(2) (a) ωij, for 1 ≤ i ≤ k or 1 ≤ j ≤ k, are constants

(b) ωij, for k + 1 ≤ i, j ≤ n, are degree-one polynomials in xk+1, . . . , xn.
(3) η =

∑n
i=1

∂fi

∂xi
+
∑n

i=1 f2
i +

∑m
i=1 h2

i is a homogeneous polynomial of degree
four. Moreover, η4 (homogeneous polynomial of degree-four part of η) depends only
on xk+1, . . . , xn variables.

Notice that in our previous paper, we proved only that ωij for 1 ≤ i ≤ k or
1 ≤ j ≤ k are affine polynomials in x1, . . . , xk. It is precisely the improvement of the
result on ωij for 1 ≤ i ≤ k or 1 ≤ j ≤ k that allows us to solve the Mitter conjecture
affirmatively. This paper is, in essence, a continuation of [Ch1–Ya], and we strongly
recommend that readers familiarize themselves with the results in [Ch1–Ya]. However,
every effort will be made to make this paper as self-contained as possible without too
much duplication of the previous paper.

2. Basic concepts. The filtering problem here is based on the following signal
observation model:

(2.1)

{
dx(t) = f

(
x(t)

)
dt + g

(
x(t)

)
dv(t), x(0) = x0,

dy(t) = h
(
x(t)

)
dt + dw(t), y(0) = 0,

in which x, v, y, and w are, respectively, Rn-, Rp-, Rm-, and Rm-valued processes and
v and w have components which are independent, standard Brownian process. We
further assume that n = p, f, h are C∞ smooth and that g is an orthogonal matrix. We
shall refer to x(t) as the state of the system at time t and y(t) as the observation at time
t. ρ(t, x), the conditional probability density of the state, x(t), given the observation{
y(s) : 0 ≤ s ≤ t

}
is determined by the Duncan–Mortensen–Zakai equation, which in

the unnormalized form is given by (see [Da–Ma], for example)

(2.2)
d

dt
σ(t, x) = L0σ(t, x)dt +

m∑
i=1

Liσ(t, x)dyi(t), σ(0, x) = σ0,

where

L0 =
1
2

n∑
i=1

∂2

∂x2
i

−
n∑

i=1

fi
∂

∂xi
−

n∑
i=1

∂fi

∂xi
− 1

2

m∑
i=1

h2
i

and for i = 1, . . . , m, Li is the zero-degree differential operator of multiplication by
hi. (If a is a vector, we use the notation ai to represent the ith component of a.) σ0 is
the probability density of the initial point x0. When the observation is absent—that
is, h = 0—then (2.2) is simply the Kolmogorov equation.

It is important to find efficient ways to solve (2.2), which is the subject of many
research studies in nonlinear filtering theory. For this purpose, we need to introduce
the following definition.

DEFINITION 2.1. The estimation algebra E of a filtering system (2.1) is defined
to be the Lie algebra generated by {L0, L1, . . . , Lm}. E is said to be an estimation
algebra of maximal rank if for every 1 ≤ i ≤ n there exists a constant ci such that
xi + ci is in E.

In [Wo], the concept of Ω is introduced, defined as the matrix whose (i, j) element
ωij is ∂fj

∂xi
− ∂fi

∂xj
.
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Define

Di =
∂

∂xi
− fi

and

η =
n∑

i=1

∂fi

∂xi
+

n∑
i=1

f2
i +

m∑
i=1

h2
i .

Then

L0 =
1
2

(
n∑

i=1

D2
i − η

)
.

Recall here that the assumption of maximal rank on E implies that E contains
all affine polynomial and the operations D1, . . . , Dn. This follows from the fact that
Dj = [L0, xj + cj ] and 1 = [Dj , xj + cj ].

The following theorem proved in [Ya] plays a fundamental roles in Mitter conjec-
ture as well as the classification of finite-dimensional estimation algebra.

THEOREM 2.1. Let E be a finite-dimensional estimation algebra of (2.1) such
that ωij = ∂fj

∂xi
− ∂fi

∂xj
are constant functions. Then hi(x), 1 ≤ i ≤ m, are affine

polynomials. If in addition, E is of maximal rank, then E is a real vector space of
dimension 2n + 2 with basis given by 1, x1, x2, . . . , xn, D1, . . . , Dn and L0.

We need the following basic result [Oc] for later discussion.
THEOREM 2.2 (Ocone). Let E be a finite-dimensional estimation algebra. If ϕ is

a function in E, then ϕ is a polynomial of degree at most two.
In our previous paper [Ch1–Ya], we have introduced the following important

concepts and notations. Let Q be the space of quadratic forms in n variables, i.e.,
real vector space spanned by xixj , with 1 ≤ i ≤ j ≤ n. Let X = (x1, . . . , xn)T . For
any quadratic form p ∈ Q, there exists a symmetric matrix A such that p(x) = XT AX.
The rank of the quadratic form p is denoted by rk(p) and is defined to be the rank of
the matrix A.

DEFINITION 2.2. A fundamental quadratic form of the estimation algebra E is
an element p0 ∈ E ∩ Q with the greatest positive rank, i.e., rk(p0) ≥ rk(p) for any
p ∈ E ∩ Q. The quadratic rank of the estimation algebra E is defined to be rk(p0).

After an orthogonal transformation on x, p0 can be written as

(2.3) p0(x) = c1x
2
1 + c2x

2
2 + · · · + ckx2

k,

where ci 6= 0, 1 ≤ i ≤ k, and k is the quadratic rank of E. From p0(x), we can
construct a sequence of quadratic forms in E ∩ Q as follows:

q0 = p0,

qj =
[
[L0, qj−1], q0

]
=

k∑
i=1

4jcj+1
i x2

i .

In view of the invertibility of the Vandermonde matrix, we can assume that

(2.4) p0(x) = x2
1 + x2

2 + · · · + x2
k ∈ E.

The following results were proven in [Ch1–Ya].
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LEMMA 2.3. Let k be the quadratic rank of the estimation algebra E with funda-
mental quadratic form p0(x) = x2

1 + · · ·+x2
k. Then p(x) is independent of xk+1, xk+2,

. . . , xn for any quadratic form p(x) in E.
Let p1(x) be a quadratic form in E with least positive rank, i.e., rk(p1) ≤ rk(q) for

any q(x) ∈ E ∩Q. After an orthogonal transform on X which fixes xk+1, . . . , xn (i.e.,
an orthogonal transform on x1, x2, . . . , xk) and the Vandermonde matrix procedure
as before, we can assume

(2.5) p1(x) =
k1∑

i=1

x2
i ∈ E, 1 ≤ k1 ≤ k.

Note that the orthogonal transform on x1, . . . , xk leaves p0(x) invariant. By definition,
p0(x) =

∑k
i=1 x2

i has the greatest positive rank and p1(x) =
∑k1

i=1 x2
i has the least

positive rank. Define

(2.6) S1 = {1, 2, . . . , k1} ⊆ S = {1, 2, . . . , k},

(2.7) Q1 = real vector space spanned by {xixj : k1 + 1 ≤ i ≤ j ≤ k} ⊆ Q.

If k1 < k, then Q1 ∩ E is a nontrivial space since p1(x) − p0(x) ∈ E ∩ Q1. In a
procedure similar to that above, there exists

(2.8) p2(x) =
k2∑

i=k1+1

x2
i ∈ E ∩ Q1

with the least positive rank in E ∩ Q1. By induction, we can construct a series of Si,
Qi, and pi(x) such that

(2.9) Si = {ki−1 + 1, . . . , ki}, k0 = 0, ki ≤ k,

(2.10) Qi = linear span {xixj : ki + 1 ≤ i ≤ j ≤ k},

(2.11) pi(x) =
ki∑

j=ki−1+1

x2
j =

∑
j∈Si

x2
j , i > 0,

and pi(x) has the least rank in E ∩ Qi−1.
LEMMA 2.4. If p(x) ∈ E ∩ Q, then

p(0, . . . , 0, xki−1+1, . . . , xki , 0, . . . , 0) = λpi(x) for i > 0,

p(x1, . . . , xki−1 , 0, . . . , 0, xki+1, . . . , xk) ∈ E for i > 0.

PROPOSITION 2.5. Suppose that p(x) is a quadratic form in E of the following
form, which depends on {xi i ∈ S`1 ∪ S`2}:

p(x) =
(
XT

`1 , X
T
`2

)( 0 A
AT 0

)(
X`1

X`2

)
,

where Xi =
(
xki−1+1, . . . , xki

)T , i.e., p(x) =
∑

i∈S`1

∑
j∈S`2

2aijxixj. Suppose that
`1 < `2. Then |S`1 | = |S`2 | and A = bT , where b is a constant and T is an orthogonal
matrix.
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THEOREM 2.6. Suppose that E is a finite-dimensional estimation algebra of max-
imal rank. Then ωij = ∂fj

∂xi
− ∂fi

∂xj
, 1 ≤ i, j ≤ n, are polynomials of degree at most

one.
Notation. From now on we shall write ωij = βij +γij , where βij is the linear part

of ωij while γij is the constant part of ωij .
PROPOSITION 2.7. Suppose that E is a finite-dimensional estimation algebra of

maximal rank. With the same notation as before, if `1 6= `2 and i ∈ S`1 , j ∈ S`2 , then
βij = 0; i.e., ωij is a constant.

THEOREM 2.8. Suppose that E is a finite-dimensional estimation algebra of max-
imal rank. Let k be the quadratic rank of E. With the same notation as before,
then

(i) for j ∈ S` βjk`−1+1
...

βjk`

 = Aj,`
1 X` with Aj,`

1 = −(Aj,`
1 )T ,

where X` =
(
xk`−1+1, . . . , xk`

)
and Aj,`

1 is a (k` − k`−1) × (k` − k`−1) matrix;
(ii) for j > k βjk`−1+1

...
βjk`

 = λj,`X` + Aj,`
2 X̃`,

where X̃` denote the complementary variable vector of X` in (x1, . . . , xk)T , i.e., X̃` =(
x1, . . . , xk`−1 , xk`+1, . . . , xk

)T , and Aj,`
2 is a k` × (k − k`) matrix.

THEOREM 2.9. Suppose that E is a finite-dimensional estimation algebra of max-
imal rank. With the same notation as before, then Aj,`

1 = 0 in (i) of Theorem 2.8.
This means that βij = 0 for i, j ∈ S` =

{
k`−1 + 1, . . . , k`

}
; i.e., ωij = constant for

i, j ∈ S`.
PROPOSITION 2.10. Suppose that E is a finite-dimensional estimation algebra of

maximal rank. Then
(i) ωij is a degree-one polynomial in x1, . . . , xk for 1 ≤ i ≤ k or 1 ≤ j ≤ k;
(ii) ωij is a degree-one polynomial in xk+1, . . . , xn for k + 1 ≤ i, j ≤ n.
It follows from Theorem 2.6, Proposition 2.7, Theorem 2.9, and Proposition 2.10

that we have the following theorem.
THEOREM 2.11. Let E be a finite-dimensional estimation algebra of maximal

rank and k be the quadratic rank of E. Then all the entries ωij = ∂fj

∂xi
− ∂fi

∂xj
of Ω are

degree-one polynomials. In fact, for 1 ≤ i, j ≤ k, ωij are constants; for 1 ≤ i ≤ k or
1 ≤ j ≤ k, ωij are degree-one polynomials in x1, . . . , xk; and for k + 1 ≤ i, j ≤ n, ωij

are degree-one polynomials in xk+1, . . . , xn.
For the sake of convenience to the readers, we also provide the following lemma

without proof. The proof can be found in [Ya].
LEMMA 2.12. (i) [XY, Z] = X[Y, Z]+[X, Z]Y , where X, Y , and Z are differential

operators.
(ii) [gDi, h] = g ∂h

∂xi
, where Di = ∂

∂xi
− fi and g and h are functions defined on

Rn.
(iii) [gDi, hDj ] = −ghωij + g ∂h

∂xi
Dj − h ∂g

∂xj
Di, where ωji = [Di, Dj ] = ∂fi

∂xj
− ∂fj

∂xi
.

(iv) [gD2
i , h] = 2g ∂h

∂xi
Di + g ∂2h

∂x2
i
.
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(v) [D2
i , hDj ] = 2 ∂h

∂xi
DiDj − 2hωijDi + ∂2h

∂x2
i
Dj − h

∂ωij

∂xi
.

(vi) [D2
i , D2

j ] = 4ωjiDjDi + 2∂ωji

∂xj
Di + 2∂ωji

∂xi
Dj + ∂2ωji

∂xi∂xj
+ 2ωji

2.

(vii) [D2
k, hDiDj ] = 2 ∂h

∂xk
DkDiDj + 2hωjkDiDk + 2hωikDkDj + ∂2h

∂x2
k
DiDj +

2h
∂ωjk

∂xi
Dk + h

∂ωjk

∂xk
Di + h∂ωik

∂xk
Dj + h

∂2ωjk

∂xi∂xk
.

(viii) [gDiDj , hDk] = g ∂h
∂xj

DiDk+g ∂h
∂xi

DjDk+ghωkjDi+ghωkiDj +g ∂2h
∂xi∂xj

Dk+

gh
∂ωkj

∂xi
− h ∂g

∂xk
DiDj.

3. Structure of second-order operators and special linear structure of
Ω. Building on our previous results in [Ch1–Ya], in this section, we shall prove that
Ω has very special linear structure. It is exactly this result which allows us to prove
Mitter conjecture for maximal rank finite-dimensional estimation algebra. To begin
with, we need some results on second-order operator in E.

Consider the polynomial algebra C∞(Rn)[D1, . . . , Dn] in variables D1, . . . , Dn

with coefficients in C∞(Rn) modulo the relations DiDj = DjDi + ωji and Dia =
aDi+ ∂a

∂xi
, where C∞(Rn) is the ring of all C∞ functions on Rn and a is a C∞ function.

Every element A ∈ C∞(Rn)[D1, . . . , Dn] has a representation in the following:

(3.1) A =
∑

ai1···in
(x)Di1

1 · · · Din
n ,

i.e., a polynomial in Di with coefficients in C∞(Rn). Since DiDj = DjDi + ωji,
C∞(Rn)[D1, . . . , Dn] is not a commutative algebra. It is clear that every element of
E has a representation of (3.1). For any A ∈ E, let PA be the principal part of A,
i.e., the highest homogeneous part of A in D1, . . . , Dn. For example, for L0 ∈ E,
PL0 = 1

2 (D2
1 + · · · + D2

n).
LEMMA 3.1. If ∂a

∂xj
(x) 6= 0, then the principal part of

[
D`

j , a(x)Di1
1 · · · Din

n

]
is

given by

(3.2) P[
D`

j ,a(x)Di1
1 ···Din

n

] = `
∂a

∂xj
(x)Di1

1 · · · Dij+`−1
j · · · Din

n .

Proof. If ` = 1, then (3.2) is trivial. Suppose that (3.2) is true for ` − 1; then

(3.3)

[
D`

j , a(x)Di1
1 · · · Din

n

]
=Dj

[
D`−1

j , a(x)Di1
1 · · · Din

n

]
+
[
Dj , a(x)Di1

1 · · · Din
n

]
D`−1

j .

Hence

P[
D`

j ,a(x)Di1
1 ···Din

n

] =P
Dj

[
D`−1

j ,a(x)Di1
1 ···Din

n

] + P[
Dj ,a(x)Di1

1 ···Din
n

]
D`−1

j

=(` − 1)
∂a

∂xj
(x)Di1

1 · · · Dij+`−1
j · · · Din

n

+
∂a

∂xj
(x)Di1

1 · · · Dij+`−1
j · · · Din

n

=`
∂a

∂xj
(x)Di1

1 · · · Dij+`−1
j · · · Din

n .

PROPOSITION 3.2. If the principal part of A is of the form

PA =
∑

ai1···in
(x)Di1

1 · · · Din
n ,
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where for some (i1, . . . , in) and j, ∂ai1···in

∂xj
(x) 6= 0, then the principal part of [L0, A]

is given by

P[L0,A] =
∑

j

∑
i1···in

∂ai1···in

∂xj
(x)Di1

1 · · · Dij+1
j · · · Din

n .

Proof. The proposition follows immediately when Lemma 3.1 is applied repeat-
edly.

THEOREM 3.3. Let E be a finite-dimensional estimation algebra. Suppose that A
is a second order in E with principal part PA =

∑
i≤j aij(x)DiDj. Then ∂aii

∂xi
(x) = 0.

Proof. Without loss of generality, we can assume i = 1. a11 must be a polynomial;
otherwise E would be infinite dimensional. If ∂a11

∂x1
(x) 6= 0, then there exists a positive

integer ` such that

∂`+1a11

∂x`+1
1

(x) = 0 and
∂`a11

∂x`
1

(x) 6= 0.

This is true because a11(x) is a polynomial in view of a result of [Wo]. By Proposition
3.2, we have

P[L0,A] =
∂a11

∂x1
(x)D3

1 + lower-order term in D1.

Hence if we let AdL0A = [L0, A] and Adm
L0

A =
[
L0, Adm−1

L0
A
]
, then

PAd`
L0

A =
∂`a11

∂x`
1

(x)D`+2
1 + lower-order term in D1.

Let B = Ad`−1
L0

A (for ` = 1, take B = A). Then

PAds
BL0 =(−1)s(` + 1)(` + 2)(2` + 2)(3` + 2) · · · ((s − 1)` + 2)

(∂`a11

∂x`
1

(x)
)s

Ds`+2
1

+ lower-order term in D1.

We have produced an infinite sequence of independent elements
{
Ads

BL0 : s =
1, 2, . . .

}
in E. This contradicts our assumption that E is finite dimensional.

THEOREM 3.4. Let E be a finite-dimensional estimation algebra and A be an
element in E with principal part of PA =

∑
i≤j aij(x)DiDj. Suppose that ∂aii

∂xj
(x) =

∂ajj

∂xi
(x) = 0. Then ∂aij

∂xi
(x) = ∂aij

∂xj
(x) = 0.

Proof. Without loss of generality, we shall assume i = 1 and j = 2. Suppose to
the contrary that either ∂a12

∂x1
(x) 6= 0 or ∂a12

∂x2
(x) 6= 0. Then

P[L0,A] =
∂a12

∂x1
(x)D2

1D2 +
∂a12

∂x2
(x)D1D

2
2 + terms in degree D1, D2 lower than 3.

If ∂a12
∂x1

(x) 6= 0, then there exists a positive integer ` such that

∂`a12

∂x`
1

(x) 6= 0 and
∂`+1a12

∂x`+1
1

(x) = 0.

Let B = Ad`−1
L0

A ∈ E. Then

PB =
∂`−1a12

∂x`−1
1

(x)D`
1D2 + other terms.
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Hence

PAds
BL0 = a

(∂`a12

∂x`
1

(x)
)s

D`+s
1 D2 + other terms,

where a is a nonzero constant. So we have produced an infinite sequence
{
Ads

BL0 ∈
E : s = 1, 2, . . .

}
of linearly independent elements in E. This contradicts to our

hypothesis that dimE < ∞. Therefore we conclude that ∂a12
∂x1

(x) = 0. Similarly, we
can prove ∂a12

∂x2
(x) = 0.

We are now ready to prove the special linear structure of Ω.
THEOREM 3.5. Suppose that E is a finite-dimensional estimation algebra of max-

imal rank. Let k be the quadratic rank of E. With the same notation as before let βij

be the linear part of ωij. Thenβjk`−1+1
...

βjk`

 = Aj,`
2 X̃` for j > k,

where X̃` =
(
x1, . . . , xk`−1 , xk`+1, . . . , xk

)T and Aj,`
2 is a k` × (k − k`) matrix.

Proof. In view of part (ii) of Theorem 2.8, we have, for j > k,βjk`−1+1
...

βjk`

 = λj,`X` + Aj,`
2 X̃`,

where X` =
(
xk`−1+1, . . . , xk`

)T . To prove the theorem, we need to prove λj,` = 0.
For this purpose, we need only to prove that ωmk`−1+1 does not depend on xk`−1+1.
Since p`(x) = x2

k`−1+1 + · · · + x2
k`

=
∑

j∈S`
x2

j ∈ E, we have[
L0, p`

] ∈ E =⇒
∑
j∈S`

xjDj ∈ E,

[
L0,

∑
j∈S`

xjDj

]
=

1
2

n∑
i=1

∑
j∈S`

[
D2

i , xjDj

]− 1
2
Ek`

(η)

=
n∑

i=1

∑
j∈S`

(
δijDiDj − xjωijDi − 1

2
xj

∂ωij

∂xi

)
− 1

2
Ek`

(η),

where Ek`
=
∑

j∈S`
xj

∂
∂xj

. Since E is of maximal rank and ωij is an affine function,
we deduce that

Z1 =
∑
j∈S`

D2
j −

n∑
i=1

∑
j∈S`

xjωijDi − 1
2
Ek`

(η) ∈ E.

It follows from Lemma 2.12 that

P[L0,Z1] =P[ 1
2

∑n
i=1 D2

i ,
∑

j∈S`
D2

j

] + P[ 1
2

∑n
i=1 D2

i ,−∑n
r=1

∑
j∈S`

xjωrjDr

]
=

n∑
i=1

∑
j∈S`

2ωjiDjDi −
n∑

i=1

n∑
r=1

∑
j∈S`

∂(xjωrj)
∂xi

DiDr.
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Since ωk`−1+1,k`−1+1 = 0, the coefficient of D2
k`−1+1 in P[L0,Z1] is

−
∑
j∈S`

∂(xjωk`−1+1,j)
∂xk`−1+1

= 0

in view of Theorem 2.9. Similarly, for m > k = quadratic rank of E, we can see that
the coefficient of D2

m is

−
∑
j∈S`

∂(xjωmj)
∂xm

= 0

in view of Proposition 2.10. Now the coefficient of Dk`−1+1Dm is

2ωk`−1+1,m −
∑
j∈S`

[∂(xjωk`−1+1,j)
∂xm

+
∂(xjωmj)
∂xk`−1+1

]
= 2ωk`−1+1,m −

∑
j∈S`

∂(xjωmj)
∂xk`−1+1

in view of Theorem 2.11

= 3ωk`−1+1,m −
∑
j∈S`

xj
∂ωmj

∂xk`−1+1

= 3ωk`−1+1,m − xk`−1+1
∂ωmk`−1+1

∂xk`−1+1

in view of part (ii) of Theorem 2.8. By Theorem 3.4, we know that the coefficient of
Dk`−1+1Dm is independent of xk`−1+1. This simply means that

3ωmk`−1+1 + xk`−1+1
∂ωmk`−1+1

∂xk`−1+1

is independent of xk`−1+1. Hence ωmk`−1+1 does not depend on xk`−1+1.
THEOREM 3.6. With the same hypothesis and notation as in Theorem 3.5, then

Aj,`
2 = 0, i.e., βij = 0 for i ≤ k (quadratic rank of E) < j.

Proof. Since [[L0, p`(x)], Dj ] ∈ E, we have
∑

i∈S`
xiβji ∈ E. Theorem 3.5 says

that βjk`−1+1
...

βjk`

 = Aj,`
2 X̃`,

where X̃` =
(
x1, . . . , xk`−1 , xk`+1, . . . , xk

)T . In view of Lemma 2.3, XT
` Aj,`

2 X̃` =∑
i∈S`

xiβji ∈ E is independent of the xk+1, . . . , xn variable. Hence

Aj,`
2 =

(
Bj,`

1 , Bj,`
2 , . . . ),

where Bj,`
1 , Bj,`

2 , . . . are constant multiples of some orthogonal matrices by Proposition
2.5. So we haveβjk`−1+1

...
βjk`

 = Aj,`
2 X̃` = Bj,`

1 X1 + · · · + Bj,`
`−1X`−1 + Bj,`

`+1X`+1 + · · · .
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In order to make clear what our strategy is, in the following we shall list several of
these equations explicitly: βj1

...
βjk1

 = Aj,1
2 X̃1 = Bj,1

2 X2 + Bj,1
3 X3 + Bj,1

4 X4 + Bj,1
5 X5 + · · · ,

βjk1+1
...

βjk2

 = Aj,2
2 X̃2 = Bj,2

1 X1 + Bj,2
3 X3 + Bj,2

4 X4 + Bj,2
5 X5 + · · · ,

βjk2+1
...

βjk3

 = Aj,3
2 X̃3 = Bj,3

1 X1 + Bj,3
2 X2 + Bj,3

4 X4 + Bj,3
5 X5 + · · · ,

βjk3+1
...

βjk4

 = Aj,4
2 X̃4 = Bj,4

1 X1 + Bj,4
2 X2 + Bj,4

3 X3 + Bj,4
5 X5 + · · · ,

....

We first claim that Bj,`
m =

(
Bj,m

`

)T . To see this, we observe that from the cyclic
relation ∂ωj`

∂xm
+ ∂ω`m

∂xj
+ ∂ωmj

∂x`
= 0 we deduce that

∂βj`

∂xm
+

∂β`m

∂xj
+

∂βmj

∂x`
= 0.

If we take m, ` ≤ k = quadratic rank of E < j, then ∂β`m

∂xj
= 0 in view of Theorem

2.11. Therefore the above equation implies

∂βj`

∂xm
=

∂βjm

∂x`
,

from which we deduce easily that Bj,`
m =

(
Bj,m

`

)T .
Now we prove Bj,`

1 = 0 for ` ≥ 2. Since
∑

i∈S`
xiβji = XT

` Aj,`
2 X̃` = XT

` Bj,`
1 X1 +

· · · + XT
` Bj,`

`−1X`−1 + X`B
j,`
`+1X`+1 + · · · ∈ E, we conclude from Lemma 2.4 that

XT
` Bj,`

1 X1 ∈ E. Let Bj`
1 =

(
bj`
ir

)
, k`−1 + 1 ≤ i ≤ k`, 1 ≤ r ≤ k1. Then

[
L0, X

T
` Bj`

1 X1
]

=
[1
2

n∑
m=1

D2
m,
∑
i∈S`

∑
r∈S1

xib
j`
irxr

]
=

n∑
m=1

∑
i∈S`

∑
r∈S1

(
bj`
irxrδimDm + bj`

irxiδmrDm + bj`
irδimδrm

)
=
∑
i∈S`

∑
r∈S1

bj`
irxrDi +

∑
i∈S`

∑
r∈S1

bj`
irxiDr

=
∑
i∈S`

∑
r∈S1

bj`
ir

(
xrDi + xiDr

) ∈ E,
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W1 :=
[
L0,
[
L0, X

T
` Bj`

1 X1
]]

=
[1
2

n∑
m=1

D2
m − 1

2
η,
∑
i∈S`

∑
r∈S1

bj`
ir

(
xrDi + xiDr

)]
=

1
2

n∑
m=1

∑
i∈S`

∑
r∈S1

bj`
ir

[
D2

m, xrDi + xiDr

]
+ function

=
n∑

m=1

∑
i∈S`

∑
r∈S1

bj`
ir

(
δmrDmDi − xrωmiDm + δmiDmDr − xiωmrDm

)
+ function

=2
∑
i∈S`

∑
r∈S1

bj`
irDrDi −

n∑
m=1

∑
i∈S`

∑
r∈S1

bj`
ir

(
xrωmi + xiωmr

)
Dm

+ function,

[L0, W1] =
[ n∑

m=1

D2
m,
∑
i∈S`

∑
r∈S1

bj`
irDiDr

]
−
[1
2

m∑
v=1

D2
v,

n∑
m=1

∑
i∈S`

∑
r∈S1

bj`
ir

(
xrωmi + xiωmr

)
Dm

]
+ first-order term

=2
n∑

m=1

∑
i∈S`

∑
r∈S1

bj`
ir

(
ωrmDiDm + ωimDmDr

)
−

n∑
v=1

n∑
m=1

∑
i∈S`

∑
r∈S1

bj`
ir

∂(xrωmi + xiωmr)
∂xv

DvDm

+ first-order term.

The coefficient of D2
1 in [L0, W1] is

2
∑
i∈S`

bj`
irωi1 −

∑
i∈S`

∑
r∈S1

bj`
ir

∂(xrω1i + xiω1r)
∂x1

=
∑
i∈S`

bj`
i1ωi1,

which is a constant in view of Theorem 2.11.
On the other hand, the coefficient of D2

j in [L0, W1] for j > k = quadratic rank
of E is

−
∑
i∈S`

∑
r∈S1

bj`
ir

∂(xrωji + xiωjr)
∂xj

,

which is a zero in view of Theorem 2.11.
We deduce from Theorem 3.4 that the coefficient of D1Dj in [L0, W1] is indepen-

dent of x1 and xj variables. However, the coefficient of D1Dj in [L0, W1] is given
by
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2
∑
i∈S`

bj`
i1ωij −

∑
i∈S`

∑
r∈S1

bj`
ir

(∂(xrωji + xiωjr)
∂x1

+
∂(xrω1i + xiω1r)

∂xj

)
= 2

∑
i∈S`

bj`
i1ωij −

∑
i∈S`

∑
r∈S1

bj`
ir

(
δ1rωji + xr

∂ωji

∂x1
+ xi

∂ωjr

∂x1

)
in view of Theorem 2.11

= 2
∑
i∈S`

bj`
i1ωij −

∑
i∈S`

bj`
i1ωji −

∑
i∈S`

∑
r∈S1

bj`
ir

(
xr

∂ωji

∂x1
+ xi

∂ωjr

∂x1

)
= 3

∑
i∈S`

bj`
i1ωij −

∑
i∈S`

∑
r∈S1

bj`
irxr

∂ωji

∂x1
by Theorem 3.5

= − 3
∑
i∈S`

bj`
i1ωji −

∑
i∈S`

bj`
i1x1

∂ωji

∂x1
+ other terms not involving x1

= − 3
(
bj`
k`−1+1,1ωjk`−1+1 + bj`

k`−1+2,1ωjk`−1+2 + · · · + bj`
k`,1ωjk`

)
−
(
bj`
k`−1+1,1x1

∂ωjk`−1+1

∂x1
+ bj`

k`−1+2,1x1
∂ωjk`−1+2

∂x1
+ · · · + bj`

k`,1x1
∂ωjk`

∂x1

)
+ other terms not involving x1

= − 3
{[(

bj`
k`−1+1,1

)2
x1 + · · ·

]
+
[(

bj`
k`−1+2,1

)2
x1 + · · ·

]
+ · · · +

[(
bj`
k`,1

)2
x1 + · · ·

]}
−
[(

bj`
k`−1+1,1

)2
x1 +

(
bj`
k`−1+2,1

)2
x1 + · · · +

(
bj`
k`,1

)2
x1

]
+ other terms not involving x1

= − 4
∑
i∈S`

(
bj`
i1

)2
x1 + other terms not involving x1.

Therefore we conclude that ∑
i∈S`

(
bj`
i1

)2 = 0.

This implies that the first column of the matrix Bj`
1 =

(
bj`
ir

)
, k`−1 + 1 ≤ i ≤ k`, 1 ≤

r ≤ k1, is a zero vector. Recall that Bj`
1 is either zero or nonsingular. We deduce

that Bj`
1 = 0 for any j > k = quadratic rank of E and ` ≥ 2. By Bj`

m =
(
Bjm

`

)T , we
conclude further that βj1

...
βjk1

 = Aj,1
2 X̃1 = 0,

βjk1+1
...

βjk2

 = Aj,2
2 X̃2 = Bj2

3 X3 + Bj2
4 X4 + Bj2

5 X5 + · · · ,

βjk2+1
...

βjk3

 = Aj,3
2 X̃3 = Bj3

2 X2 + Bj3
4 X4 + Bj3

5 X5 + · · · ,
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...

βjk4

 = Aj,4
2 X̃4 = Bj4

2 X2 + Bj4
3 X3 + Bj4

5 X5 + · · · ,

...

Similarly, by considering an element in E of the form
∑

i∈S`
xiβji = XT

` Aj,`
2 X̃` for

` ≥ 3, we can prove that Bj,`
2 = 0 for ` ≥ 3. As before, we deduce Aj,2

2 = 0 in view of
Bj`

m =
(
Bjm

`

)T . Hence Theorem 3.6 follows easily by induction.
As a consequence of Theorem 3.6 and Theorem 2.11, we have proved the following

theorem.
THEOREM 3.7. Let E be a finite-dimensional estimation algebra of maximal rank

and k be the maximal rank of quadratic forms in E. Then (1) ωij are constants
for 1 ≤ i ≤ k or 1 ≤ j ≤ k; (2) ωij are affine polynomials in xk+1, . . . , xn for
k + 1 ≤ i, j ≤ n.

4. Structure of η. In this section, we shall study the possible structure of η,
where

(4.1) η =
n∑

i=1

∂fi

∂xi
+

n∑
i=1

f2
i +

m∑
i=1

h2
i .

LEMMA 4.1. Let E be a finite-dimensional estimation algebra of maximal rank.
Then η is a polynomial of degree at most four.

Proof. Since E is a finite-dimensional estimation algebra with maximal rank for
any 1 ≤ i ≤ n, there exists constant ci such that xi + ci is in E. Observe that

[L0, xj + cj ] = Dj ∈ E,

[Dj , xj + cj ] = 1 ∈ E,

[L0, Dj ] =
n∑

i=1

(
ωjiDi +

1
2

∂ωji

∂xi

)
+

1
2

∂η

∂xj
∈ E.

Since ωji, 1 ≤ i, j ≤ n, are polynomial of degree at most one, we deduce that

(4.2) Yj :=
n∑

i=1

ωjiDi +
1
2

∂η

∂xj
∈ E.

As

[Yj , Dm] =
n∑

i=1

(
ωjiωmi − ∂ωji

∂xm
Di

)
− 1

2
∂2η

∂xm∂xj
∈ E,

we deduce that

(4.3)
n∑

`=1

ωj`ω`m +
1
2

∂2η

∂xm∂xj
∈ E

for all 1 ≤ j, m ≤ n. Hence ∂2η
∂xm∂xj

for 1 ≤ j, m ≤ n are polynomials of degree at
most two in view of Ocone’s theorem. It follows that η is a polynomial of degree at
most four.
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Notation. η4 is denoted the homogeneous part of degree four of η.
PROPOSITION 4.2. Let E be a finite-dimensional estimation algebra of maximal

rank. Then η4 does not contain xi1xi2xjxm for i1 ≤ k < i2, where k is the quadratic
rank of E.

Proof. Let us assume that this is false. From (4.3), we have

(4.4)
n∑

`=1

ωi1`ω`m +
1
2

∂2η

∂xm∂xi1

∈ E.

Recall that ωi1`, 1 ≤ ` ≤ n, are constants, while ω`m, 1 ≤ ` ≤ n, are polynomials of
degree one in xk+1, . . . , xn by Theorem 3.7. Equation (4.4) says that E contains a
quadratic form with term of the form xi2xj . This contradicts Lemma 2.3.

The following proposition also follows immediately from Theorem 3.7.
PROPOSITION 4.3. Let E be a finite-dimensional estimation algebra of maximal

rank with quadratic rank k. If i ≤ k < j, then
∑n

`=1 ωi`ω`j is a degree-one polynomial
in xk+1, . . . , xn.

THEOREM 4.4. Let E be a finite-dimensional estimation algebra of maximal rank
with quadratic rank k. Then η4 is an homogeneous polynomial of degree four depending
only on xk+1, . . . , xn variables.

Proof. Since p0(x) = x2
1 + · · · + x2

k ∈ E by (2.4), we have

[L0, p0] ∈ E ⇒ Ẽk :=
k∑

i=1

xiDi ∈ E.

Let Ek =
∑k

i=1 xi
∂

∂xi
. Then in view of (4.2), we have

(4.5)

[Ẽk, Yj ] =
[ k∑

i=1

xiDi,
k∑

i=1

ωj`D` +
1
2

∂η

∂xj

]
=

k∑
i=1

n∑
`=1

[xiDi, ωj`D`] +
1
2
Ek

(
∂η

∂xj

)

=
k∑

i=1

n∑
`=1

(
−xiωj`ωi` + xi

∂ωj`

∂xi
D` − ωj`δi`Di

)
+

1
2
Ek

(
∂η

∂xj

)

=
n∑

`=1

Ek(ωj`)D` −
k∑

i=1

ωjiDi +
1
2
Ek

(
∂η

∂xj

)
−

n∑
`=1

k∑
i=1

xiωj`ωi`

∈ E.

Recall that ωj`, 1 ≤ j, ` ≤ n, are polynomials depending only on xk+1, . . . , xn. So
Ek(ωj`) = 0 for 1 ≤ j, ` ≤ n. Since ωji, 1 ≤ i ≤ k, are constants and Di, 1 ≤ i ≤ k,
are in E, we deduce from (4.5) that

(4.6)
1
2
Ek

(
∂η

∂xj

)
−

k∑
i=1

xi

( n∑
`=1

ωj`ωi`

)
∈ E.

The second term in (4.6) is a polynomial of degree at most two by Proposition
4.3. This implies that

(4.7) Ek

(
∂η4

∂xj

)
= 0, 1 ≤ j ≤ n,
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because Ek

(
∂η4
∂xj

)
is a polynomial of degree three. By Proposition 4.2, we have

η4(x1, . . . , xn) = η1
4(x1, . . . , xk) + η2

4(xk+1, . . . , xn),

where η1
4 and η2

4 are homogeneous polynomials of degree four. Equation (4.7) is
equivalent to

(4.8) Ek

(
∂η1

4

∂xj

)
= 0, 1 ≤ j ≤ k.

Since

Ek

(
∂η1

4

∂xj

)
= 3

∂η1
4

∂xj
, 1 ≤ j ≤ k,

we deduce easily that η1
4(x1, . . . , xk) = 0. So η4 depends only on xk+1, . . . , xn vari-

ables.

5. Mitter conjecture. If E is a finite-dimensional estimation algebra, Ocone’s
theorem says that hi, 1 ≤ i ≤ m, are polynomials of degree at most two. Mitter
conjecture asserts that hi has to be affine (i.e., degree-one polynomial). In this section,
we shall prove the Mitter conjecture for finite-dimensional estimation algebras of
maximal rank. For this purpose, let us first recall the following theorem proven
in [Ya].

THEOREM 5.1. Let F (x1, . . . , xn) be a polynomial on Rn. Suppose that there
exists a polynomial path c : R → Rn such that limt→∞ ‖c(t)‖ = ∞ and limt→∞ F ◦
c(t) = −∞. Then there are no c∞ functions f1, . . . , fn on Rn satisfying the equation

n∑
i=1

∂fi

∂xi
+

n∑
i=1

f2
i = F.

THEOREM 5.2. If E is a finite-dimensional estimation algebra of maximal rank,
then hi, 1 ≤ i ≤ m, are degree-one polynomials.

Proof. For 1 ≤ i ≤ m, let hi(x) = qi(x) + `i(x), where qi(x) is a homogeneous
degree-two polynomial, while `i(x) is a degree-one polynomial. Since hi ∈ E by
definition, we deduce that qi(x) is also in E for all 1 ≤ i ≤ m by the maximal
rank condition of E. In view of Lemma 2.3, we conclude that qi depends only on
x1, x2, . . . , xk variables for all 1 ≤ i ≤ m. Hence

hi(x) = qi(x1, . . . , xk) + `i(x), 1 ≤ i ≤ m.

On the other hand, Theorem 4.4 tells us that

n∑
i=1

∂fi

∂xi
+

n∑
i=1

f2
i +

m∑
i=1

h2
i = η4(xk+1, . . . , xn) + polynomial of degree three,

which implies

n∑
i=1

∂fi

∂xi
+

n∑
i=1

f2
i

= −
m∑

i=1

(
qi(x1, . . . , xk)

)2 + η4(xk+1, . . . , xn) + polynomial of degree three.
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The above equation and Theorem 5.1 imply that qi(xi, . . . , xk) = 0 for all 1 ≤ i ≤ m;
i.e., hi(x), 1 ≤ i ≤ m, are degree-one polynomials.
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Abstract. The idea of using estimation algebra to construct finite-dimensional nonlinear filters
was first proposed independently by Brockett and Mitter. Estimation algebra turns out to be a useful
concept in the investigation of finite-dimensional nonlinear filters. In his talk at the International
Congress of Mathematics in 1983, Brockett proposed classifying all finite-dimensional estimation
algebras. Chiou and the present authors classify all finite-dimensional estimation algebras of maximal
rank with dimension of the state space less than or equal to three. In this paper, we succeed in
classifying all finite-dimensional estimation algebras of maximal rank with state-space dimension
equal to four. In fact our method gives classification of all finite-dimensional algebras of maximal
rank with state-space dimension equal to or less than four.

Key words. finite-dimensional filter, estimation algebra of maximal rank, nonlinear drift, state-
space dimension 4

AMS subject classifications. 17B30, 35J15, 60G35, 93E11
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1. Introduction. In the 1960s and early 1970s, the basic approach to nonlinear
filtering theory was via the “innovation methods” originally proposed by Kailath and
subsequently rigorously developed by Fujisaki, Kallianpur, and Kunita [FKK] in 1972.
As pointed out by Mitter [Mi], the difficulty with this approach is that the innovation
process is not, in general, explicitly computable (except in the well-known Kalman–
Bucy case). In the late 1970s, Brockett and Clark [BrCl], Brockett [Br], and Mitter
[Mi] proposed the idea of using estimation algebras to construct a finite-dimensional
nonlinear filter. The advantage of this finite-dimensional nonlinear filter is the same
as the Kalman–Bucy filter. Moreover it avoids the disadvantages of the Kalman–
Bucy filter such as the Gaussian initial condition as well as linearity assumption
of the drift term. For more detail, we refer the readers to [TWY], [Ya], and the
very interesting Ph.D. thesis by M. Cohen de Lara [La], in which the links between
finite-dimensional estimation algebras and finite-dimensional filters were discussed. In
[Ya], Yau has studied the general class of nonlinear filtering systems which included
both Kalman–Bucy and Benes filtering systems as special cases. He gives necessary
and sufficient conditions for an estimation algebra of such filtering systems to be
finite dimensional. Using the Wei–Norman approach, he constructed explicitly finite-
dimensional recursive filters for such a nonlinear filtering systems.

In his talk at the International Congress of Mathematics in 1983, Brockett pro-
posed classifying all finite-dimensional estimation algebras. Since then, the concept
of estimation algebra has been proven to be an invaluable tool in the study of non-
linear filtering problems. If the drift term of the nonlinear filtering system has a
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potential function (i.e., drift term is a gradient vector field), then the corresponding
estimation algebra is called exact. In [TWY], Tam, Wong, and Yau have classified
all finite-dimensional exact estimation algebras of maximal rank with arbitrary state-
space dimension. In [ChYa], Chiou and Yau are able to classify all finite-dimensional
estimation algebras of maximal rank with state-space dimension less than or equal to
two. The novelty of their theorem is that there is no assumption on the drift term
of the nonlinear filtering system. In [CLY], Chen, Leung, and Yau classify all finite-
dimensional estimation algebras of maximal rank with state-space dimension equal to
3 (without any assumption on the drift term). This paper is a natural continuation
of [ChYa] and [CLY]. The following is our main theorem.

MAIN THEOREM. Suppose that the state space of the filtering system (2.1) is of
dimension n ≤ 4. If E is the finite-dimensional estimation algebra of maximal rank,
then the drift term f must be a linear vector field (i.e., each component is a polynomial
of degree one) plus a gradient vector field and E is a real vector space of dimension
2n + 2 with basis given by 1, x1, . . . , xn, D1, . . . , Dn and L0. Moreover η is a degree
2 polynomial.

This kind of nonlinear filtering system was studied by Yau [Ya]. Therefore, from
Lie algebraic point of view, we have shown that the finite-dimensional filters consid-
ered in [Ya] are the most general finite-dimensional filters (cf. [Ch] for a nice review
of the Yau filter).

Let ωij = ∂fj

∂xi
− ∂fi

∂xj
, which was first introduced by Wong [Wo3]. Our strat-

egy is to prove ωij constant for all i, j. Then we can apply the result of [Ya] to
finish the proof. This involves two steps. The first step is to prove that ωij is
a degree-one polynomial. Let n be the dimension of the state space. In the case
n = 3 there are three unknowns: ω12, ω13, and ω23. It is easy to see that they
are all degree-two polynomials in view of Ocone’s theorem. In [YaLe], Leung and
Yau showed that the coefficients of the quadratic parts of ω12, ω13, and ω23 have to
satisfy 90 quadratic equations. It was shown in that paper that the 90 quadratic
equations have only a trivial solution. Hence the proof of the first step is completed
in this case. Obviously, this approach encounters difficulty when n is greater than
3. Fortunately, Chen and Yau [ChYa1] were able to prove that ωij is a degree-
one polynomial for arbitrary n by means of their new algebraic technique. The
second step is to prove that ωij is actually a constant. This is the hard part of
the problem of classification of finite-dimensional estimation algebras of maximal
rank. The purpose of this paper is to deal with the hard part of the problem by
proving ωij constant for n ≤ 4. We introduce a new matrix equation. The key
point of this paper is to show that this matrix has no nontrivial solution. The ad-
vantage of our new technique is not only that we can obtain entirely new results
for n = 4 but also that we have simple uniform proof of our previous results for
n ≤ 3.

The paper is in essence a continuation of [Ya], [ChYa], [CLY], [ChYa1], [ChYa2],
and we strongly recommend that readers familiarize themselves with the results in
[Ya], [ChYa1], [ChYa2]. However, every effort will be made to make this paper as
self-contained as possible, with minimal duplication of the previous papers.

2. Basic concepts. In this section, we shall recall some basic concepts and
results from [Ya] and [ChYa]. Consider a filtering problem based on the following
observation model:
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(2.1)
{

dx(t) = f(x(t))dt + g(x(t))dv(t), x(0) = x0,
dy(t) = h(x(t))dt + dw(t), y(0) = 0,

in which x, v, y, and w are, respectively, Rn-, Rp-, Rm-, and Rm-valued processes and
v and w have components which are independent, standard Brownian processes. We
further assume that n = p, f, h are C∞ smooth and that g is an orthogonal matrix.
We shall refer to x(t) as the state of the system at time t and to y(t) as the observation
at time t.

Let ρ(t, x) denote the conditional density of the state given the observation {y(s) :
0 ≤ s ≤ t}. It is well known (see [DaMa], for example) that ρ(t, x) is given by
normalizing a function, σ(t, x), which satisfies the Duncan–Mortensen–Zakai equation:

(2.2) dσ(t, x) = L0σ(t, x)dt +
m∑

i=1

Liσ(t, x)dyi(t), σ(0, x) = σ0,

where

L0 =
1
2

n∑
i=1

∂2

∂x2
i

−
n∑

i=1

fi
∂

∂xi
−

n∑
i=1

∂fi

∂xi
− 1

2

m∑
i=1

h2
i

and for i = 1, . . . , m, Li is the zero-degree differential operator of multiplication by
hi, σ0 is the probability density of the initial point x0. In this paper, we will assume
σ0 is a C∞ function.

Equation (2.2) is a stochastic partial differential equation. The stochastic differ-
ential is a Stratonovich one and not an Ito one. In real applications, we are interested
in constructing state estimators from observed sample paths with some property of
robustness. Based on Rozovsky’s transformation [Ro],

ξ(t, x) = exp
(

−
m∑

i=1

hi(x)yi(t)
)

σ(t, x),

Davis [Da] proposed studying the following robust Duncan–Mortensen–Zakai equa-
tion:

∂ξ

∂t
(t, x) = L0ξ(t, x) +

m∑
i=1

yi(t)[L0, Li]ξ(t, x) +
1
2

m∑
i,j=1

yi(t)yj(t)[[L0, Li], Lj ]ξ(t, x),

(2.3)
ξ(0, x) = σ0,

which is a time-varying partial differential equation. Here we have used the following
notation.

DEFINITION 1. If X and Y are differential operators, the Lie bracket of X and
Y , [X, Y ], is defined by [X, Y ]φ = X(Y φ) − Y (Xφ) for any C∞ function φ.

DEFINITION 2. The estimation algebra E of a filtering problem (2.1) is defined
to be the Lie algebra generated by {L0, L1, . . . , Lm}. E is said to be an estimation
algebra of maximal rank if for any 1 ≤ i ≤ n there exists a constant ci such that xi+ci

is in E.
Most of the known finite-dimensional estimation algebras are maximal. For ex-

ample, if (2.1) is linear, i.e., f(x) = Ax, g(x) = B, and h(x) = Cx, and if (A, B, C)
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also is minimal, then the corresponding estimation algebra is maximal [Ha]. We need
the following basic result for later discussion.

THEOREM 2.1 (Ocone). Let E be a finite-dimensional estimation algebra. If a
function ξ is in E, then ξ is a polynomial of degree at most two.

In [Wo3], the concept of Ω is introduced, defined as the matrix whose (i, j)-element
ωij is ∂fj

∂xi
− ∂fi

∂xj
. Define

Di =
∂

∂xi
− fi

and

η =
n∑

i=1

∂fi

∂xi
+

n∑
i=1

f2
i +

m∑
i=1

h2
i .

Then

L0 =
1
2

(
n∑

i=1

D2
i − η

)
.

The following theorem proved in [Ya] plays a fundamental role in the classification of
finite-dimensional estimation algebras.

THEOREM 2.2 (Yau). Let E be a finite-dimensional estimation algebra of (2.1)
such that ωij = ∂fj

∂xi
− ∂fi

∂xj
are constant functions. If E is of maximal rank, then E is a

real vector space of dimension 2n+2 with basis given by 1, x1, x2, . . . , xn, D1, D2, . . . ,
Dn and L0.

Recently, Chen and Yau [ChYa1] have made important progress in the program of
classification of finite-dimensional estimation algebras of maximal rank. Namely, they
have shown that Ω matrix is linear in the sense that all ωij are degree-one polynomials.
More recently, in order to prove the Mitter conjecture for finite-dimensional estimation
algebra of maximal rank, Chen and Yau [ChYa2] have sharpened the above result.
To describe this new result, let us first recall some important concepts and notations
introduced in [ChYa1].

Let Q be the space of quadratic forms in n variables, i.e., real vector space spanned
by xixj , with 1 ≤ i ≤ j ≤ n. Let X = (x1, . . . , xn)T . For any quadratic form p ∈ Q,
there exists a symmetric matrix A such that p(x) = XT AX. The rank of the quadratic
form p is denoted by rk(p) and is defined to be the rank of the matrix A.

DEFINITION 3. A fundamental quadratic form of the estimation algebra E is
an element p0 ∈ E ∩ Q with the greatest positive rank, i.e., rk(p0) ≥ rk(p) for any
p ∈ E ∩ Q. The quadratic rank of the estimation algebra E is defined to be rk(p0).
The following Theorem 2.3 and Proposition 2.4 are proved in [ChYa2].

THEOREM 2.3. Let E be a finite-dimensional estimation algebra of maximal rank.
Let k be the quadratic rank of E. Then

(1) the observation terms hi(x), 1 ≤ i ≤ m, are affine polynomials.
(2) (a) ωij, for 1 ≤ i ≤ k or 1 ≤ j ≤ k, are constants.

(b) ωij, for k + 1 ≤ i, j ≤ n, are degree-one polynomials in xk+1, . . . , xn.
(3) η =

∑n
i=1

∂fi

∂xi
+
∑n

i=1 f2
i +

∑m
i=1 h2

i is a homogeneous polynomial of degree
four. Moreover, η4 (homogeneous polynomial of degree-four part of η) depends only
on xk+1, . . . , xn variables.

PROPOSITION 2.4. Let E be a finite-dimensional estimation algebra of maximal
rank. Let k be the quadratic rank of E. Then η is a polynomial of degree at most four,
and any homogeneous polynomial of degree two in E depends only on x1, x2, . . . , xk.
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Finally, we need to recall the following theorem proved in [Ya].
THEOREM 2.5. Let F (x1, . . . , xn) be a polynomial on Rn. Suppose that there ex-

ists a polynomial path c : R → Rn such that limt→∞||c(t)|| = ∞ and limt→∞F (c(t)) =
−∞. Then there are no C∞ functions f1, . . . , fn on Rn satisfying the equations

n∑
i=1

∂fi

∂xi
+

n∑
i=1

f2
i = F.

3. Proof of the main theorem. From Yau’s theory [Ya], to classify all finite-
dimensional estimation algebras of maximal rank, we need only to prove that the
ωij ’s corresponding to these estimation algebras of maximal rank are automatically
constants.

We first introduce a new matrix equation which turns out to play an important
role in classification of finite-dimensional estimation algebras of maximal rank.

THEOREM 3.1. Suppose that η4 is a homogeneous polynomial of degree four in n
variables. If n ≤ 4 and 4 is an antisymmetric matrix with each entry a homogeneous
polynomial of degree one such that

(3.1) 44T =
1
2
H(η4),

where H(η4) = ( ∂2η4
∂xi∂xj

) is the Hessian matrix of η4, then 4 = 0.
Proof. Write

4 =
n∑

i=1

Aixi,(3.2)

1
2
H(η4) =

∑
i≤j

Hijxixj ,(3.3)

where Ai’s are real n × n antisymmetric matrices and Hij ’s are real n × n symmetric
matrices, i.e.,

Ai = −AT
i ,(3.4)

Hij = HT
ij .(3.5)

Then (3.1) implies

A2
i = −Hii,(3.6)

AiAj + AjAi = −Hij .(3.7)

Denote the (i, j) entry of the matrix M by M(i, j). For i > j, we let Hij = Hji. Note
that

(3.8)
∂2(x2

i x
2
j )

∂x2
i

= 2x2
j ,

∂2(x2
i x

2
j )

∂x2
j

= 2x2
i , and

∂2(x2
i x

2
j )

∂xi∂xj
= 4xixj .

From (3.3) and (3.8), we get

(3.9) 2Hii(j, j) = 2Hjj(i, i) = Hij(i, j) for i 6= j.
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Hence, for i 6= j, (3.6), (3.7), and (3.9) imply∑
l

Ai(j, l)Ai(l, j) =
∑

l

Aj(i, l)Aj(l, i)(3.10)

=
1
2

∑
l

[
Ai(i, l)Aj(l, j) + Aj(i, l)Ai(l, j)

]
.

Recall that each Ai is an antisymmetric matrix. So (3.10) is reduced to the following
equation: ∑

l

[
Ai(j, l)

]2 =
∑

l

[
Aj(i, l)

]2(3.11)

=
1
2

∑
l

[
Ai(i, l)Aj(j, l) + Aj(i, l)Ai(j, l)

]
.

In view of the Schwarz inequality, we have

2
∑

l

[
Ai(j, l)

]2 + 2
∑

l

[
Aj(i, l)

]2 = 2
∑

l

Ai(i, l)Aj(j, l) + 2
∑

l

Aj(i, l)Ai(j, l)

≤
∑
l 6=i,j

[
Ai(i, l)

]2 +
∑
l 6=i,j

[
Aj(j, l)

]2 +
∑
l 6=i,j

[
Aj(i, l)

]2(3.12)

+
∑
l 6=i,j

[
Ai(j, l)

]2
.

This implies∑
l

[
Ai(j, l)

]2 +
∑

l

[
Aj(i, l)

]2 +
∑
l=i,j

[
Aj(i, l)

]2 +
∑
l=i,j

[
Ai(j, l)

]2(3.13)

≤
∑
l 6=i,j

[
Ai(i, l)

]2 +
∑
l 6=i,j

[
Aj(j, l)

]2
.

Taking the sum of left-hand side of (3.13) over i < j, we get

∑
i<j

n∑
l=1

[
Ai(j, l)

]2 +
∑
i<j

n∑
l=1

[
Aj(i, l)

]2 +
∑
i<j

[
Aj(i, j)

]2 +
∑
i<j

[
Ai(j, i)

]2
=
∑
i<j

n∑
l=1

[
Ai(j, l)

]2 +
∑
j<i

n∑
l=1

[
Ai(j, l)

]2 +
∑
i<j

[
Aj(i, j)

]2 +
∑
j<i

[
Aj(i, j)

]2
=

∑
i6=l,i 6=j

[
Ai(j, l)

]2 + 2
∑
i6=l

[
Ai(i, l)

]2
.(3.14)

On the other hand, by taking the sum of right-hand side of (3.13) over i < j, we get∑
i<j

∑
l 6=i,j

[
Ai(i, l)

]2 +
∑
i<j

∑
l 6=i,j

[
Aj(j, l)

]2
=
∑
i<j

∑
l 6=i,j

[
Ai(i, l)

]2 +
∑
j<i

∑
l 6=i,j

[
Ai(i, l)

]2(3.15)

= (n − 2)
∑
i6=l

[
Ai(i, l)

]2
.
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Comparing (3.14) and (3.15), we get

(3.16)
∑

i6=l,i 6=j

[
Ai(j, l)

]2 = (n − 4)
∑
i6=l

[
Ai(i, l)

]2
.

When n = 4, we see from (3.16) that∑
i6=l,i 6=j

[
Ai(j, l)

]2 = 0;

hence

(3.17) Ai(j, l) = 0 for i 6= j and i 6= l.

Using (3.17) in (3.10) gives

(3.18)
[
Ai(i, j)

]2 =
[
Aj(j, i)

]2
.

Note that for i < j

(3.19)
∂2x3

i xj

∂xi∂xj
= 3x2

i and
∂2x3

i xj

∂x2
i

= 6xixj .

From (3.3) and (3.19), we get

(3.20) 2Hij(i, i) = Hii(i, j).

In view of (3.6), (3.7), and (3.20), we have

(3.21) 2
∑

l

Ai(i, l)Aj(l, i) =
∑

l

Ai(i, l)Ai(l, j).

Using (3.17) in (3.21) gives

(3.22) Ai(i, j)Aj(j, i) = 0.

In view of (3.18) and (3.22), we get

(3.23) Ai(i, j) = 0 for all i, j.

Therefore A1 = A2 = A3 = A4 = 0 by (3.17) and (3.23). This simply means that
4 = 0.

PROPOSITION 3.2. Let E be a finite-dimensional estimation algebra of maximal
rank associated with the filtering system (2.1). Then E contains the real vector space
spanned by 1, x1, . . . , xn, D1, . . . , Dn and L0.

Proof. Since E is a finite-dimensional estimation algebra with maximal rank,
there are constants ci’s such that xi + ci is in E for 1 ≤ i ≤ n:

[L0, xj + cj ] =
1
2

[ n∑
i=1

D2
i − η, xj

]
=

1
2

n∑
i=1

[
D2

i , xj

]
= Dj ∈ E,

[Dj , xj + cj ] = 1 ∈ E.

Hence x1, . . . , xn ∈ E.
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We are now ready to prove the main theorem of this paper stated in section 1.
By Theorem 2.3, we know that ωij ’s are constants for 1 ≤ i ≤ k or 1 ≤ j ≤ k, where
k is the quadratic rank of E. We also know that ωij ’s are degree-one polynomials
in xk+1, . . . , xn variables for k + 1 ≤ i, j ≤ n. We are going to prove that ωij ’s are
indeed constants for k + 1 ≤ i, j ≤ n and n ≤ 4. Observe that

[
[L0, Dj ], Dl

]
=

[
n∑

i=1

(
ωjiDi +

1
2

∂ωji

∂xi

)
+

1
2

∂η

∂xj
, Dl

]

=
n∑

i=1

(
ωjiωli − ∂ωji

∂xl
Di

)
− 1

2

n∑
i=1

∂2ωji

∂xl∂xi
− 1

2
∂2η

∂xl∂xj

∈ E.

In view of Theorem 2.3 and Proposition 3.2, we deduce that

(3.24)
n∑

i=1

ωjiωli − 1
2

∂2η

∂xl∂xj
∈ E.

Let ηm be the homogeneous polynomial of the degree-m part of η and βij be the
homogeneous polynomial of the degree-one part of ωij . Then in view of Theorem 2.3
and Proposition 3.2, we have

(3.25)
n∑

i=k+1

βjiβli − 1
2

∂2η4

∂xl∂xj
∈ E

for k + 1 ≤ l, j ≤ n. Observe that
∑n

i=k+1 βjiβli − 1
2

∂2η
∂xl∂xj

is a homogeneous poly-
nomial of degree two in E which depends only on x1, . . . , xk variables because k is
the quadratic rank of E. On the other hand η4, βji, and βli, for k + 1 ≤ i, j, l ≤ n,
depend only on xk+1, . . . , xn variables by Theorem 2.3. So the left-hand side of (3.25)
depends only on xk+1, . . . , xn. Therefore we deduce that

(3.26)
n∑

i=k+1

βjiβli − 1
2

∂2η

∂xl∂xj
= 0 for k + 1 ≤ j, l ≤ n.

Let 4 = (βij), k + 1 ≤ i, j ≤ n, be an (n − k) × (n − k) antisymmetric matrix. Then
we have

(3.27) 44T =
1
2
H(η4),

where H(η4) = ( ∂2η4
∂xi∂xj

), k + 1 ≤ i, j ≤ n, stands for the Hessian matrix for η4. In
view of Theorem 3.1, we have 4 = 0. So we have shown that ωij ’s are constants for
1 ≤ i, j ≤ n. By Theorem 2.2 of Yau, E is a real vector space of dimension 2n + 2
with basis given by 1, x1, x2, . . . , xn, D1, D2, . . . , Dn and L0.

Since 4 = 0, (3.27) implies η4 = 0. So

n∑
i=1

∂fi

∂xi
+

n∑
i=1

f2
i +

m∑
i=1

h2
i = η0 + η1 + η2 + η3,
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which implies

(3.28)
n∑

i=1

∂fi

∂xi
+

n∑
i=1

f2
i = η0 + η1 + η2 −

m∑
i=1

h2
i + η3.

By Theorem 2.3, F̃ = η0 + η1 + η2 −∑m
i=1 h2

i is at most a polynomial of degree two.
If η3 is not identically zero, then we can choose a polynomial path c : R → Rn such
that limt→∞||c(t)|| = ∞ and limt→∞F (c(t)) = −∞. This is not possible in view of
Theorem 2.5. So we conclude that η3 = 0; i.e., η is a polynomial of degree two.
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Abstract. We consider methods for minimizing a convex function f that generate a sequence
{xk} by taking xk+1 to be an approximate minimizer of f(x) + Dh(x, xk)/ck, where ck > 0 and Dh

is the D-function of a Bregman function h. Extensions are made to B-functions that generalize Breg-
man functions and cover more applications. Convergence is established under criteria amenable to
implementation. Applications are made to nonquadratic multiplier methods for nonlinear programs.
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functions, B-functions
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1. Introduction. We consider the convex minimization problem

f∗ = inf{ f(x) : x ∈ X },(1.1)

where f : Rn → (−∞,∞] is a closed proper convex function and X is a nonempty
closed convex set in Rn. One method for solving (1.1) is the proximal point algorithm
(PPA) [Mar70, Roc76b], which generates a sequence

xk+1 = arg min{ f(x) + |x− xk|2/2ck : x ∈ X } for k = 1, 2, . . . ,(1.2)

starting from any point x1 ∈ Rn, where | · | is the Euclidean norm and {ck} is a
sequence of positive numbers. The convergence and applications of the PPA are
discussed in, e.g., [Aus86, CoL93, EcB92, GoT89, Gül91, Lem89, Roc76a, Roc76b].

Several proposals have been made for replacing the quadratic term in (1.2) with
other distancelike functions [BeT94, CeZ92, ChT93, Eck93, Egg90, Ius95, IuT93,
Teb92, TsB93]. In [CeZ92], (1.2) is replaced by

xk+1 = arg min{ f(x) +Dh(x, xk)/ck : x ∈ X },(1.3)

where Dh(x, y) = h(x)− h(y)− 〈∇h(y), x− y〉 is the D-function of a Bregman func-
tion h [Bre67, CeL81], which is continuous, strictly convex, and differentiable in the
interior of its domain; here 〈·, ·〉 is the usual inner product and ∇h is the gradient of h.
Accordingly, this is called Bregman proximal minimization (BPM). The convergence
of the BPM method is discussed in [CeZ92, ChT93, Eck93, Ius95, TsB93], a general-
ization for finding zeros of monotone operators is given in [Eck93], and applications to
convex programming are presented in [Cha94, Eck93, Ius95, NiZ92, NiZ93a, NiZ93b,
Teb92, TsB93].

This paper discusses convergence of the BPM method using the B-functions of
[Kiw97] that generalize Bregman functions, being possibly nondifferentiable and infi-
nite on the boundary of their domains (cf. section 2; another recent generalization of

∗Received by the editors February 17, 1995; accepted for publication (in revised form) April
24, 1996. This research was supported by Polish State Committee for Scientific Research grant
8T11A02610.

http://www.siam.org/journals/sicon/35-4/28174.html
†Systems Research Institute, Newelska 6, 01–447 Warsaw, Poland (kiwiel@ibspan.waw.pl).
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Bregman functions is given in [BaB97] for convex feasibility problems). Then (1.3)
involves Dk

h(x, x
k) = h(x) − h(xk) − 〈

γk, x− xk〉, where γk is a subgradient of h at
xk. We establish for the first time convergence of versions of the BPM method that
relax the requirement for exact minimization in (1.3). (The alternative approach of
[Fl̊a94], being restricted to Bregman functions with Lipschitz continuous gradients,
cannot handle the applications of sections 7–9.) We note that in several important
applications, strictly convex problems of the form (1.3) may be solved by dual ascent
methods; cf. references in [Kiw97, Tse90].

The application of the BPM method to the dual functional of a convex program
yields nonquadratic multiplier methods [Eck93, Teb92]. By allowing h to have sin-
gularities, we extend this class of methods to include, e.g., shifted Frish and Carroll
barrier function methods [FiM68]. We show that our criteria for inexact minimization
can be implemented similarly as in the nonquadratic multiplier methods of [Ber82,
Chap. 5]. Our convergence results extend those in [Eck93, TsB93] to quite general
shifted penalty functions, including twice continuously differentiable ones.

We add that the continuing interest in nonquadratic modified Lagrangians stems
from the fact that, in contrast with the quadratic one, they are twice continuously
differentiable, and this facilitates their minimization [Ber82, BTYZ92, BrS93, BrS94,
CGT92, CGT94, GoT89, IST94, JeP94, Kiw96, NPS94, Pol92, PoT97, Teb92, TsB93].
By the way, our convergence results seem stronger than ones in [IST94, PoT97] for
modified barrier functions, resulting from a dual application of (1.3) with Dk

h(x, x
k)

replaced by an entropylike φ-divergence.
The paper is organized as follows. In section 2 we recall several elementary

properties of B-functions. In section 3 we present an inexact BPM method. Its
global convergence under various conditions is established in sections 4 and 5. In
section 6 we show that the exact BPM method converges finitely when (1.1) enjoys
a sharp minimum property. Applications to multiplier methods are given in section
7. Convergence of general multiplier methods is studied in section 8, while section 9
focuses on two classes of shifted penalty methods. Additional aspects of multiplier
methods are discussed in section 10. The appendix contains proofs of certain technical
results.

Our notation is fairly standard. R+ and R> are the nonnegative and positive
reals, respectively. For any set C in Rn, clC, C̊, riC, and ∂C denote the closure,
interior, relative interior, and boundary of C, respectively. The indicator function of
C is denoted by ıC (ıC(x) = 0 if x ∈ C, ∞ otherwise), and its support function by
ı∗C(·) = supx∈C 〈·, x〉.

2. B-functions. We first recall some useful concepts from convex analysis (see,
e.g., [Roc70]).

For any proper convex function h on Rn, Dh = {x : f(x) < ∞} denotes its
effective domain, ∂εh(·) = {p : h(y) ≥ h(·) + 〈p, y − ·〉 − ε ∀y} its ε-subdifferential for
each ε ≥ 0, ∂h = ∂0h its subdifferential, and h′(x; d) = limt↓0[h(x + td) − h(x)]/t its
derivative in any direction d at a point x where h is finite. By [Roc70, Thm. 23.2],

h′(x; d) ≥ ı∗∂h(x)(d) = sup{〈g, d〉 : g ∈ ∂h(x)}.(2.1)

The domain and range of ∂h are denoted byD∂h and im ∂h, respectively. If h is proper,
then riDh ⊂ D∂h ⊂ Dh [Roc70, Thm. 23.4]. h is called cofinite when its conjugate
h∗(·) = supx 〈·, x〉 − h(x) is real valued. If h is closed proper convex, its recession
function h0+(·) = limt→∞[h(x + t·) − h(x)]/t (∀x ∈ Dh) is positively homogeneous
[Roc70, Thm. 8.5]. h is called essentially strictly convex if h is strictly convex on
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every convex subset of D∂h. A proper convex function h is called essentially smooth
if D∇h = D̊h 6= ∅ and |∇h(xk)| → ∞ whenever {xk} ⊂ D̊h, xk → x ∈ ∂Dh.

FACT 2.1 (see [Roc70, Thm. 23.5]). If h is closed proper convex, then the follow-
ing are equivalent : g ∈ ∂h(x), x ∈ ∂h∗(g), x ∈ Arg min{h(·)− 〈g, ·〉}, h(x) + h∗(g) =
〈g, x〉.

FACT 2.2 (see [Roc70, Thms. 25.1 and 25.5]). If h is proper convex, then ∇h is
continuous on D∇h ⊂ D̊h, and x ∈ D∇h, i.e., h is differentiable at x, iff ∂h(x) =
{∇h(x)}.

FACT 2.3 (see [Roc70, Thms. 26.1 and 26.3]). Suppose that h is closed proper
convex. Then

(i) h is essentially smooth iff ∂h(x) = {∇h(x)}, ∀x ∈ D̊h, and ∂h(x) = ∅,
∀x ∈ ∂Dh.

(ii) h is essentially strictly convex iff h∗ is essentially smooth.
For any proper convex function h on Rn, we define its difference functions:

D[
h(x, y) = h(x)− h(y)− ı∗∂h(y)(x− y) ∀x, y ∈ Dh,

(2.2)
D]
h(x, y) = h(x)− h(y) + ı∗∂h(y)(y − x) ∀x, y ∈ Dh.

By convexity (cf. (2.1)), h(x) ≥ h(y) + ı∗∂h(y)(x− y) and

0 ≤ D[
h(x, y) ≤ h(x)− h(y)− 〈γ, x− y〉 ≤ D]

h(x, y) ∀x, y ∈ Dh, γ ∈ ∂h(y).(2.3)

D[
h and D]

h generalize the usual D-function of h [Bre67, CeL81], defined by

Dh(x, y) = h(x)− h(y)− 〈∇h(y), x− y〉 ∀x ∈ Dh, y ∈ D∇h,(2.4)

since

Dh(x, y) = D[
h(x, y) = D]

h(x, y) ∀x ∈ Dh, y ∈ D∇h.(2.5)

DEFINITION 2.4 (see [Kiw97]). A closed proper (possibly nondifferentiable) convex
function h is called a B-function (generalized Bregman function) if

(i) h is strictly convex on Dh.
(ii) h is continuous on Dh.
(iii) For every α ∈ R and x ∈ Dh, the set L[h(x, α) = {y ∈ D∂h : D[

h(x, y) ≤ α}
is bounded.

(iv) For every α ∈ R and x ∈ Dh, if {yk} ⊂ L[h(x, α) is a convergent sequence
with limit y∗ ∈ Dh \ {x}, then D]

h(y
∗, yk)→ 0.

Remarks 2.5.
(i) D[

f and D]
f are used like distances, because for x ∈ Df and y ∈ D∂f ,

0 ≤ D[
f (x, y) ≤ D]

f (x, y), and D[
f (x, y) = 0 ⇐⇒ D]

f (x, y) = 0 ⇐⇒ x = y by strict
convexity.

(ii) Our generalization of Bregman functions [CeL81] has two components. First,
we allow singularities of h at ∂Dh to cover more examples. Second, handling nondif-
ferentiable functions only requires slightly more complex notation. In many cases h
will be essentially smooth, so Dh = D[

h = D]
h on Dh × D̊h (Fact 2.3(i) and (2.5)).

(iii) Several results of [Kiw97] help in checking if a given function is a B-function.
We only recall the following results and examples from [Kiw97].
LEMMA 2.6 (see [Kiw97, Lem. 2.8]). Let h =

∑k
i=1 hi, where h1, . . . , hk are closed

proper convex functions such that (s.t.) hj+1, . . . , hk (j ≥ 0) are polyhedral and
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∩ji=1 ri(Dhi) ∩ki=j+1 Dhi 6= ∅. If h1 is a B-function, h2, . . . , hj are continuous on
Dh = ∩ki=1Dhi and satisfy condition (iv) of Definition 2.4, then h is a B-function. In
particular, h is a B-function if h1, . . . , hj are.

LEMMA 2.7 (see [Kiw97, Lems. 2.10 and 2.11]).
(i) Let h be a proper convex function on R. Then h is a B-function iff h is

closed and essentially strictly convex and Dh∗ = D̊h∗ .
(ii) Let h1, . . . , hn be B-functions on R. Then h(x) =

∑n
i=1 hi(xi) is a B-

function.
Examples 2.8 (see [Kiw97, Exs. 2.12]). If h(x) =

∑n
i=1 hi(xi) with hi : R →

(−∞,∞], then h∗(y) =
∑
i h

∗
i (yi) and Dh(x, y) =

∑
iDhi(xi, yi), so we consider only

n = 1. In each example, it can be verified that h is an essentially smooth B-function.
(1 [Eck93]). h(x) = |x|α/α on Dh = R for α > 1. Then h∗(·) = | · |β/β with

α+β = αβ (cf. [Roc70, sect. 12]). For α = 2, h(x) = |x|2/2 and Dh(x, y) = |x−y|2/2.
(2) h(x) = −xα/α on Dh = R+ with α ∈ (0, 1). Then h∗(y) = −(−y)β/β on

Dh∗ = (−∞, 0) with α + β = αβ. For h(x) = (αx − xα)/(1 − α) [Teb92], h∗(y) =
(1 + y/β)β on D∗

h = (−∞,−β). For α = 1
2 , Dh(x, y) = (x1/2 − y1/2)2/y1/2.

(3 (“x log x”-entropy) [Bre67]) h(x) = x lnx on Dh = R+ (0 ln 0 = 0). Then
h∗(y) = exp(y − 1) on Dh∗ = R and Dh(x, y) = x ln(x/y) + y − x (the Kullback–
Leibler entropy). For h(x) = x lnx− x (Boltzmann–Shannon), h∗(y) = exp y and Dh

is the same.
(4 (Burg’s entropy) [CDPI91]) h(x) = − lnx on Dh = R>. Then h∗(y) =

− ln(−y)− 1 on Dh∗ = (−∞, 0), and Dh(x, y) = − ln(x/y) + x/y − 1.
(5 (Hellinger)) h(x) = −√1− x2 on Dh = [−1, 1]. Then h∗(y) =

√
1 + y2 on

Dh∗ = R and Dh(x, y) = (1 − xy)/
√

1− y2 − √1− x2 on [−1, 1] × (−1, 1). For
h(x) = −√

x(1− x) on Dh = [0, 1], h∗(y) = 1
2 (y +

√
1 + y2).

(6 (Fermi–Dirac)) h(x) = x lnx+ (1− x) ln(1− x) on Dh = [0, 1]. Then h∗(y) =
ln(1 + exp y) on Dh∗ = R.

(7) h(x) = − lnx − ln(1 − x) on Dh = [0, 1]. Then h∗(y) = 1
2 [(y2 + 4)1/2 + y −

2] + ln[(y2 + 4)1/2 − 2]− ln y2 for y 6= 0, h∗(0) = − ln 4, Dh∗ = R.
We now provide a dual complement of Lemma 2.7(i).
LEMMA 2.9.

(i) If ψ is a B-function on R, then ψ∗ is essentially smooth and Dψ∗ = D̊ψ∗ .
(ii) If φ : R → (−∞,∞] is closed proper convex essentially smooth and Dφ =

D̊φ, then φ∗ is a B-function with riDφ∗ ⊂ im∇φ ⊂ Dφ∗ .
Proof. (i) This follows from Definition 2.4, Fact 2.3(ii), and Lemma 2.7(i). (ii)

By Facts 2.1 and 2.3, riDφ∗ ⊂ D∂φ∗ = im ∂φ = im∇φ ⊂ Dφ∗ and φ∗ is closed proper
essentially strictly convex with φ∗∗ = φ [Roc70, Thm. 12.2]. The conclusion follows
from Lemma 2.7(i).

We need the following consequence of [Kiw97, Lems. 2.15 and 2.16] formulated in
terms of

0 ≤ D′
h(x, y) := h(x)− h(y)− h′(y;x− y) ≤ D[

h(x, y) ∀x, y ∈ Dh.(2.6)

LEMMA 2.10. Let h be a B-function on Rn. Then
(i) If {xk} is a sequence in L[h(x, α) for some x ∈ Dh, α ∈ R, then {xk} is

bounded and every limit point of {xk} is in Dh.
(ii) If {xk} ⊂ Dh is bounded and D′

h(x, x
k)→ 0 for some x, then xk → x.

3. The BPM method. We make the following standing assumptions about
problem (1.1) and the algorithm.
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Assumption 3.1.
(i) f is a closed proper convex function.
(ii) X is a nonempty closed convex set.
(iii) h is a (possibly nonsmooth) B-function.
(iv) DfX ∩ Dh 6= ∅, where fX = f + ıX is the essential objective of (1.1).
(v) {ck} is a sequence of positive numbers satisfying

∑∞
k=1 ck =∞.

(vi) {εk} is a sequence of nonnegative numbers satisfying

lim
l→∞

l∑
k=1

ckεk/
l∑

k=1

ck = 0.

Consider the following inexact BPM method. At iteration k ≥ 1, having

xk ∈ DfX ∩ D∂h,(3.1)

γk ∈ ∂h(xk),(3.2)

Dk
h(x, x

k) = h(x)− h(xk)− 〈
γk, x− xk〉 ∀x,(3.3)

find xk+1, γk+1, and pk+1 satisfying

γk+1 ∈ ∂h(xk+1),(3.4)

ckp
k+1 + γk+1 − γk = 0,(3.5)

pk+1 ∈ ∂εkfX(xk+1),(3.6)

fX(xk+1) ≤ fX(xk).(3.7)

We note that xk+1 ≈ arg min{fX +Dk
h(·, xk)/ck} with

0 ≤ D[
h(·, xk) ≤ Dk

h(·, xk) ≤ D]
h(·, xk)(3.8)

by (2.2), (2.3), (3.2), and (3.3); in fact xk+1 is an εk-minimizer of

φk(x) = fX(x) +Dk
h(x, x

k)/ck,(3.9)

as shown after the following (well-known) technical result (cf. [Roc70, Thm. 27.1]).
LEMMA 3.2. A closed proper and strictly convex function φ on Rn has a unique

minimizer iff φ is inf-compact, i.e., the α-level set Lφ(α) = {x : φ(x) ≤ α} is bounded
for any α ∈ R, and this holds iff Lφ(α) is nonempty and bounded for one α ∈ R.

Proof. If x ∈ Arg minφ, then by strict convexity of φ, Lφ(φ(x)) = {x} is bounded,
so φ is inf-compact (cf. [Roc70, Cor. 8.7.1]). If for some α ∈ R, Lφ(α) 6= ∅ is bounded,
then it is closed (cf. [Roc70, Thm. 7.1]) and contains Arg min φ 6= ∅ because φ is
closed.

LEMMA 3.3. Under the above assumptions, we have the following:
(i) φk is closed proper and strictly convex.
(ii) φk(xk+1) ≤ inf φk + εk (i.e., 0 ∈ ∂εkφk(xk+1)).
(iii) If f∗ = infX f > −∞, then φk is inf-compact.
(iv) φk is inf-compact if (γk − ck im ∂fX) ∩ im ∂h 6= ∅, where im ∂h = D̊h∗ , so

that im ∂h = Rn iff h is cofinite. In particular, φk is inf-compact if (γk−ck riDf∗
X

)∩
riDh∗ 6= ∅.
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(v) If φk is inf-compact and either riDfX ∩ riDh 6= ∅, or DfX ∩ riDh 6= ∅ and
fX is polyhedral, then there exist x̂k+1 = arg minφk, p̂k+1 ∈ ∂fX(x̂k+1), and γ̂k+1 ∈
∂h(x̂k+1) s.t. fX(x̂k+1) + Dk

h(x̂
k+1, xk)/ck ≤ fX(xk) and ckp̂

k+1 + γ̂k+1 − γk = 0;
also x̂k+1 ∈ D̊h if D∂fX ⊂ D̊h or D∂h = D̊h; e.g., h is essentially smooth.

(vi) The assumptions of (v) hold if either riDfX ⊂ D̊h and infX f > −∞, or
D∂fX ⊂ D̊h and im ∂h = Rn.

Proof. (i) Since f , ıX , and h are closed proper convex, so are fX = f + ıX ,
Dk
h(·, xk) and φk = fX + Dk

h(·, xk)/ck (cf. [Roc70, Thm. 9.3]), having nonempty
domains Df ∩X, Dh, and DfX ∩ Dh respectively (cf. Assumption 3.1(iv)). Dk

h(·, xk)
and φk are strictly convex, since so is h (cf. Definition 2.4(i)).

(ii) For any x, add the inequality (cf. (3.3), (3.4)) Dk
h(x, x

k) ≥ Dk
h(x

k+1, xk) +〈
γk+1 − γk, x− xk+1

〉
divided by ck to fX(x) ≥ fX(xk+1)+

〈
pk+1, x− xk+1

〉−εk (cf.
(3.6)) and use (3.5) to get φk(x) ≥ φk(xk+1)− εk.

(iii) By part (i), ψ = Dk
h(·, xk) is closed proper strictly convex, and Lψ(0) = {xk}

by strict convexity of h (cf. Definition 2.4(i), (2.3), and (2.6)), so ψ is inf-compact (cf.
Lemma 3.2). Let β = inf φk. Since ψ ≥ 0 (cf. (3.8)), β ≥ f∗ and ∅ 6= Lφk(β + 1) ⊂
Lψ(ck(β − f∗ + 1)) (cf. (3.9)). The last set is bounded, since ψ is inf-compact, so φk
is inf-compact by part (i) and Lemma 3.2.

(iv) Let ŷ ∈ D∂fX , γ̂ ∈ ∂fX(ŷ), x̃ ∈ D∂h, and γ̃ ∈ ∂h(x̃) satisfy γk − ckγ̂ = γ̃.
Then ψ̃(·) = fX(ŷ) + 〈γ̂, · − ŷ〉+Dk

h(·, xk)/ck is closed proper and strictly convex (as
is Dk

h(·, xk); cf. part (i)), and x̃ = arg min ψ̃ because 0 ∈ ∂ψ̃(x̃) = γ̂+(∂h(x̃)−γk)/ck
(cf. [Roc70, Thm. 23.8]). Hence ψ̃ is inf-compact (cf. Lemma 3.2), and so is φk, since
φk ≥ ψ̃ from fX(·) ≥ fX(ŷ)+ 〈γ̂, · − ŷ〉. By strict convexity of h (cf. Definition 2.4(i))
and Facts 2.1 and 2.3, im ∂h = D∂h∗ = D̊h∗ . Of course, D̊h∗ = Rn iff Dh∗ = Rn, i.e.,
iff h is cofinite. The second assertion follows from riDf∗

X
⊂ D∂f∗

X
= im ∂fX .

(v) By part (i) and Lemma 3.2, x̂k+1 = arg minφk is well defined. The rest follows
from Dk

h(·, xk) ≥ 0 (cf. (3.8)), the fact 0 ∈ ∂φk(x̂k+1) = ∂f(x̂k+1)+ ck[∂h(x̂k+1)−γk]
due to our assumptions on DfX and riDh (cf. [Roc70, Thm. 23.8]), and Fact 2.3(i).

(vi) If infX f > −∞ or im ∂h = Rn, then φk is inf-compact by parts (iii) and
(iv). If riDfX ⊂ D̊h then riDfX ∩ riDh = riDfX 6= ∅, since DfX 6= ∅ (cf. Assumption
3.1(iv)).

Remark 3.4. Lemma 3.3(v) and (vi) state conditions under which the exact BPM
method (with xk+1 = x̂k+1 = arg minφk and εk = 0 in (3.6)) is well defined. Our
conditions are slightly weaker than those in [Eck93, Thm. 5], which correspond to
riDfX ⊂ D̊h, and either clDfX ⊂ D̊h and im ∂h = Rn or, f being finite, continuous
and bounded below on X.

Example 3.5. Let X = {x ≥ 0 : Ax = b}, f = 〈ĉ, ·〉+ ıX , and h(x) = −∑n
i=1 lnxi,

where A ∈ Rm×n, b ∈ Rm, and ĉ ∈ Rn. Suppose f∗ > −∞ and Ax = b for some
x > 0. Since D̊h = {x : x > 0}, Lemma 3.3(iii) and (v) implies that x̂k+1 is well
defined.

Example 3.6. Let n = 1, X = R, f(x) = −x, and h(x) = e−x + x. Then
f∗ = ı{−1}, riDf∗ = im ∂f = {−1}, D̊h∗ = im ∂h = (−∞, 1), and riDf∗ ∩ D̊h∗ 6= ∅.
Clearly, φk(x) = e−x + x(e−xk − 1) + const for ck = 1, so arg minφk 6= ∅ iff xk < 0.
Although h is not a Bregman function, this is a counterexample to [Teb92, Thm. 3.1].

4. Convergence of the BPM method. We first derive a global convergence
rate estimate for the BPM method. We follow the analysis of [ChT93], which gener-
alized that in [Gül91]. Let sk =

∑k
j=1 cj for all k.
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LEMMA 4.1. For all x ∈ Dh and k ≤ l, we have

Dk+1
h (x, xk+1) +Dk

h(x
k+1, xk)−Dk

h(x, x
k) =

〈
γk − γk+1, x− xk+1〉

(4.1) ≤ ck[fX(x)− fX(xk+1)] + ckεk,

Dk+1
h (x, xk+1) ≤ Dk

h(x, x
k)−Dk

h(x
k+1, xk) + ckεk if fX(x) ≤ fX(xk+1),(4.2)

sl[fX(xl+1)− fX(x)] ≤ D1
h(x, x

1)−Dl+1
h (x, xl+1)−

l∑
k=1

Dk
h(x

k+1, xk)

(4.3)

+
l∑

k=1

ckεk,

fX(xl+1)− fX(x) ≤ D1
h(x, x

1)/sl +
l∑

k=1

ckεk/sl.(4.4)

Proof. The equality in (4.1) follows from (3.3), and the inequality from γk −
γk+1 = ckp

k+1 (cf. (3.5)) and pk+1 ∈ ∂εkfX(xk+1) (cf. (3.6)), i.e.,
〈
pk+1, x− xk+1

〉 ≤
fX(x)− fX(xk+1) + εk, since ck > 0. (4.2) is a consequence of (4.1). Summing (4.1)
over k = 1: l we obtain

Dl+1
h (x, xl+1)−D1

h(x, x
1) +

l∑
k=1

Dk
h(x

k+1, xk) ≤ slfX(x)−
l∑

k=1

ckfX(xk+1)

(4.5)

+
l∑

k=1

ckεk.

Use fX(xl+1) ≤ fX(xk) for k = 1: l (cf. (3.7)) in (4.5) to get (4.3). Equation (4.4)
follows from (4.3) and the fact Dk

h(·, xk) ≥ 0 for all k (cf. (3.8)).
By (2.6) and (3.8), for all k

0 ≤ D′
h(·, xk) ≤ D[

h(·, xk) ≤ Dk
h(·, xk) ≤ D]

h(·, xk).(4.6)

LEMMA 4.2. If
∑∞
k=1 ckεk < ∞ and x ∈ Dh is s.t. fX(xk) ≥ fX(x) for all k,

then
(i) {xk} is bounded and {xk} ⊂ L[h(x, α), where α = D1

h(x, x
1) +

∑∞
k=1 ckεk.

(ii) every limit point of {xk} is in Dh.
(iii) {xk} converges to some x∞ ∈ DfX ∩ Dh s.t. fX(xk) ≥ fX(x∞) for all k.
Proof. (i) We have Dl

h(x, x
l) ≤ D1

h(x, x
1) +

∑l−1
k=1 ckεk ≤ α for all l (cf. (4.2),

(4.6)) and {xk} ⊂ D∂h (cf. (3.1)), so {xk} ⊂ L[h(x, α), a bounded set (cf. Definition
2.4(iii)).

(ii) Since {xk} ⊂ L[h(x, α) by part (i), this follows from Lemma 2.10(i).
(iii) By parts (i) and (ii), a subsequence {xlj} converges to some x∞ ∈ Dh.

Suppose x∞ 6= x. Since {xk} ⊂ L[h(x, α), D]
h(x

∞, xlj ) → 0 (cf. Definition 2.4(iv))
and D

lj
h (x∞, xlj ) → 0 (cf. (4.6)). But fX(xk) ≥ fX(x∞) for all k, since xlj → x∞,

fX(xk+1) ≤ fX(xk) (cf. (3.7)) and fX is closed (cf. Assumption 3.1(i), (ii)). Hence
for l > lj , Dl

h(x
∞, xl) ≤ D

lj
h (x∞, xlj ) +

∑l−1
k=lj ckεk (cf. (4.2)) with

∑∞
k=lj ckεk → 0

as j → ∞ yield Dl
h(x

∞, xl) → 0 as l → ∞. Thus D′
h(x

∞, xk) → 0 (cf. (4.6)) and
xk → x∞ by Lemma 2.10(ii). Finally, if x∞ = x but {xk} does not converge, it has
a limit point x′ ∈ Dh \ {x} (cf. parts (i) and (ii)), and replacing x∞ by x′ in the
preceding argument yields a contradiction.
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We may now prove our main result for the inexact BPM descent method (3.1)–
(3.7).

THEOREM 4.3. Suppose that Assumption 3.1(i), (ii), (iv), (v) holds with h closed
proper convex.

(i) If liml→∞
∑l
k=1 ckεk/

∑l
k=1 ck = 0, then

fX(xk) ↓ inf
Dh

fX = inf
cl(Dh∩DfX )

f.

Hence fX(xk) ↓ infX f if DfX ⊂ Dh. If riDh∩ riDfX 6= ∅ (e.g., D̊h∩DfX 6= ∅), then
infDh fX = inf(cl Dh)∩(cl DfX ) f = infcl Dh fX . If riDfX ⊂ clDh (e.g., D∂fX ⊂ clDh),
then clDh ⊃ clDfX and Arg minX f ⊂ clDh.

(ii) If h is a B-function, fX(xk) → infDh fX ,
∑∞
k=1 ckεk < ∞, and X∗ =

Arg minDh fX is nonempty, then {xk} converges to some x∞ ∈ X∗, and

x∞ ∈ Arg min
X

f if DfX ⊂ Dh.

(iii) If fX(xk)→ infDh fX , DfX ⊂ Dh, and X∗ = ∅, then |xk| → ∞.
Proof. (i) For any x ∈ Dh, taking the limit in (4.4) yields liml→∞ fX(xl) ≤

fX(x), using fX(xl+1) ≤ fX(xl) (cf. (3.7)), sl → ∞ (Assumption 3.1(v)), and∑l
k=1 ckεk/sl → 0. Hence fX(xk) → infDh fX = infDh∩DfX f = infcl(Dh∩DfX ) f

(cf. [Roc70, Cor. 7.3.2]). If riDh ∩ riDfX 6= ∅ (e.g., D̊h ∩ DfX 6= ∅; cf. [Roc70, Cor.
6.3.2]), then cl(Dh ∩DfX ) = cl(Dh)∩ cl(DfX ) (cf. [Roc70, Thm. 6.5]) and infDh fX =
inf(cl Dh)∩(cl DfX ) f ≤ infDfX∩cl Dh f = infcl Dh fX , so infDh fX = infcl Dh fX . If
riDfX ⊂ clDh, then clDfX ⊂ clDh (cf. [Roc70, Thm. 6.5]).

(ii) If x ∈ X∗, then fX(xk) → fX(x). But fX(xk) ≥ fX(x) for all k (cf. (3.1)),
so xk → x∞ ∈ DfX ∩ Dh and limk→∞ fX(xk) ≥ fX(x∞) by Lemma 4.2, and thus
x∞ ∈ X∗.

(iii) If |xk| 6→ ∞, {xk} has a limit point x with fX(x) ≤ infDh fX ← fX(xk)
(fX is closed; cf. Assumption 3.1(i), (ii)), so DfX ⊂ Dh yields x ∈ Dh ∩ X∗, i.e.,
X∗ 6= ∅.

Remark 4.4. For the exact BPM method (with εk ≡ 0), Theorem 4.3(i), (ii)
subsume [ChT93, Thm. 3.4], which assumes riDfX ⊂ D̊h and Dh = clDh. Theorem
4.3(ii), (iii) strengthen [Eck93, Thm. 5], which shows only that {xk} is unbounded if
clDfX ⊂ D̊h and X∗ = ∅. Theorem 4.3(i), (ii) and Lemma 3.3 subsume [Ius95, Thm.
4.1], which assumes that h is essentially smooth, f is continuous on Df , Df ∩D̊h 6= ∅,
X = clDh, Arg minX f 6= ∅, and infk ck > 0.

For choosing {εk} (cf. Assumption 3.1(vi)), one may use the following simple
result.

LEMMA 4.5.
(i) If εk → 0, then

∑l
k=1 ckεk/sl → 0 as l→∞.

(ii) If
∑∞
k=1 εk < ∞ and {ck} ⊂ (0, cmax] for some cmax < ∞, then∑∞

k=1 ckεk <∞.
Proof. (i) For any ε > 0, pick k̄ and l̄ > k̄ s.t. εk ≤ ε for all k ≥ k̄ and∑k̄

k=1 ckεk/sl ≤ ε for all l ≥ l̄; then

l∑
k=1

ckεk/sl ≤
k̄∑
k=1

ckεk/sl + ε
l∑

k=k̄+1

ck/
l∑

k=1

ck ≤ 2ε

for all l ≥ l̄.
(ii) We have

∑∞
k=1 ckεk ≤ cmax

∑∞
k=1 εk <∞.
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5. Convergence of a nondescent BPM method. In certain applications (cf.
section 7) it may be difficult to satisfy the descent requirement (3.7). Hence we now
consider a nondescent BPM method, in which (3.7) is replaced by

fX(xk+1) +Dk
h(x

k+1, xk)/ck ≤ fX(xk) + εk.(5.1)

By Lemma 3.3(ii), (5.1) holds automatically, since it means φk(xk+1) ≤ φk(xk) + εk.
LEMMA 5.1. For all x ∈ Dh and k ≤ l, we have

fX(xk+1) ≤ fX(xk) + εk,(5.2)

sl[fX(xl+1)−fX(x)] ≤ D1
h(x, x

1)−Dl+1
h (x, xl+1)−

l∑
k=1

(sk/ck)Dk
h(x

k+1, xk)+
l∑

k=1

skεk,

(5.3)

fX(xl+1)− fX(x) ≤ D1
h(x, x

1)/sl +
l∑

k=1

skεk/sl.(5.4)

Proof. Equations (4.1) and (4.2) still hold. Equation (5.2) follows from
Dk
h(x

k+1, xk) ≥ 0 (cf. (3.8)) and (cf. (5.1)) fX(xk)−fX(xk+1) ≥ Dk
h(x

k+1, xk)/ck−εk.
Multiplying this inequality by sk−1 = sk − ck and summing over k = 1: l yield

−slfX(xl+1) +
l∑

k=1

ckfX(xk+1) ≥
l∑

k=1

(sk−1/ck)Dk
h(x

k+1, xk)−
l∑

k=1

sk−1εk.(5.5)

Subtract (5.5) from (4.5) and rearrange, using sk = sk−1 + ck, to get (5.3). Equation
(5.4) follows from (5.3) and the fact Dk

h(·, xk) ≥ 0 for all k (cf. (3.8)).
THEOREM 5.2. Suppose that Assumption 3.1(i)–(ii), (iv)–(v) holds with h closed

proper convex.
(i) If

∑l
k=1 skεk/sl → 0 (see Lemma 5.3 for sufficient conditions), then

fX(xk)→ inf
Dh

fX .

Hence the assertions of Theorem 4.3(i) hold.
(ii) If h is a B-function, fX(xk) → infDh fX ,

∑∞
k=1 ckεk < ∞, and X∗ =

Arg minDh fX is nonempty then {xk} converges to some x∞ ∈ X∗, and

x∞ ∈ Arg min
X

f if DfX ⊂ Dh.

(iii) If fX(xk)→ infDh fX , DfX ⊂ Dh, and X∗ = ∅, then |xk| → ∞.
Proof. (i) The upper limit in (5.4) for any x ∈ Dh yields lim supl→∞ fX(xl) ≤

infDh fX , using
∑l
k=1 skεk/sl → 0. But {xk} ⊂ Dh (cf. (3.1)), so lim infl→∞ fX(xl) ≥

infDh fX .
(ii) If x ∈ X∗, then fX(xk) → fX(x) and fX(xk) ≥ fX(x) for all k (cf. (3.1)).

Assertions (i)–(iii) of Lemma 4.2 still hold, since the proofs of (i)–(ii) remain valid,
whereas in the proof of (iii) we have x∞ ∈ Dh and fX(x∞) ≤ limj→∞ fX(xlj ) = fX(x)
(fX is closed), so x∞ ∈ X∗ and fX(xk) ≥ fX(x∞) for all k as before yield xk → x∞.

(iii) Use the proof of Theorem 4.3(iii).
LEMMA 5.3.

(i) Let {αk}, {βk}, and {εk} be sequences in R s.t. 0 ≤ αk+1 ≤ (1−βk)αk+εk,
α1 ≥ 0, 0 < βk ≤ 1, εk ≥ 0 for k = 1, 2, . . .,

∑∞
k=1 βk = ∞, and limk→∞ εk/βk = 0.

Then limk→∞ αk = 0.
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(ii) If
∑∞

l=1 cl/sl =∞ and limk→∞ εksk/ck = 0, then liml→∞
∑l
k=1 skεk/sl

= 0.
(iii) If {ck} ⊂ [cmin, cmax] for some 0 < cmin ≤ cmax and kεk → 0, then∑l

k=1 skεk/sl → 0.
Proof. (i) See, e.g., [Pol83, Lem. 2.2.3].
(ii) Use part (i) with αl =

∑l
k=1 skεk/sl, sl =

∑l
k=1 ck, and αl+1 = (1 −

cl+1/sl+1)αl + εl+1.
(iii) Use part (ii) with cl/sl ∈ [cmin/lcmax, cmax/lcmin] for all l.

6. Finite termination for sharp minima. We now extend to the exact BPM
method the finite convergence property of the PPA in the case of sharp minima (cf.
[Fer91, Roc76b, BuF93]).

THEOREM 6.1. Let f have a sharp minimum on X, i.e., X∗ = Arg minX f 6= ∅,
and there exists α > 0 s.t. fX(x) ≥ minX f + αminy∈X∗ |x − y| for all x. Consider
the exact BPM method applied to (1.1) with a B-function h s.t. DfX ⊂ D∇h, εk ≡ 0,
and infk ck > 0. Then there exists k s.t. pk = 0 and xk ∈ X∗.

Proof. By Theorem 4.3, xk → x∞ ∈ X∗, so x∞ ∈ D∇h, γk = ∇h(xk)→ ∇h(x∞)
(cf. (3.2) and Fact 2.2) and ∂fX(xk) 3 pk = (γk−1 − γk)/ck−1 → 0 (cf. (3.5), (3.6)).
But if x /∈ X∗ and p ∈ ∂fX(x), then |p| ≥ α (cf. [Ber82, sect. 5.4]) (since for
y = arg miny∈X∗ |x − y|, minX f = fX(y) ≥ fX(x) + 〈p, y − x〉 yields |p||x − y| ≥
〈p, x− y〉 ≥ α|x− y|). Hence for some k, |pk| < α implies pk = 0 and xk ∈ X∗.

We note that piecewise linear programs have sharp minima, if any (cf. [Ber82,
section 5.4]).

7. Inexact multiplier methods. Following [Eck93, Teb92], this section con-
siders the application of the BPM method to dual formulations of convex programs
of the form presented in [Roc70, sect. 28]:

minimize f(x) subject to gi(x) ≤ 0, i = 1:m,(7.1)

under the following
Assumption 7.1. f , g1,. . . , gm are closed proper convex functions on Rn with

Df ⊂
⋂m
i=1Dgi and riDf ⊂

⋂m
i=1 riDgi .

Letting g(·) = (g1(·), . . . , gm(·)), we define the Lagrangian of (7.1):

L(x, π) =

 f(x) + 〈π, g(x)〉 if x ∈ Df and π ∈ Rm+ ,
−∞ if x ∈ Df and π /∈ Rm+ ,
∞ if x /∈ Df ,

and the dual functional d(π) = infx L(x, π). Then d(π) = −∞ if π /∈ Rm+ . Assume
that d(π) > −∞ for some π. The dual problem to (7.1) is to maximize d, or equiva-
lently to minimize q(π) over π ≥ 0, where q = −d is a closed proper convex function.
We will apply the BPM method to this problem, using some B-function h on Rm.

We assume that Rm> ⊂ Dh, so that h+ = h+ ıRm+ is a B-function (cf. Lemma 2.6).
The monotone conjugate of h (cf. [Roc70, p. 111]) defined by h+(·) = supπ≥0{〈π, ·〉 −
h(π)} is nondecreasing (i.e., h+(u) ≤ h+(u′) if u ≤ u′, since 〈π, u〉 ≤ 〈π, u′〉 ∀π ≥
0) and coincides with the convex conjugate h∗

+ of h+, since h+(·) = supπ{〈π, ·〉 −
h+(π)} = h∗

+(·). We need the following variation on [Eck93, Lem. A3]. Its proof is
given in the appendix.

LEMMA 7.2. If h is a closed proper essentially strictly convex function on Rm with
Rm+ ∩ riDh 6= ∅, then h+ is closed proper convex and essentially smooth, ∂h+(u) =
{∇h+(u)} for all u ∈ D∂h+ , ∂h+ = (∂h+)−1, and ∇h+ is continuous on D∂h+ =
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D̊h+ = im ∂h+. Further, Dh+ = Dh+ −Rm+ , D̊h+ = D̊h+ −Rm+ , ∂h+ = ∂h+NRm+ , and
∇h+ = ∇h+ ◦ (I + NRm+ ◦ ∇h+), where I is the identity operator and NRm+ = ∂ıRm+
is the normal cone operator of Rm+ , i.e., NRm+ (π) = {γ ≤ 0 : 〈γ, π〉 = 0} if π ≥ 0,
NRm+ (π) = ∅ if π 6≥ 0. If additionally im ∂h ⊃ Rm> , then h+ is cofinite, Dh+ = Rm,
and h+ is continuously differentiable.

Since Rm> ⊂ Dh+ ⊂ Rm+ , to find infπ≥0 q(π) via the BPM method we replace in
(3.1)–(3.6) f , X, h, and xk by q, Rm, h+, and πk, respectively. Given πk ∈ Dq∩D∂h+

and γk ∈ ∂h+(πk), our inexact multiplier method requires finding πk+1 and xk+1 s.t.

L(xk+1, πk+1) ≤ infx L(x, πk+1) + εk = d(πk+1) + εk,(7.2)

πk+1 = ∇h+(γk + ckg(xk+1))(7.3)

with

pk+1 ∈ ∂εkq(πk+1),(7.4)

γk+1 = γk − ckpk+1 ∈ ∂h+(πk+1)(7.5)

for some pk+1 and γk+1. Note that (7.2) implies

−g(xk+1) ∈ ∂εkq(πk+1) = ∂εkq(π
k+1) + ∂ıRm+ (πk+1),(7.6)

since −d = q ≥ q̃ := −f(xk+1) − 〈·, g(xk+1)
〉

= q̃(πk+1) +
〈−g(xk+1), · − πk+1

〉
and

Dq ⊂ Rm+ from q = supx−L(x, ·), and q̃(πk+1) ≥ q(πk+1)− εk (cf. (7.2)). Next, (7.3)
gives πk+1 ∈ D∂h+ ⊂ Dh+ ⊂ Rm+ , whereas q(πk+1) ≤ q(πk) + εk (cf. (5.1)) yields
πk+1 ∈ Dq. By (7.6), (7.4) and (7.5) hold if we take pk+1 = (γk − γk+1)/ck and

γk+1 = γk + ckg(xk+1)− γ̃k+1 ∈ ∂h+(πk+1) with γ̃k+1 ∈ NRm+ (πk+1),(7.7)

since then

pk+1 = −g(xk+1) + γ̃k+1/ck ∈ ∂εkq(πk+1).(7.8)

Using (7.3) and (∂h+)−1 = ∇h+ (Lemma 7.2), we have

γk + ckg(xk+1) ∈ ∂h+(πk+1) = ∂h(πk+1) +NR+(πk+1),(7.9)

so we may take γ̃k+1 = 0; other choices will be discussed later.
Further insight may be gained as follows. Rewrite (7.3) as

πk+1 = ∇Pk(g(xk+1)),(7.10)

where

Pk(u) = h+(γk + cku)/ck ∀u ∈ Rm.(7.11)

Let

Lk(x) = f(x) +
1
ck

[h+(γk + ckg(x))− h+(γk)](7.12)

if x ∈ Df (⊂ Dg =
⋂m
i=1Dgi ; cf. Assumption 7.1), Lk(x) =∞ otherwise.

LEMMA 7.3. Suppose infDf maxmi=1 gi ≤ 0, e.g., the feasible set C0 = {x ∈ Df :
g(x) ≤ 0} of (7.1) is nonempty. Then Lk is a proper convex function and

∂Lk(x) = ∂f(x) +
m∑
i=1

[∇Pk(g(x))]i∂gi(x) ∀x ∈ DLk ⊃ D∂Lk .(7.13)
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If ∂Lk(x) 6= ∅, then π = ∇Pk(g(x)) is well defined, π ≥ 0, and ∂Lk(x) = ∂xL(x, π),
where

∂xL(x, π) = ∂f(x) +
m∑
i=1

πi∂gi(x) ∀x ∈ Rn, ∀π ∈ Rm+ .(7.14)

If x̂ ∈ Arg minLk then x̂ ∈ Arg minx L(x, π̂) for π̂ = ∇Pk(g(x̂)). The preceding
assertions hold when infDf maxmi=1 gi > 0 but Dh+ = Rm, e.g., if im ∂h ⊃ Rm> (cf.
Lemma 7.2).

Proof. Using γk ∈ ∂h+(πk) ⊂ D̊h+ (cf. Lemma 7.2) and D̊Pk = (D̊h+ − γk)/ck,
pick ũ ∈ DPk ∩ Rm> and x̃ ∈ Df s.t. g(x̃) < ũ. Then, since Pk is nondecreasing
(as is h+) and riDf ⊂

⋂
i riDgi (cf. Assumption 7.1), Lemma A.1 in the appendix

yields im ∂Pk ⊂ Rm+ and (7.13), using ∂Pk = {∇Pk} (cf. Lemma 7.2). Hence if
∂Lk(x) 6= ∅, then π = ∇Pk(g(x)) ≥ 0, so riDf ⊂

⋂
i riDgi implies (cf. [Roc70,

Thm. 23.8]) ∂xL(x, π) = ∂f(x) +
∑
i πi∂gi(x) = ∂Lk(x). If x̂ ∈ Arg minLk, then

0 ∈ ∂Lk(x̂) = ∂xL(x̂, π̂) for π̂ = ∇Pk(g(x̂)) yields x̂ ∈ Arg minx L(x, π̂). Finally,
when Dh+ = Rm, then for any x̃ ∈ Df we may pick ũ ∈ DPk with g(x̃) < ũ, since
Df ⊂

⋂
iDgi (Assumption 7.1) and DPk = Rm.

The exact multiplier method of [Eck93, Thm. 7] takes xk+1 ∈ Arg minLk and
πk+1 = ∇Pk(g(xk+1)), assuming h is smooth, D̊h ⊃ Rm> and im∇h ⊃ Rm> . Then
(7.2) holds with εk = 0 (cf. Lemma 7.3). Our inexact method requires only that
xk+1 ∈̃ Arg minLk in the sense that (7.2) holds for a given εk ≥ 0. Thus we have
derived the following algorithm.

ALGORITHM 7.4. At iteration k ≥ 1, having πk ∈ Dq and γk ∈ ∂h+(πk), find

xk+1 ∈̃ Arg minx∈Df

{
f(x) +

1
ck
h+(γk + ckg(x))

}
,

πk+1 = ∇h+(γk + ckg(xk+1))

s.t. (7.2) holds, choose γk+1 satisfying (7.7), and set pk+1 = (γk − γk+1)/ck.
Remark 7.5. To find xk+1 as in [Ber82, sect. 5.3], suppose that f is strongly

convex, i.e.,

∃ᾰ > 0 s.t. f(x) ≥ f(x̄) + 〈γ, x− x̄〉+ ᾰ|x− x̄|2/2 ∀x, x̄, ∀γ ∈ ∂f(x̄).(7.15)

Adding subgradient inequalities of gi, i = 1:m, and using (7.14) yield for all x

L(x, πk+1) ≥ L(xk+1, πk+1)+
〈
γ, x− xk+1〉+ ᾰ|x−xk+1|2/2 ∀γ ∈ ∂xL(xk+1, πk+1).

(7.16)
Assuming ∂Lk(xk+1) 6= ∅ and ∂xL(xk+1, πk+1) = ∂Lk(xk+1) (e.g., C0 6= ∅ or Dh+ =
Rm; cf. Lemma 7.3), let ∆xLk(xk+1) = arg minγ∈∂Lk(xk+1) |γ|. Minimization in (7.16)
yields

d(πk+1) ≥ L(xk+1, πk+1)− |∆xLk(xk+1)|2/2ᾰ,(7.17)

so (7.2) holds if

|∆xLk(xk+1)|2/2ᾰ ≤ εk.(7.18)

Thus, as in the multiplier methods of [Ber82, sect. 5.3], one may use any algorithm for
minimizing Lk that generates a sequence {zj} such that lim infj→∞ |∆xLk(zj)| = 0,
setting xk+1 = zj when (7.18) occurs. (If ᾰ is unknown, it may be replaced in (7.18)
by any fixed ᾱ > 0; this only scales {εk}.) Of course, the strong convexity assumption
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is not necessary if one can employ the direct criterion (7.2), i.e., L(zj , π) ≤ d(π) + εk
with π = ∇Pk(g(zj)) (cf. (7.10)), where d(π) may be computed with an error that
can be absorbed in εk.

Some examples are now in order. We start with three quite abstract examples:
the first one treats general separable penalties, whereas the next two employ different
assumptions on the behavior of ∇h near ∂Rm> (this aspect will be studied in sections
8 and 9). They are followed by four examples of more concrete methods.

Example 7.6. Suppose that h(π) =
∑m
i=1 hi(πi), where hi are B-functions on R

with Dhi ⊃ R>, i = 1:m (cf. Lemma 2.7(ii)). For each i, let ūi = h′
i(0; 1) if 0 ∈ Dhi

and ūi = −∞ if 0 /∈ Dhi so that (cf. [Eck93, Ex. 6]) h+
i (ui) = h∗

i (max{ui, ūi}) and
∇h+

i (ui) = max{0,∇h∗
i (ui)}. Using (7.9) and “maximal” γk+1 in (7.7), Algorithm

7.4 may be written as

xk+1 ∈̃ Arg minx

{
f(x) +

1
ck

m∑
i=1

h∗
i (max{ūi, γki + ckgi(x)})

}
,(7.19a)

πk+1
i = max{0,∇h∗

i (γ
k
i + ckgi(xk+1)}, i = 1:m,(7.19b)

γk+1
i = max{ūi, γki + ckgi(xk+1)}, i = 1:m.(7.19c)

Remark 7.7. To justify (7.19c), note that if we had γk < ū ∈ Rm, then (7.19a)
would not penalize constraint violations gi(x) ∈ (0, (ūi−γki )/ck]. An ordinary penalty
method (cf. [Ber82, p. 354]) would use (7.19a) and (7.19b) with γk ≡ ū and ck ↑
∞. Thus (7.19) is a shifted penalty method in which the shifts γk should ensure
convergence even for supk ck < ∞, thus avoiding the ill-conditioning of ordinary
penalty methods.

Example 7.8. Suppose that D∂h ∩ Rm+ = D∇h ∩ Rm+ so that ∂h+ = ∇h + ∂ıRm+
from Rm> ⊂ Dh (cf. [Roc70, Thm. 23.8] and Fact 2.2). Then we may use γk = ∇h(πk)
for all k, since the maximal shift γk+1 = ∇h(πk+1) satisfies (7.7) due to (7.9). Thus
Algorithm 7.4 becomes

xk+1 ∈̃ Arg minx

{
f(x) +

1
ck
h+(∇h(πk) + ckg(x))

}
,

πk+1 = ∇h+(∇h(πk) + ckg(xk+1)).

In the separable case of Example 7.6, the formulas specialize to

xk+1 ∈̃ Arg minx

{
f(x) +

1
ck

m∑
i=1

h∗
i (max{ūi,∇hi(πki ) + ckgi(x)})

}
,

πk+1
i = max{0,∇h∗

i (∇hi(πki ) + ckgi(xk+1))}, i = 1:m,

where ūi = ∇hi(0) if 0 ∈ D∂hi , ūi = −∞ if 0 /∈ D∂hi , i = 1:m.
Example 7.9. Let h(π) =

∑m
i=1 ψ(πi), where ψ is a B-function on R with D∇ψ ⊃

R>. Let ῡ = ψ′(0; 1) if 0 ∈ Dψ and ῡ = −∞ if 0 /∈ Dψ. Then ∂ψ+(t) = {ψ′(t; 1)}
for t > 0, ∂ψ+(0) = (−∞, ῡ] if ῡ > −∞, ∂ψ+(0) = ∅ if ῡ = −∞. Using (7.7) and
(7.9) as in Example 7.6, we may let γk+1

i = ψ′(πk+1
i ; 1), i = 1:m. Thus Algorithm

7.4 becomes

xk+1 ∈̃ Arg minx

{
f(x) +

1
ck

m∑
i=1

ψ+(ψ′(πki ; 1) + ckgi(x))

}
,

(7.20)
πk+1
i = ∇ψ+(ψ′(πki ; 1) + ckgi(xk+1)), i = 1:m,



PROXIMAL METHODS 1155

i.e.,

xk+1 ∈̃ Arg minx

{
f(x) +

1
ck

m∑
i=1

ψ∗(max{ῡ, ψ′(πki ; 1) + ckgi(x)})
}
,

(7.21)
πk+1
i = max{0,∇ψ∗(ψ′(πki ; 1) + ckgi(xk+1))}, i = 1:m.

Example 7.10. For ψ(t) = |t|α/α with α > 1 and β = α/(α − 1) (cf. Example
2.8(1)), (7.21) becomes

xk+1 ∈̃ Arg minx

{
f(x) +

1
βck

m∑
i=1

max{0, (πki )1/(β−1) + ckgi(x)}β
}
,(7.22a)

πk+1
i = max{0, (πki )1/(β−1) + ckgi(xk+1)}β−1, i = 1:m.(7.22b)

Even if f and all gi are smooth, for β = 2 the objective of (7.22a) is, in general,
only once continuously differentiable. This is a well-known drawback of quadratic
augmented Lagrangians (cf. [Ber82, TsB93]). However, for β = 3 we obtain a cubic
multiplier method [Kiw97] with a twice continuously differentiable objective.

Example 7.11 (see [Eck93, Ex. 7]). For ψ(t) = t ln t−t (cf. Example 2.8(3)), (7.21)
reduces to

xk+1 ∈̃ Arg minx

{
f(x) +

1
ck

m∑
i=1

πki exp[ckgi(x)]

}
,

(7.23)
πk+1
i = πki exp[ckgi(xk+1)], i = 1:m,

i.e., to an inexact exponential multiplier method (cf. [Ber82, sect. 5.1.2; TsB93]).
Example 7.12. For ψ(t) = − ln t (cf. Example 2.8(4)), (7.21) reduces to

xk+1 ∈̃ Arg minx

{
f(x)− 1

ck

m∑
i=1

ln[1/πki − ckgi(x)]
}
,

πk+1
i = πki /[1− ckπki gi(xk+1)], i = 1:m,

i.e., to an inexact shifted logarithm barrier method (which was also derived heuris-
tically in [Cha94, Ex. 4.2]). This method is related, but not identical, to ones in
[CGT92, GMSW88]; cf. [CGT94].

Example 7.13. If ψ(t) = −tα/α, α ∈ (0, 1) (cf. Example 2.8(2)), (7.21) reduces to

xk+1 ∈̃ Arg minx

{
f(x)− 1

βck

m∑
i=1

[(πki )
1/(β−1) − ckgi(x)]β

}
,

πk+1
i = [(πki )

1/(β−1) − ckgi(xk+1)]β−1, i = 1:m,

where β = α/(α− 1); β = −1 corresponds to a shifted Carroll barrier method.

8. Convergence of multiplier methods. Ideally, the sequences {xk} and {πk}
generated by Algorithm 7.4 should solve the primal and dual problems asymptotically.
Convergence of {πk} may be studied in the framework of section 5, but that of {xk}
will require more work. For the framework of section 5, in addition to Assumption
7.1, we make the following standing assumptions.

Assumption 8.1.
(i) h+ is a B-function s.t. Dh+ ⊃ Rm> (e.g., so is h; cf. Lemma 2.6).
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(ii) Either Dq ∩ Rm> 6= ∅ or ∅ 6= Dq ⊂ Dh+ , where −q = d = infx L(x, ·).
(iii) {ck} is a sequence of positive numbers s.t. sk =

∑k
j=1 cj →∞.

Remark 8.2. Under Assumption 8.1, q is closed proper convex, D̊h+ = Rm> ⊂
Dh+ ⊂ Rm+ , clDh+ = Rm+ ⊃ Dq, Dq ∩ D̊h+ 6= ∅ if Dq ∩Rm> 6= ∅, and infDh+

q = inf q =
infcl Dh+

q. Hence for the BPM method applied to the dual problem supd = − inf q
with a B-function h+ we may invoke the results of sections 3–6 (replacing f , X, and
h with q, Rm, and h+, respectively).

We first translate Theorem 5.2 for the dual variables {πk} of Algorithm 7.4.
THEOREM 8.3. If

∑k
j=1 sjεj/sk → 0 (cf. Lemma 5.3), then d(πk) → sup d.

If d(πk) → sup d, Dh+ ∩ Arg max d 6= ∅, and
∑∞
k=1 ckεk < ∞, then πk → π∞ ∈

Arg max d. If d(πk) → sup d, Dq ⊂ Dh+ and Arg maxDh+
d = ∅ (e.g., Dh+ = Rm+

and Arg max d = ∅), then |πk| → ∞.
Proof. This follows from Remark 8.2 and Theorem 5.2, since Dh+ ∩Arg max d ⊂

Arg maxDh+
d ⊂ Arg max d if Dh+ ∩Arg max d 6= ∅.

Thanks to Bregman proximal regularization, {πk} in Theorem 8.3 may converge
to a particular dual solution even when Arg maxd is not a singleton. Since the primal
subproblems of Algorithm 7.4 are not regularized, convergence of {xk} will require
additional assumptions (cf. Remark 8.5). We start with the “standard” case of D∇h ⊃
Rm+ (as in Example 7.10).

THEOREM 8.4. Let D∇h ⊃ Rm+ , γk = ∇h(πk) for all k (cf. Example 7.8) and∑k
j=1 sjεj/sk → 0. Then d(πk) → sup d. If Arg max d 6= ∅ and

∑∞
k=1 ckεk < ∞,

then πk → π∞ ∈ Arg max d, and if infk ck > 0, then

lim sup
k→∞

f(xk) ≤ sup
π
d(π) and lim sup

k→∞
gi(xk) ≤ 0, i = 1:m,(8.1)

and every limit point of {xk} solves (7.1). If Arg max d = ∅, then |πk| → ∞.
Proof. Since Dh ⊃ D∇h ⊃ Rm+ , the assertions about {πk} follow from Theorem

8.3. Suppose πk → π∞ ∈ Arg max d, infk ck > 0. Since pk = (γk−1 − γk)/ck−1 with
pk + g(xk) ∈ NRm+ (πk) (cf. Example 7.8), we have (cf. Lemma 7.2)

〈
πk, g(xk)

〉
=

− 〈
πk, pk

〉
and g(xk) ≤ −pk ∀k > 1, with pk → 0, since πk → π∞, ∇h is continuous

on Rm+ , and ck ≥ cmin ∀k. Hence
〈
πk, g(xk)

〉 → 0 and lim supk→∞ gi(xk) ≤ 0 ∀i.
Since L(xk, πk) ≤ infx L(x, πk) + εk−1 (cf. (7.2)) means f(xk) +

〈
πk, g(xk)

〉 ≤ f(x) +〈
πk, g(x)

〉
+ εk−1 for any x, in the limit lim supk f(xk) ≤ L(x, π∞) (εk → 0), so

lim supk f(xk) ≤ d(π∞). Suppose xk
K−→ x∞ for some x∞ and K ⊂ {1, 2, . . .}.

By (8.1), f(x∞) ≤ sup d and g(x∞) ≤ 0 (f and g are closed), so by weak duality,
f(x∞) ≥ sup d, f(x∞) = max d, and x∞ solves (7.1).

Remark 8.5. Let C∗ denote the optimal solution set for (7.1). If (7.1) is consistent
(i.e., C0 6= ∅), then C∗ is nonempty and compact iff f and gi, i = 1:m, have no
common direction of recession [Ber82, sect. 5.3], in which case (8.1) implies that {xk}
is bounded and hence has limit points. In particular, if C∗ = {x∗}, then xk → x∗ in
Theorem 8.4.

Remark 8.6. Theorems 8.3 and 8.4 subsume [Eck93, Thm. 7], which additionally
requires that εk ≡ 0, im∇h ⊃ Rm> and each gi is continuous on Df .

We now establish finite convergence of an exact version of Algorithm 7.4 (with
εk ≡ 0) in the case of a dual sharp minimum (cf. [Ber82, sect. 5.4] and [BuF93]).

THEOREM 8.7. Let (7.1) be s.t. q = −d has a sharp minimum. Let D∇h ⊃ Rm+ ,
infk ck > 0, εk = 0, and γk = ∇h(πk) (cf. Example 7.8) for all k. Then there exists
k s.t. pk = 0, πk ∈ Arg max d, and xk solves (7.1).
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Proof. Using the proof of Theorem 6.1 with πk → π∞ ∈ Arg max d ⊂ D∇h and
γk = ∇h(πk) → ∇h(π∞), we get k s.t. πk ∈ Arg max d and pk = 0; the conclusion
follows from the proof of Theorem 8.4.

Remark 8.8. Results on finite convergence of other multiplier methods are re-
stricted to only once continuously differentiable augmented Lagrangians [Ber82, sect.
5.4], whereas Theorem 8.7 covers Example 7.10 also with β > 2. Applications include
polyhedral programs.

We shall need the following result, similar to ones in [Ber82, sect. 5.3] and [TsB93].
LEMMA 8.9. With uk+1 := g(xk+1), for each k, we have

L(xk+1, πk+1) = Lk(xk+1) +Dh+(γk, γk + cku
k+1)/ck ≥ Lk(xk+1),(8.2)

Lk(xk+1) = L(xk+1, πk) +Dh+(γk + cku
k+1, γk)/ck ≥ L(xk+1, πk),(8.3)

L(xk+1, πk+1)− L(xk+1, πk) =
〈
πk+1 − πk, uk+1〉

(8.4)
=

〈∇h+(γk + cku
k+1)−∇h+(γk), uk+1〉 ≥ 0,

d(πk) ≤ L(xk+1, πk) ≤ Lk(xk+1) ≤ L(xk+1, πk+1) ≤ d(πk+1) + εk.(8.5)

Proof. As for (8.2), use (7.12), (7.3), (2.4), and convexity of h+ to develop

L(xk+1, πk+1)− Lk(xk+1) =
〈
πk+1, uk+1〉− [h+(γk + cku

k+1)− h+(γk)]/ck
= [h+(γk)− h+(γk + cku

k+1)
− 〈∇h+(γk + cku

k+1),−ckuk+1〉]/ck
= Dh+(γk, γk + cku

k+1)/ck ≥ 0.

Since ∇h+ = (∂h+)−1 (cf. Lemma 7.2) and γk ∈ ∂h+(πk) (cf. (7.5)), πk = ∇h+(γk),
so

Lk(xk+1)− L(xk+1, πk) = [h+(γk + cku
k+1)− h+(γk)]/ck −

〈
πk, uk+1〉

= [h+(γk + cku
k+1)− h+(γk)− 〈∇h+(γk), ckuk+1〉]/ck

= Dh+(γk + cku
k+1, γk)/ck ≥ 0

yields (8.3), and (8.4) holds with
〈∇h+(γk + cku

k+1)−∇h+(γk), ckuk+1
〉
/ck ≥ 0 by

the convexity of h+. Equation (8.5) follows from (8.2)–(8.4) and (7.2).
Theorem 8.4 covers only methods with D∇h ⊃ Rm+ , such as Example 7.10. To

handle other examples in section 9, we shall use the following abstraction of the
ergodic framework of [TsB93]. For each k, define the aggregate primal solution

x̆k+1 =
k∑
j=1

cjx
j+1/sk, where sk =

k∑
j=1

cj .(8.6)

Since g is convex and cjg(xj+1) ≤ −cjpj+1 = γj+1−γj for j = 1: k by (7.7) and (7.8),

g(x̆k+1) ≤
k∑
j=1

cjg(xj+1)/sk ≤ (γk+1 − γ1)/sk.(8.7)

LEMMA 8.10. Suppose that supi,k γki < ∞, εk → 0,
〈
πk, uk

〉 → 0, and d(πk) →
d∞ <∞. Then

lim sup
k→∞

f(x̆k) ≤ d∞ and lim sup
k→∞

gi(x̆k) ≤ 0, i = 1:m.(8.8)
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FIG. 9.1. Examples of B-functions and corresponding penalty functions.

If {x̆k} has a limit point x∞ (e.g., C∗ 6= ∅ is bounded; cf. Remark 8.11), then x∞

solves (7.1), f(x∞) = d∞ = max d, and each limit point of {πk} maximizes d.
Proof. By (8.7), lim supk gi(x̆k) ≤ 0 ∀i, since sk → ∞. By (8.6) and convexity

of f , f(x̆k+1) ≤ ∑k
j=1 cjf(xj+1)/sk, while f(xk) = L(xk, πk) − 〈

πk, uk
〉 → d∞ from

(8.5), so lim supk f(x̆k) ≤ d∞. Suppose x̆k K−→ x∞. By (8.8), f(x∞) ≤ d∞ and
g(x∞) ≤ 0 (f and g are closed). Hence by weak duality, f(x∞) ≥ d∞ ← d(πk),
f(x∞) = d∞ = max d, and x∞ solves (7.1). Since d(πk) → d∞ and d is closed, each
cluster of {πk} maximizes d.

Remark 8.11. If C∗ 6= ∅ is bounded, then (8.8) implies that {x̆k} is bounded (cf.
Remark 8.5). In particular, if C∗ = {x∗}, then x̆k → x∗ in Lemma 8.10.

9. Classes of penalty functions. Examples 7.11–7.13 stem from B-functions
of the form h(π) =

∑m
i=1 ψ(πi), where ψ is a B-function on R s.t. ψ+ = ψ. Since

ψ+ = (ψ+)∗, such examples may also be derived by choosing suitable penalty functions
φ on R and letting ψ = φ∗ (cf. Lemma 2.9). Let us first define several useful classes
of B-functions and penalty functions.

DEFINITION 9.1. We say that ψ ∈ Ψ iff ψ is a B-function on R with Dψ ⊃ R>.
Let Ψ̃ = {ψ ∈ Ψ : D∇ψ ⊃ R>}, Ψ0 = {ψ ∈ Ψ̃ : D∂ψ ⊃ R+}, Ψs = {ψ ∈ Ψ̃ : D∂ψ =
R>}, Ψs′ = {ψ ∈ Ψs : 0 ∈ Dψ}, Ψs′′ = {ψ ∈ Ψs : 0 /∈ Dψ} (cf. Fig. 9.1).

Remark 9.2. We have Ψ̃ = Ψ0 ∪ Ψs, Ψ0 = {ψ ∈ Ψ̃ : 0 ∈ D∂ψ}, Ψs = {ψ ∈
Ψ̃ : 0 /∈ D∂ψ} (since D∂ψ ⊃ D∇ψ ⊃ R> if ψ ∈ Ψ̃) and ψ+ = ψ if ψ ∈ Ψs (from
Dψ ⊂ clD∂ψ = R+).

DEFINITION 9.3. We say that φ ∈ Φ iff φ : R→ (−∞,∞] is closed proper convex
essentially smooth, D̊φ = Dφ, and R> ⊂ im∇φ ⊂ R+. Let tφ = supt∈Dφ t, t

0
φ =

sup∇φ(t)=0 t, Φs = {φ ∈ Φ : φ is strictly convex}, Φ0 = {φ ∈ Φ : φ is strictly convex
on (t0φ, tφ), t

0
φ > −∞}, Φs′ = {φ ∈ Φs : inf φ > −∞}, Φs′′ = {φ ∈ Φs : inf φ = −∞},

Φ̃ = Φ0 ∪ Φs.
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Remark 9.4. If φ ∈ Φ, then φ is nondecreasing (im∇φ ⊂ R+), Dφ = (−∞, tφ),
t0φ = −∞ iff im∇φ = R>, φ ∈ Φs iff ∇φ is increasing, φ ∈ Φ0 iff ∇φ is increasing on
(t0φ, tφ), and t0φ > −∞ (cf. [Roc70, p. 254]). Also φ ∈ Φ iff φ is closed proper convex,
D∇φ = D̊φ = Dφ (cf. Fact 2.3(i)), and R> ⊂ im∇φ ⊂ R+.

We now discuss duality relations between Definitions 9.1 and 9.3.
LEMMA 9.5. If φ ∈ Φ, then φ∗ is a B-function with R> ⊂ Dφ∗ ⊂ R+, (φ∗)+ =

φ∗∗ = φ, limt↓−∞∇φ(t) = 0, limt↑tφ ∇φ(t) = limt↑tφ φ(t) = ∞, and φ0+ = ı∗R+
. If

φ ∈ Φs, then φ∗ is essentially smooth, ∇φ∗ = (∇φ)−1, and D∂φ∗ = D∇φ∗ = R>. If
φ ∈ Φ0, then ∇φ∗ = (∇φ)−1, D∇φ∗ = R> and ∂φ∗(0) = (−∞, t0φ].

Proof. By Definition 9.3 and Lemma 2.9, R> ⊂ im∇φ ⊂ R+ and φ∗ is a B-
function with riDφ∗ ⊂ im∇φ ⊂ Dφ∗ , so R> ⊂ Dφ∗ ⊂ R+. Dφ∗ ⊂ R+ yields (φ∗)+ =
φ∗∗ = φ. Since R> ⊂ im∇φ ⊂ R+ and ∇φ is nondecreasing, limt↓−∞∇φ(t) = 0
and limt↑tφ ∇φ(t) = ∞. Since φ is closed and proper, φ0+ = ı∗Dφ∗ [Roc70, Thm.
13.3] with ı∗Dφ∗ = ı∗cl Dφ∗ and clDφ∗ = R+ from R> ⊂ Dφ∗ ⊂ R+. If tφ < ∞,
then limt↑tφ φ(t) = ∞ from tφ /∈ Dφ and closedness of φ; otherwise limt↑tφ φ(t) = ∞
from ∞ = φ0+(1) = limt↑∞[φ(t) − φ(0)]/t [Roc70, Thm. 8.5]. If φ ∈ Φs, then φ∗

is essentially smooth, ∇φ∗ = (∇φ)−1, and D∇φ∗ = D∂φ∗ = D̊φ∗ = R> (Facts 2.1
and 2.3). If φ ∈ Φ0, then ∂φ∗ = (∂φ)−1 = {(∇φ)−1} (Facts 2.1 and 2.3(i)) yields
∂φ∗(0) = {t : ∇φ(t) = 0} = (−∞, t0φ] (0 ≤ ∇φ(t) ≤ ∇φ(t0φ) ∀t ≤ t0φ), whereas
∇φ is increasing on (t0φ, tφ) (Remark 9.4), so ∂φ∗ = {(∇φ)−1} is single valued on
R> = (∇φ(t0φ),∞) ⊂ im∇φ, and hence ∂φ∗ = {∇φ∗} on R> (Fact 2.2).

LEMMA 9.6. Let ψ be a B-function on R s.t. Dψ ⊃ R>. Then ψ+ ∈ Φ. Suppose
that D∇ψ ⊃ R>. If ∂ψ(0) = ∅ (i.e., 0 /∈ Dψ or ψ′(0; 1) = −∞), then ψ+ is essentially
smooth and ψ+ ∈ Φs. If ∂ψ(0) 6= ∅ (i.e., ψ′(0; 1) > −∞), then ψ+ ∈ Φ0 with
t0ψ+ = ψ′(0; 1), and there exists a B-function ψ̆ s.t. ψ+ = ψ̆+, ψ+ = ψ̆+, D∇ψ̆ ⊃ R+,

and ∇ψ̆(0) = t0ψ+ .
Proof. ψ+ = ψ + ıR+ is a B-function (Lemma 2.6) and ψ+ = ψ∗

+, so Dψ+ = D̊ψ+

(Lemma 2.9(i)). Also ψ+ is nondecreasing and essentially smooth (Lemma 7.2), so
im∇ψ+ ⊂ R+, whereas R> ⊂ Dψ+ yields R> ⊂ D̊ψ+ ⊂ D∂ψ+ = im ∂ψ+ = im∇ψ+.
Suppose D∇ψ ⊃ R>. By strict convexity of ψ (cf. Definition 2.4(i)), ∇ψ+ = ∇ψ
is increasing on R>, so ∇ψ+ = (∇ψ+)−1 is increasing on (t0,∞) ∩ Dψ+ with t0 =
limt↓0∇ψ(t), and hence ψ+ is strictly convex on (t0,∞) (cf. [Roc70, p. 254]). If
∂ψ(0) = ∅, then t0 = −∞, ψ+ ∈ Φs, and ψ+ is essentially smooth (Fact 2.3(ii)).
Otherwise, t0 = ψ′(0; 1) = t0ψ+ . Let ψ̆(t) = ψ(t) ∀t ≥ 0, and let ψ̆(t) for t ≤ 0 be a

strictly convex quadratic function s.t. ψ̆(0) = ψ(0) and ψ̆′(0;−1) = −ψ′(0; 1). Then
ψ̆+ = ψ+ and ∇ψ̆(0) = t0ψ+ .

Remark 9.7. Lemmas 9.5 and 9.6 imply the following duality relations: Φ∗ = Ψ+,
Φ̃∗ = Ψ̃+, Φ∗

s = Ψs, Φ∗
s′ = Ψs′ , Φ∗

s′′ = Ψs′′ , Φ∗
0 = Ψ0+, using Ψ+ = {ψ+ : ψ ∈

Ψ} = {ψ ∈ Ψ : ψ+ = ψ} and Ψs+ = Ψs (cf. Remark 9.2). (If ψ ∈ Ψ+, then
ψ∗ = ψ∗

+ = ψ+ ∈ Φ (Lemma 9.6) and ψ = ψ∗∗ ∈ Φ∗; use inf ψ∗ = −ψ(0) for the
remaining “⊃” inclusions.) Similarly, Ψ+ = Φ, Ψ̃+ = Φ̃, Ψ+

s = Φs, Ψ+
s′ = Φs′ ,

Ψ+
s′′ = Φs′′ , Ψ+

0 = Φ0. (If φ ∈ Φ, then φ∗ ∈ Ψ and φ = (φ∗)+ ∈ Ψ+ by Lemma 9.5;
use inf φ = −φ∗(0) for the remaining “⊃” inclusions.)

We now extend Theorems 8.4 and 8.7 to Example 7.9 with ψ ∈ Ψ0 (allowing
D∇ψ 6⊃ R+).

COROLLARY 9.8. If ψ ∈ Ψ0 (e.g., ψ = φ∗ with φ ∈ Φ0; cf. Lemma 9.5), then the
method of Example 7.9 coincides with that of Example 7.8 with h(π) =

∑m
i=1 ψ̆(πi),
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where ψ̆ is the smooth extension of ψ described in Lemma 9.6, so that D∇h ⊃ Rm+
and Theorems 8.4 and 8.7 apply.

Proof. Use ψ+ = ψ̆+ and ψ′(t, 1) = ∇ψ̆(t) ∀t ≥ 0 (cf. Lemma 9.6) in Example
7.9.

Remarks 9.9.
(i) Example 7.9 with ψ ∈ Ψ0 has D∂ψ ⊃ R+ and ῡ = ψ′(0; 1) > −∞. It is not

changed if we replace ψ with ψ̃ = ψ+ (since ψ̃+ = ψ+); e.g., use φ∗ with φ = ψ+ ∈ Φ0
(Lemma 9.6), since φ∗ = (ψ+)∗ = (ψ∗

+)∗ = ψ+.
(ii) In terms of φ ∈ Φ0, the method of Example 7.9 with ψ = φ∗ becomes

xk+1 ∈̃ Arg minx

{
f(x) +

1
ck

m∑
i=1

φ
(
φ∗′

(πki ; 1) + ckgi(x)
) }

,

πk+1
i = ∇φ

(
φ∗′

(πki ; 1) + ckgi(xk+1)
)
, i = 1:m,

where φ∗′
(πki ; 1) = (∇φ)−1(πki ) if πki > 0, φ∗′

(πki ; 1) = t0φ if πki = 0 (cf. Lemma 9.5).
In view of Corollary 9.8, we restrict attention to Example 7.9 with ψ ∈ Ψs.
Remark 9.10. Choosing ψ ∈ Ψs corresponds to using ψ = φ∗ with φ ∈ Φs

(Remark 9.7).
Example 9.11. Choosing φ ∈ Φs and ψ = φ∗ in Example 7.9 yields the method

xk+1 ∈̃ Arg minx

{
f(x) +

1
ck

m∑
i=1

φ
(
(∇φ)−1(πki ) + ckgi(x)

) }
,

πk+1
i = ∇φ (

(∇φ)−1(πki ) + ckgi(xk+1)
)
, i = 1:m,

with γki = (∇φ)−1(πki ), π
k
i = ∇φ(γki ), i = 1:m, for all k. (Indeed, ψ+ = φ, D∇ψ = R>

and ∇ψ = (∇φ)−1 (Lemma 9.5), while πk = ∇h+(γk) yields πki = ∇ψ+(γki ) =
∇φ(γki ) > 0 (Remark 9.2), i = 1:m.) Note that φ(t) = et for Example 7.11, φ(t) =
−1 − ln(−t) (t < 0) for Example 7.12, φ(t) = −(−t)β/β (t < 0, β < 0) for Example
7.13.

We now explore a forcing property of φ ∈ Φs needed by Lemma 9.16 below to
ensure that

〈
πk, uk

〉→ 0 in Example 9.11, as required in Lemma 8.10.
DEFINITION 9.12. We say that φ ∈ Φ is forcing on [t′φ, t

′′
φ] if [φ′(t′k)−φ′(t′′k)](t

′
k−

t′′k)→ 0 implies φ′(t′′k)(t
′
k− t′′k)→ 0 for any sequences {t′k}, {t′′k} ⊂ [t′φ, t

′′
φ]∩Dφ, where

φ′ = ∇φ.
LEMMA 9.13. If φ ∈ Φs, inf φ > −∞, and t′′φ ∈ Dφ, then φ is forcing on

[−∞, t′′φ].
Proof. Replace φ with φ− inf φ so that inf φ = 0. Since φ′ = ∇φ is positive and

increasing (cf. Remark 9.4), so is φ. Let [φ′(t′k)−φ′(tk)]τk → 0, τk > 0, t′k = tk+τk ≤
t′′φ. If φ′(tk)τk 6→ 0, there are ε > 0 and K ⊂ {1, 2, . . .} s.t. φ′(tk)τk ≥ ε ∀k ∈ K, so
φ′(t′k)
φ′(tk)

K−→ 1. Since φ′(tk) < φ′(t′′φ) and φ(t′k) ≥ φ(tk)+φ′(tk)τk ≥ ε, τk ≥ ε/φ′(t′′φ) and

t′k ≥ φ−1(ε) ∀k ∈ K. Pick t∞ and K ′ ⊂ K s.t. t′k
K′
−→ t∞. Then tk + ε/2φ′(t′′φ) ≤ t∞

and φ′(tk) ≤ φ′(t∞− ε/2φ′(t′′φ)) < φ′(t∞) = limk∈K′ φ′(t′k) for large k ∈ K ′ contradict
φ′(t′k)
φ′(tk)

K−→ 1. Therefore, φ′(tk)τk → 0; i.e., φ is forcing.
Example 9.14. The following functions are forcing on [−∞, t′′φ]: φ1(t) = et with

t′′φ ∈ R, φ2(t) = −1 − ln(−t) (t < 0) with t′′φ ≤ 0, φ3(t) = −(−t)β/β (t < 0, β < 0)

with t′′φ < 0. Indeed, let φ = φ2. Suppose φ′(tk+τk)−φ′(tk)
φ′(tk)

φ′(tk)τk → 0. Since
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φ′(tk)τk = −τk/tk and φ′(tk+τk)−φ′(tk)
φ′(tk)

= −1
1+tk/τk

, φ′(tk)τk → 0; i.e., φ is forcing.
Invoke Lemma 9.13 for φ1 and φ3.

Example 9.15. Let φ ∈ Φs be s.t. φ(t) = − (−t)β−1
β for t < − 1

2 , β ∈ (0, 1). Let
tk = −k, τk = 1/φ′(t′k). Then [φ′(tk + τk) − φ′(tk)]τk = (1 − k−β)β−1 − 1 → 0, but
φ′(tk)τk → 1; i.e., φ is not forcing on [−∞,−1], although limβ↓0− (−t)β−1

β = − ln(−t)
is (cf. Example 9.14).

LEMMA 9.16. Suppose that in Example 9.11 φ ∈ Φs is forcing on (−∞, tγ ]
with tγ = supi,k γki , ck ≥ cmin > 0 for all k, and

〈
πk+1 − πk, uk+1

〉 → 0. Then〈
πk, uk

〉→ 0.
Proof. Since ∇φ is nondecreasing and h+(u) =

∑
i φ(ui), we deduce from (8.4)

that

0← 〈
πk+1 − πk, uk+1〉 =

m∑
i=1

[φ′(γki + cku
k+1
i )− φ′(γki )]u

k+1
i

(9.1)

≥
m∑
i=1

[φ′(γki + cminu
k+1
i )− φ′(γki )]u

k+1
i ≥ 0

and [φ′(γki + cminu
k+1
i )− φ′(γki )]cminu

k+1
i → 0, i = 1:m. But γk+1 = γk + cku

k+1 for
all k (cf. Example 9.11) yields supi,k{γki + cminu

k+1
i } ≤ tγ , so the preceding relation

and the forcing property of φ give πki u
k+1
i = φ′(γki )u

k
i → 0 ∀i; hence

〈
πk+1, uk+1

〉→ 0
by (9.1).

The following result relates the quantity tγ of Lemma 9.16 with boundedness of
{πk}.

LEMMA 9.17. Consider Example 9.11 with φ ∈ Φs, tφ = supt∈Dφ t, and tγ =
supi,k γki . Then tγ ≤ tφ (so that tγ < ∞ if tφ < ∞). In general, tγ < tφ iff {πk} is
bounded.

Proof. This follows from the facts πki = ∇φ(γki ) ≥ 0, γki ∈ Dφ = (−∞, tφ),
limt↑tφ ∇φ(t) =∞ and monotonicity of ∇φ; cf. Remark 9.4, Lemma 9.5, and Example
9.11.

We may now establish ergodic convergence of Example 9.11 with φ ∈ Φs′ (cf.
Definition 9.3).

THEOREM 9.18. Consider Example 9.11 with φ ∈ Φs s.t. inf φ > −∞. Suppose
Arg max d 6= ∅, ∑k

j=1 sjεj/sk → 0,
∑∞
k=1 ckεk < ∞, and infk ck > 0. Then πk →

π∞ ∈ Arg max d, d(πk)→ d∞ = d(π∞) and (8.8) holds. If {x̆k} has a limit point x∞

(e.g., C∗ 6= ∅ is bounded; cf. Remark 8.11), then x∞ solves (7.1) and f(x∞) = d∞.
Proof. Let ψ = φ∗. We have ψ(0) = − inf φ < ∞, Dψ = R+ (cf. Lemma 9.5),

Dψ+ = R+, and Dh+ = Rm+ , so the assertions about {πk} follow from Theorem 8.3.
Then tγ = supi,k γki < tφ by Lemma 9.17 ({πk} is bounded), so φ is forcing on
[−∞, tγ ] (Lemma 9.13). Since d(πk) → d∞ < ∞ and 0 ≤ εk ≤

∑k
j=1 sjεj/sk → 0,

(8.4) and (8.5) yield
〈
πk+1 − πk, uk+1

〉→ 0. Then
〈
πk, uk

〉→ 0 by Lemma 9.16. The
conclusion follows from Lemma 8.10.

Remarks 9.19.
(i) For the exponential multiplier method (Example 7.11 with φ(t) = et), The-

orems 8.3 and 9.18 subsume [TsB93, Prop. 3.1] (in which Arg max d 6= ∅, C∗ 6= ∅ is
bounded, εk ≡ 0) and [IST94, Thm. 7.3] (in which xk → x∞ implies x̆k → x∞).

(ii) Theorem 9.18 holds for Example 7.9 with ψ ∈ Ψs′ , since Ψs′ = Φ∗
s′ (Remark

9.7).
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For ψ ∈ Ψ0 ∪ Ψs′ , Corollary 9.8 and Theorem 9.18 hinge on πk → π∞ ∈
Arg max d ⊂ Dh+ = Rm+ . Since Dh = Rm> for ψ ∈ Ψs′′ , we now present another
approach.

THEOREM 9.20. Consider Example 9.11 with φ ∈ Φs forcing on (−∞, tφ) 6= R
(e.g., φ(t) = −1 − ln(−t); cf. Example 9.14). Suppose εk → 0, infk ck > 0, and
d(πk) → d∞ < ∞. Then (8.8) holds. If {x̆k} has a limit point x∞ (e.g., C∗ 6= ∅
is bounded; cf. Remark 8.11), then x∞ solves (7.1), f(x∞) = d∞ = max d, and each
limit point of {πk} maximizes d.

Proof. By Lemma 9.17, tγ = supi,k γki ≤ tφ, so φ is forcing on (−∞, tγ ]. Since
d(πk) → d∞ < ∞ and εk → 0, (8.4) and (8.5) yield

〈
πk+1 − πk, uk+1

〉 → 0. Then〈
πk, uk

〉→ 0 by Lemma 9.16. Since tγ ≤ tφ <∞, the conclusion follows from Lemma
8.10.

Remark 9.21. Suppose
∑∞
k=1 εk < ∞. Then dk+1 ≥ dk − εk ∀k (cf. (8.4)) yields

d(πk) → d∞ ∈ (∞,∞] (cf. [Pol83, Lem. 2.2.3]). If d∞ = ∞, then C0 = ∅ by weak
duality. If d∞ <∞, then {πk} is bounded if Arg max d 6= ∅ is (cf. [Roc70, Cor. 8.7.1]),
whereas if C0 6= ∅, then Arg max d 6= ∅ is bounded iff Slater’s condition holds, i.e.,
g(x) < 0 for some x ∈ Df [GoT89, Thm. 1.3.4]. This observation may be used in
Lemma 8.10 and Theorem 9.20.

The following two results use Slater’s condition to complement Theorems 9.18
and 9.20.

THEOREM 9.22. Consider Example 9.11 with φ ∈ Φs s.t. inf φ > −∞. Suppose
g(x) < 0 for some x ∈ Df ,

∑∞
k=1 εk < ∞, and infk ck > 0. Then d(πk) → d∞ < ∞

and (8.8) holds. If {x̆k} has a limit point x∞ (e.g., C∗ 6= ∅ is bounded; cf. Remark
8.11), then x∞ solves (7.1), f(x∞) = d∞ = max d, and each limit point of {πk}
maximizes d. If d∞ = sup d and

∑∞
k=1 ckεk <∞, then πk → π∞ ∈ Arg max d.

Proof. Since εk → 0, d(πk) → d∞ < ∞, {πk} and Arg max d 6= ∅ are bounded
(Remark 9.21), we get, as in the proof of Theorem 9.18, Dh+ = Rm+ , tγ < tφ, and〈
πk, uk

〉 → 0. Hence the first two assertions follow from Lemma 8.10, and the third
one from Theorem 8.3.

THEOREM 9.23. Consider Example 9.11 with φ ∈ Φs forcing on (−∞, t′′φ] ∀t′′φ ∈ R.
Suppose that g(x) < 0 for some x ∈ Df ,

∑∞
k=1 εk < ∞, and infk ck > 0. Then

d(πk) → d∞ < ∞ and (8.8) holds. If {x̆k} has a limit point x∞ (e.g., C∗ 6= ∅
is bounded; cf. Remark 8.11), then x∞ solves (7.1), f(x∞) = d∞ = max d, and
each limit point of {πk} maximizes d. If d∞ = sup d, Arg max d ∩ Dh+ 6= ∅, and∑∞

k=1 ckεk <∞, then πk → π∞ ∈ Arg max d.
Proof. Use the proof of Theorem 9.22, without asserting that Dh+ = Rm+ .
Remark 9.24. It is easy to see that we may replace φ ∈ Φs with φ ∈ Φ0 and

Example 9.11 with Example 7.9 with ψ = φ∗ in Lemmas 9.13, 9.16, and 9.17 and
Theorems 9.18, 9.20, 9.22, and 9.23. (In the proof of Lemma 9.13, t∞ ≥ ψ−1(ε) > t0φ,
since φ′ and φ are positive and increasing on (t0φ, tφ); in the proof of Lemma 9.16, use
γk+1 ≥ γk + cku

k+1 (cf. (7.7)); in proving Lemma 9.17, recall Remark 9.9(ii).) Such
results complement Theorems 8.4 and 8.7; cf. Corollary 9.8.

10. Additional aspects of multiplier methods. Modified barrier functions
can be extrapolated quadratically to facilitate their minimization; cf. [BTYZ92, BrS93,
BrS94, NPS94, PoT97]. We now extend such techniques to our penalty functions,
starting with a technical result.

LEMMA 10.1. Let φ1, φ2 ∈ Φ be s.t. for some ts ∈ (t0φ1
, tφ1), φ1(ts) = φ2(ts),

φ′
1(ts) = φ′

2(ts), φ1 is forcing on (−∞, ts], and φ2 is forcing on [ts, t′′φ2
] with t′′φ2

∈
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[ts, tφ2 ]. Let φ(t) = φ1(t) if t ≤ ts, φ(t) = φ2(t) if t > ts. Then φ is forcing on
(−∞, t′′φ2

]. If φ2 ∈ Φs ∪ Φ0, then φ ∈ Φs iff φ1 ∈ Φs and φ ∈ Φ0 iff φ1 ∈ Φ0.
Proof. Suppose [φ′(t′′k)− φ′(t′k)](t

′′
k − t′k)→ 0 with t′k ≤ ts ≤ t′′k ≤ t′′φ2

(other cases
being trivial). Since φ′

1 and φ′
2 are nondecreasing, so is φ′; therefore, all terms in

[φ′(t′′k)− φ′(t′k)](t
′′
k − t′k) ≥ [φ′(t′′k)− φ′(ts)](t′′k − ts) + [φ′(ts)− φ′(t′k)](ts − t′k)

= [φ′
2(t

′′
k)− φ′

2(ts)](t
′′
k − ts) + [φ′

1(ts)− φ′
1(t

′
k)](ts − t′k)

are nonnegative and tend to zero. Thus φ′
2(ts)(t

′′
k − ts) → 0 and φ′

1(ts)(ts − t′k) → 0
(Definition 9.12). Hence t′k, t

′′
k → ts (φ′

2(ts) = φ′
1(ts) > 0), φ′(t′′k)(t

′′
k − t′k) → φ′(ts)0,

and φ′(t′k)(t
′′
k − t′k) → 0 yield the first assertion. For the second one, use Definition

9.3 and Remark 9.4.
Examples 10.2. Using the notation of Lemma 10.1, we add the condition φ′′

1(ts) =
φ′′

2(ts) to make φ twice continuously differentiable. In each example, φ ∈ Φs ∪ Φ0 is
forcing on (−∞, t′′φ] ∀t′′φ ∈ R; cf. Remark 9.4, Lemma 9.13, Example 9.14, and Remark
9.24.

(1 (cubic-quadratic)) φ(t) = max{0,t+ts}3

12ts
− t2s

6 if t ≤ ts, φ(t) = max{0,t}2

2 = φ2(t)
if t > ts, ts > 0. This φ grows only as fast as φ2 in Example 7.10 with β = 2 but is
smoother.

(2 (exponential-quadratic)) φ(t) = et if t ≤ ts > 0, φ(t) = ets( t
2

2 + (1− ts)t+ 1−
ts − t2s

2 ) if t > ts, φ2(·) = amax{0, · − t0φ2
}2 + b. This φ does not grow as fast as et in

Example 7.11.
(3 (log-quadratic)) φ(t) = − ln(−t) − 1 = φ1(t) if t ≤ ts < 0, φ(t) = t2

2t2s
− 2t

ts
+

1
2 − ln(−ts) if t > ts. This φ allows arbitrarily large infeasibilities, in contrast to φ1
in Example 7.12.

(4 (hyperbolic-quadratic)) φ(t) = − 1
t = φ1(t) if t ≤ ts < 0, φ(t) = t2

|ts|3 + 3t
t2s
− 3

ts

if t > ts. Again, this φ has Dφ = R, in contrast to φ1 in Example 7.13.
(5 (hyperbolic-log-quadratic)) φ(t) = −4t′s

−t′s−t − 2 − ln(−t′s) if t ≤ t′s < 0, φ(t) =

− ln(−t) if t′s ≤ t ≤ ts < 0, φ(t) = t2

2t2s
− 2t

ts
+ 3

2 − ln(−ts) if t > ts.
Remark 10.3. Other smooth penalty functions (e.g., cubic-log-quadratic) are

easy to derive. Such functions are covered by the various results of section 9. Their
properties, e.g., inf φ > −∞, may also have practical significance; this should be
verified experimentally.

The following result (inspired by [Ber82, Prop. 5.7]) shows that minimizing Lk
(cf. (7.12)) in Algorithm 7.4 is well posed under mild conditions (see the appendix for
its proof).

LEMMA 10.4. Let h(π) =
∑m
i=1 ψ(πi), where ψ is a B-function with Dψ ⊃ R>.

Suppose that Lk 6≡ ∞ (e.g., infDf maxmi=1 gi ≤ 0). Then Arg minLk is nonempty and
compact iff f and g1, . . . , gm have no common direction of recession, and if C0 6= ∅,
then this is equivalent to (7.1) having a nonempty and compact set of solutions.

We now consider a variant of condition (7.18), inspired by one in [Ber82, p. 328].
LEMMA 10.5. Under the strong convexity assumption (7.15), consider (7.17) with

|∆xLk(xk+1)|2 ≤ ηk[L(xk+1, πk+1)− Lk(xk+1)](10.1)

and εk = |∆xLk(xk+1)|2/2ᾰ replacing (7.18), where ηk ≥ 0. Then

L(xk+1, πk+1)− d(πk+1) ≤ εk ≤ ηk
2ᾰ

[L(xk+1, πk+1)− Lk(xk+1)],(10.2)

d(πk) ≤ L(xk+1, πk) ≤ Lk(xk+1) ≤ d(πk+1) if ηk ≤ 2ᾰ,(10.3)
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εk ≤ ηk
ᾰ

[d(πk+1)− d(πk)] ≤ d(πk+1)− d(πk) if ηk ≤ ᾰ.(10.4)

Next, suppose ηk → 0 in (10.1). Then d(πk) → d∞ ∈ (−∞,∞]. If d∞ < ∞, then∑∞
k=1 εk < ∞, εk → 0,

∑k
j=1 cjεj/sk → 0; further,

∑∞
k=1 ckεk < ∞ if {ckηk} is

bounded.
Proof. By (7.17) and (10.1), (10.2) holds with L(xk+1, πk+1) ≥ Lk(xk+1) by

(8.2). Thus ηk ≤ 2ᾰ yields Lk(xk+1) ≤ d(πk+1) and (10.3) follows from (8.5). Sim-
ilarly, L(xk+1, πk+1) − d(πk+1) ≤ 1

2 [L(xk+1, πk+1) − Lk(xk+1)] for ηk ≤ ᾰ yields
L(xk+1, πk+1)−Lk(xk+1) ≤ 2[d(πk+1)−Lk(xk+1)], so (10.4) follows from (10.2) and
d(πk) ≤ Lk(xk+1) (cf. (10.3)). Next, let ηk → 0. Pick k̄ s.t. ηk ≤ ᾰ ∀k ≥ k̄.
Equations (10.3)–(10.4) yield d(πk) → d∞,

∑∞
k=k̄ εk ≤ [d∞ − d(πk̄)], ∑∞

k=k̄ ckεk ≤
supk

ckηk
ᾰ [d∞ − d(πk̄)]. If d∞ < ∞, then εk → 0 gives

∑k
j=1 cjεj/sk → 0 (Lemma

4.5(i)).
Remark 10.6. In view of Lemma 10.5, suppose in the strongly convex case of

(7.15), (10.1) is used with ηk → 0. Since q(πk+1) ≤ q(πk) for all large k (cf. (10.3)), the
results of sections 8 and 9 may invoke, instead of Theorem 5.2 with

∑k
j=1 sjεj/sk → 0,

Theorem 4.3 with
∑k
j=1 cjεj/sk → 0. The latter condition holds automatically if

limk→∞ d(πk) <∞, e.g., sup d <∞. Thus we may drop the conditions

k∑
j=1

sjεj/sk → 0

from Theorems 8.3, 8.4, and 9.18, εk → 0 from Lemma 8.10 and Theorem 9.20, and∑∞
k=1 εk < ∞ from Theorems 9.22 and 9.23. Instead of

∑∞
k=1 ckεk < ∞, we may

assume that {ckηk} is bounded in Theorems 8.3, 8.4, 9.18, 9.22, and 9.23.
Condition (10.1) can be implemented as in [Ber82, Prop. 5.7(b)].
LEMMA 10.7. Suppose that f is strongly convex, infDf maxmi=1 gi ≤ 0, and g is

continuous on Df . Consider iteration k of Example 7.6 with h(π) =
∑m
i=1 ψ(πi),

where ψ is a B-function s.t. D∇ψ ⊃ R>. If ηk > 0, πk is not a Lagrange multiplier
of (7.1), {zj} is a sequence converging to x̂ = arg minLk, and ∆xLk(zj) → 0, then
there exists xk+1 ∈ {z1, z2, . . .} satisfying the stopping criterion (10.1).

Proof. By Lemmas 9.5 and 9.6, Example 7.6 has ūi = t0φ, π
k
i = ∇φ(γki ), γ

k
i ≥ t0φ,

i = 1:m, h+(u) =
∑m
i=1 φ(ui), where φ = ψ+ ∈ Φs ∪ Φ0. Let û = g(x̂) and π̂ =

∇h+(γk + ckû). Then, as in (8.2),

L(x̂, π̂)− Lk(x̂) = Dh+(γk, γk + ckû)/ck ≥ 0.(10.5)

Suppose that L(x̂, π̂) = Lk(x̂). By (10.5), (2.4), and convexity of h+, φ(γki )− φ(γki +
ckûi) − ∇φ(γki + ckûi)(−ckûi) = 0, i = 1:m. Therefore, since φ is strictly convex
on [t0φ, tφ) with ∇φ(t) = 0 iff t ≤ t0φ (Definition 9.3), and γki ≥ t0φ, for each i, either
γki +ckûi = γki > t0φ yields ûi = 0 and π̂i = πki = ∇φ(γki ) or γki +ckûi ≤ t0φ = γki yields
ûi ≤ 0 and π̂i = πki = ∇φ(γki ) = 0. Hence π̂ = πk, û ≤ 0 and 〈π̂, û〉 = 0. Combining
this with 0 ∈ ∂Lk(x̂) = ∂xL(x̂, π̂) (Lemma 7.3), we see (cf. [Roc70, Thm. 28.3]) that
πk is a Lagrange multiplier, a contradiction. Therefore, we must have strict inequality
in (10.5). Since g(zj) → û and Dh+(γk, γk + ckg(zj)) → Dh+(γk, γk + ckû) > 0 by
continuity, whereas ηk > 0 and ∆xLk(zj)→ 0, the stopping criterion will be satisfied
for sufficiently large j.

Appendix A. We now give proofs of certain technical results.
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Proof of Lemma 7.2. Rm+ ∩riDh 6= ∅ implies ∂h+ = ∂h+∂ıRm+ [Roc70, Thm. 23.8],
so D∂h+ = D∂h ∩ Rm+ and h+ is essentially strictly convex. Hence h+ = h∗

+ is closed
proper essentially smooth (Fact 2.3(ii)), ∂h+(u) = {∇h+(u)} ∀u ∈ D̊h+ = D∂h+ (Fact
2.3(i)), ∇h+ is continuous on D̊h+ (Fact 2.2), ∂h∗

+ = (∂h+)−1, and im ∂h+ = D∂h+

(Fact 2.1). Since h+ is nondecreasing, Dh+ = Dh+ − Rm+ , so D̊h+ = D̊h+ − Rm+
as the union of open sets. That NRm+ (π) = {γ ≤ 0 : 〈γ, π〉 = 0} for π ≥ 0 is
elementary (cf. [Roc70, p. 226]). If π = ∇h+(γ) and γ̃ ∈ NRm+ (π), then γ ∈ ∂h+(π)
and γ + γ̃ ∈ ∂h+(π), so π = ∇h+(γ + γ̃). If im ∂h ⊃ Rm> and u ∈ Rm, then
−h+(u) = inf φ, where φ = h+ − 〈u, ·〉 is inf-compact. Indeed, pick π̃ and ũ ∈ ∂h(π̃)
s.t. ũ > u. Then φ̃(π) = h(π̃) + 〈ũ, π − π̃〉 − 〈u, π〉 ≤ φ(π) for all π ≥ 0, and if
{πk} ⊂ Rm+ , |πk| → ∞, then φ̃(πk)→∞ since ũ− u > 0. Hence φ is inf-compact and
u ∈ Dh+ , so Dh+ = Rm.

We need the following slightly sharpened version of [GoT89, Thm. 1.5.4].
LEMMA A.1 (subdifferential chain rule). Let f1, . . . , fm be proper convex functions

on Rn with
⋂m
i=1 riDfi 6= ∅. Let f(·) = (f1(·), . . . , fm(·)) and Df =

⋂m
i=1Dfi . Let

φ be a proper convex nondecreasing function on Rm s.t. f(x̃) < ỹ for some x̃ ∈ Df
and ỹ ∈ Dφ. Let ψ(x) = φ(f(x)) if x ∈ Df , ψ(x) =∞ if x /∈ Df . Then ψ is proper
convex, im ∂φ ⊂ Rm+ , and for each x̄ ∈ Df and ȳ = f(x̄)

∂ψ(x̄) =
⋃
{
m∑
i=1

γi∂fi(x̄) : γ ∈ ∂φ(ȳ) }.(A.1)

Proof. For any x1, x2 ∈ Df and λ ∈ [0, 1], f(λx1 + (1 − λ)x2) ≤ λf(x1) +
(1 − λ)f(x2) and hence ψ(λx1 + (1 − λ)x2) ≤ φ(λf(x1) + (1 − λ)f(x2)) ≤ λψ(x1) +
(1 − λ)ψ(x2), so ψ is convex. Since ψ(x) > −∞ for all x, ψ is proper. Let Q =⋃
γ∈∂φ(ȳ)

∑m
i=1 γi∂fi(x̄). Let γ ∈ ∂φ(ȳ), γi ∈ ∂fi(x̄), i = 1:m, Γ = [γ1, . . . , γm]T . For

any x, f(x) ≥ f(x̄)+Γ(x− x̄) yields ψ(x) ≥ φ(f(x̄)+Γ(x− x̄)) ≥ ψ(x̄)+ γTΓ(x− x̄),
i.e., ΓT γ ∈ ∂ψ(x̄), so Q ⊂ ∂ψ(x̄). To prove the opposite inclusion, let γ̄ ∈ ∂ψ(x̄).
Consider the convex program

minimize φ(y)− 〈γ̄, x〉 s.t. f(x)− y ≤ 0, x ∈ Df , y ∈ Dφ.(A.2)

By the monotonicity of φ and the definition of subdifferential, (x̄, ȳ) solves (A.2),
which satisfies Slater’s condition (cf. f(x̃) < ỹ), so (cf. [Roc70, Cor. 28.2.1]) it has a
Kuhn–Tucker point π̄ ∈ Rm+ s.t. (cf. [Roc70, Thm. 28.3])

φ(y)− 〈γ̄, x〉+ 〈π̄, f(x)− y〉 ≥ φ(ȳ)− 〈γ̄, x̄〉+ 〈π̄, f(x̄)− ȳ〉 ∀x ∈ Df , y ∈ Dφ.
Then φ(y) ≥ φ(ȳ) + 〈π̄, y − ȳ〉 ∀y yields π̄ ∈ ∂φ(ȳ), whereas 〈π̄, f(x)〉 ≥ 〈π̄, f(x̄)〉 +
〈γ̄, x− x̄〉 ∀x yields γ̄ ∈ ∂(

∑m
i=1 π̄ifi)(x̄) =

∑m
i=1 π̄i∂fi(x̄) from

⋂m
i=1 riDfi 6= ∅ (cf.

[Roc70, Thm. 23.8]). Thus ∂ψ(x̄) ⊂ Q, i.e., ∂ψ(x̄) = Q. To see that im ∂φ ⊂ Rm+ ,
note that if γ ∈ ∂φ(y1), then φ(y1) ≥ φ(y2) ≥ φ(y1) +

〈
γ, y2 − y1

〉
for all y2 ≤ y1

implies γ ≥ 0.
Proof of Lemma 10.4. Let φi(x) = ψ+(γki + ckgi(x)) if x ∈ Dgi , φi(x) = ∞ if

x /∈ Dgi , i = 1:m. Each φi is closed: for any α ∈ R, {t : ψ+(t) ≤ α} = (−∞, β]
for some β < ∞ (ψ+ is closed nondecreasing and limt↑tψ+ ψ

+(t) = ∞ by Lemmas
9.5 and 9.6) and {x : φi(x) ≤ α} = {x : gi(x) ≤ (β − γki )/ck} is closed (as is gi).
We have Lk = f + 1

ck

∑m
i=1[φi − ψ+(γki )] with f and φi closed proper and Lk 6≡ ∞,

so Lk is closed and Lk0+ = f0+ + 1
ck

∑m
i=1 φi0

+ [Roc70, Thm. 9.3]. Suppose that
gi0+(y) ≤ 0. Since Lk 6≡ ∞, Dψ+ = (−∞, tψ+) (cf. Lemma 9.6 and Definition 9.3),
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and gi is closed, there is x ∈ riDgi s.t. γki + ckgi(x) ∈ Dψ+ . Let γ ∈ ∂gi(x). Then
gi(x)+t 〈γ, y〉 ≤ gi(x+ty) ≤ gi(x) ∀t ≥ 0, so 〈γ, y〉 ≤ 0 and, since ψ+ is nondecreasing,
ψ+(γki +ck[gi(x)+t 〈γ, y〉]) ≤ ψ+(γkk +ckgi(x+ty)) ≤ ψ+(γki +ckgi(x)) ∀t ≥ 0. Hence
ψ+0+(ck 〈γ, y〉) ≤ φi0+(y) ≤ 0, so 〈γ, y〉 ≤ 0 and ψ+0+ = ı∗R+

(cf. Lemmas 9.5 and
9.6) yield φi0+(y) = 0. Now suppose gi0+(y) > 0. Pick t̄ > 0 and ᾱ > 0 s.t.
[gi(x+ ty)− gi(x)]/t ≥ ᾱ ∀t ≥ t̄. Then

φi0+(y) = lim
t↑∞

[ψ+(γki + ckgi(x+ ty))− ψ+(γki + ckgi(x))]/t

≥ lim
t↑∞

[ψ+(γki + ck(gi(x) + tᾱ))− ψ+(γki + ckgi(x))]/t

= ψ+0+(ckᾱ) =∞
from ψ+0+ = ı∗R+

. Thus φi0+(y) = 0 if gi0+(y) ≤ 0, φi0+(y) = ∞ if gi0+(y) > 0.
Therefore, Lk0+(y) = f0+(y) if gi0+(y) ≤ 0 for i = 1:m, Lk0+(y) = ∞ otherwise.
The proof may be finished as in [Ber82, sect. 5.3].

Acknowledgments. I would like to thank the associate editor and the anony-
mous referee for their valuable comments.
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Abstract. Given x0 ∈ Rn we study the infinite-horizon problem of minimizing the expression∫ T

0 f(x(t), x′(t))dt as T grows to infinity, where a function x: [0, ∞) → Rn is absolutely continuous
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1. Introduction. In this paper we consider a special class of extremals, the so-
called weakly optimal solutions of infinite-horizon autonomous variational problems
with vector-valued functions.

Given x0 ∈ Rn we study the infinite-horizon problem of minimizing the expression∫ T

0 f(x(t), x′(t))dt as T grows to infinity, where a function x: [0,∞) → Rn is abso-
lutely continuous (a.c.) and satisfies the initial condition x(0) = x0 and f = f(x, u)
is an integrand.

The study of variational and optimal control problems defined on infinite intervals
has recently been a rapidly growing area of research. These problems arise in engi-
neering (see Anderson and Moore [1], Artstein and Leizarowitz [2], Leizarowitz [14]),
in models of economic growth (see Rockafellar [18], Brock and Haurie [3], Leizarowitz
[12], Haurie [10], Carlson [5]), and in theory of thermodynamical equilibrium for ma-
terials (see Leizarowitz and Mizel [16], Coleman, Marcus, and Mizel [8], Zaslavski [23,
24]).

The following notion, known as the overtaking optimality criterion, was intro-
duced in the economics literature by Gale [9] and von Weizsacker [20] and has been
used in control theory by Artstein and Leizarowitz [2]; Brock and Haurie [3]; Carlson
[5]; Carlson, Haurie, and Jabrane [6]; and Carlson, Haurie, and Leizarowitz [7].

An a.c. function x: [0,∞) → Rn is called (f)-overtaking optimal if, for any a.c.
function y: [0,∞) → Rn satisfying y(0) = x(0),

lim sup
T→∞

∫ T

0
[f(x(t), x′(t)) − f(y(t), y′(t))] dt ≤ 0.

Various existence results of overtaking optimal functions are nicely collected in
Carlson, Haurie, and Leizarowitz [7]. The most typical infinite-horizon optimization
problem for which the existence of overtaking optimal function has been established
is an autonomous variational problem with a convex integrand

∫ T

0 f(x(t), x′(t))dt,
studied by Rockafellar [18], Brock and Haurie [3], and Leizarowitz [12].

For convex integrands the existence of overtaking optimal solutions may follow
from the fact that all good trajectories converge to a unique steady state (Brock and
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†Department of Mathematics, Technion-Israel Institute of Technology, Haifa 32000, Israel
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Haurie [3], Leizarowitz [12]). For nonconvex integrands the existence of overtaking
optimal solutions is not guaranteed, and in this situation we look for weakly optimal
solutions.

In this paper we employ the following weakened version of the overtaking opti-
mality criterion.

An a.c. function x: [0,∞) → Rn is called (f)-weakly optimal if, for any a.c.
function y: [0,∞) → Rn satisfying y(0) = x(0),

lim inf
T→∞

∫ T

0
[f(x(t), x′(t)) − f(y(t), y′(t))] dt ≤ 0.

The first existence result of weakly optimal solutions without convexity assump-
tions was obtained by Carlson [4] for autonomous optimal control problems with
vector-valued functions. Under the assumptions posed in Carlson [4] for every (f)-
good trajectory x(·) defined on [0,∞) the following holds:

τ−1
∫ τ

0
x(t) dt → x̄ as τ → ∞,

where x̄ is a unique steady state. Using this fact Carlson established the existence of
weakly optimal solutions.

In a general situation, when we do not have any kind of a convergence property
of all good trajectories to a unique steady state, our consideration can be based on
the following observation, which was described in Leizarowitz [15]: For every initial
state there exists a weakly optimal solution if all good trajectories have the same limit
point set.

Recently this was used by Zaslavski [25] to establish, for a class of variational
problems described below, the existence of weakly optimal solutions for a generic
integrand and any initial state.

Denote by | · | the Euclidean norm in Rn, and denote by A the set of continuous
functions f : Rn ×Rn → R1 which satisfy the following assumptions.

Assumption A.
(i) For each x ∈ Rn the function f(x, ·): Rn → R1 is convex.
(ii) f(x, u) ≥ sup{ψ(|x|), ψ(|u|)|u|} − a for each (x, u) ∈ Rn × Rn, where a > 0

is a constant and ψ: [0,∞) → [0,∞) is an increasing function such that ψ(t) → +∞
as t → ∞ (here a and ψ are independent on f).

(iii) For each M, ε > 0 there exist Γ, δ > 0 such that

|f(x1, u1) − f(x2, u2)| ≤ ε sup{f(x1, u1), f(x2, u2)}

for each u1, u2, x1, x2 ∈ Rn which satisfy

|xi| ≤ M, |ui| ≥ Γ (i = 1, 2), sup{|x1 − x2|, |u1 − u2|} ≤ δ.

It is an elementary exercise to show that an integrand f = f(x, u) ∈ C1(R2n)
belongs to A if f satisfies assumptions A(i) and A(ii) with a constant a > 0 and a
function ψ: [0,∞) → [0,∞) and there exists an increasing function ψ0: [0,∞) →
[0,∞) such that for each x, u ∈ Rn

sup{|∂f/∂x(x, u)|, |∂f/∂u(x, u)|} ≤ ψ0(|x|)(1 + ψ(|u|)|u|).
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For the set A we consider the uniformity which is determined by the following
base:

E(N, ε, λ) = {(f, g) ∈ A × A : |f(x, u) − g(x, u)| ≤ ε (u, x ∈ Rn, |x|, |u| ≤ N),

(|f(x, u)| + 1)(|g(x, u)| + 1)−1 ∈ [λ−1, λ] (x, u ∈ Rn, |x| ≤ N)},
where N > 0, ε > 0, λ > 1 (see Kelley [11]).

It was shown in Zaslavski [25] that the uniform space A is metrizable and complete.
We consider functionals of the form

(1.1) If (T1, T2, x) =
∫ T2

T1

f(x(t), x′(t)) dt,

where f ∈ A, 0 ≤ T1 < T2 < +∞ and x: [T1, T2] → Rn is an a.c. function.
For f ∈ A, y, z ∈ Rn, and numbers T1, T2 satisfying 0 ≤ T1 < T2 we set

Uf (T1, T2, y, z) = inf{If (T1, T2, x):x: [T1, T2] → Rn is an a.c. function

satisfying x(T1) = y, x(T2) = z}.(1.2)

It is easy to see that −∞ < Uf (T1, T2, y, z) < +∞ for each f ∈ A, each y, z ∈ Rn,
and each numbers T1, T2 satisfying 0 ≤ T1 < T2.

Let f ∈ A. For any a.c. function x: [0,∞) → Rn we set

(1.3) J(x) = lim inf
T→∞

T−1If (0, T, x).

Of special interest is the minimal long-run average cost growth rate

(1.4) µ(f) = inf{J(x):x: [0,∞) → Rn is an a.c. function}.
Clearly −∞ < µ(f) < +∞. Here we follow Leizarowitz [13] in defining “good func-
tions” for the infinite-horizon variational problem with the integrand f .

An a.c. function x: [0,∞) → Rn is called an (f)-good function if the function Φf
x:

T → If (0, T, x) − µ(f)T, T ∈ (0,∞) is bounded.
Propositions 1.1 and 3.1 in Zaslavski [25] imply the following result.
PROPOSITION 1.1. For any a.c. function x: [0,∞) → Rn either

If (0, T, x) − Tµ(f) → +∞ as T → ∞
or

sup{|If (0, T, x) − Tµ(f)|:T ∈ (0,∞)} < ∞.

Moreover any (f)-good function x: [0,∞) → Rn is bounded.
We denote d(x,B) = inf{|x − y|: y ∈ B} for x ∈ Rn, B ⊂ Rn. Denote by

dist(A,B) the Hausdorff metric for two sets A ⊂ Rn, B ⊂ Rn. For every bounded
a.c. function x: [0,∞) → Rn define

Ω(x) = {y ∈ Rn: there exists a sequence (ti)∞
i=0 ⊂ (0,∞) for which

ti → ∞, x(ti) → y as i → ∞}.(1.5)

We say that an integrand f ∈ A has Property B if Ω(v2) = Ω(v1) for each (f)-good
functions vi: [0,∞) → Rn, i = 1, 2.
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In Zaslavski [25, Theorem 2.1] we established the following result, which describes
the limit behavior of (f)-good functions for a generic f ∈ A.

THEOREM 1.1. There exists a set F ⊂ A which is a countable intersection of open
everywhere dense subsets of A and such that each f ∈ F has Property B.

Moreover, it was shown in [25, Theorem 2.2] that for each integrand f ∈ A which
has Property B and each initial condition x0 ∈ Rn there exists an (f)-weakly optimal
function x: [0,∞) → Rn satisfying x(0) = x0.

Since there exists an example of a function f ∈ A which does not have Property B
(see [25, sect. 14]) it is very important for applications to know that Property B, which
provides the existence of a weakly optimal solution with any initial value, holds for
“almost all” integrands f ∈ A.

Consider any f ∈ A. In analyzing the infinite-horizon variational problem with
the integrand f in [25] we studied the function Uf (T1, T2, y, z) (T2 > T1 ≥ 0, y, z ∈
Rn) defined by (1.2). By a simple modification of the proof of Proposition 4.4 in
Leizarowitz and Mizel [16] (see [25, Theorems 8.1 and 8.2]) we established the repre-
sentation formula

(1.6) Uf (0, T, x, y) = Tµ(f)+πf (x)−πf (y)+ θ̄f
T (x, y), x, y ∈ Rn, T ∈ (0,∞),

where πf : Rn → R1 is a continuous function and (T, x, y) → θ̄f
T (x, y) ∈ R1 is a

continuous nonnegative function defined for T > 0, x, y ∈ Rn,

πf (x) = inf{lim inf
T→+∞

[If (0, T, v) − µ(f)T ]: v: [0,∞) → Rn is an a.c. function

(1.7) satisfying v(0) = x}, x ∈ Rn,

and for every T > 0, every x ∈ Rn there is y ∈ Rn satisfying θ̄f
T (x, y) = 0.

Assume that there exists a compact set H(f) ⊂ Rn such that Ω(v) = H(f) for
each (f)-good function v: [0,∞) → Rn. (By Theorem 1.1 this assumption holds for
a generic f ∈ A).

By Theorems 8.3 and 8.4 in [25] for every x ∈ Rn there exists an (f)-good function
v: [0,∞) → Rn such that v(0) = x and the relation

(1.8) If (T1, T2, v) = (T2 − T1)µ(f) + πf (v(T1)) − πf (v(T2))

holds for each T1 ∈ [0,∞), T2 ∈ (T1,∞), and moreover, each a.c. function v: [0,∞) →
Rn such that (1.8) holds for each T1 ∈ [0,∞), T2 ∈ (T1,∞) is an (f)-weakly optimal
function.

Denote by A(f) the set of all a.c. functions v: [0,∞) → Rn which satisfy (1.8)
for each T1 ∈ [0,∞), T2 ∈ (T1,∞).

For a given x0 ∈ Rn we can construct a function x ∈ A(f), which is (f)-weakly
optimal and satisfies initial condition x(0) = x0, using the following scheme.

Let x0 ∈ Rn. We fix a positive number T and obtain µ(f) by (1.4), Uf (0, T, y, z)
(y, z ∈ Rn) by (1.2), πf (y)(y ∈ Rn) by (1.7), and θ̄f

T (y, z)(y, z ∈ Rn) by (1.6). By
the properties of the functions θ̄f

T we define a sequence {xi}∞
i=0 ⊂ Rn such that

θ̄f
T (xi, xi+1) = 0, i = 0, 1, . . . . Then we construct an a.c. function x: [0,∞) → Rn for

which

x(iT ) = xi, If (iT, (i+ 1)T, x) = Uf (0, T, xi, xi+1), i = 0, 1, . . . .

It follows from this construction that x ∈ A(f) and it is an (f)-weakly optimal
function. Since the above construction uses the set A(f), the function πf , and the
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minimal long-run average cost growth rate µ(f), and since we are not aware of any
other way of constructing weakly optimal solutions, it follows that these concepts are
of great importance for us.

In this paper we will establish the following propositions for any integrand f
which has Property B:

(a) f is a continuity point of the mapping g → (µ(g), πg) ∈ R1 × C(Rn), g ∈ A,
where C(Rn) is the space of all continuous functions φ: Rn → R1 with the topology
of the uniform convergence on bounded subsets.

(b) Given any ε > 0 there exist numbers `, δ > 0 such that for each v ∈ A(f)
satisfying d(v(0), H(f)) ≤ δ and each T ≥ 0

(1.9) dist(H(f), {v(t): t ∈ [T, T + `]}) ≤ ε.

(c) For each ε, K > 0 there exist numbers `, Q > 0 such that for each v ∈ A(f)
satisfying |v(0)| ≤ K relation (1.9) holds for each T ≥ Q.

Assume that we have some algorithm to calculate µ(f) and πf . Indeed using this
algorithm, instead of f , we deal with a function g, which is an approximation of f .
Proposition (a) shows that if g is close enough to f , then the results we obtain are
a good approximation of µ(f), πf . Propositions (b) and (c) establish the turnpike
property, which is well known in mathematical economics (see [7], [17], and survey
[19]) for (f)-weakly optimal solutions v ∈ A(f). In [25, Theorem 2.4] a weak version of
the turnpike property was established. For an optimal solution v ∈ A(f) Theorem 2.4
in [25] implies that relation (1.9), with ` which depends on ε and |v(0)|, holds for all
t ∈ [0,∞)\E, where E ⊂ [0,∞) is a measurable subset and the Lebesgue measure of
E does not exceed a constant which depends on ε and |v(0)|. Clearly Propositions
(b) and (c) are an essential improvement of Theorem 2.4 in [25] for optimal solutions
v ∈ A(f).

Propositions (b) and (c) are also important for applications. Suppose that we
know (f)-weakly optimal solutions xi ∈ A(f), i = 1, . . . , q, with initial conditions
xi(0) ∈ {z ∈ Rn: |z| ≤ K}, where K is a positive constant. Therefore we know the
turnpike H(f), or at least its approximation, and the constant Q (see Proposition
(c)) which is an estimate for the time period required to reach the turnpike. This
information can be useful if we need to find an (f)-weakly optimal solution with a
new initial value from the set {z ∈ Rn: |z| ≤ K}.

Propositions (a), (b), and (c) are extensions of the main results in Zaslavski [22]
which were established for discrete-time control systems. In the approach used in [21,
22] the following property played a crucial role.

Property C. In the space of integrands (or cost functions) there exists an
everywhere dense subset E such that for each f ∈ E there exists an (f)-good
periodic trajectory.

This approach was also used in Zaslavski [24] for a class of one-dimensional vari-
ational problems arising in continuum mechanics which was discussed in Leizarowitz
and Mizel [16] and Coleman, Marcus, and Mizel [8]. It is not clear whether Property C
holds in general. In the present paper we develop a more general approach based on
the following idea which arose in our discussions with Moshe Marcus.

The validity of Property B for an integrand f ∈ A (namely, if all (f)-good tra-
jectories have the same limit point set) implies that f has the additional interesting
properties: for any initial condition there exists an (f)-weakly optimal solution; the
turnpike property holds for optimal functions v ∈ A(f); f is a continuity point of the
mapping g → (µ(g), πg), g ∈ A.
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We hope that this approach is universal and can be applied to various classes
of variational and optimal control problems, in particular when Property C does not
hold.

2. Main results. For each function f ∈ A denote by A(f) the set of all a.c.
functions v: [0,∞) → Rn which satisfy (1.8) for each T1 ∈ [0,∞), T2 ∈ (T1,∞). It
follows from Theorem 8.3 in [25] that for every f ∈ A and every x ∈ Rn there exists
an (f)-good function v ∈ A(f) satisfying v(0) = x.

If f ∈ A and for each (f)-good function vi: [0,∞) → Rn, i = 1, 2,

Ω(v2) = Ω(v1),

then by Theorem 8.4 in [25] any function v ∈ A(f) is an (f)-weakly optimal function.
We will establish the following results.
THEOREM 2.1. Assume that f ∈ A and there exists a compact set H(f) ⊂ Rn

such that Ω(v) = H(f) for each (f)-good function v: [0,∞) → Rn. Then f is a
continuity point of the mapping g → (µ(g), πg) ∈ R1 × C(Rn), g ∈ A, where C(Rn)
is the space of all continuous functions φ:Rn → R1 with the topology of the uniform
convergence on bounded subsets.

Theorems 2.2 and 2.3 establish the turnpike property for a generic f ∈ A.
THEOREM 2.2. Assume that f ∈ A and there exists a compact set H(f) ⊂ Rn

such that Ω(v) = H(f) for each (f)-good function v: [0,∞) → Rn. Let ε be a positive
number. Then there exist numbers L, δ > 0 and a neighborhood U of f in A such that
for each g ∈ U , each v ∈ A(g) satisfying d(v(0), H(f)) ≤ δ, and each T ∈ [0,∞)

(2.1) dist(H(f), {v(t): t ∈ [T, T + L]}) ≤ ε.

THEOREM 2.3. Assume that f ∈ A and there exists a compact set H(f) ⊂ Rn

such that Ω(v) = H(f) for each (f)-good function v: [0,∞) → Rn. Let ε and K be
positive numbers. Then there exist numbers L,Q > 0 and a neighborhood U of f in
A such that for each g ∈ U , each v ∈ A(g) satisfying |v(0)| ≤ K relation (2.1) holds
for all T ∈ [Q,∞).

For each f ∈ A denote by B(f) the set of all a.c. functions v: R1 → Rn such that
(1.8) holds for each T1 ∈ R1, T2 ∈ (T1,∞), and lim inft→−∞ |v(t)| < ∞.

THEOREM 2.4. Assume that f ∈ A and there exists a compact set H(f) ⊂ Rn

such that Ω(v) = H(f) for each (f)-good function v: [0,∞) → Rn. Then the following
properties hold:

(1) for each h ∈ H(f) there exists v ∈ B(f) satisfying v(0) = h;
(2) for each v ∈ B(f) the relation v(t) ∈ H(f) holds for all t ∈ R1;
(3) for each ε > 0 there exists L > 0 such that (2.1) holds for each v ∈ B(f) and

each T ∈ R1.

3. Auxiliary results. In [25] we established the following results.
PROPOSITION 3.1 ([25, Proposition 3.1]). For each f ∈ A there exists a neighbor-

hood U of f in A and a number M > 0 such that, for each g ∈ U and each (g)-good
function x: [0,∞) → Rn,

lim sup
t→∞

|x(t)| < M.

PROPOSITION 3.2 ([25, Proposition 3.2]). Let f ∈ A and M1, M2, c > 0. Then
there exist a neighborhood U of f in A and S > 0 such that for each g ∈ U , each
T1 ∈ [0,∞), and each T2 ∈ [T1 + c,∞) the following property holds: for each
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x, y ∈ Rn satisfying |x|, |y| ≤ M1 and each a.c. function v: [T1, T2] → Rn satisfy-
ing v(T1) = x, v(T2) = y, Ig(T1, T2, v) ≤ Ug(T1, T2, x, y) + M2, the relation |v(t)| ≤
S (t ∈ [T1, T2]) holds.

PROPOSITION 3.3 ([25, Proposition 3.3]). Let f ∈ A, 0 < c1 < c2 < ∞,M, ε > 0.
Then there exists δ > 0 such that for each T1, T2 ≥ 0 satisfying T2 − T1 ∈ [c1, c2] and
each y1, y2, z1, z2 ∈ Rn satisfying |yi|, |zi| ≤ M(i = 1, 2), sup{|y1 − y2|, |z1 − z2|} ≤ δ
the relation |Uf (T1, T2, y1, z1) − Uf (T1, T2, y2, z2)| ≤ ε holds.

PROPOSITION 3.4 ([25, Proposition 3.4]). Assume that f ∈ A,M1 > 0, 0 ≤
T1 < T2, xi: [T1, T2] → Rn, i = 1, 2, . . . , is a sequence of a.c. functions such that
If (T1, T2, xi) ≤ M1, i = 1, 2, . . . . Then there exist a subsequence {xik

}∞
k=1 and an

a.c. function x: [T1, T2] → Rn such that If (T1, T2, x) ≤ M1, xik
(t) → x(t) as k → ∞

uniformly in [T1, T2] and x′
ik

→ x′ as k → ∞ weakly in L1(Rn; (T1, T2)).
PROPOSITION 3.5 ([25, Proposition 3.5]). For each f ∈ A, each number T1, T2

satisfying 0 ≤ T1 < T2, and each z1, z2 ∈ Rn there is an a.c. function x: [T1, T2] → Rn

such that x(Ti) = zi, i = 1, 2, If (T1, T2, x) = Uf (T1, T2, z1, z2).
PROPOSITION 3.6 ([25, Proposition 3.7]). Let f ∈ A, 0 < c1 < c2 < ∞, c3 > 0.

Then there exists a neighborhood U of f in A such that the set {Ug(T1, T2, z1, z2):
g ∈ U , T1 ∈ [0,∞), T2 ∈ [T1 + c1, T1 + c2], z1, z2 ∈ Rn, |z1| ≤ c3(i = 1, 2)} is bounded.

PROPOSITION 3.7 ([25, Proposition 3.8]). Let f ∈ A, 0 < c1 < c2 < ∞, D, ε >
0. Then there is a neighborhood V of f in A such that for each g ∈ V , each T1,
T2 ≥ 0 satisfying T2 − T1 ∈ [c1, c2], and each a.c. function x: [T1, T2] → Rn satisfying
inf{If (T1, T2, x), Ig(T1, T2, x)} ≤ D the relation |If (T1, T2, x) − Ig(T1, T2, x)| ≤ ε
holds.

PROPOSITION 3.8 ([25, Proposition 3.9]). Let f ∈ A, 0 < c1 < c2 < ∞, c3, ε > 0.
Then there exists a neighborhood V of f in A such that for each g ∈ V , each T1,
T2 ≥ 0 satisfying T2 − T1 ∈ [c1, c2], and each z, y ∈ Rn satisfying |y|, |z| ≤ c3 the
relation |Uf (T1, T2, y, z) − Ug(T1, T2, y, z)| ≤ ε holds.

PROPOSITION 3.9 ([25, Theorem 5.1]). Assume that f ∈ A and there exists a
compact set H(f) ⊂ Rn such that Ω(v) = H(f) for each (f)-good function v: [0,∞) →
Rn. Let ε be a positive number. Then there exists an integer L ≥ 1 such that for each
(f)-good function v: [0,∞) → Rn

dist(H(f), {v(t): t ∈ [T, T + L]}) ≤ ε for all large T.

PROPOSITION 3.10 ([25, Theorem 6.1]). Assume that f ∈ A. Then the mapping
(T1, T2, x, y) → Uf (T1, T2, x, y) is continuous for T1 ∈ [0,∞), T2 ∈ (T1,∞), x, y ∈
Rn.

PROPOSITION 3.11 ([25, Theorem 8.3]). For each f ∈ A and each x ∈ Rn there
exists an (f)-good function v ∈ A(f) satisfying v(0) = x.

PROPOSITION 3.12 ([25, Theorem 8.4]). Assume that f ∈ A and there exists a
compact set H(f) ∈ Rn such that Ω(x) = H(f) for each (f)-good function x: [0,∞) →
Rn. Then each v ∈ A(f) is an (f)-weakly optimal function.

PROPOSITION 3.13 ([25, Theorem 2.3]). Assume that f ∈ A and there exists a
compact set H(f) ⊂ Rn such that Ω(v) = H(f) for each (f)-good function v: [0,∞) →
Rn. Let ε be a positive number. Then there exist an integer L ≥ 1 and a neighborhood
U of f in A such that for each g ∈ U and each (g)-good function v: [0,∞) → Rn

dist(H(f), {v(t): t ∈ [T, T + L]}) ≤ ε for all large T.

Theorem 8.1, equation (8.2), and Proposition 7.3 in [25] imply the following result.
PROPOSITION 3.14. Let f ∈ A. Then πf (x) → +∞ as |x| → ∞.
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4. Proof of Theorems 2.1–2.3. Assume that f ∈ A and H(f) ⊂ Rn is a
compact set such that Ω(v) = H(f) for each (f)-good function v: [0,∞) → Rn.

In [25] we established the following results.
LEMMA 4.1 ([25, Lemma 10.2]). Let ε0 ∈ (0, 1),K0,M0 > 0, and let ` be a positive

integer such that, for each (f)-good function x: [0,∞) → Rn,

(4.1) dist(H(f), {x(t): t ∈ [T, T + `]}) ≤ 8−1ε0

for all large T (the existence of ` follows from Proposition 3.9). Then there exist
an integer N ≥ 10 and a neighborhood U of f in A such that for each g ∈ U , each
S ∈ [0,∞), and each a.c. function x: [S, S +N`] → Rn satisfying

|x(S)|, |x(S+N`)| ≤ K0, Ig(S, S+N`, x) ≤ Ug(S, S+N`, x(S), x(S+N`))+M0

there exists an integer i0 ∈ [0, N − 8] such that for all T ∈ [S + i0`, S + (i0 + 7)`]

dist(H(f), {x(t): t ∈ [T, T + `]}) ≤ ε0.

LEMMA 4.2 ([25, Lemma 10.3]). Let ε > 0. Then there exists δ > 0 such that, for
each x1, x2 ∈ Rn which satisfy d(xi, H(f)) ≤ δ, i = 1, 2, there exists an a.c. function
v: [0, T ] → Rn for which

T ≥ 1, v(0) = x1, v(T ) = x2, If (0, T, v) − πf (x1) + πf (x2) − Tµ(f) ≤ ε.

LEMMA 4.3 ([25, Lemma 10.4]). Let ε ∈ (0, 1) and let L be a positive integer such
that for each (f)-good function v: [0,∞) → Rn

(4.2) dist(H(f), {v(t): t ∈ [S, S + L]}) ≤ ε

for all large S (the existence of L follows from Proposition 3.9).
Then there exists δ > 0 such that for each T ∈ [L,∞) and each a.c. function

v: [0, T ] → Rn which satisfies

d(v(0), H(f)) ≤ δ, d(v(T ), H(f)) ≤ δ, If (0, T, v)−Tµ(f)−πf (v(0))+πf (v(T )) ≤ δ

relation (4.2) holds for every S ∈ [0, T − L].
Lemma 4.1 and Proposition 3.2 imply the following.
LEMMA 4.4. Let ε0 ∈ (0, 1), K0,M0 > 0, and let ` be a positive integer such that

each (f)-good function x: [0,∞) → Rn satisfies (4.1) for all large T . Then there exist
an integer N ≥ 10, a neighborhood U of f in A, and a number M1 > 0 such that for
each g ∈ U , each T1 ≥ 0, T2 ≥ T1 +N`, and each a.c. function x: [T1, T2] → Rn which
satisfies

|x(Ti)| ≤ K0, i = 1, 2, Ig(T1, T2, x) ≤ Ug(T1, T2, x(T1), x(T2)) +M0

the following properties hold: |x(t)| ≤ M1 for all t ∈ [T1, T2]; for each S ∈ [T1, T2−N`]
there exists an integer i0 ∈ [0, N − 8] such that

dist(H(f), {x(t): t ∈ [T, T + `]}) ≤ ε0 for all T ∈ [S + i0`, S + (i0 + 7)`].

Set

(4.3) Df = sup{|h|: h ∈ H(f)}.
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For each g ∈ A denote by A(g) the set of all a.c. functions v: [0,∞) → Rn such
that for each T1 ∈ [0,∞), T2 ∈ (T1,∞)

(4.4) Ig(T1, T2, v) = (T2 − T1)µ(g) + πg(v(T1)) − πg(v(T2)).

For K, τ > 0 and g ∈ A we define

(4.5) `(g,K, τ) = inf{Ug(0, τ, x, y) − πf (x) + πf (y): x, y ∈ Rn, |x|, |y| ≤ K}.
It follows from the representation formula (see (1.6), (1.7)), Proposition 3.11, that

(4.6) `(f,K, τ) = µ(f)τ, τ > 0, K > Df .

Equations (4.5), (4.6), and Proposition 3.8 imply the following result.
LEMMA 4.5. Let K > Df , 0 < τ1, τ2, δ > 0. Then there exists a neighborhood U

of f in A such that |`(g,K, τ) − µ(f)τ | ≤ δ for each g ∈ U and each τ ∈ [τ1, τ2].
LEMMA 4.6. Let h ∈ H(f). Then there exists an (f)-good function v: [0,∞) →

H(f) such that v ∈ A(f) and v(0) = h.
Proof. By Proposition 3.14 there exists an (f)-good function u ∈ A(f). We may

assume that

(4.7) d(u(t), H(f)) ≤ 1 for all t ∈ [0,∞).

There exists a sequence of positive numbers {Tp}∞
p=0 such that

(4.8) Tp+1 ≥ Tp + 1, p = 0, 1, . . . , u(Tp) → h as p → ∞.

For every integer p ≥ 1 we set

(4.9) vp(t) = u(t+ Tp), t ∈ [0,∞).

By Proposition 3.4, (4.9), and (4.7) there exist a subsequence {vpj }∞
j=1 and an a.c.

function v: [0,∞) → Rn such that for every integer N ≥ 1

(4.10) vpj
(t) → v(t) as j → ∞ uniformly in [0, N ],

(4.11) If (0, N, v) ≤ lim inf
j→∞

If (0, N, vpj
).

Since Ω(u) = H(f), it follows from (4.9) and (4.10) that v(t) ∈ H(f) for all t ∈ [0,∞).
By (4.8)–(4.10) v(0) = h. Since u ∈ A(f), it follows from (4.9)–(4.11) that for each
integer N ≥ 1

If (0, N, v) ≤ lim inf
j→∞

If (Tpj , Tpj +N, u)

≤ lim inf
j→∞

[Nµ(f) + πf (u(Tpj )) − πf (u(Tpj +N))]

= Nµ(f) + πf (v(0)) − πf (v(N)).

Together with the representation formula (see (1.6), (1.7)) this implies that v ∈ A(f).
The lemma is proven.

LEMMA 4.7. Let ε ∈ (0, 1) and K > Df + 1. Then there exists a neighborhood
U of f in A such that for each g ∈ U and each number T ≥ 1 there exists an a.c.
function x: [0, T ] → Rn such that x(0), x(T ) ∈ H(f),

(4.12) Ig(0, T, x) − πf (x(0)) + πf (x(T )) ≤ `(g,K, T ) + ε.
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Proof. By Lemma 4.6 there exists an (f)-good function

(4.13) v0 : [0,∞) → H(f) such that v0 ∈ A(f).

By Proposition 3.2 there exists a neighborhood U1 of f in A and M1 > 0 such that
for each g ∈ U1, each T1 ∈ [0,∞), T2 ∈ [T1 + 8−1,∞), and each a.c. function x:
[T1, T2] → Rn which satisfies

(4.14) |x(Ti)| ≤ K, i = 1, 2, Ig(T1, T2, x) ≤ Ug(T1, T2, x(T1), x(T2)) + 1

the following relation holds:

(4.15) |x(t)| ≤ M1, t ∈ [T1, T2].

By Proposition 3.10 there exists a number

(4.16) δ ∈ (0, 8−1ε)

such that for each y1, y2, z1, z2 ∈ Rn which satisfy

(4.17) |yi|, |zi| ≤ M1 + 2K + 1, i = 1, 2, |yi − zi| ≤ 4δ, i = 1, 2,

the following relations hold:

(4.18) |Uf (0, 1, y1, y2)−Uf (0, 1, z1, z2)| ≤ 2−6ε, |πf (yi)−πf (zi)| ≤ 2−6ε, i = 1, 2.

By Proposition 3.9 there exists an integer L ≥ 1 such that for each (f)-good
function v: [0,∞) → Rn

(4.19) dist(H(f), {v(t): t ∈ [T, T + L]}) ≤ 8−1δ

for all large T .
By Lemma 4.4 and the definition of L there exist an integer N1 ≥ 10 and a

neighborhood U2 of f in A such that for each g ∈ U2, each T1 ≥ 0, T2 ≥ T1 + N1L,
each a.c. function x: [T1, T2] → Rn which satisfies (4.14), and each S ∈ [T1, T2 −N1L]
there exists an integer i0 ∈ [0, N1 − 8] such that for all T ∈ [S + i0L, S + (i0 + 7)L]

(4.20) dist(H(f), {x(t): t ∈ [T, T + L]}) ≤ δ.

Since Ω(v0) = H(f) it follows from (4.13) that there exist integers

(4.21) N2 ≥ 4N1L+ 4, N3 ≥ 8

such that

dist(H(f), (v0(t): t ∈ [0, N2L]}) ≤ 8−1δ,

dist(H(f), {v0(t): t ∈ [8(N2 + 1)L, 8(N2 + 1)L+N3L]}) ≤ 8−1δ.(4.22)

Fix an integer

N0 ≥ 8L(N1 +N2 +N3 + 4).(4.23)

By Proposition 3.8 there exists a neighborhood U3 of f in A such that for each
g ∈ U3 and each z, y ∈ Rn which satisfy |y|, |z| ≤ 4M1 +4K+4 the following relation
holds:

|Uf (0, 1, y, z) − Ug(0, 1, y, z)| ≤ 2−6ε.(4.24)
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By Proposition 3.7 there exists a neighborhood U4 of f in A such that for each
g ∈ U4, each T1 ≥ 0, T2 ∈ [T1 +1, T1 +N0 +1], and each a.c. function x: [T1, T2] → Rn

which satisfies

inf{If (T1, T2, x), Ig(T1, T2, x)} ≤ N0(|µ(f)|+1)+2 sup{|πf (h)|: h ∈ H(f)}(4.25)

the following relation holds:

|If (T1, T2, x) − Ig(T1, T2, x)| ≤ 2−6ε.(4.26)

By Lemma 4.5 there exists a neighborhood U5 of f in A such that for each g ∈ U5
and each τ ∈ [1, 8(N0 + 1)]

|`(g,K, τ) − µ(f)τ | ≤ 2−6ε.(4.27)

Set

U =
5⋂

i=1

Ui.(4.28)

Let g ∈ U and a number T ≥ 1. There are two cases: (i) T ≤ N0; (ii) T > N0.
Consider the case (i). Set

x(t) = v0(t), t ∈ [0, T ].(4.29)

It follows from (4.13) and the definition of A(f) (see (4.4)) that

If (0, T, x) ≤ N0|µ(f)| + 2 sup{|πf (h)|: h ∈ H(f)}.
By this relation and the definition of U4 (see (4.26))

|If (0, T, x) − Ig(0, T, x)| ≤ 2−6ε.(4.30)

By the definition of U5 (see (4.27))

|`(g,K, T ) − µ(f)T | ≤ 2−6ε.(4.31)

Combining (4.30), (4.29), and (4.13) we obtain that

Ig(0, T, x) − πf (x(0)) + πf (x(T )) ≤ If (0, T, v0) − πf (v0(0)) + πf (v0(T )) + 2−6ε

≤ µ(f)T + 2−6ε ≤ `(g,K, T ) + 2−5ε.

Therefore in the case (i) the assertion of the lemma is valid.
Consider the case (ii). Then

T > N0.(4.32)

There exists an a.c. function y: [0, T ] → Rn such that

|y(0)|, |y(T )| ≤ K, Ig(0, T, y)−πf (y(0))+πf (y(T )) ≤ `(g,K, T )+16−1δ.(4.33)

Clearly

Ig(0, T, y) ≤ Ug(0, T, y(0), y(T )) + 16−1δ.
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By this relation, (4.33), (4.32), (4.23), and the definition of N1, U2 (see (4.20)) there
exist integers i1, i2 ∈ [0, N1 − 8] such that

dist(H(f), {y(t): t ∈ [S, S + L]}) ≤ δ(4.34)

for each

S ∈ [i1L, (i1 + 7)L] ∪ [T − 2N1L+ i2L, T − 2N1L+ (i2 + 7)L].(4.35)

It follows from (4.34), (4.35), and (4.22) that there exist

t1 ∈ [8(N2 + 1)L, 8(N2 + 1)L+N3L], t2 ∈ [0, N2L](4.36)

for which

|y(i1L+1)−v0(t1)| ≤ δ+4−1δ, |y(T −2N1L+ i2L+1)−v0(t2)| ≤ δ+4−1δ.(4.37)

By Proposition 3.5, (4.13), (4.36), (4.21), (4.32), and (4.23) there exists an a.c.
function x: [0, T ] → Rn such that

x(t) = v0(t+t1−i1L−1), t ∈ [0, i1L+1), x(t) = y(t), t ∈ [i1L+2, T−2N1L+i2L],

x(t) = v0(t+ t2 − (T − 2N1L+ i2L+ 1)), t ∈ [T − 2N1L+ i2L+ 1, T ],

Ig(τ, τ + 1, x) = Ug(0, 1, x(τ), x(τ + 1)), τ = i1L+ 1, T − 2N1L+ i2L.(4.38)

For each a.c. function u: [0, T ] → Rn and each r1, r2 ∈ [0, T ] satisfying r1 < r2
we set

σ(r1, r2, u) = Ig(r1, r2, u) − πf (u(r1)) + πf (u(r2)).(4.39)

Set

τ0 = 0, τ1 = i1L+ 1, τ2 = i1L+ 2, τ3 = T − 2N1L+ i2L,

τ4 = T − 2N1L+ i2L+ 1, τ5 = T.(4.40)

It follows from (4.38)–(4.40) that

σ(0, T, x) − σ(0, T, y) =
1∑

i=0

[σ(τi, τi+1, x) − σ(τi, τi+1, y)]

+
4∑

i=3

[σ(τi, τi+1, x) − σ(τi, τi+1, y)].(4.41)

Analogously to the case (i) we can show that

σ(t1 − i1L− 1, t1, v0) ≤ `(g,K, i1L+ 1) + 2−5ε,

σ(t2, t2 + 2N1L+ i2L+ 1, v0) ≤ `(g,K, 2N1L+ i2L+ 1) + 2−5ε.

Together with (4.38)–(4.40) this implies that

σ(τi, τi+1, x) ≤ `(g,K, τi+1 − τi) + 2−5ε, i = 0, 4.(4.42)
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By (4.40), (4.33), (4.37), (4.16), and (4.13)

σ(τi, τi+1, y) ≥ `(g,K, τi+1 − τi), i = 0, 4.(4.43)

It follows from (4.38)–(4.40) that for i = 1, 3

σ(τi, τi+1, x) − σ(τi, τi+1, y) ≤ Ug(0, 1, x(τi), x(τi+1)) − πf (x(τi)) + πf (x(τi+1))

−[Ug(0, 1, y(τi), y(τi+1)) − πf (y(τi)) + πf (y(τi+1))].(4.44)

It follows from (4.33) and the definition of U1,M1 (see (4.14), (4.15)) that

|y(t)| ≤ M1, t ∈ [0, T ].(4.45)

By (4.40), (4.38), (4.37), (4.13), and the definition of δ (see (4.16)–(4.18)) for i = 1, 3

|πf (x(τi+1)) − πf (x(τi)) − (πf (y(τi+1)) − πf (y(τi)))| ≤ 2−6ε.(4.46)

It follows from (4.40), (4.38), (4.45), (4.13), the definition of U3 (see (4.24)), the
definition of δ (see (4.16)–(4.18)), and (4.37) that for i = 1, 3

|Ug(0, 1, x(τi), x(τi+1)) − Ug(0, 1, y(τi), y(τi+1))|
≤ 2−5ε+ |Uf (0, 1, x(τi), x(τi+1)) − Uf (0, 1, y(τi), y(τi+1))| ≤ 2−4ε.

Together with (4.44) and (4.46) this implies that for i = 1, 3

σ(τi, τi+1, x) − σ(τi, τi+1, y) ≤ 2−3ε.

By this relation and (4.41)–(4.43), σ(0, T, x)−σ(0, T, y) ≤ 2−1ε. Together with (4.39),
(4.33), and (4.16) this implies (4.12). This completes the proof of the lemma.

LEMMA 4.8. Let ε ∈ (0, 1) and K > Df + 1. Then there exists a neighborhood
U of f in A such that for each g ∈ U , each h ∈ H(f), and each number T ≥ 1 there
exists an a.c. function x: [0, T ] → Rn for which

x(0) = h, x(T ) ∈ H(f),(4.47)

Ig(0, T, x) − πf (x(0)) + πf (x(T )) ≤ `(g,K, T ) + ε.(4.48)

Proof. By Proposition 3.2 there exist a neighborhood U1 of f in A and M1 >
2K + 1 such that for each g ∈ U1, each T1 ∈ [0,∞), T2 ∈ [T1 + 8−1,∞), and each a.c.
function x: [T1, T2] → Rn which satisfies

|x(Ti)| ≤ K, i = 1, 2, Ig(T1, T2, x) ≤ Ug(T1, T2, x(T1), x(T2)) + 1(4.49)

the following relation holds:

|x(t)| ≤ M1, t ∈ [T1, T2].(4.50)

By Lemma 4.7 there exists a neighborhood U2 of f in A such that for each g ∈ U2
and each number T ≥ 1 there exists an a.c. function x: [0, T ] → Rn such that

x(0), x(T ) ∈ H(f),

Ig(0, T, x) − πf (x(0)) + πf (x(T )) ≤ `(g,M1, T ) + 2−6ε.(4.51)
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By Proposition 3.10 there exists a number

δ ∈ (0, 8−1ε)(4.52)

such that for each y1, y2, z1, z2 ∈ Rn which satisfy

|yi|, |zi| ≤ 2M1 + 4, i = 1, 2, |yi − zi| ≤ 4δ, i = 1, 2(4.53)

the following relations hold:

|Uf (0, 1, y1, y2) −Uf (0, 1, z1, z2)| ≤ 2−6ε, |πf (yi) − πf (zi)| ≤ 2−6ε, i = 1, 2.(4.54)

By Proposition 3.8 there exists a neighborhood U3 of f in A such that for each g ∈ U3
and each z, y ∈ Rn which satisfy |y|, |z| ≤ 2M1 + 4 the following relation holds:

|Uf (0, 1, y, z) − Ug(0, 1, y, z)| ≤ 2−6ε.(4.55)

By Lemma 4.6 there exists an (f)-good function

v0: [0,∞) → H(f) such that v0 ∈ A(f).(4.56)

Since Ω(v0) = H(f), it follows from (4.56) that there exist integers N1, N2 ≥ 8
for which

dist(H(f), {v0(t): t ∈ [4, N1 + 4]}) ≤ 8−1δ,

dist(H(f), {v0(t): t ∈ [2N1 + 16, 2N1 + 16 +N2]}) ≤ 8−1δ.(4.57)

Fix an integer

N0 ≥ 8(N1 +N2 + 20).(4.58)

By Proposition 3.7 there exists a neighborhood U4 of f in A such that for each
g ∈ U4, each T1 ≥ 0, T2 ∈ [T1 + 1, T1 +N0], and each a.c. function x: [T1, T2] → Rn

which satisfies

inf{If (T1, T2, x), Ig(T1, T2, x)} ≤ N0|µ(f)| + 2 sup{|πf (z)|: z ∈ H(f)}(4.59)

the following relation holds:

|If (T1, T2, x) − Ig(T1, T2, x)| ≤ 2−6ε.(4.60)

By Lemma 4.5 there exists a neighborhood U5 of f in A such that for each g ∈ U5
and each T ∈ [1, 2N0 + 8]

|`(g,M1, T ) − µ(f)T | ≤ 2−6ε.(4.61)

Set

U =
5⋂

i=1

Ui.(4.62)

Let g ∈ U , h ∈ H(f), and a number T ≥ 1. There are two cases: (i) T ≤ N0; (ii)
T > N0. Consider the case (i). By Lemma 4.6 there exists an (f)-good function

x: [0,∞) → H(f) such that x ∈ A(f), x(0) = h.
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Analogously to the case (i) in the proof of Lemma 4.7 we can show that relation (4.48)
holds. Therefore in the case (i) the assertion of the lemma is valid.

Consider the case (ii). Then

T > N0.(4.63)

It follows from the definition of U2 (see (4.51)), (4.63), and (4.58) that there exists an
a.c. function u: [0, T − 4(N1 +N2 + 5)] → Rn such that

u(0), u(T − 4(N1 +N2 + 5)) ∈ H(f),(4.64)

Ig(0, T − 4(N1 +N2 + 5), u) − πf (u(0)) + πf (u(T − 4(N1 +N2 + 5)))
≤ `(g,M1, T − 4(N1 +N2 + 5)) + 2−6ε.(4.65)

By (4.57) and (4.64) there exist

t1, t3 ∈ [4, N1 + 4], t2 ∈ [2N1 + 16, 2N1 + 16 +N2](4.66)

for which

|h− v0(t1)| ≤ 4−1δ, |u(0) − v0(t2)| ≤ 4−1δ,

|u(T − 4(N1 +N2 + 5)) − v0(t3)| ≤ 4−1δ.(4.67)

By Proposition 3.5, (4.66), (4.63), and (4.58) there exists an a.c. function x:
[0, T ] → Rn such that

x(0) = h, x(t) = v0(t+ t1), t ∈ [1, t2 − t1 − 1],
x(t) = u(t− t2 + t1),

t ∈ [t2 − t1, T − 4(N1 +N2 + 5) + t2 − t1],
x(t) = v0(t+ t3 − (T − 4(N1 +N2 + 5) + t2 − t1)),

t ∈ [T − 4(N1 +N2 + 5) + t2 − t1 + 1, T ],
Ig(τ, τ + 1, x) = Ug(0, 1, x(τ), x(τ + 1)),

τ = 0, t2 − t1 − 1, T − 4(N1 +N2 + 5) + t2 − t1.(4.68)

Clearly (4.47) holds. We will show that (4.48) holds.
For each a.c. function v: [0, T ] → Rn and each r1, r2 ∈ [0, T ] satisfying r1 < r2

we set

σ(r1, r2, v) = Ig(r1, r2, v) − πf (v(r1)) + πf (v(r2)).(4.69)

Set

τ0 = 0, τ1 = 1, τ2 = t2 − t1 − 1, τ3 = t2 − t1,

τ4 = T − 4(N1 +N2 + 5) + t2 − t1,

τ5 = T − 4(N1 +N2 + 5) + t2 − t1 + 1, τ6 = T.(4.70)

There exists an a.c. function y: [0, T ] → Rn such that

|y(0)|, |y(T )| ≤ K, σ(0, T, y) ≤ `(g,K, T ) + 2−6ε.(4.71)
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It follows from (4.71) and the definition of U1, M1 (see (4.49), (4.50)) that

|y(t)| ≤ M1, t ∈ [0, T ].(4.72)

Equations (4.69) and (4.70) imply that

σ(0, T, x) − σ(0, T, y) =
5∑

i=0

[σ(τi, τi+1, x) − σ(τi, τi+1, y)].(4.73)

By (4.72) and (4.69)

σ(τi, τi+1, y) ≥ `(g,M1, τi+1 − τi), i = 0, . . . , 5.(4.74)

It follows from (4.70), (4.68), (4.69), and (4.65) that

σ(τ3, τ4, x) ≤ `(g,M1, τ4 − τ3) + 2−6ε.(4.75)

Analogously to (4.42) (see the proof of Lemma 4.7) we can show that

σ(τi, τi+1, x) ≤ `(g,M1, τi+1 − τi) + 2−5ε, i = 1, 5.(4.76)

By (4.68)–(4.70), the definition of U3 (see (4.55)), (4.64), and (4.56) for i = 0, 2, 4

σ(τi, τi+1, x) = Ug(0, 1, x(τi), x(τi+1)) − πf (x(τi)) + πf (x(τi+1))
≤ Uf (0, 1, x(τi), x(τi+1)) − πf (x(τi)) + πf (x(τi+1)) + 2−6ε.(4.77)

We set

γ0 = t1, γ2 = t2 − 1, γ4 = t3.(4.78)

Equations (4.78), (4.70), (4.68), and (4.67) imply that for i = 0, 2, 4

|x(τi) − v0(γi)|, |x(τi + 1) − v0(γi + 1)| ≤ 4−1δ.(4.79)

It follows from (4.77), (4.70), (4.79), and (4.56) and the definition of δ (see (4.52)–
(4.54)) that for i = 0, 2, 4

σ(τi, τi+1, x) ≤ Uf (0, 1, x(τi), x(τi + 1)) − πf (x(τi)) + πf (x(τi + 1)) + 2−6ε

≤ Uf (0, 1, v0(γi), v0(γi + 1)) − πf (v0(γi)) + πf (v0(γi + 1))

+ 2−4ε = µ(f) + 2−4ε.

By this relation and the definition of U5 for i = 0, 2, 4

σ(τi, τi+1, x) ≤ `(g,M1, τi+1 − τi) + 2−4ε+ 2−6ε.

Combining this relation and (4.73)–(4.76) we obtain that

σ(0, T, x) − σ(0, T, y) ≤ 2−6ε+ 2−4ε+ 3(2−6ε+ 2−4ε) ≤ 2−1ε.

Together with (4.69) and (4.71) this implies (4.48). This completes the proof of the
lemma.

LEMMA 4.9. Let ε ∈ (0, 1),K > Df + 1, and let L be a positive integer such that
for each (f)-good function v: [0,∞) → Rn
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dist(H(f), {v(t): t ∈ [T, T + L]}) ≤ 8−1ε(4.80)

for all large T (the existence of L follows from Proposition 3.9).
Then there exist a neighborhood U of f in A and δ ∈ (0, 1) such that for each

g ∈ U , each T ∈ [L,∞), and each a.c. function v: [0, T ] → Rn which satisfies

d(v(0), H(f)) ≤ δ, d(v(T ), H(f)) ≤ δ,(4.81)

Ig(0, T, v) − πf (v(0)) + πf (v(T )) ≤ `(g,K, T ) + δ(4.82)

the relation

dist(H(f), {v(t): t ∈ [S, S + L]}) ≤ ε(4.83)

holds for every S ∈ [0, T − L].
Proof. By Lemma 4.3 there exists

δ1 ∈ (0, ε)(4.84)

such that for each T ∈ [L,∞) and each a.c. function v: [0, T ] → Rn which satisfies

d(v(0), H(f)), d(v(T ), H(f)) ≤ δ1,

If (0, T, v) − Tµ(f) − πf (v(0)) + πf (v(T )) ≤ δ1(4.85)

relation (4.83) holds for every S ∈ [0, T − L]. Fix a number

δ ∈ (0, 8−1δ1).(4.86)

By Proposition 3.9 there exists an integer L1 ≥ 1 such that for each (f)-good
function v: [0,∞) → Rn

dist(H(f), {v(t): t ∈ [T, T + L1]}) ≤ 8−1δ(4.87)

for all large T . We may assume that

L1 ≥ 10L+ 24.(4.88)

By Lemma 4.4 there exist an integer N1 ≥ 10 and a neighborhood U1 of f in
A such that for each g ∈ U1, each T1 ≥ 0, T2 ≥ T1 + N1L1, each a.c. function x:
[T1, T2] → Rn which satisfies

|x(Ti)| ≤ K, i = 1, 2, Ig(T1, T2, x) ≤ Ug(T1, T2, x(T1), x(T2)) + 1,(4.89)

and each S ∈ [T1, T2 −N1L1] there exists an integer i0 ∈ [0, N1 − 8] such that for all
T ∈ [S + i0L1, S + (i0 + 7)L1]

dist(H(f), {x(t): t ∈ [T, T + L1]}) ≤ δ.(4.90)

By Lemma 4.8 there exists a neighborhood U2 of f in A such that for each g ∈ U2,
each h ∈ H(f), and each T ≥ 1 there exists an a.c. function x: [0, T ] → Rn for which

x(0) = h, x(T ) ∈ H(f),
(4.91)

Ig(0, T, x) − πf (x(0)) + πf (x(T )) ≤ `(g,K, T ) + 8−1δ.



1186 A. J. ZASLAVSKI

Choose an integer

N0 ≥ 100L1N1.(4.92)

By Lemma 4.5 there exists a neighborhood U3 of f in A such that for each g ∈ U3
and each τ ∈ [1, N0]

|`(g,K, τ) − µ(f)τ | ≤ 4−1δ.(4.93)

By Proposition 3.7 there exists a neighborhood U4 of f in A such that for each
g ∈ U4, each T1 ≥ 0, T2 ∈ [T1+1, T1+2N0+1], and each a.c. function x: [T1, T2] → Rn

which satisfies

inf{If (T1, T2, x), Ig(T1, T2, x)}
≤ 2N0|µ(f)| + 4 + 2 sup{|πf (h)|: h ∈ Rn, |h| ≤ K + 2}(4.94)

the following relation holds:

|If (T1, T2, x) − Ig(T1, T2, x)| ≤ δ.(4.95)

Set

U =
4⋂

i=1

Ui.(4.96)

Assume that g ∈ U , T ≥ L, and an a.c. function v: [0, T ] → Rn satisfies (4.81)
and (4.82). There are two cases: (i) T ≤ N0; (ii) T > N0.

Consider case (i). It follows from (4.82), the definition of U3 (see (4.93)) that

Ig(0, T, v) − πf (v(0)) + πf (v(T )) ≤ |µ(f)|T + 2δ.(4.97)

By this relation and the definition of U4 (see (4.94), (4.95)) and (4.81)

|If (0, T, v) − Ig(0, T, v)| ≤ δ.

Together with (4.97), (4.81), and (4.86) this implies (4.85). It follows from (4.85) and
the definition of δ1 (see (4.84)) that (4.83) holds for all S ∈ [0, T − L]. Therefore in
case (i) the assertion of the lemma is valid.

Consider case (ii). Then

T > N0.(4.98)

It follows from (4.81), (4.82), (4.98), (4.91) and the definition ofN1 and U1 (see (4.89),
(4.90)) that there exists a sequence of numbers {Ti}q

i=0 such that

T0 = 0, Tq = T, Ti+1 − Ti ∈ [2L1, 2(2N1 − 6)L1],
i = 0, . . . , q − 1,

d(v(Ti), H(f)) ≤ δ, i = 0, . . . , q.(4.99)

For each a.c. function y: [0, T ] → Rn we define

σ(r1, r2, y) = Ig(r1, r2, y) − πf (y(r1)) + πf (y(r2))(4.100)



TURNPIKE PROPERTY OF OPTIMAL SOLUTIONS 1187

for each r1, r2 ∈ [0, T ] satisfying r1 < r2 and set

σ(r, r, y) = 0(4.101)

for each r ∈ [0, T ]. We set

`(g,K, 0) = 0.(4.102)

Let integers j, p ∈ [0, q], j < p. We will estimate

σ(Tj , Tp, v) − `(g,K, Tp − Tj).

By the definition of U2 (see 4.91)) and (4.99)–(4.102) there exists an a.c. function y:
[0, T ] → Rn such that

y(Ti) ∈ H(f), i = 0, j, p, q, σ(0, Tj , y) ≤ `(g,K, Tj) + 8−1δ,

σ(Tj , Tp, y) ≤ `(g,K, Tp − Tj) + 8−1δ, σ(Tp, Tq, y) ≤ `(g,K, Tq − Tp) + 8−1δ.

It follows from this relation, (4.82), and (4.99)–(4.102) that

δ ≥ σ(0, T, v) − σ(0, T, y) = [σ(0, Tj , v) − σ(0, Tj , y)] + [σ(Tj , Tp, v) − σ(Tj , Tp, y)]
+ [σ(Tp, Tq, v) − σ(Tp, Tq, y)]

≥ σ(Tj , Tp, v) − σ(Tj , Tp, y) − 4−1δ,

σ(Tj , Tp, v) ≤ δ + 4−1δ + `(g,K, Tp − Tj) + 8−1δ.(4.103)

We have shown that (4.103) holds for each integer j, p ∈ [0, q] satisfying j < p.
Let S ∈ [0, T −L]. By (4.99) and (4.88) there exist integers j, p ∈ [0, q] such that

j < p, S ∈ [Tj , Tp − L], Tp − Tj ∈ [2L1, 8N1L1].(4.104)

Evidently (4.103) holds. By (4.103), (4.100), (4.104), (4.92), and the definition of U3
(see (4.93))

Ig(Tj , Tp, v) − πf (v(Tj)) + πf (v(Tp)) ≤ µ(f)(Tp − Tj) + 2δ.

By this relation, the definition of U4 (see (4.94), (4.95)), (4.99), (4.104), and (4.92)

|If (Tj , Tp, v) − Ig(Tj , Tp, v)| ≤ δ,

If (Tj , Tp, v) − πf (v(Tj)) + πf (v(Tp)) ≤ µ(f)(Tp − Tj) + 3δ.

It follows from these relations, (4.99), (4.88), (4.86), and the definition of δ1 (see
(4.84)) that (4.83) holds. This completes the proof of the lemma.

LEMMA 4.10. Let ε ∈ (0, 1),K > Df + 4, and let L ≥ 1 be an integer such that
for each (f)-good function v: [0,∞) → Rn

dist(H(f), {v(t): t ∈ [T, T + L]}) ≤ 8−1ε

for all large T (the existence of L follows from Proposition 3.9).
Then there exists a neighborhood U of f in A such that for each g ∈ U and each

h ∈ H(f) there exists an a.c. function x: [0,∞) → Rn such that x(0) = h;

dist(H(f), {x(t): t ∈ [S, S + L]}) ≤ ε(4.105)
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for all S ∈ [0,∞);

Ig(0, T, x) − πf (x(0)) + πf (x(T )) ≤ `(g,K, T ) + ε(4.106)

for each T ≥ 1;

Ig(t1, t2, x) − πf (x(t1)) + πf (x(t2)) ≤ `(g,K, t2 − t1) + ε(4.107)

for each t1 ≥ 1, t2 ≥ t1 + 1.
Proof. By Lemma 4.9 there exist a neighborhood U1 of f in A and

δ1 ∈ (0, 8−1ε)(4.108)

such that for each g ∈ U1, each T ∈ [L,∞), and each a.c. function v: [0, T ] → Rn

which satisfies

d(v(0), H(f)) ≤ δ1, d(v(T ), H(f)) ≤ δ1,(4.109)
Ig(0, T, v) − πf (v(0)) + πf (v(T )) ≤ `(g,K, T ) + δ1

relation (4.105) holds for all S ∈ [0, T − L].
By Lemma 4.8 there exists a neighborhood U2 of f in A such that for each g ∈ U2,

each h ∈ H(f), and each T ≥ 1 there exists an a.c. function v: [0, T ] → Rn for which

v(0) = h, v(T ) ∈ H(f),
(4.110)

Ig(0, T, v) − πf (v(0)) + πf (v(T )) ≤ `(g,K, T ) + 8−1δ1.

Set

U = U1 ∩ U2.(4.111)

Assume that g ∈ U and h ∈ H(f). By the definition of U2 (see (4.110)) for each
N ≥ 1 there exists an a.c. function xN : [0, N ] → Rn such that (4.110) holds with
T = N , v = xN . It follows from the definition of U1 and δ1 (see (4.109)) that for each
integer N ≥ L and each number S ∈ [0, N − L]

dist(H(f), {xN (t): t ∈ [S, S + L]}) ≤ ε.(4.112)

Let N ≥ L be an integer. For each a.c. function y: [0, N ] → Rn and each number
r1, r2 ∈ [0, N ] satisfying r1 < r2 we define σ(r1, r2, y) by (4.100). Assume that an
integer q ∈ {2, 3, 4}, {ti}q

i=0 ⊂ [0, N ], t0 = 0, tq = N , ti+1 − ti ≥ 1, i = 0, . . . , q − 1.
Equation (4.112), which holds for each S ∈ [0, N − L], implies that

σ(ti, ti+1, xN ) ≥ `(g,K, ti+1 − ti), i = 0, . . . , q − 1.(4.113)

By the definition of U2 (see (4.110)) there exists an a.c. function y: [0, N ] → Rn for
which

y(ti) ∈ H(f), i = 0, . . . , q, σ(ti, ti+1, y) ≤ `(g,K, ti+1−ti)+8−1δ1, i = 0, . . . , q−1.

Together with (4.110), which holds with T = N , v = xN , and (4.113), this implies
that for each j ∈ [0, q − 1]

8−1δ1 ≥ σ(0, N, xN ) − σ(0, N, y) =
q−1∑
i=0

[σ(ti, ti+1, xN ) − σ(ti, ti+1, y)]

≥ σ(tj , tj+1, xN ) − `(g,K, tj+1 − tj) − 8−1δ1q.
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This implies that for each integer N ≥ L + 3 and each τ1 ∈ {0} ∪ [1, N − 2],
τ2 ∈ [τ1 + 1, N − 1]

Ig(τ1, τ2, xN ) − πf (xN (τ1)) + πf (xN (τ2)) ≤ `(g,K, τ2 − τ1) + 3 · 4−1δ1.(4.114)

By this relation, (4.112), which holds for each N ≥ L and each number S ∈
[0, N − L], and by Proposition 3.4 there exist a subsequence {xNp}∞

p=1 and an a.c.
function x: [0,∞) → Rn such that for each integer N ≥ 1

xNp
(t) → x(t) as p → ∞ uniformly in [0, N ](4.115)

and

Ig(T1, T2, x) ≤ lim inf
p→∞ Ig(T1, T2, xNp)(4.116)

for each T1 ∈ [1,∞) ∪ {0}, T2 ≥ T1 + 1.
Equation (4.110), which holds with T = N , v = xN , and (4.115), implies that

x(0) = h. Equations (4.112) and (4.115) imply (4.105) for all S ∈ [0,∞). Equations
(4.114)–(4.116) and (4.108) imply (4.106) for each T ≥ 1 and (4.107) for each t1 ≥ 1,
t2 ≥ t1 + 1. This completes the proof of the lemma.

LEMMA 4.11. sup{πf (h): h ∈ H(f)} = 0.
Proof. There exists h0 ∈ H(f) for which

πf (h0) ≥ πf (h), h ∈ H(f).(4.117)

Let v: [0,∞) → Rn be an a.c. function,

v(0) = h0.(4.118)

We will show that lim infT→∞[If (0, T, v) − Tµ(f)] ≥ 0.
By Proposition 1.1 we may assume that v is an (f)-good function. Then Ω(v) =

H(f). It follows from this relation, the representation formula (see (1.6)), (4.117),
and (4.118) that

lim inf
T→∞

[If (0, T, v) − Tµ(f)] ≥ lim inf
T→∞

[πf (v(0)) − πf (v(T ))] ≥ 0.

This implies that πf (h0) ≥ 0. By Proposition 3.11 there exists an (f)-good function
u ∈ A(f) satisfying u(0) = h0. It is easy to see that Ω(u) = H(f),

lim inf
T→∞

[If (0, T, u) − Tµ(f)] = lim inf
T→∞

[πf (u(0)) − πf (u(T ))] = 0.

This completes the proof of the lemma.
LEMMA 4.12. Let ε ∈ (0, 1). Then there exists a neighborhood U of f in A such

that |µ(f) − µ(g)| ≤ ε for each g ∈ U .
Proof. By Proposition 3.1 there exists a neighborhood U1 of f in A and M0 > 0

such that for each g ∈ U1 and each (g)-good function x: [0,∞) → Rn

lim sup
t→∞

|x(t)| < M0.(4.119)

Set

M1 = sup{|Uf (0, 1, x, y)|: x, y ∈ Rn, |x|, |y| ≤ 2M0 + 2}.(4.120)
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By Proposition 3.7 there is a neighborhood U2 of f in A such that for each g ∈ U2,
each T ≥ 0, and each a.c. function y: [T, T + 1] → Rn satisfying

inf{If (T, T + 1, y), Ig(T, T + 1, y)} ≤ 2M1 + 4

the following relation holds:

|If (T, T + 1, y) − Ig(T, T + 1, y)| ≤ 8−1ε.(4.121)

By Proposition 3.8 there exists a neighborhood U3 of f in A such that for each g ∈ U3
and each x, y ∈ Rn satisfying |y|, |x| ≤ 2M0 + 2 the following relation holds:

|Uf (0, 1, x, y) − Ug(0, 1, x, y)| ≤ 16−1ε.(4.122)

Set

U =
3⋂

i=1

Ui.(4.123)

Let g1, g2 ∈ U . Consider a (g1)-good function x: [0,∞) → Rn. We have

sup{|Ig1(0, T, x) − Tµ(g1)|: T ∈ (0,∞)} < ∞.(4.124)

By the definition of U1,M0 (see (4.119)) we may assume that

|x(t)| ≤ M0, t ∈ [0,∞).(4.125)

By Proposition 1.1 we may assume without loss of generality that

Ig1(T, T + 1, x) ≤ Ug1(0, 1, x(T ), x(T + 1)) + 4−1 for all T ∈ [0,∞).

It follows from this relation, (4.125), the definition of U3 (see (4.122)), and (4.120)
that

Ig1(T, T + 1, x) ≤ M1 + 2−1 for all T ∈ [0,∞).

By this relation and the definition of U2, for each T ∈ [0,∞),

|If (T, T + 1, x) − Ig1(T, T + 1, x)| ≤ 8−1ε,

If (T, T + 1, x) ≤ M1 + 1,

|If (T, T + 1, x) − Ig2(T, T + 1, x)| ≤ 8−1ε,

|Ig1(T, T + 1, x) − Ig2(T, T + 1, x)| ≤ 4−1ε.(4.126)

Equations (4.124) and (4.126) imply that

sup{|Ig2(0, N, x) −N4−1ε−Nµ(g1)|: N = 1, 2, . . . , } < ∞.

Together with Proposition 1.1, this implies that µ(g2) ≤ µ(g1)+4−1ε. This completes
the proof of the lemma.

LEMMA 4.13. Let K > Df + 1. Then there exists a neighborhood U of f in A
such that `(g,K, τ) ≤ τµ(g) for each g ∈ U and each τ > 0.



TURNPIKE PROPERTY OF OPTIMAL SOLUTIONS 1191

Proof. By Proposition 3.13 there exists a neighborhood U of f in A such that for
each g ∈ U and each (g)-good function x: [0,∞) → Rn

lim sup
t→∞

|x(t)| < K.

Let g ∈ U , τ > 0. Consider any (g)-good function x: [0,∞) → Rn. We may assume
that

|x(t)| ≤ K, t ∈ [0,∞).(4.127)

It follows from (4.127) that for each integer N ≥ 1

Ig(0, Nτ, x) − πf (x(0)) + πf (x(Nτ)) =
N−1∑
i=0

[Ig(iτ, (i+ 1)τ, x)

− πf (x(iτ)) + πf (x((i+ 1)τ))]

≥ N`(g,K, τ),

Ig(0, Nτ, x) ≥ N`(g,K, τ) + 2 sup{|πf (z)|: z ∈ Rn, |z| ≤ K}.

Since x is a (g)-good function, we have

sup{N`(g,K, τ) −Nτµ(g): N = 1, 2, . . .} < ∞.

This completes the proof of the lemma.
There exists

h∗ ∈ H(f) such that πf (h∗) ≥ πf (h), h ∈ H(f).(4.128)

LEMMA 4.14. Let ε ∈ (0, 1) and K > Df + 4. Then there exist a neighborhood U
of f in A and an integer L ≥ 1 such that for each g ∈ U and each h ∈ H(f) there
exists a (g)-good function v: [0,∞) → Rn such that

v(0) = h;(4.129)

dist(H(f), {v(t): t ∈ [T, T + L]}) ≤ ε(4.130)

for all T ∈ [0,∞);

Ig(T1, T2, v) − πf (v(T1)) + πf (v(T2)) ≤ `(g,K, T2 − T1) + ε(4.131)

for each T1 ∈ {0} ∪ [1,∞), T2 ≥ T1 + 1;

|Ig(0, T, v) − πf (v(0)) + πf (v(T )) − Tµ(g)| ≤ ε(4.132)

for each T ∈ [1,∞);

| lim inf
T→∞

[Ig(0, T, v) − Tµ(g)] − πf (h)| ≤ 2ε.(4.133)

Proof. By Lemma 4.6 and (4.128) there exists an (f)-good function v0: [0,∞) →
H(f) for which

v0 ∈ A(f), v0(0) = h∗.(4.134)
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By Proposition 3.10 there exists a number

δ ∈ (0, 2−8ε)(4.135)

such that for each y1, y2, z1, z2 ∈ Rn which satisfy |yi|, |zi| ≤ 2K+8, i = 1, 2, |yi−zi| ≤
4δ, i = 1, 2, the following relations hold:

(4.136)

|Uf (0, 1, y1, y2) − Uf (0, 1, z1, z2)| ≤ 2−8ε, |πf (yi) − πf (zi)| ≤ 2−8ε, i = 1, 2.

By Proposition 3.8 there exists a neighborhood U1 of f in A such that for each
g ∈ U1 and each z, y ∈ Rn which satisfy |y|, |z| ≤ 2K + 8 the following relation holds:

|Uf (0, 1, y, z) − Ug(0, 1, y, z)| ≤ 2−4δ.(4.137)

Since Ω(v0) = H(f), there exist integers N1, N2 ≥ 10 for which

dist(H(f), {v0(t): t ∈ [0, N1]}) ≤ 2−4δ,

dist(H(f), {v0(t): t ∈ [4N1, 4N1 +N2]}) ≤ 2−4δ.(4.138)

By Proposition 3.9 there exists an integer L ≥ 1 such that for each (f)-good function
v: [0,∞) → Rn

dist(H(f), {v(t): t ∈ [T, T + L]}) ≤ 2−4δ(4.139)

for all large T .
By Lemma 4.10 there exists a neighborhood U2 of f in A such that for each g ∈ U2

and each h ∈ H(f) there exists an a.c. function v: [0,∞) → Rn satisfying (4.129) and
such that for each T ∈ [0,∞)

dist(H(f), {v(t): t ∈ [T, T + L]}) ≤ δ,(4.140)

Ig(T1, T2, v) − πf (v(T1)) + πf (v(T2)) ≤ `(g,K, T2 − T1) + δ(4.141)

for each T1 ∈ {0} ∪ [1,∞), T2 ≥ T1 + 1.
By Lemma 4.13 there exists a neighborhood U3 of f in A such that for each g ∈ U3

and each T > 0

`(g,K, T ) ≤ Tµ(g).(4.142)

By Lemma 4.12 there exists a neighborhood U4 of f in A such that for each g ∈ U4

|µ(g) − µ(f)| ≤ 2−8δ(8N1 + 8N2)−1.(4.143)

By Proposition 3.7 there exists a neighborhood U5 of f in A such that for each
g ∈ U5, each T1 ≥ 0, T2 ∈ [T1 + 1, T1 + 8(N1 + N2)], and each a.c. function v:
[T1, T2] → Rn which satisfies

inf{If (T1, T2, v), Ig(T1, T2, v)}
≤ (8N1 + 8N2)|µ(f)| + 4 + 2 sup{|πf (z)|: z ∈ Rn, |z| ≤ 2K + 2}(4.144)
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the following relation holds:

|If (T1, T2, v) − Ig(T1, T2, v)| ≤ 2−8δ.(4.145)

Set

U =
5⋂

i=1

Ui.(4.146)

Let g ∈ U and h ∈ H(f). It follows from the definition of U2 that there exists an
a.c. function v: [0,∞) → Rn such that (4.129) holds, relation (4.140) holds for each
T ∈ [0,∞), and relation (4.141) holds for each T1 ∈ {0} ∪ [1,∞), T2 ≥ T1 + 1. By
(4.141), which holds for T1 = 0 and each T2 ≥ 1, and the definition of U3 (see (4.142))
v is a (g)-good function.

Fix a number T ≥ 1. We will establish (4.132). It follows from (4.140) and (4.138)
that there exist

t1 ∈ [0, N1], t2 ∈ [4N1, 4N1 +N2](4.147)

for which

|v(T ) − v0(t1)| ≤ δ + 8−1δ, |h− v0(t2)| ≤ δ + 8−1δ.(4.148)

By Proposition 3.5 there exists an a.c. function x: [0, T + t2 − t1] → Rn such that

x(t) = v(t), t ∈ [0, T ], x(t) = v0(t+ t1 − T ),
t ∈ [T + 1, T + t2 − t1 − 1],
x(T + t2 − t1) = h, Ig(S, S + 1, x) = Ug(0, 1, x(S), x(S + 1)),
S = T, T + t2 − t1 − 1.(4.149)

Equations (4.149) and (4.129) imply that

Ig(0, T + t2 − t1, x) ≥ µ(g)(T + t2 − t1).(4.150)

Equation (4.149) implies that

Ig(T, T + t2 − t1, x) − πf (x(T )) + πf (x(T + t2 − t1))
= Ug(0, 1, x(T ), x(T + 1)) − πf (x(T ))

+ πf (x(T + 1)) + Ig(t1 + 1, t2 − 1, v0)
− πf (v0(t1 + 1)) + πf (v0(t2 − 1))
+ Ug(0, 1, x(T + t2 − t1 − 1), x(T + t2 − t1))
− πf (x(T + t2 − t1 − 1)) + πf (x(T + t2 − t1)).(4.151)

Analogously to the proof of the case (i) in Lemma 4.7 (see (4.30) and (4.31)) we
can show by using (4.134), (4.147), and the definition of U5 (see (4.145)) that

Ig(t1+1, t2−1, v0)−πf (v0(t1+1))+πf (v0(t2−1)) ≤ 2−8δ+µ(f)(t2−t1−2).(4.152)

Set

S1 = T, S2 = T + t2 − t1 − 1, r1 = t1, r2 = t2 − 1.(4.153)
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It follows from this relation; (4.149); the definition of U1, δ (see (4.135)–(4.137));
(4.140), which holds for each T ≥ 0; and (4.134) that for i = 1, 2

Ug(0, 1, x(Si), x(Si + 1)) − πf (x(Si)) + πf (x(Si + 1))

≤ Uf (0, 1, x(Si), x(Si + 1)) − πf (x(Si)) + πf (x(Si + 1)) + 2−4δ

≤ Uf (0, 1, v0(ri), v0(ri + 1)) − πf (v0(ri)) + πf (v0(ri + 1)) + 2−6ε

≤ µ(f) + 2−6ε.

By this relation, (4.151)–(4.153), the definition of U4 (see (4.143)), and (4.147)

Ig(T, T + t2 − t1, x) − πf (x(T )) + πf (x(T + t2 − t1))
= 2µ(f) + 2−5ε+ µ(f)(t2 − t1 − 2) + 2−8ε

≤ 2−5ε+ µ(g)(t2 − t1) + 2−7ε.(4.154)

It follows from this relation, (4.150), (4.149), and (4.129) that

Ig(0, T, v) − πf (v(0)) + πf (v(T )) ≥ µ(g)T − 2−4ε.

This relation; (4.141), which holds with T1 = 0, T2 = T ; and (4.142) imply (4.132).
Therefore we have shown that (4.132) holds for each T ∈ [1,∞). Together with
(4.129), this implies that

ε ≥ | lim inf
T→∞

[Ig(0, T, v) − Tµ(g)] − lim inf
T→∞

[πf (h) − πf (v(T ))]|.(4.155)

By (4.140), which holds for each T ∈ [0,∞), and the definition of δ (see (4.135),
(4.136))

| lim inf
T→∞

[πf (h) − πf (v(T ))] − [πf (h) − sup{πf (z): z ∈ H(f)}]| ≤ 2−8ε.

Equation (4.133) now follows from this relation, (4.155), and Lemma 4.11. The lemma
is proven.

LEMMA 4.15. Let ε ∈ (0, 1). Then there exist δ ∈ (0, ε) and a neighborhood U of f
in A such that for each g ∈ U , each h ∈ H(f), and each y ∈ Rn satisfying |y− h| ≤ δ
the relation |πg(y) − πf (h)| ≤ ε holds.

Proof. Fix

K > Df + 4.(4.156)

By Proposition 3.10 there exists a number

δ ∈ (0, 8−1ε)(4.157)

such that for each x1, x2, y1, y2 ∈ Rn which satisfy

|xi|, |yi| ≤ K + 2, i = 1, 2, |xi − yi| ≤ 8δ, i = 1, 2,(4.158)

the following relations hold:

|Uf (0, 1, x1, x2)−Uf (0, 1, y1, y2)| ≤ 2−8ε, |πf (xi)−πf (yi)| ≤ 2−8ε, i = 1, 2.(4.159)

By Proposition 3.8 there exists a neighborhood U1 of f in A such that for each
g ∈ U1 and each y1, y2 ∈ Rn which satisfy |yi| ≤ 2K + 2, i = 1, 2,

|Uf (0, 1, y1, y2) − Ug(0, 1, y1, y2)| ≤ 2−8ε.(4.160)
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By Lemma 4.14 there exist a neighborhood U2 of f in A and an integer L ≥ 1
such that for each g ∈ U2 and each h ∈ H(f) there exists a (g)-good function v:
[0,∞) → Rn such that v(0) = h;

dist(H(f), {v(t): t ∈ [T, T + L]}) ≤ 2−6δ(4.161)

for all T ∈ [0,∞);

Ig(T1, T2, v) − πf (v(T1)) + πf (v(T2)) ≤ `(g,K, T2 − T1) + 2−6δ(4.162)

for each T1 ∈ {0} ∪ [1,∞), T2 ≥ T1 + 1;

|Ig(0, T, v) − πf (v(0)) + πf (v(T )) − Tµ(g)| ≤ 2−6δ(4.163)

for each T ∈ [1,∞);

| lim inf
T→∞

[Ig(0, T, v) − Tµ(g)] − πf (h)| ≤ 2−6δ.(4.164)

By Lemmas 4.13 and 4.12 there exist a neighborhood U3 of f in A such that for
each g ∈ U3 and each T ∈ (0,∞)

|µ(g) − µ(f)| ≤ 2−6ε, `(g,K, T ) ≤ Tµ(g).(4.165)

By Proposition 3.13 there exist an integer L1 ≥ 1 and a neighborhood U4 of f in
A such that for each g ∈ U4 and each (g)-good function v: [0,∞) → Rn

dist(H(f), {v(t): t ∈ [T, T + L1]}) ≤ 2−8δ(4.166)

for all large T . Set

U =
4⋂

i=1

Ui.(4.167)

Assume that

g ∈ U , h ∈ H(f), y ∈ Rn, |y − h| ≤ δ.(4.168)

By the definition of U2, L and (4.168) there exists a (g)-good function v: [0,∞) → Rn

such that v(0) = h, (4.161) holds for each T ≥ 0, (4.162) holds for each T1 ∈ {0} ∪
[1,∞) and each T2 ≥ T1 + 1, and (4.163) holds for each T ∈ [1,∞). Together with
(4.165) this implies that

0 ≤ Tµ(g) − `(g,K, T ) ≤ 2−5δ for all T ∈ [1,∞).(4.169)

Consider any (g)-good function u: [0,∞) → Rn for which u(0) = y. By the
definition of U4, L1, (4.168) holds with v = u for all large T . Together with (4.169)
and (4.168), this implies that

lim inf
T→∞

[Ig(0, T, u) − Tµ(g)] ≥ lim inf
T→∞

[Ig(0, T, u) − `(g,K, T )] − 2−5δ

≥ lim inf
T→∞

[πf (y) − πf (u(T ))] − 2−5δ.(4.170)
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It follows from (4.166), which holds with v = u for all large T ; (4.170); (4.168); the
definition of δ (see (4.157)–(4.159)); and Lemma 4.1 that

lim inf
T→∞

[πf (y) − πf (u(T ))] ≥ πf (h) − 2−8ε− lim sup
T→∞

πf (u(T ))

≥ πf (h) − 2−8ε− sup{πf (z): z ∈ H(f)} − 2−8ε

≥ πf (h) − 2−7ε.

Together with (4.170) and (4.157) this implies that

lim inf
T→∞

[Ig(0, T, u) − Tµ(g)] ≥ πf (h) − ε.

Therefore

πg(y) ≥ πf (h) − ε.(4.171)

We will show that πg(y) ≤ πf (h) + ε. By Lemma 4.6 there exists an (f)-good
function

v0: [0,∞) → H(f) such that v0 ∈ A(f), v0(0) = h.(4.172)

By the definition of U2 and L and (4.172) there exists a (g)-good function v1: [0,∞) →
Rn such that

v1(0) = v0(1),(4.173)

(4.161) holds with v = v1 for each T ∈ [0,∞); (4.162) holds with v = v1 for each
T1 ∈ {0} ∪ [1,∞), T2 ≥ T1 + 1; (4.163) holds with v = v1 for each T ∈ [1,∞); and
(4.164) holds with v = v1, h = v0(1).

By Proposition 3.5 there exists an a.c. function w: [0,∞) → Rn such that

(4.174)

w(0) = y, w(t) = v1(t− 1), t ∈ [1,∞), Ig(0, 1, w) = Ug(0, 1, w(0), w(1)).

Equations (4.173), (4.174), and (4.164), which holds with v = v1, h = v0(1), imply
that

πg(y) ≤ lim inf
T→∞

[Ig(0, T, w) − Tµ(g)] = Ug(0, 1, y, v0(1)) − µ(g)

+ lim inf
T→∞

[Ig(0, T, v1) − Tµ(g)]

= Ug(0, 1, y, v0(1)) − µ(g) + πf (v0(1)) + 2−6δ.(4.175)

It follows from (4.168), (4.156), (4.172), the definition of U1 (see (4.160)), and the
definition of δ (see (4.157)–(4.159)) that

Ug(0, 1, y, v0(1)) ≤ Ug(0, 1, y, v0(1)) + 2−8ε ≤ 2−8ε+ Uf (0, 1, v0(0), v0(1)) + 2−8ε

= 2−7ε+ πf (h) − πf (v0(1)) + µ(f).

Together with (4.175) and (4.165) this implies that πg(y) ≤ 2−7ε + 2−5ε + πf (h) ≤
πf (h) + ε. This completes the proof of the lemma.
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There exists hf ∈ H(f) such that

πf (hf ) ≥ πf (h), h ∈ H(f).(4.176)

LEMMA 4.16. Let ε ∈ (0, 1), K > Df + 4. Then there exist a neighborhood U of
f in A and integers Q1 ≥ 8, Q2 ≥ 8 +Q1 such that, for each g ∈ U and each x ∈ Rn

satisfying |x| ≤ K,

πg(x) = inf{lim inf
T→∞

[Ig(0, T, v) − Tµ(g)]: v: [0,∞) → Rn is an a.c. function,

v(0) = x, inf{|v(t) − hf |: t ∈ [Q1, Q2]} ≤ ε}.(4.177)

Proof. By Proposition 3.13 there exist an integer L ≥ 1 and a neighborhood U1
of f in A such that, for each g ∈ U1 and each (g)-good function v: [0,∞) → Rn,

dist(H(f), {v(t): t ∈ [T, T + L]}) ≤ 16−1ε(4.178)

for all large T .
By Lemma 4.4 and the definition of L there exist an integer N ≥ 10 and a

neighborhood U2 of f in A such that for each g ∈ U2, each T1 ≥ 0, T2 ≥ T1 + NL,
each a.c. function v: [T1, T2] → Rn which satisfies

|v(Ti)| ≤ K, i = 1, 2, Ig(T1, T2, v) ≤ Ug(T1, T2, v(T1), v(T2)) + 4,(4.179)

and each S ∈ [T1, T2 − NL] there exists an integer i0 ∈ [0, N − 8] such that, for all
T ∈ [S + i0L, S + (i0 + 7)L],

dist(H(f), {v(t): t ∈ [T, T + L]}) ≤ 2−1ε.(4.180)

Set

U = U1 ∩ U2, Q1 = NL, Q2 = 2NL.(4.181)

Assume that

g ∈ U , x ∈ Rn, |x| ≤ K.

Denote by E the set of all (g)-good functions v: [0,∞) → Rn for which

v(0) = x, lim inf
T→∞

[Ig(0, T, v) − Tµ(g)] ≤ πg(x) + 1.(4.182)

It is easy to see that

πg(x) = inf{lim inf
T→∞

[Ig(0, T, v) − Tµ(g)]: v ∈ E}.(4.183)

Consider any v ∈ E. By the definition of U1, L

|v(t)| ≤ K for all large t.(4.184)

Equation (4.182) implies that

Ig(0, T, v) ≤ Ug(0, T, v(0), v(T )) + 2, for all T ∈ [1,∞).
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It follows from this relation, (4.184), (4.181), and the definition of N,U2 (see (4.179),
(4.180)) that inf{|v(t) − hf |: t ∈ [Q1, Q2]} ≤ ε. This completes the proof of the
lemma.

Proof of Theorem 2.1. By Lemma 4.12 f is a continuity point of the mapping
g → µ(g), g ∈ A. We will show that f is a continuity point of the mapping g → πg,
g ∈ A.

Assume that ε ∈ (0, 1),K > Df + 4. By Lemma 4.15 there exist a neighborhood
U1 of f in A and

δ ∈ (0, 16−1ε)(4.185)

such that, for each g ∈ U1, each h ∈ H(f), and each y ∈ Rn satisfying |y − h| ≤ δ,
the following relation holds:

|πg(y) − πf (h)| ≤ 16−1ε.(4.186)

By Lemma 4.16 there exist a neighborhood U2 of f in A and integers Q1 ≥ 8,
Q2 ≥ 8 +Q1 such that for each g ∈ U2 and each x ∈ Rn satisfying |x| ≤ K, relation
(4.177) holds with ε = 8−1δ. By Lemma 4.12 and Proposition 3.8 there exists a
neighborhood U3 of f in A such that

|µ(g) − µ(f)| ≤ (16(Q1 +Q2))−1ε for each g ∈ U3,(4.187)

|Uf (0, τ, x, y) − Ug(0, τ, x, y)| ≤ 16−1ε(4.188)

for each g ∈ U3, each τ ∈ [1, 2Q], and each x, y ∈ Rn which satisfy |x|, |y| ≤ 2K + 2.
Set

U =
3⋂

i=1

Ui.

It follows from the definition of U2, Q1, Q2, and (4.177) that for each g ∈ U and each
x ∈ Rn satisfying |x| ≤ K

πg(x) = inf{Ug(0, T, x, y) − Tµ(g) + πg(y): t ∈ [Q1, Q2], y ∈ Rn, |y − hf | ≤ 8−1δ}.
By this relation, (4.187), (4.188), and the definition of U1, δ (see (4.185) and (4.186)),
for each g ∈ U and each x ∈ Rn satisfying |x| ≤ K,

|πg(x) − inf{Uf (0, T, x, y) − Tµ(f) + πf (hf ): T ∈ [Q1, Q2], y ∈ Rn, |y − hf | ≤ 8−1δ}|
≤ 16−1ε+ 8−1ε+ 16−1ε ≤ 4−1ε.

This implies that for each g1, g2 ∈ U and each x ∈ Rn satisfying |x| ≤ K

|πg1(x) − πg2(x)| ≤ 2−1ε.

Therefore f is a continuity point of the mapping g → πg, g ∈ A. The theorem is
proven.

Proof of Theorem 2.2. Let ε ∈ (0, 1). By Proposition 3.9 there exists an integer
L ≥ 1 such that for each (f)-good function v: [0,∞) → Rn

dist(H(f), {v(t): t ∈ [T, T + L]}) ≤ 2−8ε(4.189)
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for all large T . By Lemma 4.9 there exist a neighborhood U1 of f in A and

δ0 ∈ (0, 8−1ε)(4.190)

such that for each g ∈ U1, each T ∈ [L,∞), and each a.c. function v: [0, T ] → Rn

which satisfies

d(v(0), H(f)) ≤ δ0, d(v(T ), H(f)) ≤ δ0,(4.191)
Ig(0, T, v) − πf (v(0)) + πf (v(T )) ≤ `(g,Df + 4, T ) + δ0

the relation

dist(H(f), {v(t): t ∈ [S, S + L]}) ≤ ε(4.192)

holds for all S ∈ [0, T − L].
By Lemma 4.8 there exists a neighborhood U2 of f in A such that for each g ∈ U2,

each h ∈ H(f), and each T ≥ 1 there exists an a.c. function v: [0, T ] → Rn for which

(4.193)

v(0) = h, v(T ) ∈ H(f), Ig(0, T, v)−πf (v(0))+πf (v(T )) ≤ `(g,Df +4, T )+8−1δ0.

Clearly there exists

δ ∈ (0, 2−6δ0)(4.194)

such that, for each x, y ∈ Rn satisfying |x− y| ≤ δ and |x|, |y| ≤ Df + 4,

|πf (x) − πf (y)| ≤ 2−4δ0.(4.195)

By Theorem 2.1 there exists a neighborhood U3 of f in A such that for each
g ∈ U3 and each x ∈ Rn satisfying |x| ≤ Df + 4

|πf (x) − πg(x)| ≤ 2−4δ0.(4.196)

By Proposition 3.13 there exist an integer L0 ≥ 1 and a neighborhood U4 of f in A
such that for each g ∈ U4 and each (g)-good function v: [0,∞) → Rn

dist(H(f), {v(t): t ∈ [T, T + L0]}) ≤ δ(4.197)

for all large T .
We may assume that L0 ≥ L. Set

U =
4⋂

i=1

Ui.

Assume that

g ∈ U , v ∈ A(g), d(v(0), H(f)) ≤ δ.(4.198)

It follows from (4.198) and Proposition 3.14 that v is a (g)-good function. By the
definition of U4 and L0 there exists a number T0 > 0 such that (4.197) holds for each
T ≥ T0.
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Let T ≥ T0 + L. There exists

τ ∈ [T + L0, T + 2L0] such that |v(τ) − hf | ≤ δ(4.199)

(recall hf in (4.176)). We will show that

Ig(0, τ, v) − πf (v(0)) + πf (v(τ)) ≤ `(g,Df + 4, τ) + δ0.(4.200)

It follows from (4.198), (4.199), and the definition of U3 (see (4.196)) that

`(g,Df + 4, τ) ≤ Ig(0, τ, v) − πf (v(0)) + πf (v(τ))

≤ Ig(0, τ, v) − πg(v(0)) + πg(v(τ)) + 2−3δ0

= τµ(g) + 2−3δ0.(4.201)

By the definition of U2 (see (4.193)) there exists an a.c. function u: [0, τ ] → Rn such
that

u(0), u(τ) ∈ H(f), Ig(0, τ, u) − πf (u(0)) + πf (u(τ)) ≤ `(g,Df + 4, τ) + 8−1δ0.

It follows from these relations, the definition of U3 (see (4.196)), and the representation
formula (1.6) that

`(g,Df + 4, τ) + 8−1δ0 ≥ Ig(0, τ, u) − πg(u(0)) + πg(u(τ)) − 2−3δ0 ≥ τµ(g) − 2−3δ0.

Together with (4.201) this implies (4.200). By (4.198)–(4.200) and the definition of
U1, (4.192) holds for all S ∈ [0, τ − L]. This completes the proof of the theorem.

Proof of Theorem 2.3. Let ε ∈ (0, 1) and K > Df + 4. By Theorem 2.2 there
exist δ ∈ (0, ε), L > 0, and a neighborhood U1 of f in A such that, for each g ∈ U1,
each v ∈ A(g) satisfying d(v(0), H(f)) ≤ δ, and each T ≥ 0,

dist(H(f), {v(t): t ∈ [T, T + L]}) ≤ ε.(4.202)

By Proposition 3.13 there exist an integer L0 ≥ 1 and a neighborhood U2 of f in A
such that for each g ∈ U2 and each (g)-good function v: [0,∞) → Rn

dist(H(f), {v(t): t ∈ [T, T + L0]}) ≤ 8−1δ(4.203)

for all large T .
By Lemma 4.4 there exists an integer N ≥ 10 and a neighborhood U3 of f in

A such that, for each g ∈ U3; each T1 ≥ 0, T2 ≥ T1 + NL0; each a.c. function
v: [T1, T2] → Rn which satisfies

|v(Ti)| ≤ K + 8, i = 1, 2, Ig(T1, T2, v) ≤ Ug(T1, T2, v(T1), v(T2)) + 4;(4.204)

and each S ∈ [T1, T2 −NL0], there exists an integer i0 ∈ [0, N − 8] such that for all
T ∈ [S + i0L0, S + (i0 + 7)L0]

dist(H(f), {v(t): t ∈ [T, T + L0]}) ≤ δ.(4.205)

Set

U =
3⋂

i=1

Ui, Q = NL0.(4.206)
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Assume that

g ∈ U , v ∈ A(g), |v(0)| ≤ K.(4.207)

Equation (4.207) and Proposition 3.14 imply that v is a (g)-good function. Therefore
by the definition of U2

|v(t)| ≤ K + 1 for all large t.

It follows from this relation, (4.207), (4.206), and the definition of U3, N that there
exists τ ∈ [0, Q] for which d(v(τ), H(f)) ≤ δ. By this relation, (4.207), and the
definition of U1, δ, L, relation (4.202) holds for each T ≥ τ . This completes the proof
of the theorem.

5. Proof of Theorem 2.4.
LEMMA 5.1. Assume that f ∈ A, x: [0,∞) → Rn is an (f)-good function and

h ∈ Ω(x). Then there exists an a.c. function v: R1 → Ω(x) such that v ∈ B(f),
v(0) = h.

Proof. By Proposition 3.1 the function x is bounded. It is easy to see that the
following property holds:

(a) for each ε > 0 there exists T (ε) > 0 such that for each T1 ≥ T (ε), T2 > T1

If (T1, T2, x) − πf (x(T1)) + πf (x(T2)) − (T2 − T1)µ(f) ≤ ε.

There exists a sequence of numbers {Tp}∞
p=0 such that

Tp+1 ≥ Tp + 1, p = 0, 1, . . . , x(Tp) → h as p → ∞.(5.1)

For every integer p ≥ 1 we set

vp(t) = x(t+ Tp), t ∈ [−Tp,∞).(5.2)

By Proposition 3.4, the boundness of x, (5.1), and (5.2) there exists a subsequence
{vpj

}∞
j=1 and an a.c. function v: R1 → Rn such that for each integer N ≥ 1

vpj
(t) → v(t) as j → ∞ uniformly in [−N,N ],

If (−N,N, v) ≤ lim inf
j→∞

If (−N,N, vpj
).(5.3)

Equations (5.1)–(5.3) imply that v(0) = h and v(t) ∈ Ω(x), t ∈ R1. It follows from
property (a), (5.3), and (5.2) that v ∈ B(f). The lemma is proven.

Propositions 3.1, 3.2, and 3.14 imply the following result.
LEMMA 5.2. Assume that f ∈ A and v ∈ B(f). Then sup{|v(t)|: t ∈ R1} < ∞.
Assertion (1) of Theorem 2.4 follows from Lemma 5.1. Assertion (2) of Theorem

2.4 follows from Lemma 5.2 and Theorem 2.3. Assertion (3) of Theorem 2.4 follows
from assertion (2) and Theorem 2.4.

Lemma 5.1 implies the following result.
PROPOSITION 5.1. Assume that f ∈ A and there exists a compact set H(f) ⊂ Rn

such that for each v ∈ B(f) the following relations hold:

v(t) ∈ H(f), t ∈ R1,

{y ∈ Rn: there exists a sequence {ti}∞
i=0 ⊂ [0,∞) for which

ti → ∞, v(ti) → y as i → ∞} = H(f).

Then Ω(u) = H(f) for each (f)-good function u: [0,∞) → Rn.
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6. Examples. Fix a constant a > 0 and set ψ(t) = t(t ∈ [0,∞)). Consider the
complete metric space A of integrands f : Rn ×Rn → R1 defined in the introduction.

Example 1. Consider an integrand f(x, u) = |x|2 + |u|2, x, u ∈ Rn. It is easy to
see that f ∈ A. We can show (see [25, sect. 14]) that Ω(v) = {0} for every (f)-good
function v: [0,∞) → Rn.

Example 2. Fix a number q > 0, and consider an integrand g(x, u) = q|x|2|x−e|2
+ |u|2(x, u ∈ Rn), where e = (1, 1, . . . , 1) ∈ Rn. It is easy to see that g ∈ A if the
constant a is large enough. Clearly the functions v1(t) = 0 and v2(t) = e (t ∈ [0,∞))
are (g)-good and g does not have property B.

Acknowledgment. The author thanks A. Leizarowitz and M. Marcus for helpful
discussions.
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Abstract. A principal technical result of this paper is that the one-dimensional heat equation
with boundary control is exactly null-controllable with control restricted to an arbitrary set E ⊂ [0, T ]
of positive measure. A general abstract argument is presented to show that, in contrast to previous
results, this implies the bang-bang property for time-optimal controls—i.e., such a control can take
only extreme values of (the hull of) the constraint set—without imposing any condition regarding
the target state.

Key words. partial differential equation, bang-bang control, nullcontrol, reachability
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1. Introduction. Our principal concern will be with the bang-bang property
for time-optimal boundary control of the one-dimensional heat equation

ut = uxx (0 < t < T, 0 < x < 1),
u(·, 0) = ϕ = control, u(·, 1) = 0,
u(0, ·) = ω0 ∈ X0 = L2(0, 1).

(1.1)

(Here we will assume a pointwise control constraint and then will say that ϕ has
the bang-bang property if it takes only extremal values.) We note at this point (cf.
Remark 4.1) that the previously known results [12], [8] on the bang-bang property for
time-optimal control of (1.1) are incomplete in that their hypotheses impose conditions
on the target state which turn out to be extraneous for the bang-bang property per
se; our focal goal will be the removal of such restrictions.

To this end, we will introduce an abstract formulation of the problem, following
[14] in spirit if not quite in detail, and will prove a general abstract result (Theorem 2)
which, in the context of (1.1), reduces the problem to a question of independent inter-
est: exact nullcontrollability for (1.1) when ϕ is restricted to L∞(E) for an arbitrary
set E of positive measure in [0, T ]. The argument for the latter (Theorem 5) is based
on a recent result in nonharmonic analysis by Borwein and Erdélyi [2], [3].

We begin with the observation that there are really two quite distinct versions of
the time-optimality problem in control theory:

• immediately initiate control so as to reach the goal as early as possible;
• reach the goal by a fixed time T while delaying initiation of active control to

as late as possible.
The first of these is usually taken as the standard statement of the problem, but,
much as in [14], it will be more convenient here to use the second version for our
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abstract formulation. We do observe that the two versions are clearly equivalent
when the problem is autonomous (with suitable initial conditions). It is also worth
emphasizing that (still when the problem is autonomous) the construction used in the
proof of the abstract bang-bang principle, Theorem 2 below, could be used equally
well directly for a proof of the bang-bang property in the context of version 1, with
no restriction on the initial data.

In the context of version 2, we adjoin to (1.1) the target condition that the profile
at time T belongs to a prescribed set

u(T, ·) ∈ ST(1.2)

and formulate the time-optimality problem as finding a pair (ϕ, τ) which maximizes
τ subject to the admissibility constraints that, for a given set-valued function A :
[0, T ] → 2R, one has

(i) ϕ(t) = ϕ∗(t) = given for 0 ≤ t < τ,

(ii) ϕ(t) ∈ A(t) for τ ≤ t ≤ T,

(iii) the solution u of (1.1) using this control ϕ satisfies (1.2).

(1.3)

We interpret ϕ∗ as a trivial or passive control (e.g., ϕ∗ ≡ 0), so τ represents the
time at which we initiate active control and maximizing τ is just minimizing the
duration (T − τ) of the actively controlled interval. (If ω0 = 0, ϕ∗ ≡ 0, then (1.1)
gives u(τ, ·) = 0. So, if A(t) were also independent of t, we could translate [τ, T ] to
[0, T − τ ] to get the usual earliest arrival (version 1) for this autonomous problem.)
Concerning the set function A(·), we assume that

a(t), b(t) ∈ A(t) and a(·), b(·) ∈ L∞(0, T )
for a(t) := min{A(t)}, b(t) := max{A(t)}.(1.4)

We emphasize that to obtain the bang-bang property we need impose no hypothe-
ses whatsoever on the data {ω0, T, ST , ϕ∗} beyond the implicit assumption that such
a time-optimal control does exist. We do note that the usual argument gives existence
of an optimizer in the setting above with ST = {ωT }, provided only that the data
are compatible (i.e., there is some control satisfying (1.3)), and this reachability is the
only restriction to be imposed regarding the target state ωT in XT = L2(0, 1).

For (1.1), (1.2) with ST = {ωT }, (1.3ii) with (1.4), we will show that pointwise
almost everywhere (a.e.) on [τ, T ], the values of any time-optimal control ϕ must be
either ϕ(t) = a(t) or ϕ(t) = b(t), with a, b as in (1.4) and that this time-optimal
control ϕ is unique. Note that in this situation the control ϕ is a scalar function of t
and this strongly affects the ease with which we can use Theorems 1 and 2 to obtain
such a bang-bang property. We will, however, comment in section 4 on the related
situation in which one has control at both ends of the interval so

u
∣∣∣
x=0

= ϕ1, u
∣∣∣
x=1

= ϕ2,(1.5)

and the control ϕ := (ϕ1, ϕ2) is then an R2-valued function on [0, T ].

2. Evolutionary abstract control systems. We begin by recalling from [14],
in slightly modified form, the notion of an evolutionary abstract control system. Con-
sider I0 := [0, T ] as an order category; i.e., writing I = I ′I ′′ for I = [r, t] means
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I ′′ = [r, s], I ′ = [s, t] with 0 ≤ r ≤ s ≤ t ≤ T . Let (X ,E) be a functor from I0 to the
category of Banach spaces and continuous linear maps so I = [r, t] gives EI : Xr → Xt

with I = I ′I ′′ implying EI = EI′ ◦ EI′′ ; i.e.,

Er,t = Es,tEr,s : Xr → Xs → Xt for r ≤ s ≤ t.(2.1)

In general, E·· represents uncontrolled system evolution for a possibly nonautonomous
well-posed problem. Next we associate control spaces UI = Ur,t with the intervals
I = [r, t] ⊂ I0. We always think of each UI as a space of functions defined on I, e.g.,
UI = L2(I), so when I = I ′I ′′ we may decompose ϕ ∈ UI into a pair of functions
(ϕ′, ϕ′′) defined on I ′ and I ′′, respectively, by restriction maps Ω′, Ω′′. We then ask
that ϕ′ = Ω′ϕ ∈ UI′ and ϕ′′ = Ω′′ϕ ∈ UI′′ . The control maps Cr,t : Ur,t → Xt must
satisfy the obvious identity

Cr,t = Cs,tΩ
′
s + Es,tCr,sΩ

′′
s(2.2)

for any such decomposition (any choice of s ∈ [r, t]).
Given any Banach space V with an injection IV : V → UI — so we may think of

V as consisting of functions with support in (some specified subset of) I = [t, T ] —
we say that V has the nullcontrollability property and write V ∈ NCt,T if there is a
nullcontrol v ∈ V for each initial state in Xt; i.e., if

for each x = xt ∈ Xt there is some v ∈ V such that
Et,Tx+ CVv = 0 (CV := Ct,T IV) .

(2.3)

(Clearly, if V ∈ NCt,T for some V ↪→ UI , then UI ∈ NCt,T . We recall Theorem 1 of
[14]: If Ut,T ∈ NCt,T , then Ks = K0

t for all s ≤ t, where Ks := R(Es,T )+R(Cs,T ) and
K0

s := R(Cs,T ).) Slightly more delicate than (2.3), but useful later, is the restricted
nullcontrollability property : we write V ∈ NC r

t,T if

for each x ∈ R(C0,t) ⊂ Xt there is some v ∈ V such that
Et,Tx+ CVv = 0;

(2.4)

i.e., we are restricting initial states in (2.3) to R(C0,t).
We will need the following result, which we present in full although the argument

is already known in somewhat different contexts.
THEOREM 1. If V ∈ NCt,T (respectively, V ∈ NC r

t,T ), then there is a constant KV
such that v in (2.3) (respectively, (2.4)) may be chosen with ‖v‖V ≤ K‖x‖Xt for any
K > KV . Dually, if V ∈ NCt,T , one has

‖E∗
t,T ξ‖X ∗

t
≤ KV‖C∗

V ξ‖(2.5)

for ξ ∈ X ∗
T with the V∗-norm on the right. Conversely, if V contains a dual space

(W∗ ⊂ V) and C∗
V ξ ∈ W for a dense set D of ξ ∈ X ∗

T , then (2.5), using the W-norm
on the right for ξ ∈ D, implies that V ∈ NCt,T .

Proof. For brevity we now simply write E for Et,T and C for CV := Ct,T IV .
Clearly, V ∈ NCt,T is equivalent to range containment:

R(E) ⊂ R(C) =: K0(V) ⊂ XT .

Set V̂ := V/N (C) with an injective induced map Ĉ : V̂ → XT (i.e., Ĉv = CV v̂ for
v ∈ v̂ ∈ V̂), and let

Γ := {(x, v̂) : Ex+ Ĉv̂ = 0} ⊂ Xt × V̂.
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Note that Γ is a subspace and is the graph of a linear map L = LV : Xt → V̂ which is
well defined on all of Xt by (2.3) and the injectivity of Ĉ. Since Γ is closed (as E, Ĉ
are continuous), it follows that LV is bounded, by the closed graph theorem, and the
bound on ‖v‖ with KV = ‖L‖ follows from the definition of the quotient space norm
on V̂. Simply replacing Xt by R(C0,t) in the argument above now gives the bound
when V ∈ NC r

t,T . To obtain (2.5) when V ∈ NCt,T , we note that the construction of L
gives

E = −ĈL so, dually, E∗ = −L∗Ĉ∗

with L∗ : V̂∗ → Xt
∗. We then have ‖L∗‖ = ‖L‖ =: KV and, since 〈Ĉ∗ξ, v̂〉 = 〈C∗ξ, v〉

for v ∈ v̂ ∈ V̂ and ξ ∈ XT
∗, this gives (2.5).

For the converse, consider any η ∈ C∗D, i.e., η = C∗ ξ for some ξ ∈ D ⊂ X ∗
T ,

we can set ζ := −E∗ξ, noting that if ξ is nonunique (so also η = Cξ′ with ξ′ ∈ D),
then (2.5) ensures that ‖E∗(ξ − ξ′)‖ = 0, so ζ is well defined. Now, arbitrarily fixing
x = xt ∈ Xt , we consider

Φ : η 7−→ 〈x, ζ〉 = −〈x,E∗ξ〉

for such η. It is clear that the functional Φ is linear on C∗D ⊂ W and that

|〈Φ, η〉| = |〈x, ζ〉| ≤ ‖x‖‖ζ‖ ≤ ‖x‖K‖η‖.

Thus, Φ extends by continuity to the W-closure C∗D and then, by the Hahn–Banach
theorem, to a linear functional v on W (i.e., v ∈ W∗ ⊂ V) without increase of norm,
so ‖v‖ ≤ KV‖x‖. Since

〈Cv, ξ〉 = 〈v,C∗ξ〉 = −〈x,E∗ξ〉 = 〈−Ex, ξ〉

for ξ dense in XT
∗, it follows that Ex+ Cv = 0 and v ∈ V is a nullcontrol for x. As

x ∈ Xt was arbitrary, we have (2.3), so V ∈ NCt,T as asserted.

3. Time-optimality. We now turn to formulation of the abstract time-optimality
problem. It will be convenient here to abuse notation slightly by thinking of U = U0,T

as the common domain of the control maps Cs,t : U → Xt , omitting explicit indica-
tion of the Ω operators; note that we think of Cs,tϕ as depending only on the part
of ϕ between s and t, so N (Cs,t) ⊃ N (Ω[s,t]), where, in the obvious notation,

Ω[s,t] := Ω′
s,[0,t]Ω

′′
t,[0,T ] = Ω′′

t,[s,T ]Ω
′
s,[0,T ].

Fixing the passive control ϕ∗ ∈ U , a basic assumption is that for each s ∈ (0, T ) we
have

ϕ ∈ U ⇒ Psϕ :=
{
ϕ∗ on [0, s)
ϕ on [s, T ] ∈ U(3.1)

or, more formally, Ω′
sPsϕ = Ω′

sϕ and Ω′′
sPsϕ = Ω′′

sϕ∗ ; note that Ps will not gener-
ally be linear unless ϕ∗ ≡ 0. We impose the continuity condition that

Cr,tPsϕ → Cr,tϕ as s ↘ r(3.2)

for 0 ≤ r < t ≤ T , which just says that changing ϕ on the vanishingly small interval
[r, s] has vanishingly small control effect at any t > r.
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The data for the time-optimality problem will be

x0 ∈ X0, ϕ∗ ∈ U , A ⊂ U , ST ⊂ XT ,(3.3)

where x0 is an initial state, ϕ∗ is the passive control, A is a constraint set, and ST is the
target set. We will require, to simplify our statement rather than to restrict A, that
ϕ ∈ A implies Psϕ ∈ A for each s. The set of admissible pairs P = P(A,ST ;x0, ϕ∗)
is then defined as

P := {(ϕ, τ) ∈ A × [0, T ] : ϕ = Pτϕ, [E0,Tx0 + C0,Tϕ] ∈ ST } ,(3.4)

and we say that a control ϕ̄ or, more precisely, an admissible pair (ϕ̄, τ̄) ∈ P is
time-optimal (with respect to these data) if it maximizes τ over (ϕ, τ) ∈ P.

We will say that ϕ ∈ U is slack with respect to (A,V) (for a Banach space V with
IV : V → U) if there is some ε > 0 such that

[ϕ+ IVv] ∈ A for all v ∈ V with ‖v‖V < ε.(3.5)

At this point we may state and prove our abstract bang-bang principle.
THEOREM 2. Suppose that ϕ ∈ U is slack with respect to (A,V) for some V ∈

NC r
t,T . Then (ϕ, τ) with τ < t cannot be time-optimal with respect to any data set

(A,ST ;x0, ϕ∗) involving this A.
Proof. Note that, while we have written simply IV : V → U , the condition

V ∈ NC r
t,T includes the implication that R(IV) is actually in Ut,T , so for s ≤ t one has

Psϕs = ϕs for ϕs := Ps(ϕ+ IVv) (any v ∈ V).(3.6)

Now let Kr be as KV in Theorem 1 applied to this V ∈ NC r
t,T and let ε > 0 be as in

(3.5). In view of (3.2) with r = τ < t, we may choose s =: τ̂ close enough to τ (with
τ < τ̂ < t) that

x̃ := Cτ,t [Pτ̂ϕ − ϕ] gives ‖x̃‖ < ε/Kr,(3.7)

noting that x̃ ∈ R(C0,t) ⊂ Xt. By Theorem 1 we may then choose v ∈ V such that

Et,T x̃+ Ct,T v = 0 and ‖v‖V < ε.(3.8)

Now set

ϕ̂ := Pτ̂ (ϕ+ IVv) ; i.e., ϕ̂ =

ϕ∗ on [0, τ),
Pτ̂ϕ on [τ, t),
ϕ+ IVv on [t, T ].

(3.9)

Since ‖v‖V < ε, we have [ϕ+ IVv] ∈ A by (3.5) and also ϕ̂ ∈ A; we have Pτ̂ ϕ̂ = ϕ̂ by
(3.6). Using (2.2) twice (splitting [0, T ] at τ and at t), we have

C0,Tϕ = Eτ,T C0,τϕ∗ + Cτ,Tϕ

as ϕ = ϕ∗ on [0, τ)
= Eτ,T C0,τϕ∗ + Et,T Cτ,tϕ+ Ct,Tϕ,

(3.10)

and, similarly, we have

C0,T ϕ̂ = Eτ,T C0,τϕ∗ + Et,T Cτ,tPτ̂ϕ+ Ct,T [ϕ+ IVv](3.11)
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using (3.9). Comparing (3.11) with (3.10) gives (with CV := Ct,T IV as before)

C0,T ϕ̂− C0,Tϕ = Et,T Cτ,t [Pτ̂ϕ− ϕ] + CVv
= Et,T x̃+ CVv = 0

(3.12)

by (3.7) and (3.8).
It follows that (ϕ̂, τ̂) ∈ P = P(A,ST ;x0, ϕ∗) for any data, which gives (ϕ, τ) ∈ P:

if E0,Tx0 + C0,Tϕ =: xT ∈ ST , then also E0,Tx0 + C0,T ϕ̂ = xT for the very same
xT ∈ ST . Since τ̂ > τ , it would then be impossible for τ to be maximal and ϕ could
not be a time-optimal control.

To see why we refer to Theorem 2 as an abstract bang-bang principle, we note
our motivating consequence. Observe, first, that in considering scalar controls with a
uniform pointwise bound as in (1.4), there is some arbitrariness about the specification
of the control space U . We will, somewhat arbitrarily, take U := Lp(0, T ) for some
finite p > 1 (so, in particular, U is reflexive) and assume that each of the operators
Es,t, Cs,t is continuous for this choice of U .

THEOREM 3. Consider a time-optimality problem, as above, with ST closed and
convex in XT , scalar control (say, U = Lp(0, T ) for some p ≥ 1), and A of the form

A := {ϕ ∈ U : ϕ(t) ∈ A(t) a.e. on [0, T ]}(3.13)

with A(·) as in (1.4) and ϕ∗ ∈ A. Assume

for each t ∈ (0, T ), each set E ⊂ (t, T ) of positive measure,
one has L∞(E) ∈ NC r

t,T .
(3.14)

Then there is a unique time-optimal control ϕ̄, and this necessarily has the bang-bang
property:

[ϕ(t) = a(t) or ϕ(t) = b(t)] a.e. on [τ, T ],(3.15)

with a, b as in (1.4).
The key to this is that for (3.15) to fail one must have

a(t) + ε ≤ ϕ(t) ≤ b(t) − ε for t ∈ E(3.16)

for some ε > 0 and some set E of positive measure in [τ, T ], perhaps restricting to an
intersection. We may assume that this set E is actually contained in some [t̄, T ] with
t̄ > τ . We do note that the very existence of a time-optimal control is not immediately
clear at this point, since we have not even assumed that A(t) should be a closed set.

Proof. We first consider the situation with A replaced by A∗, where

A∗ := {ϕ ∈ U : ϕ(t) ∈ [a(t), b(t)] =: A∗(t) a.e. on [0, T ]}.

As A∗ is bounded, closed, and convex (hence weakly compact in U = Lp(0, T ) ), the
usual argument gives existence of a time-optimal control: let (ϕν) be an optimizing
sequence so we may assume ϕν ⇀ ϕ̄ with τν ↗ τ . Noting that C0,Tϕν ⇀ C0,T ϕ̄, we
must have E0,Tx0 + C0,T ϕ̄ ∈ ST , whence (ϕ̄, τ) is admissible and so is time-optimal.
By (3.14) and Theorem 2, we see that ϕ̄ cannot be slack with respect to (A∗,V) for
any V = L∞(E) with E of positive measure in (t̄, T ), t̄ > τ . On the other hand,
we have already noted that a failure of (3.15) would give (3.16), which would imply
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such slackness and give a contradiction. Hence, ϕ̄ must satisfy (3.15). So by (1.4)
we have ϕ̄ ∈ A, and this pair (ϕ̄, τ) is also admissible for the original problem. Since
the problem using A∗ is a relaxed version of that, (ϕ̄, τ) must be time-optimal for the
original problem.

To see uniqueness, note that if (ϕ̂, τ) were a different time-optimal pair for the
original problem (necessarily with the same τ), then we could set ϕ̃ := (ϕ̄ + ϕ̂)/2.
Note also that (ϕ̃, τ) is an admissible pair for the problem using A∗, since the system
is linear and A∗,ST are convex. Whether or not ϕ̂ satisfies (3.15), it is clear that
(3.15) cannot hold for ϕ̃ on the (assumed nonnull) set, where ϕ̂ 6= ϕ̄. As above,
we then see that (ϕ̃, τ) cannot be time-optimal for that problem, contradicting the
assumed maximality of τ . Thus, ϕ̄ is the unique optimal control for the original
problem.

For the finite-dimensional case (state space Rn) we see that the hypotheses above
are easily established for control systems governed by

ẋ = Ax+ ϕb x(0) = x0.(3.17)

COROLLARY 4. The results of Theorem 3 apply to finite-dimensional time-
optimality problems of the indicated form for (3.17), provided that A(·) ,b(·) are real-
analytic on [0, T ] when this is nonautonomous.

Proof. We need only verify the hypothesis (3.14), and for this it is convenient
to take Xt := R(C0,t) for t ∈ [0, T ], so, in particular, C = C0,T is surjective to XT .
The choice of control space U is not very significant, and we take, e.g., U := L2(0, T ).
One easily verifies that the adjoint map C∗ is given for η ∈ X ∗

T (⊂ Rn) by C∗ : η 7→
〈b, y〉 ∈ L2(0, T ), where

−ẏ = A∗y, y(T ) = η.(3.18)

The range R(C∗) = {〈b, y〉} is then finite dimensional: indeed, as C is surjective, it
follows that C∗ is injective and dimR(C∗) = dimX ∗

T = dimXT ≤ n. The analyticity
assumptions on A(·), b(·) ensure that y and 〈b, y〉 are real analytic on [0, T ]. Hence, if
〈b, y〉 = 0 on any set E of positive measure, one must have 〈b, y〉 ≡ 0 on [0, T ]. Thus,
the map LE : η 7→ 〈b, y〉|E : X ∗

T → R(C) → Ŵ (where Ŵ consists of the restrictions to
E of functions in R(C∗)) is injective and so invertible. Since Ŵ is finite dimensional,
[LE ]−1 is continuous, with Ŵ normed as a subspace of W := L1(E) (so V := L∞(0, T )
is just W∗), and (2.5) holds, giving (3.14) by Theorem 1. The conclusion is now
immediate from Theorem 3.

This argument seems new, even for the finite-dimensional case; we do note that
it does not seem to be usefully related to the usual characterization of time-optimal
controls as in the Pontryagin maximum principle.

4. Boundary control of the heat equation. In this section we return to
consideration of (1.1) as an example of the abstract formulation of sections 2 and 3.
Our principal new result is exact boundary nullcontrollability from measurable sets—
more precisely, that L∞(E) ∈ NCt,T for any set E of positive measure in [t, T ]. This is
just (3.14)—one notes that NCt,T and NC r

t,T are equivalent here—so Theorem 3 then
gives the desired bang-bang property for time-optimal boundary control of (1.1).

We will take Xt = X := L2(0, 1) for each t ∈ [0, T ] and will, e.g., take U =
L2(0, T ), so UI = L2(I) with the obvious interpretations of the Ω operators by
restriction. For this autonomous situation one has Er,t = S(t− r), where S(·) is the
semigroup on L2(0, 1) corresponding to (1.1) with homogeneous boundary conditions.
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Then Cs,t is the control effect (so Cs,t : ϕ 7→ u(t, ·), where u satisfies the first two
lines of (1.1) with u(s, ·) = 0), and it is standard (cf., e.g., [10]) that each Cs,t is
continuous, indeed compact, from L2(s, t) to X = L2(0, 1). (We note in passing that
there is a well-known explicit representation for this control mapping associated with
(1.1), using convolution with a fundamental solution, expressible in terms of a theta
function; cf., e.g., [5, p. 171].) The identities (2.1), (2.2) are clear in this context. For
this U there is no difficulty in defining Ps, and the continuity condition (3.2) here
follows a fortiori from the stronger fact that Ps → Pr (strongly on U = L2(0, T )) as
s → r.

To compute the adjoint maps E∗̄
t,T , C

∗̄
t,T we consider u satisfying (1.1) for t̄ <

t ≤ T with u(t̄, ·) ≡ 0 and y satisfying

−yt = yxx (0 < t < T, 0 < x < 1),
y(T, ·) = η ∈ X ∗

T = L2(0, 1),
y(·, 0) ≡ 0 ≡ y(·, 1).

(4.1)

A simple computation involving (1.1) with u(t̄, ·) = 0, (4.1), and an integration by
parts gives the identity ∫ 1

0
uy dx

∣∣∣∣
t=T

=
∫ T

t̄

ϕ [yx(·, 0)] dt,

and, since u(T, ·) = Ct̄,Tϕ here, this gives

C∗̄
t,T : X ∗

T → L2(t̄, T ) ⊂ L2(0, T )

: η 7−→ ψ := yx(·, 0)
∣∣∣
[t̄,T ]

.
(4.2)

Even more simply, (4.1) gives

E∗̄
t,T : X ∗

T → X ∗̄
t = L2(0, 1) : η 7−→ y(t̄, ·).(4.3)

It will be necessary to represent y in terms of the eigenfunctions and eigenvalues

ηk(x) :=
√

2 sin
√
λkx, λk := k2π2,(4.4)

so that

η =
∑

k

ckηk gives


y =

∑
k

cke
−λk(T−t)ηk,

ψ =
∑

k

[√
2λk ck

]
e−λk(T−t).

(4.5)

Our immediate observation is that

η ∈ D := span {ηk} ⇒ C∗̄
t,T η = ψ ∈ M = M(Λ) := span {e−λk(T−t)},

where Λ := {λk : k = 1, 2, . . .} with, looking to a somewhat more general setting,
0 < λ1 < λ2 < · · · such that Σk1/λk is convergent, as is obviously the case here.

Our starting point will be an inequality

‖y(0, ·)‖L2(0,1) ≤ Mt̄‖yx(·, 0)‖L2(0,t̄)(4.6)
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for solutions of (4.1); it is sufficient to consider this only for η ∈ D. We recognize this
as (2.5), giving (2.3) by Theorem 1, corresponding to having U0,t̄ ∈ NC0,t̄ , replacing T
by t̄ here. We will take this nullcontrollability as well known, but note that essentially
this inequality (with time reversed and an interchange of Dirichlet and Neumann
conditions) was the principal result of [11], with the nullcontrollability form given
in [4]). From (4.6) with time reversed, one sees clearly the interpretation of (2.5)
as asserting well-posed observability : predicting the terminal state from (boundary)
observations without knowing the initial state.

Our major new resource is an inequality recently obtained by Borwein and Erdélyi;
this is Theorem 5.6 of [2], but see also [1], [3].

THEOREM (BE). Assume Σk1/λk < ∞, etc. Then, for every q > 0, s > 0,
ρ ∈ (0, 1), there is a constant c = cq(s, ρ,Λ) such that

for every set A ⊂ [ρ, 1] with meas A ≥ s one has

‖p‖L∞(0,ρ) ≤ c‖p‖Lq(A)(4.7)

for every polynomial p ∈ M0 = M0(Λ) :=
{
Σkakx

λk
}
.

For our present purposes, we make the substitution x = e−(T−t) and set ρ =
e−(T−t̄) so t ∈ [0, t̄], [t̄, T ], E correspond, respectively, to x ∈ [e−T , ρ] ⊂ [0, ρ], [ρ, 1], A
and M corresponds to M0. Noting that meas A ≥ ρmeas E for E ⊂ [t̄, T ], one easily
sees that, specializing to q = 1, (4.7) gives just the inequality we will need

‖ψ̃‖L2(0,t̄) ≤ c̃‖ψ̃‖L1(E) for ψ̃ ∈ M(4.8)

with c̃ =
√
t̄ c1(ρmeas E , ρ,Λ) for any set E of positive measure in [t̄, T ].

At this point we are in a position to state and prove our second principal result, on
exact boundary nullcontrollability of the one-dimensional heat equation from arbitrary
sets of positive measure.

THEOREM 5. Let T > 0 and suppose that E ⊂ [0, T ] has positive measure. Then
there is a constant K such that

for every ω0 ∈ X = L2(0, 1) there is a control ϕ such that
|ϕ(t)| ≤ K‖ω0‖X for t ∈ E, ϕ(t) = 0 for t /∈ E,
and the solution u of (1.1), using ϕ, has u(T, ·) = 0.

Proof. This follows directly from the results we have already developed. Choose
any t̄ > 0 such that Ê ∩ [t̄, T ] has positive measure, set W := L1(Ê), and V := W∗ =
L∞(Ê). Consider y(0, ·) = E∗

0,T η and ψ̃ = ψ = C∗
0,T η for η ∈ D. Then (4.6) and (4.8)

with E replaced by Ê give ‖y(0, ·)‖L2(0,1) ≤ Mt̄c̃‖ψ‖L1(Ê) or, equivalently,

‖E∗
0,T η‖X ∗ ≤ KV‖C∗

Vη‖W ,

which we recognize as (2.5). The second part of Theorem 1 then gives V ∈ NCt̄,T

which, since Ê ⊂ E so V ↪→ L∞(E), gives precisely the conclusion of the present
theorem.

COROLLARY 6. The results of Theorem 3 apply to the time-optimality problem
for (1.1).

Proof. Theorem 5 just gives the hypothesis (3.14) in this context so Theorem 3
applies.

The argument in Theorem 5 establishing that for each E in [t, T ] of positive
measure one has L∞(E) in NC r and hence that Theorem 3 applies shows (cf. Theo-
rem V 1.1 of [7]) that the vector measure

m : B[0, T ] → XT = L2(0, 1) : E 7→ C0,T (χE)
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is a Liapunov measure; i.e., for each Borel set F ⊂ [0, T ] of positive measure, the set
{m(E) : E ⊂ F} is a convex, weakly compact subset of L2. The control-theoretic
implications of this property of m are discussed in Chapters V and IX of [7].

Remark 4.1. We remark that the bang-bang property for time-optimal controls is
classical for the finite-dimensional case but has previously been shown in the context
of boundary controls of the heat equation only with the imposition of a slackness
condition on the target state: the control constraint has the form |ϕ| ≤ M , where it is
to be known that the target is actually reachable (in some time) subject to |ϕ| ≤ M ′

with the slackness consisting of asking that M > M ′. Some years ago, when [12]
appeared, we felt that this condition might be an artifact of the proof technique, and
we attempted to demonstrate the bang-bang property without it, i.e., for arbitrary
(reachable) targets. We failed at that time. The gap in our argument was the need
for an estimate such as (4.7), and it is the recent availability of the result by Borwein
and Erdélyi [1] which has enabled us now to return successfully to the problem at
least for one dimension.

It should be noted that a newer proof of the bang-bang property was presented
in Krabs’s book [8], but this proof also imposes an auxiliary condition on the target
state ωT . The result, Theorem 2.4.13 of [8], is formulated in terms of a moment
problem, so some translation is necessary for comparison. He requires that c ∈ W ,
where c = (ck) is the sequence of Fourier coefficients of the target u∗ and the space
W is such that this requirement is equivalent to asking that u∗ is a limit—in the
sense that differences are reachable by controls with L∞-norm approaching zero—
of targets of the special form ũ(ε, ·) for ε > 0 and ũ satisfying the equation ũt =
ũxx with control vanishing on [T − ε, T ]. Certainly the special targets then have
ũ(ε, x) = 0 at x = 0, 1, so this, in particular, will also be true in the limit, i.e.,
for the targets to which Krabs’s Theorem 2.4.13 would apply. Krabs also provides
Theorem 2.4.14, explicitly following ideas of [12], giving the conclusion with essentially
the same slackness condition mentioned earlier; this condition certainly implies that
|ũ(0)| ≤ M ′ < M . Thus, neither of these theorems would apply to use as target, e.g.,
the trivially reachable state obtained by taking ϕ ≡ M on [0, T∗]. In comparison, we
emphasize that we have imposed no requirement on the target to get the bang-bang
property for a time-optimal control except as is implicit in the very existence of such
a control.

The paper [12] considers the n-dimensional case (a bounded spatial region Ω ⊂ Rn

with control ϕ on [0, T ] × ∂Ω) subject to a constraint of the form

|ϕ(t, x)| ≤ M a.e. for 0 ≤ t ≤ T, x ∈ ∂Ω.(4.9)

To use our present approach to prove the strong form of the bang-bang property, that
|ϕ∗| = M a.e. on [0, T ∗] × ∂Ω, would require an n-dimensional form of Theorem 5,
showing exact nullcontrollability with controls in L∞(E), where E is now an arbitrary
subset of positive measure in [0, T ∗] × ∂Ω. This seems well out of reach by currently
available ideas; indeed, even the nullcontrollability from a patch (E = [0, T ∗]×P with
P ⊂ ∂Ω open but small) has only recently been demonstrated ([9], cf. [13]). On the
other hand, it seems to be a tractable open problem to show the weaker bang-bang
property that ‖ϕ∗(t, ·)‖L∞(∂Ω) = M a.e. on [0, T ∗] by showing nullcontrollability from
L∞(E × ∂Ω) with E of positive measure in [0, T ∗] as earlier.

Note that each of the results above obtains the bang-bang property by way of
the adjoint characterization: ϕ = {M where vx ≥ M ; −M where vx ≤ −M} for
some solution v of the adjoint problem. A plausible conjecture is that the additional
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restriction on the target state might be significant to ensure this characterization
(so there might conceivably be examples for which this characterization fails in the
absence of some such slackness condition; this could be a subject for future investi-
gation), although we have seen that it is not necessary for the bang-bang property
itself.

Remark 4.2. An essentially identical argument works if we replace the heat
equation in (1.1) by

ut = (pux)x − qu(4.10)

and/or replace the Dirichlet boundary conditions there by some alternative type of
boundary control. For this case we let {λk, zk} be the eigenvalues and eigenfunctions
of the Sturm–Liouville operator A : z 7→ −(pz′)′ +qz whose (homogeneous) boundary
conditions are those of the new form of boundary control.

Similarly, one could consider the problem with scalar control in the equation
itself:

ut = (pux)x − qu+ ϕ(t)b(4.11)

for some specified b(·) ∈ X , using homogeneous boundary condition. In this con-
nection one might note Henry’s example [6] of a problem with time-optimal control
not of bang-bang form, as in (4.10), but effectively considering version 1 of the time-
optimality problem with time-dependent constraints, so it does not correspond to the
situation we have analyzed.

Remark 4.3. We may consider the problem with a nonscalar control: ϕ = [ϕ0, ϕ1]
so the boundary conditions in (1.1) are replaced by

u(·, 0) = ϕ1 u(·, 1) = ϕ2(4.12)

and in (1.3) we take A(t) = K ⊂ R2, where K is a closed, bounded, convex set. Here
we may distinguish two forms of the bang-bang property:

weak: a.e. on [0, T ∗] one has ϕ(t) ∈ ∂K,
strong: a.e. on [0, T ∗] one has ϕ(t) an extreme point of K.

The weak form is immediate from the previous arguments: if there were E ⊂ [0, T ]
with positive measure for which ϕ remained in the interior, then we could obtain a
contradiction as in the proof of Theorem 2, perturbing only the component ϕ0 as there.
For the strong form one needs a modification of this to avoid the possibility that ϕ
might remain interior to some face within ∂K so that one must consider perturbations
with a linear restriction: ϕ̃(t) = ϕ̂(t)c for some nonzero c ∈ R2. What would be
needed then is the appropriate modification of the inequality (4.6), obtainable along
similar lines.

To illustrate the situation, consider first K = [0, 1] × [0, 1]. Any case where ϕ is
weakly optimal but not strongly optimal can be reduced to the following: for a setE of
positive measure in [τ, T ] and some ε > 0, one has ϕ1(t) ∈ (ε, 1−ε) with ϕ2(t) ∈ {0, 1}
for all t ∈ E . By selecting τ̂ > τ but close, we can ensure that E ′ = E ∩ [τ, T ] has
positive measure and that the state ω′

τ̂ produced at τ̂ by use of the modified controls
ϕ′

i(t) = {ϕi(t) for t < τ ; = 0 for t ∈ [τ, τ̂ ]} differs from the state ωτ̂ produced by the
original ϕ = (ϕ1, ϕ2) by less than ε/Kr, i.e., ‖ω′

τ̂ − ωτ̂‖ < ε/Kr. Consequently, by
modifying ϕ′

1 by v supported on E ′ and of sup norm< ε, we obtain, as in the proof of
Theorem 2, that (ϕ′

1 + v, ϕ′
2) attains the same target ωT as ϕ yet with τ replaced by
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the larger τ̂ , contradicting the assumed optimality of τ . On the other hand, if we take
K = {(x, y) : x, y ≥ 0, x+ y ≤ 1}, it is clear that such an argument is only available
if one knows that pairs with ϕ1 + ϕ2 = 0 on E are available as nullcontrols for the
state perturbation. Such “odd” control pairs only produce corresponding odd states
and so can only compensate for odd state perturbations. Hence our argument cannot
be expected to work in this setting, although we cannot on this basis conclude that
the bang-bang property fails.

Similar considerations apply if one would generalize (4.11) to

ut = (pux)x − qu+ Σjϕj(t)bj(4.13)

with pointwise constraints imposed on the vector control ϕ = [ϕ1, . . . , ϕJ ].
Remark 4.4. There is little difficulty in generalizing the abstract Theorem 3

to treat state-dependent constraints. It is convenient to take a space X = {x(·)} of
“controlled trajectories,” where the state trajectory is defined by x(t) := C0,tϕ for
t ∈ [0, T ], ϕ ∈ U ; we assume the topology imposed on X is such that the linear map
X : ϕ 7→ x(·) : U → X is continuous. By a state-dependent constraint we mean a
set-valued function

(t, x) 7−→ A(t, x) ⊂ R for t ∈ [0, T ], x ∈ X,(4.14)

so the control restriction (1.3ii) becomes

ϕ ∈ A := {ϕ ∈ U : ϕ(t) ∈ A(t,Xϕ) a.e. on [0, T ]}.(4.15)

We continue to take U = Lp(0, T ) and to assume (1.4), now also writing a(t) =
a(t, x), b(t) = b(t, x); we will further assume that one has uniform bounds: a ≤
a(t, x) ≤ b(t, x) ≤ b for all x ∈ X. Finally, we need a mild continuity condition1

ϕn ⇀ ϕ̄(weak convergence in U) with (4.15) for each n

implies a(t,Xϕ̄) ≤ ϕ̄(t) ≤ b(t,Xϕ̄) a.e. on [0, T ].
(4.16)

We may then argue much as in the proof of Theorem 3. If ϕn is an optimizing
sequence for the time-optimality problem given by (4.15), we have ϕn ⇀ ϕ̄, using
our assumptions on A(··) and extracting a subsequence if necessary, so we may set
A∗(t) := [a(t,Xϕ̄), b(t,Xϕ̄)] and have ϕ̄(t) ∈ A∗(t) a.e. on [0, T ]. As in the proof
of Theorem 3, we consider the time-optimality problem using A∗ for A to obtain a
(unique) time-optimal control ϕ̂. As there, ϕ̂ has the bang-bang property and so is
also admissible for the original problem, whence the control times τ are the same and
we can conclude that ϕ̂ = ϕ̄ so that this is the unique time-optimal control for the
original problem.

Acknowledgments. The first author wishes to express his appreciation to Peter
Borwein for informing him of the recent results achieved by Borwein and Erdélyi in
[1] and to Greg Knowles for very stimulating discussions on this topic several years
ago.

1For example, it is not hard to see that (4.16) will hold if one can take X compact in C([0, T ] → X )
and if, with A(t) = A(t, x(t)) so A : [0, T ] × X → 2R, one has

rn → r̄, zn → z̄, rn ∈ A(t, zn) ⇒ a(t, z̄) ≤ r̄ ≤ b(t, z̄).
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[2] P. BORWEIN AND T. ERDÉLYI, Generalizations of Müntz’s Theorem via a Remez-type Inequal-
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paraboliques, C.R. Acad. Sci. Paris Sér. A 289 (1979), pp. 87–89.
[7] I. KLUVANEK AND G. KNOWLES, Vector Measures and Control Systems, North-Holland Math-

ematics Studies 20, North-Holland, Amsterdam, 1975.
[8] W. KRABS, On Moment Theory and Controllability of One-Dimensional Vibrating Systems

and Heating Processes, Lecture Notes in Control and Information Sciences 173, Springer-
Verlag, New York, 1992.

[9] G. LEBEAU AND L. ROBBIANO, Contrôle exact de l’équation de la chaleur, Comm. Partial
Differential Equations, 20 (1995), pp. 335–356.

[10] J. L. LIONS AND E. MAGENES, Non-Homogeneous Boundary Value Problems and Applications,
vol. II, Springer-Verlag, Berlin, 1972.

[11] V. J. MIZEL AND T. I. SEIDMAN, Observation and prediction for the heat equation, I, J. Math.
Anal. Appl., 28 (1969), pp. 303–312.

[12] E. J. P. G. SCHMIDT, The ‘bang-bang’ principle for the time-optimal problem in boundary
control of the heat equation, SIAM J. Control Optim., 18 (1980), pp. 101–107.

[13] T. I. SEIDMAN, Observation and prediction for the heat equation, IV: Patch observability and
controllability, SIAM J. Control Optim., 15 (1977), pp. 412–427.

[14] T. I. SEIDMAN, Time-invariance of the reachable set for linear control problems, J. Math. Anal.
Appl., 72 (1979), pp. 17–20.



H∞ CONTROL AND ESTIMATION PROBLEMS WITH DELAYED
MEASUREMENTS: STATE-SPACE SOLUTIONS∗

KRISHAN M. NAGPAL† AND R. RAVI‡

SIAM J. CONTROL OPTIM. c© 1997 Society for Industrial and Applied Mathematics
Vol. 35, No. 4, pp. 1217–1243, July 1997 007

Abstract. Most physical processes exhibit transport delay in the measured output, and it is
well known that this can have disastrous effects on system stability and performance if it is not
accounted for. In this paper, we give necessary and sufficient conditions for existence of estimators
and controllers that achieve the desired H∞ performance criterion when such a measurement delay
is present. We also give the complete characterization of all controllers and estimators that achieve
the desired performance criterion. The necessary and sufficient conditions are easy to check and are
given in terms of the familiar pair of algebraic Riccati equations that appear in the nondelay versions
of the corresponding H∞ problems, along with an additional Riccati differential equation. Explicit
state-space formulas for the controllers and estimators are also obtained. They have a linear periodic
structure and are easily implementable. To obtain these results, we first obtain state-space results
for a “modified” Nehari problem, which may be of independent interest (see Problem 5 in section 2).

Key words. H∞ control, H∞ estimation, delay systems, optimal control
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1. Introduction. The problem of controller and estimator design for finite-
dimensional systems with the H∞ performance criterion is by now fairly well un-
derstood (see, for example, [3] and [8] and the references therein). In several practical
situations, one encounters systems whose models are distributed or infinite dimen-
sional. Flexible beams or systems involving delay are examples of such systems. An
interesting area of work in control has been the extension of finite-dimensional results
to infinite-dimensional systems. The aim of the present paper is to provide state space
solutions to several commonly encountered control and estimation problems for finite-
dimensional linear systems when there is a delay present in the measurements. Our
optimality criterion is the minimization of the L2-induced norm (or the H∞ norm)
and the approach is based on time domain techniques.

Some early results obtained forH∞ control of certain classes of distributed plants
using various operator-theoretic ideas are, for example, [4], [11], [10], [12], and [17].
These approaches are usually based on the commutant lifting methods or the skew
Toeplitz theory. The approach we adopt here is time domain in nature and follows
such recent approaches as [2], [13], [14], and [15]. Tadmor in [15] presents state-space
solutions to the H∞ problem for general linear system. However, because of the
presence of delay, direct application of his results would involve Riccati equations
that are in operator form and to which solutions may not be easy to compute. Since
the underlying system is finite dimensional, we have tried as much as possible to
stick to finite-dimensional techniques in the paper and obtain solutions that would be

∗Received by the editors November 21, 1994; accepted for publication (in revised form) May 2,
1996. The results of this paper were presented in K. Nagpal and R. Ravi, Proceedings of the 1994
American Control Conference, Baltimore, MD.

http://www.siam.org/journals/sicon/35-4/27749.html
†Scientific Systems Co. Inc., 500 W. Cummings Pk., Suite 3000, Woburn, MA 01801 (nagpal@

ssci.com). The research of this author was supported in part by the University of Iowa.
‡Control Systems & Electronic Technologies Laboratory, General Electric Research and Develop-

ment Center, P. O. Box 8, Schenectady, NY 12301 (ravi@crd.ge.com). The research of this author
was supported in part by the General Electric Research and Development Center, Schenectady, NY.

1217



1218 K. M. NAGPAL AND R. RAVI

similar and comparable with the solutions when there is no delay in the measurements.
Consequently, our results show that the extra price one has to pay for tolerating
the delay, as compared with the case where there is no delay, is the solution of an
additional Riccati differential equation defined over the duration of the delay. The
approach adopted here uses lifting ideas that have also been used for some sampled
data control problems (see, for example, [1]). Some aspects of two of the problems
considered here—namely, the problems of state feedback control and output feedback
control with measurement delay—have also been addressed in [2] using game theory
ideas. The problem of prediction with an H∞ criterion has not been previously
addressed in the literature. Crucial to the results outlined here are the results of a
“modified” Nehari problem which may be of independent interest.

The paper is organized as follows. In section 2 we describe the problems con-
sidered in this paper, and the main results are given in section 3. Some preliminary
results are presented in section 4, and section 5 contains the proofs of the main results.
A summary and some concluding remarks are contained in section 6.

We end this introduction with some remarks on the notation. Let R denote the
set of real numbers, Rn denote the n-dimensional Euclidean space (identified with
n × 1 vectors of real numbers), and Rn×m be the set of all n × m real matrices.
We will use A′ (or v′) to denote the transpose of the matrix A (or vector v) and
ρ(A) := maxi |λi(A)| to denote the spectral radius. A square matrix A is called stable
if all its eigenvalues are in the open left half plane. The following norms will be used:
‖η‖ := (

∑n
1 |ηi|2)1/2 for η ∈ Rn; ‖z‖[a,b] := (

∫ b

a
‖z(t)‖2dt)1/2, and 〈z1, z2〉[a,b] will

denote the norm and the inner product in Ln
2 [a, b]. Whenever there is no ambiguity

about the interval of interest, we ignore the subscript [a, b] in the definition of the
norm and the inner product. The map from w to z is denoted by Tzw, and its L2-
induced norm is denoted as ‖Tzw‖ and its adjoint as T ∗

zw. The map Tzw is said to be
causal if z(t) = f(w(s)), 0 ≤ s ≤ t, and anticausal if z(t) = f(w(s)), s ≥ t. If Tzw

admits a state-space representation as follows,

ẋ = A(t)x + B(t)w,
z = C(t)x + D(t)w,

then we will use the following packed matrix abbreviation to describe Tzw:

Tzw =
[

A B
C D

]
.

We now briefly describe the notation used for lifting. Let lL2[0,h] be the space of
sequences where each element is in L2[0, h]; i.e.,

lL2[0,h] := {{qi} : qi ∈ L2[0, h] ∀i ≥ 0} ,

with the norm defined as

‖{qi}‖ =

[ ∞∑
0

‖qi‖2
] 1

2

,

where ‖qi‖ is the L2[0, h] norm of qi. The lifting operation is defined as W : L2[0,∞)→
lL2[0,h], where

{qi} = Wq, qi(t) = q(ih + t) for 0 ≤ t ≤ h.(1)
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The lifting map W can be visualized as breaking up a signal q defined for t ≥ 0 into
an infinite number of pieces where each piece is an identical copy of q restricted to
an interval of length h. It is easily seen that W is a one-to-one, invertible isome-
try between L2[0,∞) and lL2[0,h]. A map Θ : lL2[0,h] → lL2[0,h] is called causal if
W−1ΘW : L2[0,∞)→ L2[0,∞) is causal.

2. Problem definitions. In this section we describe the problems that are ad-
dressed in this paper. The first four concern delay systems and the fifth one is a
“modified” Nehari problem. In Problems 1 to 4, we will limit ourselves to finite-
dimensional linear time-invariant systems. Because of the time-domain techniques
employed in the proofs, most of the results are easily generalizable to linear time-
varying systems as well. Some of the issues in Problem 1 have also been discussed in
[17], and some aspects of Problems 2 and 4 also appear in [2].

Problem 1 (the basic delay problem). Given are a real number h ≥ 0 (represent-
ing delay) and a finite-dimensional linear system G (not necessarily stable) with a
realization as follows:

G

{
ẋ = Ax + Bw, t ∈ [0,∞), x(0) = 0,
z = Cx.

(2)

The estimate of z(t) denoted by ẑ(t) is generated by a causal operator f(·) that has
available to it all w(s) with s ≤ t− h; i.e.,

ẑ(t) = f(w(s)), s ≤ t− h.

The problem is then one of determining conditions for a causal operator f(·) to exist
so that

sup
w

‖z − ẑ‖2
‖w‖2 < 1.

Moreover, if the above problem is solvable, we would like to characterize all such
causal operators f(·) that achieve the above performance bound.

(In the frequency domain terminology, if the system G is stable (G ∈ H∞ ), the
above problem is equivalent to determining conditions for existence of an operator
Q ∈ H∞ such that

inf
Q∈H∞

‖G−Qe−hs‖ < 1,

and if such a system exists, to obtain the set of all such Q.)
Problem 2 (full information control problem with delay). Given are a real number

h ≥ 0 and a finite-dimensional linear time-invariant system Gfi:

Gfi


ẋ = Ax + B1w + B2u, t ∈ [0,∞), x(0) = 0,
z = C1x + D12u,

y =
(

x
w

)
.

(3)

We would like to determine conditions for a controller f(·) to exist such that with

u(t) = f(y(s)) with s ≤ t− h,

‖Tzw‖ < 1 and the feedback system is internally stable. Note that the measurements
y are available to the controller only after a time delay of h units. Again, we seek a
parameterization of all controllers f(·) that achieve ‖Tzw‖ < 1.
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Problem 3 (prediction problem). Given are a real number h ≥ 0 and a finite-
dimensional linear time-invariant system Gp:

Gp

 ẋ = Ax + B1w, t ∈ [0,∞), x(0) = 0,
z = C1x,
y = C2x + D21w.

(4)

We would like to determine conditions under which we can construct an estimator for
z to achieve a desired H∞ bound, given measurements delayed by h time units. In
other words we would like to find a function f(·) so that with

ẑ(t) = f(y(s)), s ≤ t− h,

‖Tew‖ < 1, where e := z− ẑ is the estimation error. We also seek to parameterize the
set of all predictors f(·) that achieve ‖Tew‖ < 1.

Problem 4 (output feedback control problem with delay). Given are a real number
h ≥ 0 and a finite-dimensional linear time-invariant system Gof :

Gof

 ẋ = Ax + B1w + B2u, t ∈ [0,∞), x(0) = 0,
z = C1x + D12u,
y = C2x + D21w.

(5)

We would like to determine conditions for a controller f(·) to exist so that with

u(t) = f(y(s)) with s ≤ t− h,

‖Tzw‖ < 1 and the feedback system is internally stable. Again, we seek a parameter-
ization of all f(·) that achieve this performance bound.

Problem 5 (modified Nehari problem). Given are the following two finite-dimensional
linear (possibly time-varying) anti-causal systems Σ1 : w1 → y1 and Σ2 : w2 → y2:

Σ1

{
ẋ1 = F1x1 + G1w1, t ∈ [0, T ], x1(T ) = 0,
y1 = H1x1;

(6)

Σ2

{
ẋ2 = F2x2 + G2w2, t ∈ [0, T ], x2(T ) = 0,
y2 = H2x2 + w2.

(7)

We would like to determine conditions for a causal function f(·) to exist so that with

ŷ1(t) = f(w(s)) with 0 ≤ s ≤ t

the following holds:

sup
w1

‖Σ2(Σ1w1 − ŷ1)‖2
‖w1‖2 < 1.

Again, we seek a parameterization of all f(·) that achieve this performance bound.
The last problem described above reduces to the standard (finite-horizon version)

Nehari problem when Σ2 = I, where I is the identity operator. State-space results for
the standard Nehari problem have been obtained for both time-invariant and time-
varying systems by various authors (see, for example, [6] and [16]). Problem 5 stated
above can be viewed as a generalization of the standard Nehari problem because it
allows one to also include a “weighting filter” Σ2. The results that we obtain can
be easily generalized to the infinite-horizon version of the above problem, but we
consider the finite-horizon version simply because of its relevance to the first four
delay problems presented in this section.
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3. Main results. We will first present the results of the modified Nehari problem
since the results of the other problems rely quite critically on its solution.

THEOREM 3.1. Given are two anticausal linear systems Σ1 and Σ2 as described
in equations (6) and (7). There exists a causal system f(·) such that with ŷ1(t) =
f(w(s)), where 0 ≤ s ≤ t,

sup
w1

‖Σ2(Σ1w1 − ŷ1)‖2
‖w1‖2 < 1

if and only if

λmax(P (t)Q(t)) < 1 ∀t ∈ [0, T ],

where λmax denotes the largest eigenvalue and

−Q̇ = F̄ ′Q + QF̄ − H̄ ′H̄, Q(0) = 0,
Ṗ1 = F1P1 + P1F

′
1 −G1G

′
1, P1(T ) = 0,

Ṗ2 = (F2 −G2H2)P2 + P2(F2 −G2H2)′ −G2G
′
2, P2(T ) = 0,

P =
[

P1 0
0 −P2

]
,

(8)

where F̄ and H̄ are defined as

F̄ =
[

F1 0
G2H1 F2

]
, H̄ = [ H1 H2 ].

Moreover, if λmax(P (t)Q(t)) < 1 then the set of all causal operators f : w1 → ŷ1 that
achieve the desired bound are given by

q̇ = −(F̃ ′ + N(t)Q(t)G̃1G̃
′
1)q + N(t)Q(t)G̃1w1 −N(t)[H̄ ′ −Q(t)G̃2]v, q(0) = 0,

ŷ1(t) = −[H̄P (t)− G̃′
2]q − v,

η(t) = w1(t)− G̃′
1q,

v(t) = Θη, where Θ is causal, and ‖Θ‖ < 1,

(9)

where

F̃ =
[

F1 0
0 F2 −G2H2

]
, G̃1 =

[
G1
0

]
, G̃2 =

[
0

G2

]
, N(t) = (I −Q(t)P (t))−1.

For convenience in describing the results of the other problems, we will use the
following notation to describe the system given in (9):

N 1
[Σ1,Σ2,T,Θ] : w1 → ŷ1 := the corresponding map described by (9),(10)

N 2
[Σ1,Σ2,T,Θ] : w1 → η := the corresponding map described by (9).(11)

The next theorem gives the result for the basic delay problem or Problem 1 of the
previous section. Before presenting the result, we will describe some notation that
appears in the statement of the next theorem. Let X(t) be the solution to the Riccati
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differential equation defined in (22). Also, let Ψ(·, ·) denote the transition matrix of
A + BB′X, and let B̄(τ) be defined as follows:

dΨ(τ, s)
dτ

= (A + BB′X(τ))Ψ(τ, s), Ψ(s, s) = I, B̄(τ) = eAτΨ(h, τ)B for τ ∈ [0, h].

(12)

Let S(t) be the solution of the following Riccati equation defined over the interval
[0, h]:

−Ṡ = −(A + BB′X)S − S(A + BB′X)′ − SC ′CS + BB′, S(0) = 0.(13)

We now define four operators from L2[0, h] to L2[0, h], where G0 and G2 are causal
while G1 and G3 are anticausal. With the notation Gi : f → g for 0 ≤ i ≤ 3, the
state-space realizations of these systems are

G0

{
ẋ0(τ) = Ax0(τ) + Bf(τ), τ ∈ [0, h], x0(0) = 0,
g(τ) = f(τ)−B′X(τ)x0(τ);(14)

G1

{
ẋ1(τ) = Ax1(τ) + B̄(τ)f(τ), τ ∈ [0, h], x1(h) = 0,
g(τ) = −Cx1(τ);(15)

G2

{
ẋ2(τ) = (A + BB′X(τ))x2(τ) + Bf(τ), τ ∈ [0, h], x2(0) = 0,
g(τ) = Cx2(τ);(16)

G3

{
ẋ3(τ) = −(A + BB′X(τ))′x3 − C ′f(τ), τ ∈ [0, h], x3(h) = 0,
g(τ) = −CS(τ)x3(τ) + f(τ).(17)

Let {wi}, {ri}, {z1i}, {z2i} ∈ lL2[0,h] be defined as follows (recall that W is the lifting
operator defined in (1)):

{wi} = Ww,(18)

ri = G0wi, i ≥ 0,(19)

z10 = 0, z1i = G1ri−1 for i ≥ 1,(20)

z20 = 0, z2i = G2ri for i ≥ 1,(21)

where the systems G0, G1, and G2 are as defined in (14), (15), and (16). Also define

F̃d(t) :=
[

A 0
0 −(A + BB′X(t))′ − C ′CS(t)

]
, G̃1d(t) :=

[
B̄(t)

0

]
,

G̃2d :=
[

0
−C ′

]
, t ∈ [0, h];

F̄d(t) =
[

A 0
C ′C −(A + BB′X(t))′

]
, H̄d(t) = −[ C CS(t) ], t ∈ [0, h].

−Q̇d(t) = F̄ ′
d(t)Q(t) + Q(t)F̄d(t)− H̄ ′

d(t)H̄d(t), t ∈ [0, h], Qd(0) = 0,
Ṗ1d(t) = AP1(t) + P1(t)A′ − B̄′(t)B̄(t), t ∈ [0, h], P1d(h) = 0,
Ṗ2d = −(A′ + X(t)BB′ + C ′CS(t))P2d(t)− P2d(t)(A′ + X(t)BB′ + C ′CS(t))′

−C ′C, t ∈ [0, h], P2d(h) = 0,

Pd(t) =
[

P1d 0
0 −P2d

]
,

Nd(t) = (I −Qd(t)Pd(t))−1, t ∈ [0, h].

We now present the main result for the basic delay problem.
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THEOREM 3.2. Given are a causal linear system G described by equation (2) and
a positive real number h representing the delay. There exists a causal system f(·) such
that with

ẑ(t) = f(w(s)), 0 ≤ s ≤ t− h,

the following holds:

sup
w

‖z − ẑ‖2
‖w‖2 < 1

if and only if there exists a matrix function X(t) for t ∈ [0, h] that satisfies the
following (Riccati) differential equation:

−Ẋ = A′X + XA + XBB′X + C ′C, X(h) = 0.(22)

Moreover, if the above condition holds, then the set of all f : w → ẑ that achieve the
desired performance is of the form

ẑ(t) = 0, 0 ≤ t ≤ h,

ẑ(ih + t) = C{eA(t+h)x((i− 1)h) + eAt
∫ t

0 Ψ(h, s)Bri−1(s)ds}+ ˆ̂zi(t),
0 ≤ t ≤ h, i ≥ 1,

(23)

where ri and Ψ(·, ·) are defined in the equations (19) and (12), respectively, and ˆ̂zi ∈
lL2[0,h] is obtained as follows:

w10 = r0; w1i = ri −G∗
2(z1i − ˆ̂zi) for i ≥ 1,

q̇i(t) = −[F̃ ′
d + Nd(t)Qd(t)G̃1d(t)G̃′

1d(t)]qi(t) + Nd(t)Qd(t)G̃1d(t)w1i(t)
−Nd(t)[H̄ ′

d(t)−Qd(t)G̃2d]vi(t), qi(0) = 0, t ∈ [0, h], i ≥ 0,

ŷi+1(t) = −[H̄dPd(t)− G̃′
2d]qi(t)− vi(t), t ∈ [0, h], i ≥ 0,

ηi(t) = w1i(t)− G̃′
1dqi(t), t ∈ [0, h], i ≥ 0,

{vi} = Θ{ηi}, where Θ is causal and ‖Θ‖ < 1,

ˆ̂z0 = 0, ˆ̂zi+1(t) = (G1G
∗
2(z1i − ˆ̂zi))(t) + ŷi+1(t), t ∈ [0, h], i ≥ 0.

(24)

Remark 1. To emphasize the connection between the above result and the mod-
ified Nehari problem and for the reader’s convenience, the above equations are also
summarized below:

{wi} = Ww,

ri = G0wi, i ≥ 0,

z10 = 0, z1i = G1ri−1 for i ≥ 1,

w10 = 0, w1i = ri −G∗
2(z1i − ˆ̂zi),

ŷi+1 = N 1
[G1,G3,h,Θ](w1i), i ≥ 0,

ηi = N 2
[G1,G3,h,Θ] : (w1i), i ≥ 0,

ˆ̂z0 = 0, ˆ̂zi+1 = ŷi+1 + G1G
∗
2(z1i − ˆ̂zi), i ≥ 0,

ẑ(ih + t) = C{eA(t+h)x((i− 1)h) + eAt
∫ t

0 Ψ(h, s)Bri−1(s)ds}+ ˆ̂zi(t),
0 ≤ t ≤ h, i ≥ 1,

where the maps N 1 and N 2 are as defined in (10) and (11).
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For convenience in describing the results of Problems 2 through 5, we will use the
following notation to characterize the set Ω : w → ẑ of all admissible functions that
solve the basic delay problem (Problem 1) described in the Theorem 3.2; i.e.,

D[A,B,C,h]

:= {Ω : where Ω : w → ẑ admits a realization of the form given by (23) and (24)} .

(25)

For the full information control problem, we will make the following standard
assumptions:

A1: (A, B1, C1) is stabilizable and detectable; (A, B2) is stabilizable;
A2: D′

12[C1 D12] = [0 I].

THEOREM 3.3. For the linear system Gfi with a realization as described in (3),
there exists a controller f(·) so that with u(t) = f(y(s)), 0 ≤ s ≤ t− h, the feedback
system is internally stable and

sup
w

‖z‖2
‖w‖2 < 1

if and only if the following conditions hold.
(1) There exists a positive semidefinite matrix X ≥ 0 that is a stabilizing solution

of the following algebraic Riccati equation:

A′X + XA + X(B1B
′
1 −B2B

′
2)X + C ′

1C1 = 0.(26)

(2) There exists a positive semidefinite matrix function S1(t) for t ∈ [0, h] that
satisfies the following Riccati equation:

−Ṡ1 = (A + B1B
′
1X)′S1 + S1(A + B1B

′
1X) + S1B1B

′
1S1 + XB2B

′
2X, S1(h) = 0.

(27)

If the above conditions hold, then the set of all controllers that achieve the desired
performance can be represented as

u(t) = 0, t ∈ [0, h),

u(t) = −B′
2Xx2(t) + (Ω w)(t), t ≥ h,

where Ω ∈ D[A+B1B′
1X,B1,−B′

2X,h] (where this set is as defined in (25)) and x2 is
obtained as follows:

ẋ2 = (A + B1B
′
1X)x2 + B2u, x2(0) = 0.

Remark 2. Condition 2 of the above theorem can equivalently be written as
follows: there exists positive semidefinite matrix function Q(t) defined over [0, h] that
satisfies

−Q̇ = A′Q + QA + QB1B
′
1Q + C ′

1C1, Q(h) = X.

This is easily verified by noting that Q(t) := S1(t) + X satisfies the above equation.
Next we turn to the prediction problem, for which we will make the following

assumptions:

A3: (A, B1, C1) is stabilizable and detectable; (A, C2) is detectable;
A4: D21[B′

1 D′
21] = [0 I].
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THEOREM 3.4. Given the linear system Gp described in (4), there exists a predic-
tor ẑ(t) = f(y(s)) with 0 ≤ s ≤ t− h that achieves

sup
w

‖z − ẑ‖2
‖w‖2 < 1

if and only if the following conditions hold.
(1) There exists a positive semidefinite matrix Y ≥ 0 that is a stabilizing solution

of the following algebraic Riccati equation:

AY + Y A′ + Y (C ′
1C1 − C ′

2C2)Y + B1B
′
1 = 0.(28)

(2) There exists a positive semidefinite matrix function S2(t) for t ∈ [0, h] that
satisfies the following Riccati equation:

−Ṡ2 = (A + Y C ′
1C1)′S2 + S2(A + Y C ′

1C1) + S2Y C ′
2C2Y2S2 + C ′

1C1, S2(h) = 0.
(29)

Let p be defined as an output of the following system:

ẋ1 = (A + Y C ′
1C1 − Y C ′

2C2)x1 + Y C ′
2y − Y C ′

1ẑ, x1(0) = 0,
p = −C2x1 + y.

Then the set of all predictors that achieve the desired performance can be represented
as

ẑ(t) = 0, t ∈ [0, h),

ẑ(t) = C1x2(t)− (Ω p)(t), t ≥ h,

where Ω ∈ D[(A+Y C′
1C1),Y C′

2,−C1,h] (where this set is as defined in (25)) and x2 is
obtained as follows:

ẋ2 = (A + Y C ′
1C1)x2 − Y C ′

1ẑ, x2(0) = 0.

For the output feedback control problem with delay, we will make the following
assumptions:

A5: (A, B1, C1) and (A, B2, C2) are stabilizable and detectable,
A6: D21[B′

1 D′
21] = [0 I],

A7: D′
12[C1 D12] = [0 I].

THEOREM 3.5. For the linear system Gof described in (5), there exists a controller
f(·) so that with u(t) = f(y(s)), 0 ≤ s ≤ t−h, the feedback system is internally stable
and

sup
w

‖z‖2
‖w‖2 < 1

if and only if the following conditions hold.
(1) There exists a positive semidefinite matrix X ≥ 0 that is a stabilizing solution

of the following algebraic Riccati equation:

A′X + XA + X(B1B
′
1 −B2B

′
2)X + C ′C = 0.(30)

(2) There exists a positive semidefinite matrix Y ≥ 0 that is a stabilizing solution
of the following algebraic Riccati equation:

AY + Y A′ + Y (C ′
1C1 − C ′

2C2)Y + B1B
′
1 = 0.(31)
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(3)

ρ(Y X) < 1.(32)

(4) With Z defined as Z := X(I − Y X)−1, there exists a positive semidefinite
matrix function S3(t) for t ∈ [0, h] that satisfies the following Riccati equation:

−Ṡ3 = (A + Y C ′
1C1 + Y C2C

′
2Y Z)′S3 + S3(A + Y C ′

1C1 + Y C2C
′
2Y Z)

+S3Y C ′
2C2Y S3 + ZB2B

′
2Z, S3(h) = 0.

(33)

Let r be defined as an output of the following system

ẋ1 = (A + Y C ′
1C1 − Y C2C

′
2)x1 + Y C ′

2y + B2u, x1(0) = 0,
r = −C2(I + Y Z)x1 + y.

Then the set of all controllers that achieve the desired performance can be represented
as

u(t) = 0, t ∈ [0, h),

u(t) = −B′
2Zx2(t) + (Ωr)(t), t ≥ h,

where Ω ∈ D[(A+Y C′
1C1+Y C2C′

2Y Z),Y C′
2,−B′

2Z,h] (where this set is as defined in (25))
and x2 is given by

ẋ2 = (A + Y C ′
1C1 + Y C2C

′
2Y Z)x2 + B2u, x2(0) = 0.

Remark 3. Condition 4 of the necessity in the above equation is equivalent to the
existence of positive semidefinite matrix function Q(t) defined over [0, h] that satisfies

−Q̇ = A′Q + QA + QB1B
′
1Q + C ′

1C1, Q(h) = X

with an additional spectral radius condition of ρ(Y Q(0)) < 1.

4. Preliminary results. In this section we present some preliminary results
that will be used in the proofs of the main results considered here. All the results
that are well known in the literature are presented without proofs.

LEMMA 4.1. Define P (t) to be the solution of

Ṗ = AP + PA′ + BB′, P (0) = 0.(34)

If (A, B) is controllable, then for the system described in equation (2)

inf
w

{
‖w‖2[0,τ ] : x(0) = 0, x(τ) = xτ

}
= x′

τP (τ)−1xτ .(35)

When (A, B) is not controllable, the statement of the above lemma is still valid for
all xτ that are reachable with the given initial condition with P (τ)−1 replaced by the
pseudoinverse of P (τ). The following lemma follows from the standard factorization
results for finite horizon linear regulator theory, but for completeness we give a brief
proof for it.

LEMMA 4.2. Let G2 and G3 be the systems defined in (16) and (17), respectively.
Then,

I + G2G
∗
2 = G∗

3G3.
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Proof. The system G∗
2 : fa → ga, the adjoint of the system G2, has a state-space

realization

ẋ2a(τ) = −(A + BB′X(τ))′x2a(τ)− C ′fa(τ), τ ∈ [0, h], x2a(h) = 0,
ga(τ) = B′x2a(τ).

If S satisfies the differential equation described in (13), then it is easily verified that

d

dt
(x′

2a(t)S(t)x2a(t)) = −x′
2a(t)BB′x2a(t)−f ′

a(t)fa+[fa−CS(t)x2a(t)]′[fa−CS(t)x2a(t)].

Integrating the above from 0 to h and noting that the boundary conditions drop out
because of the boundary conditions on S and xa, one obtains

‖fa‖2[0,h] + ‖ga‖2[0,h] = ‖fa − CSx2a‖2[0,h].

Thus, for any fa ∈ L2[0, h],

〈(I + G2G
∗
2)fa, fa〉[0,h] = ‖fa‖2[0,h] + ‖ga‖2[0,h] = ‖fa −CSx2a‖2[0,h] = ‖G3fa‖2[0,h]

The next lemma is the so-called Redheffer’s lemma [3, Lemma 15] and plays a
crucial role in several H∞ optimization problems. Most of the subsequent results
are from [3] (or easily obtained from the results therein), where they are proven for
finite-dimensional linear time-invariant systems. However, they can be generalized to
infinite-dimensional systems, as for example in [15].

LEMMA 4.3. Let P be a system partitioned as

P =
[

P11 P12
P21 P22

]
,

and let Q be another system connected to P as in Figure 1. Suppose that P has
an exponentially stable realization and that Q is any linear operator. In addition,
suppose that the closed loop system is also stabilizable and detectable (from w and z,
respectively). Let P be isometric (i.e., ‖w‖2 + ‖v‖2 = ‖z‖2 + ‖r‖2 ∀v, w ∈ L2), and
let P−1

21 exist and be stable. Then the closed loop system is exponentially stable and
||Tzw|| < 1 if and only if Q is exponentially stable and ||Q|| < 1, where Tzw is the
closed loop input-output operator mapping w to z.

-

-
P

-

�Q

w z

v r

FIG. 1.

The next result introduces a transformation that is by now standard in this field
(see for example [3, Lemma 9]).

LEMMA 4.4. Let assumptions A1–A2 hold and suppose that X as defined in (26)
exists. A controller K stabilizes Gof defined in (5) and achieves ‖Tzw‖ < 1 if and
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� �

-

v r
Gtmpy u

K

Gtmp ∼
 A + B1B

′
1X B1 B2

B′
2X 0 I
C2 D21 0



FIG. 2.

only if K stabilizes the system Gtmp and achieves ‖Tvr‖ < 1 for the system Gtmp

described in Figure 2.
The next result that we will state requires an additional auxiliary system, Htmp,

which we interconnect with a controller K as in Figure 3. This result is the dual of
Lemma 9 in [3] or, equivalently, the dual of the lemma stated above.

� �

-

q p

Htmpy u

K

Htmp ∼
 A + Y C ′

1C1 Y C ′
2 B2

C1 0 D12
C2 I 0



FIG. 3.

LEMMA 4.5. Let assumptions A5–A7 hold and suppose that Y as defined in (31)
exists. A controller K stabilizes the system Gof defined in (5) and achieves ‖Tzw‖ < 1
if and only if K stabilizes Htmp and achieves ‖Tqp‖ < 1 for the system Htmp.

The next result is obtained by combining the previous two lemmas. Even though
its proof is straightforward, we provide a brief sketch of it since this transformation
is not often used in the literature (a closely related observation appears in the work
of Tadmor [15, Proposition 3.5.1]).

LEMMA 4.6. Let assumptions A5–A7 hold. Let X and Y satisfy equations (30),
(31), and (32), and let Z := X(I − Y X)−1. A controller K internally stabilizes the
system Gof defined in (5) and achieves ‖Tzw‖ < 1 if and only if K stabilizes H̄tmp

(as defined in Figure 4) and achieves ‖Tq̄p̄‖ < 1.

� �

-

q̄ p̄

H̄tmpy u

K

H̄tmp ∼
 A + Y C ′

1C1 + Y C ′
2C2Y Z Y C ′

2 B2

B′
2Z 0 I

C2(I + Y Z) I 0



FIG. 4.

Proof. It can be easily verified that if X and Y satisfy the given conditions, then
Z := X(I−Y X)−1 is positive semidefinite and satisfies the algebraic Riccati equation

(A + Y C ′
1C1)′Z + Z(A + Y C ′

1C1) + Z(Y C ′
2C2Y −B2B

′
2)Z + C ′

1C1 = 0,

where A + Y C ′
1C1 + (Y C ′

2C2Y − B2B
′
2)Z is stable. From Lemma 4.5, a controller
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K solves the H∞ control problem for the system Gof defined in (5) if and only
if K stabilizes Htmp and achieves ‖Tqp‖∞ < 1. Now treating the system Htmp

as the system Gof and applying the Lemma 4.4 to it, one obtains the above
Lemma 4.6.

The following result is from [5] and gives a parameterization of all causal estima-
tors that achieve ‖Tew‖ < 1 for the estimation problem.

LEMMA 4.7. Let assumptions A3, A4 hold and let Y satisfy (28). Any causal
estimator E : y → ẑ that solves the estimation problem for the system Gp defined in
(4) and achieves ‖Tew‖ < 1 (where e = z− ẑ) can be represented as in Figure 5, where
Q is a causal operator with ‖Q‖ < 1.

� �

-

ẑ y

Ση ν

Q

Σ ∼
 A− Y C ′

2C2 Y C ′
2 Y C ′

1
C1 0 −I
−C2 I 0



FIG. 5.

The following lemma states that a causal estimator for the system Gp defined in
(4) achieves ‖Tew‖ < 1 if and only if it achieves ‖Tνη‖ < 1 for the system described in
Figure 6. This result follows immediately from the above parameterization of causal
estimators.

� �

-

ν η

Jtmpy ẑ

E

Jtmp ∼
 A + Y C ′

1C1 Y C ′
2 −Y C ′

1
C1 0 −I
C2 I 0



FIG. 6.

LEMMA 4.8. Let assumptions A3, A4 hold and let Y satisfy (28). A causal
estimator E : y → ẑ solves the estimation problem for the system Gp defined in
(4) and achieves ‖Tew‖ < 1 if and only if ‖Tνη‖∞ < 1 for the system described in
Figure 6.

Proof. Let x̂ be the state of the system Σ described in the Figure 5. Then the
system Σ can be redescribed as

˙̂x = (A + Y C ′
1C1)x̂ + Y C2η − Y C ′

1ẑ,

y = C2x̂ + η, ẑ = Ey, ν = C1x̂− ẑ.

The above is nothing but the description of the system Jtmp. Now the conclusion of
the above lemma follows immediately from Lemma 4.7 since the estimator E achieves
the desired performance if and only if ‖Tνη‖ < 1.

The following lemma, a proof of which is contained in [3, Propositions 3 and
4], is fairly straightforward. To state the result, we need to describe the feedback
connection of systems and controllers shown below in Figures 7 and 8.
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� �
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FIG. 8.

LEMMA 4.9. Let A−B1C2 be stable and the controller K1 be such that it internally
stabilizes the feedback system shown in Figure 7. If the controller K2 : y2 → u2 can
be represented as in Figure 9, then the feedback system represented in Figure 8 is
internally stable. Moreover, if K2 can be represented as in Figure 9, then the closed
loop map from w to z for the two feedback systems described in Figures 7 and 8 is
identical.

� �

-

u2 y2

Σ̄y1 u1

K1

Σ̄ ∼
 A−B1C2 B1 B2

0 0 I
−C2 I 0



FIG. 9.

Let K1 be the set of all controllers that internally stabilize the feedback system
shown in Figure 7 and render ‖Tzw‖ < 1. If A− B1C2 is stable, then any controller
K2 that internally stabilizes the feedback system shown in the Figure 8 and renders
‖Tzw‖ < 1 can be represented as in Figure 9, where K1 ∈ K1.

5. Proofs.
Proof of Theorem 3.1: The modified Nehari problem.
Necessity. Here we show that if there exists a causal system f that achieves the

desired performance, then λmax(P (t)Q(t)) < 1 ∀t ∈ [0, T ]. For clarity of exposition,
we will make a simplifying assumption that (F1, G1) and (F2, G2) are controllable
(all the subsequent arguments go through if this is not the case by replacing matrix
inverses by their pseudoinverses). Let the observability grammian Q defined in (8) be
partitioned as

Q :=
[

Q11 Q12
Q′

12 Q22

]
.(36)
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We will show that if the problem is solvable then with P1 and P2 as defined in (8),

P−1
1 (t)−Q11(t) + Q12(t)(P−1

2 (t) + Q22(t))−1Q′
12(t) > 0 ∀t ∈ (0, T ).(37)

Let x1 be the state of Σ1, x2 be the state of Σ2, and ŷ1 = f(w1), where f(·) is a
given causal function. Then the system can be written in state-space form as[

ẋ1
ẋ2

]
=

[
F1 0

G2H1 F2

] [
x1
x2

]
+

[
G1
0

]
w1 −

[
0

G2

]
ŷ1, x1(T ) = x2(T ) = 0,

e = [ H1 H2 ]
[

x1
x2

]
− ŷ1, where e := Σ2(Σ1w1 − ŷ1).

Fix a τ ∈ (0, T ) and a nonzero vector x1τ . Let w1 be such that w1(s) = 0 for all
s < τ , and for t ∈ [τ, T ] let w1 be the minimum norm input such that x1(τ) = x1τ for
the system (6). Then from Lemma 4.1 (note that the system here is anticausal),

‖w‖2[0,T ] = ‖w‖2[τ,T ] = x′
1τP−1

1 (τ)x1τ .

Since w1(s) = 0 for all 0 < s < τ and ŷ1 is causally generated from w1, ŷ1(s) = 0 for
all 0 < s < τ . Thus for 0 < s < τ ,[

ẋ1
ẋ2

]
=

[
F1 0

G2H1 F2

] [
x1
x2

]
, e = [ H1 H2 ]

[
x1
x2

]
,

and ‖e‖2[0,τ ] = x′(τ)Q(τ)x(τ),

where

x :=
[

x1
x2

]
.

Since e := Σ2(Σ1w1− ŷ1), the dynamics of system Σ2 can also be written as (with x2
as the state of Σ2)

ẋ2 = (F2 −G2H2)x2 + G2e, x2(T ) = 0.

Suppose there exists a causal f(·) that achieves the desired performance for the given
problem. Then for this f(·) and the given choice of w1, we have the following series
of inequalities, where the fourth step follows from application of Lemma 4.1 to the
above equation for x2:

0 < ‖w‖2[0,T ] − ‖e‖2[0,T ]

= ‖w‖2[τ,T ] − ‖e‖2[0,τ ] − ‖e‖2[τ,T ]

= x′
1τP−1

1 (τ)x1τ − x′(τ)Q(τ)x(τ)− ‖e‖2[τ,T ]

≤ x′
1τP−1

1 (τ)x1τ − inf
x2(τ)

{
x′(τ)Q(τ)x(τ) + inf

e

{
‖e‖2[τ,T ]

}}
= x′

1τP−1
1 (τ)x1τ − inf

x2(τ)

{
x′(τ)Q(τ)x(τ) + x2(τ)′P−1

2 (τ)x2(τ)
}

= x′
1τP−1

1 (τ)x1τ − x′
1τ [Q11(τ)−Q12(τ)(P−1

2 (τ) + Q22(τ))−1Q′
12(τ)]x1τ ,
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where in obtaining the last step we have used the fact that if M > 0, then

inf
x2

{[
x′

2 x′
1

] [
M S
S′ N

] [
x2
x1

]}
= inf

x2

{
‖M1/2(x2 + M−1Sx1)‖2 + x′

1(N − S′M−1S)x1

}
= x′

1(N − S′M−1S)x1.

Since the above inequality is true for all τ ∈ (0, T ) and for all x1τ we see that (37)
holds. This implies that the matrix P−1(τ)−Q(τ) is invertible for all τ ∈ (0, T ), or
equivalently that λmax(P (τ)Q(τ)) < 1 ∀τ ∈ [0, T ].

Sufficiency. Here we first show that any causal f : w1 → ŷ1 that is of the form
(9) achieves supw1

‖Σ2(Σ1w1−ŷ1)‖2

‖w1‖2 < 1. With x as defined above, the composite state-
space expression for the system Σ1, Σ2 and the operator f(·) defined in (9) can be
written as

η̇ = F̌ η + Ǧν,[
e
η

]
= Ȟη +

[
I 0
0 I

]
ν,

(38)

where

η =
[

x
q

]
, ν =

[
v
w1

]
, F̌ =

[
F̄ G̃2(H̄P − G̃′

2)
0 −F̃ ′ −NQG̃1G̃

′
1

]
,(39)

Ǧ =
[

G̃2 G̃1

N(QG̃2 − H̄ ′) NQG̃1

]
, Ȟ =

[
H̄ H̄P − G̃′

2
0 −G̃′

1

]
.(40)

With

X̌ :=
[

Q −(I −QP )
−(I − PQ) −(I − PQ)P

]
=

[
Q −N−1

−N−T −N−T P

]
,(41)

one can verify by straightforward though tedious algebra that the following hold:

−dX̌

dt
= F̌ ′X̌ + X̌F̌ − Ȟ ′Ȟ,

Ǧ′X̌ = Ȟ.

From (38) and above, one notes that

d(η′X̌η)
dt

= η′
[
F̌ ′X̌ + X̌F̌ +

d(X̌)
dt

]
η+η′X̌Ǧν+ν′Ǧ′X̌η =

[
ν + Ȟη

]′ [
ν + Ȟη

]−ν′ν.

Integrating d(η′X̌η)
dt from 0 to T one obtains (the boundary terms drop out because of

boundary conditions on x, q, Q, and P )

‖w1‖2 + ‖v‖2 = ‖η‖2 + ‖e‖2.(42)

Since ‖Θ‖ < 1, there exists an ε > 0 such that ‖η‖2 − ‖v‖2 ≥ ε‖η‖2. Thus

‖w1‖2 − ‖e‖2 ≥ ε‖η‖2 ≥ ε

‖Tw1η‖‖w1‖2.
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To complete the proof, it remains to be shown that any causal f : w1 → ŷ1 that
achieves the desired performance admits a representation as described in (9) for some
Θ with ‖Θ‖ < 1. This will now be shown using Lemma 4.3. Let f : w1 → ŷ1 be a
causal operator that achieves supw1

‖Σ2(Σ1w1−ŷ1)‖2

‖w1‖2 < 1. Define v := ŷ1− [H̄P − G̃′
2]q,

where q satisfies the differential equation described in (9). Then

P :
[

w1
v

]
→

[
e
η

]
is described by the system (38). As observed above, P is isometric (i.e., ‖w1‖2+‖v‖2 =
‖η‖2 + ‖e‖2). It is also easily seen that the map from w1 to η is invertible (i.e., P−1

21
exists), and since the problem is defined over a finite interval, P and P−1

21 are stable.
Thus from Lemma 4.3 we conclude that ‖Tew1‖ < 1 if and only if ‖Tvη‖ < 1. Moreover,
since the map f(·) is required to be causal, from (9) we observe that so must be Tvη.
The required result follows by noting Θ := Tvη.

Before proceeding to the proof of the next theorem, we state the following lemma,
the proof of which is implicit in the necessity proof of the modified Nehari problem,
and thus we state it without proof. For any given τ ∈ [0, T ], letWτ and Yτ be defined
as

Wτ := {w1 ∈ L2[0, T ] : w1(s) = 0 ∀ 0 ≤ s < τ},
Yτ := {ŷ1 ∈ L2[0, T ] : ŷ1(s) = 0 ∀ 0 ≤ s < τ}.

LEMMA 5.1. Let Σ1 and Σ2 be anticausal systems described in equations (6)
and (7), respectively. The given modified Nehari problem (Problem 5 in section 2) is
solvable (i.e., there exists a causal f : w1 → ŷ1 that achieves supw1

‖Σ2(Σ1w1−ŷ1)‖2

‖w1‖2 < 1)
if and only if there exists an ε > 0 so that

inf
w1∈Wτ

sup
ŷ1∈Yτ

{‖w1‖2 − ‖Σ2(Σ1w1 − ŷ1)‖2} ≥ ε‖w1‖2

holds for all τ ∈ (0, T ).
Proof of Theorem 3.2: The basic delay problem.
Necessity. Here we show that if there exists a causal operator f(·) that achieves

the desired performance bound, then the Riccati differential equation described in
(22) admits a solution. Since the information available to any admissible f about w is
delayed by h units, for t ∈ [0, h) it has no information and thus ẑ(t) = 0 for t ∈ [0, h].
Thus an existence of an admissible f so that supw

‖z−ẑ‖2

‖w‖2 < 1 implies that, for some
ε > 0,

‖w‖2[0,h] − ‖Cx‖2[0,h] ≥ ε‖w‖2[0,h]

for the system G defined in (2). It is well known (see, for example, [7]) that the above
requirement is equivalent to the existence of a solution to the Riccati differential
equation described by (22).

Sufficiency. The proof is somewhat long and hence we will break it down into
smaller steps.

(1) Here we rewrite Cx, the signal to be estimated for the system (2), as a sum
of three parts. The first part is predictable with the information available to the
estimator, i.e., with knowledge of w with a delay of h units. For easier reading, we
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rewrite some of the notation described previously.

dΨ(τ, s)
dτ

= (A + BB′X(τ))Ψ(τ, s), Ψ(s, s) = I, B̄(τ) = eAτΨ(h, τ)B for τ ∈ [0, h],

{wi} = Ww,

ri = G0wi, i ≥ 0,

z10 = 0, z1i = G1ri−1 for i ≥ 1,

z20 = 0, z2i = G2ri for i ≥ 1,

where the systems G0, G1, and G2 are as defined in (14), (15), and (16), respectively.
From the above equations it is easily verified that, for all τ ∈ [0, h] and i ≥ 1,

z2i(τ) = C

∫ τ

0
Ψ(τ, s)Bri(s)ds = C

∫ τ

0
eA(τ−s)Bwi(s)ds,

z1i(τ) = −C

∫ τ

h

eA(τ−s)B̄(s)ri−1(s)ds

= C

∫ h

τ

eA(τ−s)eAsΨ(h, s)Bri−1(s)ds = CeAτ

∫ h

τ

Ψ(h, s)Bri−1(s)ds,

where the second equality of the first equation above follows from the fact that G2G0 =
G. Again using the fact that G2G0 = G and from (2), we have that, for any τ ∈ [0, h]
and for any integer i ≥ 1,

x(ih + τ) = eAτx(ih) +
∫ τ

0
eA(τ−s)Bwi(s)ds

= eAτ

[
eAhx((i− 1)h) +

∫ h

0
Ψ(h, s)Bri−1(s)ds

]
+

∫ τ

0
eA(τ−s)Bwi(s)ds

=
[
eA(τ+h)x((i− 1)h) + eAτ

∫ τ

0
Ψ(h, s)Bri−1(s)ds

]
+ eAτ

∫ h

τ

Ψ(h, s)Bri−1(s)ds +
∫ τ

0
Ψ(τ, s)Bri(s)ds.

From the above and definitions of z1i and z2i as defined in (20) and (21), one obtains

z(ih + τ) = Cx(ih + τ)(43)

= C

[
eA(τ+h)x((i− 1)h) + eAτ

∫ τ

0
Ψ(h, s)Bri−1(s)ds

]
(“term 1”)

+ CeAτ

∫ h

τ

Ψ(h, s)Bri−1(s)ds + C

∫ τ

0
Ψ(τ, s)Bri(s)ds

= “term 1” + G1ri−1(τ) + G2ri(τ) = “term 1” + z1i(τ) + z2i(τ).

The “term 1” depends only on w(s) for s ≤ (i − 1)h + τ and thus is completely
obtainable at t = ih + τ with knowledge of w with h units’ delay. Note also that the
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first term in the estimate ẑ of z in the statement of Theorem 3.2 is nothing but the
“term 1.” With the following notation of {ˆ̂zi} ∈ lL2[0,h],

ˆ̂z0 = 0,

ˆ̂zi(τ) := ẑ(ih + τ)− C

{
eA(τ+h)x((i− 1)h) + eAτ

∫ τ

0
Ψ(h, s)Bri−1(s)ds

}
for i ≥ 1

= ẑ(ih + τ)− “term 1,”(44)

and the above decomposition of Cx, it follows that to show that the ẑ = f(w) achieves
the desired performance, we have to show that

sup
w

‖Cx‖2[0,h] + ‖{z1i + z2i − ˆ̂zi}‖2
‖w‖2 < 1,(45)

where ˆ̂zi is as defined in (44). Thus the given problem is solvable if and only if there
exists a function f̂ : L2 → lL2[0,h] so that with ˆ̂z0 = 0, ˆ̂zi(τ) = f̂(w(s))(τ), where
0 ≤ s ≤ (i− 1)h + τ, τ ∈ [0, h], the above inequality holds.

(2) Here we obtain an expression for

‖w‖2 − ‖Cx‖2[0,h] − ‖{z1i + z2i − ˆ̂zi}‖2

for any given {ˆ̂zi} ∈ lL2[0,h] such that ˆ̂z0 = 0. The expression we obtain not only is
an important step in the proof but also may provide an insight into the structure of
the problem and how ˆ̂zi must be chosen so as to satisfy (45).

Noting that G2G0 = G, one can write the expressions for ri and z2i defined in (19)
and (21) using a single differential equation as

ẋ0(τ) = Ax0(τ) + Bwi(τ), τ ∈ [0, h], x0(0) = 0,
ri(τ) = wi(τ)−B′X(τ)x0(τ),

z2i(τ) = Cx0(τ).

Integrating d(x′
0Xx0)
dt from 0 to h, where X satisfies (22), one obtains that

‖wi‖2 − ‖z2i‖2 = ‖ri‖2.
Similarly one can show that ‖w0‖2 − ‖Cx‖2[0,h] = ‖r0‖2. From the above equation we

have that for any {ˆ̂zi} such that ˆ̂z0 = 0,

‖w‖2 − ‖Cx‖2[0,h] − ‖{z1i + z2i − ˆ̂zi}‖2

= ‖r0‖2 +
∑

i≥1

[
{‖wi‖2 − ‖z2i‖2} − 2〈z1i − ˆ̂zi, z2i〉[0,h] − ‖z1i − ˆ̂zi‖2

]
= ‖r0‖2 +

∑
i≥1

[
‖ri‖2 − 2〈z1i − ˆ̂zi, G2ri〉[0,h] − ‖z1i − ˆ̂zi‖2

]
= ‖r0‖2 +

∑
i≥1

[
‖ri‖2 − 2〈G∗

2(z1i − ˆ̂zi), ri〉[0,h] − ‖z1i − ˆ̂zi‖2
]

= ‖r0‖2 +
∑

i≥1

[
‖ri −G∗

2(z1i − ˆ̂zi)‖2 − 〈(I + G2G
∗
2)(z1i − ˆ̂zi), (z1i − ˆ̂zi)〉[0,h]

]
= ‖r0‖2 +

∑
i≥1

[
‖ri −G∗

2(z1i − ˆ̂zi)‖2 − ‖G3(z1i − ˆ̂zi)‖2
]
.

(46)
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The last equality stems from Lemma 4.2. Noticing the way {w1i} ∈ lL2[0,h] is defined
in the theorem statement (w10 = r0 and w1i = ri −G∗

2(z1i − ˆ̂zi) for i ≥ 1) and using
the definition of z1i (z1i = G1ri−1), the above equation can be rewritten as

‖w‖2 − ‖Cx‖2[0,h] −
∑

i≥1 ‖z1i + z2i − ˆ̂zi‖2

=
∑

i≥0

[
‖w1i‖2 − ‖G3(z1(i+1) − ˆ̂zi+1)‖2

]
=

∑
i≥0

[
‖w1i‖2 − ‖G3(G1w1i + νi − ˆ̂zi+1)‖2

]
,

(47)

where {νi} ∈ lL2[0,h] is defined as

νi := G1G
∗
2(z1i − ˆ̂zi), i ≥ 0.

(3) In this part we will show that a certain modified Nehari problem admits
a solution. Based on this modified Nehari problem and (47), we will qualitatively
outline the structure of all admissible f : w → ẑ (or equivalently, f̂ : w → ˆ̂z) that
achieve the desired performance bound.

The signal z1i (z1i = G1iri−1) depends only on w(s), 0 ≤ s ≤ ih. Because
of the presence of delay, for all admissible f̂ : w → ˆ̂z, ˆ̂zi also depends only on
w(s), 0 ≤ s ≤ ih. Thus both of the signals z1i and ˆ̂zi are known if one knows w(s)
for all 0 ≤ s ≤ t = ih. Thus the signal νi = G1G

∗
2(z1i− ˆ̂zi) is also known if one knows

w(s) for all 0 ≤ s ≤ t = ih. Treating νi as a known signal, each of the terms in the
summation in (47) can be viewed as a modified Nehari problem (problem 5 in the
problem definition section) if one makes the following association with the terminology
of the modified Nehari problem (note that both G1 and G3 are anticausal systems):

Σ1 ← G1, Σ2 ← G3, w1 ← w1i, ŷ1 ← ˆ̂zi+1 − νi, T ← h.

It is shown in the appendix that if the Riccati differential equation (22) admits a
solution, then indeed the above modified Nehari problem is solvable.

We now briefly outline how ˆ̂zi+1 is chosen from the solution of the above modified
Nehari problem. Let us make the following association with the notation adopted in
the modified Nehari problem:

Σ1 ← G1, Σ2 ← G3, w1 ← w1i, T ← h, ŷ1 ← ŷi+1, v ← vi, η ← ηi.

It follows from equation (42) of the modified Nehari problem proof that for all integers
i ≥ 0

‖w1i‖2 − ‖G3(G1w1i − ŷi+1)‖2 = ‖ηi‖2 − ‖vi‖2.
If ˆ̂zi+1 is chosen as ˆ̂zi+1 = ŷi+1 + G1G

∗
2(z1i− ˆ̂zi) = ŷi+1 + νi, then it follows from the

above that

‖w1i‖2 − ‖G3(G1w1i + G1G
∗
2(z1i − ˆ̂zi)− ˆ̂zi+1)‖2 = ‖ηi‖2 − ‖vi‖2 ∀i ≥ 0.

Summing the above for all i ≥ 0, one observes that

P :
[ {w1i}
{vi}

]
→

[ {G3(G1w1i + G1G
∗
2(z1i − ˆ̂zi)− ˆ̂zi+1)}
{ηi}

]
is isometric.(48)
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Thus ‖{w1}‖2 + ‖{vi}‖2 = ‖{ηi}‖2 + ‖{G3(G1w1i + G1G
∗
2(z1i − ˆ̂zi) − ˆ̂zi+1)}‖2. If

additionally ‖{ηi}‖2 > ‖{vi}‖2, then the right-hand side of (47) would be greater
than or equal to zero and thus the required performance bound would be achieved.

Because of the presence of delay, one also needs to show that for any τ ∈ [0, h],
ˆ̂zi+1(τ) chosen as above depends only on w(s) for 0 ≤ s ≤ ih + τ . Let i ≥ 1 be any
given integer. We have already established that νi depends only on w(s) for s ≤ ih.
Also, ˆ̂zi+1 = ŷi+1 + νi where ŷi+1 is the estimate for the modified Nehari problem.
From the definition of modified Nehari problem, for any τ ∈ [0, h], ŷi+1(τ) is generated
causally from w1i and thus depends only on w1i(s) for 0 ≤ s ≤ τ . From the definition
of w1i it then follows that ŷi+1(τ) depends only on w(s) for 0 ≤ s ≤ ih + τ . Thus
ˆ̂zi+1(τ) = yi+1(τ) + νi(τ) depends only on w(s) for 0 ≤ s ≤ ih + τ .

(4) In this part we complete the proof of the “sufficiency” along the lines outlined
in the previous subsection. For convenience, the set of all estimators described in (24)
is reproduced below:

ŷi+1 = N 1
[G1,G3,h,Θ](w1i), i ≥ 0,

ηi = N 2
[G1,G3,h,Θ] : (w1i), i ≥ 0,

ˆ̂zi+1 = ŷi+1 + G1G
∗
2(z1i − ˆ̂zi), i ≥ 0,

{vi} = Θ{ηi}, where ‖Θ‖ < 1.

From (48) and (47) it follows that

‖w‖2 − ‖Cx‖2[0,h] −
∑

i≥1 ‖z1i + z2i − ˆ̂zi‖2

=
∑

i≥0

[‖ηi‖2 − ‖vi‖2
]

≥ γ‖{ηi}‖2 (for some γ > 0 since ‖Θ‖ < 1)

≥ ε1γ‖{w1i}‖2 (for some ε1 > 0)

≥ ε2ε1γ‖{wi}‖2 = ε‖w‖2 (for some ε2 > 0, and thus ε = ε2ε1γ > 0),

(49)

where the third from last inequality follows from the fact that ‖Θ‖ < 1, where Θ :
{ηi} → {vi}. The second from last inequality follows from the fact that with {vi} =
Θ{ηi}, the map from {ηi} to {w1i} is bounded. The last inequality is a consequence
of the fact that the map from {w1i} to {wi} is bounded.

The above inequality, together with the fact that it is enough to show (45), leads
to the conclusion that the maps f : w → ẑ described in (24) achieve the desired
performance bound.

(5) Next we show that any f : w → ẑ that is admissible and achieves the desired
performance bound, admits a realization as in the theorem statement with some causal
Θ such that ‖Θ‖ < 1. This is shown as in the proof of the modified Nehari problem.
Let f : w → ẑ be admissible and achieve the desired performance bound. For this
f , let the operator f̂ be defined as f̂ : w → ˆ̂z, where ˆ̂zi is as defined in (44). Then
from (45) one notes that there exists an ε > 0 such that

‖w‖2 − ‖Cx‖2[0,h] − ‖{z1i + z2i − ˆ̂zi}‖2 ≥ ε‖w‖2.

Since z1i = G1G0wi−1 and z2i = G2G0wi, ‖{z1i}‖ ≤ ‖G1G0‖‖w‖ and ‖{z2i}‖ ≤
‖G2G0‖‖w‖, where both ‖G1G0‖ and ‖G2G0‖ are bounded, since these operators are
defined over a finite interval. From this together with the fact that the above inequality
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holds, one concludes that there exists an M < ∞ such that ‖{ˆ̂zi}‖ ≤ M‖w‖. Since
w1i = ri − G∗

2(z1i − ˆ̂zi), ‖{w1i}‖ < γ‖w‖ for some γ < ∞. Thus for this f̂ : w → ˆ̂z
that is admissible and achieves the desired performance, from the above equation and
(47),

‖w‖2 − ‖Cx‖2[0,h] −
∑

i≥1 ‖z1i + z2i − ˆ̂zi‖2

=
∑

i≥0

[‖w1i‖2 − ‖ei‖2
] ≥ ε1‖{w1i}‖2,

where ε1 = ε
γ > 0 and

ei := G3(G1w1i + G1G
∗
2(z1i − ˆ̂zi)− ˆ̂zi+1).

For this function f̂ , let {vi} ∈ lL2[0,h] be defined as vi := G1G
∗
2(z1i − ˆ̂zi) − [H̄dPd −

G̃′
2d]qi − ˆ̂zi+1, where qi is the solution of the differential equation described in (24).

Also, let ηi be as defined in (24). The map from w1i to ηi is invertible and bounded
(since the system is defined over a finite interval). Now from (48) and Lemma 4.3 we
conclude that ‖T{ei}{w1i}‖ < 1 if and only if ‖T{vi}{ηi}‖ =: ‖Θ‖ < 1. Next we argue
that Θ must also be causal. Because of the delay, for any τ ∈ [0, h], ˆ̂zi+1(τ) should
depend only on w1j , j < i, and w1i(s), 0 ≤ s ≤ τ . It is easily observed from (24) that
this is the case if and only if vi(s) depends only on w1j , j < i, and w1i(s), 0 ≤ s ≤ τ .
This is the case if and only if Θ = T{vi}{ηi} is causal.

Proof of Theorem 3.3: Full information control problem with delay.
The proof of the Theorem 3.3 proceeds by converting the original problem to one

that is equivalent to a basic delay problem using Lemma 4.4 adapted to the system
Gfi.

Necessity. Here we show that conditions (1) and (2) of Theorem 3.3 must be satis-
fied for there to exist a controller which stabilizes the system and achieves ‖Tzw‖ < 1.
Condition 1 is a necessary condition for the existence of controllers that achieve the
desired performance even in the absence of delay (see, for example, [3]). Thus it must
also be a necessary condition when the measurements are available with a delay.

From the full information (full information is used to denote complete information
about the state and the exogenous signal) equivalent to Lemma 4.4 (see, for example,
[3]), one concludes that if there exists a controller K that achieves ‖Tzw‖ < 1 for the
system Gfi, then for the same controller ‖Tvr‖ < 1 for the following system:

ẋ = (A + B1B
′
1X)x + B1r + B2u, t ∈ [0,∞), x(0) = 0,

v = B′
2Xx + u,

y =
[

x
r

]
,

u(t) = f(y(s)) with s ≤ t− h,

(50)

where the function f(·) defines the controller. Since for t ∈ [0, h) the controller has
no information, u(t) = 0 for t ∈ [0, h). Thus if ‖Tvr‖ < 1, there exists an ε > 0 such
that

‖r‖2[0,h] − ‖B′
2Xx‖2[0,h] ≥ ε‖r‖2[0,h]

for the system given by the equation (50) with u(t) = 0 for t ∈ [0, h). A necessary
and sufficient condition for this to hold is nothing but condition (2) of Theorem 3.3.
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Sufficiency. Here we show that all the controllers that achieve the desired per-
formance are as described in the statement of Theorem 3.3. Because of Lemma 4.4,
it is enough to show that all such controllers are the ones that achieve ‖Tvr‖ < 1 for
the system described by (50).

The state x of the system described in equation (50) can be written as the sum
of two states, one driven by the input u and the other by the exogenous signal r:

ẋ1 = (A + B1B
′
1X)x1 + B1r, t ∈ [0,∞), x1(0) = 0,

ẋ2 = (A + B1B
′
1X)x2 + B2u, t ∈ [0,∞), x2(0) = 0,

x = x1 + x2,

v = B′
2X(x1 + x2) + u.

At any time t, x2(t) is known since it is generated by past inputs which are known.
Thus x2 can be treated as a deterministic/known signal. Let ū := u + B′

2Xx2. Thus
a given controller K : r → u achieves the desired performance if and only if with
ū := u + B′

2Xx2, ‖Tvr‖ < 1 for the following system:

ẋ1 = (A + B1B
′
1X)x1 + B1r, t ∈ [0,∞), x1(0) = 0,

v = B′
2Xx1 + ū,

ū(t) = f̄(r(s)) with 0 ≤ s ≤ t− h.

(51)

We now note that for the above system, the problem of determining ū so as to achieve
‖Tvr‖ < 1 is nothing but a basic delay problem (Problem 1) if one makes the following
association with the terminology of the basic delay problem:

A← A + B1B
′
1X, B ← B1, C ← −B′

2X, ẑ ← ū.

From Theorem 3.2 one concludes that the above basic delay problem is solvable be-
cause of condition (2) of Theorem 3.3. Let Ω : r → ū, where Ω ∈ D[A+B1B′

1X,B1,−B′
2X,h];

i.e., Ω solves the basic delay problem for the system described in (51) and achieves
‖Tvr‖ < 1. Then from the above arguments it follows that u = ū − B′

2Xx2 achieves
‖Tvr‖ < 1 for the system given by (50). It is easily verified that all controllers pre-
sented in Theorem 3.3 are of this form.

Next we show that any controller that achieves ‖Tvr‖ < 1 for the system described
in equation (50) admits a realization as described in Theorem 3.3. Let the controller
K : r → u be admissible and achieve ‖Tvr‖ < 1 for the system described by (50).
Define ū := u + B′

2Xx2, where x2 is as defined above and in the theorem statement.
For this controller K, let K̄ : r → ū be the corresponding map from r to ū. Then
using the above decomposition of x, one concludes that K̄ solves the basic delay
problem for the system described in (51) and achieves ‖Tvr‖ < 1 or, equivalently,
K̄ ∈ D[A+B1B′

1X,B1,−B′
2X,h].

Proof of Theorem 3.5: Output feedback control problem with delay.
The proof of Theorem 3.5 proceeds by converting the original problem to one that

is equivalent to a basic delay problem using Lemmas 4.6 and 4.9.
Necessity. Here we show that conditions (30), (31), (32), and (33) of Theorem 3.5

must be satisfied for there to exist a controller which stabilizes the system and achieves
‖Tzw‖ < 1. Conditions (30), (31), and (32) are necessary conditions for existence of
controllers that achieve the desired performance even in the absence of delay (see,
for example, [3]). Thus they must also necessarily hold when the measurements are
available with a delay.
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From Lemma 4.6 one concludes that if there exists a controller K that achieves
‖Tzw‖ < 1, then for the same controller, ‖Tq̄p̄‖ < 1 for the following system:

ẋ = (A + Y C ′
1C1 + Y C ′

2C2Y Z)x + Y C ′
2p̄ + B2u, t ∈ [0,∞), x(0) = 0,

q̄ = B′
2Zx + u,

y = C2(I + Y Z)x + p̄,

u(t) = f(y(s)) with 0 ≤ s ≤ t− h,

(52)

where the function f(·) defines the controller. Since for t ∈ [0, h) the controller has
no information, u(t) = 0 for t ∈ [0, h). Thus if ‖Tq̄p̄‖ < 1, there exists an ε > 0 such
that

‖p̄‖2[0,h] − ‖B′
2Zx‖2[0,h] ≥ ε‖p̄‖2[0,h]

for the system described by (52) with u(t) = 0 for t ∈ [0, h). A necessary and sufficient
condition for this to hold is nothing but the condition (33) of the theorem statement.

Sufficiency. Here we show that all the controllers that achieve the desired per-
formance are as described in the statement of Theorem 3.5. From the Lemma 4.6, all
controllers that achieve the desired performance are the ones that achieve ‖Tq̄p̄‖ < 1
for the system described by (52).

Consider the following system, which has the same dynamics as the system (52),
but now the controller has delayed measurements of p̄ instead of C2(I + Y Z)x + p̄;
i.e.,

ẋ = (A + Y C ′
1C1 + Y C ′

2C2Y Z)x + Y C ′
2p̄ + B2u, t ∈ [0,∞), x(0) = 0,

q̄ = B′
2Zx + u,

y2 = p̄,

u(t) = g(y2(s)) with 0 ≤ s ≤ t− h.

(53)

For the system described by (53), the problem of obtaining g(·) so that ‖Tq̄p̄‖ < 1 is
of the same type as was encountered in equation (50) in the proof of Theorem 3.3. As
in the proof of Theorem 3.3, one concludes that the above problem is solvable because
of condition 4 of Theorem 3.5. One now proceeds exactly as before in the proof of
Theorem 3.3 to conclude that any controller that achieves the desired performance
‖Tq̄p̄‖ < 1 for the system (53) has a realization of the following form:

KΩ


ẋ2 = (A + Y C ′

1C1 + Y C ′
2C2Y Z)x2 + B2u, t ∈ [0,∞), x2(0) = 0,

u(t) = 0, t ∈ [0, h),
u(t) = −B′

2Zx2 + (Ωp̄)(t) t ≥ h,

where Ω ∈ D[(A+Y C′
1C1+Y C2C′

2Y Z),Y C′
2,−B′

2Z,h]. Let us define the above controller as
KΩ : p̄→ u.

Note that from condition 2 of Theorem 3.5, A+Y C ′
1C1−Y C2C

′
2 is stable. From

Lemma 4.9 it follows that all controllers that achieve ‖Tq̄p̄‖ < 1 for system (52) are
of the form

ẋ1 = (A + Y C ′
1C1 − Y C ′

2C2)x1 + Y C ′
2y + B2u, t ∈ [0,∞), x1(0) = 0,

r = −C2(I + Y Z)x1 + y,

u = KΩr.
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It is easily verified that the controllers described in Theorem 3.5 that achieve the
desired performance are of the above form.

Proof of Theorem 3.4: Prediction problem.
The proof of Theorem 3.4 proceeds by converting the original problem to one

that is equivalent to a basic delay problem using Lemma 4.8. From Lemma 4.8 one
concludes that if there exists a predictor E that achieves ‖Tew‖ < 1, then for the same
predictor ‖Tνη‖ < 1 for the following system:

ẋ = (A + Y C ′
1C1)x + Y C ′

2η − Y C ′
1ẑ, t ∈ [0,∞), x(0) = 0,

ν = C1x− ẑ,

y = C2x + η,

ẑ(t) = f(y(s)) with 0 ≤ s ≤ t− h,

(54)

where the function f(·) defines the predictor. This problem is completely analogous
to (52), discussed in the proof of Theorem 3.5, and the proof proceeds along the same
lines if one makes the following association with the terminology in (52):

(A + Y C ′
1C1 + Y C ′

2C2Y Z)← (A + Y C ′
1C1), Y C ′

2 ← Y C ′
2, B2 ← Y C ′

1,

B′
2Z ← C1, C2(I + Y Z)← C2, p̄← η, q̄ ← ν, u← −ẑ.

6. Summary. In this paper we have presented state-space solutions to H∞
control and estimation problems when there is a delay present in the measurements or
implementation of control. The necessary and sufficient conditions are given in terms
of finite-dimensional algebraic and differential Riccati equations. Using the solutions
to these Riccati equations, one can obtain explicit state-space realizations for the
controllers and predictors. The “central” solution for the controllers/estimators is a
linear periodic system, with the period being the amount of delay present. Though
the approach presented here may provide some new insight about how “lifting” type
techniques can be used for such problems, it is not clear if these ideas are generalizable
to a wider class of problems, such as ones involving multiple delays in dynamics or
measurements.

Appendix. Here we show that if the Riccati differential equation (22) admits a
solution, then the modified Nehari problem with the following association with the
terminology of the modified Nehari problem is solvable:

Σ1 ← G1, Σ2 ← G3, T ← h.

In the discussions that follow, τ is a fixed number in the interval τ ∈ (0, h). Recall
that {wi} = Ww and ri = G0wi. Let Wτ , Zτ , and Rτ be defined as follows:

Wτ := {w0 ∈ L2[0, h] : w0(s) = 0 ∀ 0 ≤ s < τ},
Zτ := {ˆ̂z1 ∈ L2[0, h] : ˆ̂z1(s) = 0 ∀ 0 ≤ s < τ},
Rτ := {r0 ∈ L2[0, h] : r0(s) = 0 ∀ 0 ≤ s < τ}.

(55)

Since r0 = G0w0 and G0 is causal and invertible, r0 ∈ Rτ if and only if w0 ∈ Wτ .
From (43) one notes that for any w0 ∈ Wτ , z = Cx for the system (2) in the interval
[h, 2h] can be written as

Cx(h + t) = z11(t) + z12(t), t ∈ [0, h],(56)
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where z11(t) = G1r0(t) and z21(t) = G2r1(t), since the “term 1” here is 0 because
x(0) = 0 and r0(s) = 0, 0 ≤ s < τ .

It is well known that existence of a solution to the Riccati differential equation
described by (22) implies that, for some ε > 0,

‖w‖2[0,h] − ‖Cx‖2[0,h] ≥ ε‖w‖2[0,h] ∀w ∈ L2[0, h](57)

for the system G defined in (2). The following observation follows immediately from
the above inequality: for any w ∈ L2[0, 2h] for which w0 ∈ Wτ ,

supq{‖w‖2[τ,2h] − ‖Cx‖2[τ,τ+h] − ‖Cx− q‖2[τ+h,2h]}
= {‖w‖2[τ,τ+h] − ‖Cx‖2[τ,τ+h]}+ ‖w‖2[τ+h,2h]

(with q chosen as q(t) = Cx(t), t ∈ [τ + h, 2h])

≥ ε‖w‖2[τ,τ+h] (from (57) and the fact that x(τ) = 0 since w0 ∈ Wτ ).

(58)

Moreover, if w0 ∈ Wτ , the following holds for any choice of ˆ̂z1:

‖w‖2[0,2h] − ‖Cx‖2[0,h] − ‖Cx− ˆ̂z1‖2[h,2h]

= ‖w0‖2[τ,h] + ‖w1‖2 − ‖Cx‖2[τ,h] − ‖Cx− ˆ̂z1‖2[h,2h] (since w0 ∈ Wτ )

= ‖w0‖2[τ,h] + ‖w1‖2 − ‖Cx‖2[τ,h] − ‖z11 + z21 − ˆ̂z1‖2 (from (56))

= ‖r0‖2[τ,h] + ‖r1 −G∗
2i(z11 − ˆ̂z1)‖2 − ‖G3(z11 − ˆ̂z1)‖2 (from (46)).

From the above identity and (58) it follows that for any r1 ∈ L2[0, h] and r0 ∈ Rτ ,

sup
ˆ̂z1∈Zτ

{‖r0‖2[τ,h] + ‖r1 −G∗
2i(z11 − ˆ̂z1)‖2 − ‖G3(z11 − ˆ̂z1)‖2} ≥ ε‖w‖2[τ,τ+h] ≥ ρ‖r0‖2[τ,h]

for some ρ > 0. Since the above holds for all r1, it also holds for r1 = G∗
2i(z11 − ˆ̂z1).

Thus

inf
r0∈Rτ

sup
ˆ̂z1∈Zτ

{‖r0‖2[τ,h] − ‖G3(G1r0 − ˆ̂z1)‖2} ≥ ρ‖r0‖2[τ,h],

where we have used the fact that z11 = G1r0. Since the above holds for any τ ∈ (0, h),
we conclude from Lemma 5.1 that the given modified Nehari problem is solvable.
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Abstract. It has been recently shown in [Automatica J. IFAC, 29 (1993), pp. 969–983; IEEE
Trans. Automat. Control, 39 (1994), pp. 762–779] that time-domain constraints can be incorporated
explicitly into H∞ optimal control problems over a finite horizon. In this paper, we construct a
sequence of such finite-horizon constrained H∞ optimization problems and show that their solutions
converge to the solution of the infinite-horizon H∞ optimization. We prove that convergence is
uniform in the H∞ norm and that the optimal solution to the infinite-horizon problem is unique.

Key words. H∞ optimal control, time-domain constraints

AMS subject classifications. 93C05, 93C80, 49N05

PII. S0363012995256898

1. Introduction. It has been recently shown that time-domain constraints can
be incorporated explicitly into the H∞ optimal control problems over a finite horizon.
More specifically in [10, 8], the problem of minimizing the H∞ norm of a closed-loop
transfer function of a discrete-time system subject to convex constraints on the time
responses of several closed-loop responses to given test signals such as steps, impulses,
etc. imposed over a finite horizon is solved exactly.

These results allow significantly more insight into the properties of the constrained
optimal systems and offer certain computational advantages over pure convex pro-
gramming approaches for constrained control problems [4, 6, 2, 5]. These results are
outlined in section 2.

In the approach in [10, 8], one perhaps expects that the decay of the time-domain
responses implied by the asymptotic stability of the closed-loop system, along with the
constraints over the finite horizon, produce a desirable time-domain behavior over the
infinite horizon. However, constrained H∞ optimal solutions may exhibit undesirable
time-domain behavior immediately after the finite horizon, regardless of how long this
horizon is extended.

This behavior is essentially caused because constrained H∞ optimal solutions
over a finite horizon are allpass, while such solutions over an infinite horizon are not
necessarily so. Section 3 illustrates this point by a simple design example.

Given this situation, the following questions arise. What is the optimal con-
strained H∞ norm, µ∞, for the infinite-horizon problem? Is µ∞ achieved, and if yes,
what are the properties of the constrained optimal solution t∗? How can this solution
be obtained or approximated? It is shown in [9] that under certain assumptions t∗

exists, and a sequence of finite-horizon solutions tn obtained by extending the horizon
converges to t∗ in the so-called normal sense; that is, there exists a subsequence tnk

of tn that converges to t∗ uniformly on compact sets of Dc .= {z ∈ C / |z| > 1} [1].
However, in the approach of [9] an approximating sequence is difficult to construct.
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In this note, we take a different approach to the infinite-horizon constrained H∞
problem. As is observed in [10], one can sacrifice optimality in the finite-horizon H∞
optimization problems in order to obtain good behavior of the tail response. This is
achieved in [10] by placing the closed-loop poles inside a diskD1/ρ of radius 1/ρ, ρ > 1,
instead of the unit disk by means of a scaling z ←− ρ · z, which is undone once the
transfer function of the controller has been obtained. A similar device, although in a
different setting, has been recently used in [11]. Examples in [10] show that extending
the horizon coupled with such a ρ-scaling is very effective in producing a response that
satisfies the constraints over the infinite horizon. However, no analysis has been given
relating the solutions obtained in this manner to the optimal constrained H∞ solution
over the infinite horizon. The main result of this paper is to show that by taking the
limit ρ → 1 and by extending the time horizon appropriately, a sequence of real
rational solutions is obtained that converges uniformly to the constrained optimal
solution which is shown to be unique. Thus, we obtain complete answers to the
questions raised above and most importantly a constructive procedure to approximate
the optimal constrained H∞ norm and solution by rational transfer functions. These
results are obtained under certain assumptions on the given time-domain constraints
which are easily satisfied in practice and can be readily checked. Section 4 contains
our main results, while the most technical proofs are relegated to the appendix.

Our results are illustrated by a simple design example in section 5, and section 6
contains the conclusions.

Notation. L∞ denotes the Lebesgue space of complex-valued functions which are
essentially bounded on the unit circle, with norm ‖g‖∞ .= ess supθ∈[0,2π] |g(ejθ)|. By
H∞ we denote the set of functions g(z) ∈ L∞ that are analytic outside the closed
unit disk and bounded on the unit circle. The H∞ norm is defined as

‖g‖∞ .= ess sup
|z|>1

|g(z)|.

Under this definition, z−1 represents the unit delay operator. Finally, we define
g∼(z) .= g(1/z).

2. Problem formulation. Let p(z) be the nominal plant, k(z) be the controller
to be designed, and t(z) .= p(z)k(z)[1 + p(z)k(z)]−1 be the complementary sensitivity
transfer function which represents the command response transfer function in the
closed-loop system of p(z) and k(z). As t(z) must be stable, it has an expansion

t(z) =
∞∑

i=0

tiz
−i.

The problem studied in this paper is the following.
PROBLEM 1 (H∞ optimization with time-domain constraints over an infinite hori-

zon). Given two sequences {ubi} = {ub0, ub1, ub2, . . .} and {lbi} = {lb0, lb1, lb2, . . .},
design a controller k(z) such that

(a) k(z) is internally stabilizing;
(b) the constraints

lbi ≤ ti ≤ ubi ∀ i ≥ 0

are satisfied; and
(c) ‖t‖∞ is minimized.
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In [10, 8], the following problem is solved instead.
PROBLEM 2 (H∞ optimization with time-domain constraints over a finite hori-

zon). Given two finite sequences {ubi} = {ub0, ub1, ub2, . . . , ubn−1} and {lbi} =
{lb0, lb1, lb2, . . . , lbn−1}, design a controller k(z) such that

(a) k(z) is internally stabilizing;
(b) the constraints

lbi ≤ ti ≤ ubi ∀ i = 0, . . . , n− 1

are satisfied; and
(c) ‖t‖∞ is minimized.
As observed in [10] and the introduction, as the horizon length n → ∞, then

the solutions will not in general converge in the H∞-norm sense to a solution of
the infinite-horizon problem [9]. Also we should point out that this form of the
time-domain constrained H∞ optimal control problem is considered here mainly for
simplicity; the general version of the theory which requires a more elaborated notation
and is technically more involved is treated in [8].

3. The finite-horizon case. In this section we summarize the solution of Prob-
lem 2 from [10]. By the well-known Youla parametrization lemma (see, e.g. [3]), the
set of all admissible (i.e., resulting from internally stabilizing controllers) closed-loop
transfer functions t(z) can be expressed in the form

t(z) = u(z)− v(z)q(z),

where u is stable and v can be selected to be inner, i.e., stable and such that
v∼(z)v(z) = 1 for |z| = 1 and both are determined from the problem data, while
q(z) is any stable transfer function q(z) (the Youla parameter). Then the minimiza-
tion of ‖t‖∞ is easily seen to be equivalent to the minimization of ‖r − q‖∞, where
r(z) = v∼(z)u(z) is real-rational and antistable (i.e., all its poles lie outside the unit
disk). Let u(z) =

∑∞
i=0 uiz

−i, v(z) =
∑∞

i=0 viz
−i, and q(z) =

∑∞
i=0 qiz

−i. Let
tn

.= [t0 · · · tn−1], un
.= [u0 · · · un−1], vn

.= [v0 · · · vn−1], and

qn = [q0 · · · qn−1].

Then it is easy to see that

ti = ui −
i∑

j=0

vi−jqj ,

or in matrix notation,

tn = un − qnVn,

where

Vn =


v0 v1 · · · vn−1
0 v0 · · · vn−2
...

...
. . .

...
0 · · · · · · v0

 .

Introducing the additional notation

lbn
.= [lb0 lb1 · · · lbn−1],

ubn
.= [ub0 ub1 · · · ubn−1],
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it is clear that the constraints up to the nth sample may be written as

lbn − un ≤ −qnVn ≤ ubn − un.

Therefore, under the assumption that constraints are enforced only over a finite hori-
zon, the time-domain constrained H∞ problem may be formulated as

µn = min ‖r − q‖∞.
q∈H∞

lbn−un≤−qnVn≤ubn−un

(1)

3.1. Summary of the solution in the finite-horizon case. It is convenient
to replace r by its conjugate g

.= r∼. The transfer function g is then stable and can be
assumed to be strictly proper without loss of generality, by redefining q0 if necessary.
g(z) has a minimal state-space realization

g =
(

A b
c 0

)
.

Let Wc and Wo denote the controllability and observability Gramians of g, respec-
tively, satisfying the discrete-time Lyapunov equations

Wc = AWcA
t + bbt,

Wo = AtWoA + ctc,

and let wc and wo denote positive square roots of Wc and Wo. Then we have the
following result.

THEOREM 1. The solution to Problem 1 is obtained as

q∗(z) =
n−1∑
i=0

q∗
i z−i + z−nq∗

tail(z),

where q∗
n=̇[q∗

0 · · · q∗
n−1] solves the convex minimization problem

µn = min σ [Wn(qn)]
qn

lbn−un≤−qnVn≤ubn−un

with

Wn(qn) =


woA

nwc woA
n−1b · · · woAb wob

cAn−1wc cAn−2b · · · wob −q0
...

...
...

...
cAwc cwc · · · −qn−3 −qn−2
cwc −q0 · · · −qn−2 −qn−1


and q∗

tail the solution of the standard H∞ optimization problem

‖zn

[
r −

n−1∑
i=0

q∗
i z−i

]
− qtail‖∞.
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d d
6

-

-

?

?----

g=go(1+w∆)

∆

w

ygokr

FIG. 1. A simple design example.

Proof. See [10].
A state-space procedure for computing q(z) is given in [8]. It is a well-known fact

that the solution to (1) is unique if no constraint is active at the optimum, since in
that case the solution is given by the Nehari theorem (see, e.g., [3]).

It can be shown that this is the case even when a finite number of constraints are
active, and therefore, the following result is true.

THEOREM 2 (see [9]). Problem 2 has a unique solution.

3.2. A simple design example. Consider the system of Fig. 1. The nominal
plant is given by g0(z) = z+0.2

z2−0.6z−1.12 . We assume multiplicative model uncertainty
of the form g = go(1 + w∆), where ∆ ∈ H∞ and the weighting function w(z) =
0.3705 z+0.986

z+0.4682 . We consider the following design specifications.
(1) The nominal closed-loop system should be asymptotically stable.
(2) For r a unit impulse at i = 0, y has a settling time of 10 samples for the

nominal system, with a maximum peak of 0.6.
(3) The robustness of the closed-loop system is maximized for the multiplicative

model uncertainty considered, i.e.,

min
k(z) stab.

‖w t‖∞

with t(z) = k(z)go(z)
1+k(z)go(z) ≡

∑∞
i=0 tiz

−i.

As remarked previously, the formulation of Problems 1 and 2 can be easily extended
to allow the use of weighting functions such as w above or even to impose time
domain constraints on more than one, possibly different transfer functions than the
ones involved in the H∞ optimization [10, 8].

Standard H∞ theory gives an optimal H∞ norm of 0.66 but an impulse response
that violates the second specification (Fig. 2). When we apply the method of con-
strained H∞ optimization over finite horizons of lengths 30, 59, and 250 samples, we
obtain the results depicted in Figs. 3, 4, and 5, respectively. These results clearly
show that the oscillations immediately after the horizon cannot be controlled by sim-
ply extending the horizon.

4. Main results. In this section, we obtain a sequence of suboptimal solutions
to finite-horizon constrained H∞ optimal control problems that converges uniformly
to the solution of the infinite horizon constrained H∞ optimal control problem (Prob-
lem 1).

In proving the results of the paper, we make certain assumptions on the time-
domain constraints. We collect these assumptions in the following subsection.
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4.1. Assumptions on the time-domain constraints.
Assumption 1. The sequences {lbi} and {ubi} that define the time-domain con-

straints satisfy
∞∑

i=0

|lbi − t∞| <∞,
∞∑

i=0

|ubi − t∞| <∞,

where t∞=̇ limi→∞ ti is the desired asymptotic value for ti.
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Assumption 2. There exists N1 so that the time-domain constraints satisfy

lbi ≤ t∞ ≤ ubi, i ≥ N1,

where t∞ is the desired asymptotic value for ti.
Assumption 3. The sequences {lbi} and {ubi} that define the time-domain con-

straints satisfy
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∞∑
i=0

α−i|lbi − t∞| =∞,
∞∑

i=0

α−i|ubi − t∞| =∞

for all α ∈ (0 1) and where t∞ is the desired asymptotic value for ti.
The above assumptions are easily satisfied in all cases of practical interest.
This is illustrated by the typical step response bounds depicted in Fig. 6.
We also remark that Assumptions 1 to 3 are expressed in terms of the given time

response bounds, that is, in terms of the problem data. Assumption 1 combined with
Assumption 3 ensures that the sequences {ubi} and {lbi} converge to t∞ but not
exponentially fast. Assumption 2 requires that {ubi} and {lbi} converge to t∞ from
above and below, respectively.

Next, let Ωn be the set of H∞ functions that satisfy the time-domain constraints
over the finite horizon of length n and the interpolation constraints necessary for
nominal closed-loop stability. Each of the latter takes the form

∞∑
i=0

tiw
−i
k = vk, k = 1, . . . , r,(2)

where wk is plant pole or zero in Dc and vk = 1 or 0, respectively (assuming for
simplicity that wk is of multiplicity one) [12]. Ωn is then the feasible set for Prob-
lem 2. Similarly, Ω∞ is the feasible set for Problem 1 and consists of the H∞ functions
satisfying the time-domain constraints over the infinite horizon and the stability inter-
polation constraints. We remark that Ω∞ will generically either be empty or contain
more than one point. Indeed, the case that Ω∞ contains only one point is obtained
when the hyperplane of the interpolation constraints (see (2)) intersects the set of the
time-domain constraints only at one of its extreme points.

We also require the following assumption.
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Assumption 4. Ω∞ contains a point tFD(z) =
∑L−1

i=0 tFD
i z−i of finite duration.

Assumption 4 may appear at first to be restrictive. However, Lemma 1 of the
next subsection shows that Assumption 4 is generically equivalent with the condition
that Ω∞ is not empty, that is, the existence of feasible solutions for Problem 1.
Assumption 4 can be verified in practice by solving a linear programming problem.
Consequently, Lemma 1 also gives a finite procedure to verify that Ω∞ is not empty.

4.2. Preliminary results. In the remainder of the paper, we assume for sim-
plicity that the asymptotic value t∞ = 0 (t∞ = limi→∞ lbi ≡ limi→∞ ubi and, there-
fore, is a part of the problem data).

This is the case, for example, when t is the impulse response of a closed-loop
rational transfer function. However, in case that t∞ 6= 0, one should consider t(z)−t∞,
lbk − t∞, ubk − t∞ in place of t(z), lbk, and ubk, respectively, as well as vk − t∞ in
place of vk in the interpolation constraints (2).

The following lemma provides justification for Assumption 4.
LEMMA 1. Assume that the time-domain constraints satisfy Assumptions 1–3 and

that t∞, the desired asymptotic value for the solution, is zero. Then Ω∞ is empty or
it generically contains a point tFD(z) =

∑L−1
i=0 tFD

i z−i of finite duration.
Proof. If Ω∞ is empty, there is nothing to prove. Therefore, let us assume that

Ω∞ is not empty. By the previous discussion, Ω∞ generically contains two functions
t(z), s(z) such that t(z) 6= s(z). Define

e(z) .= t(z)− s(z) =
∑

i

eiz
−i,

and consider the stability interpolation constraints (2), assuming for ease of exposition
that wk ∈ R, k = 1, . . . , r. Then, e has at least r + 1 nonzero coefficients. Indeed,
let ei 6= 0 for i1, . . . , il (by hypothesis l ≥ 1). It holds that

[ei1 ei2 · · · eil
]


1 1 · · · 1

w−i1
1 w−i1

2 · · · w−i1
r

w−i2
1 w−i2

2 · · · w−i2
r

...
...

...
...

w−il
1 w−il

2 · · · w−il
r


︸ ︷︷ ︸

Wr

= [0 0 · · · 0] .

Since Wr is full rank for l < r + 1, it should be l ≥ r + 1.
Next, take

t̂(z) .= λt(z) + (1− λ)s(z)

for some 0 < λ < 1. Clearly, t̂(z) satisfies the interpolation constraints, and moreover

lbij
≤ min{tij

, sij
} < t̂ij

< max{tij
, sij
} ≤ ubij

.

Let ε = minj=1,...,r

{
t̂ij − lbij , ubij − t̂ij

}
> 0. This means that the coefficients

t̂ij , j = 1, . . . , r can be changed by ε without violating the time domain constraints.
By Assumption 2, it holds that lbi ≤ 0 ≤ ubi for some i > N1. We next determine
L > N1 such that after dropping from t̂ the tail

t̂tail(z) =
∞∑

i=L

t̂iz
−i = z−L

∞∑
i=0

t̂i+Lz−i,
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t̂ij
, j = 1, . . . , r, in t̂FD(z) =

∑L−1
i=0 t̂iz

−i can be modified by no more than ε to have
t̂FD(z) satisfy the stability interpolation constraints.

Since

∣∣t̂tail(wk)
∣∣ = |wk|−L

∣∣∣∣∣
∞∑

i=0

t̂i+Lw−i
k

∣∣∣∣∣ ≤ |wk|−L ‖t̂‖1,

choose L such that

|wk|−L ‖t̂‖1 < ε/
∥∥Wr−1∥∥

1 ,

and compute

[∆1 ∆2 · · · ∆r] = [t̂tail(w1) t̂tail(w2) · · · t̂tail(wr)]Wr−1.

It follows that |∆i| ≤
∥∥Wr−1∥∥

1 ·maxj=1,...,r

{|t̂tail(wj)|
}

< ε. Finally, define

tFD
i =

 t̂i, 0 ≤ i < L, i 6= i1, . . . , ir,
t̂i + ∆i, i = i1, . . . , ir,

0, i ≥ L,

and tFD =
∑∞

i=0 tFD
i z−i.

It is clear by construction that tFD ∈ Ω∞, and the proof is complete.
We also have the following corollary to Lemma 1.
COROLLARY 1. Consider Assumptions 1–4, and let t ∈ Ω∞. Then there exists a

sequence t̂n ∈ Ω∞, n = 1, 2, . . . , of finite duration functions that converges uniformly
to t.

Proof. In the proof of Lemma 1, take s(z) to be the finite duration point of
Assumption 4, and let λ be sufficiently close to unity, so that ‖t− t̂‖∞ ≤ 1/(2n). Pick
ε1 = min{ε, 1/(2nr)} and L such that

|wk|−L ‖t̂‖1 < ε1/
∥∥Wr−1∥∥

1 .

Then |∆i| < ε and
∑r

j=1 |∆i| ≤ 1/(2n). It follows that
∥∥t̂− tFD

∥∥
∞ ≤

∥∥t̂− tFD
∥∥

1 ≤
1/(2n) and ‖t− tFD‖∞ < 1/n. Identify t̂n with tFD, and the proof is complete.

Next, consider the disk of radius 1/ρ

D1/ρ = {z / |z| < 1/ρ} , ρ > 1,(3)

and let t(z) have its poles inside D1/ρ. We define the ρ∞-norm of t as

‖t‖ρ∞=̇ sup
−π≤θ≤π

∣∣∣∣t (
1
ρ
ejθ

)∣∣∣∣ .(4)

LEMMA 2. Let t(z) =
∑∞

k=0 tkz−k have its poles in D1/ρ, and assume that the
ρ∞-norm of t satisfies

‖t‖ρ∞ ≤M

for some constant M . Then

|tk| ≤Mρ−k ∀ k.



1254 ATHANASIOS SIDERIS AND HÉCTOR ROTSTEIN

Proof. It is well known that

tk =
1

2πj

∮
C

t(z)z(k−1)dz,

where C is a closed curve inside the region of convergence. Since all the singularities
of t(z) are confined inside a disk of radius 1/ρ,

tk =
1
2π

∫ π

−π

t(ejθ/ρ)ρ−kejkθdθ.

This implies |tk| ≤Mρ−k, and the result follows.

4.3. Construction of suboptimal solutions in Ω∞. We next describe a pro-
cedure to construct suboptimal solutions to Problem 1 which are in Ω∞; that is, they
satisfy the time-domain constraints over the infinite horizon. This is achieved by ob-
taining solutions to Problem 2 that have poles inside D1/ρ (see (3)) for ρ > 1 and for
a horizon length nρ which is defined later. The construction is given in the following
theorem.

THEOREM 3. Assume that the time-domain constraints satisfy Assumptions 1–4.
Fix ρo > 1, and let ρo > ρ > 1.

Define

t̂(z)=̇t(ρz) =
∞∑

k=0

(tkρ−k)︸ ︷︷ ︸
t̂k

z−k.(5)

Also define an “equivalent” constraint set Ω̂n for t̂(z) defined by bounds l̂bk and ûbk

derived from

lbk ≤ tk ≤ ubk ⇐⇒ lbkρ−k︸ ︷︷ ︸
l̂bk

≤ t̂k ≤ ubkρ−k︸ ︷︷ ︸
ûbk

, k = 0, 1, . . . , n− 1,

and by the scaled interpolation constraints

∞∑
i=0

t̂i

(
wk

ρ︸︷︷︸
ŵk

)−i

= vk.

Let t̂n be the unique solution of the finite-horizon constrained H∞ optimization prob-
lem

min
t̂∈Ω̂n

‖t̂‖∞,

and define

tn(z)=̇t̂(z/ρ).

Then tn(z) has the following properties.
(1) tn is feasible over the finite horizon of length n.
(2) tn has its poles inside D1/ρ = {z / |z| < 1/ρ}.
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(3) The ρ∞-norm of tn (see (4)) satisfies

‖t‖ρ∞ < M ∀ 1 < ρ < ρo,

where M is some constant depending only on the problem data and indepen-
dent of both ρ and n.

(4) There exists a horizon length nρ such that tnρ ∈ Ω∞; i.e., tnρ is a feasible
point for Problem 1.

Proof. The first assertion follows from the construction of the set Ω̂n. The second
assertion is true because of the ρ-scaling in (5) and since t̂n has its poles inside the unit
disk. To show the third assertion consider the finite duration feasible point tFD(z) of
Assumption 4 and let M = ‖tFD‖ρo∞. Then note that

‖tn‖ρ∞ ≤ ‖tFD‖ρ∞ ≤M ∀ ρ < ρo,

where the first inequality follows by the fact that tFD is a feasible solution of Problem 2
for every ρ and tn minimizes ‖t‖ρ∞ over all t ∈ Ωn by construction, and the second
inequality follows by the maximum modulus principle. The last part of the proof is
obtained by noting that tn satisfies the assumptions of Lemma 2, and therefore it
holds that

|tnk | ≤Mρ−k ∀ k(6)

independently of the horizon length n. From Assumption 3, the bounds on the time-
domain response converge to the steady-state value t∞ less rapidly than the exponen-
tial decay prescribed by (6), and from Assumption 2, they remain on different sides
of t∞ after some i > N1. Therefore, there is a time nρ after which the time-domain
constraints are automatically satisfied by tn (see Fig. 7).

We are now in a position to state the main result of the paper.
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THEOREM 4. Assume that the time-domain constraints satisfy Assumptions 1–4.
Consider a sequence ρn such that ρn > 1 ∀ n and ρn ↓ 1 as n → ∞ (for example,
ρn = 1 + 1

n ). Consider also tn obtained from Theorem 3 for ρ = ρn. Then the
following hold.

(1) tn is feasible and unique for all n.
(2) ‖tn‖ρn∞ is monotonically decreasing and converges to µ∞, the optimal con-

strained H∞ norm over Ω∞.
(3) The optimal norm in Problem 1 is achieved by a unique solution t∗.
(4) tn → t∗ uniformly.
Proof. The proof of this result is rather technical and is included in the

appendix.
To illustrate Theorem 4 and the procedure of approximating the optimal solution,

we apply it to the example of section 3.2. The results for different values of ρ are
shown in Figs. 8–13. On top of each figure, we give the value of the ρ-scaling used,
the horizon length nρ of Theorem 3, and the ρ-norm achieved by tn—an upper bound
on µ∞.

We remark that it is also possible to derive a sequence of lower bounds converging
to µ∞ and thus obtain a meaningful stopping criterion based on the difference between
the sequences of lower and upper bounds. Indeed, the H∞-norm of the solution of
Problem 2 for a horizon of length nρ and without the scaling of Theorem 3 gives such
a sequence of lower bounds (see Figs. 3–5).

5. Conclusions. Theorem 4 resolves Problem 1 in a most satisfactory way. Un-
der the mild Assumptions 1–4 on the time-domain constraints, Theorem 4 guarantees
the existence of a unique optimal solution that can be approximated uniformly (that is,
with approximation error measured in terms of the H∞-norm) by rational functions.
Furthermore, Theorem 4 gives a constructive procedure to obtain such approxima-
tions by solving finite-horizon problems. We remark that the horizon in each of these
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problems is determined from the given time-domain constraints and does not depend
on the solution of the problem.

Although the basic concepts and some of the analysis used here carry through in
the multivariable case, the latter apparently requires a different treatment. The main
complications in the multivariable case arise from the nonuniqueness of the solution of
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Problem 2 and the less straightforward representation of the interpolation constraints.
One can equivalently pose the problem in terms of Q ∈ H∞, the Youla parameter
of the Q-parametrization of all feedback stabilizing controllers. In this manner, the
interpolation constraints are automatically satisfied but the time-domain constraints
as reflected on Q are more complicated than the bound constraints assumed on t
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(see section 3 and [8]). However, experimentation with computer simulations in the
multivariable case shows that the technique of ρ-scaling produces constrained solutions
that satisfy the time-domain constraints over the infinite horizon and suggests that
similar results with the ones obtained here for the SISO case are to be expected in
the multivariable case also.

Appendix A. Proof of Theorem 4.
The proof of Theorem 4 is based on the following lemmas.
LEMMA 3. Under Assumption 1, Ω∞ is compact in the ∞-norm sense.
Proof. Compactness of Ω∞ is shown in [7]. We include the proof here for the

reader’s convenience. It is first shown that Ω∞ is compact as a subset of the space l1.
Then Lemma [3] follows since the l1 norm bounds the H∞ norm.

Consider the set Ω̄∞ ⊂ l1 defined only by the time-domain constraints. The space
l1 is complete and Ω̄∞ is closed, and hence it suffices to show that for every ε > 0 it
is possible to cover Ω̄∞ with a finite number of balls in l1 with radius ε. So let ε > 0
be given. By Assumption 1, there exists N such that

∞∑
i=N

|lbi − t∞| < ε/4,(7)

∞∑
i=N

|ubi − t∞| < ε/4,(8)

implying
∑∞

i=N |ti−t∞| <
∑∞

i=N |lbi−t∞|+
∑∞

i=N |ubi−t∞| ≤ ε/2 ∀ t =
∑∞

i=0 tiz
−i ∈

Ω̄∞. Now consider the set

Ω̄N .= {[t0 t1 · · · tN−1] ∈ RN s.t. lbi ≤ ti ≤ ubi}.
Ω̄N is a closed and bounded set in RN and hence there exists a finite number of balls
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B(t̂k, ε/2), centered at t̂k
.= [tk0 tk1 · · · tkN−1] and of radius ε/2 that cover Ω̄N . Define

tk
.= [tk0 tk1 · · · tkN−1 t∞ t∞ · · ·],

and consider the balls B(tk, ε) ⊂ l1. Consider now any t ∈ Ω̄∞. By construction,
there exist a k such that

∑N−1
i=0 |ti − tki | < ε/2, and thus

‖t− tk‖1 ≤
N−1∑
i=0

|ti − tki |+
∞∑

i=N

|ti − t∞|,(9)

‖t− tk‖1 < ε/2 + ε/2 = ε.(10)

Since the finite number of balls B(tk, ε) cover Ω̄∞, the set is compact.
Next, note that Ω∞ ≡ Ω̄∞ ∩ I, where I ⊂ l1 is the set of functions satisfy-

ing the interpolation constraints (2). Since I is closed, it follows that Ω∞ is also
compact.

The next lemma is instrumental in establishing uniqueness of the optimal solution
in Problem 1.

LEMMA 4. Let P be a continuous functional defined on a compact subset B of a
Banach space, and consider the minimization

min
x∈B

P (x).

Suppose that x∗ achieves the minimum v∗ = P (x∗) and that x∗ is the unique mini-
mizer. Then, given ε > 0, there exists δ > 0 such that if x1, x2 ∈ B with v1 = P (x1),
v2 = P (x2) satisfying |v1 − v∗| ≤ δ and |v2 − v∗| ≤ δ, it holds that ‖x1 − x2‖ ≤ ε.

Proof. Let us define the set Eδ = {x ∈ B/|P (x)−v∗| ≤ δ}, and let d(δ) be defined
as

d(δ) = max
x∈Eδ

‖x− x∗‖.

Note that d(δ) is an increasing function of δ. We claim that d(δ) → 0 as δ → 0;
that is, given ε, there exists δ such that x ∈ Eδ =⇒ d(δ) ≤ ε. Indeed, suppose
that the last assertion is not true. Then for all δ, there exists xδ ∈ B such that
|P (xδ) − v∗| ≤ δ and ‖xδ − x∗‖ > ε. Consider a sequence δn → 0 as n → ∞ and
the corresponding vectors xn ≡ xδn . Since B is compact, {xn} has a convergence
subsequence yn ≡ {xnk

} −→ y∗ ∈ B. Note that ‖y∗ − x∗‖ > ε and the continuity
of P implies P (y∗) = limn→∞ P (yn) = v∗. This contradicts the hypothesis that x∗

is the unique minimizer of P , and therefore, d(δ) → 0 as δ → 0 follows. Now given
ε > 0, let δ be such that d(δ) ≤ ε/2, and assume that |v1 − v∗|, |v2 − v∗| ≤ δ. But
then x1, x2 ∈ Eδ implying ‖x1 − x2‖ ≤ ‖x1 − x∗‖+ ‖x2 − x∗‖ ≤ 2d(δ) ≤ ε, and the
proof is complete.

Next, we prove Theorem 4.
Proof of Part (1). The feasibility of tn over the infinite horizon follows from

Theorem 3, part (4). The uniqueness of tn follows from Theorem 2.
Proof of Part (2). Let µn ≡ ‖tn‖ρn∞=̇ max|z|= 1

ρn
|tn(z)|, and consider 1 < ρn2 <

ρn1 . Then it holds that

µn2 = max
|z|= 1

ρn2

|tn2(z)| ≤ max
|z|= 1

ρn2

|tn1(z)| ≤ max
|z|= 1

ρn1

|tn1(z)| = µn1 ,
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where the first inequality above follows from the optimality of tn2 and the fact that
both tn1 and tn2 are feasible over the infinite horizon, and the second inequality follows
from the maximum modulus principle. Since µn is monotone decreasing and bounded
below, it converges to a number µ∗. Furthermore, since each tn is feasible for the
constrained H∞ minimization over Ω∞, it holds that

µ∞ ≤ ‖tn‖∞ ≤ µn.

Thus, we have

µ∞ ≤ µ∗.(11)

Next, we show that the reverse inequality is true. Lemma 3 guarantees that µ∞ in
Problem 1 is achieved by some optimal solution t∗ =

∑∞
i=0 t∗i z

−i.
Consider the sequence in Corollary 1, of finite-duration functions t̂n ∈ Ω∞ that

converges uniformly to t∗. By the optimality of tn it holds that ‖t̂n‖ρ∞ ≥ ‖tn‖ρ∞ ∀ n.
Also by the maximum modulus principle, we have

εn=̇‖t̂n‖ρ∞ − ‖t̂n‖∞ ≥ 0.(12)

Thus, we obtain

‖t̂n‖∞ ≥ ‖tn‖ρ∞ − εn.(13)

Now note that εn → 0 as n → ∞. (All functions t̂n are uniformly bounded, and
therefore they define an equicontinuous family of functions [1, p. 224]. Thus, given ε
there exists δ such that

|z1 − z2| ≤ δ =⇒ |t̂n(z1)− t̂n(z2)| ≤ ε ∀n.(14)

Now take ε, let δ so that (14) holds, and consider N such that for n ≥ N it holds
that ρn ≤ 1

1−δ .
Then (14) implies∣∣∣∣t̂n (

1
ρn

ejθ

)
− t̂n(ejθ)

∣∣∣∣ ≤ ε ∀θ ∈ [−π π] n ≥ N

=⇒∣∣‖t̂n‖ρ∞ − ‖t̂n‖∞
∣∣ ≤ ε n ≥ N,

and εn → 0 follows from (12).)
By taking the limit in (13), we obtain

µ∞ ≥ µ∗,(15)

and from (11) and (15) we obtain µ∞ = µ∗.
Proof of Part (3). To prove the uniqueness of t∗, let us assume that there exist

t1∗ and t2∗ in Ω∞ achieving µ∞.
Next from Corollary 1, consider sequences t̂1n ∈ Ω∞ and t̂2n ∈ Ω∞ of finite-

duration functions, converging uniformly to t1∗ and t2∗, respectively Now note that
‖ · ‖ρ∞ is continuous, Ω∞ is compact by Lemma 3, and the minimum of the finite-
horizon constrained H∞ optimization problem is unique by Theorem 2 and achieved
by tn. Therefore, Lemma 4 applies, and given ε, let δ be as in Lemma 4. From (12)
we have ‖t̂in‖ρ∞ − ‖t̂in‖∞ → 0, i = 1, 2, and from uniform convergence ‖t̂in‖∞ →
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‖ti∗‖∞ = µ∞, i = 1, 2. On the other hand, by parts (1) and (2), ‖tn‖ρ∞=̇µn → µ∗ ≡
µ∞. Therefore, there exists N1 so that

∣∣‖t̂in‖ρ∞ − µn

∣∣ ≤ δ, i = 1, 2 for n ≥ N1. From
Lemma 4, we conclude

‖t̂1n − t̂2n‖∞ ≤ ε ∀ n ≥ N1,(16)

and from the uniform convergence of t̂1n and t̂2n to t1 and t2, respectively, there exists
N2 so that

‖t̂in − ti∗‖∞ ≤ ε ∀ n ≥ N2, i = 1, 2.(17)

But then with n ≥ max{N1, N2}, (16) and (17) imply

‖t1∗ − t2∗‖∞ ≤ 3ε ∀ ε;

i.e., t1 ≡ t2 and thus the optimal solution of Problem 1 over S is unique.
Proof of Part (4). Let us apply Lemma 4 to t̂n=̇t̂1n ≡ t̂2n and tn. With ε and δ

as in Lemma 4, there exists N such that |‖t̂n‖∞−µ∞| ≤ δ and |‖tn‖∞−µ∞| ≤ δ for
n ≥ N1 (see the argument in the proof of part (3)). Since t∗ is the unique minimizer
of ‖ · ‖∞ over Ω∞ by part (3), Lemma 4 implies

‖t̂n − tn‖∞ ≤ ε, n ≥ N1.(18)

On the other hand, t̂n converges uniformly to t∗; therefore, there exists N2 such that

‖t̂n − t∗‖∞ ≤ ε, n ≥ N2.(19)

From (18) and (19), we conclude

‖tn − t∗‖∞ ≤ 2ε, n ≥ N = max{N1, N2};
that is, tn converges uniformly to t∗.
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Abstract. Issues regarding the experimental implementation of PDE-based controllers are dis-
cussed in this work. While the motivating application involves the reduction of vibration levels for
a circular plate through excitation of surface-mounted piezoceramic patches, the general techniques
described here will extend to a variety of applications. The initial step is the development of a
PDE model which accurately captures the physics of the underlying process. This model is then dis-
cretized to yield a vector-valued initial value problem. Optimal control theory is used to determine
continuous-time voltages to the patches, and the approximations needed to facilitate discrete-time
implementation are addressed. Finally, experimental results demonstrating the control of both tran-
sient and steady-state vibrations through these techniques are presented.

Key words. feedback control, piezoceramic actuators, PDE model
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1. Introduction. An increasingly popular method for controlling structural vi-
brations is through the use of piezoceramic patches bonded to or embedded in the
structure. These patches exhibit the piezoelectric property that inplane strains are
generated in response to an applied voltage. Depending upon the geometry of patch
placement, location with respect to the structure’s neutral surface, and the method
of excitation, this provides a mechanism for generating both inplane forces and/or
bending moments in the underlying structure.

The advantage of using such patches as actuators in many applications is due
to the fact that they are lightweight, space efficient, and relatively inexpensive and
provide a means of obtaining structural control without significantly changing the
passive structural dynamics. (They do not mass load the structure in the manner
of a shaker or proof mass actuator.) Due to their ceramic nature, they can also be
molded in a variety of shapes so as to fit the structure under consideration. Moreover,
rigid body torques and spillover effects are minimized due to the fact that they are
fully self-contained and distributed in nature. Finally, they also exhibit the inverse
piezoelectric property and therefore generate a voltage in response to strains in the
material. Hence a single patch or patch pair can be used for either sensing or actuation.
This contributes to their efficiency and application in “smart material” structures.
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In addition to their utility in purely structural applications, the patches are also
finding increasing use in structural acoustic and fluid/structure applications. Again,
their advantage lies in the fact that they provide an efficient means of controlling the
structure without significantly altering its passive dynamics. Through consideration
of the coupling between the structure and the adjacent media, this provides a means
of controlling acoustic sound pressure levels or adjacent flow dynamics.

A great deal of research in the last several years has been directed at questions
regarding the modeling of piezoceramic patch interactions with underlying structures
(see [16] and the references therein), strategies for determination of optimal patch
location and number, and control techniques which utilize the patches as sensors
and actuators. Due to the steady-state periodic nature of the dynamics in many
structural and structural acoustic systems, a large number of the current control
methods are based upon frequency response input/output analysis. For example,
Fuller, Gibbs, and Silcox have employed a feedforward filtered X version of an adaptive
least mean squares algorithm to control flexural and extensional beam vibrations
using piezoceramic actuators [25]. While such techniques have proven quite successful
for controlling steady-state vibrations, they do not have the capability for direct
control of transient responses. Other successfully implemented methods employing
piezoelectric actuators to actively control structural vibrations include feedthrough
techniques [24] and velocity feedback techniques [1, 32]. In general, these methods
are based upon modal techniques and are designed to control purely steady-state
responses. An exception to this is the experimental results reported in [32] in which
transient plate vibrations, generated by an impact hammer, were reduced using an
analog velocity feedback circuit.

Similar studies have demonstrated the experimental success of using surface-
mounted piezoceramic patches to reduce structure-borne noise in structural acous-
tic systems [26, 27]. The emphasis in these studies was again on using frequency
input/output analysis to control steady-state dynamics.

An alternative approach to controlling structural vibrations and sound pressure
levels in structural acoustic systems is through the use of PDE-based feedback control
methods. Analysis and numerical studies demonstrating these techniques for struc-
tural applications can be found in [7, 8, 9, 17] with corresponding results for structural
acoustic systems given in [4, 6, 13]. These techniques start with an infinite-dimensional
PDE model for the system under consideration. When developing such models, care
should be taken to incorporate not only the contributions due to the piezoceramic
patches but also dynamics due to inexact boundary conditions [18] coupling with ad-
jacent acoustic fields [6], as well as any other physical phenomena which affect the
dynamics of the structure. In this setting, mathematical issues such as model well-
posedness and approximation issues concerning simulations, parameter estimation,
and control can be addressed.

By approaching the problems in this manner, one can address the difficulties
caused in purely modal methods by patch contributions, coupling between compo-
nents, and inexact boundary conditions. Moreover, by combining the PDE model
with appropriate time-dependent feedback control theory, one obtains a method which
is equally applicable for controlling transient or steady-state vibrations.

There are several important features and benefits of a PDE-based approach. First,
such an approach entails correct modeling based on physics. This facilitates treatment
of actuator loading (passive) with respect to mass, stiffness, damping, geometry, etc.,
as well as the form of the actuator input. Of equal importance, the approach permits
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the correct choice of an approximation framework so that computed quantities (which
are suboptimal for the original infinite-dimensional system problem), such as states,
feedback and compensator gains, and controls, actually converge to optimal quantities
for the infinite-dimensional system, i.e., the actual physical model.

The choice of approximations is a delicate matter. It is known [11, 22] that failure
to choose approximating elements “appropriately” in infinite-dimensional problems
can yield poorly (weakly) convergent or even nonconvergent controls. “Appropriately”
has been rather well documented in the PDE control research literature (e.g., see [3, 10,
28]) and involves concepts such as “costate or adjoint convergence” and “preservation
of exponential stabilizability” (POES) or uniform stabilization under approximation
(see Chapter 7 of [19] for a survey of some of the extensive theoretical literature on
this subject). These theoretical concepts play a fundamental role in the practical
choice of approximation schemes and associated computational algorithms.

For the problems and implementations addressed in this paper (including linear
quadratic Gaussian (LQG) compensator and feedback design for unbounded input
systems with periodic exogenous excitation), the theory is essentially complete if one
combines and extends slightly the results in the literature (e.g., see [7, 23, 30, 35, 36]).
A complete approximation and convergence analysis for the MinMax formulation
is still under development, but the difficult points of the theory and their solution
are basically resolved. We chose not to implement the MinMax design on the plate
vibration problem described below since extensive computations [5] comparing the
LQG and MinMax design suggested little advantage of the MinMax formulation for
problems of the type considered in this paper.

In this paper, the experimental implementation of such a PDE-based control
method is considered. While the motivating application involves the control of vibra-
tion levels for a circular plate through the excitation of surface-mounted piezoceramic
patches, the general techniques described here will extend to a variety of applications.
Following a brief discussion regarding the model and a Fourier–Galerkin scheme used
to discretize it, relevant feedback control theory is discussed. In the discussion of the
continuous- and discrete-time control results, two cases are considered; namely, the
control of plate vibrations in the absence of a primary input force and the control
of a plate driven by a periodic exogenous force. Implementation issues such as the
effects of phase shifts and delays due to hardware are discussed, and the experimental
setup is briefly described. Finally, experimental results demonstrating the transient
and steady-state control results are presented. These demonstrate the effectiveness of
the PDE-based controller for this system and indicate the potential of these control
techniques for reducing transient and steady-state dynamics in other structural and
structural acoustic systems.

Finally, we offer comments on the nature of our contributions here to the lit-
erature. This paper does not contain any new theoretical results; it reports on our
successful use of PDE-based methods in experiments at NASA Langley Research
Center. The methods (which are theoretically sound) for parameter estimation and
feedback control are based on approximation theory developed (by us and many oth-
ers in the PDE control community) during the past several decades. All necessary
theorems on convergence of finite-dimensional parameter estimates, gains, filters, con-
trols, observers, tracking variables, et cetera, needed for the examples treated here
either have appeared or will soon appear in the research literature. Many of these
theoretical results on PDE-based control have been largely viewed (especially in the
engineering community) as nonimplementable and, hence, as somewhat irrelevant to
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a

T

h

FIG. 2.1. Thin circular plate with surface-mounted piezoceramic patches.

applied scientists and engineers. The present manuscript refutes this notion and val-
idates the practicality and importance of much of the theoretical efforts over the
past years on PDE-based control. Our group is the first, to our knowledge, to pro-
vide substantial evidence that one can start from basic physical laws, derive careful
infinite-dimensional distributed parameter or PDE control models, and successfully
implement PDE control methods (with the approximations necessary to obtain finite-
dimensional controls) which behave as theory and simulations predict.

2. Circular plate model. The structure under consideration is a thin circular
plate with s sets of piezoceramic patches of thickness T bonded to the plate either
singly or in pairs as depicted in Figure 2.1. Throughout this discussion, the radius
and thickness of the plate are denoted by a and h, respectively. The density, Young’s
modulus, Poisson ratio, and Kelvin–Voigt damping parameters for the plate are given
by ρp, Ep, νp, ĉDp

, respectively, while similar parameters for the patches and bonding
layer are denoted by Epe, νpe, νpe, ĉDpe

and Eb`, νb`, νb`, ĉDb`
, respectively. Moreover,

µ, w, and g̃ are used to denote the air damping coefficient, transverse displacement,
and external force on the plate. Finally, the region occupied by the unstrained neutral
surface of the plate is indicated by Γ0.

We point out that using current technology, piezoceramic patches can be cut to
a variety of shapes. This includes circular and sectoral patches appropriate for the
circular plate geometry considered here. From a modeling perspective, alignment of
patch edges with coordinate axes is unnecessary when employing a weak form of the
model; variations in shape simply affect the characteristic functions used to isolate
the patch contributions. With regards to performance, experience indicates that while
patch size, number, and placement strongly affect the ultimate control performance,
slight variations in shape have minimal effect on the attenuation achieved using piezo-
ceramic actuators.

Equations of motion for the plate can be determined from both Newtonian (force
and moment balancing) and Hamiltonian (energy formulation) principles, and we



EXPERIMENTAL CONFIRMATION OF A PDE CONTROL LAW 1267

summarize both approaches here. The presentation will be for a general Kirchhoff
plate with potentially nonaxisymmetric responses.

2.1. Strong form of plate model. Considering first the model which de-
rives from Newtonian principles, we let Mr, Mθ, Mrθ denote internal moments and
(Mr)pe, (Mθ)pe denote external moments generated by the piezoceramic patches. As
detailed in [12, 39], for a structure with s patch pairs, the internal moments are given
by

Mr = DKr + D̃Kθ + cDK̇r + c̃DK̇θ,

Mθ = DKθ + D̃Kr + cDK̇θ + c̃DK̇r,

Mrθ = Mθr =
D

2
τ − D̃

2
τ +

cD

2
τ̇ − c̃D

2
τ̇ ,

where

Kr = −∂2w

∂r2 , Kθ = −1
r

∂w

∂r
− 1

r2

∂2w

∂θ2 , τ = −2
r

∂2w

∂r∂θ
+

2
r2

∂w

∂θ
.

The global flexural rigidity parameters D and D̃ and Kelvin–Voigt damping parame-
ters cD and c̃D are given by

D(r, θ) =
Eph

3

12(1 − ν2
p)

+
2
3

s∑
i=1

[
Epea3pe

1 − ν2
pe

+
Eb`a3b`

1 − ν2
b`

]
χi(r, θ),

D̃(r, θ) =
Eph

3νp

12(1 − ν2
p)

+
2
3

s∑
i=1

[
Epea3peνpe

1 − ν2
pe

+
Eb`a3b`νb`

1 − ν2
b`

]
χi(r, θ),

cD(r, θ) =
ĉDph3

12(1 − ν2
p)

+
2
3

s∑
i=1

[
ĉDpea3pe

1 − ν2
pe

+
ĉDb`

a3b`

1 − ν2
b`

]
χi(r, θ),

c̃D(r, θ) =
ĉDp

h3νp

12(1 − ν2
p)

+
2
3

s∑
i=1

[
ĉDpe

a3peνpe

1 − ν2
pe

+
ĉDb`

a3b`νb`

1 − ν2
b`

]
χi(r, θ).

(2.1)

Here a3b` = (h/2+Tb`)3 −(h/2)3 and a3pe = (h/2+Tb` +T )3 −(h/2+Tb`)3 arise from
integration through the bonding layer and patch thickness while χi(r, θ) denotes the
characteristic function which has a value of 1 in the region covered by the ith patch
and is 0 elsewhere. A similar definition is used for the density which also exhibits a
piecewise constant nature due to the presence of the patches. These definitions can
be adapted to the case of a single patch that is bonded to the plate by replacing the
2/3 by 1/3. We point out that if the plate, patches, and bonding layers have the same
Poisson ratios (νp = νpe = νb` = ν), then the internal moment expressions reduce to
the familiar relations for a thin plate. For example, Mr in this case is given by

Mr = −D

(
∂2w

∂r2 +
ν

r

∂w

∂r
+

ν

r2

∂2w

∂θ2

)
− cD

(
∂3w

∂r2∂t
+

ν

r

∂2w

∂r∂t
+

ν

r2

∂3w

∂θ2∂t

)
,

with D and cD defined in (2.1).
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The external moments generated by the patches in response to an applied voltage
(out-of-phase for the patch pair) are given by

(Mr)pe = (Mθ)pe = −
s∑

i=1

KB
i ui(t)χi(r, θ),

where ui(t) is the voltage into the ith patch and KB
i is a parameter which depends

on the geometry, piezoceramic material properties, and piezoelectric strain constants
(see [16] for details).

The internal and external moments can then be combined to yield the general
plate moments

Mr = Mr − (Mr)pe,

Mθ = Mθ − (Mθ)pe,

Mrθ = Mrθ.

For a clamped plate with initial displacement w0(r, θ) and velocity w1(r, θ), force
and moment balancing yield the equations

ρh
∂2w

∂t2
+ µ

∂w

∂t
− ∂2Mr

∂r2 − 2
r

∂Mr

∂r
+

1
r

∂Mθ

∂r

−2
r

∂2Mrθ

∂r∂θ
− 2

r2

∂Mrθ

∂θ
− 1

r2

∂2Mθ

∂θ2 = g̃(t, r, θ),

0 < θ ≤ 2π,
0 ≤ r < a;

{
w(t, a, θ) =

∂w

∂r
(t, a, θ) = 0;

{
w(0, r, θ) = w0(r, θ),

∂w

∂t
(0, r, θ) = w1(r, θ)

(2.2)

as the strong form of the plate model (see [12, 37] for details). From an applications
perspective, the following observations can be made regarding this model.

(1) It is first noted that in many applications, it is nearly impossible to maintain
the truly fixed (zero displacement and slope) boundary conditions specified in the
model (2.2). For the experimental plate which we used, parameter estimation results
indicated minimal energy loss through the boundary conditions, and an adequate
fit of the model (2.2) was obtained (see the identification results in [2, 15]). For
plates in which the boundary clamping is less secure, a model for imperfectly clamped
boundaries such as that presented in [18] should be used in order to obtain a model
fit which is adequate for control applications.

(2) As discussed in [16] and noted in the model, the plate parameters ρ, D, ν,
and cD are discontinuous due to the presence and differing material properties of
the patches. Moreover, while “handbook” values can be determined for ρ, D, and
ν for a plate which is devoid of patches, those values usually cannot be used in
the final system model with any accuracy due to nonuniformities in the plate and
boundary conditions, variations in materials, and contributions due to the presence
of the patches. In applications, such as that in this paper, these parameters are
estimated using fit-to-data techniques (see [2, 15] for the parameter estimation results
pertaining to the plate used here).

(3) The input parameters KB
i are discontinuous since they are nonzero only over

the regions of the patches. While expressions for these constants are derived in [16],
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they too must be estimated in applications due to manufacturing variations in the
patches.

It is readily noted in the strong form of the modeling equations that the discon-
tinuous plate parameters and patch input terms are differentiated, thus leading to
derivatives of the Dirac δ “function.” The difficulties associated with this formulation
are avoided in the weak form of the modeling equations which is presented in the next
section.

2.2. Weak form of plate model. To provide a framework which facilitates
analysis, approximation, and implementation, it is advantageous to consider a weak
form of the modeling equations. Such a formulation can be determined directly from
Hamiltonian (energy) principles and is equivalent to that obtained by integration by
parts after multiplication of the strong form by suitably smooth test functions.

For the plate problem under consideration, a suitable space V of test functions is
the subset of the Sobolev space H2(Γ0) which satisfies the essential boundary condi-
tions w = ∂w/∂r = 0 at r = a. As detailed in [12, 39], a weak or variational form of
the equations of motion for the plate is∫

Γ0

ρh
∂2w

∂t2
ηdγ +

∫
Γ0

µ
∂w

∂t
ηdγ −

∫
Γ0

Mr
∂2η

∂r2 dγ −
∫

Γ0

1
r2 Mθ

[
r
∂η

∂r
+

∂2η

∂θ2

]
dγ

−2
∫

Γ0

1
r2 Mrθ

[
r

∂2η

∂r∂θ
− ∂η

∂θ

]
dγ =

∫
Γ0

s∑
i=1

KB
i ui(t)χi(r, θ)∇2ηdγ +

∫
Γ0

g̃ηdγ

(2.3)
for all η ∈ V . The overbar here denotes complex conjugation and the differential
is dγ = rdθdr. It is easily noted that in this form, derivatives that were originally
applied to moments have been transferred onto test functions. This eliminates the
difficulties associated with differentiating the piecewise constant parameters ρ, D, ν,
and cD found in the internal moments as well as the discontinuous input parameters
KB

1 , . . . , KB
s .

2.3. State approximation. As discussed in [12, 39], an appropriate choice for
the basis and Fourier–Galerkin expansion of the plate displacement, when considering
clamped boundary conditions, is BN

k (r, θ) = r|m̂|Bm
n (r)eimθ and

wN (t, r, θ) =
M∑

m=−M

Nm∑
n=1

wN
mn(t)r|m̂|Bm

n (r)eimθ =
N∑

k=1

wN
k (t)BN

k (r, θ).(2.4)

Here Bm
n (r) is the nth modified cubic spline satisfying Bm

n (a) = dBm
n (a)
dr = 0, with the

condition dBm
n (0)
dr = 0 being enforced when m = 0 (this latter condition guarantees

differentiability at the origin and implies that

Nm =

{
N, m = 0,

N + 1, m 6= 0,

where N denotes the number of modified cubic splines). The total number of plate
basis functions is N = (2M + 1)(N + 1) − 1. As discussed in [12, 39], the inclusion of
the weighting term r|m̂| with

m̂ =

{
0, m = 0,

1, m 6= 0,
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is motivated by the asymptotic behavior of the Bessel functions, which make up the
analytic plate solution as r → 0. It also serves to ensure the uniqueness of the
solution at the origin. The Fourier coefficient in the weight is truncated to control
the conditioning of the mass and stiffness matrices (see the examples in [12]).

To obtain a matrix system (again, see [12, 39] for a careful derivation with
complete details), the N -dimensional approximating subspace is taken to be HN =
span{BN

k } and the product space for the usual corresponding first-order vector sys-
tem is HN × HN . The restriction of the first-order form for the infinite-dimensional
system (2.3) to the space HN × HN then yields the matrix equation[

KN
D 0

0 MN

] [
ϑ̇N (t)

ϑ̈N (t)

]
=

[
0 KN

D

−KN
D −KN

cD

] [
ϑN (t)

ϑ̇N (t)

]
+

[
0

B̃N

]
u(t) +

[
0

ĝN (t)

]
,

[
KN

D 0

0 MN

] [
ϑN (0)

ϑ̇N (0)

]
=

[
gN
1

gN
2

]
,

where ϑN (t) = [wN
1 (t), wN

2 (t), . . . , wN
N (t)]T denotes the column N vector containing

the approximate state coefficients (see (2.4)). For the case in which νp = νpe = νb` =
ν, the component matrices and vectors are given by

KN
D = KD1 + KD2 + KD3 + KD4 + KD5,

KN
cD

= KcD1 + KcD2 + KcD3 + KcD4 + KcD5 +
∫

Γ0

µBN
k BN

` dγ,

[
MN ]

`,k
=

∫
Γ0

ρhBN
k BN

` dγ,

[
ĝN (t)

]
`
=

∫
Γ0

g̃BN
` dγ,

[
B̃N

]
`,j

=
∫

jthpatch

Kj∇2BN
` dγ,[

gN
1

]
`
=

〈
w0, B

N
`

〉
V

,
[
gN
2

]
`
=

〈
w0, B

N
`

〉
H

,

(2.5)

where

[KD1]`,k =
∫

Γ0

D

[
∂2BN

k

∂r2 +
ν

r

∂BN
k

∂r
+

ν

r2

∂2BN
k

∂θ2

]
∂2BN

`

∂r2 dγ,

[KD2]`,k =
∫

Γ0

D

[
1
r2

∂BN
k

∂r
+

1
r3

∂2BN
k

∂θ2 +
ν

r

∂2BN
k

∂r2

]
∂BN

`

∂r
dγ,

[KD3]`,k =
∫

Γ0

D

[
1
r3

∂BN
k

∂r
+

1
r4

∂2BN
k

∂θ2 +
ν

r2

∂2BN
k

∂r2

]
∂2BN

`

∂θ2 dγ,

[KD4]`,k = 2
∫

Γ0

D(1 − ν)
[

1
r2

∂2BN
k

∂r∂θ
− 1

r3

∂BN
k

∂θ

]
∂2BN

`

∂r∂θ
dγ,

[KD5]`,k = 2
∫

Γ0

D(1 − ν)
[
− 1

r3

∂2BN
k

∂r∂θ
+

1
r4

∂BN
k

∂θ

]
∂BN

`

∂θ
dγ,

with D defined in (2.1) (similar expressions arise in the more general case of differing
Poisson ratios). The index ranges here are k, ` = 1, . . . , N . The matrices KcD1−KcD5
are defined similarly with the inclusion of the parameter cD in the various integrals.
Finally, we remind the reader that ρ, D, ν, and cD are piecewise constant in these
definitions due to the presence of the patches.
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For application purposes, it is useful to note that the matrix system for the plate
can thus be written as the Cauchy system

ẏN (t) = AN yN (t) + BN u(t) + gN (t),

yN (0) = yN
0 ,

(2.6)

where yN (t) = [ϑN (t), ϑ̇N (t)]T = [wN
1 (t), . . . , wN

N (t), ẇN
1 (t), . . . , ẇN

N (t)]T denotes the
column 2N vector containing the generalized Fourier coefficients for the approximate
displacement and velocity. In this form, the control problem can be readily discussed.

3. Continuous-time control problem. In the preceding discussion leading
from the infinite-dimensional PDE model to the finite-dimensional matrix approxima-
tion, the superscript N was used to denote the level of discretization; i.e., the number
of Fourier/spline basis elements used to approximate the state. This notation is stan-
dard in the theory of finite-element and spline approximations of infinite-dimensional
systems. In finite-dimensional control theory, however, the level of discretization is
typically fixed, and these superscript N ’s are usually omitted to simplify notation.
We will do the same in this and subsequent sections so as to remain consistent with
standard control notation.

3.1. Initial displacement and velocity—LQG control law. We consider
first the N -dimensional systems

ẏ(t) = Ay(t) + Bu(t), y(0) = y0,

yob(t) = Cy(t),
z(t) = Hy(t) + Gu(t),

(3.1)

where yob denotes observations in RP and C is a P × N observation matrix whose
structure is determined by the manner and number of observations being used (the
specific C matrix used in the plate experiments is described in section 4.2). Moreover,
z ∈ Rr denotes the performance output obtained under the assumption that G and
H are time-invariant matrices satisfying HT G = 0. In the event that P = N and C
is an identity, the optimal control u can be obtained from standard linear quadratic
regulator (LQR) optimal control theory. The number of observations P is usually
limited, however, and we concentrate instead on the case P < N which occurs when
the full state is unavailable and must be reconstructed using a compensator (e.g., see
[33]).

The general control problem for this case consists of determining the voltage u
which minimizes the performance index (or cost functional)

J(u) =
∫ ∞

0
|z(t)|2 dt

=
∫ ∞

0
{〈Qy(t), y(t)〉 + 〈Ru(t), u(t)〉} dt

subject to (3.1). The N × N matrix Q can be chosen to satisfy various design cri-
teria including frequency windowing, the weighting of various state components, or
minimization of certain energy measures. The Q matrix used here was chosen using
energy considerations, and construction details can be found in section 4.2. The s× s
matrix R weights the voltages to the various patches or patch pairs.
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Because full state information is not available in most applications, the state must
be estimated or reconstructed from observations before a controlling voltage can be
determined. We consider here a full order compensator or observer of Luenberger
type [33] and refer the reader to [21, 30] for details on reduced order observers.

The compensator or reconstructed state satisfies the matrix system

ẏc(t) = Ayc(t) + Bu(t) + F [yob(t) − Cyc(t)] ,
yc(0) = yc0 ,

with the optimal voltage

u(t) = −Kyc(t),

where F and K denote the compensator and feedback gains, respectively. We note
that K and F are chosen so that the reconstruction error |y(t) − yc(t)| → 0 as t →
∞. Under usual observability and controllability hypotheses (see [33]), the optimal
feedback and compensator gains are given by

K = R−1BT Π,

F = PCT R̃−1,
(3.2)

where Π and P are unique nonnegative-definite solutions to the following feedback
(regulator) and compensator (observer) algebraic Riccati equations

ΠA + AT Π − ΠBR−1BT Π + Q = 0,

PAT + AP − PCT R̃−1CP + Q̃ = 0,
(3.3)

respectively. As was the case with the matrices Q and R, the matrices Q̃ and R̃
are design criteria for the specific control application under consideration (specific
choices used in the plate experiments are summarized in section 4.2). We point out
that in terms of the component matrices and control voltage, the compensator can be
expressed as

ẏc(t) =
[
A − BR−1BT Π

]
yc(t) + PCT R̃−1C [y(t) − yc(t)] .

The control law just described must be implemented in real time in order to be a
viable method for reducing vibrations in physical structures. To facilitate implemen-
tation, it is prudent to calculate offline as many components as possible and then treat
those precalculated components as filters when performing online computations. The
method for continuous-time implementation is summarized, and offline and online
components are categorized in Algorithm 3.1.

We note that the expensive (time-consuming) calculation of the component ma-
trices A, B, Q, R, C, Q̃, and R̃ and Riccati solutions Π, P is performed offline, with
the results loaded into the control code as datafiles. This leaves the integration of the
system ẏc(t) = Acyc(t)+Fyob(t) as the primary computation to be performed during
implementation. Issues regarding the numerical integration of the system as well as
the effects of discrete-time calculations will be discussed in section 4, and a discrete
version of Algorithm 3.1 is summarized in Algorithm 4.1.

While this compensator does provide the desired performance, it may lack robust-
ness in some applications. In cases where added robustness with regard to certain
types of system or observation noise and modeling errors is required, an H∞/MinMax
compensator of the type described in the next section can be used.
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ALGORITHM 3.1. Continuous time control of initial displacement and velocity.

Offline (i) Construct matrices A, B, C, Q, R, Q̃, R̃

(ii) Solve Riccati equations (3.3) for Π and P

(iii) Construct K = R−1BT Π and F = PCT R̃−1

Online (i) Collect data yob(t) = Cy(t)
(ii) Solve the ODE system

ẏc(t) = [A − BK − FC] yc(t) + Fyob(t)
= Acyc(t) + Fyob(t)

(iii) Calculate the voltage u(t) = −Kyc(t)

3.2. Initial displacement and velocity—H ∞/MinMax control law. We
consider now the design of a dynamic compensator which is robust with respect to
certain types of state and measurement uncertainties or disturbances (see [20] for
details). To incorporate such uncertainties, we let w(t) ∈ Rq denote input and output
disturbances. The system, with no exogenous force, is then given by

ẏ(t) = Ay(t) + Bu(t) + Dw(t),
yob(t) = Cy(t) + Ew(t),
z(t) = Hy(t) + Gu(t).

For this discussion, we assume that the input and output disturbances are independent
and hence DET = 0. This is a matter of convenience, and the dependent case can be
handled similarly after slight modifications are made (see [20]).

In this case, the MinMax optimization problem leading to the controller consists
of finding a controller u∗ ∈ U ≡ L2(0, ∞; Rs) and disturbance w∗ ∈ W ≡ L2(0, ∞; Rq)
such that

J∗
γ = inf

u∈U
sup

w∈W
Jγ(u, w) = Jγ(u∗, w∗)

for the disturbance-augmented functional

Jγ(u, w) =
∫ ∞

0

{
|z(t)|2 − γ2 |w(t)|2

}
dt

=
∫ ∞

0

{〈Qy(t), y(t)〉 + 〈Ru(t), u(t)〉 − γ2 〈w(t), w(t)〉} dt.

As noted in [17, 20], the results from this optimization problem yield a bound γ for the
H∞ norm of the transfer function from disturbance L(w) to the performance output
L(z) where L denotes the Laplace transform.

Under the assumption that the pair (A, B) is stabilizable, (A, C) is detectable,
(A, G) is controllable, and (A, H) is observable, one can prove the existence of (mini-
mal) positive definite solutions Π and P to the algebraic Riccati equations

ΠA + AT Π − Π
[
BR−1BT − γ−2Q̃

]
Π + Q = 0,

PAT + AP − P
[
CT R̃−1C − γ−2Q

]
P + Q̃ = 0

for a given attenuation γ > 0. Moreover, if the spectral radius ρ of PΠ satisfies the
condition

ρ(PΠ) < γ2 or Π − γ2P−1 < 0,
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then there exists a unique optimal controller

u∗(t) = −R−1BT Πyc(t).

The state estimator yc(t) ∈ RN satisfies

ẏc(t) = Acyc(t) + Fyob(t),
yc(0) = yc0 ,

where

Ac = A − BK − FC + γ−2Q̃Π,

F =
[
I − γ−2PΠ

]−1
PCT R̃−1.

The implementation issues concerning the method are similar to those discussed in
the algorithm for the LQG controller, but determination of the Riccati solutions Π, P
and filter F are complicated by the fact that a suitable design value of γ must be
determined before matrix calculations can proceed. Fortunately, these calculations
can be performed offline and resulting matrices input as data files for the online
computations. Hence the actual online controller can run at the same rate as that
obtained using the LQG methodology.

3.3. Periodic primary excitation. For the case in which a periodic exogenous
force drives the system, knowledge of that force can be used to extend previously
discussed results to include the effects of periodicity. The N -dimensional system in
this case is

ẏ(t) = Ay(t) + Bu(t) + g(t), y(0) = y(τ),
yob(t) = Cy(t),

(3.4)

where g(t) ∈ RN is periodic with period τ . That periodicity is then reflected in the
performance index

J(u) =
∫ τ

0
{〈Qy(t), y(t)〉 + 〈Ru(t), u(t)〉} dt

which is minimized subject to (3.4).
With K and F defined in (3.2), the reconstructed state in this case satisfies the

system

ẏc(t) = Ayc(t) + Bu(t) + F [yob(t) − Cyc(t)] + g(t),
yc(0) = yc(τ),

(3.5)

with the optimal voltage given by

u(t) = −Kyc(t) + R−1BT r(t).(3.6)

Here r is a tracking variable defined by the system

ṙ(t) = − [A − BK]T r(t) + Πg(t),
r(0) = r(τ),

(3.7)

where Π solves the first of the algebraic Riccati equations (3.3). We point out that
in this case, the voltage contains two contributions. The first incorporates transient
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ALGORITHM 3.2. Continuous-time control with periodic exogenous force.

Offline (i) Construct matrices A, B, C, Q, R, Q̃, R̃

(ii) Solve Riccati equations (3.3) for Π and P

(iii) Construct K = R−1BT Π and F = PCT R̃−1

Online (i) Collect data yob(t) = Cy(t) and force measurements g(t)
(ii) Solve the ODE systems

ṙ(t) = − [A − BK]T r(t) + Πg(t)
= Atrr(t) + ĝ(t)

ẏc(t) = [A − BK − FC] yc(t) + Fyob(t) + BR−1BT r(t) + g(t)
= Acyc(t) + Fyob(t) + Arr(t) + g(t)

(iii) Calculate the voltage u(t) = −Kyc(t) + R−1BT r(t)

information by feeding back state estimates while the tracking component incorporates
information regarding the periodic force.

Combining (3.5) and (3.6) yields the single expression

ẏc(t) = [A − BK] yc(t) + FC [y(t) − yc(t)] + BR−1BT r(t) + g(t),
yc(0) = yc(τ)

(3.8)

for the state estimator in terms of the tracking variable. The state estimate at time
t is then obtained by integrating (3.7) and (3.8) after solving the necessary Riccati
equations.

As was the case when considering control of the unforced system with initial dis-
placement and velocity, the computations can be categorized with respect to those
which can be performed offline and those which must be done online. Algorithm 3.2
summarizes the continuous-time control method for periodic excitation and catego-
rizes the offline and online components. In this case, the tracking equation ṙ(t) =
Atrr(t) + ĝ(t) must be solved before the state can be estimated by integrating the
system ẏc(t) = Acyc(t) + Fyob(t) + Arr(t) + g(t).

Expressions similar to those in section 3.2 arise when an H∞/MinMax compen-
sator is considered for the problem. For this case, the reader is referred to [4], where
details concerning the design of an H∞/MinMax compensator for a structural acoustic
system that is subjected to a periodic exogenous force is considered.

4. Discrete-time control problem. The control laws summarized in the last
section were derived under the assumption of continuous-time sampling of observed
state and force data. Hence it was assumed that yob(t) and g(t) were available for all
t within the temporal interval of interest. Moreover, it was assumed that y(t), yc(t),
and r(t) could be obtained through exact integration of the state, state estimator, and
tracking equations. When implementing the method, however, one has available only
discrete data values and the differential estimator and tracking equations must be
numerically approximated at discrete-time values. The manner in which the control
laws are implemented in discrete time and the influence of this discretization on the
overall performance are discussed in this section.

In the last section, it was demonstrated that in the case with no primary exogenous
force, the state equation, state estimator, and controlling voltage for the LQG and
H∞/MinMax problems had the form summarized in column 1 of Table 4.1. The
corresponding quantities for a system subjected to a periodic exogenous force are
summarized in the second column. Details regarding the component matrices can be
found in the previous section.
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TABLE 4.1
State, state estimator, and controlling voltage for the systems with no primary input and a

periodic exogenous force.

No primary input Periodic exogenous force

State
equation

ẏ(t) = Ay(t) + Bu(t), y(0) = y0,

yob(t) = Cy(t)
ẏ(t) = Ay(t) + Bu(t) + g(t), y(0) = y(τ),
yob(t) = Cy(t)

State
estimator

ẏc(t) = Acyc(t) + Fyob(t),
yc(0) = yc0

ẏc(t) = Acyc(t) + Fyob(t) + Arr(t) + g(t),
yc(0) = yc(τ)

Tracking
equation

ṙ(t) = Atrr(t) + ĝ(t),
r(0) = r(τ)

Control
voltage u(t) = −R−1BT Πyc(t) u(t) = −R−1BT Πyc(t) + R−1BT r(t)

y(t) = Ay(t) + Bu(t) + g(t)

u(t) = - K y  (t) + R   B  r(t)c
-1 T

y   (t) = Cy(t)ob

r(t) = A   r(t) +    g(t)tr Π

u(t) = - K y  (t) + R   B  r(t)c
-1 T

Force
Exogenous

Physical Process

State Equations
(Model Process)

Filters

DSP Board

(1)
a(t) -> v(t)

Integrate Acceleration Data

PC Computer

(2)   Determine Tracking Component

Calculate Voltage

cy  (t) = A  y  (t) + Fv(t) + BR   B  r(t) + g(t)c c
-1 T

(3)

(4)

Estimate Process from Observations

Feedback

Exogenous Force g(t)

Observation  a(t)

FIG. 4.1. Experimental plate setup, modeling equations, and computations necessary for deter-
mination of controlling voltage.

The relationship of these components to the experimental plate setup, driven by
a periodic exogenous force, is illustrated in Figure 4.1. For that setup, the physical
process consists of the clamped circular plate with attached piezoceramic patches. The
state equations represent the spatial discretization of a PDE model of the process with
physical parameters estimated using experimental data so that the model accurately
captures the plate dynamics.
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We point out that when modeling the process or performing simulations, the
observations yob(t) are obtained from the approximate state through the relation
yob(t) = Cy(t), where C is the matrix observation operator. When experimentally
implementing the method, temporal data from the process are used to determine the
observations yob(t). This often requires processing either through digital or analog
filters or in the software. In the circular plate experiments, accelerometer data a(t)
were integrated to yield velocity measurements v(t) to be used for the observations
yob(t) (see the final subsection of this section for details). Once yob(t) has been
obtained, the state is estimated by numerically integrating the estimator equation
and a controlling voltage is calculated. This voltage is then fed back to the process.

Because data is processed in a digital manner, the observations yob and force
measurements g are obtained only at discrete times tj . The rate at which these
data can be sampled is governed by the data acquisition system, the software being
used, and the number of calculations required between samples. In particular, the
tracking component r(tj), state estimate yc(tj), and voltage u(tj) must be calculated
before the arrival of data at time tj+1. While details regarding these calculations are
postponed until section 4.1, it is noted here that the system sizes must be minimized
in order to permit real-time approximation of the estimation equation. This is a major
motivation for choosing appropriate, accurate approximation techniques to spatially
discretize the modeling PDEs.

As indicated previously, the open and closed loop process dynamics can be sim-
ulated by using the state equations to model the plate. The state estimate and state
are then approximated by simultaneously integrating the corresponding equations.
The integration of the state equation can be performed using any sufficiently accurate
ODE routine which is efficient for the system under consideration; for example, a
variable order, variable stepsize method was used to solve the stiff system which arose
when simulating plate dynamics. If simulations demonstrating the levels of control
that can be obtained under “optimal” conditions are desired, the estimator equation
can be integrated using the same high-order routine. On the other hand, simulations
representing the attenuation levels that can be expected under “implementation” con-
ditions can be obtained by incorporating values of yob and g calculated at discrete
times and approximating yc(tj) using the techniques employed when implementing
the method. Simulation results using both techniques can be found in [14].

4.1. Approximation of the estimator and tracking equations. In order
to obtain tracking values and state estimates to be used when calculating controlling
voltages, the solution to the tracking and state estimator equations must be numer-
ically approximated. If the goal is solely to perform simulations, this can be easily
accomplished using the same ODE solver used to integrate the state equation (indeed,
the state and estimator equations can be combined into a single system and integrated
simultaneously). This is not practical when experimentally implementing the method,
however, and one must typically perform the work subject to the following criteria.
The method must be sufficiently efficient so as to facilitate real-time implementation
and sufficiently accurate so as to resolve system dynamics. The systems are quite
often stiff, which implies that either a-stability or α-stability is important. Finally,
the difficulties in storing past data make it prohibitive to use many popular multistep
methods.

For the experiments performed with the circular plate, the sample rate was suf-
ficiently fast (and hence ∆t was sufficiently small) that a modified backward Euler



1278 BANKS, SMITH, BROWN, SILCOX, AND METCALF

ALGORITHM 4.1. Discrete-time control of initial displacement and velocity.

Offline (i) Construct matrices A, B, C, Q, R, Q̃, R̃

(ii) Solve Riccati equations (3.3) for Π and P

(iii) Construct K = R−1BT Π

F = PCT R̃−1

Ac = A − BK − FC

(iv) Choose appropriate ∆t (determined by sample rate)

(v) Construct Ac = (I − ∆tAc)−1

Fc = (I − ∆tAc)−1 F

Online (i) Collect acceleration data a(tj)
(ii) Integrate to obtain yob(tj) = v(tj)
(iii) Time step the discrete estimator system

ycj+1 = Acycj + Fcyob(tj)
(iv) Calculate the voltage u(tj) = −Kycj

or trapezoidal method produced adequate results. We illustrate here such a modified
backward Euler method.

4.1.1. Initial displacement and velocity. Considering first the compensator/
estimator system with no primary exogenous force, we find that the modified Euler
approximate to the solution at time tj+1 is given by

ycj+1 = (I − ∆tAc)
−1

ycj
+ (I − ∆tAc)

−1
Fyob(tj)

= Acycj
+ Fcyob(tj).

The method is modified in the sense that current observation values yob(tj) are used
as input since futures values at tj+1 are unknown. The time step ∆t is dictated
by the sample rate. We point out that the matrix Ac = (I − ∆tAc)

−1 and vector
Fc = (I − ∆tAc)

−1
F can be computed offline and then loaded as datafiles for the

online computations. Hence the implicit nature of the method, which is necessary to
ensure stability, does not slow the implementation. The discrete-time implementation
of the method is summarized in Algorithm 4.1. The definitions of the component
matrices can be found in section 3, and Algorithm 4.1 can be compared with the
corresponding continuous-time Algorithm 3.1 given in that section.

4.1.2. Periodic exogenous force. The application of these control techniques
to systems with both transient and steady-state behavior involves the approxima-
tion of both the tracking and the state estimator equations before a control input is
calculated. While a variety of techniques and strategies can be used to obtain approx-
imate values of r(tj), which are then used when computing y(tj), these calculations
must ultimately be performed in real time when implementing the method. In the
experiments involving the circular plate, the exogenous force was measured for sev-
eral periods and the solutions to the tracking equation were approximated and stored
over a time period commensurate with the driving frequency. These stored tracking
values were then used as a filter when approximating the estimated state during the
remainder of the experiment.

Illustrating with the backward Euler discretization, the approximate to the track-
ing solution was determined from the difference equation

rj+1 = (I − ∆tAtr)
−1

rj + (I − ∆tAtr)
−1

ĝ(tj)
= Atrrj + Atr ĝ(tj)
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ALGORITHM 4.2. Discrete-time control of periodic excitation.

Offline (i) Construct matrices A, B, C, Q, R, Q̃, R̃

(ii) Solve Riccati equations (3.3) for Π and P

(iii) Construct K = R−1BT Π
F = PCT R̃−1

Ac = A − BK − FC

Atr = − [A − BK]T

(iv) Choose appropriate ∆t (determined by sample rate)

(v) Construct Ac = (I − ∆tAc)−1

Ar = (I − ∆tAc)−1 Ar

Atr = (I − ∆tAtr)−1

Fc = (I − ∆tAc)−1 F

Online (i) Collect acceleration data a(tj)
(ii) Integrate to obtain yob(tj) = v(tj)
(iii) Approximate and store tracking values

rj+1 = Atrrj + Atr ĝ(tj)
r(τ) = 0

(iii) Time step the discrete estimator system
ycj+1 = Acycj + Fcyob(tj) + Arrj + Acg(tj)

yc(kτ) = 0
(iv) Calculate the voltage u(tj) = −Kycj + R−1BT rj

subject to the final condition r(τ) = 0. (When implementing the method, one can
simply search for a “suitable” zero crossing to start the approximation.)

This approximation was continued throughout several periods of the driving force,
with rj being stored in a circular buffer. This buffer was then treated as a filter when
estimating the state using the difference equations

ycj+1 = (I − ∆tAc)
−1

ycj
+ (I − ∆tAc)

−1
Fyob(tj) + (I − ∆tAc)

−1
Arrj

+ (I − ∆tAc)
−1

g(tj)

= Acycj
+ Fcyob(tj) + Arrj + Acg(tj).

As indicated in Algorithm 4.2, the time-intensive calculations involving matrix
construction, solution of the Riccati equations, and matrix inversion were performed
offline prior to the experiments, and the matrices Atr, Ac, Ar and vector Fc were sim-
ply loaded as datafiles. This, combined with the solution of the tracking filter before
state estimation, yielded an algorithm which was sufficiently fast for implementation.
Current efforts are aimed toward the simultaneous approximation of the tracking and
state estimator equations during implementation.

4.1.3. Higher-order approximations. In the previous discussion, a modified
backward Euler method was used to discretize the state estimator and tracking equa-
tions. As indicated, by numerical simulations reported in [14] and experimental results
in the next section, for small ∆t, this provides sufficient accuracy to calculate an effec-
tive feedback voltage. If more accuracy is needed, a trapezoid rule or hybrid method
of the nature discussed on page 225 of [34] can be used. These provide increased
accuracy without adding complexity during implementation since the components
Atr, Ac, Ar, and Fc can still be computed offline.
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TABLE 4.2
System and control matrices used in the circular plate experiments.

Component Size Comments

A =

[
0 I

− (
MN )−1

KN
D − (

MN )−1
KN

cD

] 32 × 32 The elements composing the 16 ×
16 matrices MN , KN

D , and KN
cD

are
summarized in (2.5)

B =

[
0(

MN )−1
B̃N

] 32 × 1 See (2.5) for the description of B̃N

g(t) =
[ 0

ĝN (t)

] 32 × 1 The elements of ĝN (t) are detailed in
(2.5)

C =

 0, · · · , 0 BN
1 (r1, θ1), · · · , BN

N (r1, θ1)
...

...
0, · · · , 0 BN

1 (rp, θp), · · · , BN
N (rp, θp)


p × 32 In the experiments, acceleration data

were integrated to obtain velocity val-
ues which are the second-state val-
ues in the second-order formulation.
Since one accelerometer was used, p=
1. See Example 2 of section 4.3 for a
discussion regarding the duality be-
tween control and observation.

4.2. Example 1—matrix construction. The control discussion thus far has
been general in the sense that it holds for general systems of the form

ẏ(t) = Ay(t) + Bu(t),
yob(t) = Cy(t),

or
ẏ(t) = Ay(t) + Bu(t) + g(t),
yob(t) = Cy(t)

as long as the pair (A, B) is stabilizable and (A, C) is detectable. Moreover, the cost
functional matrices Q, R and observation matrices Q̃, R̃ have been treated as general
design criteria to be specified according to the application under consideration. In
this example, we illustrate explicitly the matrices and filters used when implementing
these control techniques for a vibrating circular plate.

We first note that 16(= N) modified cubic splines (see (2.4)) were sufficient for
resolving the plate dynamics in the frequency range under consideration. Due to the
axisymmetric excitation and response of the plate, the Fourier limit M = 0 was used
in all calculations. Hence a total of N = 16 basis functions were used, which led to
32 coefficients in the vector y.

The formulation and sizes of all components in the control system for the circular
plate are summarized in Tables 4.2 and 4.3. The component matrices and vectors
are then employed in Algorithm 4.1 or 4.2 to create the implementation matrices and
filters which were ultimately used in the experiments.

4.3. Example 2—duality between control and observation. The duality
between control and observation can be noted by considering the form of the control
matrix B and observation matrix C. Illustrating with the case in which s patch pairs
are used for control, the 2N × s control matrix has the form

B =

[
0(

MN )−1
B̃N

]
,
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TABLE 4.3
Control and observation matrices used in the circular plate experiments. The experimental

results in section 5.1 demonstrate control of transient dynamics, while the periodic case is illustrated
in section 5.2.

Component Size Comments

Q =

[
d1IN 0

0 d2IN

] [
KN

D 0

0 MN

] 32 × 32 A weighted mass matrix was used for
the penalty term Q. As discussed in
[6], this provides a means of weighting
the kinetic and potential energy of the
plate.

Section 5.1: d1 =d2 = 1.
Section 5.2: d1 =d2 = 5.

R =

 R11

. . .
Rss


s × s In the plate experiments, one control-

ling patch was used, so s = 1.

Section 5.1: R11 = 10−7.
Section 5.2: R11 = 10−10.

Q̃ =

[
c1IN 0

0 c2IN

] 32 × 32 For the plate experiments, Q̃ was
treated solely as a design parameter
as compared with the choice in [4],
where physical arguments were used
to construct the matrix. The identity
weights were taken to be c1 = c2 = 1
in the experiments.

R̃ =


R̃11

. . .
R̃pp


p × p In the experiments, p = 1 since one

accelerometer was used for data col-
lection. The weight was taken to be
R̃11 =1.

where the N × s matrix B̃N has elements[
B̃N

]
`,j

=
∫

Γ0

Kj∇2BN
` χj(r, θ) dγ

=
∫

jth patch

Kj∇2BN
` dγ

(here χj(r, θ) denotes the characteristic function over the jth patch).
When data from accelerometers located at the points (r1, θ1), . . . , (rp, θp) are in-

tegrated to obtain velocity values, the p × 2N observation matrix is given by

C = [0 1]
[

C̃ 0
0 C̃

]
,

where, using the 2−D Dirac delta notation δ,[
C̃

]
j,`

=
∫

Γ0

BN
` δ(r − rj , θ − θj) dγ

= BN
` (rj , θj).



1282 BANKS, SMITH, BROWN, SILCOX, AND METCALF

With C thus defined, it can immediately be noted that

yob(t) = Cy(t)

=
N∑

k=1

ẇk(t)BN
k (rj , θj)

denotes the physical value of the velocity at the point (rj , θj) given by the state
equations at time t. This is an approximation (to within modeling and processing
error) of the actual plate plate velocity v(t) which is measured in experiments.

Similarly, multiplication of the state estimator coefficients yc by C produces an
estimate of the velocity which is then compared with the measured plate velocity
when integrating the state estimator equation

ẏc(t) =
[
A − BR−1BT Π

]
yc(t) + PCT R̃−1 [v(t) − Cyc(t)] .

It should be noted that as the state estimates approach the measured plate values,
the estimator equation approaches the state equation

ẏ(t) = Ay(t) − BR−1BT Πyc(t),

which is used to model the plate dynamics.

4.4. Integration of experimental data. For the experiments involving the
control of circular plate vibrations, data consisted of acceleration measurements ob-
tained from one or more accelerometers on the plate. It was then necessary to approx-
imately integrate these data to obtain velocity values so as to have a state variable
for control calculations. An issue which turns out to be crucial when approximately
integrating experimental data concerns the robustness of the integrator with respect
to inexact initial conditions and DC gains or biases (added constants or offsets) in
the data. The inexact initial conditions can be due to unknown system contribu-
tions, static shocks during system connections, et cetera. While careful calibration
can alleviate some of the uncertainty in initial conditions, it cannot fully eliminate the
problem. The problem of gains or biases due to small DC voltages in the system can
also be minimized but never fully eliminated. Hence an integrator which is minimally
affected by uncertain initial conditions and DC offsets in the data is crucial for success
when approximately integrating data.

Here we consider two techniques for approximately integrating acceleration data
to obtain velocity values in accordance with the relation

v̇(t) = a(t).

Essentially, the idea is to replace the integration by either the first-order differential
equation

v̇ + Ωv =
1

RC
a(4.1)

or the second-order equation

v̈ + Ωv̇ + Ω2v =
1

RC
ȧ(4.2)

(see [29]). The design parameters Ω and RC are frequency and time constants, re-
spectively, which are chosen so that RC = 1 and ω > 6Ω, where ω is the smallest
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observed frequency. For solution, (4.2) is written as the first-order system

•[
v
e

]
=

[ −Ω Ω
−Ω 0

] [
v
e

]
+

[
a(t)
RC
0

]
⇒ ż = Az + f,

(4.3)

where ė = −Ωv. The integration of (4.3) is subject to the initial conditions[
v(0)
e(0)

]
=

[
v0

e0

]
.(4.4)

As will be detailed in the subsequent discussion, the first-order integrator (4.1)
is robust with respect to inexact initial conditions but propagates DC offsets in the
data. In the second-order integrator (4.2), or system (4.3), both disturbance in initial
conditions and DC offsets in acceleration data are exponentially attenuated. More-
over, the frequency response of this approximator is very close to that in the original
signal for ω > 6Ω. Hence this latter method provides an accurate and robust means
of approximately integrating experimental data.

4.4.1. First-order approximate integrator. Here we examine the properties
of the first-order approximate integrator (4.1). We consider first the case in which the
exact initial condition v0 is known and the acceleration a(t) is free from DC gains or
biases (added constants). If we let V (s) = L{v(t)} and A(s) = L{a(t)}, then Laplace
transformation of the system (4.1) yields

V (s) =
1

s + Ω
v0 +

1
s + Ω

· 1
RC

A(s).

Hence the approximate integrator (4.1) is a single pole filter. Inverse transformation
then yields

v(t) = e−Ωtv0 +
1

RC

∫ t

0
e−Ω(t−s)a(s)ds(4.5)

as the solution to (4.1).
Similarly, if ṽ0 denotes a perturbed initial condition and a DC gain g̃a is present

in the data, then the solution is given by

ṽ(t) = e−Ωtṽ0 +
1

RC

∫ t

0
e−Ω(t−s) [a(s) + g̃a] ds.

It follows immediately that

ṽ(t) = v(t) + e−Ωt

(
ṽ0 − v0 − g̃a

RCΩ

)
+

g̃a

RCΩ
.

It is first noted that the perturbations in initial conditions exponentially decay with
the rate of decay influenced by the magnitude of the parameter Ω. DC gains of the
order g̃a/(RCΩ) remain, however, thus leading to difficulties when such biases are
present in the data. Both properties are numerically illustrated through examples
in [14].
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The manner through which the solution (4.5) approximates the solution to the
original relation v̇(t) = a(t) can be illustrated with a simple example. Consider
a(t) = 120π cos(120πt). The solution to (4.1) for this acceleration is

v(t) =
1

RC
· 120π

Ω2 + (120π)2
[Ω cos(120πt) + 120π sin(120πt)]− 1

RC
· 120πΩ
Ω2 + (120π)2

e−Ωt,

which reduces to the solution of the original relation with Ω = 0 and RC = 1. For Ω =
16π, the solution v still provides an adequate approximation to the original, whereas it
is a very poor approximation with Ω = 120π. This phenomenon is illustrated in [14].

4.4.2. Second-order approximate integrator. The second-order approxi-
mate integrator (4.2), or equivalent system (4.3), eliminates the difficulties associated
with both inexact initial conditions and DC gains or biases in the data. The elimina-
tion of constants in the data can heuristically be attributed to the differentiation of
the acceleration data. This can be made rigorous by analytically solving the problem.

We again let V (s) = L{v(t)} and A(s) = L{a(t)} and let v0, v1, and a0 denote
initial conditions. Transformation of (4.2) yields[

s2V (s) − sv0 − v1
]
+ Ω [sV (s) − v0] + Ω2V (s) =

1
RC

[sA(s) − a0] ,

from which it follows that

V (s) =
s + Ω

s2 + Ωs + Ω2 v0 +
(v1 − a0/RC)
s2 + Ωs + Ω2 +

s

s2 + Ωs + Ω2 · 1
RC

A(s).

Inverse transformation then yields the solution

v(t) = e−Ωt/2
[
cos

(√
3Ωt/2

)
v0 +

1√
3

sin
(√

3Ωt/2
)

v0

+
2√
3Ω

sin
(√

3Ωt/2
) (

v1 − a0

RC

)]
+

1
RC

∫ t

0
e−Ω(t−s)/2

[
cos

(√
3Ω(t − s)/2

)
− 1√

3
sin

(√
3Ω(t − s)/2

)]
a(s)ds.

As in the discussion of (4.1), we then consider the corresponding solution with
perturbed initial conditions ṽ0, ṽ1, and ã0 and DC gain g̃a. In this case, the perturbed
solution ṽ(t) is given by

ṽ(t) = v(t) + e−Ωt/2
[
cos

(√
3Ωt/2

)
+

1√
3

sin
(√

3Ωt/2
)]

[ṽ0 − v0]

+ e−Ωt/2 · 2√
3Ω

sin
(√

3Ωt/2
) [(

ṽ1 − ã0

RC

)
−

(
v1 − a0

RC

)]
+ e−Ωt/2 · 2g̃a√

3RCΩ
.

Here both the perturbations in initial conditions and the added constants in the data
exponentially decay with the rate of decay dependent on the magnitude of Ω. This
is illustrated in examples given in [14]. We reiterate that while increased values of Ω
lead to more rapid decay of perturbations and biases, the solution to the differential
equation less accurately approximates the true velocity. This, in combination with
the goal of accurately preserving signal frequencies, leads to the condition Ω < ω/6.
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4.4.3. Numerical approximation. Because of the potential for problems in-
volving DC gains with the first-order formulation (4.1), we concentrate primarily on
the second-order filter (4.2) and the corresponding system (4.3). We note that similar
scalar techniques can be used to approximate the solution to (4.1). In considering
numerical techniques for integrating (4.3), emphasis was placed on using a technique
which could easily be implemented in real time. The two methods considered here
are Euler’s method and a backward Euler’s method. The two are summarized below.

Euler’s method.

z(tk+1) = [I + ∆tA] z(tk) + ∆tf(tk)

⇒
[

v
e

]
(tk+1) =

[
1 − ∆tΩ ∆tΩ
−∆tΩ 1

] [
v
e

]
(tk) +

 ∆t
a(tk)
RC
0

 .

Backward Euler’s method.

z(tk) = [I − ∆tA]−1
z(tk−1) + [I − ∆tA]−1 ∆tf(tk−1),

where

[I − ∆tA]−1 =


1

1 + ∆tΩ + (∆tΩ)2
∆tΩ

1 + ∆tΩ + (∆tΩ)2
−∆tΩ

1 + ∆tΩ + (∆tΩ)2
1 + ∆t

1 + ∆tΩ + (∆tΩ)2

 ,

∆t [I − ∆tA]−1
f(tk−1) =


(∆t/RC)a(tk−1)

1 + ∆tΩ + (∆tΩ)2

(−(∆t)2Ω/RC)a(tk−1)
1 + ∆tΩ + (∆tΩ)2

 .

The advantage of the backward Euler’s method over Euler’s method is its stability
properties, with slightly more involved matrices being the disadvantage. Numerical
examples demonstrating both methods with a variety of exogenous forces can be found
in [14].

5. Experimental results. Experimental results demonstrating both the tran-
sient and steady-state capabilities of the control methodology are presented in this
section. The circular plate used in these experiments had a radius of 9 inches (.2276m)
and a thickness of .05 inch (.00127m). A pair of piezoceramic patches having radius
.75 inch (.01905m) and thickness .007 inch (.0001778m) was bonded to the center of
the plate. In both the transient and the steady-state experiments, only one patch
was used for control. In the steady-state experiments, the opposite patch was used to
drive the plate while it was allowed to remain uncharged in the transient case. The
plate was mounted in a wooden frame by a circular aluminum collar which provided
boundary conditions which were sufficiently close to clamped (zero displacement and
slope).

The first step in the process was the estimation of physical parameters through
fit-to-data techniques. As detailed in [2, 15], transient plate vibrations were excited
though an impact hammer strike or the input of a voltage spike to the patches, and
acceleration data were measured. The parameter values summarized in Table 5.1 were
obtained through a least squares minimization of the difference between the model
response and the measured data. These values were then employed when constructing
the component matrices A, B, and Q (see Table 4.2) used during the experimental
implementation of the controller.
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TABLE 5.1
Physical parameters used in the experiments.

Physical parameters

ρ · h Plate 3.170
(kg/m2) Plate + Pzt 3.216

D Plate 11.151
(N · m) Plate + Pzt 11.506

cD Plate 1.443 − 4
(N · m · sec) Plate + Pzt 2.031 − 4

ν Plate .326
Plate + Pzt .325

µ (sec · N/m3) 17.021

KB (N/V ) — Controlling Patch .016

KB (N/V ) — Driving Patch .017

5.1. Transient control. To investigate the capabilities of the method for con-
trolling transient vibrations, decaying plate responses generated by an impact hammer
strike were considered. In each case, the strike was directed to the center of the plate
and hence the plate response was axisymmetric. In the first set of experiments, data
were collected from an accelerometer located at the plate center on the side opposite
from the hammer impact; thus P1 = (r1, θ1) = (0, 0) in the construction of the obser-
vation matrix C described in Table 4.2. The experiments were then repeated with the
accelerometer placed at the off-center point P2 = (r1, θ1) = (2′′, 0) to illustrate that
collocation between the sensor and actuator is unnecessary in this control method (see
Figure 5.1 for sensor, actuator, and impact locations). The results obtained with the
off-center accelerometer are presented here, and the reader is referred to [14] for a dis-
cussion of the transient control results obtained with observations from the centered
accelerometer.

Since no exogenous force was applied to the plate, the state estimator and control
law summarized in Algorithm 4.1 were used to compute the controlling voltage to
the patch. The component matrices as well as the cost functional and observation
parameters used in these experiments are summarized in Tables 4.2 and 4.3.

Data acquisition and processing were performed with a PC-based Texas Instru-
ments TMS 320-C30 digital signal processing (DSP) board. A schematic of the am-
plifiers, filters, DSP configuration and PC algorithm is given Figure 5.2. In the ex-
periments, the accelerometer voltage was initially boosted by a factor of 10 and then
reduced by 5 dB before reaching the DSP board. The controlling voltage output from
the DSP was also boosted by an amplifier before input to the patches. This was
necessary since the maximum voltage output by the DSP is 2.5 V whereas 60−70 V
were needed at the patch. The reader is also referred to Figure 4.1 for an illustra-
tion of the experimental process and to [14] for details regarding the implementation
process. We point out that the ratio 2048

2.5V , illustrated in the A/D conversion, results
when the voltage range −2.5 to 2.5 is discretized into 4096 possible digital values.
The reciprocal process occurs when digital values are converted to analog voltages in
the D/A converter.
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P1

P2 P2

P1Hammer Impact Accelerometer at

Controlling Patch

Accelerometer at

FIG. 5.1. Patch, accelerometer, and impact locations for the experiments involving control
of transient vibrations.

jv(t  )yc = A c yc Fcj+1 j +
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2.5V

2048
2.5V

Box
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FilterGains
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x30

Amplifier

Accelerometer

Plate + Patches
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Hardware Software

Integrate

Converter

Converter

A/D

D/A

FIG. 5.2. Amplifiers, DSP configuration, and PC Algorithm 4.1 for controlling a plate excited
by an initial impact. Component matrices are defined in Figures 4.2 and 4.3.

The control code was written in assembler in order to attain sufficiently fast
sample rates for resolving transient frequencies excited by the hammer impact. While
the code ran at rates greater than 7 KHz, a sample rate of 3.5 KHz was used in the
experiments. This proved to be sufficient for resolving the three axisymmetric modes
(with frequencies of 60 Hz, 227 Hz, and 512 Hz) excited in the experiments.

Representative plots of the plate velocity (integrated from the data) at the off-
center point P2 in the uncontrolled and controlled cases are given in Figure 5.3, with
reduction levels at times t = 0.5, 1.0, 1.5 sec summarized in Table 5.2. The percentage
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FIG. 5.3. Uncontrolled and controlled plate vibrations at (2′′, 0) in response to an impact ham-
mer hit: (uncontrolled), (controlled).

TABLE 5.2
The percent reductions in acceleration and velocity levels at the point P2 = (2′′, 0) when feedback

control is implemented.

Time Acceleration Velocity

.5 sec 69.5 68.2
1 sec 88.9 84.7

1.5 sec 93.8 97.8

reductions were calculated by determining the ratio between the maximum values
of the controlled and uncontrolled trajectories through one period containing the
time point of interest. As illustrated by the results in Table 5.2 and Figure 5.3, the
velocity level in the controlled case has been reduced by 50% before .5 sec and is
essentially fully attenuated by 1.5 sec. We reiterate that these results were obtained
with data obtained from an accelerometer at (2′′, 0) and a centered actuating patch,
thus illustrating that collocation is unnecessary for this control method.

The voltage u(tj) = −Kycj
was recorded in each experiment and that voltage

yielding the control results reported here is plotted in Figure 5.4. It is noted that the
voltage has a maximum magnitude of 70 V. In practice, it has been observed that
the patches can be used for extended periods at the frequencies of interest without
damage or degradation of performance if the voltage levels are maintained below
8–10 rms V/mil [38]. Hence control voltage levels required for control of the transient
vibrations is well within the tolerance of the 7-mil patches used in the experiments.
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FIG. 5.4. The controlling voltage for acceleration data observed at (2′′, 0).

Finally, the force delivered by the hammer impact in the uncontrolled and con-
trolled cases is plotted in Figure 5.5 so as to provide a means of testing the equity of
excitation levels in the uncontrolled and controlled experiments (the initial velocities
in the two cases can also be compared to determine whether the same level of energy
is being delivered in each experiment). As indicated by the results in this latter figure,
the force delivered in the two cases is nearly identical (a slight double hit was always
present when an impact hammer was used to excite the axisymmetric modes).

5.2. Control of a periodic exogenous force. A second problem under consid-
eration concerns the control of plate vibrations when the plate is driven by a periodic
exogenous force. To demonstrate the control capabilities in this case, a periodic driv-
ing voltage was supplied to one centered patch on the plate, and the patch on the
opposite side of the plate was used as the control actuator. Experimental tests in-
dicated that a 350-Hz driving voltage produced a strong plate response and all tests
were conducted with the exogenous voltage at that frequency.

Two sources were used to generate this exogenous signal: namely, an external os-
cillator and the PC running the control algorithm. As reported under Case 1 below, a
purely steady-state response could be considered with the oscillator-generated exoge-
nous force since the plate was driven to steady state before the control program was ini-
tiated. Both a transient and steady-state response were noted in the PC-generated sig-
nal since the input of the exogenous force to the plate began at the same time that the
control algorithm was started. This latter means of excitation is considered in Case 2.

Since the system was driven by a periodic exogenous force, the discrete-time
Algorithm 4.2 (corresponding to continuous-time Algorithm 3.2) was used to calculate
the controlling voltage to the actuating patch. Again, component matrices as well as
control and observation parameters are summarized in Tables 4.2 and 4.3.
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FIG. 5.5. The force delivered by the impact hammer in the uncontrolled and controlled cases:
——– (controlled case), – – – (uncontrolled case).

For the off-center results reported here, velocity observation values were obtained
by integrating data from an off-center accelerometer located at the point P2 = (2′′, 0)
as depicted in Figure 5.1. The second input to the algorithm consisted of measure-
ments g(tj) of the force driving the plate. We point out that when implementing this
control method, both phase and magnitude information for the driving force were re-
quired, as compared with many other methods (e.g., feedforward) which require only
phase information.

In these experiments, the tracking components rj were calculated first and stored
in a circular buffer. These values were then used when calculating the state estimates
yj and voltages u(tj). While the implementation in this manner facilitated running
the algorithm with sample rates on the order of 7 KHz (again, the algorithm was
coded in assembler), it limits the robustness of the method with respect to changes
and variations in the driving force. Current efforts are directed toward simultaneous
solution of the tracking and estimator difference equations.

A crucial issue when implementing the method concerns the handling of delays
and phase shifts produced by the filters, A/D and D/A conversions, computation
of the control voltages, et cetera. While the amount of delay and phase shift is
frequency dependent, experiments indicated that at 350 Hz, 30◦–40◦ phase shifts
were introduced by the hardware. This was sufficient to destabilize the controller
if left uncompensated. In the experiments, we compensated by first conducting an
offline, numerical “identification” to determine the amount of added delay necessary
for stabilizing the controller in the presence of phase shifts of the order introduced
by the experimental hardware. A summary of these results can be found in [14].
This is analogous to the online tuning or phase locking which is necessary for en-
suring stability in other control methods. The numerical tests, summarized in [14],
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FIG. 5.6. Amplifiers, DSP configuration, and PC Algorithm 4.2 for controlling a plate driven
by a periodic exogenous force. Component matrices are defined in Tables 4.2 and 4.3.

indicated that the introduction of a 216◦ delay in accelerometer or exogenous force
data would stabilize the systems, and this was implemented in the experiments by
using a DAC delay box. The compensation for phase delays in this manner pro-
vides merely a first step toward optimal implementation of the method, and one
aspect of current research efforts is directed toward online compensation in the algo-
rithm.

Data acquisition and processing was again performed with a PC-based Texas
Instruments TMS 320-C30 board. A schematic of the setup is given in Figure 5.6.

Case 1. Oscillator-generated driving signal. For the results described here,
the signal to the driving patch was generated by an external oscillator. The plate was
allowed to reach steady state, and then the control program was initiated. Accel-
eration levels measured by the accelerometer located at P2 = (2′′, 0) and integrated
velocity values for the uncontrolled and controlled cases are plotted in Figure 5.7. As
noted from the controlled trajectories in that figure, it takes the algorithm approxi-
mately 0.06 sec to calculate and store a sufficient number of tracking components rj .
During that time interval, no voltage is fed to the actuating patch. Once the track-
ing calculations are completed, state estimation begins and the controlling voltage is
computed and fed back into the system. The vibration levels decay for approximately
0.3 sec and then are maintained at levels that are approximately 15% of those for
the uncontrolled case for the remainder of the time interval. This corresponds to a
20 log(acon/auncon) ≈ −16.5 dB reduction in acceleration levels.

While the magnitude of the controlling voltage is dependent upon the amplitude
of the driving signal, magnitudes less than 40 V (28.3 V rms) were required to attain
the levels reported here. At 350 Hz, this was well within the range (56 V–70 V rms
in this case) that was considered to be safe for the patch being used (see section 5.1
for further discussion regarding the voltage levels at which the patches can be driven
without damage or degradation in performance).
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FIG. 5.7. Uncontrolled and controlled plate acceleration and velocity at (2, 0) for system driven
by periodic exogenous force: (uncontrolled), (controlled).

The results in this experiment demonstrate the effectiveness of the algorithm for
controlling a system that has reached steady state. Hence one is not required to start
the control with a system at rest.

Case 2. PC-generated driving signal. A second mechanism for generating
the driving signal is with the PC that is used to process data and run the control
algorithm. Acceleration and velocity plots of the uncontrolled and controlled plate
vibrations excited in this manner are given in Figure 5.8. It can be seen that in this
case, the plate starts from rest and is still being driven through a transient stage
when the tracking calculations are completed and control begins. At that point, the
controlled trajectories are reduced to the levels noted in the purely steady-state case,
whereas the uncontrolled trajectories are driven to steady state. Here, an 82% (15 dB)
reduction in levels is noted at time T = 1 sec. This was obtained with a controlling
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FIG. 5.8. Uncontrolled and controlled plate acceleration and velocity at (2, 0) for system driven
by periodic exogenous force: (uncontrolled), (controlled).

voltage of magnitude 12 Vmax (8.5 Vrms). These results demonstrate the effectiveness
of the control algorithm for a system undergoing transient oscillations before reaching
steady state in response to a periodic driving force.

6. Conclusions. In this work, the experimental implementation of a PDE-based
controller was considered. While the motivating application involves the control of
vibration levels for a circular plate through the excitation of surface-mounted piezo-
ceramic patches, the general techniques described here will extend to a variety of
applications.

For such control techniques, the first step is the derivation of a PDE model which
accurately describes the dynamics of the system under consideration. Physical param-
eters in these models must typically be estimated through fit-to-data techniques be-



1294 BANKS, SMITH, BROWN, SILCOX, AND METCALF

fore control applications can be considered. Following a brief discussion regarding the
strong and weak forms of a thin plate model with a discontinuous control input term
(due to the piecewise constant nature of the piezoceramic patches), continuous-time
LQG and H∞ methods for systems with no exogenous force or a periodic exogenous
force were discussed. The discrete-time approximations necessary for implementing
the methods with digital measurements were also presented. A crucial step when im-
plementing the discrete-time controllers involves the approximate integration of data
(e.g., accelerometer data integrated to obtain velocity state values), and first- and
second-order filters for accomplishing this were discussed. Without such filters, DC bi-
ases, which are always present in the data, would render the integrated values useless.

Experimental results demonstrating the control of transient and steady-state vi-
brations were then presented. One advantage of the PDE-based controllers over stan-
dard frequency response input/output techniques is the capability for direct control
of transient responses, and this was demonstrated in the first set of examples. A
centered hammer impact was used to excite the plate, and integrated data from an
off-center accelerometer were used to reconstruct the state. The results demonstrate
that attenuation levels on the order of 95% reduction can be attained by 1.5 sec using
the PDE-based controller.

The second example demonstrates the control of transient and steady-state re-
sponses when the plate was driven by a periodic exogenous voltage to a secondary
piezoceramic patch. These results demonstrate that, after accounting for hardware
delays, attenuation levels on the order of 85% were attained when control was im-
plemented. While implementation techniques are still being refined, these results
demonstrate the effectiveness of the PDE-based controller for this system and indi-
cate the potential of these control techniques for reducing transient and steady-state
dynamics in other structural and structural acoustic systems.

Acknowledgments. The authors extend their sincere thanks to Yun Wang,
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Abstract. This paper deals with state-constrained optimal control problems governed by semi-
linear parabolic equations. We establish a minimum principle of Pontryagin’s type. To deal with the
state constraints, we introduce a penalty problem by using Ekeland’s principle. The key tool for the
proof is the use of a special kind of spike perturbations distributed in the domain where the controls
are defined. Conditions for normality of optimality conditions are given.
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1. Introduction. In the last years, some proofs of minimum principles of Pon-
tryagin’s type have appeared. For long time, the optimality conditions for control
problems governed by partial differential equations (PDEs) have been given in an
integral form, assuming the convexity of the control set and the differentiability with
respect to the control and state of all functions involved in the problem. This makes
a big difference with the control theory for problems governed by ordinary differential
equations (ODEs), where a Pontryagin principle is derived without the previous as-
sumptions. In my opinion, the reason for this difference is the difficulty of extending
the methods used for ODEs to infinite-dimensional systems. In particular, the classi-
cal spike perturbations of the controls localized around a point do not work properly
for PDEs because they lead to some equations with Dirac measures as data, which
produce noncontinuous solutions. This makes it difficult to treat the state constraints,
especially the pointwise state constraints.

A new type of spike perturbation was developed by a group of mathematicians
from Fudan University; see Li [25], Li and Yao [26], and Li and Yong [27]. They
used these perturbations to study control problems of evolution equations. The spike
perturbations were defined by using the representation of the state given by the corre-
sponding semigroup. This idea was also followed by Fattorini [17], [18]; Fattorini and
Frankowska [19]; and Fattorini and Murphy [20], [21]. Later Yong [33] and Casas and
Yong [14] built a similar kind of spike perturbations for elliptic equations by using
the representation of the solution with the aid of the Green function. Afterwards,
Casas suggested a new construction of the set where the perturbations were localized;
see Casas [11] and Bei Hu and Yong [22]. This construction was independent of the
equation. For a different viewpoint explaining the true nature of this new type of
spike perturbations, the reader is referred to Casas [12], where the boundary control
of a quasi-linear elliptic equation was considered.

Bonnans and Casas [5], [6] followed a different approach to derive Pontryagin’s
principle that did not use this type of spike perturbations. However, it was necessary
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to assume a stability condition of the optimal cost functional with respect to small
perturbation of the feasible state set.

In this paper, we consider a boundary control problem governed by a parabolic
semilinear equation. General state constraints are included in the formulation of the
problem. The idea developed in [12] is used here. To deal with the state constraints
we penalize them. The lack of convexity of the control set and the noncontinuity with
respect to the control of the functions involved in the control problem make it difficult
to formulate a penalty problem having a solution converging to the optimal control of
the original problem, however. Ekeland’s variational principle is the key to obtaining
the suitable penalization.

Pontryagin’s principle is often established in a nonqualified form, which implies
that the cost functional does not appear in the conditions for optimality. In the
absence of equality state constraints, we give a condition that leads to a qualified
optimality system. This condition was introduced by Bonnans [4] and Bonnans and
Casas [6]. It consists of assuming a certain kind of Lipschitz dependence of the optimal
cost functional with respect to small perturbations of the state constraint. It is
proved that this condition is satisfied “almost everywhere (a.e.).” We will distinguish
strong and weak Pontryagin principles, depending on whether the optimality system
is qualified or not. To prove the strong principle we make an exact penalization of
the state contraints.

One of the difficulties found in the optimality system is the adjoint state equation.
This equation can have measures as data in the domain, on the boundary, and as a final
condition. There are not many papers written about parabolic equations involving
measures. For these equations the reader is referred to Barbu and Precupanu [1],
Lasiecka [24], Tröltzsch [32], and Boccardo and Gallouët [3], the last one dealing with
quasi-linear equations. Here we use the transposition method to derive a general
result of existence and “uniqueness” of solution. Since we do not assume continuity of
the coefficients of the state equation, we need to be precise in which sense the solution
is unique; see Serrin [30] for a nonuniqueness result in W 1,p

0 (Ω) (p < 2) of an elliptic
problem well posed in H1(Ω).

The paper is organized as follows. In the next section, the control problem is
formulated. The state constraints are presented in an abstract framework. We show
through some examples how the usual state constraints are included in the abstract
formulation. The weak and strong Pontryagin principles are formulated in sections 3
and 4, respectively. In section 5, the state equation is studied and the spike pertur-
bations are defined. The linear parabolic equations involving measures are analyzed
in section 6. All the mentioned papers dealing with control of evolution equations,
except [22], followed the semigroup approach to analyze the state and adjoint state
equations. Here we will follow the variational approach, which allows us to obtain
some pointwise information of the solutions of the PDEs. This information is very
important for studying the control problems with pointwise state constraints. Finally,
the proofs of weak and strong principles are given in section 7.

2. Setting of the control problem. Let Ω ⊂ Rn, n ≥ 1, be an open and
bounded set, with Lipschitz boundary Γ. Given 0 < T < +∞, we set ΩT = Ω× (0, T )
and ΣT = Γ × (0, T ). Let (K, d) be a metric space and let us consider a function
f : ΣT × R × K −→ R of class C1 with respect to the second variable and satisfying
the following assumptions:

∂f

∂y
(x, t, y, u) ≤ 0 ∀(x, t, y, u) ∈ ΣT × R × K;(2.1)



PONTRYAGIN’S PRINCIPLE FOR BOUNDARY CONTROL PROBLEMS 1299


∀M > 0 ∃CM > 0 such that ∀(x, t, u) ∈ ΣT × K and |y| ≤ M,

|f(x, t, 0, u)| +
∣∣∣∣∂f∂y (x, t, y, u)

∣∣∣∣ ≤ CM .
(2.2)

The state equation is as follows:
∂y

∂t
(x, t) +Ay(x, t) + a0(x, t, y(x, t)) = 0 in ΩT ,

∂νA
y(x, t) = f(x, t, y(x, t), u(x, t)) on ΣT ,

y(x, 0) = y0(x) in Ω,

(2.3)

where y0 ∈ C(Ω̄), A is the linear operator

Ay = −
n∑
j=1

∂xj

{
n∑
i=1

[aij(x, t)∂xi
y(x, t)] + bj(x, t)y(x, t)

}

+
n∑
j=1

dj(x, t)∂xjy(x, t) + c(x, t)y(x, t),

(2.4)

and

∂νA
y(x, t) =

n∑
j=1

{
n∑
i=1

[aij(x, t)∂xiy(x, t)] + bj(x, t)y(x, t)

}
νj(x),(2.5)

ν(x) being the outward unit normal vector to Γ at the point x; see Casas [9] or Casas
and Fernández [13] for an interpretation of this Neumann condition in a trace sense.
Function a0 : ΩT × R −→ R is a Carathéodory function of class C1 with respect to
the second variable and satisfies the following assumptions:{ ∃ψ0 ∈ Lp̂([0, T ], Lq̂(Ω)) and C1 > 0 such that

a0(x, t, y)y ≥ ψ0(x, t) − C1y
2 ∀(x, t, y) ∈ ΩT × R;

(2.6)


a0(·, ·, 0) ∈ Lp̂([0, T ], Lq̂(Ω)) and ∀M > 0 ∃CM > 0 such that∣∣∣∣∂a0

∂y
(x, t, y)

∣∣∣∣ ≤ CM ∀(x, t) ∈ ΩT , |y| ≤ M ;
(2.7)

where q̂, p̂ ∈ [1,+∞] and 1/p̂+ n/2q̂ < 1.
As usual, we assume the following hypotheses on A:

aij , bj , dj , c ∈ L∞(ΩT ) ∀i, j = 1, . . . , n;

n∑
i.j=1

aij(x, t)ξiξj ≥ Λ|ξ|2 ∀ξ ∈ Rn a.e. (x, t) ∈ ΩT , with Λ > 0.
(2.8)

Once given the state equation, we introduce the cost functional

J(u) =
∫

ΩT

L(x, t, yu(x, t))dxdt+
∫

ΣT

l(x, t, yu(x, t), u(x, t))dσ(x)dt,
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where yu is the solution of (2.3) associated with u; σ denotes the usual (n − 1)-
dimensional measure on Γ induced by the parametrization (remember that Γ is a
Lipschitz manifold); and L : ΩT × R −→ R and l : ΣT × R × K −→ R are of class C1

with respect to the second variable, L being measurable with respect to the first one,
satisfying 

∀M > 0 ∃ψdM ∈ L1(ΩT ) such that ∀(x, t) ∈ ΩT , |y| ≤ M,

|L(x, t, 0)| +
∣∣∣∣∂L∂y (x, t, y)

∣∣∣∣ ≤ ψdM (x, t)
(2.9)

and 
∀M > 0 ∃ψbM ∈ L1(ΣT ) such that ∀(x, t, u) ∈ ΣT × K, |y| ≤ M,

|l(x, t, 0, u)| +
∣∣∣∣ ∂l∂y (x, t, y, u)

∣∣∣∣ ≤ ψbM (x, t).
(2.10)

The space of controls U is formed by the measurable functions u : ΣT −→ K such
that the mapping

(x, t) ∈ ΣT −→ (f(x, t, y, u(x, t)), l(x, t, y, u(x, t))) ∈ R2

is measurable for every y ∈ R. In section 5 we will prove that there exists a unique
solution of (2.3) in the space Y = C(Ω̄T ) ∩ L2([0, T ], H1(Ω)) for every u ∈ U , so that
functional J : U −→ R is well defined.

Finally we introduce the state constraints. Let Z be a separable Banach space
and Q ⊂ Z a closed convex subset with nonempty interior. Given two mappings of
class C1, G : Y −→ Z and F : C(Ω̄T ) −→ Rs, s ≥ 1, we formulate the optimal control
problem as follows:

(P) Minimize {J(u) : u ∈ U , G(yu) ∈ Q,F (yu) = 0}.
Let us show how the usual examples of state constraints can be handled with this

formulation.
Example 2.1. Given a continuous function g : Ω̄T ×R −→ R of class C1 in respect

to the second variable, the constraint g(x, t, yu(x, t)) ≤ δ for all (x, t) ∈ Ω̄T , with δ > 0
being a given number, can be written in the above framework by putting Z = C(Ω̄T ),
G : Y −→ C(Ω̄T ), defined by G(y) = g(·, y(·)), and

Q = {z ∈ C(Ω̄T ) : z(x, t) ≤ δ ∀(x, t) ∈ Ω̄T }.
Example 2.2. Let {(xj , tj)}sj=1 ⊂ Ω̄T ; then we can include the equality constraints

yu(xj , tj) = δj , 1 ≤ j ≤ s, in the above formulation. Indeed, it is enough to define the
functions Fj : C(Ω̄T ) −→ R given by Fj(y) = y(xj)−δj and to take F = (F1, . . . , Fs)T .
Then F is of class C1.

Example 2.3. Let g : Ω × [0, T ] × R −→ R be a function measurable with respect
to the first variable, continuous with respect to the second, of class C1 with respect to
the third, and such that ∂g/∂y is also continuous in the last two variables. Moreover,
it is assumed that for every M > 0 there exists a function ψM ∈ L1(Ω) such that

|g(x, t, 0)| +
∣∣∣∣∂g∂y (x, t, y)

∣∣∣∣ ≤ ψM (x) a.e. x ∈ Ω ∀t ∈ [0, T ] and |y| ≤ M.
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Then the constraint ∫
Ω
g(x, t, yu(x, t))dx ≤ δ ∀t ∈ [0, T ]

is included in the above formulation by taking Z = C[0, T ],

Q = {z ∈ C[0, T ] : z(t) ≤ δ ∀t ∈ [0, T ]},

and G : Y −→ C[0, T ] given by

G(y) =
∫

Ω
g(x, ·, y(x, ·))dx.

Example 2.4. The constraint∫
ΩT

|yu(x, t)|dxdt ≤ δ

is considered by taking Z = L1(ΩT ), G : Y −→ L1(Ω), with G(y) = y, and Q the
closed ball in L1(Ω) of center at 0 and radius δ.

Example 2.5. For every 1 ≤ j ≤ k let gj : ΩT ×R −→ R be a measurable function
of class C1 with respect to the second variable such that for each M > 0 there exists
a function ηjM ∈ L1(ΩT ) satisfying

|gj(x, t, 0)| +
∣∣∣∣∂gj∂y (x, t, y)

∣∣∣∣ ≤ ηjM (x, t) a.e. (x, t) ∈ ΩT ∀|y| ≤ M.

Then the constraints ∫
Ω
gj(x, t, yu(x, t))dxdt ≤ δj , 1 ≤ j ≤ k,

are included in the formulation of (P) by choosing G = (G1, . . . , Gk)T , with

Gj(y) =
∫

Ω
gj(x, t, y(x, t))dxdt,

Z = Rk, and Q = (−∞, δ1] × · · · × (−∞, δk].
Example 2.6. The equality constraints∫

Ω
fj(x, t, yu(x, t))dx = δj , 1 ≤ j ≤ l,

can also be included in problem (P) in the obvious way by assuming the same hy-
potheses as in Example 2.5.

Example 2.7. Integral constraints on the gradient of the state can be considered
within our formulation of problem (P):

G(yu) =
∫ T

0

∫
Ω

|∇xyu(x, t)|2dxdt ≤ δ.

In this case we can take Z = R and Q = (−∞, δ].
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3. The weak Pontryagin principle. Before formulating the weak Pontryagin
principle, we introduce some notation. Given α ≥ 0, we define the Hamiltonian
Hα : ΣT × R × K × R −→ R as follows:

Hα(x, t, y, u, ϕ) = αl(x, t, y, u) + ϕf(x, t, y, u).

Now we can establish Pontryagin’s principle.
THEOREM 3.1. If ū ∈ U is a solution of (P), then there exist ᾱ ≥ 0, ȳ ∈ C(Ω̄T )∩

L2([0, T ], H1(Ω)), and ϕ̄ ∈ Lr([0, T ],W 1,p(Ω)) for all p, r ∈ [1, 2) with (2/r)+(n/p) >
n+ 1, µ̄ ∈ Z ′ and λ̄ ∈ Rs such that

ᾱ+ ‖µ̄‖Z′ + |λ̄| > 0;(3.1) 
∂ȳ

∂t
+Aȳ + a0(x, t, ȳ(x, t)) = 0 in ΩT ,

∂νA
ȳ(x, t) = f(x, t, ȳ(x, t), ū(x, t)) on ΣT ,

ȳ(0) = y0 in Ω;

(3.2)



−∂ϕ̄

∂t
+A∗ϕ̄+

∂a0

∂y
(x, t, ȳ)ϕ̄ = ᾱ

∂L

∂y
(x, t, ȳ)

+[DG(ȳ)∗µ̄]|ΩT
+ [DF (ȳ)∗λ̄]|ΩT

in ΩT ,

∂νA∗ ϕ̄ =
∂f

∂y
(x, t, ȳ, ū)ϕ̄+ ᾱ

∂l

∂y
(x, t, ȳ, ū)

+[DG(ȳ)∗µ̄]|ΣT
+ [DF (ȳ)∗λ̄]|ΣT

on ΣT ,

ϕ̄(T ) = [DG(ȳ)∗µ̄]|Ω̄×{T} + [DF (ȳ)∗λ̄]|Ω̄×{T} in Ω̄;

(3.3)

〈µ̄, z −G(ȳ)〉 ≤ 0 ∀z ∈ Q;(3.4) ∫
ΣT

Hᾱ(x, t, ȳ(x, t), ū(x, t), ϕ̄(x, t))dσ(x)dt

= min
u∈U

∫
ΣT

Hᾱ(x, t, ȳ(x, t), u(x, t), ϕ̄(x, t))dσ(x)dt;

(3.5)

where A∗ denotes the formal adjoint operator of A. Moreover, if one of the following
assumptions is satisfied,

(A1) Functions f and l are continuous with respect to the third variable on (K, d)
and this space is separable;

(A2) There exists a set Σ0
T ⊂ ΣT , with mΣT

(Σ0
T ) = mΣT

(ΣT ), such that the
function

(x, t) ∈ ΣT −→ (f(x, t, y, u), l(x, t, y, u)) ∈ R2

is continuous in Σ0
T for every (y, u) ∈ R × K,

then the following pointwise relation holds:

Hᾱ(x, t, ȳ(x, t), ū(x, t), ϕ̄(x, t))

= min
u∈K

Hᾱ(x, t, ȳ(x, t), u, ϕ̄(x, t)) a.e.[σ] x ∈ Γ and a.e. t ∈ [0, T ].
(3.6)
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Remark 3.2. In the previous theorem, [DG(ȳ)]∗µ̄ and [DF (ȳ)]∗λ̄ are elements of

Y ′ = C(Ω̄T )′ + L2([0, T ], H1(Ω))′ = M(Ω̄T ) + L2([0, T ], H1(Ω)′),

where M(Ω̄T ) is the space of the real and regular Borel measures in Ω̄T . Let us
assume that [DG(ȳ)]∗µ̄ = φ̄ + ν̄, with φ̄ ∈ L2([0, T ], H1(Ω)′) and ν̄ ∈ M(Ω̄T ), then
we can write

[DG(ȳ)]∗µ̄|ΩT
= φ̄+ ν̄|ΩT

, [DG(ȳ)]∗µ̄|ΣT
= ν̄|ΣT

, and [DG(ȳ)]∗µ̄|Ω̄×{T} = ν̄|Ω̄×{T}.

Analogous considerations can be made for [DF (ȳ)]∗λ̄.
Let us apply the above principle to the examples given in section 2.
Example 3.3. In Example 2.1, Z = C(Ω̄T ); therefore, the Lagrange multiplier µ̄

whose existence is established in Theorem 3.1 is a measure in Ω̄T . In this case the
transversality condition (3.4) is written as follows:∫

Ω̄T

(z(x, t) − g(x, t, ȳ(x, t)))dµ̄(x, t) ≤ 0 ∀z ∈ C(Ω̄T ) with z(x, t) ≤ δ.

From this relation we can deduce that µ̄ is a positive measure concentrated in the
set of points (x, t) ∈ Ω̄T , where g(x, t, ȳ(x, t)) = δ. In particular, it could be a Dirac
measure or a combination of Dirac measures; see Casas [7].

The adjoint state equation (3.2) now becomes

−∂ϕ̄

∂t
+A∗ϕ̄+

∂a0

∂y
(x, t, ȳ)ϕ̄ = ᾱ

∂L

∂y
(x, t, ȳ) +

∂g

∂y
(x, t, ȳ)µ̄|ΩT

in ΩT ,

∂νA∗ ϕ̄ =
∂f

∂y
(x, t, ȳ, ū)ϕ̄+ ᾱ

∂l

∂y
(x, t, ȳ, ū) +

∂g

∂y
(x, t, ȳ)µ̄|ΣT

on ΣT ,

ϕ̄(T ) =
∂g

∂y
(x, T, ȳ(x, T ))µ̄|Ω̄×{T} in Ω̄.

Since ∂g/∂y is a continuous function in Ω̄T , then the product (∂g/∂y)µ̄ is well defined
and can be identified again with a measure.

Example 3.4. In Example 2.2

[DF (ȳ)]∗λ̄ =
l∑

j=1

λ̄jδ(xj ,tj).

If the points (xj , tj) are all of them included in ΩT , then the adjoint state equation is
−∂ϕ̄

∂t
+A∗ϕ̄+

∂a0

∂y
(x, ȳ(x))ϕ̄ = ᾱ

∂L

∂y
(x, ȳ(x)) +

l∑
j=1

λ̄jδ(xj ,tj) in ΩT ,

∂νA∗ ϕ̄ =
∂f

∂y
(x, t, ȳ, ū)ϕ̄+ ᾱ

∂l

∂y
(x, t, ȳ, ū) on ΣT ,

ϕ̄(T ) = 0 in Ω.

If some points xj are in Γ, then the corresponding term λ̄jδ(xj ,tj) should appear on
the Neumann condition. Analogously, if tj = T for some index j, then λ̄δ(xj ,T ) should
be included in the final condition.
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Example 3.5. In Example 2.3, the Lagrange multiplier µ̄ is a positive Borel
measure in [0, T ] concentrated in the set of points t where the state constraint is
active and

DG(ȳ)∗µ̄ =
∂g

∂y
(x, t, ȳ(x, t))µ̄(t).

Then we have the following equation for ϕ̄:

−∂ϕ̄

∂t
+A∗ϕ̄+

∂a0

∂y
(x, t, ȳ)ϕ̄ = ᾱ

∂L

∂y
(x, t, ȳ) +

∂g

∂y
(x, t, ȳ)µ̄|(0,T ) in ΩT ,

∂νA∗ ϕ̄ =
∂f

∂y
(x, t, ȳ, ū)ϕ̄+ ᾱ

∂l

∂y
(x, t, ȳ, ū) on ΣT ,

ϕ̄(T ) =
∂g

∂y
(x, T, ȳ(x, T ))µ̄({T}) in Ω.

So, in particular, we have that ϕ̄(T ) = 0 if the state constraint is not active in T .
This type of state constraints has been studied by many authors; see Barbu and
Precupanu [1], Lasiecka [24], and Tröltzsch [32]. All of them consider the semigroup
theory approach to deal with the state and adjoint state equations. They prove some
regularity of the adjoint state ϕ̄; see section 6.

Example 3.6. In Example 2.4, the Lagrange multiplier µ̄ is an element of Z ′ =
L∞(ΩT ); therefore, (3.2) reduces in this case to

−∂ϕ̄

∂t
+A∗ϕ̄+

∂a0

∂y
(x, t, ȳ)ϕ̄ = ᾱ

∂L

∂y
(x, t, ȳ) + µ̄ in ΩT ,

∂νA∗ ϕ̄ =
∂f

∂y
(x, t, ȳ, ū)ϕ̄+ ᾱ

∂l

∂y
(x, t, ȳ, ū) on ΣT ,

ϕ̄(T ) = 0 in Ω.

In this case, assuming more regularity for the functions ψdM and ψbM given in (2.8)–
(2.9), we can obtain additional regularity for ϕ̄. For instance, if we take function
ψbM ∈ Lp̂([0, T ], Lq̂(Ω)), then ϕ̄ ∈ Y . H2,1(Ω)-regularity is also obtained provided
that Γ is of class C2 and the coefficients aij of A are Lipschitz in the variable x.

Example 3.7. The Lagrange multipliers in Example 2.5 are positive real numbers
{µ̄j}kj=1. The positivity is a consequence of the transversality condition (3.3). The
adjoint state equation can be written as follows:

−∂ϕ̄

∂t
+A∗ϕ̄+

∂a0

∂y
(x, t, ȳ)ϕ̄ = ᾱ

∂L

∂y
(x, t, ȳ) +

k∑
j=1

µ̄j
∂gj
∂y

(x, t, ȳ) in ΩT ,

∂νA∗ ϕ̄ =
∂f

∂y
(x, t, ȳ, ū)ϕ̄+ ᾱ

∂l

∂y
(x, t, ȳ, ū) on ΣT ,

ϕ̄(T ) = 0 in Ω.

By increasing the regularity of functions ηj , we can improve the regularity of ϕ̄ such
as it was described in Example 3.6.

For the equality constraints considered in Example 2.6 the adjoint state equation
is similar to the above one. The only difference is that the Lagrange multipliers can
be negative.
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Example 3.8. In Example 2.7, the Lagrange multiplier µ̄ is a nonnegative real
number, ϕ̄ ∈ Y , and the adjoint state equation is

−∂ϕ̄

∂t
+A∗ϕ̄+

∂a0

∂y
(x, t, ȳ)ϕ̄ = ᾱ

∂L

∂y
(x, t, ȳ) + 2µ̄∇∗∇xy(x, t) in ΩT ,

∂νA∗ ϕ̄ =
∂f

∂y
(x, t, ȳ, ū)ϕ̄+ ᾱ

∂l

∂y
(x, t, ȳ, ū) on ΣT ,

ϕ̄(T ) = 0 in Ω,

where ∇∗∇xy ∈ L2([0, T ], H1(Ω)′) is given by

〈∇∗∇xy, z〉 =
∫

ΩT

∇xy(x, t)∇xz(x, t)dxdt.

The restriction of ∇∗∇xy to L2([0, T ], H1
0 (Ω)) is equal to −∆xy.

4. The strong Pontryagin principle. In this section we will prove that, in
the absence of equality constraints, Theorem 3.1 holds with ᾱ = 1 for “almost all”
control problems. We will be precise about this term later. The key to achieving this
result is the introduction of a stability assumption of the optimal cost functional with
respect to small perturbations of the set of feasible controls. This stability allows
us to accomplish an exact penalization of the state constraints. First of all let us
formulate the following control problem:

(Pδ)

{
Minimize J(u),

u ∈ U , G(yu) ∈ Qδ

with the same notation and assumptions of section 2 and setting Qδ = Q+ B̄δ(0) for
every δ > 0.

DEFINITION 4.1. We say that (Pδ) is strongly stable if there exist ε > 0 and C > 0
such that

inf (Pδ) − inf (Pδ′) ≤ C(δ′ − δ) ∀δ′ ∈ [δ, δ + ε].(4.1)

This concept was first introduced in relation with optimal control problems by
Bonnans [4]; see also Bonnans and Casas [6]. A weaker stability concept was used
by Casas [8] to analyze the convergence of the numerical discretizations of optimal
control problems. The following proposition states that almost all problems (Pδ) are
strongly stable.

PROPOSITION 4.2. Let δ0 ≥ 0 be the smallest number such that (Pδ) has feasible
controls for every δ > δ0. Then (Pδ) is strongly stable for all δ > δ0 except at most a
zero Lebesgue measure set.

Proof. It is enough to consider the function h : (δ0,+∞) −→ R defined by

h(δ) = inf (Pδ)

and remark that it is a nonincreasing monotone function and, consequently, differen-
tiable at every point of (δ0,+∞) except at a zero measure set. Now it is obvious to
check that (Pδ) is strongly stable at every point where h is differentiable.

Now we state the strong Pontryagin principle.
THEOREM 4.3. If (Pδ) is strongly stable and ū is a solution of this problem, then

Theorem 3.1 remains to be true with ᾱ = 1.
The proof of this theorem is postponed until section 7.
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5. Analysis of the state equation. In this section we will see that (2.3) is
well posed in Y = C(Ω̄T ) ∩ L2([0, T ], H1(Ω)) for every control u ∈ U . Also we will
study the variations of the state with respect to some pointwise perturbations of the
control which are the crucial point in the proof of Pontryagin’s principle. In U we
consider Ekeland’s distance

dE(u, v) = mΣT
({(x, t) ∈ ΣT : u(x, t) 6= v(x, t)}) ,(5.1)

where mΣT
is the measure on ΣT obtained as the product of σ and the Lebesgue

measure in the interval (0, T ). It is easy to check that (U , dE) is a complete metric
space. Indeed the proof given by Ekeland [16] can be repeated in this framework.

THEOREM 5.1. Under assumptions (2.1)–(2.8), problem (2.3) has a unique solu-
tion in Y = C(Ω̄T )∩L2([0, T ], H1(Ω)) for every control u ∈ U . Moreover, there exists
a constant M > 0 such that

‖yu‖∞ + ‖yu‖L2([0,T ],H1(Ω)) ≤ M ∀u ∈ U .(5.2)

Finally, if {uk}∞
k=1 ⊂ U is a sequence converging to u in U , i.e. dE(uk, u) → 0, then

{yuk
}∞
k=1 converges to yu strongly in Y .

Proof. The uniqueness of the solution in Y can be proved by using the Gronwall
inequality in the standard way along with the monotonicity of the nonlinear terms.
Let us prove the existence.

If a0 and f are bounded functions, then the existence and uniqueness of a solution
in L∞([0, T ], L2(Ω))∩L2([0, T ], H1(Ω)) is a consequence of the monotonicity of f im-
posed in (2.1) and the condition on a0 given in (2.6); see Lions [29] or Ladyzhenskaya,
Solonnikov, and Ural’tseva [23] for a proof based in Galerkin’s approximation of the
problem. If f is not bounded, we can consider the usual truncation of the function

fm(x, t, y, u) =


f(x, t, y, u) if |y| ≤ m,

f(x, t,m, u) if y > m,

f(x, t,m, u) if y < −m.

Thus hypothesis (2.2) implies the boundedness of fm.
An analogous modification can be made on a0. Then we deduce the existence and

uniqueness of a solution ym ∈ L∞([0, T ], L2(Ω)) ∩L2([0, T ], H1(Ω)) for problem (2.3)
with a0 and f replaced by a0m and fm, respectively. Now thanks to the assumptions
(2.1)–(2.8), we can apply the procedure of Ladyzhenskaya, Solonnikov, and Ural’tseva
[23] to deduce the existence of a constant M > 0 independent of m and u ∈ U such
that (5.2) holds for yu replaced by ym. This implies that

am(x, t, ym(x, t)) = a(x, t, ym(x, t)) ∀m ≥ M

and

fm(x, t, ym(x, t), u(x, t)) = f(x, t, ym(x, t), u(x, t)) ∀m ≥ M.

Consequently, the uniqueness of a solution of (2.3) lets us obtain the identity ym = yu
and the inequality (5.2).

In order to prove the continuity of yu, we first suppose that y0 ∈ Cθ(Ω̄T ) for
some constant θ ∈ (0, 1]. Then, by applying the results of di Benedetto [2], we deduce
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that yu ∈ Cβ,β/2(Ω̄T ) for some β ∈ (0, θ]. When y0 is not a Hölder function, we
can take a sequence {y0k}∞

k=1 ⊂ Cθ(Ω̄T ) converging uniformly to y0 in Ω̄T . Then
the corresponding solutions of (2.3), denoted by yk, are Hölder functions. Now, by
applying the methods of [23] is easy to deduce the convergence yk → yu in L∞(ΩT ),
which proves the continuity of yu.

Finally, the convergence yuk
→ yu in L2([0, T ], H1(Ω)) when dE(uk, u) → 0 is

easily derived. The uniform convergence is obtained again by using the arguments of
[23].

The rest of the section is devoted to the proof of the following theorem
THEOREM 5.2. Let u, v ∈ U . Given ρ ∈ (0, 1), there exist mΣT

-measurable sets
Eρ ⊂ ΣT , with mΣT

(Eρ) = ρmΣT
(ΣT ), such that if we define

uρ(x, t) =

{
u(x, t) if (x, t) ∈ ΣT \ Eρ,
v(x, t) if (x, t) ∈ Eρ,

and if we denote by yρ and y the states corresponding to uρ and u, respectively, then
the following equalities hold:

yρ = y + ρz + rρ, lim
ρ→0

1
ρ
‖rρ‖Y = 0,(5.3)

and

J(uρ) = J(u) + ρz0 + r0ρ, lim
ρ→0

1
ρ
r0ρ = 0,(5.4)

where z ∈ Y satisfies

∂z

∂t
+Az +

∂a0

∂y
(x, t, y(x, t))z = 0 in ΩT ,

∂νA
z =

∂f

∂y
(x, t, y(x, t), u(x, t))z

+f(x, t, y(x, t), v(x, t)) − f(x, t, y(x, t), u(x, t)) on ΣT ,

z(x, 0) = 0 in Ω

(5.5)

and

z0 =
∫

ΩT

∂L

∂y
(x, t, y(x, t))z(x, t)dxdt+

∫
ΣT

∂l

∂y
(x, t, y(x, t), u(x, t))z(x, t)dσ(x)dt

+
∫

ΣT

[l(x, t, y(x, t), v(x, t)) − l(x, t, y(x, t), u(x, t))]dσ(x)dt.(5.6)

The first step is the proof of the following result
PROPOSITION 5.3. For every 0 < ρ < 1 there exists a sequence of mΣT

-measurable
sets {Ek}∞

k=1 satisfying
(1) Ek = EkΓ × Jk, with Ek ⊂ Γ and Jk ⊂ (0, T ), σ(EkΓ) =

√
ρσ(Γ), and |Jk| =√

ρT .
(2) (1/

√
ρ)χEk

Γ
→ 1 ∗weakly in L∞(Γ); (1/

√
ρ)χJk → 1 ∗weakly in L∞(0, T ); and

(1/ρ)χEk
→ 1 ∗weakly in L∞(ΣT ).
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Proof. We divide the proof into several steps.
Step 1. The sets EkΓ.
Let us construct the sets EkΓ. Since Ω is bounded and Γ is a Lipschitz manifold,

we can obtain a finite collection of σ-measurable sets {Γr}dr=1 and functions {ar}dr=1
satisfying

(i)
⋃d
r=1 Γr = Γ,

o

Γi
⋂ o

Γj= ∅ if i 6= j and σ(Γ) =
∑d
r=1 σ(

o

Γr).
(ii) The functions ar : (−ΛΓ,+ΛΓ)n−1 −→ R are Lipschitz, and for some coordi-

nate system (x′
r, xr,n) = (xr,1, . . . , xr,n) in Rn we have that

o

Γr= {(x′
r, ar(x

′
r)) : x′

r ∈ (−ΛΓ,+ΛΓ)n−1}
and for every set E = {(x′

r, ar(x
′
r)) : x′

r ∈ F}, with F ⊂ (−ΛΓ,+ΛΓ)n−1 Lebesgue
measurable, the following identity holds:

σ(E) =
∫
F

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r.

For every k ∈ N we decompose the interval [−ΛΓ,+ΛΓ] into k closed subintervals
of length 2ΛΓ/k and disjoint interiors. Now we make all possible Cartesian products of
these subintervals and obtain a family of cubes {Qk,i}kn−1

i=1 of equal Lebesgue measure,
covering [−ΛΓ,+ΛΓ]n−1 and with disjoint interiors. For every r = 1, . . . , d and every

cube we take a measurable set F rk,j ⊂
o

Qk,j such that

∫
F r

k,j

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r =
√
ρ

∫
Qk,j

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r.

Let us see that such an F rk,j exists. For every t ∈ [0, 1] we define Qk,j(t) as the
cube with the same center as Qk,j and the length of each side being equal to t times
the length of the sides of Qk,j . So Qk,j(1) = Qk,j and Qk,j(0) is reduced to one point:
the center of Qk,j . Let us consider the function g : [0, 1] −→ R defined by

g(t) =
∫
Qk,j(t)

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r.

Then it is obvious that g is continuous and

0 = g(0) <
√
ρ

∫
Qk,j

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r < g(1).

Therefore there exists 0 < t0 < 1 such that

g(t0) =
√
ρ

∫
Qk,j

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r.

Thus we can choose F rk,j = Qk,j(t0).
Now we set

F rk =
kn−1⋃
i=1

F rk,i, Erk = {(x′
r, ar(x

′
r)) : x′

r ∈ F rk } ⊂o

Γr, EkΓ =
d⋃
r=1

Erk.
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Then

σ(EkΓ) =
d∑
r=1

σ(Erk) =
d∑
r=1

∫
F r

k

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r

=
√
ρ

d∑
r=1

∫
[−ΛΓ,+ΛΓ]n−1

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r =
√
ρ

d∑
r=1

σ(
o

Γr) =
√
ρσ(Γ).

We are going to prove that

1√
ρ

lim
k→∞

σ(A ∩ EkΓ) = σ(A) ∀A ⊂ Γ σ measurable.(5.7)

Once this is proved, the convergence (1/
√
ρ)χEk

Γ
→ 1 ∗weakly in L∞(Γ) follows from

the density of the simple functions in L1(Γ).

First, let us assume that A ⊂o

Γr is an open set. Let us take the open set B ⊂
(−ΛΓ,+ΛΓ)n−1 such that A = {(x′

r, ar(x
′
r)) : x′

r ∈ B}. Then, from Lemma 5.4 proved
below, we deduce

σ(A) =
∫
B

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r

=
1√
ρ

lim
k→∞

∫
B∩F r

k

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r

=
1√
ρ

lim
k→∞

σ(A ∩ Erk) =
1√
ρ

lim
k→∞

σ(A ∩ EkΓ).

If A ⊂ Γ is an open set, then

σ(A) =
d∑
r=1

σ(A∩ 0
Γr) =

d∑
r=1

1√
ρ

lim
k→∞

σ(A∩ 0
Γr ∩EkΓ) =

1√
ρ

lim
k→∞

σ(A ∩ EkΓ).

Thus (5.7) holds for every open subset of Γ. Let us take a closed set K ⊂ Γ,

σ(K) = σ(Γ) − σ(Γ \K) = σ(Γ) − 1√
ρ

lim
k→∞

σ([Γ \K] ∩ EkΓ)

= σ(Γ) − 1√
ρ

lim
k→∞

{
σ(EkΓ) − σ(K ∩ EkΓ)

}
=

1√
ρ

lim
k→∞

σ(K ∩ EkΓ).

Finally, let A ⊂ Γ be a σ-measurable set. Given ε > 0 arbitrary, we can take
K ⊂ Γ closed and V ⊂ Γ open such that K ⊂ A ⊂ V and

σ(A) − ε ≤ σ(K) ≤ σ(V ) ≤ σ(A) + ε.
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Then

σ(A) − ε ≤ σ(K) ≤ 1√
ρ

lim
k→∞

σ(K ∩ EkΓ) ≤ 1√
ρ

lim inf
k→∞

σ(A ∩ EkΓ)

≤ 1√
ρ

lim sup
k→∞

σ(A ∩ EkΓ) ≤ 1√
ρ

lim
k→∞

σ(V ∩ EkΓ) = σ(V ) ≤ σ(A) + ε,

which concludes the proof of (5.7).
Step 2. The sets Jk.
To construct the sets Jk, we decompose the interval [0, T ] into k closed intervals

Ikj of length T/k and disjoint interiors. For each j = 1, . . . , k we take a subinterval

Jkj ⊂
0
Ikj of length

√
ρT/k and the same center as Ikj . Finally, we define Jk as the union

of the intervals {Jkj }kj=1. Then |Jk| =
√
ρT and the convergence (1/

√
ρ)χJk → 1

∗weakly in L∞(0, T ) can be proved following the same ideas as in the previous step.
Step 3. The sets Ek.
Taking Ek = EkΓ ×Jk, it remains to prove the convergence (1/ρ)χEk

→ 1 ∗weakly
in L∞(ΣT ). Given f ∈ L1(Γ) and h ∈ L1(0, T ), we get from Steps 1 and 2 that

lim
k→∞

∫
ΣT

1
ρ
χEk

(x, t)f(x)h(t)dmΣT
(x, t)

=
(

lim
k→∞

∫
Γ

1√
ρ
χEk

Γ
(x)f(x)dσ(x)

)(
lim
k→∞

∫ T

0

1√
ρ
χJk(t)h(t)dt

)

=
∫

ΣT

f(x)h(t)dmΣT
(x, t).

Since the functions f(x)h(t), with f ∈ L1(Γ) and h ∈ L1(0, T ), expand a subspace
dense in L1(ΣT ), we conclude the proof.

LEMMA 5.4. With the notations of the above proof, the following identity holds
for all open sets B ⊂ (−ΛΓ,+ΛΓ)n−1:

∫
B

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r =
1√
ρ

lim
k→∞

∫
B∩F r

k

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r(5.8)

for every r = 1, . . . , d.
Proof. Let us take a sequence {Ck}∞

k=1 of closed cubes with sides parallel to the

axes and
o

Ck ∩ o

Ci= ∅ if i 6= k, so that B =
⋃∞
k=1 Ck; see Stein [31, pp. 167–170].

Fixed r, for each cube Cl, it is obvious that

∫
Cl

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r = lim
k→∞

∑
Qk,j⊂Cl

∫
Qk,j

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r

=
1√
ρ

lim
k→∞

∑
Qk,j⊂Cl

∫
F r

k,j

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r

=
1√
ρ

lim
k→∞

∫
Cl∩F r

k

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r.
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Now, given ε > 0 there exists kε ∈ N such that∣∣∣∣∣∣
∫
B

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r −
kε∑
l=1

∫
Cl

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r

∣∣∣∣∣∣ < ε.

From here it follows

∫
B

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r − ε

≤
kε∑
l=1

∫
Cl

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r

= lim
k→∞

1√
ρ

kε∑
l=1

∫
Cl∩F r

k

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r

≤ lim inf
k→∞

1√
ρ

∫
B∩F r

k

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r ≤

lim sup
k→∞

1√
ρ

∫
B∩F r

k

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r

≤ lim sup
k→∞

1√
ρ

kε∑
l=1

∫
Cl∩F r

k

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r +
ε√
ρ

=
kε∑
l=1

∫
Cl

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r +
ε√
ρ

≤
∫
B

√√√√1 +
n−1∑
i=1

∣∣∣∣ ∂ar∂xr,i
(x′
r)
∣∣∣∣2dx′

r +
(

1 +
1√
ρ

)
ε.

Since ε > 0 is arbitrary, the previous relations conclude the proof.
Finally, we are ready to prove Theorem 5.2.
Proof of Theorem 5.2. Let ρ ∈ (0, 1) be fixed. Applying Proposition 5.3, we

deduce the existence of measurable sets {Ek}∞
k=1 such that mΣT

(Ek) = ρmΣT
(ΣT )

and (1/ρ)χEk
→ 1 ∗weakly in L∞(ΣT ). For every k ∈ N, we set

uk(x, t) =

{
u(x, t) if (x, t) ∈ ΣT \ Ek,
v(x, t) if (x, t) ∈ Ek,
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and we denote by yk and y the states corresponding to uk and u, respectively. Now,
subtracting the equations satisfied by yk and y, and putting zk = (yk−y)/ρ we obtain

∂zk
∂t

+Azk + ck(x, t)zk = 0 in ΩT ,

∂νA
zk = bk(x, t)zk + h(x, t)

1
ρ
χEk

on ΣT ,

z(x, 0) = 0 in Ω,

(5.9)

where

ck(x, t) =
∫ 1

0

∂a0

∂y
(x, t, y(x, t) + τ [yk(x, t) − y(x, t)])dτ,

bk(x, t) =
∫ 1

0

∂f

∂y
(x, t, y(x, t) + τ [yk(x, t) − y(x, t)], uk(x, t))dτ,

and

h(x, t) = f(x, t, y(x, t), v(x, t)) − f(x, t, y(x, t), u(x, t)).

By subtracting (5.9) and (5.5) and writing ζk = zk − z, we deduce

∂ζk
∂t

+Aζk + ck(x, t)ζk =
[
∂a0

∂y
(x, t, y(x, t)) − ck(x, t)

]
z in ΩT ,

∂νA
ζk = bk(x, t)ζk +

[
bk(x, t) − ∂f

∂y
(x, t, y(x, t), u(x, t))

]
z

+h(x, t)
(

1
ρ
χEk

− 1
)

on ΣT ,

ζk(x, 0) = 0 in Ω.

(5.10)

Now we decompose ζk = ζ1
k + ζ2

k , with

∂ζ1
k

∂t
+Aζ1

k + ck(x, t)ζ1
k =

[
∂a0

∂y
(x, t, y(x, t)) − ck(x, t)

]
z in ΩT ,

∂νA
ζ1
k = bk(x, t)ζ1

k +
[
bk(x, t) − ∂f

∂y
(x, t, y(x, t), u(x, t))

]
z on ΣT ,

ζ1
k(x, 0) = 0 in Ω

(5.11)

and 

∂ζ2
k

∂t
+Aζ2

k + ck(x, t)ζ2
k = 0 in ΩT ,

∂νA
ζ2
k = bk(x, t)ζ2

k + h(x, t)
(

1
ρ
χEk

− 1
)

on ΣT ,

ζ2
k(x, 0) = 0 in Ω.

(5.12)
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Taking into account (5.2) and (2.1)–(2.8), multiplying equation (5.12) by the
function exp (−ωt)ζ2

k , with ω > 0 large enough, and integrating by parts, we deduce

C
(
‖ζ2
k‖2
L2(ΩT ) + ‖ζ2

k‖2
L2([0,T ],H1(Ω))

)

≤ exp (−ωT )
2

‖ζ2
k(T )‖2

L2(Ω) +
ω

2

∫ T

0
exp (−ωt)

∫
Ω

|ζ2
k(x, t)|2dxdt

+
∫ T

0
exp (−ωt)〈Aζ2

k , ζ
2
k〉dt+

∫ T

0
exp (−ωt)

∫
Ω
ck(x, t)|ζ2

k(x, t)|2dxdt

=
∫ T

0

∫
Γ

exp (−ωt)bk(x, t)|ζ2
k(x, t)|2dσ(x)dt

+
∫ T

0

∫
Γ

exp (−ωt)h(x, t)
(

1
ρ
χEk

(x, t) − 1
)
ζ2
k(x, t)dσ(x)dt

≤
∫ T

0

∫
Γ

exp (−ωt)h(x, t)
(

1
ρ
χEk

(x, t) − 1
)
ζ2
k(x, t)dσ(x)dt.(5.13)

From here it follows that

‖ζ2
k‖2
L2(ΩT ) ≤ C ′

∥∥∥∥h(1
ρ
χEk

− 1
)∥∥∥∥

Cβ,β/2(Ω̄T )′
‖ζ2
k‖Cβ,β/2(Ω̄T )(5.14)

for some β ∈ (0, 1]. The Hölder regularity of ζ2
k follows from the assumptions (2.1)–

(2.8) and the results of di Benedetto [2].
On the other hand, for θ ∈ (0, β), the inclusions

Cβ,β/2(Ω̄T ) ⊂ Cθ,θ/2(Ω̄T ) ⊂ L2(ΩT )

are compact. Then we can apply the Lions lemma [28] to obtain

‖ζ2
k‖Cθ,θ/2(Ω̄T ) ≤ ε‖ζ2

k‖Cβ,β/2(Ω̄T ) + Cε‖ζ2
k‖L2(ΩT ).(5.15)

Since y, yk, and h are uniformly bounded, the Hölder estimate of ζ2
k can be chosen

depending only on ρ:

‖ζ2
k‖Cβ,β/2(Ω̄T ) ≤ Cρ ∀k ∈ N.(5.16)

Taking ε = ρ/(2[1 + Cρ]) in (5.15) and using (5.14) and (5.16), it follows

‖ζ2
k‖Cθ,θ/2(Ω̄T ) ≤ ρ

2
+ Cε

{
C ′
∥∥∥∥h(1

ρ
χEk

− 1
)∥∥∥∥

Cβ,β/2(Ω̄T )′
Cρ

}1/2

=
ρ

2
+ C ′

ρ

∥∥∥∥h(1
ρ
χEk

− 1
)∥∥∥∥1/2

Cβ,β/2(Ω̄T )′
.(5.17)
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Then, for ρ fixed, the convergence (1/ρ)χEk
→ 1 ∗weakly in L∞(ΣT ), the bound-

edness of h, and the compactness of the inclusion L∞(ΣT ) ⊂ Cβ,β/2(Ω̄T )′ implies
strong convergence (1/ρ)hχEk

→ h in Cβ,β/2(Ω̄T )′. Therefore we can take kρ ∈ N
large enough in such a way that∣∣∣∣∫

ΣT

h0(x, t)
(

1
ρ
χEk

− 1
)
dσ(x)dt

∣∣∣∣+ ∥∥∥∥h(x, t)(1
ρ
χEk

− 1
)∥∥∥∥

Cβ,β/2(Ω̄T )′

<
ρ2

4(1 + C ′
ρ)2

∀k ≥ kρ,(5.18)

where

h0(x, t) = l(x, t, y(x, t), v(x, t)) − l(x, t, y(x, t), u(x, t)).

Let us set Eρ = Ekρ
, uρ = ukρ

, and the analogous changes for yρ, ζρ, ζiρ, i = 1, 2.
It is obvious that dE(uρ, u) → 0 when ρ → 0. Hence Theorem 5.1 implies that yρ → y
in Y . This convergence along with the estimates of di Benedetto [2] allow us to deduce
from (5.11) the strong convergence ζ1

ρ → 0 in Y when ρ → 0. Combining this with
(5.13), (5.17), and (5.18), it is easy to derive the strong convergence ζρ → 0 in Y ,
which proves (5.3).

To conclude the proof it is enough to note that

J(uρ) − J(u)
ρ

− z0

=
∫

ΩT

{
L(x, t, yρ(x, t)) − L(x, t, y(x, t))

ρ
− ∂L

∂y
(x, t, y(x, t))z(x, t)

}
dxdt

∫
ΣT

{
l(x, t, yρ(x, t), uρ(x, t)) − l(x, t, y(x, t), uρ(x, t))

ρ

− ∂l

∂y
(x, t, y(x, t), u(x, t))z(x, t)

}
dσ(x)dt

+
∫

ΣT

h0(x, t)
(

1
ρ
χEρ

(x, t) − 1
)
dσ(x)dt

and to take into account the convergences previously established and (5.18).

6. Linear parabolic equations involving measure data. Let µ be a regular
Borel measure in Ω̄T . We can write µ = µΩT

+ µΣT
+ µT + µ0, where µΩT

= µ|ΩT
,

µΣT
= µ|ΣT

, µT = µ|Ω̄×{T}, and µ0 = µ|Ω̄×{0}. The aim of this section is the study
of the following problem: 

−∂ϕ

∂t
+A∗ϕ = µΩT

in ΩT ,

∂νA∗ϕ = µΣT
on ΣT ,

ϕ(T ) = µT in Ω̄.

(6.1)
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The reader is referred to Boccardo and Gallouët [3] for the study of a quasi-linear
parabolic equation with a measure in ΩT as a datum. Here we improve the results of
[3] by exploiting the linearity of the equation.

Let us denote

Y0 = {y ∈ Y : y(x, 0) = 0 ∀x ∈ Ω}.

DEFINITION 6.1. Given p, r ∈ [1, 2), with (2/r) + (n/p) > n+ 1, we will say that
a function ϕ ∈ Lr([0, T ],W 1,p(Ω)) is a solution of (6.1) if for every y ∈ Y0 ∩ C1(Ω̄T )

∫
ΩT

∂y∂t ϕ+
n∑
j=1

[
n∑
i=1

aij∂xiy∂xjϕ+ bjy∂xjϕ+ dj∂xjyϕ

]
+ cyϕ

 dxdt

=
∫

Ω̄T

ydµ(x, t) =
∫

ΩT

ydµΩT
(x, t) +

∫
ΣT

ydµΣT
(x, t) +

∫
Ω̄
y(x, T )dµT (x).(6.2)

Let us note that (6.2) implies that −(∂ϕ/∂t) + A∗ϕ = µΩT
in the distribution

sense in ΩT . Let us take ~w = (w1, . . . , wn+1), with

wi =
n∑
j=1

aij∂xj
ϕ+ diϕ, 1 ≤ i ≤ n, and wn+1 = ϕ.

Then ~w ∈ Lq(ΩT )n+1, q = min{r, p} < (n+ 1)/n, and

div(x,t) ~w =
∂ϕ

∂t
+

n∑
i=1

∂xi

 n∑
j=1

aij∂xjϕ+ diϕ

 =
∂ϕ

∂t
−A∗ϕ+

n∑
i=1

bi∂xiϕ+ cϕ

= −µΩT
+

n∑
i=1

bi∂xiϕ+ cϕ ∈ M(ΩT ).(6.3)

Thus we have ~w ∈ V q(ΩT ),

V q(ΩT ) = {~w ∈ Lq(ΩT )n+1 : div(x,t) ~w ∈ M(ΩT )}.

This space, endowed with the graph norm, is a Banach space. We have the following
result.

THEOREM 6.2 (see Casas [10]). Given q ∈ (1, (n + 1)/n), there exists a unique
continuous linear mapping γνT

: V q(ΩT ) −→ W−1/q,q(∂ΩT ) satisfying

γνT
(~w) = ~w · ~νT ∀~w ∈ C1(Ω̄T )(6.4)

and ∫
ΩT

~w · ∇(x,t)φdxdt+ 〈div(x,t) ~w, φ〉M(ΩT ),Cb(ΩT )

= 〈γνT
(~w), γ(φ)〉W−1/q,q(∂ΩT ),W 1/q,q′ (∂ΩT ) ∀φ ∈ W 1,q′

(ΩT ),(6.5)
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where Cb(ΩT ) is the space of bounded and continuous functions in ΩT and ~νT (x, t) is
the outward unit normal vector to ∂ΩT at the point (x, t).

By applying this theorem to the function ~w defined above and using (6.2) and
(6.3), we have for all y ∈ Y0 ∩ C1(Ω̄T )

〈γνT
(~w), γ(y)〉W−1/q,q(∂ΩT ),W 1/q,q′ (∂ΩT )

=
∫

ΩT

~w · ∇(x,t)ydxdt+ 〈div(x,t) ~w, y〉M(ΩT ),Cb(ΩT )

=
∫

ΩT

∂y∂t ϕ+
n∑
i=1

 n∑
j=1

aij∂xi
y∂xj

ϕ+ biy∂xi
ϕ+ di∂xi

yϕ

+ cyϕ

 dxdt

−
∫

ΩT

ydµΩT
=
∫ T

0

∫
Γ
ydµΣT

(x, t) +
∫

Ω
y(x, T )dµT (x).

From the identity

〈γνT
(~w), γ(y)〉W−1/q,q(∂ΩT ),W 1/q,q′ (∂ΩT ) =

∫ T

0

∫
Γ
ydµΣT

(x, t) +
∫

Ω
y(x, T )dµT (x)

and taking into account that

~νT (x, t) =
(
~ν(x)

0

)
∀(x, t) ∈ ΣT and ~νT (x, T ) =

(
~0
1

)
∀x ∈ Ω,

we can identify

∂νA∗ϕ = γνT
(~ω)|ΣT

= µΣT
and ϕ(x, T ) = γνT

(~ω)|Ω̄×{T} = µT .

Now we have the following result of existence and uniqueness of solution for
problem (6.1).

THEOREM 6.3. There exists a unique function ϕ ∈ Lr([0, T ],W 1,p(Ω)) ∀r, p ∈
[1, 2) with (2/r) + (n/p) > n+ 1 such that it is a solution of (6.1) and∫

ΩT

(
∂y

∂t
+Ay

)
ϕdxdt+

∫
ΣT

∂νA
yϕdσ(x)dt =

∫
Ω̄T

ydµ(x, t) ∀y ∈ Y ∞
0 ,(6.6)

with

Y ∞
0 =

{
y ∈ Y0 :

∂y

∂t
+Ay ∈ L∞(ΩT ) and ∂νA

y ∈ L∞(ΣT )
}
.

Moreover, there exists a constant Cr,p > 0 independent of µ such that

‖ϕ‖Lr([0,T ],W 1,p(Ω)) ≤ Cr,p‖µ‖M(Ω̄T ).(6.7)

Proof. Let {fk}k ⊂ C(Ω̄T ), {gk}k ⊂ C(Γ × [0, T ]) and {hk}k ⊂ C(Ω̄) such
that fk → µΩT

, gk → µΣT
, and hk → µT

∗weakly in M(ΩT ), M(ΣT ), and M(Ω̄),
respectively. Moreover, we can assume that

‖fk‖L1(ΩT ) ≤ ‖µΩT
‖M(ΩT ), ‖gk‖L1(ΣT ) ≤ ‖µΣT

‖M(ΣT ), and ‖hk‖L1(Ω) ≤ ‖µT ‖M(Ω̄).
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Let us take ϕk ∈ Y such that
−∂ϕk
∂t

+A∗ϕk = fk in ΩT ,

∂νA∗ϕk = gk on ΣT ,

ϕk(T ) = hk in Ω.

(6.8)

Now for every ψ = (ψ0, ψ1, . . . , ψn) ∈ D(ΩT )n+1, we denote by yψ the solution in
Y of 

∂y

∂t
+Ay = ψ0 −

n∑
j=1

∂xjψj in ΩT ,

∂νA
y = 0 on ΣT ,

y(0) = 0 in Ω.

(6.9)

Then ∫
ΩT

ψ0ϕk +
n∑
j=1

ψj∂xjϕk

 dxdt =
∫

ΩT

(
∂yψ
∂t

+Ayψ

)
ϕkdxdt

=
∫

ΩT

(
−∂ϕk
∂t

+A∗ϕk

)
yψdxdt+

∫
ΣT

∂νA∗ϕkyψdσ(x)dt+
∫

Ω
ϕk(T )yψ(T )dx.(6.10)

Using (6.8) and the properties of fk, gk, and hk, we deduce from (6.8)

∫
ΩT

ψ0ϕk +
n∑
j=1

ψj∂xjϕk

 dxdt

≤ ‖µ‖M(Ω̄T )‖yψ‖C(Ω̄T ) ≤ Cr,p‖µ‖M(Ω̄T )

n∑
j=0

‖ψj‖Lr′ ([0,T ],Lp′ (Ω)),(6.11)

the last inequality being a consequence of the estimates for the solution of (6.9);
see di Benedetto [2] and Ladyzhenskaya, Solonnikov, and Ural’tseva [23]. From the
density of the space {ψ0 −∑n

j=1 ∂xjψj : ψ ∈ D(ΩT )n+1} in Lr
′
([0, T ],W 1,p(Ω)′) and

estimate (6.11) follows the boundedness of {ϕk}k in the space Lr([0, T ],W 1,p(Ω)).
Moreover, by taking a subsequence if necessary, we can assume that ϕk → ϕ weakly
in Lr([0, T ],W 1,p(Ω)) and (6.7) is satisfied.

Let us prove that ϕ does not depend on r and p. Indeed, passing to the limit in
(6.10) and remembering that yψ(0) = 0, we get

∫
ΩT

ψ0ϕ+
n∑
j=1

ψj∂xjϕ

 dxdt =
∫

Ω̄T

yψdµ ∀ψ ∈ D(ΩT )n+1.(6.12)

It is obvious that there is at most one function ϕ in L1([0, T ],W 1,1(Ω)) satisfying
(6.12), which proves that ϕ is independent of r and p.
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Given y ∈ Y0 ∩C1(Ω̄T ), multiplying (6.8) by y and integrating by parts, it follows
that∫

ΩT

∂y∂t ϕk +
n∑
j=1

[
n∑
i=1

aij∂xiy∂xjϕk + bjy∂xjϕk + dj∂xjyϕk

]
+ cyϕk

 dxdt

=
∫

ΩT

fkydxdt+
∫

ΣT

gkydσ(x)dt+
∫

Ω
hky(T )dx.

Now passing to the limit we deduce (6.2) and consequently ϕ is a solution of (6.1).
Let us prove (6.6). Given y ∈ Y ∞

0 , multiplying (6.8) by y and integrating by
parts, we deduce ∫

ΩT

fkydxdt+
∫

ΣT

gkydσ(x)dt+
∫

Ω
hky(T )dx

=
∫

ΩT

(
∂y

∂t
+Ay

)
ϕkdxdt+

∫
ΣT

∂νA
yϕkdσ(x)dt.

Now (6.6) is obtained by passing to the limit.
Finally, the uniqueness of ϕ follows from (6.6). Indeed, the regularity results for

the Neumann problem associated with the operator (∂/∂t) +A (see [2] or [23]) prove
the surjectivity of the mapping

y ∈ Y ∞
0 −→

(
∂y

∂t
+Ay, ∂νA

y

)
∈ L∞(ΩT ) × L∞(ΣT ).

This along with (6.6) implies that the zero function of Lr([0, T ],W 1,p(Ω)) is the only
one satisfying∫

ΩT

(
∂y

∂t
+Ay

)
ϕdxdt+

∫
ΣT

∂νA
yϕdσ(x)dt = 0 ∀y ∈ Y ∞

0 .

This shows the uniqueness of ϕ.
An interesting case arises when µ = gω, with g ∈ C([0, T ], L2(Ω)) and ω ∈ M [0, T ]∫

Ω̄T

zdµ =
∫ T

0

(∫
Ω
z(x, t)g(x, t)dx

)
dω(t) ∀z ∈ C([0, T ], L2(Ω));

see Example 3.5. In this particular case we have the following result.
THEOREM 6.4. With the above notation, there exists a unique function ϕ in the

space L2([0, T ], H1(Ω)) ∩ L∞([0, T ], L2(Ω)) solution of the problem
−∂ϕ

∂t
+A∗ϕ = gω in ΩT ,

∂νA∗ϕ = 0 on ΣT ,

ϕ(T ) = g(T )ω({T}) in Ω.

(6.13)

Proof. Uniqueness can be obtained in the standard way. For the proof of the
existence we take a sequence {ωk}k ⊂ C[0, T ] converging ∗weakly to ω in M [0, T ] and
satisfying

‖ωk‖L1(ΩT ) ≤ ‖ω‖M [0,T ].
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Let us take ϕk ∈ Y such that
−∂ϕk
∂t

+A∗ϕk = gωk in ΩT ,

∂νA∗ϕk = 0 on ΣT ,

ϕk(T ) = g(T )ω({T}) in Ω.

(6.14)

Given f ∈ D(ΩT ), let us denote by yf the solution in Y of the problem
∂y

∂t
+Ay = f in ΩT ,

∂νA
y = 0 on ΣT ,

y(0) = 0 in Ω.

(6.15)

Then∫
ΩT

fϕkdxdt =
∫

ΩT

(
∂y

∂t
+Ay

)
ϕkdxdt =

∫
ΩT

gωkydxdt+
∫

Ω
ω({T})g(T )y(T )dx

≤ ‖g‖C([0,T ],L2(Ω))‖ω‖M [0,T ]‖y‖C([0,T ],L2(Ω)).(6.16)

From (6.15) it follows by using the classical arguments that

‖y‖C([0,T ],L2(Ω)) ≤ C1‖f‖L1([0,T ],L2(Ω)) and ‖y‖C([0,T ],L2(Ω)) ≤ C2‖f‖L2([0,T ],H1(Ω)′).

From the first inequality and (6.16) we deduce the boundedness of the sequence {ϕk}k
in the space L∞([0, T ], L2(Ω)). The second inequality leads to the boundedness of the
same sequence in L2([0, T ], H1(Ω)). The rest of the proof is easy.

As mentioned in section 3, problems of type (6.13) have been studied by Barbu
and Precupanu [1], Lasiecka [24], and Tröltzsch [32].

In the case of a measure µ = gω, with g ∈ L1[0, T ] and ω ∈ M(Ω̄), we de-
duce from Theorem 6.3 and the inclusion W 1,p(Ω) ⊂ M(Ω̄) ⊂ W 1,p′

(Ω)′the exis-
tence of a solution ϕ ∈ L1([0, T ],W 1,p(Ω)) for all p ∈ [1, n/(n − 1)) and such that
∂ϕ/∂t ∈ L1([0, T ],W 1,p′

(Ω)′). Hence we deduce that ϕ ∈ C([0, T ],W 1,p′
(Ω)′) after a

modification on a set of zero measure.

7. Proof of Pontryagin principle. In this section we prove Theorems 3.1 and
4.3. A crucial point in the proofs is the use of Ekeland’s variational principle that we
state now.

LEMMA 7.1 (see Ekeland [16]). Let (E, d) be a complete metric space and F :
E −→ R ∪ {+∞} a lower semicontinuous function, and let eε ∈ E satisfy

F (eε) ≤ inf
e∈E

F (e) + ε.

Then there exists an element ēε ∈ E such that

F (ēε) ≤ F (eε), d(ēε, eε) ≤ √
ε,

and

F (ēε) ≤ F (e) +
√
εd(e, ēε) ∀e ∈ E.
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Proof of Theorem 3.1. Since Z is separable, we can take in Z a norm ‖ · ‖Z such
that Z ′ endowed with the dual norm ‖ · ‖Z′ is strictly convex. Then the function

dQ : (Z, ‖ · ‖Z) −→ R,

dQ(z) = inf
y∈Q

‖y − z‖Z

is convex, Lipschitz and Gâteaux differentiable at every point z 6∈ Q, with ∂dQ(z) =
{∇dQ(z)}, where the Clarke’s generalized gradient and the subdifferential in the sense
of the convex analysis coincide for this function. Therefore, given ξ ∈ ∂dQ(y), we have
that

〈ξ, z − y〉 + dQ(y) ≤ dQ(z) ∀z ∈ Z.(7.1)

Moreover, ‖∇dQ(z)‖Z′ = 1 for every z 6∈ Q; see Clarke [15] and Casas and Yong [14].
Let us take Jε : U −→ R defined by

Jε(u) =
{
[(J(u) − J(ū) + ε)+]2 + dQ(G(yu))2 + |F (yu)|2

}1/2
.

It is obvious that Jε(u) > 0 for every u ∈ U and Jε(ū) = ε. On the other hand, thanks
to Theorem 5.1 we have that Jε is continuous in (U , dE), with dE defined by (5.1).
Therefore we can apply Ekeland’s variational principle and deduce the existence of
uε ∈ U such that

dE(uε, ū) ≤ √
ε and 0 < Jε(uε) ≤ Jε(u) +

√
εdE(uε, u) ∀u ∈ U .(7.2)

Given v ∈ U arbitrary, let us take Eρ and uερ as in Theorem 5.2,

uερ(x) =

{
uε(x) if x ∈ ΣT \ Eρ,
v(x) if x ∈ Eρ.

Then with the help of (5.3) and (5.4) we get

−√
εmΣT

(Σ) ≤ Jε(uερ) − Jε(uε)
ρ

=
[(J(uερ) − J(ū) + ε)+]2 − [(J(uε) − J(ū) + ε)+]2

ρ[Jε(uερ) + Jε(uε)]

+
dQ(G(yερ))

2 − dQ(G(yε))2 + |F (yερ)|2 − |F (yε)|2
ρ[Jε(uερ) + Jε(uε)]

ρ→0−→ {
(J(uε) − J(ū) + ε)+z0,ε + 〈ξε, DG(yε)zε〉 + 〈F (yε), DF (yε)zε〉} /Jε(uε)

= αεz
0,ε + 〈[DG(yε)]∗µε, zε〉 + 〈[DF (yε)]∗λε, zε〉,(7.3)

where yε and yερ are the states associated with uε and uερ, respectively, and zε ∈ Y
satisfies 

∂zε

∂t
+Azε +

∂a0

∂y
(x, t, yε(x))zε = 0 in ΩT ,

∂νA
zε =

∂f

∂y
(x, t, yε(x, t), uε(x, t))zε

+f(x, t, yε(x, t), v(x, t)) − f(x, t, yε(x, t), uε(x, t)) on ΣT ,

zε(x, 0) = 0 in Ω,

(7.4)
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z0,ε =
∫

ΩT

∂L

∂y
(x, t, yε(x, t))zε(x, t)dxdt+

∫
ΣT

∂l

∂y
(x, t, yε(x, t), uε(x, t))zε(x, t)dσ(x)dt

+
∫

ΣT

[l(x, t, yε(x, t), v(x, t)) − l(x, t, yε(x, t), u(x, t))]dσ(x)dt,(7.5)

αε =
(J(uε) − J(ū) + ε)+

Jε(uε)
, µε =

ξε

Jε(uε)
, λε =

F (yε)
Jε(uε)

,(7.6)

ξε =
{
dQ(G(yε))∇dQG(yε)) if G(yε) 6∈ Q,

0 otherwise.(7.7)

By using Theorem 6.3, we can take a function ϕε ∈ Lr([0, T ],W 1,p(Ω)) ∀r, p ∈
[1, 2) with (2/r) + (n/p) > n+ 1 such that

−∂ϕε

∂t
+A∗ϕε +

∂a0

∂y
(x, t, yε)ϕε = αε

∂L

∂y
(x, t, yε)

+[DG(yε)∗µε]|ΩT
+ [DF (yε)∗λε]|ΩT

in ΩT ,

∂νA∗ϕ
ε =

∂f

∂y
(x, t, yε, uε)ϕε + αε

∂l

∂y
(x, t, yε, uε)

+[DG(yε)∗µε]|ΣT
+ [DF (yε)∗λε]|ΣT

on ΣT ,

ϕε(T ) = [DG(yε)∗µε]|Ω×{T} + [DF (yε)∗λε]|Ω×{T} in Ω.

(7.8)

Thanks to the assumptions (2.2) and (2.7), we have that zε ∈ Y ∞
0 . Then we can

apply (6.6) with y = zε and deduce from (7.3)–(7.5) and the definition of Hα given
in section 3 the inequality∫

ΣT

Hαε(x, t, y
ε(x, t), uε(x, t), ϕε(x, t))dσ(x)dt

≤
∫

ΣT

Hαε
(x, t, yε(x, t), v(x, t), ϕε(x, t))dσ(x)dt+

√
εmΣT

(ΣT ) ∀v ∈ U .(7.9)

Now we pass to the limit when ε → 0. To do this, let us remark that

α2
ε + ‖µε‖2

Z′ + |λε|2 = 1.(7.10)

Then we take subsequences, denoted in the same way, satisfying{
αε → ᾱ in R, λε → λ̄ in Rn,
µε → µ̄ in the ∗weak topology of Z ′.(7.11)

On the other hand, the convergence yε → ȳ in Y follows from Theorem 5.1. The
boundedness of {ϕε} in Lr([0, T ],W 1,p(Ω)) follows from (6.7) and (7.10). Then, using
(7.11), it is easy to pass to the limit in (7.8) and (7.9) and to deduce (3.3) and (3.5).
Now remembering the definition of µε and ξε and (7.1), we deduce

〈µε, z −G(yε)〉 ≤ 0 ∀z ∈ Q.(7.12)

Passing to the limit in this expression we obtain (3.4). Let us prove (3.1). To do this,
let us suppose that ᾱ = |λ̄| = 0; then from (7.10) it follows ‖µε‖Z′ → 1 as ε → 0. Let

us take z0 ∈
o

Q and ρ > 0 such that B̄ρ(z0) ⊂
o

Q. Then (7.12) implies that

〈µε, z + z0 −G(yε)〉 ≤ 0 ∀z ∈ B̄ρ(0).
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Hence

ρ‖µε‖Z′ = sup
z∈B̄ρ(0)

〈µε, z〉 ≤ 〈µε, G(yε) − z0〉.

Passing to the limit

0 < ρ ≤ lim
ε→0

〈µε, G(yε) − z0〉 = 〈µ̄, G(ȳ) − z0〉,

which proves that µ̄ 6= 0.
It remains to prove (3.6); see Bonnans and Casas [5] or Casas [11] for the study of

analogous situations. To do this we consider the coordinate system {(Γr, ar)}dr=1 of Γ
introduced in the proof of Proposition 5.3. Given a point x0 ∈o

Γr for some 1 ≤ r ≤ d
we denote for each ε > 0 small enough

Γε(x0) = {x = (x′
r, ar(x

′
r)) : x′

r ∈ Bε(x′
0r) ⊂ (0, 1)n−1},

where Bε(x′
0r) is the ball in Rn−1 centered at x′

0r and having radius ε. Now given
0 < t0 < T , we set

ΣεT (x0, t0) = Γε(x0) × (t0 − ε, t0 + ε).

The following lemma is used in this proof.
LEMMA 7.2. Given f ∈ L1(ΣT ), there exists a mΣT

-measurable set S ⊂ ⋃dr=1

o

Γr
×(0, T ), with mΣT

(S) = mΣT
(ΣT ), such that for every (x0, t0) ∈ S we have

lim
ε→0

1
mΣT

(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
|f(x, t) − f(x0, t0)|dmΣT

(x, t) = 0.(7.13)

Proof. Let us denote for all (x′
r, t) ∈ (0, 1)n−1 × (0, T )

ωr(x′
r) =

√√√√1 +
n−1∑
i=1

∣∣∣∣∂ar∂xi
(x′
r)
∣∣∣∣2 and fr(x′

r, t) = ωj(x′
r)f(x′

r, ar(x
′
r), t).

Since ωr and fr are Lebesgue integrable functions in (0, 1)n−1 and (0, 1)n−1 × (0, T ),
respectively, we know that the set of Lebesgue points of these functions Ur and Vr,
respectively, have measure equal to 1 and T, respectively. Let us define

Sr = {(x, t) ∈ Vr = (x′
r, ar(x

′
r), t) : x′

r ∈ Ur} and S =
d⋂
r=1

Sr.

Then mΣT
(S) = mΣT

(ΣT ) and Sr ⊂o

Γr ×(0, T ), 1 ≤ r ≤ d.
Let us take (x0, t0) = (x′

0r, a(x
′
0r), t0) ∈ Sr. Then x′

0j and (x0, t0) are Lebesgue
points of ωr and fr; consequently,

lim
ε→0

1
mΣT

(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
|f(x, t) − f(x0, t0)|dmΣT

(x, t)

= lim
ε→0

(
1

2ε|Bε(x′
0r)|

∫ t0+ε

t0−ε

∫
Bε(x′

0r)
|fr(x′

r, t) − fr(x′
0r, t)|dx′

rdt

)
,
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lim
ε→0

(
1

|Bε(x′
0r)|

∫
Bε(x′

0r)
ωr(x′

r)dx
′
r

)−1

= fr(x′
0r, t0)/ωr(x

′
0r) = f(x0, t0),

where |Bε(x′
0r)| denotes the (n− 1)-measure of Bε(x′

0r).
The set points of S will be called the Lebesgue points of f . This set depends

on the system of coordinates {(Γr, ar)}dr=1, but this dependence only affects a set of
σ-measure equal to zero.

We return to the proof of (3.6). Assume first that (A1) holds. Let us take a
numerable dense subset {vr}∞

j=1 of K. Let F and {Fr}∞
j=1 be measurable subsets of

Ω, with mΣT
(F ) = mΣT

(ΣT ) = mΣT
(Fr) for every j, such that the Lebesgue

point sets of functions (x, t) ∈ ΣT −→ Hᾱ(x, t, ȳ(x, t), ū(x, t), ϕ̄(x, t)) and (x, t)
∈ Ω −→ Hᾱ(x, t, ȳ(x, t), vj , ϕ̄(x, t)) are F and Fj , respectively. Let us set F0 =
F ∩ [∩∞

j=1Fj ]. Then we have mΣT
(F0) = mΣT

(ΣT ). Now given (x0, t0) ∈ F0 arbitrary,
for every ε > 0 small enough and j ≥ 1 we define the admissible controls

uεj(x, t) =

{
ū(x, t) if (x, t) 6∈ ΣεT (x0, t0),

vj otherwise.

Then from (3.5) we deduce

1
mΣT

(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
Hᾱ(x, t, ȳ(x, t), ū(x, t), ϕ̄(x, t))dσ(x)dt

≤ 1
mΣT

(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
Hᾱ(x, t, ȳ(x, t), vj , ϕ̄(x, t))dσ(x)dt, 1 ≤ j.

Passing to the limit where ε → 0, with the help of Lemma 7.2 we get

Hᾱ(x0, t0, ȳ(x0, t0), ū(x0, t0), ϕ̄(x0, t0)) ≤ Hᾱ(x0, t0, ȳ(x0, t0), vj , ϕ̄(x0, t0))

for every (x0, t0) ∈ F0 and j ≥ 1. Taking into account that function

v −→ Hᾱ(x0, t0, ȳ(x0, t0), v, ϕ̄(x0, t0))

is continuous and that {vj}∞
j=1 is dense in K, (3.6) follows from the above inequality.

Now let us suppose that assumption (A2) holds. Let Fϕ̄ be a measurable subset
of ΣT such that for every (x0, t0) ∈ Fϕ̄

lim
ε→0

1
mΣT

(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
|ϕ̄(x, t) − ϕ̄(x0, t0)|dσ(x)dt = 0.(7.14)

Let F0 = Fϕ̄ ∩ Σ0
T ∩ F , where F is taken as above. Thus we have that mΣT

(F0) =
mΣT

(ΣT ), and taking spike perturbations as before we deduce

1
mΣT

(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
Hᾱ(x, t, ȳ(x, t), ū(x, t), ϕ̄(x, t))dσ(x)dt

≤ 1
mΣT

(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
Hᾱ(x, t, ȳ(x, t), v, ϕ̄(x, t))dσ(x)dt
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for every (x0, t0) ∈ F0 and v ∈ K. Since (x0, t0) ∈ F , we can pass to the limit on the
left-hand side of the inequality. Let us study the right-hand side:

1
mΣT

(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
Hᾱ(x, t, ȳ(x, t), v, ϕ̄(x, t))dσ(x)dt

=
1

mΣT
(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
ᾱl(x, t, ȳ(x, t), v)dσ(x)dt

+
1

mΣT
(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
f(x, t, ȳ(x, t), v)dσ(x)dtϕ̄(x0, t0)

+
1

mΣT
(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
[ϕ̄(x, t) − ϕ̄(x0, t0)]f(x, t, ȳ(x, t), v)dσ(x)dt.

The first two terms converge to Hᾱ(x0, t0, ȳ(x0, t0), v, ϕ̄(x0, t0)) because of the con-
tinuity of the integrands in (x0, t0) ∈ Σ0

T . Let us prove that the last term goes to
zero. ∣∣∣∣∣ 1

mΣT
(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
[ϕ̄(x, t) − ϕ̄(x0, t0)]f(x, t, ȳ(x, t), v)dσ(x)dt

∣∣∣∣∣
≤ C

1
mΣT

(ΣεT (x0, t0))

∫
Σε

T (x0,t0)
|ϕ̄(x, t) − ϕ̄(x0, t0)|dσ(x)dt −→ 0,

thanks to (7.14) and the fact that (x, t) → f(x, t, ȳ(x, t), v) is bounded in ΣT because
of the assumption (2.2) and the boundedness of ȳ.

Now we will prove Theorem 4.3. The key to achieving this result is to carry out
an exact penalization of the state constraint. To do this, we will use the distance
function dQδ

associated with the set Qδ and defined in the same way as in the proof
of Theorem 4.3.

PROPOSITION 7.3. If (Pδ) is strongly stable and ū is a solution of this problem,
then there exists q0 > 0 such that ū is also a solution of

inf
u∈U

Jq(u) = J(u) + qdQδ
(G(yu))(7.15)

for every q ≥ q0.
Proof. Let us suppose that it is false. Then there exists a sequence {qk}∞

k=1 of
real numbers, with qk → +∞ and elements {uk}∞

k=1 ⊂ U such that

J(uk) + qkdQδ
(G(yk)) < J(ū) ∀k ≥ 1,

where yk is the state corresponding to uk. From here we obtain that

dQδ
(G(yk)) <

J(ū) − J(uk)
qk

−→ 0 when k → +∞

and G(yk) 6∈ Qδ. Let δk > δ be the smallest number such that G(yk) ∈ Qδk
. Since

δk → δ, we can use (4.1) to deduce

C(δk − δ) ≥ inf (Pδ) − inf (Pδk
) ≥ J(ū) − J(uk)

> qkdQδ
(G(yk)) = qk(δk − δ) ∀k ≥ kε,

which is not possible.
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Since Jq is not Gâteaux differentiable on Qδ, we are going to modify slightly this
functional to attain the differentiability necessary for the proof.

PROPOSITION 7.4. Let us take q ≥ q0 and for every ε > 0 let us consider the
problem

(Pδ,ε) inf
u∈U

Jq,ε(u) = J(u) + q
{
dQδ

(G(yu))2 + ε2
}1/2

.

Then inf(Pδ,ε)→ inf(Pδ) when ε → 0.
Proof. It is an immediate consequence of the inequality

Jq(u) ≤ Jq,ε(u) ≤ Jq(u) + qε ∀u ∈ U .

Finally we are ready to prove the strong Pontryagin principle.
Proof of Theorem 4.3. Propositions 7.3 and 7.4 imply that ū is a σ2

ε –solution of
(Pδ,ε), with σε → 0 when ε → 0; i.e.

Jq,ε(ū) ≤ inf (Pδ,ε) + σ2
ε .

Then we can apply again Ekeland’s principle and deduce the existence of an element
uε ∈ U such that

d(uε, ū) ≤ σε, Jq,ε(uε) ≤ Jq,ε(ū),

and

Jq,ε(uε) ≤ Jq,ε(u) + σεdE(uε, u) ∀u ∈ U .

Now we argue as in the proof of Theorem 3.1 and replace (7.3) by

−σεmΣT
(ΣT ) ≤ lim

ρ→0

Jq,ε(uερ) − Jq,ε(uε)
ρ

= z0,ε + 〈µε, DG(yε)zε〉,

where µε ∈ Z ′ is given by

µε =


qdQδ

(G(yε))

{dQδ
(G(yε))2 + ε2}1/2 ∇dQδ

(G(yε)) if G(yε) 6∈ Qδ,

0 otherwise.

Therefore we have ‖µε‖Z′ ≤ q for every ε > 0. Now we can take a subsequence that
converges weakly∗ to an element µ̄ ∈ Z ′. The rest is as in the proof of Theorem 3.1,
taking αε = 1.
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[32] F. TRÖLTZSCH, On some parabolic boundary control problems with constraints on the control
and functional-constraints on the state, Z. Anal. Anwendungen, 1 (1982), pp. 1–13.

[33] J. YONG, Pontryagin maximum principle for semilinear second order elliptic partial differ-
ential equations and variational inequalities with state constraints, Differential Integral
Equations, 5 (1992), pp. 1307–1334.



AN APPROXIMATION ALGORITHM FOR NONHOLONOMIC
SYSTEMS∗

WENSHENG LIU†

SIAM J. CONTROL OPTIM. c© 1997 Society for Industrial and Applied Mathematics
Vol. 35, No. 4, pp. 1328–1365, July 1997 011

Abstract. In [SIAM J. Control Optim., 37 (1997), to appear], [Limiting process of control-
affine systems with Hölder continuous inputs, submitted], we have studied the limiting behavior
of trajectories of control affine systems Σ : ẋ =

∑m
k=1 ukfk(x) generated by a sequence {uj} ⊆

L1([0, T ], Rm), where the fk are smooth vector fields on a smooth manifold M . We have shown that
under very general conditions the trajectories of Σ generated by the uj converge to trajectories of an
extended system of Σ of the form Σext : ẋ =

∑r
k=1 vkfk(x), where fk, k = 1, . . . , m, are the same as

in Σ and fm+1, . . . , fr are Lie brackets of f1, . . . , fm. In this paper, we will apply these convergence
results to solve the inverse problem; i.e., given any trajectory γ of an extended system Σext, find
trajectories of Σ that converge to γ uniformly. This is done by means of a universal construction
that only involves the knowledge of the vk, k = 1, . . . , r, and the structure of the Lie brackets in
Σext but does not depend on the manifold M and the vector fields f1, . . . , fm. These results can be
applied to approximately track an arbitrary smooth path in M for controllable systems Σ, which in
particular gives an alternative approach to the motion planning problem for nonholonomic systems.

Key words. control affine systems, extended inputs, free associative algebras, free Lie algebras,
Chen–Fliess series, nonholonomic motion planning
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1. Introduction. The purpose of this paper is to study the relation between
trajectories of control affine systems

ẋ =
m∑

k=1

uk(t)fk(x),(1)

where f1, . . . , fm are smooth vector fields on a smooth manifold M , and those of a
“Lie bracket extension” of (1), which will be called an extended system, given by

ẋ =
r∑

k=1

vk(t)fk(x),(2)

where the first m vector fields f1, . . . , fm are the same as in (1) and the new admissible
directions of motion fm+1, . . . , fr are Lie brackets of the fk, k ∈ {1, . . . , m}.

Using averaging techniques and developing proper algebraic formalisms, in [19]
and [20] we have studied the limiting behavior of trajectories of (1). We have shown
that under very general conditions trajectories of (1) generated by a sequence {uj} ⊆
L1([0, T ], Rm) converge to trajectories of (2). In this paper we will apply these con-
vergence results to solve the inverse problem, i.e., to find a sequence of trajectories of
(1) approximating a given trajectory of (2).

∗Received by the editors December 21, 1993; accepted for publication (in revised form) May 21,
1996. This research was supported in part by National Science Foundation grant DMS92-02554.
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It was proved by Haynes and Hermes in [6] that if system (1) satisfies the Lie
algebra rank condition1 (LARC), every trajectory of (2) can be uniformly approxi-
mated by trajectories of (1). However, their proof does not easily lead to an explicit
constructive procedure for producing such a sequence. Here we present a different
approach. Based on the convergence results described in [19], we give an algorithm
that, for each extended system (2), produces a sequence {uj} of inputs that explicitly
generates trajectories for (1) converging to those of (2). This is done in a universal
way in the sense that the construction of the uj only involves the knowledge of the
vk, k = 1, . . . , r and the structure of the Lie brackets in (2) but does not depend on
the manifold M and the vector fields f1, . . . , fm.

The motivation for our interest in an explicit construction of trajectories of (1)
that converge to a prescribed trajectory of (2) is the motion planning problem (MPP)
for nonholonomic systems.2 The extended system (2) clearly has more trajectories
than (1). So, if we want to construct paths that satisfy some extra conditions (e.g.,
the solution of MPP), it is easier to do it for (2) than for (1). In the extreme case
when system (1) satisfies the LARC, every smooth curve γ : [0, T ]→M is a trajectory
of a suitably chosen extended system (2). (To see this, take any compact subset K
of M that contains γ in its interior. Then, by the LARC, in principle we can take
r large enough such that the set of admissible directions {f1, . . . , fr} at each point
x ∈ K is simply the set of all possible directions. Then by the span condition, γ̇(t)
can be written as a linear combination of f1(γ(t)), . . . , fr(γ(t)).) If we could somehow
produce for any given trajectory γ of (2) a sequence {γj} of trajectories of (1) that
converges to γ uniformly as j →∞, then we would have solved (for systems satisfying
the LARC) the problem of approximating any given smooth curve by admissible
trajectories. On the other hand, the LARC is a natural condition for these kinds of
problems. For example, if system (1) is analytic and M is connected, the LARC is
equivalent to the notion of complete controllability, which is the property that any
two points in M can be joined by a trajectory of (1). Suppose that, in addition, M is
such that it is easy to find a smooth curve in M that joins any two given points p, q.
(This happens, for instance, if M is Euclidean space Rn—in which case we can always
use a straight-line segment—or if M = Rn − C, where the “obstacle” C is a closed
set, provided that we can somehow solve the problem of “path finding with obstacle
avoidance,” i.e., that we can find for any two points p, q a path that goes from p to q
and avoids C.) In that case we will have solved the problem of producing an admissible
trajectory that approximately steers p to q. This leads to an alternative approach to
the MPP for nonholonomic systems studied by many authors, e.g., Brockett and Dai
[2]; Fernandes, Gurvits, and Li [4]; Gurvits and Li [5]; Lafferriere and Sussmann [8];
Jacobs and Canny [7]; Laumond [9]; Murray and Sastry [12], [11]; Sastry and Li [14];
and Sussmann and Liu [17].

Our strategy for constructing the approximation sequences relies on the alge-
braic formalisms and the convergence results given in [19]. The key point for the
algebraic formulations in [19] is the reformulation of the problem of convergence
of trajectories in terms of convergence of inputs. This is done by introducing the
concept of extended inputs. More precisely, let X1, . . . , Xm be noncommuting in-

1System (1) is said to satisfy the Lie algebra rank condition if for every x ∈ M we have Λ(x) =
TxM , where Λ is the Lie algebra of vector fields generated by the fk, Λ(x) = {X(x) : X ∈ Λ}, and
TxM is the tangent space of M at x.

2The MPP for system (1) is the problem of finding an input u ∈ L1([0, T ], Rm) that steers p to
q for any prescribed points p and q in the state space.
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determinates. We define an extended input to be an integrable function on [0, T ]
whose values are linear combinations of X1, . . . , Xm and various Lie brackets such
as [X1, X2], [X1, [X1, X2]], etc. For example, an expression (for m = 2) like v =
v1X1 + v2X2 + v3[X1, X2]+ v4[X2, [X1, X2]] with integrable coefficients vk on [0, T ]
is an extended input. Clearly an ordinary input u = (u1, . . . , um) can be regarded
as an extended input by identifying it with u = u1X1 + · · · + umXm, i.e., a linear
combination of X1, . . . , Xm only without higher-order Lie brackets. The point is that
extended inputs can be plugged into any system (1) exactly the same as ordinary
inputs can, giving rise to ordinary differential equations. (This requires only that the
vector fields f1, . . . , fm be smooth enough so that the various Lie brackets exist.) For
example, the extended input above gives rise to the following differential equation:
ẋ = v1(t)f1(x) + v2(t)f2(x) + v3(t)[f1, f2](x) + v4(t)[f2, [f1, f2]](x). Therefore, we can
talk about trajectories of extended inputs once the vector fields f1, . . . , fm are known.
We say that a sequence {uj} of ordinary inputs converges to an extended input u∞

if for every initial condition x(0) = p, every choice of sufficiently smooth vector fields
f1, . . . , fm, the trajectories xj generated by the uj converge uniformly to the trajec-
tory x∞ generated by u∞. In [19] we have presented various sufficient conditions for a
sequence of ordinary inputs to converge to an extended input. In this paper we show
how to use those conditions to solve the inverse problem of producing, for a given
extended input v, a sequence {uj} of ordinary inputs that converges to v.

The basic idea for solving the inverse problem is to use highly oscillatory sequences.
(For short, HOSs. The precise definition of HOSs will be given later.) Applying the
convergence results in [19], we can explicitly compute the limiting extended inputs
of certain HOSs. An HOS used in our approximation algorithm involves several
arbitrary functions ηω, and the limiting extended input turns out to be given by an
explicit formula in terms of these ηω. We then show that this formula implies that
any prescribed extended input can be achieved by a suitable choice of the ηω.

An outline of this paper is as follows. Section 2 introduces some algebraic ma-
chinery that is needed throughout this paper. We start by reviewing the algebraic
formalism developed in [19] and making it more appropriate for our needs here. We
then state a convergence theorem proved in [19] which will be used to establish the
approximation algorithm. Beginning in section 3, we proceed to solve the problem of
finding a sequence of ordinary inputs that converges to a prescribed extended input.
We first examine the limiting behavior of some special sequences of ordinary inputs.
This leads naturally to the definition of some functions associated with brackets in a
P. Hall basis of a free Lie algebra. These functions have nice algebraic properties and
are naturally related to the Chen–Fliess product expansions of formal trajectories of
some HOSs. The approximation algorithm is described in section 5, and its proof is
given in sections 6 and 7. In section 8, we first present some examples that show how
the algorithm is applied and then discuss briefly the feedback control laws and the
case in which systems have a drift term.

2. Algebraic preliminaries and a convergence result. In this section we
present briefly some algebraic preliminaries and state a convergence result that is
needed later. For a more detailed treatment of the materials presented in this section,
we refer to [19]. We follow the notations and definitions in [19].

2.1. Algebraic preliminaries. As in [19], let X = {X1, . . . , Xm} be a finite
sequence of objects that will be called indeterminates. We let A(X) denote the free
associative algebra generated over R by X. For any multi-index I = (i1, . . . , ik) with
i1, . . . , ik ∈ {1, . . . , m}, we let XI = Xi1 · · ·Xik

. (There is a special multi-index I = ∅.



AN APPROXIMATION ALGORITHM FOR NONHOLONOMIC SYSTEMS 1331

It is understood that X∅ = 1.) Then A(X) is the set of all sums
∑

I aIXI , where the
coefficients aI are real numbers, the summation runs over all possible multi-indices
I, and all but finitely many aI vanish. Therefore, the monomials XI form a basis of
A(X), and every element of A(X) is a finite linear combination of the XI .

We also consider the algebra Â(X) of all formal power series in X. The elements
of Â(X) are the formal sums

∑
I aIXI , where I ranges over all multi-indices. This is

the sum as above except that the aI are no longer required to vanish for all but finitely
many I. In both A(X) and Â(X), addition is done componentwise, and multiplication
is carried out using the formula XIXJ = XIJ , where IJ is the concatenation of I
and J , namely the multi-index obtained by writing, in order, first the components of
I and then those of J .

For any integer r ≥ 0, we use Ar(X) to denote the free nilpotent associative
algebra of step r + 1 in the indeterminates X. Therefore, Ar(X) is defined like Â(X),
except that now all the monomials XI with |I| > r are set equal to zero. (Here |I| is
the length of I, i.e., |I| = k if I = (i1, . . . , ik).) Clearly Ar(X) can be thought of as the
quotient of A(X) or Â(X) modulo the two side ideal of all sums of monomials of degree
strictly larger than r. (The degree of a monomial XI is |I|.) The canonical projection
Tr(r) from Â(X) to Ar(X) is the operator that assigns to each series S ∈ Â(X)
the finite series Tr(r)(S) obtained from S by deleting all the terms of degree > r.
(The symbol Tr comes from the word “truncation.” It is used to indicate that the
map Tr(r) : Â(X) → Ar(X) is in essence a truncation map, i.e., for any S ∈ Â(X),
Tr(r)(S) is the truncation of S “up to order r.”) The kernel of Tr(r) is denoted by
Âr(X). In particular, Â0(X) is the set of all formal power series

∑
I aIXI for which

a∅ = 0. The exponential map is a well-defined bijection exp : Â0(X) → 1 + Â0(X),
whose inverse is a map from 1+Â0(X) to Â0(X) denoted by “log.” (Here 1+Â0(X) is
the subset of Â(X) that contains all the elements S such that S− 1 ∈ Â0(X).) If S ∈
Â0(X), then exp(S) and log(1 + S) are given by the usual series exp(S) =

∑∞
n=0

Sn

n! ,

log(1 + S) =
∑∞

n=1
(−1)(n−1)Sn

n . The algebras A(X), Â(X), Ar(X) are Lie algebras in
the usual way. We let L(X) denote the Lie subalgebra of A(X) generated by the
indeterminates X1, . . . , Xm. An element S of A(X) will be said to be a Lie element
if S ∈ L(X). It is clear that an S ∈ A(X) is a Lie element iff all the homogeneous
components of S are Lie elements. (An S ∈ Â(X) is homogeneous if it is a linear
combination of monomials with equal degree.)

For X = {X1, . . . , Xm}, we let FBr(X) denote the set of formal brackets. The
elements of FBr(X) are purely formal expressions in the indeterminates Xi, the left
and the right brackets, and the commas. Precisely, cf. [16], let A be the alphabet that
consists of the Xi, the left and the right brackets, and the commas. Then FBr(X) is
the smallest set Ω of words in A that contains X1, . . . , Xm and has the property that
whenever α, β are two words that belong to Ω, then the word “[α, β]” also belongs
to Ω. Every formal bracket B ∈ FBr(X) has a well-defined degree δ(B), which is
an integer ≥ 1. (The degree δ(B) of B ∈ FBr(X) is inductively defined as follows:
δ(Xi) = 1, i = 1, . . . , m, and δ([α, β]) = δ(α) + δ(β).) If degree δ(B) > 1, then
B can be written in a unique way as [B1, B2] with B1, B2 ∈ FBr(X). The formal
brackets B1, B2 are called the left and the right factors of B, respectively. There is a
natural mapping µ which associates with each B ∈ FBr(X) an element of L(X). The
elements of L(X) of the form µ(B), B ∈ FBr(X), are called Lie monomials. They
will also be referred to as Lie brackets in L(X) in the indeterminates X1, . . . , Xm.
The Lie algebra L(X) is spanned by all the Lie brackets of X1, . . . , Xm. Naturally Lie
brackets in the indeterminates X1, . . . , Xm are not linearly independent. There are
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several systematic procedures for singling out a basis of L(X). We will come back to
this later.

Remark 2.1. In the following we will use Br(X) to denote the set of Lie monomials
in L(X), i.e., the set {µ(B) : B ∈ FBr(X)} in L(X). For simplicity, we will
drop the symbol µ and just use B to denote a Lie bracket in Br(X). Each bracket
B ∈ Br(X) has a well-defined degree δ(B). For later use, we let δi(B), i = 1, . . . , m,
be the degree of B in Xi, so δ1(B) + · · · + δm(B) = δ(B). For example if B =
[X1, [X1, X2]], then δ1(B) = 2, δ2(B) = 1, and δ(B) = 3.

We define L̂(X) to be the set of all those elements of Â(X) whose components
are Lie elements. The elements of L̂(X) are called a Lie series in X1, . . . , Xm. Let
Ĝ(X) = {exp(Z), Z ∈ L̂(X)}, the set of exponentials of the elements of L̂(X). The
Campbell–Hausdorff formula implies (cf., e.g., [1]) that Ĝ(X) is a group under the
operation of multiplication in Â(X). The elements of Ĝ(X) are called an exponential
Lie series. If we let Lr(X) be the Lie subalgebra of Ar(X) generated by the X and
define Gr(X) to be the subset of Ar(X) consisting of all the exponentials of elements of
Lr(X), then Lr(X) is a finite-dimensional Lie algebra and Gr(X) is its corresponding
simply connected Lie group.

Let v(t) =
∑

I vI(t)XI be a function on [0, T ] with values in Â(X). We say
that v is integrable if all the functions vI are in L1[0, T ]. A polynomial input is an
integrable function v on an interval [0, T ] with values in Â0(X). An extended input
is a polynomial input which is L̂(X) valued. An ordinary input u = (u1, . . . , um)
∈ L1([0, T ], Rm) can be regarded as a polynomial input by identifying it with the
function u = u1X1 + · · · + umXm. It is an extended input in fact by the above
definition. In most cases we will make no difference between u = (u1, . . . , um) and
u = u1X1 + · · ·+ umXm and call both ordinary inputs.

To each polynomial input v, the Chen–Fliess series Sv determined by v is the
absolutely continuous Â(X)-valued function on [0, T ] that satisfies

Ṡ = Sv, S(0) = 1, S(t) ∈ Â(X).(3)

So if Sv is the solution of (3), then it is clear that

Sv = 1 +
∞∑

k=1

∫ t

0

∫ t1

0
· · ·
∫ tk−1

0
v(tk)v(tk−1) · · ·v(t1) dtk · · · dt1.

The Chen–Fliess series Sv will be called the formal trajectory of v.
By definition, the function t → Sv(t) is an absolutely continuous Â(X)-valued

function. It is in fact 1 + Â0(X)-valued. Conversely, define a formal trajectory to be
an absolutely continuous 1 + Â0(X)-valued function S on [0, T ]. Then every formal
trajectory S is the formal trajectory of a polynomial input v given by v = S−1Ṡ.
Therefore the map v→ Sv is a one-to-one correspondence between the set of polyno-
mial inputs and that of formal trajectories whose inverse is given by v = S−1

v Ṡv.
The polynomial input v can be computed from Sv using standard algebraic tools.

If Sv = 1 +
∑
|I|>0 HIXI , then we know that

S−1
v = 1 +

∑
|I|>0

( ∞∑
k=1

(−1)k
∑

J1...Jk=I

HJ1 · · ·HJk

)
XI .
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We have

S−1
v Ṡv =

∑
|I|>0

ḢI +
∞∑

k=1

(−1)k
∑

J1...JkJk+1=I

HJ1 · · ·HJk
ḢJk+1

XI ,

where the inner summation above runs over all ways of expressing the multi-index I as
a concatenation J1 · · · JkJk+1 of k+1 indices. So, if we let v = S−1

v Ṡv =
∑
|I|>0 vIXI ,

then the vI are given by

vI = ḢI +
∞∑

k=1

(−1)k
∑

J1···JkJk+1=I

HJ1HJ2 · · ·HJk
ḢJk+1 .(4)

Remark 2.2. It follows from [15] that Sv is Ĝ(X)-valued if v is an extended input.
The converse of this is also true; i.e., if S is a Ĝ(X)-valued formal trajectory, then
v = S−1Ṡ is an extended input. To see this, it suffices to prove that in this case the
function S−1Ṡ is L̂(X) valued. Notice that S−1(t)Ṡ(t) = limh→0

1
hS−1(t)(S(t + h)−

S(t)) = limh→0
1
h (S−1(t)S(t + h) − 1). Using the Campbell–Hausdorff formula we

conclude that S−1(t)S(t + h) = eΛ(t,h), where Λ(t, h) is a Lie series that goes to zero
as h→ 0. So S−1(t)Ṡ(t) = limh→0

1
h (Λ(t, h) + 1

2Λ(t, h)2 + · · ·) = limh→0
Λ(t,h)

h , which
implies that S−1Ṡ is Lie series valued.

Let π be the linear map of A(X) onto L(X) defined by π(XI) = 1
|I| [XI ] for

|I| > 0, where if I = (i1, · · · , ik), then [XI ]
def= [Xi1 , [Xi2 , . . . , [Xik−1 , Xik

] · · ·]]. It is
well known, cf., e.g., [1], that the restriction of π to L(X) is the identity map; i.e., π
is a projector of A(X) onto L(X). Let π̂ be the linear projection map from Â(X) to
L̂(X) that extends π. From Remark 2.2 we know that if S = 1 +

∑
|I|>0 HIXI is a

Ĝ(X)-valued formal trajectory, v = S−1Ṡ is an extended input. In that case we have
π̂(v) = v, so

v =
∑
|I|>0

1
|I|vI [XI ],(5)

where the vI are given by (4).
In the particular case where v is an ordinary input u = u1X1 + · · ·+ umXm, the

Chen–Fliess series Su is given by the formula Su(t) = 1 +
∑
|I|>0 UI(t)XI , where if

I = (i1, . . . , ik), then UI is the iterated integral defined by

UI(t)
def=
∫ t

0
uik

(tk)
∫ tk

0
uik−1(tk−1) · · ·

∫ t2

0
ui1(t1) dt1 · · · dtk.(6)

Let u be an ordinary input and v be a polynomial input. We define a generalized
difference of u and v to be an absolutely continuous Â0(X)-valued function W on
[0, T ] that satisfies

Ẇ = −uW + v − u, W (t) ∈ Â0(X).(7)

Clearly a solution W of (7) is uniquely determined by its initial value W (0).
Let W be a solution of (7) with initial condition W (0) = W0 ∈ Â0(X). Then W

satisfies the integral equation

W (t) = W0 −
∫ t

0
u(s)W (s)ds +

∫ t

0
(v(s)− u(s)) ds.(8)
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If u = u1X1+· · ·+umXm and v =
∑
|I|>0 vIXI , letting (u

g.d.− v)(t) =
∑
|I|>0 ŨV I(t)XI

be a generalized difference of u and v with initial value (u
g.d.− v)(0) =

∑
|I|>0 ŴIXI ,

then from (8) we have the recursive formulas

ŨV i(t) = Ŵi +
∫ t

0
vi(s)ds−

∫ t

0
ui(s)ds,(9)

ŨV i1,...,ik
(t) = Ŵi1,...,ik

+
∫ t

0
vi1,...,ik

(s)−
∫ t

0
ui1(s)ŨV i2,...,ik

(s)ds.(10)

If we let ũvI = ˙̃
UV I , from the above we see that the ũvI satisfy ũvi(t) = vi(t)−ui(t)

and ũvi1,...,ik
(t) = vi1,...,ik

(t)− ui1(t)ŨV i2,...,ik
(t).

The concepts of polynomial inputs, extended inputs, formal trajectories, general-
ized differences, etc., have truncated analogues. Let us say that a polynomial input v
has order ≤ r if the values of v are linear combinations of monomials of degree ≤ r.
The smallest such r is called the order of v. We say that v is of finite order if it has
order r for some integer r > 0.

If v is a polynomial input of order ≤ r, we can regard v as an Ar
0(X)-valued rather

than Â0(X)-valued function, and we define the rth-order truncated formal trajectory
determined by v to be the solution of the initial value problem Ṡ = Sv, S(0) = 1,
S(t) ∈ Ar(X) on [0, T ] (here Ar

0(X) = Ar(X)∩A0(X)). We will use Sr
v to denote the

rth-order truncated formal trajectory determined by v in Ar(X).
If u is an ordinary input and v is a polynomial input of order ≤ r, we can also

define an rth-order truncated generalized difference of u and v, which is an absolutely
continuous Ar

0(X)-valued function on [0, T ] that satisfies

Ẇ = −uW + v − u, W (t) ∈ Ar
0(X).(11)

We will use the notation (u
g.d.(r)
− v) to denote an rth-order truncated generalized

difference of u and v. It is uniquely determined by (u
g.d.(r)
− v)(0). Let u = u1X1 +

· · · + umXm and v =
∑

0<|I|≤r vIXI . Let (u
g.d.(r)
− v)(t) =

∑
0<|I|≤r ŨV I(t)XI be

an rth-order truncated generalized difference of u and v. Then the ŨV I , 0 < |I| ≤ r,
can still be calculated by (9) and (10) once the initial values ŨV I(0) are known.

For more general results and some of the generalizations, we refer to [20], [21].

2.2. A convergence theorem. Now we state a convergence theorem from [19]
that is needed later.

Let v =
∑

0<|I|≤r vIXI be an extended input of order ≤ r. Then we know
that v =

∑
0<|I|≤r

vI

|I| [XI ]. As was said in the introduction, v can be plugged into
any system (1) if the vector fields f1, . . . , fm are of class Cr−1. The result is a
time-varying ordinary differential equation ẋ =

∑
0<|I|≤r

vI(t)
|I| [fI ](x), where we write

[fI ]
def= [fi1 , [fi2 , [· · · , [fik−1 , fik

] · · ·]]] for I = (i1, . . . , ik) .
Let v =

∑
0<|I|≤r vIXI be an extended input of order ≤ r. A sequence {uj} of

ordinary inputs EI(r)-converges to v if the following condition is satisfied:
For every integer n > 0, every point p ∈ Rn, any sequence {pj} ⊆ Rn that

converges to p, and any vector fields f1, . . . , fm of class Cr−1 on Rn, if the initial
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value problem

ẋ =
∑

0<|I|≤r

vI(t)
|I| [fI ](x), x(0) = p,

has a unique solution x∞ which is defined on [0, T ] and if xj is a maximal solution of
the initial value problem

ẋ =
m∑

k=1

uj
k(t)fk(x), x(0) = pj ,

then the xj are defined on [0, T ] for j large enough and converge uniformly to x∞ on
[0, T ] as j →∞.

With these preliminaries, we have the following convergence theorem from [19].
THEOREM 2.1. Let r be a positive integer. Let {uj = (uj

1, . . . , u
j
m)} ⊆ L1([0, T ],

Rm) be a sequence of ordinary inputs. Let v =
∑

0<|I|≤r vI XI be a polynomial input
of order ≤ r. Assume that there exist a sequence {vj =

∑
0<|I|≤r vj

IXI} of polynomial

inputs of order ≤ r and rth-order truncated generalized differences (uj
g.d.(r)
− vj) =∑

0<|I|≤r ŨV
j

IXI of uj and vj such that

c1(r). the indefinite integrals
∫ t

0 vj
I(s)ds converge to

∫ t

0 vI(s)ds uniformly on [0, T ]
as j →∞ for all 0 < |I| ≤ r,

c2(r). the ŨV
j

I converge to 0 uniformly as j →∞ for 0 < |I| ≤ r,

c3(r). the L1 norms of the ũv
j
I = ˙̃

UV
j

I for |I| = r and of the vj
I for 0 < |I| ≤ r

are uniformly bounded.
Then

C1. v is an extended input of order ≤ r;
C2. the uj EI(r)-converge to v.
Remark 2.3. It is shown in [19] that if a sequence {uj} of ordinary inputs EI(r)-

converges to an extended input v of order r, then the Sr
uj converge to Sr

v uniformly;
i.e., if we write Sr

uj = 1 +
∑

0<|I|≤r U j
I XI and Sr

v = 1 +
∑

0<|I|≤r HIVI , then the U j
I

converge to HI uniformly for all 0 < |I| ≤ r.
Remark 2.4. In practice, we just know the sequence {uj}. We do not know a

priori if it is convergent or what its limit v is even if it converges. We have to find

sequences {vj} and (uj
g.d.(r)
− vj) so that c1(r), c2(r), and c3(r) are satisfied for some

r. From (9) and (10) we see that

ŨV
j

i (t) = ŨV
j

i (0) +
∫ t

0
vj

i (s)ds−
∫ t

0
uj

i (s)ds,

ŨV
j

i1,...,ik
(t) = ŨV

j

i1,...,ik
(0) +

∫ t

0
vj

i1,...,ik
(s)−

∫ t

0
uj

i1
(s)ŨV

j

i2,...,ik
(s)ds.

If we let V j
I (t) = ŨV

j

I(0) +
∫ t

0 vj
I(s)ds, then we can rewrite the above as

ŨV
j

i (t) = V j
i (t)−

∫ t

0
uj

i (s)ds,(12)

ŨV
j

i1,...,ik
(t) = V j

i1,...,ik
(t)−

∫ t

0
uj

i1
(s)ŨV

j

i2,...,ik
(s)ds.(13)
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If we can find absolutely continuous functions V j
I for 0 < |I| ≤ r such that

c1′(r). the V j
I converge to absolutely continuous functions VI uniformly for all

0 < |I| ≤ r,

c2′(r). the ŨV
j

I determined by (12) and (13) converge to 0 uniformly for 0 <
|I| ≤ r,

c3′(r). the L1 norms of the ˙̃
UV

j

I for |I| = r and of the V̇ j
I for 0 < |I| ≤ r are

uniformly bounded,
then the conclusions C1 and C2 in Theorem 2.1 hold, and the EI(r)-limit of the uj is
equal to v =

∑
0<|I|≤r V̇I(t)XI .

To see an explicit example of how Theorem 2.1 is used, see Example 3.1 in the
next section.

3. Approximate tracking: A simple example. Theorem 2.1 can be applied
to the problem of approximating a given trajectory of an extended system. Our
final goal is, for any given extended input v of finite order, find a sequence {uj} of
ordinary inputs that converges to v. Before we describe how this can be done, we
present some simple examples to show the basic ideas of how Theorem 2.1 can be
applied to compute the limit of sequences of some highly oscillatory ordinary inputs.

Example 3.1. Let

uj
1(t) = η1(t) + j

2
3 cos ω1jt, uj

2(t) = η2(t) + j
2
3 η3(t) cos ω2jt,

where ηi are functions of class C1 on [0, T ], ω1, ω2 are nonzero numbers such that
2ω1 + ω2 = 0. Using Theorem 2.1 we can show that {uj} is convergent to some v,
and we can find v explicitly.

As the first step, we let

U j
1 (t) =

∫ t

0
uj

1(s)ds =
∫ t

0
η1(s) ds +

j−
1
3

ω1
sinω1jt,

U j
2 (t) =

∫ t

0
uj

2(s)ds =
∫ t

0
η2(s) ds +

j−
1
3

ω2
η3(t) sin ω2jt− j−

1
3

ω2

∫ t

0
η′3(s) sin ω2js ds.

Letting

V j
1 (t) =

∫ t

0
η1(s) ds, V j

2 (t) =
∫ t

0
η2(s) ds− j−

1
3

ω2

∫ t

0
η′3(s) sin ω2js ds,

we get

ŨV
j

1(t) = −j−
1
3

ω1
sinω1jt, ŨV

j

2(t) = −j−
1
3

ω2
η3(t) sin ω2jt.

Now it is easily computed that∫ t

0
uj

1(s)ŨV
j

1(s) ds =
∫ t

0
η1(s)ŨV

j

1(s)ds +
j−

2
3

4ω2
1

[cos 2ω1jt− 1] ,∫ t

0
uj

1(s)ŨV
j

2(s) ds =
∫ t

0
η1(s)ŨV

j

2(s)ds +
j−

2
3 η3(t)
2ω2

[
cos(ω1 + ω2)jt

ω1 + ω2
+

cos(ω2 − ω1)jt
ω2 − ω1

]

−j−
2
3 η3(0)
2ω2

[
1

ω1 + ω2
+

1
ω2 − ω1

]
−j−

2
3

2ω2

∫ t

0
η′3(s)

[
cos(ω1 + ω2)js

ω1 + ω2
+

cos(ω2 − ω1)js
ω2 − ω1

]
ds,
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0
uj

2(s)ŨV
j

1(s) ds =
∫ t

0
η2(s)ŨV

j

1(s)ds+
j−

2
3 η3(t)
2ω1

[
cos(ω1 + ω2)jt

ω1 + ω2
+

cos(ω1 − ω2)jt
ω1 − ω2

]

−j−
2
3 η3(0)
2ω1

[
1

ω1 + ω2
+

1
ω1 − ω2

]
−j−

2
3

2ω1

∫ t

0
η′3(s)

[
cos(ω1 + ω2)js

ω1 + ω2
+

cos(ω1 − ω2)js
ω1 − ω2

]
ds,

∫ t

0
uj

2(s)ŨV
j

2(s) ds =
∫ t

0
η2(s)ŨV

j

2(s)ds +
j−

2
3

4ω2
2

[
η2
3(t) cos 2ω2jt− η2

3(0)
]

−j−
2
3

2ω2
2

∫ t

0
η3(s)η′3(s) cos 2ω2js ds.

So if we let

V j
1,1(t) =

∫ t

0
η1(s)ŨV

j

1(s)ds− j−
2
3

4ω2
1
,

V j
1,2(t) =

∫ t

0
η1(s)ŨV

j

2(s)ds− j−
2
3 η3(0)
2ω2

[
1

ω1 + ω2
+

1
ω2 − ω1

]

−j−
2
3

2ω2

∫ t

0
η′3(s)

[
cos(ω1 + ω2)js

ω1 + ω2
+

cos(ω2 − ω1)js
ω2 − ω1

]
ds,

V j
2,1(t) =

∫ t

0
η2(s)ŨV

j

1(s)ds− j−
2
3 η3(0)
2ω1

[
1

ω1 + ω2
+

1
ω1 − ω2

]

−j−
2
3

2ω1

∫ t

0
η′3(s)

[
cos(ω1 + ω2)js

ω1 + ω2
+

cos(ω1 − ω2)js
ω1 − ω2

]
ds,

V j
2,2(t) =

∫ t

0
η2(s)ŨV

j

2(s)ds− j−
2
3 η2

3(0)
4ω2

2
− j−

2
3

2ω2
2

∫ t

0
η3(s)η′3(s) cos 2ω2js ds,

then we get

ŨV
j

1,1(t) = −j−
2
3

4ω2
1

cos 2ω1jt,

ŨV
j

1,2(t) = −j−
2
3 η3(t)
2ω2

[
cos(ω1 + ω2)jt

ω1 + ω2
+

cos(ω2 − ω1)jt
ω2 − ω1

]
,

ŨV
j

2,1(t) = −j−
2
3 η3(t)
2ω1

[
cos(ω1 + ω2)jt

ω1 + ω2
+

cos(ω1 − ω2)jt
ω1 − ω2

]
,

ŨV
j

2,2(t) = −j−
2
3 η2

3(t)
4ω2

2
cos 2ω2jt.

There are eight indices of degree 3, namely, (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1),

(2, 1, 2), (2, 2, 1), (2, 2, 2). We simply let V j
i1,i2,i3

(t) =
∫ t

0 uj
i1

(s)ŨV
j

i2,i3(s)ds, so that

ŨV
j

i1,i2,i3(t) ≡ 0. The V j
i1,i2,i3

can be computed explicitly. We just compute V j
1,1,2.



1338 WENSHENG LIU

By definition we have

V j
1,1,2(t) =

∫ t

0
η1(s)ŨV

j

1,2(s)

−
∫ t

0
η3(s)

[
cos ω1js cos(ω1 + ω2)js

2ω2(ω1 + ω2)
+

cos ω1js cos(ω2 − ω1)js
2ω2(ω2 − ω1)

]
ds

= −
∫ t

0

η3(s)
4ω2(ω1 + ω2)

ds + o(1).

In the above o(1) denotes the terms that converge to 0 uniformly as j →∞. Also we
have used the fact 2ω1 + ω2 = 0 to get the first term, since

cos ω1js cos(ω1 +ω2)js =
1
2
[cos(2ω1 +ω2)js+cos(ω1−ω1−ω2)js] =

1
2
[1+ cos ω2js].

Similarly, one can compute all the other V j
i1,i2,i3

.
From the definition of the V j

I we can get that

lim
j→∞

V j
1 (t) =

∫ t

0
η1(s) ds, lim

j→∞
V j

2 (t) =
∫ t

0
η2(s) ds,

lim
j→∞

V j
1,1,2(t) = −

∫ t

0

η3(s)
4ω2(ω1 + ω2)

ds,

lim
j→∞

V j
1,2,1(t) = −

∫ t

0

η3(s)
4ω1(ω1 + ω2)

ds,

lim
j→∞

V j
2,1,1(t) = −

∫ t

0

η3(s)
8ω2

1
ds,

and all the other V j
I converge to 0 uniformly. It is also clear that if we let vj

I = V̇ j
I ,

then the ‖vj
I‖L1[0,T ] are uniformly bounded. Therefore if we let

v = η1(t)X1+η2(t)X2− η3(t)
4ω2(ω1 + ω2)

X1X1X2− η3(t)
4ω1(ω1 + ω2)

X1X2X1−η3(t)
8ω2

1
X2X1X1,

using the fact that ω2 = −2ω1, and [X1, [X1, X2]] = X1X1X2−2X1X2X1 + X2X1X1,
we get that v = η1(t)X1 + η2(t)X2 − η3(t)

8ω2
1

[X1, [X1, X2]]. From Theorem 2.1 we can
conclude that the uj EI(3)-converge to v.

4. Some definitions and a special sequence of ordinary inputs. In this
section we do some preliminary work for the general approximate tracking algorithm.
We first introduce a number of new definitions and review some known facts about the
free Lie algebra L(X) generated by the indeterminates {X1, . . . , Xm} and about the
Chen–Fliess product expansion of formal trajectories. Then we analyze one special
sequence {uj = (j

m−1
m eijω1t, . . . , j

m−1
m eijωmt)} of ordinary inputs in detail and show

that {uj} is convergent to some extended input of finite order (here the ωk are con-
stants, i =

√−1). The sequences of this form will be generalized later, and they play
a crucial rule in our approximate tracking algorithm described in the next section.
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4.1. P. Hall basis and Chen–Fliess product expansions of formal tra-
jectories. Suppose that v is an rth-order extended input with coefficients of class
C1. Our goal is to write an explicit formula for a sequence of ordinary inputs that
converges to v. The basic idea for solving this problem is to use highly oscillatory
inputs as was done in the example of section 3. The HOSs used in our general ap-
proximation algorithm involve a finite set of frequencies ω chosen so as to satisfy
some special resonance conditions. We proceed by trying to handle each bracket in
v separately. Let L(X)ν1,...,νm

denote the linear span of all the brackets B ∈ Br(X)
such that δk(B) = νk, k = 1, . . . , m. Then L(X) is the direct sum of the spaces
L(X)ν1,...,νm . In particular an extended input v of finite order has a unique decompo-
sition into a sum

∑
ν1,...,νm

vν1,...,νm , where each vν1,...,νm is L(X)ν1,...,νm valued. We
try to produce, for each vν1,...,νm , an HOS {uj

ν1,...,νm
} that converges to vν1,...,νm . We

then let uj =
∑

ν1,...,νm
uj

ν1,...,νm
and hope that this will work. It turns out that even

though the “input-to-trajectory” map is highly nonlinear a kind of “high frequency
superposition principle” holds, and the uj converge to v, provided that the frequencies
associated to the various components vν1,...,νm

are independent in a sense that will be
made precise below.

If B is a Lie bracket in L(X), δk(B) = νk, k = 1, . . . , m, then we define the
multiplicity of B to be the dimension of L(X)ν1,...,νm

.
In order to carry out the above program, one has to take into account the fact

that it is not obvious how to decompose an extended input into parts in a canonical
way (although there is a unique decomposition of v into a sum

∑
ν1,...,νm

vν1,...,νm
).

The general expression for an extended input obtained in (5) is not suitable because
the brackets [XI ] are not independent. What is needed is to write in an explicit
way a basis of L(X). One way of doing that is by using a P. Hall basis. (Cf. [1].
For an explanation of the reason why this is the right kind of basis for our problem,
cf. [15].)

We recall that a P. Hall set B of formal brackets is a subset of FBr(X), endowed
with a total ordering �, that satisfies the following:

PH1. If B, B′ ∈ B and δ(B) < δ(B′), then B � B′;
PH2. Every Xk is in B;
PH3. If B is a formal bracket and δ(B) > 1, so that B can be written in a unique

way as [B1, B2], then B ∈ B iff (i) B1 ∈ B, (ii) B2 ∈ B, (iii) B1 � B2, and (iv) either
δ(B2) = 1 or B2 = [B3, B4] and B3 � B1.
We will impose the additional requirement (which is not usually included in the defi-
nition of a P. Hall set) that

PH4. Xk1 � Xk2 iff k1 < k2.
The canonical map µ from FBr(X) to L(X) is not one to one as shown by the example
B1 = [X1, [X1, X2]], B2 = [[X2, X1], X1], which are different as formal brackets, but
B1 = B2 in L(X). If we restrict µ to B, then µ is one to one, and it turns out that
µ(B) is a basis of L(X), cf., e.g., [1]. Later on, we will make no difference between B
and µ(B) and use (B,�) to denote a basis of L(X). A basis (B,�) coming from this
way is called a P. Hall basis of L(X).

We remark for future use that every B ∈ B such that δ(B) > 1 can be written
in a unique way as adκ

B1
(B2), where B1 � B2 and either δ(B2) = 1 or the left factor

B3 of B2 satisfies B3 � B1. (Here we are using the standard notation adB to denote
the operator Z → [B, Z].) From now on we fix a choice of P. Hall basis (B,�)
of L(X) for which PH4 holds. We let Bn be the set of members of B that are of
degree n.
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Next we define the Chen–Fliess product coefficients associated with functions
u ∈ L1([0, T ], Rm) and brackets B ∈ B. We follow the notations in [15].

Associate with each bracket B ∈ B and each u = (u1, . . . , um) ∈ L1([0, T ], Rm),
two functions cB(u), CB(u), defined on the interval [0, T ]. The functions cB(u) will
be in L1([0, T ], R), and then CB(u) will be given by

CB(u)(t) =
∫ t

0
cB(s) ds.(14)

The cB(u), CB(u) are defined recursively as follows. For B = Xk, we let cB(u)(t) =
uk(t), 0 ≤ t ≤ T , and then define CB(u)(t) by (14). Assume that cB(u), CB(u) have
been defined for all B ∈ B of degree ≤ n, and let B ∈ Bn+1. Then B can be written in
a unique way as adκ

B1
(B2), where either δ(B2) = 1 or the left factor B3 of B2 satisfies

B3 � B1. We then define cB(u) = 1
κ! (CB1(u))κcB2(u) and again define CB(u) by

(14). This completes the recursive definition of the functions cB(u), CB(u).
For each u = (u1, . . . , um) ∈ L1([0, T ], Rm), let Su be the formal trajectory deter-

mined by u = u1X1+ · · ·+umXm. We will simply say that Su is the formal trajectory
determined by u. It is proved in [15] that with the CB(u) defined as above, the formal

trajectory Su determined by u can be written as Su(t) =
←∏

B∈B exp(CB(u)(t) B),
where “←” means that the product is taken from left to right according to the total
ordering � in B. The above formula is the Chen–Fliess product expansion of Su,
cf. [15].

4.2. A special sequence of ordinary inputs. For any finite set of real num-
bers F , let us write |F | to denote the number of elements of F . Call a finite set
F ⊆ R − {0} canceling if the sum of all the members of F is equal to 0. Call F
properly noncanceling (PNC) if no proper subset of F is canceling. Call F minimally
canceling (MC) if the only linear combinations

∑
ω∈F aωω that are equal to zero and

have integer coefficients such that
∑

ω∈F |aω| ≤ |F | are those for which the aω are all
equal (in which case, of course, they all have to be equal to 0, 1 or −1). It is clear
that every MC set is PNC.

LEMMA 4.1. Let {ω1, . . . , ωm} ⊆ R − {0} be MC. Let {uj = (uj
1, . . . , u

j
m)}, with

uj
k(t) = j

m−1
m eijωkt, be a sequence of inputs. Then the uj EI(m)-converge to

u∞ =
∑

`1 6=`2 6=···6=`m

1
im−1ω`1(ω`1 + ω`2) · · · (ω`1 + · · ·+ ω`m−1)

X`1 · · ·X`m

=
∑

`1 6=`2 6=···6=`m

1
im−1m ω`1(ω`1 + ω`2) · · · (ω`1 + · · ·+ ω`m−1)

[X`1,...,`m
].

The proof follows from a direct verification that the conditions of Theorem 2.1 are
satisfied with uj and u∞. We show how this is done by an example.

Example 4.1. Let m = 3, {ω1, ω2, ω3} ⊆ R − {0} be MC, and uj = (uj
1, u

j
2, u

j
3)

with uj
k(t) = j

2
3 eijωkt. As in Example 3.1, we let U j

` (t) =
∫ t

0 uj
`(s) ds = j− 1

3

iω`
[eijω`t−1].

So if we let V j
` (t) = − j− 1

3

iω`
, we get ŨV

j

`(t) = − j− 1
3

iω`
eijω`t. Then

∫ t

0 uj
`1

(s)ŨV
j

`2(s)ds =

− j− 2
3

i2ω`2 (ω`1+ω`2 ) [e
ij(ω`1+ω`2 )t−1]. Letting V j

`1,`2
(t) = j− 2

3

i2ω`2 (ω`1+ω`2 ) , we have ŨV
j

`1,`2(t)

= j− 2
3

i2ω`2 (ω`1+ω`2 )e
ij(ω`1+ω`2 )t. Finally we simply let
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V j
`1,`2,`3

(t) =
∫ t

0
uj

`1
(s)ŨV

j

`2,`3(s) ds =
1

i2ω`3(ω`3 + ω`2)

∫ t

0
eij(ω`1+ω`2+ω`3 )s ds

=

{
t

i2ω`3 (ω`3+ω`2 ) if `1 6= `2 6= `3,
1

i3jω`3 (ω`3+ω`2 )(ω`3+ω`2+ω`1 )

[
eij(ω`1+ω`2+ω`3 )t − 1

]
otherwise.

Then we have ŨV
j

`1,`2,`3(t) ≡ 0. Clearly the conditions of Theorem 2.1 are satisfied
and the uj EI(3)-converge to u∞ =

∑
`1 6=`2 6=`3

1
i2ω`3 (ω`3+ω`2 )X`1X`2X`3 . Since ω1 +

ω2 + ω3 = 0, we have u∞ =
∑

`1 6=`2 6=`3
1

i2ω`1 (ω`1+ω`2 )X`1X`2X`3 , which is as claimed
in Lemma 4.1.

Now come back to Lemma 4.1. Since B is a basis of L(X), we can write
each [X`1,...,`m

] as a linear combination of brackets B ∈ Bm. Then we get u∞ =∑
B∈Em i1−mgB(ω1, . . . , ωm)B, where Em is the subset of Bm that contains all the

brackets B such that δk(B) = 1, k = 1, . . . , m, and gB(ω1, . . . , ωm) denote the co-
efficients of B ∈ Em. Let Sm

uj be the mth-order truncated formal trajectory de-
termined by uj . By the Chen–Fliess product expansion, we get that Sm

uj (t) =
Tr(m)(

∏←
B∈B exp(CB(uj)(t) B)) in Am(X). It is clear also that in Am(X), Sm

u∞(t) =
1 +

∫ t

0 u∞(s) ds = 1 +
∑

B∈Em i1−mgB(ω1, . . . , ωm)t B. Since Sm
uj → Sm

u∞ uniformly,
cf. Remark 2.3, we see that CB(uj) → 0 if B ∈ ∪m

k=1Bk − Em and CB(uj)(t) →
i1−mgB(ω1, . . . , ωm)t if B ∈ Em. So gB(ω1, . . . , ωm) = im−1

t limj→∞ CB(uj)(t) for
B ∈ Em.

Next we generalize this to an arbitrary bracket B ∈ B. Let B̄ ∈ B be a bracket of
degree δ(B̄) = n > 1. Let {ω1, . . . , ωn} be MC. We define a sequence {uj} of ordinary
inputs associated to B̄ by the following

uj
k(t) = j

n−1
n

δ1(B̄)+···+δk(B̄)∑
`=δ1(B̄)+···+δk−1(B̄)+1

eijω`t, k = 1, . . . , m.(15)

(Note that if δk(B̄) = 0 we just let uj
k(t) = 0.) Then it is easy to see that the uj

EI(n)-converge to some extended input u∞ of order n and u∞ can be written as
u∞ =

∑
B∈E(B̄) i1−ngB(ω1, . . . , ωn) B for some constants gB(ω1, . . . , ωn) determined

by (ω1, . . . , ωn) and B, where E(B̄) denotes the set of the brackets B ∈ Bn which
are equivalent to B̄ in the sense that B ∈ E(B̄) iff δk(B) = δk(B̄) for k = 1, . . . , m.
It follows from the Chen–Fliess product expansion that the gB(ω1, . . . , ωn) are equal
to gB(ω1, . . . , ωn) = in−1

t limj→∞ CB(uj)(t), which in fact do not depend on t. In
particular this is true for B̄ ∈ E(B̄).

Remark 4.1. An alternative way of getting the general gB is as follows. Let
B̄ ∈ B be a bracket of degree δ(B̄) = n. Take another set Y = {Y1, . . . , Yn} of
indeterminates. Fix a choice of a P. Hall basis BY of L(Y). Let {ω1, . . . , ωn} be MC.
Consider the sequence ūj = (ūj

1 . . . , ūj
n) with ūj

k(t) = j
n−1

n exp(ijωkt), k = 1, . . . , n.
Let ūj = ūj

1Y1 + · · ·+ ūj
nYn. From Lemma 4.1 we know that the ūj EI(n)-converge to

ū∞Y =
∑

BY∈EY

i1−ngBY (ω1, . . . , ωn) BY,(16)

where EY denotes the set of brackets BY ∈ BY such that δk(BY) = 1, k = 1, . . . , n,
and

gBY (ω1, . . . , ωn) =
in−1

t
lim

j→∞
CBY (ūj)(t).
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Now let θB̄ be the algebra homomorphism from Â(Y) to Â(X) defined by

θB̄(Yk) = X`, for k = δ1(B̄) + · · ·+ δ`−1(B̄) + 1, . . . , δ1(B̄) + · · ·+ δ`(B̄).

Letting θB̄ act on (16) we get an L(X)-valued function ū∞. This ū∞ is clearly equal to
u∞, which is the limit of the uj associated to B̄ in (15). If we write the brackets in ū∞

into linear combinations of brackets in B we see that the gB(ω1, . . . , ωn), B ∈ E(B̄),
are linear combinations of the gBY (ω1, . . . , ωn) for BY ∈ EY. This observation will
be used later.

So we have associated with each bracket B ∈ B, δ(B) > 1, each MC set {ω1, . . . , ωδ(B)},
a number gB(ω1, . . . , ωδ(B)). We will think of these gB(ω1, . . . , ωδ(B)) thus defined as
functions in δ(B) variables (ω1, . . . , ωδ(B)). (For B = Xk, we define gXk

(ω) = 1.)
Although they are only defined for (ω1, . . . , ωδ(B)) with {ω1, . . . , ωδ(B)} being MC, as
rational functions, they are completely determined.

4.3. An alternative definition. The definition of gB(ω1, . . . , ωδ(B)) given in
the previous section as limits of the Chen–Fliess product coefficients of some sequences
of ordinary inputs is good for analyzing their structures. Next we give an alternative
definition of gB which is good for explicit calculations. First we need some definitions.

Any set M equipped with a map M ×M → M denoted by (a, b) → ab is called
a magma.

Example 4.2. For any two functions f, g ∈ L1[0, T ], we let (f, g) → f#g be
defined by (f#g)(t) =

∫ t

0 f(s)dsg(t). Then (L1[0, T ], #) is a magma.
Example 4.3. Let AC[0, T ] be the set of real-valued absolutely continuous func-

tions on [0, T ]. We define a product ∗ : AC[0, T ] × AC[0, T ] → AC[0, T ] by (U ∗
V )(t) =

∫ t

0 U(s)V̇ (s)ds. Then (AC[0, T ], ∗) is a magma.
Example 4.4. Let RFn be the set of all real-valued rational functions on Rn. Let

RF = ∪∞n=1 RFn with the product #̃ : RFp × RFq → RFp+q given by

(f#̃g)(x1, . . . , xp, y1, . . . , yq) =
f(x1, . . . , xp)
x1 + · · ·+ xp

g(y1, . . . , yq).

Then (RF, #̃) is a magma.
Example 4.5. Let AC([0, T ], Rn) be the set of absolutely continuous Rn-valued

functions on [0, T ]. Let FLn be the set of all maps from AC([0, T ], Rn) to AC[0, T ].
Let FL = ∪∞n=1FLn. For any h1 ∈ FLp, h2 ∈ FLq, we define the product (h1, h2) →
h1.h2 ∈ FLp+q by

(h1.h2)(U1, . . . , Up, V1, . . . , Vq)(t) = (h1(U1, . . . , Up) ∗ h2(V1, . . . , Vq)) (t).

Then with this product FL is a magma.
Equipped with the bracket product, i.e., FBr(X) × FBr(X) 3 (B1, B2) →

[B1, B2] ∈ FBr(X), (FBr(X), [·, ·]) is a magma. This magma is isomorphic to the free
magma generated by X (for the definition of a free magma generated by X, cf. [1])
and has the following property: let N be any magma; then every mapping of X into N
can be uniquely extended to a magma homomorphism of FBr(X) into N . (A magma
homomorphism ν : M → N is a map from M → N that satisfies ν(ab) = ν(a)ν(b). It
is an isomorphism if it is also 1− 1 and onto.)

Now let u = (u1, . . . , um) be a function in L1([0, T ], Rm). We define φ(u) : X →
(L1[0, T ], #) by

Xk → φXk
(u)(t) = uk(t), k = 1, . . . , m.
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Then we have a unique extension of φ(u) (still denoted by φ(u)) from FBr(X) →
(L1[0, T ], #) satisfying φ[B1,B2](u)(t) = (φB1(u)#φB2(u))(t).

Define a map Θ from X to FL1 ⊂ FL by ΘXk
(U)(t) = U(t) for U ∈ AC[0, T ] and

extend Θ to a unique map (denoted by Θ again) Θ : FBr(X)→ FL. Let B = [B1, B2].
Then Θ satisfies

ΘB(U1, . . . , Uδ(B))(t) =
(
ΘB1(U1, . . . , Uδ(B1)) ∗ΘB2(Uδ(B1)+1, . . . , Uδ(B))

)
(t).

For each fixed B ∈ FBr(X), δ(B) = n, it is clear that ΘB : AC([0, T ], Rn)→ AC[0, T ]
is multiple linear in (U1, . . . , Un); i.e., if Uk =

∑
`∈Ω(k) U `

k(t), k = 1, . . . , n, where Ω(k)
are some finite index sets and U `

k ∈ AC[0, T ] for ` ∈ Ω(k), then

ΘB(U1, . . . , Un)(t) =
∑

(`1,...,`n)∈Ω

ΘB(U `1
1 , . . . , U `n

n )(t),

where Ω = Ω(1)× Ω(2)× · · · × Ω(n).
Let Ψ : X → RF1 ⊂ RF be defined as follows: ΨXk

(ω) = 1 for k = 1, . . . , m.
Then extend this to a homomorphism Ψ : FBr(X) → RF. So if B = [B1, B2], ΨB is
a rational function in δ(B) variables satisfying

ΨB(ω1, . . . , ωδ(B)) = ΨB1(ω1, . . . , ωδ(B1))#̃ΨB2(ωδ(B1)+1, . . . , ωδ(B))

=
ΨB1(ω1, . . . , ωδ(B1))ΨB2(ωδ(B1)+1, . . . , ωδ(B))

ω1 + · · ·+ ωδ(B1)
.

Since the map µ : FBr(X) → L(X) is one-to-one restricted to any P. Hall set in
FBr(X), the maps φ, Θ, Ψ are well defined on any P. Hall basis of L(X).

Let B be a fixed P. Hall basis of L(X). Let u = (u1, . . . , um) be an ordinary input.
From the definition of the cB(u) and φB(u) we see that cB(u)(t) = æBφB(u)(t) for
some constant æB . Clearly æXk

= 1. If δ(B) = n > 1, write B into the unique
decomposition of adκ

B1
(B2), where B1, B2 ∈ B and either δ(B2) = 1 or the left factor

of B2 is not equal to B1. We see that æB = 1
κ!æ

κ
B1

æB2 .
For any B ∈ B, we define a rational function ĝB , depending on δ(B) variables, by

ĝB(ω1, . . . , ωδ(B)) = æBΨB(ω1, . . . , ωδ(B)).(17)

It is clear that ĝXk
(ω) = 1. Let B ∈ Bn, n > 1. Write the unique decomposition

B = adκ
B1

(B2), where B1, B2 ∈ B and either δ(B2) = 1 or the left factor of B2 is not
equal to B1. Let n1, n2 be the degrees of B1, B2, so that κn1 +n2 = n. Then formula
(17) implies

ĝB(ω1, . . . , ωn)

=
1
κ!

κ∏
q=1

(
ĝB1(ω(q−1)n1+1, ω(q−1)n1+2, . . . , ωqn1)
ω(q−1)n1+1 + ω(q−1)n1+2 + . . . + ωqn1

)
ĝB2(ωκn1+1, ωκn1+2, . . . , ωn).

(18)
Our purpose is to define gB in terms of ĝB . It is clear that in order to get gB

from ĝB , we need to take a symmetrization procedure. To each B ∈ B, associate the
sequence ΣB of indeterminates obtained by just deleting all the brackets and commas,
so that, for instance, if B = [X1, [X1, X2]], we associate the sequence ΣB = X1X1X2.
We then define a map θB : {1, . . . , δ(B)} → {1, . . . , m} by letting θB(s) = k if the
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indeterminate in the sth place of ΣB is Xk. Next let PB be the set of all permutations
of the set {1, 2, . . . , δ(B)} that map the set {s : θB(s) = k} for each k ∈ {1, . . . , m}
to the interval IB,k = {δ1(B) + · · ·+ δk−1(B) + 1, . . . , δ1(B) + · · ·+ δk(B)}. We then
define gB(ω1, . . . , ωδ(B)) by

gB(ω1, . . . , ωδ(B)) =
∑

π∈PB

ĝB(ωπ(1), . . . , ωπ(δ(B))).(19)

Next we prove that the functions gB thus defined from the symmetrization of
the ĝB are the same as those defined to be the limits of the Chen–Fliess product
coefficients CB(uj) of some sequences {uj} defined in section 4.2. First we need an
auxiliary result. Let ω̂ = (ω1, . . . , ωn) be an ntuple of real numbers. Then we say
that ω̂ is essentially noncanceling (ENC) if

∑
`∈Ω ω` 6= 0 for any proper subset Ω

of {1, . . . , n}. (Note that in the definition of ENC, the entries ωk of (ω1, . . . , ωn)
are allowed to be equal.) Clearly if Ω = {ω1, . . . , ωn} is MC, then for any ω̃i ∈ Ω,
(ω̃1, . . . , ω̃n) ∈ Ω× · · · × Ω is ENC.

LEMMA 4.2. Let B ∈ B be a bracket of degree n. Let ω̂ = (ω1, . . . , ωn) be ENC.
Let {U j = (U j

1 , . . . , U j
n)} be a sequence of Rn-valued functions on [0, T ] defined by

U j
k(t) = j

n−1
n

∫ t

0 eijωks ds, k = 1, . . . , n. Then for j = 1, 2, . . . , and t ∈ [0, T ], we have

in−1ΘB(U j
1 , . . . , U j

n)(t) =
∫ t

0
ΨB(ω1, . . . , ωn)eij(ω1+···+ωn)s ds + Rj

B(t),(20)

where the Rj
B are finite linear combinations of integrals of the form

∫ t

0 hξe
ij
∑

`∈Ω(ξ) ω`s ds,
where hξ are some constants and Ω(ξ) are some proper subsets of {1, 2, . . . , n}.

Proof. We use induction on n to prove the lemma. Obviously (20) is true if
B = Xk. Assume that (20) is true for all B ∈ B of degree ≤ n − 1. Let B ∈ Bn,
n > 1. Write B = [B1, B2] with B1, B2 ∈ B, B1 � B2. Assume that δ(B1) =
n1, δ(B2) = n2, so n1 + n2 = n. Let (ω1, . . . , ωn) be ENC. Then both (ω1, . . . , ωn1)

and (ωn1+1, . . . , ωn) are ENC. Let Ū j
k(t) = j

n1−1
n1

∫ t

0 eijωksds for k = 1, . . . , n1, Ū j
k(t) =

j
n2−1

n2
∫ t

0 eijωksds for k = n1 + 1, . . . , n. So U j
k(t) = j

n−1
n −

n1−1
n1 Ū j

k(t) for k = 1, . . . , n1,

U j
k(t) = j

n−1
n −

n2−1
n2 Ū j

k(t) for k = n1 + 1, . . . , n. By induction we know that

in1−1ΘB1(Ū
j
1 , . . . , Ū j

n1
)(t) =

∫ t

0
ΨB1(ω1, . . . , ωn1)e

ij(ω1+···+ωn1 )s ds + Rj
B1

(t),

in2−1ΘB2(Ū
j
n1+1, . . . , Ū

j
n)(t) =

∫ t

0
ΨB2(ωn1+1, . . . , ωn)eij(ωn1+1+···+ωn)s ds + Rj

B2
(t),

with Rj
B1

, Rj
B2

satisfying the induction assumptions. We have

in−1ΘB(U j
1 , . . . , U j

n)(t) = ij((in1−1ΘB1(Ū
j
1 , . . . , Ū j

n1
))∗(in2−1ΘB2(Ū

j
n1+1, . . . , Ū

j
n)))(t)

= ij

∫ t

0

{(∫ s

0
ΨB1(ω1, . . . , ωn1)e

ij(ω1+···+ωn1 )τ dτ + Rj
B1

(s)
)

× ΨB2(ωn1+1, . . . , ωn)eij(ωn1+1+···+ωn)s + Ṙj
B2

(s)
}

ds

=
∫ t

0
ΨB(ω1, . . . , ωn)eij(ω1+···+ωn)s ds + Rj

B(t),
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where

Rj
B(t) = ij

∫ t

0

{
Rj

B1
(s)ΨB2(ωn1+1, . . . , ωn)eij(ωn1+1+···+ωn)s

+ Ṙj
B2

(s)
∫ s

0
ΨB1(ω1, . . . , ωn1)e

ij(ω1+···+ωn1 )τ dτ + Rj
B1

(s)Ṙj
B2

(s)
}

ds

−
∫ t

0

ΨB1(ω1, . . . , ωn1)ΨB2(ωn1+1, . . . , ωn)eij(ωn1+1+···+ωn)s

ω1 + · · ·+ ωn1

ds.

It is clear that Rj
B satisfies the induction assumption. This finishes the proof of the

lemma.
Now we are ready to show that the two definitions of the gB give rise to the same

functions. Let B ∈ Bn with ΣB = X`1 · · ·X`n . Let u ∈ L1([0, T ], Rm) be a function
and U(t) =

∫ t

0 u(s)ds. Using induction, we can easily show that
∫ t

0 φB(u)(s)ds =
ΘB(U`1 , . . . , U`n

)(t). Let {ω1, . . . , ωn} be MC. Recall that gB(ω1, . . . , ωn) is the limit
of in−1

t CB(uj)(t) = in−1æB

t

∫ t

0 φB(uj)(s)ds, where the uj are defined by

uj
k(t) = j

n−1
n

δ1(B)+···+δk(B)∑
`=δ1(B)+···+δk−1(B)+1

eijω`t.(21)

Let U j(t) =
∫ t

0 uj(s)ds. We have

in−1æB

t

∫ t

0
φB(uj)(s)ds =

in−1æB

t
ΘB(U j

`1
, . . . , U j

`n
)(t)

=
in−1æB

t

∑
π∈QB

ΘB(Ū j
π(1), . . . , Ū

j
π(n))(t),

where (1) QB = IB,`1 ×IB,`2 × · · · × IB,`n
, π = (π(1), . . . , π(n)) ∈ QB ; (2) Ū j

π(l)(t) =

j
n−1

n

∫ t

0 eijωπ(l)sds. Clearly PB ⊂ QB . Now from the requirement that {ω1, . . . , ωn}
be MC, using Lemma 4.2 and the definition of ĝB , we have

in−1æBΘB(Ū j
π(1), . . . , Ū

j
π(n))(t) =

∫ t

0
ĝB(ωπ(1), . . . , ωπ(n))eij(ωπ(1)+···+ωπ(n))s ds

+ æBRj
B(t),

where the Rj
B converge to 0 as j → ∞. So if ωπ(1) + · · · + ωπ(n) 6= 0, then

ΘB(Ū j
π(1), . . . , Ū

j
π(n))(t)→ 0. By the minimally canceling property of the {ω1, . . . , ωn},

ωπ(1) + · · ·+ ωπ(n) = 0 iff π is a permutation of (1, . . . , n), i.e., π ∈ PB . In that case
we get

lim
j→∞

in−1æBΘB(Ū j
π(1), . . . , Ū

j
π(n))(t) = ĝB(ωπ(1), . . . , ωπ(n))t.

So we conclude that

lim
j→∞

in−1æB

t
ΦB(U j)(t) = lim

j→∞
in−1æB

t
ΘB(U j

`1
, . . . , U j

`m
)(t)

=
∑

π∈PB

ĝB(ωπ(1), . . . , ωπ(n)).
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This shows that the functions gB defined to be the limits of the Chen–Fliess product
coefficients of some control sequences {uj} in (21) coincide with the functions obtained
from the symmetrization of the ĝB on the set {(ω1, . . . , ωn) | {ω1, . . . , ωn} is MC}. So
they coincide as rational functions.

5. Approximate tracking: The general case. We now describe the algo-
rithm of approximating an arbitrary rth-order extended input by ordinary inputs.
We will limit ourselves to the presentation of the algorithm in this section. The proof
that it actually works will be given in the next two sections.

Let’s fix a choice of P. Hall basis (B,�) of L(X) for which PH4 holds. We
express our extended input v as a sum v(t) =

∑r
n=1

∑
B∈Bn

vB(t)B, where the vB

are functions of class C1 on [0, T ].
We take our approximating sequence to be of the form

uj
k(t) = ηk,0(t) + j

1
2

∑
ω∈Ω(2,k)

ηω,k(t)eijωt +
r∑

n=3

j
n−1

n

∑
ω∈Ω(n,k)

ηω(t)eijωt.(22)

Here
(1) the Ω(n, k) for (n, k) ∈ {2, . . . , r} × {1, . . . , m} are pairwise disjoint finite

subsets of R− {0}.
(2) each Ω(n, k) is symmetric; i.e., ω ∈ Ω(n, k) implies −ω ∈ Ω(n, k).
(3) the ηk,0, ηω,k, ηω are complex-valued functions of class C1 on [0, T ].
(4) the ηk,0 are in fact real valued.
(5) the identity η−ω = ηω holds for each ω ∈ ∪r

n=3∪m
k=1 Ω(n, k), and the functions

ηω,k satisfy η−ω,k = ηω,k for ω ∈ Ω(2, k).
(Here z̄ denotes the complex conjugate of z.) Notice that the various terms of (22)
are in principle complex, but conditions (4) and (5) imply that the uj

k are real.
We now describe in detail how the sets Ω(n, k) are chosen. Let us call F sym-

metrically minimally canceling (SMC) if it is symmetric (i.e., ω ∈ F implies −ω ∈ F )
and contains an MC subset of cardinality 1

2 |F |. (In that case, it is easy to see that F
has exactly two such subsets F1, F2, and these subsets are disjoint and satisfy ω ∈ F1
iff −ω ∈ F2.)

At this point we have to take care of an additional technical issue. The “nonlin-
ear superposition principle” that was referred to in section 4 only makes it possible
to separate brackets in B ∈ B as long as not all their degrees δk(B) are equal. (So,
for instance, the brackets [X2, [X1, [X1, [X1, X2]]]] and [[X1, X2], [X1, [X1, X2]]], both
of which are in B, cannot be separated.) This requires that we group brackets in
B into classes, separate the classes rather than the individual brackets, and han-
dle the problem of fitting the coefficients of the individual brackets by a different
procedure.

Divide each Bn into equivalence classes by declaring two members B1, B2 of Bn

to be equivalent if δk(B1) = δk(B2) for k = 1, . . . , m. Let En be the set of equivalence
classes of Bn. For each E ∈ En, we can define δk(E), δ(E) to be δk(B), δ(B) for any
B ∈ E. Clearly the cardinality |E| of E is equal to the multiplicity of the brackets
B ∈ E.

For n ≥ 2, E ∈ En, k ∈ {1, . . . , m}, choose |E| sets ΩE,ρ,k, ρ = 1, . . . , |E| of
R− {0} such that

(6) each ΩE,ρ,k, for E ∈ ∪r
n=2En, ρ ∈ {1, . . . , |E|}, k ∈ {1, . . . , m}, is a symmetric

subset of R− {0} of cardinality |ΩE,ρ,k| = 2δk(E).
About the sets ΩE,ρ,k for n ≥ 3, assume
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(7) for each E ∈ ∪r
n=3En, ρ ∈ {1, . . . , |E|}, the sets ΩE,ρ,k, k ∈ {1, . . . , m}, are

pairwise disjoint.
For n = 2 we make a different assumption. We first observe that every E ∈ E2
consists of exactly one bracket which is of the form [Xk1 , Xk2 ] with k1 < k2. (And,
conversely, every such bracket gives rise to an E ∈ E2.) We take ΩE,ρ,k1 = ΩE,ρ,k2

and let ΩE,ρ,k = ∅ if k /∈ {k1, k2}. So
(8) for each E ∈ E2, E = [Xk1 , Xk2 ], we have ΩE,1,k1 = ΩE,1,k2 .

We then let ΩE,ρ =
⋃m

k=1 ΩE,ρ,k, so that |ΩE,ρ| = 2δ(E) if δ(E) > 2, and |ΩE,ρ| = 2
if δ(E) = 2. We assume

(9) each ΩE,ρ, for E ∈ ∪r
n=3En, ρ ∈ {1, . . . , |E|}, is SMC.

Next define Ω(n, k) by Ω(n, k) =
⋃

E∈En

⋃|E|
ρ=1 ΩE,ρ,k. Since the sets ΩE,ρ are SMC,

each ΩE,ρ has exactly two MC subsets, and these subsets are disjoint and have cardi-
nality 1

2 |ΩE,ρ|. Let QE,ρ be the set whose two elements are these two MC subsets of
ΩE,ρ.

There are two further conditions that have to be imposed on the sets ΩE,ρ. Let us
call a finite collection {Sλ}λ∈Λ of finite subsets of R independent with respect to r if
the sets Sλ are pairwise disjoint and, whenever a linear combination

∑
λ∈Λ

∑
s∈Sλ

ass
vanishes, and the as are integers such that

∑
λ∈Λ

∑
s∈Sλ

|as| ≤ r, it follows that
each of the sums

∑
s∈Sλ

ass vanishes. (In other words, there should not be any
integral relations among the members of ∪λSλ other than those that come from the
Sλ themselves.)

We then require
(10) that the ΩE,ρ, as (E, ρ) ranges over all pairs such that E ∈ ∪r

n=2En, ρ ∈
{1, . . . , |E|}, are independent with respect to r.

In the special case when δ(E) = 2, each E is of the form {[Xk1 , Xk2 ]}, where
k1 < k2. In that case, the set ΩE,1 = ΩE,1,k1 = ΩE,1,k2 consists of a frequency
ωk1,k2 > 0 together with its negative.

We then have the following.
THEOREM 5.1. Let m, r be positive integers. Let {uj}∞j=1 be the sequence of input

functions defined by (22), where the functions η0,k, ηω,k, ηω and the sets Ω(n, k),
ΩE,ρ, ΩE,ρ,k satisfy conditions (1)–(10). Then the sequence {uj} EI(r)-converges to
the extended input

u∞(t) =
m∑

k=1

η0,k(t)Xk +
∑

1≤k1<k2≤m

1
iωk1,k2

ξk1,k2(t)[Xk1 , Xk2 ]

+
r∑

n=3

∑
E∈En

∑
B∈E

|E|∑
ρ=1

 ∑
F∈QE,ρ

i1−δ(E)ξF
B,ρ

∏
ω∈F

ηω(t)

B,(23)

where ξk1,k2(t) = ηωk1,k2 ,k1η−ωk1,k2 ,k2 − η−ωk1,k2 ,k1ηωk1,k2 ,k2 .
It is now easy to see how to choose the ηω so that the limiting extended input

u∞ has a desired value. Fix an E and a ρ.
CH1. Assume first that δ(E) is odd and δ(E) > 1. Then the numbers ξF

B,ρ for the
two members of QE,ρ are equal. Call their common value ξB,ρ. Also, i1−δ(E) = ±1.
Let ξ̂B,ρ = ξB,ρ. Pick all the ηω for ω ∈ ΩE,ρ to be equal to 1, except for one
pair {ω,−ω} of members of ΩE,ρ, for which we pick ηω = η−ω = i1−δ(E)

2 ζE,ρ, where
ζE,ρ ∈ C1([0, T ], R).

CH2. Assume that δ(E) is even and δ(E) > 2. Then the numbers ξF
B,ρ, for the

two members of QE,ρ, are negatives of each other. Pick one of the two members of
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QE,ρ and call it FE,ρ. Also, i1−δ(E) = ±i. Let ξ̂B,ρ = ξ
FE,ρ

B,ρ . Pick all the ηω for
ω ∈ ΩE,ρ to be equal to 1, except for one pair {ω,−ω} of members of ΩE,ρ such
that ω ∈ FE,ρ. Then pick ηω = − i1−δ(E)

2 ζE,ρ, where ζE,ρ ∈ C1([0, T ], R), and let
η−ω = −ηω = ηω.

CH3. Assume that δ(E) = 2. Let E = {[Xk1 , Xk2 ]}, k1 < k2. We pick
ηωk1,k2 ,k2 = η−ωk1,k2 ,k2 = 1, and ηωk1,k2 ,k1 = −η−ωk1,k2 ,k1 = iωk1,k2

2 ζk1,k2 , where
ζk1,k2 ∈ C1([0, T ], R). If k1 6= k 6= k2, we let ηωk1,k2 ,k = η−ωk1,k2 ,k = 0.

CH4. Choose ηk,0 = ζ0,k ∈ C1([0, T ], R).
With these choices, we have

u∞(t) =
m∑

k=1

ζk,0(t)Xk+
∑

1≤k1<k2≤m

ζk1,k2(t)[Xk1 , Xk2 ]+
r∑

n=3

∑
E∈En

∑
B∈E

|E|∑
ρ=1

(ξ̂B,ρζE,ρ(t))B.

(24)
In order to get u∞ to be equal to v, we need to choose

ζ0,k = vXk
, ζk1,k2 = v[Xk1 ,Xk2 ](25)

and to let the ζE,ρ be solutions of

|E|∑
ρ=1

ξ̂B,ρζE,ρ(t) = vB(t) for each E ∈ En, n > 2.(26)

The possibility of solving (26) is guaranteed if the frequency sets ΩE,ρ,k are chosen so
that

(11) the square matrix {ξ̂B,ρ}B∈E, 1≤ρ≤|E| is invertible for each E ∈ ∪r
n=3En. It

turns out that
(A) it is always possible to choose frequencies so that conditions (1), (2), (6), (7),

(8), (9), (10), (11) hold;
(B) if the frequencies are chosen so that conditions (1), (2), (6), (7), (8), (9),

(10), (11) hold, and if the η’s are chosen according to CH1, CH2, CH3, CH4 (so
that, in particular, (3), (4), (5) hold), where the ζ’s satisfy (25) and (26), then the uj

EI(r)-converge to v.
This completes the description of the algorithm. Its justification requires, of

course, that we prove Theorem 5.1 and statement A. The proofs are given in the next
two sections.

6. Proof of Theorem 5.1. Now we prove Theorem 5.1. In order to justify the
algorithm we still need to prove that it is always possible to choose the frequency sets
so that condition (11) holds in addition to the other requirements. This will be done
in the next section.

Proof of Theorem 5.1. We will apply Theorem 2.1. For this we need to find
a sequence {vj =

∑
0<|I|≤r vj

IXI} of polynomial inputs of order ≤ r and rth-order

truncated generalized differences (uj
g.d.(r)
− vj) =

∑
0<|I|≤r ŨV

j

IXI of uj and vj such

that {vj}, u∞, and {(uj
g.d.(r)
− vj)} satisfy the conditions of Theorem 2.1.

We define absolutely continuous functions V j
I and ŨV

j

I for 0 < |I| ≤ r such that
(12) and (13) hold and conditions c1′(r), c2′(r), c3′(r) are satisfied; cf. Remark 2.4.

For this, we use induction to define V j
I and ŨV

j

I such that
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(A) the V j
I have the form V j

I = VI + Rj
I , where

(i)

V`(t) =
∫ t

0
η`,0(s) ds,(27)

V`1,`2(t) = −
∑

(ω1,ω2)∈Ω(2,`1)×Ω(2,`2)

ω1+ω2=0

∫ t

0

ηω1,`1(s)ηω2,`2(s)
iω2

ds,(28)

VI(t) = (−1)k−1
∑

ω̂∈Ω(I)

∫ t

0

ηω̂(s)
ik−1ωk(ωk + ωk−1) · · · (ωk + · · ·+ ω2)

ds(29)

for I = (`1, . . . , `k), 3 ≤ k ≤ r, where ω̂ = (ω1, . . . , ωk), ηω̂(t) = ηω1(t) · · · ηωk
(t), and

Ω(I) is the subset of Ω(k, `1) × · · · × Ω(k, `k) such that ω̂ = (ω1, . . . , ωk) belongs to
Ω(I) iff the set {ω1, . . . , ωk} ∈ QE,ρ for some E ∈ Ek, ρ ∈ {1, . . . , |E|};

(ii) the Rj
I converge to 0 uniformly as j → ∞ and the ‖Ṙj

I‖L1 are uniformly
bounded;

(B) for I = (`1, . . . , `k), the ŨV
j

I can be written as

ŨV
j

I(t) = (−1)k
∑

n̂∈Ω1(k)

j−αn̂

∑
ω̂∈Ω(n̂,I)

ηω̂(t)eij
∑

ω̂t

ikωk(ωk + ωk−1) · · · (ωk + · · ·+ ω1)

+(−1)k
∑

n̂∈Ω2(k)

j−αn̂

∑
ω̂∈Ω(n̂,I)

ηω̂(t)eij
∑

ω̂t

ikωk(ωk + ωk−1) · · · (ωk + · · ·+ ω1)
.(30)

Here
(1) we write n̂ = (n1, . . . , nk), αn̂ = 1

n1
+ · · ·+ 1

nk
,
∑

ω̂ = ω1 + · · ·+ ωk;
(2) Ω1(k) is a subset of

k︷ ︸︸ ︷
{2, . . . , r} × {2, . . . , r} × · · · × {2, . . . , r}

and Ω2(k) is a subset of

k︷ ︸︸ ︷
{3, . . . , r} × {3, . . . , r} × · · · × {3, . . . , r}

such that
(a) n̂ = (n1, . . . , nk) ∈ Ω2(k) iff αn̂ < 1;
(b) n̂ = (n1, . . . , nk) ∈ Ω1(k) iff one of n1, . . . , nk, say nτ , is equal to 2 and the

others are between 3 and r; or αn̂ < 1;
(3) for each n̂ = (n1, . . . , nk), Ω(n̂, I) is a subset of Ω(n1, `1)×· · ·×Ω(nk, `k) such

that ω̂ = (ω1, . . . , ωk) ∈ Ω(n̂, I) iff ωk(ωk + ωk−1) · · · (ωk + · · ·+ ω1) 6= 0;
(4) if n̂ ∈ Ω2(k), for each ω̂ = (ω1, . . . , ωk) ∈ Ω(n̂, I) we write ηω̂(t) = ηω1(t) · · · ηωk

(t).
If n̂ = (n1, . . . , nk) ∈ Ω1(k) with nτ = 2, for each ω̂ = (ω1, . . . , ωk) ∈ Ω(n̂, I), we write
ηω̂(t) = ηω1(t) · · · ηωτ ,`τ

(t) · · · ηωk
(t).
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Using integration by parts we get

U j
` (t) =

∫ t

0
η`,0(s) ds + j

1
2

∑
ω∈Ω(2,`)

∫ t

0
ηω,`(s)eijωs ds

+
∫ t

0

r∑
n=3

j
n−1

n

∑
ω∈Ω(n,`)

ηω(s)eijωs ds

=
∫ t

0
η`,0(s) ds + j−

1
2

∑
ω∈Ω(2,`)

{
ηω,`(t)eijωt

iω
− ηω,`(0)

iω
−
∫ t

0

η′ω,`(s)e
ijωs

iω
ds

}

+
r∑

n=3

j−
1
n

∑
ω∈Ω(n,`)

{
ηω(t)eijωt

iω
− ηω(0)

iω
−
∫ t

0

η′ω(s)eijωs

iω
ds

}
.

We then let

V`(t) =
∫ t

0
η`,0(s) ds,

Rj
`(t) = −j−

1
2

∑
ω∈Ω(2,`)

{
ηω,`(0)

iω
+
∫ t

0

η′ω,`(s)
iω

eijωs ds

}

−
r∑

n=3

j−
1
n

∑
ω∈Ω(n,`)

{
ηω(0)

iω
+
∫ t

0

η′ω(s)
iω

eijωs ds

}
,

V j
` (t) = V`(t) + Rj

`(t)

and define

ŨV
j

`(t) = V j
` (t)− U j

` (t) = −j−
1
2

∑
ω∈Ω(2,`)

ηω,`(t)
iω

eijωt −
r∑

n=3

j−
1
n

∑
ω∈Ω(n,`)

ηω(t)
iω

eijωt.

Now in order to show the idea of how the general V j
I and ŨV

j

I are defined, let us

proceed one more step and write down V j
`1,`2

and ŨV
j

`1,`2 explicitly. If we multiply

ŨV
j

`2(t) by uj
`1

(t) and integrate we get∫ t

0
uj

`1
(s)ŨV

j

`2(s) ds = Aj
`1,`2

+ Bj
`1,`2

+ Cj
`1,`2

,

where

Aj
`1,`2

= −j−
1
2

∑
ω∈Ω(2,`2)

∫ t

0

η`1,0(s)ηω,`2(s)
iω

eijωs ds

−
r∑

n=3

j−
1
n

∑
ω∈Ω(n,`2)

∫ t

0

η`1,0(s)ηω(s)
iω

eijωs ds,

Bj
`1,`2

= −
∑

(ω1,ω2)∈Ω(2,`1)×Ω(2,`2)

∫ t

0

ηω1,`1(s)ηω2,`2(s)
iω2

eij(ω1+ω2)s ds,

Cj
`1,`2

= −
r∑

n=3

j
1
2− 1

n

∑
(ω1,ω2)∈Ω(2,`1)×Ω(n,`2)

∫ t

0

ηω1,`1(s)ηω2(s)
iω2

eij(ω1+ω2)s ds
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−
r∑

n=3

j
1
2− 1

n

∑
(ω1,ω2)∈Ω(n,`1)×Ω(2,`2)

∫ t

0

ηω1(s)ηω2,`2(s)
iω2

eij(ω1+ω2)s ds

−
r∑

n1,n2=3

j1− 1
n1
− 1

n2

∑
(ω1,ω2)∈Ω(n1,`1)×Ω(n2,`2)

∫ t

0

ηω1(s)ηω2(s)
iω2

eij(ω1+ω2)s ds.

Clearly, the Aj
`1,`2

converge to 0 uniformly and have uniformly bounded derivatives
in j. In Bj

`1,`2
, the terms with ω1 + ω2 6= 0 go to 0 uniformly and have uniformly

bounded derivatives. These terms will be moved to Rj
`1,`2

. The terms in Bj
`1,`2

that
correspond to ω1 + ω2 = 0 give rise to V`1,`2 . Precisely, we let

V`1,`2(t) = −
∑

(ω1,ω2)∈Ω(2,`1)×Ω(2,`2)

ω1+ω2=0

∫ t

0

ηω1,`1(s)ηω2,`2(s)
iω2

ds.

In Cj
`1,`2

for those terms with ω1 + ω2 6= 0, we can use integration by parts to bring
a factor j−1. We then move the terms coming from the integration by parts that
converge to 0 uniformly and have uniformly bounded derivatives in L1 to Rj

`1,`2
. For

example, for the terms

j
1
2− 1

n

∫ t

0

ηω1,`1(s)ηω2(s)
iω2

eij(ω1+ω2)s ds

in the first summation in the right-hand side of Cj
`1,`2

, we know that ω1 + ω2 6= 0.
Via integration by parts we get

j
1
2− 1

n

∫ t

0

ηω1,`1(s)ηω2(s)
iω2

eij(ω1+ω2)s ds = j−
1
2− 1

n
ηω1,`1(t)ηω2(t)
i2ω2(ω1 + ω2)

eij(ω1+ω2)t + Dj
ω1,ω2

,

where

Dj
ω1,ω2

= −j−
1
2− 1

n
ηω1,`1(0)ηω2(0)
i2ω2(ω1 + ω2)

− j−
1
2− 1

n

∫ t

0

(ηω1,`1(s)ηω2(s))
′

i2ω2(ω1 + ω2)
eij(ω1+ω2)s ds.

The Dj
ω1,ω2

go to zero uniformly and have uniformly bounded derivatives. We then
move them to Rj

`1,`2
. Similarly, we can take care of the terms in the second summation

and the terms with ω1+ω2 6= 0 in the third summation in the right-hand side of Cj
`1,`2

.
The terms in Cj

`1,`2
that correspond to ω1 + ω2 = 0 add up to 0. Precisely,

r∑
n1,n2=3

j1− 1
n1
− 1

n2

∑
(ω1,ω2)∈Ω(n1,`1)×Ω(n2,`2)

ω1+ω2=0

∫ t

0

ηω1(s)ηω2(s)
iω2

ds = 0.

This is because, by the symmetry of Ω(n, k), if ηω1η−ω1
iω1

= |ηω1 |2
iω1

is in the summation,

then η−ω1ηω1
−iω1

= − |ηω1 |2
iω1

is also in the summation. So they add up to 0. We then let

Rj
`1,`2

(t) = Aj
`1,`2
−

∑
(ω1,ω2)∈Ω(2,`1)×Ω(2,`2)

ω1+ω2 6=0

∫ t

0

ηω1,`1(s)ηω2,`2(s)
iω2

eij(ω1+ω2)s ds
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+
r∑

n=3

j−
1
2− 1

n

∑
(ω1,ω2)∈Ω(2,`1)×Ω(n,`2)

{
ηω1,`1(0)ηω2(0)
i2ω2(ω2 + ω1)

+
∫ t

0

(ηω1,`1(s)ηω2(s))
′

i2ω2(ω2 + ω1)
eij(ω1+ω2)sds

}

+
r∑

n=3

j−
1
2− 1

n

∑
(ω1,ω2)∈Ω(n,`1)×Ω(2,`2)

{
ηω1(0)ηω2,`2(0)
i2ω2(ω2 + ω1)

+
∫ t

0

(ηω1(s)ηω2,`2(s))
′

i2ω2(ω2 + ω1)
eij(ω1+ω2)sds

}

+
r∑

n1,n2=3

j−
1

n1
− 1

n2

∑
(ω1,ω2)∈Ω(n1,`1)×Ω(n2,`2)

ω1+ω2 6=0

{
ηω1(0)ηω2(0)
i2ω2(ω2 + ω1)

+
∫ t

0

(ηω1(s)ηω2(s))
′

i2ω2(ω2 + ω1)
eij(ω1+ω2)s ds

}
,

V j
`1,`2

(t) = V`1,`2(t) + Rj
`1,`2

(t).

So we define

ŨV
j

`1,`2(t) = V j
`1,`2

(t)−
∫ t

0
uj

`1
(s)ŨV

j

`2(s) ds

=
r∑

n=3

j−
1
2− 1

n

∑
(ω1,ω2)∈Ω(2,`1)×Ω(n,`2)

ηω1,`1(t)ηω2(t)
i2ω2(ω2 + ω1)

eij(ω1+ω2)t

+
r∑

n=3

j−
1
2− 1

n

∑
(ω1,ω2)∈Ω(n,`1)×Ω(2,`2)

ηω1(t)ηω2,`2(t)
i2ω2(ω2 + ω1)

eij(ω1+ω2)t

+
r∑

n1,n2=3

j−
1

n1
− 1

n2

∑
(ω1,ω2)∈Ω(n1,`1)×Ω(n2,`2)

ω1+ω2 6=0

ηω1(t)ηω2(t)
i2ω2(ω2 + ω1)

eij(ω1+ω2)t.

Clearly the ŨV
j

`1,`2(t) are of the form (30).

Assume that we have defined V j
I , ŨV

j

I such that V j
I , ŨV

j

I are as in (29) and (30)
for |I| up to |I| ≤ k − 1, 3 ≤ k ≤ r. Let I = (`1, . . . , `k). For simplicity we introduce
the following notations:

Ī = (`2, . . . , `k),
h(ω̂) = ωk(ωk + ωk−1) · · · (ωk + · · ·+ ω1) if ω̂ = (ω1, . . . , ωk).

Multiplying uj
`1

by ŨV
j

Ī and integrating we get∫ t

0
uj

`1
(s)ŨV

j

Ī(s) ds =
∫ t

0
η`1,0(s)ŨV

j

Ī(s) ds + Aj
I + Bj

I + Cj
I + Dj

I .
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Here

Aj
I = (−1)k−1

∑
n̂∈Ω1(k−1)

j
1
2−αn̂

∑
(ω1,ω̂)∈Ω(2,`1)×Ω(n̂,Ī)

∫ t

0

ηω̂(s)ηω1,`1(s)e
ij(ω1+

∑
ω̂)s

ik−1h(ω̂)
ds,

Bj
I = (−1)k−1

∑
n̂∈Ω2(k−1)

j
1
2−αn̂

∑
(ω1,ω̂)∈Ω(2,`1)×Ω(n̂,Ī)

∫ t

0

ηω̂(s)ηω1,`1(s)e
ij(ω1+

∑
ω̂)s

ik−1h(ω̂)
ds,

Cj
I

= (−1)k−1
r∑

n1=3

∑
n̂∈Ω1(k−1)

j1− 1
n1
−αn̂

∑
(ω1,ω̂)∈Ω(n1,`1)×Ω(n̂,Ī)

∫ t

0

ηω̂(s)ηω1(s)e
ij(ω1+

∑
ω̂)s

ik−1h(ω̂)
ds,

Dj
I

= (−1)k−1
r∑

n1=3

∑
n̂∈Ω2(k−1)

j1− 1
n1
−αn̂

∑
(ω1,ω̂)∈Ω(n1,`1)×Ω(n̂,Ī)

∫ t

0

ηω1(s)ηω̂(s)eij(ω1+
∑

ω̂)s

ik−1h(ω̂)
ds.

Notice that for the terms in Aj
I , we know that 1

2−αn̂ < 0. So the Aj
I converge to 0

and have uniformly bounded derivatives. For all the terms in Bj
I , by the independence

of the sets ΩE,ρ, we know that ω1+
∑

ω̂ 6= 0. So in Bj
I , if 1

2−αn̂ ≤ 0, the corresponding
terms converge to 0 uniformly and have uniformly bounded derivatives already. For
the terms with 1

2 − αn̂ positive, we apply integration by parts to get a j−1. We then
move those terms coming from the integration by parts that converge to 0 and have
uniformly bounded derivatives to Rj

I . This is done in exactly the same way as we take
care of the terms in the first two summations in the right hand of Cj

`1,`2
. The Cj

I are
taken care of in exactly the same way as for Bj

I . Finally we take care of the terms in
Dj

I by the following:
(i) We move all the terms in Dj

I whose j powers are negative or equal 0 but
ω1 + ω̂ 6= 0 to Rj

I .
(ii) For the terms with j powers positive and ω1 + ω̂ 6= 0, we apply integration by

parts and then move all the terms coming from the integration by parts that go to 0
and have uniformly bounded derivatives to Rj

I .
This takes care of the terms in Dj

I with ω1 +
∑

ω̂ 6= 0 and those with j powers
negative. For the terms in Dj

I with ω1 +
∑

ω̂ = 0 and j powers ≥ 0, there are two
possibilities:

(iii) ω1 +
∑

ω̂ = 0 and the j powers 1 − 1
n1
− αn̂ = 0. These terms give rise to

the VI ; i.e., we let

VI(t) = (−1)k−1
r∑

n1=3

∑
n̂∈Ω2(k−1)

∑
(ω1,ω̂)∈Ω(n1,`1)×Ω(n̂,Ī)

ω1+
∑

ω̂=0

1− 1
n1
−αn̂ = 0

∫ t

0

ηω1(s)ηω̂(s)
ik−1h(ω̂)

ds ;

(iv) ω1 +
∑

ω̂ = 0 and the j powers 1− 1
n1
− αn̂ > 0.

In order to take care of the terms in (iv), we first notice the following fact. Let
(ω1, . . . , ωk) be a k tuple of numbers with {ω1, . . . , ωk} ⊂ ∪m

`=1 ∪r
n=2 Ω(n, `). Because

of the linear independence of the ΩE,ρ and the minimal cancelation requirement of
each F ∈ QE,ρ, ω1 + · · ·+ ωk = 0 is possible only in the following cases:
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(a) k is even and each ω` is canceled out by its negative −ω`. This case will be
referred to as pure cancelation by pairs;

(b) ω1 + · · ·+ ωk = 0 because the set {ω1, . . . , ωk} is equal to some F ∈ QE,ρ for
some E and ρ. (Note that each F ∈ QE,ρ is canceling.) This case will be referred to
as pure cancelation by F ;

(c) mixed cancelation; i.e., some of the ω` are canceled out by −ω`, some others
are canceled out because the set of them is equal to some F ∈ QE,ρ.
Let D̄j

I denote the sum of the terms in Dj
I for which (iv) happens; i.e., let

D̄j
I = (−1)k−1

r∑
n1=3

∑
n̂∈Ω2(k−1)

j1− 1
n1
−αn̂

∑
(ω1,ω̂)∈Ω(n1,`1)×Ω(n̂,Ī)

ω1+
∑

ω̂=0

1− 1
n1
−αn̂>0

∫ t

0

ηω1(s)ηω̂(s)
ik−1h(ω̂)

ds.

Now the two conditions 1− 1
n1
−αn̂ > 0, ω1+

∑
ω̂ = 0 imply that the (ω1, ω̂) is canceled

out purely by pairs. (Notice that if the (ω1, ω̂) ∈ Ω(n1, `1)×Ω(n̂, Ī) is canceled by an
F ∈ QE,ρ, then 1− 1

n1
− αn̂ ≤ 0. Similarly, since we require that the αn̂ be less than

1, the mixed cancelations cannot occur too.) In particular |I| = k has to be even. But
now, by the symmetry of the Ω(n̂, Ī) and Ω(n1, `1), we know that if

∫ t

0
ηω1 (s)ηω̂(s)

ik−1h(ω̂) ds

is in D̄j
I , then, since η−ω1η−ω̂ = ηω1ηω̂, h(−ω̂) = (−1)k−1h(ω̂) = −h(ω̂), the integral∫ t

0

η−ω1η−ω̂(s)
ik−1h(−ω̂)

ds = −
∫ t

0

ηω1(s)ηω̂(s)
ik−1h(ω̂)

ds

is also in D̄j
I . So they add up to 0; i.e. the contribution of each term and that of its

negative cancel. So we get that D̄j
I = 0. Summarizing the above we define

Rj
I(t) =

∫ t

0
η`1,0(s)ŨV

j

Ī(s) ds + Aj
I

+(−1)k−1
∑

n̂∈Ω2(k−1)

j
1
2−αn̂

∑
(ω1,ω̂)∈Ω(2,`1)×Ω(n̂,Ī)

1
2−αn̂≤0

∫ t

0

ηω1,`1(s)ηω̂(s)eij(ω1+
∑

ω̂)s

ik−1h(ω̂)
ds

+(−1)k
∑

n̂∈Ω2(k−1)

j−
1
2−αn̂

∑
(ω1,ω̂)∈Ω(2,`1)×Ω(n̂,Ī)

1
2−αn̂>0

{
ηω1,`1(0)ηω̂(0)

ik(ω1 +
∑

ω̂)h(ω̂)

+
∫ t

0

(ηω1,`1(s)ηω̂(s))′eij(ω1+
∑

ω̂)s

ik(ω1 +
∑

ω̂)h(ω̂)
ds

}

+(−1)k−1
r∑

n1=3

∑
n̂∈Ω1(k−1)

j
n1−1

n1
−αn̂

∑
(ω1,ω̂)∈Ω(n1,`1)×Ω(n̂,Ī)

1− 1
n1
−αn̂≤0

∫ t

0

ηω1(s)ηω̂(s)eij(ω1+
∑

ω̂)s

ik−1h(ω̂)
ds
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+(−1)k
r∑

n1=3

∑
n̂∈Ω1(k−1)

j−
1

n1
−αn̂

∑
(ω1,ω̂)∈Ω(n1,`1)×Ω(n̂,Ī)

1− 1
n1
−αn̂>0

{
ηω1(0)ηω̂(0)

ik(ω1 +
∑

ω̂)h(ω̂)

+
∫ t

0

(ηω1(s)ηω̂(s))′eij(ω1+
∑

ω̂)s

ik(ω1 +
∑

ω̂)h(ω̂)
ds

}

+(−1)k
r∑

n1=3

∑
n̂∈Ω2(k−1)

j−
1

n1
−αn̂

∑
(ω1,ω̂)∈Ω(n1,`1)×Ω(n̂,Ī)

ω1+
∑

ω̂ 6=0

1− 1
n1
−αn̂>0

{
ηω1(0)ηω̂(0)

ik(ω1 +
∑

ω̂)h(ω̂)

+
∫ t

0

(ηω1(s)ηω̂(s))′eij(ω1+
∑

ω̂)s

ik(ω1 +
∑

ω̂)h(ω̂)
ds

}

+(−1)k−1
r∑

n1=3

∑
n̂∈Ω2(k−1)

∑
(ω1,ω̂)∈Ω(n1,`1)×Ω(n̂,Ī)

ω1+
∑

ω̂ 6=0

1− 1
n1
−αn̂=0

∫ t

0

ηω1(s)ηω̂(s)eij(ω1+
∑

ω̂)s

ik−1h(ω̂)
ds

+(−1)k−1
r∑

n1=3

∑
n̂∈Ω2(k−1)

j1− 1
n1
−αn̂

∑
(ω1,ω̂)∈Ω(n1,`1)×Ω(n̂,Ī)

1− 1
n1
−αn̂<0

∫ t

0

ηω1(s)ηω̂(s)eij(ω1+
∑

ω̂)s

ik−1h(ω̂)
ds.

We then define V j
I = VI + Rj

I . So we have

ŨV
j

I(t) = V j
I (t)−

∫ t

0
uj

`1
(s)ŨV

j

Ī(s) ds

= (−1)k
∑

n̂∈Ω2(k−1)

j−
1
2−αn̂

∑
(ω1,ω̂)∈Ω(2,`1)×Ω(n̂,Ī)

1
2−αn̂>0

ηω1,`1(t)ηω̂(t)eij(ω1+
∑

ω̂)t

ik(ω1 +
∑

ω̂)h(ω̂)

+(−1)k
r∑

n1=3

∑
n̂∈Ω1(k−1)

j−
1

n1
−αn̂

∑
(ω1,ω̂)∈Ω(n1,`1)×Ω(n̂,Ī)

1− 1
n1
−αn̂>0

ηω1(t)ηω̂(t)eij(ω1+
∑

ω̂)t

ik(ω1 +
∑

ω̂)h(ω̂)

+(−1)k
r∑

n1=3

∑
n̂∈Ω2(k−1)

j−
1

n1
−αn̂

∑
(ω1,ω̂)∈Ω(n1,`1)×Ω(n̂,Ī)

1− 1
n1
−αn̂>0

ω1+
∑

ω̂ 6=0

ηω1(t)ηω̂(t)eij(ω1+
∑

ω̂)t

ik(ω1 +
∑

ω̂)h(ω̂)
.
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The ŨV
j

I are clearly of the form (30).
To finish the inductive step, we have to show that the VI defined above have the

form (29). Since

VI(t) = (−1)k−1
r∑

n1=3

∑
n̂∈Ω2(k−1)

∑
(ω1,ω̂)∈Ω(n1,`1)×Ω(n̂,Ī)

ω1+
∑

ω̂=0

1− 1
n1
−αn̂ = 0

∫ t

0

ηω1(s)ηω̂(s)
ik−1h(ω̂)

ds,

for exactly the same reason as above, the two equalities 1− 1
n1
−αn̂ = 0, ω1 +

∑
ω̂ = 0

imply that each (ω1, ω̂) is canceled out either purely by pairs or purely by some F .
The mixed cancelation cannot happen. If the (ω1, ω̂) in the summation is canceled
out purely by pairs, then k must be even and (−ω1,−ω̂) is also in the summation, so
they add up to zero. So only those terms whose frequencies are canceled out purely
by F will contribute to VI . Moreover, if the frequencies are canceled purely by an
F ∈ QE,ρ, then δ(E) must be equal to |I| = k. Precisely for I = (`1, . . . , `k), VI is
given by

VI = (−1)k−1
∑

E∈Ek

|E|∑
ρ=1

∑
F∈QE,ρ

∑
ω̂∈Ω(F,I)

∫ t

0

ηω̂(s)
ik−1ωk(ωk + ωk−1) · · · (ωk + · · ·+ ω2)

ds,

(31)
where Ω(F, I) is a subset of Ω(k, `1) × · · · × Ω(k, `k) such that ω̂ = (ω1, . . . , ωk) ∈
Ω(F, I) iff as a set {ω1, . . . , ωk} = F , so, VI can be written in form (29) for 3 ≤ |I| ≤ r.

This finishes the recursive definition of V j
I and ŨV

j

I .
Clearly (A) and (B) imply that the uj EI(r)-converge to v∞ =

∑
0<|I|≤r vIXI ,

where vI = V̇I . To finish the proof of Theorem 5.1, we need to show that u∞ = v∞.
For each I and F , let g(F, I) be the number g(F, I) =

∑
ω̂∈Ω(F,I)

1
ωk(ωk+ωk−1)...(ωk+···+ω2)

.

Then we have

vI = (−1)k−1
∑

E∈Ek

|E|∑
ρ=1

∑
F∈QE,ρ

g(F, I)
ik−1

∏
ω∈F

ηω(t).(32)

In order to get v∞ explicitly we need to determine the constants g(F, I). From the
expression of VI in (31) we notice that the contributions to v∞ from the terms in uj

k

with frequencies in different F ∈ QE,ρ are independent. Precisely, for δ(E) ≥ 3, F ∈
QE,ρ, let

uj
k,F,E,ρ(t) = j

δ(E)−1
δ(E)

∑
ω∈F∩ΩE,ρ,k

ηω(t)eijωt, k = 1, . . . , m,

uj
F,E,ρ = (uj

1,F,E,ρ, . . . , u
j
m,F,E,ρ),

and for δ(E) = 2, let uj
k,E(t) = j

1
2
∑

ω∈ΩE,1,k
ηω,k(t)eijωt, k = 1, . . . , m, uj

E =

(uj
1,E , . . . , uj

m,E). Let v∞F,E,ρ and v∞E be the limiting extended inputs of the uj
F,E,ρ

and uj
E , respectively. We have

v∞(t) =
m∑

`=1

η`,0(t) X` +
∑

E∈E2
v∞E (t) +

r∑
n=3

∑
E∈En

|E|∑
ρ=1

∑
F∈QE,ρ

v∞F,E,ρ(t).
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This is the high-frequency superposition principle we mentioned in the beginning of
section 4. So in order to figure out the explicit formula of v∞, we need only find out
each v∞F,E,ρ and v∞E .

For δ(E) = 2 we have v∞E = −v`1,`2 X`1X`2 − v`2,`1 X`2X`1 , if E = [X`1 , X`2 ].
Since

v`1,`2(t) = −
∑

(ω1,ω2)∈Ω(2,`1)×Ω(2,`2)

ω1+ω2=0

ηω1,`1(t)ηω2,`2(t)
iω2

,

we see that

v∞[X`1 ,X`2 ](t) = v[X`1 ,X`2 ](t)[X`1 , X`2 ],(33)

where

v[X`1 ,X`2 ](t) =
1

iω`1,`2

(
ηω`1,`2 ,`1(t)η−ω`1,`2 ,`2(t)− η−ω`1,`2 ,`1(t)ηω`1,`2 ,`2(t)

)
.

For F ∈ QE,ρ, δ(E) ≥ 3, from (32) we have

v∞F,E,ρ = (−1)δ(E)−1
∑

0<|I|≤r

g(F, I)
i|I|−1

∏
ω∈F

ηω(t) XI .

It is easy to see that for each F ∈ QE,ρ all the g(F, I) = 0 except for I ∈ Ω(E), where
Ω(E) is the set of multi-indices I such that δk(I) = δk(E) for k = 1, . . . , m (here
δk(I) denotes the number of occurrence of k in I). (For F ∈ QE,ρ, if I 6∈ Ω(E), then
Ω(F, I) is empty.) Let us write

v∞F,E,ρ = (−1)δ(E)−1
∑

I∈Ω(E)

g(F, I)
i|I|−1

∏
ω∈F

ηω(t) XI =
∑
B∈E

(
vF,E,ρ

B

∏
ω∈F

ηω(t)

)
B.

In order to figure out the limit v∞F,E,ρ of the uj
F,E,ρ for δ(E) > 2, we need only

figure out vF,E,ρ
B , so we may assume that ηω = 1. Namely, we need only find out the

limit of ūj
F,E,ρ(t), where ūj

F,E,ρ = (ūj
1,F,E,ρ, . . . , ū

j
m,F,E,ρ) are given by ūj

k,F,E,ρ(t) =

j
δ(E)−1

δ(E)
∑

ω∈F∩ΩE,ρ,k
eijωt, δ(E) ≥ 3. From the discussion of the limit of (15) defined

in section 4 we know that, if we let ξF
B,ρ = gB(F ∩ΩE,ρ,1, F ∩ΩE,ρ,2, . . . , F ∩ΩE,ρ,m),

then vF,E,ρ
B = i1−δ(E)ξF

B,ρ for B ∈ E. So we get

v∞F,E,ρ(t) =
∑
B∈E

i1−δ(E)ξF
B,ρ

∏
ω∈F

ηω(t) B.(34)

Combining (33) and (34) we get

v∞(t) =
m∑

k=1

ηk,0(t) Xk +
∑

`1<`2

1
iω`1,`2

ξ`1,`2(t) [X`1 , X`2 ]

+
r∑

n=3

∑
E∈En

∑
B∈E

|E|∑
ρ=1

∑
F∈QE,ρ

i1−δ(E)ξF
B,ρ

∏
ω∈F

ηω(t) B,

where ξ`1,`2 = ηω`1,`2 ,`1η−ω`1,`2 ,`2 − ηω−`1,`2 ,`1ηω`1,`2 ,`2 . So u∞ = v∞. Now the proof
of Theorem 5.1 is complete.
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7. The linear independence of gB . In the previous section we proved Theo-
rem 5.1. In order to justify the algorithm we need to show that it is always possible
to choose the frequency sets so that condition (11) holds in addition to the other
conditions. If E ∈ E2, this is obvious. Take an E ∈ ∪r

n=3En. Assume that δ(E) = n,
|E| = N , and E = {B1, . . . , BN}. By definition we know that each ξ̂B,ρ is equal
to ξF

B,ρ = gB(F ∩ ΩE,ρ,1, . . . , F ∩ ΩE,ρ,m) for some fixed F ∈ QE,ρ. For each QE,ρ,
assume that the fixed set F ∈ QE,ρ contains the numbers ωE,ρ

1 , . . . , ωE,ρ
n . Assume

also that we have listed the ωE,ρ
1 , . . . , ωE,ρ

n such that

{ωE,ρ
1 , . . . , ωE,ρ

δ1(E)} = F ∩ ΩE,ρ,1, . . . , {ωE,ρ
δ1(E)+···+δm−1(E)+1, . . . , ω

E,ρ
n } = F ∩ ΩE,ρ,m.

Now if we think of ωE,ρ = (ωE,ρ
1 , . . . , ωE,ρ

n ) as a point in Rn, we see that ξF
B,ρ =

gB(ωE,ρ
1 , . . . , ωE,ρ

n ). Take any N points wk = (wk
1 , . . . , wk

n), k = 1, . . . , N , in Rn.
Let M(w1, . . . , wn) be the matrix M(w1, . . . , wN ) = (gB(wρ))B∈E,1≤ρ≤N . We will
think of M as a matrix-valued function depending on nN variables (w1, . . . , wN ),
i.e., as a matrix-valued function on RnN . Now let H be the subset of RnN consist-
ing of the points (w1, . . . , wN ) such that wk

1 + · · · + wk
n = 0, k = 1, . . . , N . Then

det(ξ̂F
B,ρ) 6= 0 just means that we need to take the point (ωE,1, . . . , ωE,N ) ∈ H to

be not on the surface {det(M) = 0}⋂H. If we can show that the determinant
det(M) of M , as a rational function of nN variables, is not identically 0 on H, then
det(M) is not zero on a relatively open dense subset of H. With this fact, if we
think of the frequencies as taking from one very large dimensional Euclidean space
Rκ, then we can regard the conditions such as QE,ρ being SMC, independent, the
invertibility of each matrix (ξ̂B,ρ)B∈E,1≤ρ≤|E|, etc., as taken some points in Rκ that
are not on some finite number of surfaces which have measure 0 in Rκ, so it is possi-
ble to choose the sets Ω(n, k) such that all the conditions 1, 2, 6, 7, 8, 9, 10, 11 hold
simultaneously.

So all that is needed is to prove that det(M) 6≡ 0 on the set H. For a matrix-
valued function like M = (gB(wρ))B∈E,1≤ρ≤N , det(M) 6≡ 0 on H iff the functions
gB(w), B ∈ E, are linearly independent on the subset {(w1, . . . , wn) | w1 + · · ·+wn =
0} of Rn. (In the following we will simply call this the subset w1 + · · · + wn = 0.)
From the observation made about gB in Remark 4.1 we know that each gB is a linear
combination of some gBY with BY ∈ EY = {BY ∈ BY, δk(BY) = 1, k = 1, . . . , n}. In
order to show that the gB , B ∈ E, are linearly independent on the set w1+· · ·+wn = 0,
we first show that the functions gB , B ∈ Em, are linearly independent on the set
w1 + · · ·+ wm = 0, where Em = {B ∈ Bm, δk(B) = 1, k = 1, . . . , m}.

We recall that two brackets B1, B2 ∈ B are equivalent if δk(B1) = δk(B2), k =
1, . . . , m. We will write B1 ' B2 if B1 is equivalent to B2. Let E be the set of
equivalence classes. For k = 1, . . . , m, let Ek be the subset of E such that E ∈ Ek iff
δ(E) = k, δ`(E) ≤ 1, ` = 1, . . . , m. In particular, Em has only one element, namely
Em. Let Ē = ∪m

k=2Ek. Let Bm be the subset of B that contains all the B ∈ B
of degree δ(B) ≤ m with δk(B) ≤ 1, k = 1, . . . , m. If B ∈ Bm is a bracket with
ΣB = X`1 . . . X`k

, and w = (w1, . . . , wm) ∈ Rm is a point, for simplicity, we introduce
the following notations: wB = (w`1 , . . . , w`k

),
∑

wB = w`1 + · · · + w`k
, ĝB(wB) =

ĝB(w`1 , . . . , w`k
). We let Σ0

E denote the set {wB |
∑

wB = 0} of δ(E)-tuples of
numbers. It is clear that the set Σ0

E depends only on E and can be identified with
the subset {(w1, . . . , wδ(E)) | w1 + · · ·+ wδ(E) = 0} of Rδ(E).

Now for each B ∈ Em, by definition we know that gB(w1, . . . , wm) = ĝB(wB).
So in order to show that the functions gB , B ∈ Em, are linearly independent on the
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set w1 + · · · + wm = 0, we need only prove that the ĝB(wB), B ∈ Em, are linearly
independent on Σ0

Em . We will show the following:
(IND) For any E ∈ Ē , the functions ĝB(wB), B ∈ E, are linearly independent on

the set Σ0
E .

For each B ∈ B of degree δ(B) > 1, B can be written uniquely as [B1, B
2], where

B1, B
2 ∈ B, B1 � B2. We will call B1, B

2 the left and the right factors of B and use
λ(B) and ρ(B) to denote them, i.e., B = [λ(B), ρ(B)]. (The left and right factors
have been defined for formal brackets, cf. section 2.) If δ(B2) > 1, then we can write
the unique decomposition B2 = [B2, B

3], B2, B
3 ∈ B, B2 � B3. Continuing this

way, each B ∈ Bm can be written uniquely as B = [B1, [B2, . . . , [BsB
, BsB+1] · · ·],

where B1, B2, . . . , BsB
, BsB+1 ∈ B, B1 � B2 � · · · � BsB

, BsB+1 ∈ {X1, . . . , Xm}.
So we have associated with each B ∈ B an ordered set {B1, . . . , BsB

}. Each of the
brackets B1, . . . , BsB

is called a principal L-factor of B. For each B ∈ B with B =
[B1, [B2, . . . , [BsB

, BsB+1] · · ·], we will write B` = [B`, [B`+1, . . . , [BsB
, BsB+1] · · ·] for

` = 1, . . . , sB , so B = [B1, [B2, . . . , [B`−1, B
`] · · ·]. Let B ∈ B be a bracket of degree

δ(B) > 1. We define LF (B), the set of L-factors of B, recursively as follows. If
B = [Xk1 , Xk2 ], then LF (B) contains only one element Xk1 . If δ(B) > 2, write the
unique decomposition B = [B1, B2], B1, B2 ∈ B, B1 � B2. If δ(B1) = 1, we define
LF (B) = {B1}∪LF (B2). If δ(B1) > 1, we define LF (B) = {B1}∪LF (B1)∪LF (B2).
The elements of LF (B) are called the L-factors of B.

Now we prove (IND). We use induction on δ(E) to prove it. If E ∈ Ē , δ(E) = 2,
then E has only one element, i.e., [Xk1 , Xk2 ] for some k1 < k2. Then by definition
ĝ[Xk1 ,Xk2 ](wk1 , wk2) = 1/wk1 which is not identically 0 on the set wk1 + wk2 = 0.
Assume that (IND) is true for all E ∈ Ē with δ(E) ≤ k − 1, 3 ≤ k ≤ r. Let E ∈ Ek.
Assume that the functions ĝB(wB), B ∈ E, are linearly dependent on Σ0

E . Then there
exist constants lB such that

∑
B∈E lB ĝB(wB) ≡ 0 on Σ0

E . Let Ē be the subset of E
that contains all the B ∈ E with lB 6= 0. Then∑

B∈Ē

lB ĝB(wB) ≡ 0 on Σ0
E .(35)

Note that the set {λ(B), B ∈ Ē} is an ordered set. Let B̄ ∈ Ē be a bracket such
that λ(B̄) � λ(B) for all B ∈ Ē. Let B̄1 = λ(B̄), B̄2 = ρ(B̄). Let EB̄ be the subset
of Ē such that B ∈ EB̄ iff there is an L-factor of B, denoted by B′, that is either
equivalent to B̄1 or equivalent to B̄2. (It is obvious that if such an L-factor exists, it
is unique.) For each B ∈ EB̄ , if B′ is the L-factor of B that is either equivalent to
B̄1 or equivalent to B̄2, then B′ has to be a principal L-factor of B. Write the unique
decomposition B = [B1, [B2, . . . , [Bκ−1, [B′, Bκ+1] · · ·]]]. We let B̃ be the bracket
B̃ = [B1, [B2, . . . , [Bκ−1, B

κ+1] · · ·]] and define

ĝB̃(wB̃) =
ĝB1(wB1)∑

wB1

ĝB2(wB2)∑
wB2

· · · ĝBκ−1(wBκ−1)∑
wBκ−1

ĝBκ+1(wBκ+1),

where, if as a formal bracket, ΣB̃ = X`1 . . . X`s
, we write wB̃ = (w`1 , . . . , w`s

). So we
get

ĝB(wB) =
ĝB̃(wB̃)ĝB′(wB′)∑

wB′
.

Now it is clear that for each B ∈ Ē − EB̄ , ĝB(wB) does not contain the factors
1∑
wB̄1

or 1∑
wB̄2

. (By this we mean that the multivariable polynomial 1
ĝB(wB) does
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not contain the factors
∑

wB̄1
or
∑

wB̄2
.) From (35) we get∑

B∈EB̄

lB ĝB̃(wB̃)ĝB′(wB′)∑
wB′

+
∑

B∈Ē−EB̄

lB ĝB(wB) ≡ 0 on Σ0
E .(36)

Now on Σ0
E , for any B ∈ EB̄ , we have either

∑
wB′ =

∑
wB̄1

or
∑

wB′ =
∑

wB̄2
=

−∑wB̄1
(according to whether B′ is equivalent to B̄1 or B̄2). Let qB = 1 if B′ ' B̄1

and qB = −1 if B′ ' B̄2. From (36) we have∑
B∈EB̄

lBqB ĝB̃(wB̃)ĝB′(wB′) ≡ 0(37)

if
∑

wB′ = 0,
∑

wB̃ = 0. Note that for any B ∈ EB̄ , if B′ is equivalent to B̄2,
then B′ = λ(B), so ρ(B) = B̃ is equivalent to B̄1. (By the definition of B̄1 and B̄2
we know that B̄1 � B̄2, B̄1 � λ(B) for all B ∈ Ē. If there is a B ∈ EB̄ such that
B′ ' B̄2, then δ(B̄1) = δ(B̄2). It follows from this that if B′ is equivalent to B̄2,
then ρ(B) must be equivalent to B̄1.) Let E(B̄1), E(B̄2) be the equivalence classes
determined by B̄1 and B̄2, respectively. Then E(B̄2) ∈ Ē and either δ(B̄1) = 1 or
E(B̄1) ∈ Ē . Let us assume first that δ(B̄1) > 1. Let E1

B̄
= {B ∈ EB̄ | B′ ' B̄1} and

E2
B̄

= {B ∈ EB̄ | B′ ' B̄2}. Then {B′}B∈E1
B̄
∪ {B̃}B∈E2

B̄
⊂ E(B̄1). (Here B̃ = ρ(B)

for B ∈ E2
B̄

.) Now (37) can be rewritten as∑
B∈E1

B̄

(lBqB ĝB̃(wB̃)) ĝB′(wB′) +
∑

B∈E2
B̄

(lBqB ĝB′(wB′)) ĝB̃(wB̃) ≡ 0.(38)

The left-hand side of (38) is a linear combination of ĝB , B ∈ E(B̄1). From the linear
independence of the ĝB(wB), B ∈ E(B̄1), on Σ0

E(B̄1)
, we see that in particular the

coefficient of ĝB̄1
(wB̄1

) in the left-hand side of (38) is zero. Let Ē′ be the subset of
Ē that contains the brackets B ∈ Ē such that either λ(B) = B̄1 or ρ(B) = B̄1. Then
the coefficient of ĝB̄1

(wB̄1
) in the left-hand side of (38) is equal to∑

B∈Ē′∩E1
B̄

lBqB ĝB̃(wB̃) +
∑

B∈Ē′∩E2
B̄

lBqB ĝB′(wB′).

So we get ∑
B∈Ē′∩E1

B̄

lBqB ĝB̃(wB̃) +
∑

B∈Ē′∩E2
B̄

lBqB ĝB′(wB′) ≡ 0(39)

on Σ0
E(B̄2)

. Notice that for B ∈ Ē′ ∩ E1
B̄

, the brackets B̃ are in E(B̄2) (since B̃ =
ρ(B) ' B̄2). By the linear independence of the ĝB(wB), B ∈ E(B̄2), on Σ0

E(B̄2)
we

get that all the coefficients qBlB in the summations in the left-hand side of (39) are
0. Therefore we get lB̄ = 0, which is a contradiction. If δ(B̄1) = 1, assume that
B̄1 = X`. Then by the definition of B̄, EB̄ = E1

B̄
= {B ∈ Ē | λ(B) = X`}. In

this case lB̄ = 0 follows from the linear independence of the ĝB(wB), B ∈ E(B̄2),
on Σ0

E(B̄2)
, which still contradicts with lB̄ 6= 0. This finishes the proof of (IND). In

particular, we get that the gB(w1, . . . , wm), B ∈ Em, are linearly independent on the
hyperplane w1 + · · ·+ wm = 0 in Rm.

In the general case, we fix an E ∈ En. Take another group of indeterminates
Y = {Y1, . . . , Yn}. Let us fix a choice of a P. Hall basis BY of L(Y). We know
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that each gB , B ∈ E, is a linear combination of some gBY with BY ∈ EY = {BY ∈
BY, δk(BY) = 1, k = 1, . . . , n}. Let θE be the algebra homomorphism from A(Y)
to A(X), cf. Remark 4.1, defined by θE(Yk) = X` if δ1(E) + · · · + δ`−1(E) + 1 ≤
k ≤ δ1(E) + · · · + δ`(E). Let LE(X), LEY (Y) be the subsets of L(X) and L(Y),
respectively, that are linearly spanned by the brackets B ∈ E and BY ∈ EY. Let
us use I to denote a multi-index I = (`1, . . . , `k) with entries 1 ≤ `s ≤ n. Then
LE(X) is the subset of L(X) linearly spanned by the brackets [XI ] with δk(XI) =
δk(E), k = 1, . . . , m, and LEY (Y) is the subset of L(Y) spanned by the [YI ] with
δk(YI) = 1, k = 1, . . . , n. (Here δk(XI) denotes the degree of Xk in XI and δk(YI)
denotes the degree of Yk in YI .) Clearly the restriction of θE to LEY (Y) maps
LEY (Y) onto LE(X). Let us still use θE to denote the restriction of θE to LEY (Y).
The LE(X), LEY (Y) can be regarded as vector spaces over R. It is obvious that
E is a basis of LE(X) and EY spans LEY (Y). Assume |E| = N , |EY| = N̄ , E =
{B1, . . . , BN}, and EY = {BY

1 , . . . , BY
N̄
}. Let M = (α`,k)1≤`≤N̄,1≤k≤N be the matrix

with α`,k determined by θE(BY
` ) =

∑N
k=1 α`,kBk, ` = 1, . . . , N̄ . Because the map

θE : LEY (Y) → LE(X) is onto, the matrix has rank N . From Remark 4.1 we know
that each of the gB , B ∈ E, is a linear combination of some gBY with BY ∈ EY. More
precisely, we have the following gBk

(w1, . . . , wn) =
∑N̄

`=1 α`,kgBY
`

(w1, . . . , wn) for all
(w1, . . . , wn) ∈ Rn, i.e., (gB1 , . . . , gBN

) = (gBY
1

, . . . , gBY
N̄

)M . From this it follows that
the linear independence of the gBY , BY ∈ EY, on the set w1 + · · · + wn = 0 implies
that the gB , B ∈ E, are linearly independent on that set too. Now the judgment of
the approximation algorithm is complete.

8. Some examples and variations. We give some examples and variations of
the approximation algorithm. From conditions CH1, CH2, CH3 we know that the
uj

k in (22) are linear combinations of jαηω(t) cos(ωjt) and jαηω(t) sin(ωjt). From the
proof of Theorem 5.1 we see that, for the control sequence defined in (22), the limiting
extended input has form (23) mainly because of the fact that the frequencies are MC
and independent. If we require that the frequencies satisfy some other kind of MC
properties (this will be clear in the example below) and the frequencies associated with
each part in the extended input be independent, then the limiting extended input can
also be calculated explicitly and can be made equal to any prescribed extended input
of finite order if the frequencies satisfy some additional conditions like the invertibility
of the matrices {ξ̂B,ρ}, etc.

Example 8.1. Let us consider the case of a two-input system in R5; i.e., a system

ẋ(t) = u1(t)f1(x(t)) + u2(t)f2(x(t)),

where f1, f2 are smooth vector fields on R5. Assume that the vectors

f1(x), f2(x), [f1, f2](x), [f1, [f1, f2]](x), [f2, [f1, f2]](x)

span R5 everywhere. Let t → γ(t) ∈ R5 on [0, 1] be a smooth curve. Then, by the
span condition, there exist smooth functions v1, . . . , v5 on [0, 1] such that t→ γ(t) is
a solution of the equation

ẋ = v1(t)f1(x)+v2(t)f2(x)+v3(t)[f1, f2](x)+v4(t)[f1, [f1, f2]](x)+v5(t)[f2, [f1, f2]](x)

with initial condition x(0) = γ(0).
In this case the extended input v that we want to approximate is given by

v = v1X1 + v2X2 + v3[X1, X2] + v4[X1, [X1, X2]] + v5[X2, [X1, X2]].(40)
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Take three groups Ω1 = {ω1,1, ω1,2}, Ωk = {ωk,1, ωk,2, ωk,3}, k = 2, 3 of real numbers.
Assume that (1) each Ωk is MC; (2) the sets Ω1, Ω2, Ω3 are independent with respect
to 3.

For any C1 functions η1, η2, ηω1,1 , ηω1,2 , ηωk,l
, k = 2, 3, l = 1, 2, 3, on [0, 1], let

uj
1(t) = η1(t) + j

1
2 ηω1,1(t) cos ω1,1jt + j

2
3 ηω2,1(t) cos ω2,1jt

+ j
2
3 ηω2,2(t) cos ω2,2jt + j

2
3 ηω3,1(t) cos ω3,1jt,

uj
2(t) = η2(t) + j

1
2 ηω1,2(t) sin ω1,2jt + j

2
3 ηω2,3(t) cos ω2,3jt

+ j
2
3 ηω3,2(t) cos ω3,2jt + j

2
3 ηω3,3(t) cos ω3,3jt.

From Theorem 5.1 we have the following.
PROPOSITION 8.1. The sequence {uj = (uj

1, u
j
2)} of inputs defined above EI(3)-

converges to

u∞(t) = η1(t)X1 + η2(t)X2 −
ηω1,1(t)ηω1,2(t)

2ω1,1
[X1, X2]

−ηω2,1(t)ηω2,2(t)ηω2,3(t)
4ω2,1ω2,2

[X1, [X1, X2]] +
ηω3,1(t)ηω3,2(t)ηω3,3(t)

4ω3,2ω3,3
[X2, [X1, X2]].

Now it is easy to see that in order to get u∞ to be equal to v we can simply let η1 = v1,
η2 = v2, ηω1,1 = 1, ηω1,2 = −2ω1,1v3, ηω2,1 = 1, ηω2,2 = 1, ηω2,3 = −4ω2,1ω2,2v4,
ηω3,1 = 1, ηω3,2 = 1, ηω3,3 = 4ω3,2ω3,3v5. There are five terms in uj

1 and uj
2, respec-

tively. Next we give another control sequence which has fewer terms in uj
1 and uj

2.
Take three groups Ωk = {ωk,1, ωk,2}, k = 1, 2, 3 of nonzero frequencies. Assume that
the ωk,l satisfy (1) ω1,1 + ω1,2 = 0, 2ω2,1 + ω2,2 = 0, ω3,1 + 2ω3,2 = 0 and that (2)
Ω1, Ω2, Ω3 are independent with respect to 3.

For any functions η1, η2, ηωk,l
, k = 1, 2, 3, l = 1, 2, of class C1 on [0, 1], let

uj
1(t) = η1(t) + j

1
2 ηω1,1(t) cos ω1,1jt + j

2
3 ηω2,1(t) cos ω2,1jt + j

2
3 ηω3,1(t) cos ω3,1jt,

uj
2(t) = η2(t) + j

1
2 ηω1,2(t) sin ω1,2jt + j

2
3 ηω2,2(t) cos ω2,2jt + j

2
3 ηω3,2(t) cos ω3,2jt.

Then we have the following.
PROPOSITION 8.2. For any frequencies ωk,l, k = 1, 2, 3, l = 1, 2, satisfying (1)

and (2) and any functions η1, η2, ηωk,l
, k = 1, 2, 3, l = 1, 2, of class C1 on [0, 1], the

uj = (uj
1, u

j
2) EI(3)-converge to

u∞ = η1X1 + η2X2 −
ηω1,1ηω1,2

2ω1,1
[X1, X2]−

η2
ω2,1

ηω2,2

8ω2
2,1

[X1, [X1, X2]]

−ηω3,1η
2
ω3,2

4ω3,1ω3,2
[X2, [X1, X2]].

Again, if we want u∞ = v we can let η1 = v1, η2 = v2, ηω1,1 = 1, ηω1,2 = −2ω1,1v3,
ηω2,1 = 1, ηω2,2 = −8ω2

2,1v4, ηω3,1 = −4ω3,1ω3,2v5, ηω3,2 = 1.
The Lie brackets in the above example are of multiplicity 1. For a simple example

with brackets of > 1, cf. [18].
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Next we give some remarks about the approximation algorithm. First, using
Theorem 6 in [20], we have the following.

THEOREM 8.1. Let r be a positive integer. Let {uj}∞j=1 be the sequence defined in
(22), where the functions η0,k, ηω and the sets Ω(n, k), ΩE,ρ, ΩE,ρ,k satisfy conditions
(1)–(10). Let fk : Rn× [0, T ]→ Rn, k = 1, . . . , m be time-varying vector fields on Rn.
Assume that f1, . . . , fm are of class Cr−1 in x and of class C1 jointly in (x, t). Let
f0 : Rn × [0, T ] → Rn be continuous. Let x0 ∈ Rn be a point and let xj be maximal
solutions of

ẋ = f0(x, t) +
m∑

k=1

uj
k(t)fk(x, t), x(0) = x0.

Assume that the initial value problem

ẋ(t) = f0(x, t) +
m∑

k=1

η0,k(t)fk(x, t) +
∑

1≤k1<k2≤m

1
iωk1,k2

ζk1,k2 [fk1 , fk2 ](x, t)

+
r∑

n=3

∑
E∈En

∑
B∈E

|E|∑
ρ=1

 ∑
F∈QE,ρ

i1−δ(E)ξF
B,ρ

∏
ω∈F

ηω(t)

Ev(f)(B)(x, t),

x(0) = x0,

where ζk1,k2 = (ηωk1,k2 ,k1η−ωk1,k2 ,k2 − η−ωk1,k2 ,k1ηωk1,k2 ,k2), has a unique solution x∞

which is defined on the whole interval [0, T ]. (Here for each B, Ev(f)(B) is the vector
field obtained by plugging in the vector field fk for Xk in B.) Then the xj are defined
on [0, T ] for j large enough and converge to x∞ uniformly on [0, T ] as j →∞.

From this theorem we see that exactly the same algorithm works for the time-
varying vector field case even with a drift term. But we note that the vector fields
Ev(f)(B) are Lie brackets of fk for k = 1, . . . , m only.

As suggested to us by Gurvits, it would be nicer if the approximation algorithm
could be used to produce feedback controls. Suppose that for a suitable Lie bracket
extension ẋ = f0(x, t) +

∑r
k=1 vkfk(x, t) of

ẋ = f0(x, t) +
m∑

k=1

ukfk(x, t),(41)

there exists a time-dependent feedback law vk = vk(x, t), k = 1, . . . , r, such that the
closed loop system

ẋ = f0(x, t) +
r∑

k=1

vk(x, t)fk(x, t)(42)

has some desired properties. Then one may try to produce time-dependent feedback
controls uj

k = uj
k(x, t) that generate trajectories of (41) that, as j → ∞, converge to

those of the closed loop system (42), at least on some fixed time interval [0, T ]. It is
easy to see that this problem can be reduced to a special case of Theorem 8.1. Our
algorithm makes it possible to produce such an approximation as follows. Assume
that the functions vk are sufficiently smooth. Then, by introducing some new vector
fields g1, . . . , gρ, we can rewrite system (42) into a new system of the form

ẋ = f0(x, t) +
τ∑

k=1

gk(x, t) +
ρ∑

k=τ+1

gk(x, t),(43)
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where the first τ functions g1, . . . , gτ are linear combinations of f1, . . . , fm with suf-
ficiently smooth coefficients, and the gk, k = τ + 1, . . . , ρ, are Lie brackets of the
gk, k ∈ {1, . . . , τ}. So system (43) can be viewed as a special Lie bracket extension of

ẋ = f0(x, t) +
τ∑

k=1

wkgk(x, t),(44)

with constant coefficients (0, or 1, cf. the example below). We then apply our algo-
rithm to system (44) to get a control sequence {wj = (wj

1, . . . , w
j
τ )} that generates

trajectories converging to solutions of (43). To see how this can be done, let us
examine the following example.

Example 8.2. Suppose m = 2 and (42) is given by

ẋ = f0(x, t) + v1(x, t)f1(x, t) + v2(x, t)f2(x, t) + v3(x, t)[f1, f2](x, t).(45)

We rewrite v3[f1, f2] = [f1, v3f2] − (Lf1v3)f2 and let g1 = v1f1, g2 = v2f2, g3 =
−(Lf1v3)f2, g4 = f1, g5 = v3f2. Then system (45) can be rewritten as ẋ = f0(x, t) +
g1(x, t)+g2(x, t)+g3(x, t)+[g4, g5](x, t), which arises from the extension ẋ = f0(x, t)+∑5

k=1 w̄kgk(x, t) + w̄6[g4, g5](x, t) of

ẋ = f0(x, t) +
5∑

k=1

wkgk(x, t)(46)

by specializing the controls w̄4 = w̄5 = 0, w̄1 = w̄2 = w̄3 = w̄6 = 1. If we apply
our algorithm to produce a control sequence {wj} for (46) that EI(2)-converges to
the extended input v = X1 + X2 + X3 + [X4, X5], then the time-dependent feed-
backs uj

1(x, t) = wj
1(t)v1(x, t) + wj

4(t), uj
2(x, t) = wj

2(t)v2(x, t) − wj
3(t)(Lf1v3)(x, t) +

wj
5(x, t)v3(x, t) have the desired properties.

We conclude this section by giving an estimate for the rate of how fast the tra-
jectories generated by the uj in (22) converge to trajectories generated by u∞ in
(23).

PROPOSITION 8.3. Let f = (f1, . . . , fm) be an mtuple of vector fields of class
Cr on Rn. Let x0 be a point in Rn. Let {uj} and u∞ be defined in (22) and (23),
respectively, with the functions η′ωs and the frequency sets Ω(n, k) satisfying conditions
(1)–(10). Assume that the solution x∞ generated by u∞ and f with initial condition
x(0) = x0 is defined on [0, T ]. Then there exists a constant K such that the solutions
xj with initial condition x(0) = x0, generated by the uj and f , are defined on [0, T ]
for j large enough and ‖xj − x∞‖sup ≤ Kj−

1
r . Let ∆ be a compact set in Rn that

contains x∞ in its interior. Then the constant K depends on f restricted on ∆, the
ω, and the ηω.
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[21] W. LIU, Averaging Theorems for Highly Oscillatory Ordinary Differential Equations and the

Approximation of General Paths by Admissible Trajectories for Nonholonomic Systems,
Ph.D. thesis, Rutgers University, New Brunswick, NJ, 1992.



REGULARITY PROPERTIES OF THE PHASE
FOR MULTIVARIABLE SYSTEMS∗

KEVIN A. GRASSE† AND JONATHAN R. BAR-ON‡

SIAM J. CONTROL OPTIM. c© 1997 Society for Industrial and Applied Mathematics
Vol. 35, No. 4, pp. 1366–1386, July 1997 012

Abstract. For multivariable, input-output systems that are represented as rational, transfer-
function matrices, the most frequently used measures of relative stability are gain based. However,
there are a number of important physical applications where the phase of a perturbation can also
have a significant effect on relative stability. Such applications led J. R. Bar-on and E. A. Jonckheere
[J. R. Bar-on, Phase and Gain Margins for Multivariable Control Systems, Ph.D. thesis, University
of Southern California, 1990; J. R. Bar-on and E. A. Jonckheere, Internat. J. Control, 52 (1990),
pp. 485–498] to define precisely the notions of phase, minimum-phase mapping, and phase margin
for multivariable systems. The objective of this paper is to establish conditions under which the
phase and minimum-phase mappings have certain desired regularity properties (e.g., continuity or
differentiability). After a review of the definitions of the phase concepts under consideration, we
collect a few well-known results about set-valued maps that have direct applications to parametrized
families of constrained optimization problems. Using these results we show that, under very mild
conditions, the minimum-phase mapping is lower semicontinuous as a function of frequency; as a
consequence, the phase margin (initially defined as the infimum of the phase of all destabilizing
unitary perturbations in the range of frequencies where destabilizing perturbations can occur) is
achieved as the phase of a specific destabilizing unitary perturbation. We then establish sufficient
conditions of gradually increasing strength for the minimum-phase mapping to be continuous and
real analytic as a function of frequency. The proof of the real analyticity of the minimum-phase
mapping relies on the implicit function theorem and the Lagrange multiplier theorem.

Key words. multivariable system, robust stability, unitary matrix, phase margin, parametric
optimization problem, value function, marginal function
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1. Introduction. A desirable feature of a multivariable control system is its
ability to maintain stability in the presence of unknown perturbations. Such per-
turbations can be attributed to modeling errors (i.e., linearization or the neglect of
high-frequency terms) as well as to external environmental factors that may impact
the system. Consequently, it is important to have quantitative measurements of rela-
tive stability, or robustness, of control systems. For multi-input, multioutput (MIMO)
control systems there currently exist a number of different measurements of relative
stability. Most of these measurements are gain based; i.e., they focus only on the
modulus (size) of the perturbation (see [9, 11, 12, 18, 19, 21]). However, the phase
(or “angle of rotation”) of the perturbation can also have a significant effect in some
systems (see [3, 4, 7] for a more detailed discussion), and such effects are essentially
ignored by gain-based stability measurements. These considerations motivated J. R.
Bar-on and E. A. Jonckheere to define the notions of the phase, minimum-phase map-
ping, and phase margin for multivariable control systems [3, 4, 5]. We review the
precise mathematical definitions of these terms in the next section.
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Our objective here is to establish some important mathematical properties of
these phase-related concepts, which should further enhance their usefulness. For
input-output systems that are representable as transfer-function matrices L(s) and
are closed-loop stable, we will consider the effect of unitary (pure phase) perturba-
tions on their stability. In generic situations, there is a specific set of frequencies
at which it is possible to destabilize the system via unitary perturbations; the set
of these frequencies is called the gain-crossover region. To each frequency in the
gain-crossover region one can assign the minimum value of the phase for the unitary
perturbations that destabilize the system at that frequency. This results in the what
is called the minimum-phase mapping of the system. The phase margin of the sys-
tem is by definition the minimum value of the minimum-phase mapping as it ranges
over all frequencies in the gain-crossover region. In order to ensure that the mini-
mum is achieved, it is necessary that the minimum-phase mapping be at least lower
semicontinuous, and we prove that this is always the case under very mild conditions
on the transfer function L(s). However, there is ample numerical evidence that the
minimum-phase mapping is far better than merely lower semicontinuous. Thus we
will also state specific sufficient conditions for the minimum-phase mapping to be
continuous, differentiable, and even real analytic as a function of the frequency. The
continuity results will be obtained from standard results on parametrized optimiza-
tion problems. The differentiability results will follow from the Lagrange multiplier
theorem and the implicit function theorem.

The fact that the minimum-phase mapping is (under reasonable assumptions) a
differentiable function of frequency is important for at least two reasons. First, as we
will see, the values of the minimum-phase mapping are computed as the solutions of a
family of constrained optimization problems parametrized by frequency. For a general
parametrized optimization problem one cannot even expect continuous dependence
of the optimal value on the parameter, to say nothing of differentiable dependence.
There is ample numerical evidence to suggest that the minimum-phase mapping is
smooth in generic cases, and this poses a purely mathematical question of why it
should be so. Second, it turns out that the regularity of the minimum-phase mapping
is closely tied to the stability of the numerical methods that are employed to compute
the phase margin. We will return to this point at the end of the next section.

The remainder of the paper is organized as follows. In section 2 we review the
definitions of the phase, minimum-phase mapping, and phase margin as given by Bar-
on and Jonckheere [3, 4, 5]. We also review Bar-on’s formulation of the computation
of the minimum-phase mapping as the minimum value of a constrained optimization
problem, since this formulation is very useful in the theoretical development. Section
3 presents a concise review of a few well-known results in parametrized optimization
problems. These results are applied in section 4 to show that the phase and, under
appropriate conditions, the minimum-phase mapping are continuous on their domains.
Finally, differentiability of the minimum-phase mapping is discussed in section 5.

2. Phase concepts for multivariable systems. We begin with a review of
phase concepts for multivariable systems. To do this, we adopt the frequency domain
approach and view a control system as a transfer function L(s). More precisely, L(s)
denotes an n × n matrix function of s ∈ C whose entries are in the field of rational
functions of s with real coefficients. Here C denotes the field of complex numbers,
and we let j ∈ C denote the imaginary unit. It is assumed throughout that n ≥ 2
since we wish to focus on multivariable systems. The assumption that L(s) is square
means that the number of system inputs equals the number of system outputs, which
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is typical for feedback systems. We always assume that L(s) has no poles on the
imaginary axis s = jω and is proper; i.e., lims→∞ L(s) = L∞, where L∞ is a real
n × n constant matrix. If L∞ = 0, then we call L(s) strictly proper. Since L(s)
is assumed to be proper, we can extend the continuous mapping ω 7→ L(jω) of R
into Cn×n (the set of all n × n matrices with entries in C) to a continuous mapping
defined on the extended real numbers R = R ∪ {∞} (recall that R is the one-point
compactification of R and is homeomorphic to the unit circle S1 ⊆ C).

The multivariable Nyquist criterion [8, 10] states that L(s) is closed-loop stable
(in the sense that L(s)(I + L(s))−1 is stable) if and only if

(N1) det (I + L(jω)) 6= 0 ∀ ω ∈ R;
(N2) the number of counterclockwise encirclements of the origin by the curve

γ : R → C given by γ(ω) = det (I + L(jω)) equals the number of right-half-plane
poles of L(s) (here I denotes the n × n identity matrix and the curve γ is given the
orientation induced from the standard positive orientation on R).

In addition to being proper and having no poles on the imaginary axis, we shall
always assume that L(s) is closed-loop stable in the sense of (N1) and (N2).

The perturbations that act on the system will be assumed to occur in the feedback
path as discussed in [3, 4]. Since we wish to focus on the phase of such perturbations,
it will also be assumed that the perturbations come from the group U(n, C) of complex
unitary n × n matrices defined by

U(n, C) = {∆ ∈ Cn×n | ∆∗ = ∆−1},

where the ∗ denotes the complex-conjugate transpose. If we give U(n, C) the topology
that it inherits as a subspace of the complex vector space Cn×n, then U(n, C) is
compact. The phase of a unitary matrix ∆ ∈ U(n, C) is defined as

Π(∆) = max{|arg(λ)| : λ is an eigenvalue of ∆},

where the argument of a complex number s ∈ C is chosen to satisfy −π < arg(s) ≤ π.
We recall that since ∆ is unitary, every eigenvalue λ of ∆ satisfies |λ| = 1. An
equivalent definition of the phase (see [3, 4]) is given by

(1) Π(∆) = max{cos−1(Re(z∗∆z)) | z ∈ Cn and z∗z = 1},

where Re denotes the real part of a complex number and we select the branch of cos−1

that returns angles in the interval [0, π]. In section 4 we give a short proof that the
function Π:U(n, C) → [0, π] is continuous. Suppose now that the system is affected by
perturbations ∆ ∈ U(n, C) in the feedback path as indicated previously. The stability
set S is by definition the set of ∆ ∈ U(n, C) such that the perturbed system is closed-
loop stable. Using the Nyquist criterion, we see that ∆ ∈ S if and only if (N1) and
(N2) are satisfied with L(jω) replaced by L(jω)∆. From this characterization of S it
follows that S is an open subset of U(n, C). Moreover, S is nonempty since I ∈ S by
the assumed closed-loop stability of the unperturbed system.

Let g :R × U(n, C) → C denote the mapping given by

g(ω, ∆) = det (I + L(jω)∆).

Since L(s) is assumed to be proper, we can extend g to a mapping defined on R ×
U(n, C). The preimage g−1(0) will be of fundamental importance in our work. This
preimage is a closed (hence compact) subset of R × U(n, C). Furthermore, if det (I +
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L∞∆) 6= 0 for every ∆ ∈ U(n, C), then it is easy to see that g−1(0) is actually compact
as a subset of R × U(n, C). We will call such transfer functions nicely proper. This is
the case, for example, if ||L∞|| < 1 (the norm is the standard matrix norm).

From the Nyquist criterion, it is easy to see that the boundary of the stability
set, ∂S, is contained in the set

D = {∆ ∈ U(n, C) | ∃ ω ∈ R such that g(ω, ∆) = 0}.

We also define the gain-crossover region by

Ω = {ω ∈ R | ∃ ∆ ∈ U(n, C) such that g(ω, ∆) = 0}.

It is evident that D is compact (hence closed) in U(n, C) and Ω is compact in R;
furthermore, if L(s) is nicely proper, then Ω is actually a compact subset of R. If
D is empty, then we are in the pleasant situation where no unitary perturbation
destabilizes the system. On the other hand, if D is nonempty, then we define the
phase margin of the system L(s) by

(2) PM(L) = min {Π(∆) | ∆ ∈ D}.

Observe that the minimum is attained since D is compact and, as we will see, the phase
is a continuous function of its matrix argument. Consequently, closed-loop stability
of the perturbed system is guaranteed if the perturbation ∆ satisfies Π(∆) < PM(L).
For computational purposes, it is convenient to redefine the phase margin in the
following manner. Let µ :Ω → [0, π] be given by

(3) µ(ω) = min {Π(∆)|∆ ∈ U(n, C) and g(ω, ∆) = 0}.

We will call µ the minimum-phase mapping of the system L(s). Clearly the minimum-
phase mapping and phase margin are related by

(4) PM(L) = inf {µ(ω) | ω ∈ Ω}.

We will see later in section 4 that µ is always lower semicontinuous, so the compactness
of Ω ⊆ R allows us to replace “inf” by “min” (see [13, p. 277]).

An effective means of computing the values of the minimum-phase mapping at
a particular frequency ω in the gain crossover region Ω has been developed by J. R.
Bar-on and E. A. Jonckheere in [3, 4]. They show that for ω ∈ Ω

(5) µ(ω) = cos−1
(

−1
2
φ(ω)

)
,

where φ(ω) is the minimum value of the constrained optimization problem:

(CMPω)
minimize z∗(L(jω)∗ + L(jω))z, z ∈ Cn (ω ∈ Ω fixed)

subject to
{

z∗z = 1,
z∗L(jω)∗L(jω)z = 1.

Observe that the constraint set is always closed and bounded (hence compact) in Cn.
The continuity of the functional being minimized ensures a solution to the problem
if the constraint set is nonempty. Thus the existence of solutions of CMPω depends
on the feasibility of the constraints, which in turn is governed by the magnitude of
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the (real) eigenvalues of the nonnegative definite (Hermitian) matrix L(jω)∗L(jω);
the nonnegative square roots of these eigenvalues are precisely the singular values of
L(jω). Specifically, letting σ(L(jω)) (resp., σ(L(jω))) denote the maximum (resp.,
minimum) singular value of L(jω), we see that the constraint set in CMPω will
be empty if and only if either σ(L(jω)) < 1 or σ(L(jω)) > 1. Consequently, the
constraint set of CMPω is nonempty if and only if σ(L(jω)) ≤ 1 ≤ σ(L(jω)), in
which case we say that the singular values of L(jω) are “spread across one.” It is
shown in [3, 4] that the frequencies ω ∈ R for which the singular values of L(jω) are
spread across one coincide with the frequencies in the gain crossover region Ω; i.e.,

(6) Ω = {ω ∈ R | σ(L(jω)) ≤ 1 ≤ σ(L(jω))}.

The continuity of the singular values as a function of the matrix (see, e.g., [20, p. 330])
gives an alternative proof of the fact that Ω is a closed (hence compact) subset of R
(and is a compact subset of R if L(s) is nicely proper).

The problem CMPω is well suited to numerical computation because, after con-
version to an equivalent real problem via a standard “decomplexification” process,
it is a purely quadratic minimization problem whose global minima admit a precise
characterization (we will have more to say on this in section 5). The phase margin
can be effectively approximated by computing µ(ω) on a suitably fine discrete subset
of Ω and then selecting the smallest value of µ so obtained. While this method works
well in practice, its success requires that µ be continuous as a function of ω. However,
stronger regularity of µ yields additional desirable features of the numerical scheme
by which PM(L) is computed. Specifically, conditions which guarantee the differen-
tiability of µ coincide with conditions which guarantee the appropriate nonsingularity
of the Jacobian when one attempts to solve CMPω (or its decomplexified equivalent)
via the Lagrange multiplier technique and Newton’s method, so one can interpret the
differentiability of µ as a guarantee of the numerical stability of the routines by which
PM(L) is computed. These considerations form the primary motivation for our study
of the regularity properties of the minimum-phase mapping.

3. Generalities on parametrized optimization problems. The phase of a
unitary matrix ∆ ∈ U(n, C) is the maximum value of a constrained optimization prob-
lem in which the matrix ∆ appears as a parameter (cf. equation (1)). Likewise, the
value of the minimum-phase mapping at a specific frequency ω in the gain-crossover
region ω is the minimum value of a constrained optimization problem CMPω in which
the frequency ω appears as a parameter. Thus, the study of the regularity properties
of the phase and the study of the regularity properties of the minimum-phase mapping
are both special cases of the study of regularity properties of the “value function” for
a parametrized family of constrained optimization problems. In this section we will
state for future reference two results about the behavior of the value function for a
certain class of parametrized constrained optimization problems.

Notation 3.1. Given a metric space X with metric d, we let C(X) denote the
family of all nonempty compact subsets of X. For metric spaces X, Y , we recall that
a set-valued function on Y is map G : Y → C(X). As with single-valued functions,
one can make precise what it means for a set-valued function to be continuous, upper
semicontinuous (usc), and lower semicontinuous (lsc). We assume that these notions
are familiar to the reader (see, e.g., [1, Chap. 1] and [13, Chap. 3] for details).

We will have occasion to refer to the following well-known proposition (see, e.g.,
[17]), which gives a simple sufficient condition for the lower semicontinuity of a set-
valued function.
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PROPOSITION 3.2. Let X, Y be metric spaces, let G : Y → C(X) be a set-valued
function, and let y0 ∈ Y be such that for every x ∈ G(y0) there exist an open neigh-
borhood U0 of y0 and a continuous function αx : U0 → X such that αx(y0) = x and
αx(y) ∈ G(y) for every y ∈ U0. Then G is lsc at y0.

The subsequent theorem and its corollary summarize the specific results that we
will need concerning the continuity properties of the value function for parametrized
constrained optimization problems. For the proofs, we refer the reader to [1, sec-
tion 1.2] or [2, section 1.4]. (Note that in these references the value function is
referred to as the “marginal function.”)

THEOREM 3.3. Let X, Y be metric spaces, let f : X × Y → R be continuous, let
G :Y → C(X) be a set-valued function, and define φ :Y → R by

φ(y) = min {f(x, y) | x ∈ G(y)}.

Then
(a) G usc ⇒ φ lsc;
(b) G lsc ⇒ φ usc;
(c) if G is continuous, then φ is continuous.
COROLLARY 3.4. Let X, Y, Z be metric spaces with X and Y compact, and let

z̄ ∈ Z be a fixed element. Let f : X × Y → R and g : X × Y → Z be continuous
mappings, and suppose that g has the additional property that for every y ∈ Y there
exists x ∈ X such that g(x, y) = z̄. Then for each fixed y ∈ Y the constrained
minimization problem

minimize
subject to

f(x, y) x ∈ X (y ∈ Y fixed)
g(x, y) = z̄

has a solution. Furthermore, if φ(y) denotes the constrained minimum value, then the
mapping φ : Y → R is lower semicontinuous. In particular, there exists ỹ ∈ Y such
that φ(ỹ) ≤ φ(y) for every y ∈ Y , so min {φ(y) | y ∈ Y } exists.

Proof. Define G : Y → C(X) by G(y) = {x ∈ X | g(x, y) = z̄}, verify G is usc,
and apply the theorem.

4. Continuity of the phase and minimum-phase mappings. The results
of the previous section will now be applied to the study of the continuity properties of
the phase and minimum-phase mappings. First we will show that phase of a unitary
matrix, as defined in (1), is a continuous function of its matrix argument. Next we
will consider the minimum-phase mapping (3) and show that, under very general
conditions, it is an lsc function of frequency. A useful consequence of this lower
semicontinuity is that we can replace “inf” by “min” in the definition (4) of the phase
margin. We then formulate slightly more restrictive conditions which guarantee that
the minimum-phase mapping is a continuous function of frequency.

PROPOSITION 4.1. The phase mapping Π:U(n, C) → [0, π] is continuous.
Proof. The function cos−1 : [−1, 1] → [0, π] is decreasing, so for each ∆ ∈ U(n, C)

we have

Π(∆) = max {cos−1(Re(z∗∆z)) | z ∈ Cn and z∗z = 1} = cos−1(φ(∆)),

where φ :U(n, C) → R is defined by

φ(∆) = min {Re(z∗∆z) | z ∈ Cn and z∗z = 1}.
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Thus to show that Π is continuous, it suffices to show that φ is continuous. Define
mappings f : Cn × U(n, C) → R by f(z, ∆) = Re(z∗∆z) and G : U(n, C) → C(Cn)
by G(∆) = {z ∈ Cn | z∗z = 1}. It is clear that f is continuous. In addition, G is a
constant set-valued function and is obviously continuous. With the above definitions
we have

φ(∆) = min {f(z, ∆) | z ∈ G(∆)},

so the continuity of φ is an immediate consequence of Theorem 3.3(c).
THEOREM 4.2. Let L(s) be a n × n matrix function of s ∈ C whose entries are in

the field of rational functions of s with real coefficients and assume that L(s) satisfies
the following conditions:

(i) L(s) has no poles on the jω axis;
(ii) L(s) is proper in the sense that lims→∞ L(s) = L∞, where L∞ is a real n×n

matrix satisfying det (I + L∞) 6= 0;
(iii) the gain-crossover region

Ω = {ω ∈ R | ∃∆ ∈ U(n, C) such that det (I + L(jω)∆) = 0}
is nonempty. Then the minimum-phase mapping µ :Ω → [0, π] defined by

µ(ω) = min {Π(∆) | ∆ ∈ U(n, C), det (I + L(jω)∆) = 0}
is lsc.

Proof. Let g :U(n, C) × Ω → C be defined by

g(∆, ω) = det (I + L(jω)∆),

where it is understood that we set g(∆, ∞) = det (I +L∞∆) in case ∞ ∈ Ω. Assump-
tion (ii) ensures that g is continuous on its domain U(n, C) × Ω, and this domain is
obviously compact. The definition of Ω guarantees that for each ω ∈ Ω there exists
a ∆ ∈ U(n, C) such that g(∆, Ω) = 0. Moreover, the map f : U(n, C) × Ω → [0, π]
defined by f(∆, ω) = Π(∆) is continuous by Proposition 4.1. For each ω ∈ Ω our
definitions imply that µ(ω) is the minimum value of the constrained optimization
problem

minimize f(∆, ω), ∆ ∈ U(n, C) (ω ∈ Ω fixed),
subject to g(∆, ω) = 0.

Hence µ :Ω → [0, π] is lsc by Corollary 3.4.
We next develop conditions under which the minimum-phase mapping is actually

continuous as a function of frequency. These conditions involve a more subtle analysis
of the singular values of L(jω).

Remark 4.3. Let L(s) be an n × n transfer-function matrix that satisfies the
conditions of Theorem 4.2. By assumption, L(s) has no poles on the jω-axis, so the
matrix function T (s) = L(−js)T L(js) is holomorphic on a domain containing the real
axis s = ω. Furthermore, since the coefficients of the rational entries of L(s) are real,
it is clear that T (s) is Hermitian for real s; i.e., T (ω)∗ = T (ω) for every ω ∈ R. From
[14, Thm. S6.3] or [15, Chap. 2] we infer that there exists an n × n matrix function
P (s) which is holomorphic on a domain containing the real axis s = ω, unitary on
the real axis (i.e., P (ω)∗ = P (ω)−1 for ω ∈ R) and satisfies

(7) P (ω)∗T (ω)P (ω) = diag [λ1(ω), . . . , λn(ω)]
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for every ω ∈ R. In particular, (7) exhibits the (real and nonnegative) eigenvalues,
λi(ω), i = 1, . . . , n, of T (ω) as real-analytic functions of ω. (Note, however, that no
ordering of the eigenvalues is implied by the indexing.) We adopt the usual con-
ventions regarding real analyticity at ω = ∞: λi(ω) is real analytic at ω = ∞ if
and only if λi(1/ω) is real analytic at ω = 0. Since T (ω) is nonnegative definite,
we have λi(ω) ≥ 0 for each i = 1, . . . , n. The singular values of L(jω) are given by
σi(ω) =

√
λi(ω), i = 1, . . . , n (note that these too are not necessarily ordered); conse-

quently, the singular values are real analytic on the open set where they are positive.
It is clear that σi(ω) < 1 ⇐⇒ λi(ω) < 1 and σi(ω) > 1 ⇐⇒ λi(ω) > 1.

DEFINITION 4.4. Let L(s) be an n×n transfer-function matrix having the proper-
ties listed in Theorem 4.2, and let Ω ⊆ R denote its gain-crossover region. A frequency
point ω0 ∈ Ω is said to be

(a) Type I if there exist i, k ∈ {1, . . . , n} such that σi(ω0) < 1 < σk(ω0);
(b) Type II if it is not of Type I, the set of indices I1 = {i ∈ {1, . . . , n} | σi(ω0) =

1} is a proper subset of {1, . . . , n}, and one of the following conditions holds.
(C1) σ(L(jω0)) > 1 and there exists δ > 0 such that σi(ω) ≤ 1 for every i ∈ I1

and ω ∈ (ω0 − δ, ω0 + δ) ∩ Ω.
(C2) σ(L(jω0)) < 1 and there exists δ > 0 such that σi(ω) ≥ 1 for every i ∈ I1

and ω ∈ (ω0 − δ, ω0 + δ) ∩ Ω.
Remark 4.5. (a) A frequency point ω0 ∈ Ω is Type I if and only if the singular

values of L(jω0) are strictly spread across one in the sense that σ(L(jω0)) < 1 <
σ(L(jω0)). Thus, the continuity of the maximum and minimum singular values as
functions of frequency implies that a Type I frequency point ω0 ∈ Ω is an interior
point of Ω. However, it can also be the case that Type II frequency points are interior
points of Ω.

(b) If ω0 ∈ Ω is not Type I, then the set of indices I1 is necessarily nonempty.
This follows directly from the fact that ω0 ∈ Ω ⇐⇒ σ(L(jω0)) ≤ 1 ≤ σ(L(jω0)).

(c) If the transfer function L(jω) has the property that for each ω ∈ Ω at most one
singular value is equal to one, then every ω ∈ Ω that is not Type I will automatically
be Type II.

(d) We refer the reader to Example 4.7 for an example of a transfer function
whose gain-crossover region has an interior point that is neither Type I nor Type II.

THEOREM 4.6. Let L(s) be an n × n matrix function of s ∈ C whose entries are
in the field of rational functions of s with real coefficients. Assume that L(s) satisfies
conditions (i), (ii), and (iii) of Theorem 4.2 and in addition has the property that
every frequency ω in the gain-crossover region Ω is either Type I or Type II. Then the
minimum-phase mapping µ :Ω → [0, π] is continuous.

Proof. In light of Theorem 4.2 it suffices to prove that µ is usc. Recall that for
ω ∈ Ω the minimum-phase mapping µ(ω) is given by (5), where φ(ω) is the solution
of the constrained minimization problem CMPω. Since cos−1 : [−1, 1] → [0, π] is
continuous and decreasing, it is easy to see that µ is usc if and only if φ is usc, so we
will focus on proving the upper semicontinuity of φ on Ω. Let X = {z ∈ Cn | z∗z = 1}
and define maps f̃ , g̃ :X × Ω → R by

f̃(ζ, ω) = ζ∗(L(jω)∗ + L(jω)
)
ζ,

g̃(ζ, ω) = ζ∗L(jω)∗L(jω)ζ.

Referring back to CMPω, we see that the first constraint is incorporated in the defi-
nition of X. Thus, for ω ∈ Ω we have

φ(ω) = min {f̃(ζ, ω) | ζ ∈ X and g̃(ζ, ω) = 1}.
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As in Remark 4.3, we let T (s) = L(−js)T L(js), and we choose an n × n matrix
function P (s) which is holomorphic on a domain containing the real axis s = ω,
unitary on the real axis (i.e., P (ω)∗ = P (ω)−1 for ω ∈ R) and satisfies (7) for every
ω ∈ R. Next we define maps f, g :X × Ω → R by

f(z, ω) = f̃(P (ω)z, ω),
g(z, ω) = g̃(P (ω)z, ω) = z∗P (ω)∗T (ω)P (ω)z.

Observe that since P (ω) diagonalizes T (ω) we can rewrite g(z, ω) as

g(z, ω) =
n∑

i=1

λi(ω)|zi|2,

where z1, . . . , zn are the coordinates of z in Cn. Since for each ω ∈ Ω the unitary
matrix P (ω) is an isometric bijection of the unit sphere X in Cn with itself, it is easy
to see that

φ(ω) = min {f(z, ω) | z ∈ X and g(z, ω) = 1} = min {f(z, ω) | z ∈ G(ω)},

where G :Ω → C(X) is the set-valued function given by

G(ω) = {z ∈ X | g(z, ω) = 1}.

By Theorem 3.3(b) to show that φ is usc, it suffices to show that G is lsc, and for this
we will appeal to the criterion for lower semicontinuity given in Proposition 3.2.

Let ω0 be an arbitrary frequency in Ω and let z0 be an arbitrary point in G(ω0).
We must show that there exist a δ > 0 and a continuous function α : (ω0 − δ, ω0 + δ)∩
Ω → X such that α(ω0) = z0 and α(ω) ∈ G(ω) for every ω ∈ (ω0 − δ, ω0 + δ) ∩ Ω. Let
z0 = (z01, . . . , z0n) ∈ X ⊆ Cn and note that

(8) z0 ∈ G(ω0) ⇐⇒ g(z0, ω0) = 1 ⇐⇒
n∑

i=1

(λi(ω0) − 1)|z0i|2 = 0.

(We have used the fact that
∑n

i=1 |z0i|2 = (z0)∗z0 = 1.) First let us suppose that
there exists an index k ∈ {1, . . . , n} such that λk(ω0) − 1 6= 0 and z0k 6= 0. Then (8)
yields

(λk(ω0) − 1)|z0k|2 = −
∑
i6=k

(λi(ω0) − 1)|z0i|2,

from which we obtain

(9) |z0k|2 = −
∑
i6=k

λi(ω0) − 1
λk(ω0) − 1

|z0i|2 > 0.

Choose δ > 0 small enough so that for ω ∈ (ω0 − δ, ω0 + δ) ∩ Ω the function

Λ(ω) = −
∑
i6=k

λi(ω) − 1
λk(ω) − 1

|z0i|2

is defined and positive. The existence of such a δ follows from (9) and the continuity of
the functions λi(ω), i = 1, . . . , n with respect to ω. In particular, Λ(ω) is continuous
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for ω ∈ (ω0 − δ, ω0 + δ). Choose θ0 ∈ (−π, π] such that z0k = ejθ0 |z0k| and for
ω ∈ (ω0 − δ, ω0 + δ) ∩ Ω and i ∈ {1, . . . , n} define complex-valued functions zi(ω) by

zi(ω) =
{

z0i, i 6= k,
ejθ0

√
Λ(ω), i = k.

Observe that the function zk(ω) is defined and continuous for ω ∈ (ω0 − δ, ω0 + δ)∩Ω
since Λ(ω) > 0 for these values of ω. The functions zi(ω) for i 6= k are obviously
continuous since they are constant. Hence it is easy to see that the function α:
(ω0 − δ, ω0 + δ) ∩ Ω → X defined by

(10) α(ω) =
1√

z(ω)∗z(ω)
z(ω), z(ω) = (z1(ω), . . . , zn(ω)),

is continuous and satisfies α(ω0) = z0 and g(α(ω), ω) = 1 (or equivalently α(ω) ∈
G(ω)) for ω ∈ (ω0 −δ, ω0 +δ). This completes the proof of the lower semicontinuity of
G at the frequency ω0 under the assumption that there exists an index k ∈ {1, . . . , n}
such that λk(ω0) − 1 6= 0 and z0k 6= 0. The reader will note that we have not yet
made use of the assumption that every frequency point in the gain-crossover region
is of Type I or II.

It remains to consider the case where for each i ∈ {1, . . . , n} either λi(ω0)−1 = 0
or z0i = 0. In this case each term in the summation in (8) is zero. We set

I1 =
{
i ∈ {1, . . . , n} | λi(ω0) − 1 = 0

}
, I2 = {1, . . . , n} \ I1.

Observe that since z0 ∈ X ⊆ Cn \ {0}, not all of the coordinates z0i can be zero; thus
I1 6= ∅. On the other hand, the assumption that ω0 is either of Type I or Type II
forces I2 6= ∅. Moreover for i ∈ I2 we have z0i = 0. Equation (8) can be rewritten as∑

i∈I1

(λi(ω0) − 1)|z0i|2 +
∑
i∈I2

(λi(ω0) − 1)|z0i|2 = 0,

and this suggests that we define a real-analytic function h(ω) by

(11) h(ω) =
∑
i∈I1

(λi(ω) − 1)|z0i|2.

Clearly h(ω0) = 0, so the real analyticity of h implies either that ω0 is an isolated
zero of h or that h is identically zero for all ω ∈ R. In either case there exists δ0 > 0
such that h does not change sign on the intervals (ω0 − δ0, ω0] and [ω0, ω0 + δ0); i.e.,
either h(ω) ≤ 0 for every ω ∈ (ω0 − δ0, ω0] or h(ω) ≥ 0 for every ω ∈ (ω0 − δ0, ω0],
with a similar statement for the interval [ω0, ω0 + δ0).

If ω0 is of Type I, then let i, k ∈ I2 be such that σi(ω0) < 1 < σk(ω0). The
continuity of the singular values yields a δ > 0 such that δ ≤ δ0 and ω ∈ (ω0 − δ, ω0 +
δ) ⇒ σi(ω) < 1 < σk(ω); in particular (ω0 − δ, ω0 + δ) ⊆ Ω and λi(ω) − 1 < 0 <
λk(ω)−1 for ω ∈ (ω0−δ, ω0+δ). Since h has constant sign on the interval (ω0−δ, ω0],
we can select an index ` ∈ I2 for which

(12)
1

λ`(ω) − 1
h(ω) ≤ 0 ∀ ω ∈ (ω0 − δ, ω0].

For ω ∈ (ω0 − δ, ω0] ⊆ Ω and i ∈ {1, . . . , n} we then define complex-valued functions
z−
i (ω) by

(13) z−
i (ω) =


z0i, i ∈ I1,
0, i ∈ I2, i 6= `,√

− 1
λ`(ω)−1h(ω), i = `.
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Observe that z−
` (ω) is defined and continuous and has nonnegative real values by (12)

(note, however, that z−
` (ω) fails to have a one-sided derivative at ω0 since h(ω0) = 0).

The remaining functions z−
i (ω) for i 6= ` are constant and thus obviously continuous. If

we define α− : (ω0−δ, ω0] → X by the formula in (10) with the functions zi(ω) = z−
i (ω)

defined in (13), then it is easy to see that α− is continuous and satisfies α−(ω0) = z0
and g(α−(ω), ω) = 1. Since h also has constant sign on the interval [ω0, ω0 + δ),
a similar argument yields a continuous map α+ : Ω ∩ [ω0, ω0 + δ) → X such that
α+(ω0) = z0 and g(α+(ω), ω) = 1. We can then define α : (ω0 − δ, ω0 + δ) → X by

α(ω) =
{

α−(ω), ω0 − δ < ω ≤ ω0,
α+(ω), ω0 ≤ ω < ω0 + δ.

It is evident that α is continuous, α(ω0) = z0, and g(α(ω), ω) = 1 (or equivalently
α(ω) ∈ G(ω)) for every ω ∈ (ω0 − δ, ω0 + δ) ⊆ Ω. Consequently, G is lsc at ω0 if ω0 is
of Type I.

The last case to consider is when ω0 is of Type II. Then one of conditions C1 or
C2 in Definition 4.4(b) holds. For concreteness we will carry out the remainder of
the proof under the assumption that C1 holds (the proof when C2 holds is entirely
analogous). For δ > 0 as given in C1 and for ω ∈ (ω0 − δ, ω0 + δ) ∩ Ω the function h
defined in (11) satisfies h(ω) ≤ 0. Furthermore, C1 yields an ` ∈ I2 such that σ`(ω0) >
1 (in fact just choose ` so that σ`(ω0) = σ(L(jω0))), which implies λ`(ω0)−1 > 0. The
continuity of λ` enables us to shrink δ > 0 if necessary so as to obtain λ`(ω) − 1 > 0
for every ω ∈ (ω0 − δ, ω0 + δ) ∩ Ω. If we define α : (ω0 − δ, ω0 + δ) ∩ Ω → X by the
formula in (10), where the functions zi(ω) = z−

i (ω) are as defined in (13), then once
again α is continuous, α(ω0) = z0, and g(α(ω), ω) = 1; equivalently, α(ω) ∈ G(ω) for
every ω ∈ (ω0 − δ, ω0 + δ) ∩ Ω. Consequently, G is lsc at ω0 if ω0 is of Type II and
the proof is complete.

Examples of systems with a continuous minimum-phase mapping are quite com-
mon; see, e.g., [4, section 7]. The graph of the minimum-phase mapping exhibited
in the indicated reference gives numerical evidence of its continuity. However, conti-
nuity can also be deduced a priori via Theorem 4.6, since this example satisfies the
conditions of Remark 4.5(c).

Example 4.7. For an example where the minimum-phase mapping fails to be con-
tinuous throughout the gain-crossover region, we consider the 3 × 3 transfer function

L(s) =


80κ(s+9)(s+55)
495(s+1)(s+80) 0 0

0 ω2
n

mr(s2+2ζωns+ω2
n) 0

0 0 0.3(s+40)
(s+20)

 ,

where κ = 8.0953 . . . , ωr = 27.6002 . . . (the values are approximate), ζ = .05, and

ωn =
ωr√

1 − 2ζ2
, mr =

1

2ζ
√

1 − ζ2
.

Plots of the singular values of L(jω) and the minimum-phase mapping µ(ω) over the
frequency range 0 ≤ ω ≤ 60 are shown in Figs. 1 and 2, respectively. Observe that
although µ is an lsc function of ω as predicted by Theorem 4.2, µ has a discontinuity
at ω = ωr = 27.6002 . . . . An examination of the graph of the singular values of L(jω)
shows that the frequency ωr is neither Type I nor Type II as specified in Definition 4.4;
note that σ(L(jωr)) < 1, but it is not the case that both of the remaining singular
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)

FIG. 1. Plot of the (base 10) logarithm of the singular values against frequency for the transfer
function in Example 4.7.

FIG. 2. Plot of µ(ω) for the transfer function in Example 4.7.

values are ≥ 1 on an open interval containing ωr, so C2 is violated. While simpler
examples of such transfer functions could be constructed, the above example has the
additional property of being closed-loop stable (and thus conforms to our standing
assumptions).

5. Differentiability of the minimum-phase mapping. We next take up the
question of the differentiability of the minimum-phase mapping µ :Ω → [0, π]. As with
the continuity question discussed in the previous section, it is convenient to express
the minimum-phase mapping in terms of the value function of a parametrized family
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of constrained optimization problems (see equation (5) and CMPω). However, the
constrained optimization problem CMPω is not well suited to handling differentiability
questions, since neither the functional nor the constraints are holomorphic functions of
z or ω. Thus, we resort to the standard technique of converting CMPω to an equivalent
real constrained optimization problem by the process of “decomplexification,” which
makes use of a canonical isomorphism between Cn and R2n. This process is described
in [3], but it will also be reviewed here as there are specific aspects of the structure
of the matrices obtained in the decomplexification process that are essential for our
results. For other results on the differentiability of the value function of parametrized
constrained optimization problems, the reader is referred to [16].

A (column) vector z ∈ Cn has a unique expression as z = u + jv, where u, v are
(column) vectors in Rn. This enables us to define a bijection

Θ:Cn → R2n, Θ(z) =
[

u
v

]
(where z = u + jv).

Indeed, if we view Cn as a real vector space, then Θ is an R-linear isomorphism.
Observe that if x = Θ(z), then z∗z = xT x, where we view x ∈ R2n as a 2n-dimensional
column vector and the superscript T denotes transpose. As is the case with vectors,
a complex matrix M ∈ Cn×n has a unique expression as M = R + jS, where R, S ∈
Rn×n. The linear mapping M = R+jS from Cn into Cn and the bijection Θ together
induce a linear mapping from R2n into R2n, which is represented by the matrix

(14) MΘ =
[

R −S
S R

]
∈ R2n×2n.

It will be convenient to let R2n×2n
Θ denote the subset of R2n×2n consisting of those

matrices M such that M = MΘ for some M ∈ Cn×n. One easily checks that the
correspondence M 7→ MΘ of Cn×n into R2n×2n

Θ is an isomorphism which preserves
matrix sums and products. Of special interest is the matrix

J =
[

0 −In

In 0

]
∈ R2n×2n

(In is the n × n identity matrix), which corresponds to the matrix jIn ∈ Cn×n. It
is clear that J T = −J and J 2 = −I2n. Moreover, MJ = J M for every matrix
M ∈ R2n×2n

Θ (in fact M ∈ R2n×2n is in R2n×2n
Θ if and only if M commutes with J ).

It is also evident that M ∈ Cn×n is Hermitian if and only if its associated matrix
MΘ ∈ R2n×2n

Θ is symmetric. We use R2n×2n
Θ,sym to denote the set of symmetric matrices

in R2n×2n
Θ .
Another useful fact about matrices in R2n×2n

Θ is the following. If λ is a real
eigenvalue of a complex matrix M = R + jS ∈ Cn×n, then λ is also an eigenvalue
of the corresponding matrix MΘ. Moreover, if x ∈ R2n is a (nonzero) eigenvector of
MΘ corresponding to λ, then it is easy to see that J x is also an eigenvector of MΘ
corresponding to λ and J x is orthogonal to x; i.e., xT J x = 0. It follows that every
real eigenvalue of a matrix M ∈ R2n×2n

Θ must have algebraic multiplicity greater than
one. A more precise argument shows that every real eigenvalue has even multiplicity.

It is now a routine matter to reformulate the complex constrained optimization
problem CMPω as a real constrained optimization problem. For each frequency ω in
the gain-crossover region Ω we let

(15) A(ω) =
(
L(jω)∗ + L(jω)

)
Θ ∈ R2n×2n

Θ,sym , B(ω) =
(
L(jω)∗L(jω)

)
Θ ∈ R2n×2n

Θ,sym
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denote the real symmetric matrices induced by the isomorphism Θ. Observe that
B(ω) is positive semidefinite, its eigenvalues coincide with those of L(jω)∗L(jω), and
the multiplicity of each eigenvalue of B(ω) is twice that of the multiplicity of the
corresponding eigenvalue of L(jω)∗L(jω). In particular, the eigenvalues of B(ω) are
precisely the squares of the singular values of L(jω), and consequently the eigenvalues
of B(ω) are spread across one if and only if the singular values of L(jω) are spread
across one. Since the entries of L(s) are rational functions of s and, by assumption,
have no poles on the jω-axis, the entries of A(ω) and B(ω) will be everywhere defined,
rational functions of ω (i.e., all of their poles are complex). In particular, the entries
of A(ω) and B(ω) are globally defined, real-analytic functions of ω ∈ R.

The real constrained optimization problem equivalent to CMPω then takes the
form

(RCMPω)
minimize xT A(ω)x, x ∈ R2n (ω ∈ Ω fixed)

subject to
{

xT x = 1,
xT B(ω)x = 1.

It is evident that the minimum value φ(ω) of RCMPω coincides with the minimum
value of CMPω, so we still have the formula (5) for the minimum-phase mapping.
Thus, µ will be differentiable at every interior point ω0 of the gain-crossover region Ω
where φ′(ω0) exists and |φ(ω0)| < 2. These considerations motivate us to first take up
the differentiability with respect to ω of the minimum value φ(ω) of the constrained
optimization problem RCMPω.

Our main theorem on the differentiability of the minimum value φ(ω) of RCMPω
can be stated for slightly more general situations than described above. Specifically,
it is not necessary to assume that the matrix functions A(ω) and B(ω) in R2n×2n

Θ,sym are
directly related to a transfer function L(s) via the decomplexification process. Thus
the differentiability theorem itself will not make any reference to transfer functions,
but its relevance to transfer functions will be explained in Corollary 5.5. Further-
more, to make the assumptions in the differentiability theorem palatable, we will first
make a few comments about the necessary conditions that apply to the constrained
optimization problem RCMPω.

Fix ω0 in the gain-crossover region Ω and let φ(ω0) be the solution to RCMPω0;
that is, let

φ(ω0) = min {xT A(ω0)x | xT x = 1, xT B(ω0)x = 1}.

Since the minimum is achieved, there exists x0 ∈ R2n such that φ(ω0) = (x0)T A(ω0)x0
and (x0)T x0 = (x0)T B(ω0)x0 = 1. If the constraints are independent in the sense that
the vectors x0 and B(ω0)x0 are linearly independent, then the Lagrange multiplier
theorem implies that there exist real numbers ξ0, η0 such that both the first-order
condition

(FO)
(A(ω0) − ξ0I − η0B(ω0)

)
x0 = 0

(I denotes the 2n × 2n identity matrix) and the second-order condition

(SO) xT
(A(ω0)−ξ0I−η0B(ω0)

)
x ≥ 0 ∀ x ∈ R2n such that xT x0 = xT B(ω0)x0 = 0

are satisfied. Furthermore, under these assumptions the authors have shown in [6]
that the strengthened version of the second-order condition

(SSO) xT
(A(ω0) − ξ0I − η0B(ω0)

)
x ≥ 0 ∀ x ∈ R2n
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must hold for this problem. Conversely, if x0 and B(ω0)x0 are linearly independent
vectors that satisfy (x0)T x0 = (x0)T B(ω0)x0 = 1 and if ξ0 and η0 are real numbers
such that (FO) and (SSO) hold, then it is easy to see that φ(ω0) = ξ0 + η0.

The following technical lemma will be used in the proof of the differentiability
theorem. The proof of the lemma is straightforward and thus is omitted (a simple
proof can be built around Corollary 3.4).

LEMMA 5.1. Let (α, β) ⊆ R be an open interval, and let η, ν : (α, β) → Rq and
P : (α, β) → Rq×q be continuous maps. Suppose that for some ω0 ∈ (α, β) we have

xT P (ω0)x > 0 ∀ x ∈ Rq \ {0} such that xT η(ω0) = xT ν(ω0) = 0.

Then there exists δ > 0 such that (ω0 − δ, ω0 + δ) ⊆ (α, β) and for every ω ∈ (ω0 −
δ, ω0 + δ) we have

xT P (ω)x > 0 ∀ x ∈ Rq \ {0} such that xT η(ω) = xT ν(ω) = 0.

THEOREM 5.2. Let (α, β) ⊆ R be an open interval, and let

A, B : (α, β) → R2n×2n
Θ,sym

be Ck, 1 ≤ k ≤ ∞, (resp., real-analytic) functions such that B(ω) is positive semidef-
inite and its eigenvalues are spread across one for each ω ∈ (α, β). Define φ : (α, β) →
R by

φ(ω) = min {xT A(ω)x | xT x = xT B(ω)x = 1}.

Let ω0 ∈ (α, β) be such that there exists x0 ∈ R2n satisfying
(i) (x0)T x0 = (x0)T B(ω0)x0 = 1;
(ii) x0 and B(ω0)x0 are linearly independent in R2n;
(iii) there exist real numbers ξ0 and η0 such that (FO) is satisfied and

xT
(A(ω0) − ξ0I − η0B(ω0)

)
x > 0 ∀ x ∈ R2n \ {0} such that xT x0 = xT J x0 = 0.

Then φ(ω0) = (x0)T A(ω0)x0 = ξ0 + η0 and φ is Ck (resp., real analytic) in a
neighborhood of ω0.

Remark 5.3. The hypotheses of Theorem 5.2 are quite reasonable in the sense
that if x0 ∈ R2n is such that φ(ω0) = (x0)T A(ω0)x0 and assumptions (i) and (ii)
are satisfied, then by the discussion preceding Lemma 5.1 there will necessarily exist
scalars ξ0, η0 such that the necessary conditions (FO) and (SSO) hold, so in particular
the matrix

(16) A(ω0) − ξ0I − η0B(ω0)

is positive semidefinite. Assumption (iii) demands more than (SSO) as it requires
that the matrix (16) has a nontrivial null space of dimension 2 and is positive definite
on the orthogonal complement of its null space. As was noted previously, the min-
imum positive dimension of the null space of (16) is 2 (the algebraic and geometric
multiplicities of the eigenvalue 0 coincide since (16) is real symmetric).

Proof of Theorem 5.2. Define a mapping F :R2n × R × R × R × (α, β) → R2n ×
R × R × R by

F (x, ξ, η, ζ, ω) =
(
(A(ω) − ξI − ηB(ω) − ζJ )x, xT x, xT B(ω)x, xT

0 J x
)
.
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It is clear that F is Ck (resp., real analytic) with respect to the group of variables
x, ξ, η, ζ, ω, and we have

F (x0, ξ0, η0, 0, ω0) = (0, 1, 1, 0).

(Note that (x0)T J x0 = 0 by the skew symmetry of J .) If we fix ω at the value ω0
and let

DF (x0, ξ0, η0, 0, ω0) :R2n+3 → R2n+3

denote the Fréchet derivative of the map

(x, ξ, η, ζ) 7→ F (x, ξ, η, ζ, ω0)

at (x0, ξ0, η0, 0), then this Fréchet derivative has a representation as a (2n+3)×(2n+3)
matrix of the form

(17) DF (x0, ξ0, η0, 0, ω0) =


A(ω0) − ξ0I − η0B(ω0) −x0 −B(ω0)x0 −J x0

2(x0)T 0 0 0
2(x0)T B(ω0) 0 0 0

xT
0 J 0 0 0

 .

(We use the convention that vectors x ∈ R2n are viewed as 2n-dimensional column vec-
tors in the matrix representation.) We claim that the linear map DF (x0, ξ0, η0, 0, ω0)
is a linear isomorphism of R2n+3 with itself. To prove this it suffices to prove that
DF (x0, ξ0, η0, 0, ω0) is one to one. Indeed, if [x, ξ, η, ζ]T ∈ R2n+3 is in the null space
of the matrix (17), then

(18)

(A(ω0) − ξ0I − η0B(ω0)
)
x − ξx0 − ηB(ω0)x0 − ζJ x0 = 0,

(x0)T x = 0, (x0)T B(ω0)x = 0, (x0)T J x = 0.

Multiply the first equation on the left by xT and use the remaining equations, along
with the symmetry of B(ω0) and the skew symmetry of J , to obtain

xT
(A(ω0) − ξ0I − η0B(ω0)

)
x = 0.

Since xT x0 = xT J x0 = 0, assumption (iii) implies that x = 0. Using this in the first
of the equations (18), we obtain

(19) ξx0 + ηB(ω0)x0 + ζJ x0 = 0.

Multiplication of (19) on the right by xT
0 J T = −xT

0 J results in

(20) −ξxT
0 J x0 − ηxT

0 J B(ω0)x0 − ζxT
0 J 2x0 = 0.

It has already been pointed out that J is skew symmetric, and we note in addition
that J B(ω0) is skew symmetric, since B(ω0) is symmetric and commutes with J . The
skew symmetry of these matrices yields xT

0 J x0 = xT
0 J B(ω0)x0 = 0, so (20) becomes

0 = −ζxT
0 J 2x0 = ζxT

0 x0 = ζ,

since J 2 = −I2n and x0 satisfies the constraint (i). Put ζ = 0 in (19) and use the
assumed linear independence of x0 and B(ω0)x0 to conclude that ξ = η = 0. Hence
the derivative DF (x0, ξ0, η0, 0, ω0) is a linear isomorphism of R2n+3 with itself. By
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the implicit function theorem, there exists δ1 > 0 such that (ω0 − δ1, ω0 + δ1) ⊆ (α, β)
and there exist Ck (resp., real-analytic) functions

σ : (ω0 − δ1, ω0 + δ1) → R2n, ξ, η, ζ : (ω0 − δ1, ω0 + δ1) → R,

which satisfy σ(ω0) = x0, ξ(ω0) = ξ0, η(ω0) = η0, ζ(ω0) = 0 and

(21) F (σ(ω), ξ(ω), η(ω), ζ(ω), ω) = (0, 1, 1, 0) ∀ ω ∈ (ω0 − δ1, ω0 + δ1).

For fixed ω ∈ (ω0 − δ, ω0 + δ) equation (21) yields(A(ω) − ξ(ω)I − η(ω)B(ω) − ζ(ω)J )
σ(ω) = 0,(22a)

σ(ω)T σ(ω) = 1,(22b)
σ(ω)T B(ω)σ(ω) = 1.(22c)

We claim that ζ(ω) = 0 for every ω ∈ (ω0 − δ1, ω0 + δ1). To see this note that
equation (22a) yields

(23)
(A(ω) − ξ(ω)I − η(ω)B(ω)

)
σ(ω) = ζ(ω)J σ(ω).

Apply σ(ω)T J T to both sides of (23) to get

(24) σ(ω)T J T
(A(ω) − ξ(ω)I − η(ω)B(ω)

)
σ(ω) = ζ(ω)σ(ω)T J T J σ(ω).

Since ||J σ(ω)|| = ||σ(ω)|| = 1, the right-hand side of (24) clearly equals ζ(ω). Fur-
thermore, since J is skew symmetric and commutes with the real-symmetric matrix

(25) A(ω) − ξ(ω)I − η(ω)B(ω),

it follows that J T (A(ω)−ξ(ω)I −η(ω)B(ω)) is skew symmetric, whence the left-hand
side of (24) is 0. Thus ζ(ω) = 0. Equation (23) now takes the form

(26)
(A(ω) − ξ(ω)I − η(ω)B(ω)

)
σ(ω) = 0.

Multiplying (26) by J and using the fact that J commutes with (25), we also obtain

(27)
(A(ω) − ξ(ω)I − η(ω)B(ω)

)J σ(ω) = 0.

By assumption (iii) and Lemma 5.1 there exists δ2 > 0 such that (ω0 − δ2, ω0 +
δ2) ⊆ (α, β) and for ω ∈ (ω0 − δ2, ω0 + δ2) we have

(28)
xT

(A(ω) − ξ(ω)I − η(ω)B(ω)
)
x > 0 ∀ x ∈ R2n \ {0} such that

xT σ(ω) = xT J σ(ω) = 0.

For δ = min {δ1, δ2} and for ω ∈ (ω0 − δ, ω0 + δ), equations (26) and (27) show that
zero is an eigenvalue of the real-symmetric matrix (25) and σ(ω), J σ(ω) are corre-
sponding orthogonal, unit-length eigenvectors. If we extend the set {σ(ω), J σ(ω)} to
an orthonormal basis of R2n consisting of eigenvectors of the matrix (25), then (28)
implies that the remaining 2n−2 eigenvalues of (25) (each eigenvalue listed as often as
its multiplicity indicates) are positive. We conclude that for every ω ∈ (ω0 −δ, ω0 +δ)

xT
(A(ω) − ξ(ω)I − η(ω)B(ω)

)
x ≥ 0 ∀ x ∈ R2n,
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or equivalently

(29) xT A(ω)x ≥ ξ(ω)xT x + η(ω)xT B(ω)x ∀x ∈ R2n.

In particular, if x ∈ R2n satisfies xT x = xT B(ω)x = 1, then (29) yields

(30) xT A(ω)x ≥ ξ(ω) + η(ω).

Furthermore, if we multiply equation (26) on the right by σ(ω)T and make use of
(22b) and (22c), we obtain

(31) σ(ω)T A(ω)σ(ω) = ξ(ω) + η(ω).

From (30) and (31) we infer that

φ(ω) = min {xT A(ω)x | xT x = xT B(ω)x = 1} = ξ(ω) + η(ω).

Consequently, φ : (ω0 − δ, ω0 + δ) → R is Ck (resp., real analytic), since the same is
true of the functions ξ and η. This completes the proof.

The following example demonstrates that we need some sort of strengthening of
the basic necessary conditions (FO) and (SSO), such as assumption (iii) of Theo-
rem 5.2, if we are to expect differentiability of φ.

Example 5.4. Consider the parametrized constrained optimization problem

minimize 2ω(x1x3 + x4x6) = xT A(ω)x,

where ω ∈ R, x = col [x1, x2, x3, x4, x5, x6] ∈ R6 and

A(ω) =
[

A(ω) 03×3
03×3 A(ω)

]
with A(ω) =

 0 0 ω
0 0 0
ω 0 0


subject to the constraints xT x = xT B(ω)x = 1, where B(ω) is the constant 6 × 6
diagonal matrix

B(ω) = diag [2, 1, 0, 2, 1, 0].

The matrix functions A(ω) and B(ω) are evidently real analytic and take values in
R6×6

Θ,sym. Elementary computations show that

φ(ω) = min {xT A(ω)x | xT x = xT B(ω)x = 1} = −|ω|,

so φ fails to be differentiable at ω = 0. One can readily see that this example fails to
satisfy condition (iii) of Theorem 5.2.

We conclude by applying Theorem 5.2 to the specific case of the minimum-phase
mapping of a multivariable control system.

COROLLARY 5.5. Let L(s) be an n × n matrix function of s ∈ C whose entries
are in the field of rational functions of s with real coefficients. Assume that L(s)
satisfies conditions (i), (ii), and (iii) of Theorem 4.2, and let ω0 be a frequency in the
gain-crossover region Ω such that

(i) I − L(jω0)∗L(jω0) is invertible (equivalently, one is not an eigenvalue of
L(jω0)∗L(jω0)),
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(ii) all of the eigenvalues of the matrix

(32)
(
L(jω0)∗ + L(jω0) − φ(ω0)L(jω0)∗L(jω0)

)(
I − L(jω0)∗L(jω0)

)−1

have multiplicity one, where φ(ω0) is the minimum value of the constrained optimiza-
tion problem CMPω (or, equivalently, RCMPω) with ω = ω0.

Then ω0 is an interior point of Ω and the minimum-phase mapping µ :Ω → [0, π]
is real analytic on some open subinterval of Ω containing ω0.

Proof. Observe that (i) forces the singular values of L(jω0) to be strictly spread
across one, so ω0 is a Type I frequency point as specified in Definition 4.4.(a). Thus ω0
is an interior point of Ω (cf. Remark 4.5.(a)), and continuity of µ in a neighborhood of
ω0 is assured by Theorem 4.6. Let A(ω) and B(ω) be as defined in (15) and for ω ∈ Ω
let φ(ω) be the common minimum value of the associated constrained optimization
problems CMPω and RCMPω. The eigenvalues of B(ω) are real and nonnegative,
and coincide with the eigenvalues of L(jω)∗L(jω). Note, however, that the algebraic
multiplicity of each eigenvalue of B(ω) is twice that of the corresponding eigenvalue
of L(jω)∗L(jω). In particular, one is not an eigenvalue of B(ω0). By continuity of
the maximum and minimum eigenvalues of B(ω) as functions of ω, we can find an
open interval (α, β) ⊆ Ω such that ω0 ∈ (α, β) and the eigenvalues of B(ω) are spread
across one for every ω ∈ (α, β).

Choose x0 ∈ R2n such that xT
0 x0 = xT

0 B(ω0)x0 = 1 and φ(ω0) = xT
0 A(ω0)x0.

The existence of x0 is guaranteed because the minimum value of RCMPω0 is achieved
on the constraint set. We claim that vectors x0 and B(ω0)x0 must be linearly inde-
pendent. For otherwise, there exists a real scalar λ such that B(ω0)x0 = λx0 (i.e., λ
is an eigenvalue of B(ω0)). But then the constraints on x0 yield

1 = xT
0 B(ω0)x0 = xT

0 (λx0) = λxT
0 x0 = λ,

which contradicts the fact that one is not an eigenvalue of B(ω0).
Since x0 and B(ω0)x0 are linearly independent, we can invoke the standard nec-

essary conditions for RCMPω0 discussed just prior to the statement of Lemma 5.1.
Thus, there exist real numbers ξ0, η0 such that (FO) and (SSO) are satisfied. Fur-
thermore φ(ω0) = ξ0 + η0. Condition (FO) says that zero is an eigenvalue of the
matrix

(33) A(ω0) − ξ0I − η0B(ω0),

and from the structure of this matrix we know that the algebraic multiplicity of
the eigenvalue zero must be even. Moreover, J x0 is a second linearly independent
eigenvector of (33) corresponding to zero.

Let N0 ⊆ R2n denote the null space of the matrix (33). Then {x0, J x0} ⊆ N0,
and we claim that

(34) N0 = span {x0, J x0}.

Since dimN0 ≥ 2, to show (34) it suffices to show that dimN0 ≤ 2. Using the equation
φ(ω0) = ξ0 + η0, we obtain

x ∈ N0 ⇔ (A(ω0) − ξ0I − (φ(ω0) − ξ0)B(ω0)
)
x = 0

⇔ (A(ω0) − φ(ω0)B(ω0) − ξ0(I − B(ω0))
)
x = 0

⇔ [(A(ω0) − φ(ω0)B(ω0)
)
(I − B(ω0))−1 − ξ0I

]
(I − B(ω0))x = 0.
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Observe that I − B(ω0) is invertible since one is not an eigenvalue of B(ω0) by as-
sumption. It follows that ξ0 is an eigenvalue of the matrix

(35)
(A(ω0) − φ(ω0)B(ω0)

)
(I − B(ω0))−1

and I − B(ω0) sets up a linear isomorphism between N0 and the eigenspace of (35)
corresponding to the eigenvalue ξ0. From the formulas in (15) it is clear that the
matrix (35) corresponds to the matrix (32) under the decomplexification isomorphism
Θ. Since the eigenvalues of (32) are all of (algebraic) multiplicity 1 by assumption,
we infer from that all real eigenvalues of (35) have algebraic multiplicity 2. Hence
the dimension of eigenspace of (35) corresponding to ξ0, also known as the geometric
multiplicity of ξ0, is at most two. Consequently, dim N0 ≤ 2 and we obtain (34).

From (SSO) and (34), we deduce that any eigenvalue of (33) that corresponds to
an eigenvector orthogonal to N0 must be positive, and thus (33) is positive definite on
the orthogonal complement of N0. Theorem 5.2 then implies that φ is real analytic
in some open subinterval of Ω containing ω0.

The formula (5) will immediately yield the real analyticity of the minimum-phase
mapping µ in a neighborhood of ω0 once we know that |φ(ω0)| < 2 (since cos−1 is real
analytic on the open interval (−1, 1)). Let z0 ∈ Cn be such that Θ(z0) = x0. Then

φ(ω0) = xT
0 A(ω0)x0 ⇒ φ(ω0) = (z0)∗L(jω0)∗z0 + (z0)∗L(jω0)z0

and

xT
0 x0 = xT

0 B(ω0)x0 = 1 ⇒ (z0)∗z0 = (z0)∗L(jω0)∗L(jω0)z0 = 1,

so that ‖z0‖ = ‖L(jω0)z0‖ = 1. The Cauchy–Schwarz inequality yields

|(z0)∗L(jω0)z0| ≤ ‖z0‖ ‖L(jω0)z0‖ = 1,

so it follows that |φ(ω0)| = 2 if and only if equality holds in the Cauchy–Schwarz
inequality. This in turn will hold if and only if both L(jω0)z0 and L(jω0)∗z0 are
multiples of z0; i.e., L(jω0)z0 = λz0 and L(jω0)∗z0 = ρz0 for some λ, ρ ∈ C. However,
this would give

1 = (z0)∗L(jω0)∗L(jω0)z0 = (λz0)∗(λz0) = |λ|2(z0)∗z0 = |λ|2,

so |λ| = 1. Similarly, |ρ| = 1. We infer that

L(jω0)∗L(jω0)z0 = L(jω0)∗(λz0) = λρz0,

so λρ is a eigenvalue of L(jω0)∗L(jω0) of modulus 1. Since all eigenvalues of the
matrix L(jω0)∗L(jω0) are real and nonnegative, we obtain λρ = 1, which contradicts
the assumption that one is not an eigenvalue of L(jω0)∗L(jω0). Thus |φ(ω0)| < 2 and
the proof of the corollary is complete.
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Abstract. Optimization problems involving an infinite number of constraints are considered.
This paper presents a general stochastic outer approximations method which incorporates mecha-
nisms for active search of relevant constraints and for dropping of irrelevant constraints. The method
extracts the characteristic features of several stochastic outer approximations algorithms suggested
by Wardi [J. Optim. Theory Appl., 56 (1988), pp. 285–311; J. Optim. Theory Appl., 64 (1990), pp.
615–640] and furthermore develops the approach to get advantages of the Eaves–Zangwill scheme.
Similarly to Gonzaga and Polak [SIAM J. Control Optim., 17 (1979), pp. 477–493] the method
is based on the use of quasi-optimality functions satisfying some general unrestricted assumptions.
These functions are usually employed in the stopping criteria of numerical techniques for solving
simpler problems. It is shown that the method’s trajectories almost surely converge to the quasi-
optimal set. Following the proposed approach a stochastic algorithm for solving the approximation
problem is constructed and studied.

The proposed general method can be considered as a developed Eaves–Zangwill method applying
the multistart technique at each iteration for the search of relevant constraints’ parameters.

Key words. outer approximations methods, stochastic programming, multistart method, semi-
infinite programming problem, approximation problem, global optimization
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1. Introduction. Optimization problems involving continua of constraints ap-
pear in different areas of applications (see, for example, the conference proceedings
edited by Hettich [9] and Fiacco and Kortanek [7]). A typical problem with an infinite
number of constraints is the semi-infinite programming problem

sip: f(x) → min
x

such that (s.t.) g(x, y) ≤ 0 ∀y ∈ Y 0,

x ∈ X0,

where f(·) and g(·, ·) are assumed to be continuously differentiable on a neighborhood
of X0×Y 0, X0 ⊂ <k and Y 0 ⊂ <l are convex and compact and <k is the k-dimensional
real space.

There are various numerical techniques for solving problems with continua of
constraints (see, for instance, [9, 10, 8, 17, 4, 26, 27, 28]; among them outer approxi-
mations methods are of great importance.

The outer approximations methods are intended to solve a problem

P0 : find x ∈ X 0
opt,

where X 0
opt has a very complicated description, e.g., for the semi-infinite programming
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problem X 0
opt = {x ∈ X 0 | f(x) = minx′∈X 0 f(x′)}, where the feasible set X 0 is as

follows:

X 0 = {x ∈ X0 | g(x, y) ≤ 0 ∀y ∈ Y 0}.

The approach is to substitute for P0 a sequence Pn of approximating problems

Pn : find x ∈ X n
opt,

where X n
opt has relatively simple descriptions, e.g., for the semi-infinite programming

problem

sip.Pn: find x ∈ X n
opt,

X n
opt = {x ∈ Xn | f(x) = min

x′∈Xn

f(x′)},

where the feasible set Xn is defined by a finite set of inequalities, i.e.,

Xn = {x ∈ X0 | g(x, y) ≤ 0 ∀y ∈ Yn}, | Yn |< +∞
(| Yn | denotes the cardinality of Yn), n = 1, 2, . . .. Consequently solving the problems
Pn, n = 1, 2, . . ., we get a trajectory {xn} which is intended to converge to the optimal
set of the original problem P0.

The pioneer works in the outer approximations methods [2, 14, 15], provided the
monotonic growth of the descriptions of X n

opt, n = 1, 2, . . . (e.g., for sip Y1 ⊂ Y2 ⊂ · · ·).
And unfortunately in all these algorithms the complexity of the description of X n

opt

(i.e., | Yn |) grew rapidly with n, and quite quickly the problems Pn, n = 1, 2, . . . ,
become almost as difficult as the original problem P0. To avoid this disadvantage
Topkis [24] and Eaves and Zangwill [5] proposed special adaptive rules for forming
X n

opt, n = 1, 2, . . ., involving constraints-dropping schemes which broke the monotonic
growth of the descriptions of X n

opt, n = 1, 2, . . .. This approach has been developed
by Hogan [13] and Gonzaga and Polak [8]. Heunis [12] suggested employing Monte
Carlo simulations for forming simpler problems; this idea later was refined by Wardi
[26, 27] via constraints-dropping schemes for reducing the size of the constraint set.

In application to the semi-infinite programming problem the main points of adap-
tive rules for forming Yn+1 at the nth iteration of an outer approximations method
are as follows.

Adding of Relevant Constraints.
Obtain yn

1 , . . . , yn
Sn

∈ Y 0 such that xn does not approach the optimal set of
the problem

sip.Pn : f(x) → min
x

s.t. g(x, y) ≤ 0 ∀y ∈ Yn ∪ {yn
1 , . . . , yn

Sn
}.

Add yn
1 , . . . , yn

Sn
to Yn to form Y n.

Dropping of Irrelevant Constraints.
Drop some points from Y n to extract a subset ∆Yn ⊂ Y n such that the con-

straints

g(x, y) ≤ 0 ∀y ∈ ∆Yn

are relevant at xn with respect to the problem sip.Pn.
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Then drop some sets from {∆Yi, i = 1, . . . , n} to form

Yn+1 =
⋃

j∈Jn

∆Yj , Jn ⊂ {1, . . . , n}.

The following are approaches to the search of relevant constraints.
SCHEME AS (active search [5, 8]).
Compute yn

1 as an approximate solution of the inner maximization problem

sip.J Pn : g(xn, y) → max
y∈Y

.

(Then yn
2 , . . . , yn

Sn
may be chosen arbitrarily.)

SCHEME RS (passive random search [26, 27]).
Step 1. Set i := 0.
Step 2. Set i := i + 1.
Step 3. Determine yn

i by using the uniform probability distribution on
Y 0.
If an optimality condition of the problem

f(x) → min
x

s.t. g(x, y) ≤ 0 ∀y ∈ Yn ∪ {yn
1 , . . . , yn

i }
is not sufficiently violated at xn, then go to Step 2.
Else go to Step 4.

Step 4. Set

Sn := i,

Y n := Yn ∪ {yn
1 , . . . , yn

Sn
},

and exit.
Scheme AS is quite effective in the case when the inner problems are unimodal, but

if they are not, there exist only effective descent algorithms to obtain a local maximum
(or a stationary point) of sip.J Pn. Thus, the execution of an outer approximations
method using Scheme AS needs to apply a global optimization technique at each
iteration and becomes too laborious. On the other hand it is evident that if the
dimension of Y 0 is not very small, methods using Scheme RS cannot be effective
because the parameters drawn by the uniform probability distribution on Y 0 are not
essentially relevant. To achieve a balance between simplicity of the execution and the
relevance of the outget constraints we extend Wardi’s scheme as follows.

SCHEME RS.ACTIV (activated random search).
Step 1. Set i := 0.
Step 2. Set i := i + 1.
Step 3. Determine yn

i by using the uniform probability distribution on
Y 0.
Apply a local descent method starting with yn

i to obtain a local
maximum yn,∗

i of sip.J Pn.
If an optimality condition of the problem

f(x) → min
x

s.t. g(x, y) ≤ 0 ∀y ∈ Yn ∪ {yn
1 , yn,∗

1 , . . . , yn
i , yn,∗

i }
is not sufficiently violated at xn, then go to Step 2.
Else go to Step 4.
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Step 4. Set

Sn := i,

Y n := Yn ∪ {yn
1 , yn,∗

1 , . . . , yn
Sn

, yn,∗
Sn

}

and exit.
In the present paper we consider an outer approximations method using Scheme

RS.ACTIV for the search of relevant parameters to form approximative problems
Pn, n = 1, 2, . . . . The constructed method possesses the guaranteed convergence
properties of Wardi’s algorithms (i.e., of the algorithms based on Scheme RS), and
the method’s computational efforts needed to obtain xn, n = 1, 2, . . ., are relatively
inexpensive. At the same time the practical convergence rate of our method often
appears to be similar to the rates of the methods based on Scheme AS which compute
trajectories {xn} in a much more laborious way.

In section 2 the master method for solving the general problem P0 is constructed.
The method employs the activated random search scheme RS.ACTIV for forming ap-
proximative problems Pn, n = 1, 2, . . ., and it analyzes these problems with the use of
a quasi-optimality function which is supposed to satisfy some general unrestricted as-
sumptions. Examples of appropriate quasi-optimality functions for the semi-infinite
programming problem and the problem of solving a system with continuum of in-
equalities are considered in section 3.

We call the proposed master method (using Scheme RS.ACTIV) the activated
method, in contrast to the similar method using the nonactivated Scheme RS, which
is called the standard method. (Note that the standard method directly generalizes
Wardi’s algorithms.) The efficiency of the activation is explored in section 4, where we
consider realizations of these methods for solving the global optimization problem. It
appears that in this case the standard method becomes the pure random search global
optimization algorithm and the activated method is an algorithm of the well-known
multistart method. The advantages of the multistart method over the pure random
search are evident.

In sections 5 and 6 the convergence theorem is proven. It is shown that trajectories
of the master method almost surely converge to the quasi-optimal set of the considered
general problem P0.

In section 7 a version of the master method for solving the approximation problem
is constructed and studied. Numerical examples are presented in section 8.

For the reader’s convenience we provide a list of notation.
Let

N := {1, 2, . . .},

<1
+ = {x ∈ <1 | x ≥ 0},

Bδ(x) = {x′ ∈ <k |‖ x′ − x ‖< δ}, δ > 0.

We denote by M(Y 0) the set of all subsets of Y 0 ⊂ <k; Mc(Y 0) and Mf (Y 0)
denote the set of all compact subsets and the set of all finite subsets, respectively. It
is obvious that

Mf (Y 0) ⊂ Mc(Y 0) ⊂ M(Y 0).
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For any Y, Y ′ ∈ Mc(Y 0) define

ρ(Y, Y ′) := max
y∈Y

min
y∈Y ′

‖ y − y′ ‖,

h(Y, Y ′) := max(ρ(Y, Y ′), ρ(Y ′, Y )).

h(Y, Y ′) is said to be the Hausdorff distance between Y and Y ′.
Let {xn} be a bounded sequence, xn ∈ <k, n = 1, 2, . . . , the set of all limit points

of {xn} is denoted by lt{xn}. We say that {xn} converges to C ⊂ <k if

lt{xn} ⊂ C.

For a set C ⊂ <k we denote by KC(x) the tangent cone at a point x ∈ C; let
conv C and C∗ denote the convex hull and the polar of C, respectively.

Consider the constrained optimization problem

opt: f(x) → min

s.t. gi(x) ≤ 0, i = 1, . . . , m,

x ∈ X0,

where f(·), gi(·), i = 1, . . . , m, are assumed to be locally Lipschitz continuous on <k,
the optimal set Xopt is assumed to be nonempty, and X0 ∈ <k is closed and convex.

Let ∂f(x) denote the set of all generalized gradients (in the sense of Clarke [3])
of f(·) at x ∈ <k.

It is known [3] that for every x ∈ Xopt satisfying the constraints qualification

conv
⋃

i: gi(x)=0

∂gi(x) + K∗
X0(x) 3 0

(when gi(x) 6= 0, i = 1, . . . , m, we formally suppose that this constraints qualification
holds) the following optimality conditions hold:

there exist λ1, . . . , λs ≥ 0, s ≤ k + 1, s.t.

(1.1) ∂f(x) +
s∑

i=1

λi ∂gi(x) + K∗
X0 3 0,

λi gi(x) = 0, i = 1, . . . , s.

This fact provides a number of corollaries on the first-order necessary optimality
conditions for various optimization problems, e.g., for the semi-infinite programming
problem, the minimax problem, the problem of solving a system of inequalities, etc.
(See [18, 6, 3].) In the course of the present paper we shall use some of these results
without specially referring to the sources.

For any f(·) : X → <1 we denote

Arg min
x∈X

f(x) := {x ∈ X | f(x) = min
x′∈X

f(x′)};

arg minx∈X f(x) denotes an arbitrary element of the set Arg minx∈X f(x). Similarly
we define Arg maxx∈X f(x) and arg maxx∈X f(x).
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For a convex and closed X ⊂ <k the orthogonal projector on X, prX(·) : <k → X,
is given by

prX(x) := arg min
x′∈X

‖ x − x′ ‖ .

Note that for the problem

f(x) → min, x ∈ X0,

where f(·) is assumed to be differentiable on a neighborhood of x ∈ Xopt, the opti-
mality condition (1.1) can be rewritten in the following form:

prX0(x − ∇f(x)) − x = 0.

2. The master method. Let us consider our problem in the most general form:

P0 : find x ∈ Xopt,

where Xopt ⊂ X0, X0 ⊂ <k is compact, and the description of Xopt involves an
infinite number of parameters y ∈ Y 0, Y 0 ⊂ <l is compact. To show the dependence
of P0 upon the parameter set Y 0, we shall also denote P0 by P[Y 0].

To construct an outer approximations method we consider simpler problems of
the same type as P0. Let for any Y ∈ Mc(Y 0) the problem P[Y ] be defined similarly
to P0 but subject to the smaller parameter set Y ; i.e., the description of P[Y ] involves
only parameters y ∈ Y . The presented general stochastic outer approximation method
provides the sequential solving of problems P[Yn], n = 1, 2, . . ., where each problem
P[Yn] depends upon only a finite number | Yn | of parameters, Yn ∈ Mf (Y 0), n =
1, 2, . . ..

Let us introduce a quasi-optimality function, i.e., a scalar nonnegative criterion
Θ(·, ·) : X0 × Mc(Y 0) → <1

+ s.t. for any compact Y ⊂ Y 0 and x ∈ X0 the value
Θ(x, Y ) estimates the quality of x as an approximate local solution of the problem
P[Y ]. In particular, we suppose that

(2.1) x ∈ Xopt ⇒ Θ(x, Y 0) = 0.

Usually the inequality

(2.2) Θ(x, Y ) ≤ ε

can be employed as a stopping criterion for an effective local descent technique for
solving P[Y ] and, thus, when | Y | is not large, we can effectively solve (2.2) even for
small ε > 0.

We define the Θ(·, ·)–quasi-optimal set of the problem P[Y ] as follows:

Xqopt[Y ] := {x ∈ X0 | Θ(x, Y ) = 0}, Y ∈ Mc(Y 0).

Note that by (2.1)

Xopt ⊂ X 0
qopt,

where X 0
qopt := Xqopt[Y 0] = {x ∈ X0 | Θ(x, Y 0) = 0}.

Let the following assumptions hold.
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Assumption A1. Let

Xqopt[Y ] 6= ∅ ∀Y ∈ Mc(Y 0).

Assumption A2. For every x ∈ X0 and Y ∈ Mc(Y 0) let the following properties
hold:

(i) If Θ(x, Y ) > 0, then there exist θ, δ > 0 such that

Θ(x′, Y ′) ≥ θ > 0

for every x′ ∈ Bδ(x)
⋂

X0 and Y ′ ∈ Mc(Y 0), h(Y, Y ′) < δ.
(ii) If Θ(x, Y ) = 0, then for every ε > 0 there exists δ > 0 such that

Θ(x′, Y ′) < ε

for every x′ ∈ Bδ(x)
⋂

X0 and Y ′ ∈ Mc(Y 0), h(Y, Y ′) < δ.
For any x ∈ X0 and Y ∈ Mc(Y 0) a finite set A, A ∈ Y 0 is called an active

parameters set at (x, Y ) with respect to the quasi-optimality function Θ(·, ·) if

Θ(x, A) = Θ(x, Y ′) = Θ(x, Y ) ∀Y ′ ∈ Mc(Y ) : A ⊂ Y ′ ⊂ Y

and, moreover, there are no A′ ⊂ A, A′ 6= A, satisfying the same property. Let
A(x, Y ) denote the set of all active parameters sets at (x, Y ) with respect to Θ(·, ·).
For ∆Y ⊂ Y we denote

∆Y � A(x, Y )

if there exists A ∈ A(x, Y ) such that ∆Y ⊃ A.
Now we construct a general stochastic iterative method converging almost surely

(a.s.) to the set Xqopt[Y 0] (note that Xopt ⊂ Xqopt[Y 0]). The method suggests solving
(2.2) with Y = Yn and ε = εn for n = 1, 2, . . ., where {Yn} is a sequence of finite
subsets of Y 0 and εn > 0, n = 1, 2, . . . , εn ↘ 0, are the corresponding precision levels;
it uses special mechanisms for limiting the growth of | Yn |: an activated random
search mechanism for choosing relevant parameters to include in Yn and a dropping
mechanism to exclude irrelevant parameters from Yn. The method refines the Wardi’s
stochastic algorithms (see [26, 27]) and, furthermore, develops this approach getting
features of the Eaves–Zangwill method.

The main points of the method are focused in the following iterative stochastic
procedure.

PROCEDURE SPROC.ACTIV.
Input. x ∈ X, Y ∈ Mf (Y 0).
Output. θ ∈ <1

+, ∆Y ∈ Mf (Y 0), Y ∈ Mf (Y 0), and S ∈ N.
Parameter. γ > 0.
Step 0 (initial step). Set

Y 1 := Y,

i := 1.

Step 1 (passive search of a relevant parameter).
Determine a point yi ∈ Y by using the uniform probability
distribution on Y .
Include yi in Y i.



1394 Y. V. VOLKOV AND S. K. ZAVRIEV

Step 1.ACTIV (activated search of a relevant parameter).
Searching on Y obtain a point y∗

i = y∗
i (x, Y i, yi)

(e.g., using a local search algorithm starting with
yi at an inner problem J P(x, Y )).
Include y∗

i in Y i.
Step 2. Set θi = Θ(x, Y i).
Step 3 (control step). If

(2.3) i θi ≤ γ,

then set i := i + 1 and go to Step 1.
Step 4. Set

Y := Y i,

θ := θi,

S := i.

Step 5 (dropping). Analyzing Θ(x, Y ) obtain

∆Y � A(x, Y ).

Then exit.
The procedure without Step 1.ACTIV (with y∗

i = yi, i = 1, . . . , S) is similar to
the original Wardi’s procedures and will be denoted SPROC. We call SPROC and
SPROC.ACTIV the standard procedure and the activated procedure, respectively.

Now we present the master method.
Method SMETH.ACTIV.
Data. x1 ∈ X.
Parameters. Sequences {εn}, {σn},

(2.4) εn, σn > 0, n = 1, 2, . . . , εn, σn ↘ 0.

Stage 0 (initial step). Set

n := 1,

Y1 := ∅.

Stage 1. Enter SPROC.ACTIV with input xn and Yn. Denote the
outputs by Θn, ∆Yn, Y n, Sn.

Stage 2. Set

Yn+1 := ∆Yn ∪
⋃

j:θj>σj,

1≤j≤n−1

∆Yj .

Stage 3. Find xn+1 ∈ X satisfying

Θ(xn+1, Yn+1) < εn+1.

Stage 4. Set

n =: n + 1.

Go to Step 1.
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The method using SPROC instead of SPROC.ACTIV will be denoted SMETH.
The methods SMETH and SMETH.ACTIV are said to be the standard method and
the activated method, respectively.

The constructed general stochastic outer approximations method possesses the
following property.

PROPOSITION. Every trajectory {xn} of SMETH.ACTIV a.s. converges to
Xqopt[Y 0].

The formal statement and the proof of the proposition will be given below (see
Theorem 6.1).

3. Examples of quasi-optimality functions. Now we present some examples
of appropriate quasi-optimality functions for several classes of optimization problems
with continua of inequalities, and we consider the corresponding mechanisms for active
search of relevant constraints.

Example 3.1. Consider the problem of solving a system with continuum of in-
equalities:

ineq.P0: to find x ∈ X 0
opt,

X 0
opt = {x ∈ X0 | g(x, y) ≤ 0 ∀y ∈ Y 0},

where g(·, ·) is assumed to be continuously differentiable on a neighborhood of X0×Y 0

and X0 ⊂ <k, Y 0 ⊂ <l are convex and compact.
We define the simpler problems ineq.P[Y ], Y ∈ Mc(Y 0), as follows:

ineq.P[Y ]: to find x ∈ Xopt[Y ],

Xopt[Y ] = {x ∈ X0 | g(x, y) ≤ 0 ∀y ∈ Y },

it is clear that Xopt[Y 0] = X 0
opt.

Let us define a quasi-optimality function Θ(·, ·) : X0 × Mc(Y 0) → <1
+ by

Θ(x, Y ) := max(0; max
y′∈Y

g(x, y′)).

Obviously, Assumptions A1 and A2 hold and

X 0
opt = Xqopt[Y 0].

Note that for any A ⊂ Y satisfying

A ⊂
{

Arg maxy′∈Y g(x, y′) if Θ(x, Y ) > 0,
Y if Θ(x, Y ) = 0,

the following equalities hold:

Θ(x, A) = Θ(x, Y ′) = Θ(x, Y ) ∀Y ′ : A ⊂ Y ′ ⊂ Y.

Therefore, for the considered quasi-optimality function Θ(·, ·) the active parameters
sets are singletons and

A(x, Y ) :=
{

Arg maxy′∈Y g(x, y′) if Θ(x, Y ) > 0,
Y if Θ(x, Y ) = 0.
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In particular, if Θ(x, Y ) > 0 then for any ∆Y ⊂ Y we have

∆Y � A(x, Y ) ⇔ ∆Y ∩ Arg max
y′∈Y

g(x, y′) 6= ∅.

Thus, the criterion Θ(·, ·) can be employed in the stochastic outer approximations
method SMETH.ACTIV for solving ineq.P0; we shall denote by SMETH.ACTIV.ineq
and SPROC.ACTIV.ineq, respectively, the corresponding versions of the master
method SMETH.ACTIV and of the procedure SPROC.ACTIV.

Let us introduce some notions to construct a mechanism of the activated ran-
dom search of a relevant parameter y∗

i within the procedure SPROC.ACTIV for the
problem ineq.P0.

Consider the inner problem

ineq.J P(x): g(x, y) → max

s.t. y ∈ Y 0,

and define the stationary set (the set of all points satisfying the first-order necessary
optimality conditions) of ineq.J P(x) by

Ystat(x) := {y ∈ Y 0 | ∇yg(x, y) − K∗
Y 0(y) 3 0}.

We also define the ε-stationary set Y ε
stat(x) of the problem ineq.J P(x) by

Y ε
stat(x) := {y ∈ Y 0 | ‖ prY 0(y + ∇yg(x, y)) − y ‖≤ ε}, ε ≥ 0;

it is clear that Y 0
stat(x) = Ystat(x).

We suggest the following mechanism for activation of a parameter yi generated
by a random experiment within the procedure SPROC.ACTIV.ineq (at Step 1).

Step 1.ACTIV.ineq.
Apply a local descent technique for solving ineq.J P(x)
(for instance, the gradient projection method) starting with yi to
obtain y∗

i ∈ Y such that

y∗
i ∈ Y ε

stat(x), g(x, yi) ≤ g(x, y∗
i ).

Here ε > 0 is a parameter.
Example 3.2. Consider the semi-infinite programming problem sip, which we

present in the form P0:

sip.P0: find x ∈ X 0
opt,

X 0
opt = {x ∈ X 0 | f(x) = min

x′∈X 0
f(x′)},

X 0 = {x ∈ X0 | g(x, y) ≤ 0 ∀y ∈ Y 0},

where f(·), g(·, ·) are assumed to be continuously differentiable on a neighborhood of
X0 × Y 0; ∇f(·), ∇g(·) ∈ CLip(X0 × Y 0, L), L > 0, X0 ⊂ <k, Y 0 ⊂ <l are convex
and compact. Let us also suppose that the Slater constraints qualification holds; i.e.,
g(·, y) is convex on X for every y ∈ Y and there exists x∗ ∈ X such that

g(x∗, y) < 0 ∀y ∈ Y 0.
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Define

X 0
stat =

{
x ∈ X0 | there exist λ1, . . . , λs ≥ 0

and y1, . . . , ys ∈ Y 0, s ≤ k + 1, s.t.

∇f(x) +
s∑

i=1

λi ∇xg(x, yi) + K∗
X0(x) 3 0;

λi g(x, yi) = 0, i = 1, . . . , s
}

,

X 0
stat is the stationary set (the set of all points satisfying the first-order necessary

optimality conditions) of the problem sip.P0.
To construct an outer approximations technique for solving sip.P0 consider the

following simpler problems:

sip.P[Y ]: find x ∈ Xopt[Y ],

Xopt[Y ] = {x ∈ X [Y ] | f(x) = min
x′∈X [Y ]

f(x′)},

X [Y ] = {x ∈ X0 | g(x, y) ≤ 0 ∀y ∈ Y },

where Y ∈ Mc(Y 0). It is obvious that sip.P[Y 0] is the original problem sip.P0.
The following quadratic subproblem proves to be useful in both theoretical and

numerical analysis of constrained optimization problems (see [1, 19]):

sip.QP(x, Y ) : 〈∇f(x), p〉 +
1
2

‖ p ‖2→ min

s.t. g(x, y) + 〈∇xg(x, y), p〉 ≤ 0 ∀y ∈ Y,

x + p ∈ X,

where Y ∈ Mc(Y 0), x ∈ X. It is easy to see that for every x ∈ X, Y ∈ Mc(Y 0) the
feasible set of sip.QP(x, Y ) is not empty. Actually, for p∗ = x∗ − x we have

g(x, y) + 〈∇xg(x, y), p∗〉 = g(x, y) + 〈∇xg(x, y), x∗ − x〉

≤ g(x, y) + g(x∗, y) − g(x, y) = g(x∗, y) < 0 ∀y ∈ Y 0,

x + p∗ = x∗ ∈ X.

Therefore, for every x ∈ X0, Y ∈ Mc(Y 0) there exists the unique solution p0(x, Y ) of
the problem sip.QP(x, Y ). Moreover, the following optimality criterion holds.

LEMMA 3.1. For every x ∈ X0 and Y ∈ Mc(Y 0) a vector p ∈ <k is the solution
of sip.QP(x, Y ) if and only if there exist λ1, . . . , λs ≥ 0 and y1, . . . , ys ∈ Y , s ≤ k + 1
such that the following properties hold:

(3.1) p + ∇f(x) +
s∑

i=1

λi ∇xg(x, yi) + K∗
X0(x + p) 3 0,

(3.2) λi (g(x, yi) + 〈∇xg(x, y), p〉) = 0, i = 1, . . . , s,
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(3.3) g(x, y) + 〈∇xg(x, y), p〉 ≤ 0 ∀y ∈ Y,

(3.4) x + p ∈ X0.

From Lemma 3.1 we get immediately the following important corollaries. Let Xstat[Y ]
denote the stationary set of sip.P[Y ], Y ∈ Mc(Y 0).

COROLLARY 3.1. For every x ∈ X0 and Y ∈ Mc(Y 0) the vector p0(x, Y ) = 0 if
and only if x ∈ Xstat[Y ].

COROLLARY 3.2. For every x ∈ X0, Y ∈ Mc(Y 0), and sequences {xn}, {Yn}
satisfying

xn ∈ X0, n = 1, 2, . . . , lim
n→∞ xn = x,

Yn ∈ Mc(Y 0), n = 1, 2, . . . , lim
n→∞ h(Yn, Y ) = 0,

the following property holds:

lim
n→∞ p0(xn, Yn) = p0(x, Y ).

Let us define a quasi-optimality function Θ(·, ·) : X0 ×Mc(Y 0) → <1
+ as follows:

Θ(x, Y ) =‖ p0(x, Y ) ‖, x ∈ X, Y ∈ Mc(Y 0).

Applying Corollaries 3.1 and 3.2, we obtain that Assumptions A1 and A2 hold and

Xqopt[Y ] = Xstat[Y ] ∀Y ∈ Mc(Y 0),

X 0
opt ⊂ X 0

stat = Xqopt[Y 0].

For any x ∈ X0 and Y ⊂ Y 0 denote

Y(x, Y ) :=
{{y1, . . . , ys} ∈ Mf (Y ) | s ≤ k + 1 and there exist λ1, . . . , λs ≥ 0

s.t. (3.1), (3.2), (3.3), and (3.4) hold for p = p0(x, Y )
}
.

It is clear that for the considered quasi-optimality function Θ(·, ·) the set of all active
parameters sets is as follows:

A(x, Y ) = {Y ′ ∈ Y(x, Y ) | there does not exist Y ′′ ∈ Y(x, Y )

s.t. Y ′′ ⊂ Y ′, Y ′′ 6= Y ′}.

Obviously,

∆Y ∈ Y(x, Y ) ⇒ ∆Y � A(x, Y ).

We see that Θ(·, ·) can be employed in the stochastic outer approximations method
SMETH.ACTIV for solving sip.P0. The mechanism for active search of relevant
constraints within the corresponding procedure SPROC.ACTIV.sip (i.e., Step 1.AC-
TIV.sip) can be similar to Step 1.ACTIV.ineq.

Note that we may also employ various quasi-optimality functions from [8, 26, 27].
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4. Comparative efficiency of the activated and the standard versions
of the method. Due to the active search modification at Step 1.ACTIV in the pro-
cedure PROC, the efficiency of the standard method can be essentially improved. To
clarify the advantages of the activation we consider the following important example.

Consider the global optimization problem

glob: F (x) → min
x∈X0

,

where the objective function F (·) is assumed to be continuously differentiable on
X0 ⊂ <k, ∇F (·) ∈ CLip(X0, L), X0 is convex and compact. Let us denote

X0
opt := {x ∈ X0 | F (x) = min

x′∈X0
F (x′)},

Xε
stat := {x ∈ X0 |‖ prX0(x − ∇F (x)) − x ‖≤ ε}, ε ≥ 0,

X0
opt and Xε

stat are the optimal set and the ε-stationary set of the considered problem,
respectively. Obviously, the problem can be rewritten in the form of a problem with
an infinite number of constraints as follows:

glob.P0: find x ∈ Xopt,

Xopt := {x ∈ X0 | F (x) − F (y) ≤ 0 ∀y ∈ X0}.

Following the proposed general scheme we construct a stochastic outer approxi-
mations method for solving the problem glob.P0. First define approximative problems
glob.P[X], X ⊂ Mc(X0), by

glob.P[X]: find x ∈ Xopt[X],

Xopt[X] := {x ∈ X0 | F (x) ≤ F (y) ∀y ∈ X};

clearly,

Xopt[X] := {x ∈ X0 | F (x) ≤ min
y∈X

F (y)} ∀X ∈ Mc(X0).

We also define the quasi-optimality function Θ(·, X) : X0 → <1
+ by

Θ(x, X) := max(0;F (x) − min
y∈X

F (y)), x ∈ X0.

It is easily seen that

Xqopt[X] := {x ∈ X0 | Θ(x, X) = 0} = Xopt[X] ∀X ∈ Mc(X0),

X 0
qopt := Xqopt[X0] = X 0

opt,

and, moreover, Assumptions A1 and A2 hold.
Note that every active parameters set at (x, X) with respect to the considered

quasi-optimality function Θ(·, ·) is a singleton and

(4.1) A(x, X) = {x ∈ X0 | F (x) ≤ min
y∈X

F (y)}.
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After some straightforward simplifications based on the specificity of the consid-
ered problems glob.P[X] and the quasi-optimality function Θ(·, X), X ∈ Mf (X0),
the standard procedure SPROC (for simplicity we set γ = 0) adapted for glob.P[X]
takes the following form:

PROCEDURE SPROC.glob.
Input. x ∈ X0, X ∈ Mf (X0) (x = arg miny∈X F (y)).
Output. ∆X = {x}, X = X ∪ {x}.
Step 0. Set i := 1.
Step 1. Determine a point xi ∈ X0 by using the uniform probability

distribution on X0.
Step 2-3-4-5. If

F (xi) ≥ min
y∈X

F (y),

then i := i + 1 and go to Step 1. Else set

x := xi; X := X ∪ {x};

∆X := {x}

(note that by (4.1) ∆X ∈ A(x, X)).
Then exit.

Activating the standard procedure SPROC.glob by the use of a local descent
technique for solving the problem

glob.J P: F (y) → min
y∈X0

,

we arrive at the procedure SPROC.ACTIV in the following form:
PROCEDURE SPROC.ACTIV.glob.
Input. x ∈ X0, X ∈ Mf (X0) (x = arg miny∈X F (y)).
Output. ∆X = {x}, X = X ∪ {x}.
Step 0. Set i := 1.
Step 1. Determine a point xi ∈ X0 by using the uniform

probability distribution on X0.
Step 1.ACTIV. Using a local descent technique (for instance,

the gradient projection method) for solving the problem
glob.J P, starting with xi, obtain x∗

i ,

x∗
i ∈ Xε

stat, F (x∗
i ) ≤ F (xi).

Step 2-3-4-5. If

F (x∗
i ) ≥ min

y∈X
F (y),

then i := i + 1 and go to Step 1. Else set

x := x∗
i , X := X ∪ {x},

∆X := {x}.

Then exit.
Here ε > 0 is a parameter.
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Taking into account that in the considered case the run of the master method does
not depend upon {εn} and {σn} and making some further simplifications we obtain the
following versions of the standard and the activated stochastic outer approximations
methods.

METHOD SMETH.glob.
Data. x1 ∈ X0.
Stage 0. Set n := 1.
Stage 1.

Step 0. Set i := 1.
Step 1. Determine a point xn

i ∈ X0 by using the uniform
probability distribution on X0.

Step 2. If

F (xn
i ) ≥ F (xn),

then i := i + 1 and go to Step 1. Else set

xn := xn
i .

Stage 3. Set

xn+1 := xn,

n := n + 1.

Go to Stage 1.
The activated stochastic outer approximations method for solving the global op-

timization problem is as follows:
METHOD SMETH.ACTIV.glob.
Data. x1 ∈ X0.
Stage 0. Set n := 1.
Stage 1.

Step 0. Set i := 1.
Step 1. Determine a point xn

i ∈ X0 by using the
uniform probability distribution on X0.
Step 1.ACTIV. Using a local descent technique, starting
with xn

i , obtain xn,∗
i ,

xn,∗
i ∈ Xε

stat, F (xn,∗
i ) ≤ F (xn

i ).

Step 2. If

F (xn,∗
i ) ≥ F (xn),

then i := i + 1 and go to Step 1. Else set

xn := xn,∗
i .

Stage 3. Set

xn+1 := xn,

n := n + 1.

Go to Stage 1.
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Now it is obvious that the standard method SMETH.glob is the classical pure
random search technique for global optimization and the activated method SMETH.
ACTIV.glob is a version of the well-known multistart method (see [22]). The practical
advantages of the multistart method over the pure random search are evident.

5. The basic property of the method. Let us introduce some necessary
notation.

Let (Y 0, B, µ) be the probability space, where B is the σ-algebra of Borel subsets
of Y 0 and µ is the Borel measure on Y , normalized in such a way that µ(Y ) = 1. Set

Bn =
n⊗

i=1
B, Pn =

n⊗
i=1

µ, n = 1, 2, . . . ,

Ω =
∞⊗

i=1
Y 0, A =

∞⊗
i=1

B, P =
∞⊗

i=1
µ.

(Note that the existence of the countable product (Ω, A, P ) of (Y 0, B, µ) follows from
[16, Thm. III.3].) We shall denote by ω = (y1, . . . , yn, . . .) a typical element of Ω.

By the definition of the countable product of probability spaces for every Ω′ ∈ A,
B1 ∈ Bn1 , and B2 ∈ Bn2 satisfying the property

∀ω = (y1, . . . , yn, . . .) ∈ Ω′

⇒ (y1, . . . , yn1) ∈ B1 ∧ (yn1+1, . . . , yn1+n2) ∈ B2

the following estimation holds:

P (Ω′) ≤ Pn1(B1) × Pn2(B2)

(5.1) = P (B1)Pn2(B2),

where B1 = B1 × ⊗∞
i=n1+1Y

0 ∈ A.
The following lemma proves useful.
LEMMA 5.1. For any ε, η > 0 there exist S̃ = S̃(ε, η) ∈ N and B̃ = B̃(ε, η) ∈ BS̃,

PS̃(B̃) < ε, such that

h({y1, . . . , yS̃}, Y 0) ≥ η

(5.2) ⇒ (y1, . . . , yS̃) ∈ B̃,

where (y1, . . . , yS̃) ∈ ⊗S̃
i=1Y

0.
For any ω = (y1, . . . , yn, . . .) ∈ Ω and n, s ∈ N denote

Y s
n (ω) := {yn+1, . . . , yn+s} ⊂ Y 0.

LEMMA 5.2. There exists Ω(1) ⊂ Ω, P (Ω(1)) = 0, such that

lim
s→∞ h(Y s

n (ω), Y 0) = 0, n = 1, 2, . . . ,

for every ω ∈ Ω \ Ω(1).
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Proof. Fix an arbitrary ε, 0 < ε < 1, and a sequence ηm > 0, m = 1, 2, . . . , ηm ↘
0. Let Sm = S̃(ε, ηm) and B̃m = B̃(ε, ηm) ⊂ BSm

be defined by Lemma 5.1 for every
m = 1, 2, . . .. Set

Ω̃n,m := Y 0 × · · · × Y 0︸ ︷︷ ︸
n-times

× B̃m × B̃m × · · · ,

Ω̃n :=
∞⋃

m=1

Ω̃n,m,

Ω(1) :=
∞⋃

n=1

Ω̃n.

Since obviously P (Ω̃n,m) = 0 for every n, m = 1, 2, . . . , then

P (Ω(1)) = 0.

Let us fix an arbitrary ω,

(5.3) ω = (y1, . . . , yn, . . .) ∈ Ω \ Ω(1),

and suppose that for some n ∈ N

(5.4) lim
s→∞ h(Y s

n (ω), Y 0) 6= 0.

Since

Y s
n (ω) ⊂ Y s+1

n (ω) ⊂ Y 0, s = 1, 2, . . . ,

the sequence {h(Y s
n (ω), Y 0), s = 1, 2, . . .} is convergent and by (5.4)

h(Y s
n (ω), Y 0) ≥ lim

s→∞ h(Y s
n (ω), Y 0) = η0 > 0, s = 1, 2, . . . .

It is easily seen that for every s = 1, 2, . . .

Y s
n′(ω) ⊂ Y s+(n′−n)

n (ω) ⊂ Y 0, n′ = n, n + 1, . . . ;

hence,

h(Y s
n′(ω), Y 0) ≥ h(Y s+(n′−n)

n (ω), Y 0), n′ = n, n + 1, . . . .

Thus, we get

(5.5) h(Y s
n′(ω), Y 0) ≥ η0 > 0, n′ = n, n + 1, . . . , s = 1, 2, . . . .

Choose an arbitrary m satisfying

ηm < η0.

By (5.5) we have

h(Y Sm

n+iSm
(ω), Y ) ≥ η0 > ηm, i = 0, 1, 2, . . . .
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Therefore by the definition of Sm and B̃m obtain

(yn+iSm+1, . . . , yn+iSm+Sm) ∈ B̃m, i = 0, 1, 2, . . . .

Hence,

ω = (y1, . . . , yn, yn+1, . . . , yn+Sm
, yn+Sm+1, . . .)

∈ Y × · · · × Y︸ ︷︷ ︸
n-times

× ∞⊗
i=0

B̃m = Ω̃n ⊂ Ω(1),

which contradicts with (5.3). Thus, the supposition (5.4) is not valid.
The lemma is proven.
Every trajectory {xn} generated by SMETH.ACTIV depends upon outcomes of

random experiments y1, . . . , yn, . . . and hence {xn} is ω = (y1, . . ., yn, . . .)-dependent,
{xn = xn(ω), n = 1, 2, . . .}. Let us consider outcomes {xn(ω), n = 1, 2, . . .}, ω ∈ Ω, of
the method’s run. We assume that the mappings xn(·), n = 1, 2, . . ., are measurable.
Thus, {xn} is a sequence of random vectors on the probability space (Ω, A, P ), and
we shall study P -almost surely (P -a.s.) convergence properties of {xn}.

For any ω = (y1, y2, . . .) ∈ Ω consider the corresponding trajectory {xn} of the
method SMETH.ACTIV. Let Rn(ω) denote the number of random experiment exe-
cuted to obtain x1(ω), . . . , xn(ω), i.e.,

xn(ω) = xn(y1, y2, . . .) = xn(y1, y2, . . . , yRn
), n = 2, 3, . . . .

(It is clear that R1(ω) = 0.)
By the definition of the method Sn(ω) is the number of random experiment exe-

cuted at the nth iteration of SMETH.ACTIV to obtain xn+1(ω); hence

Rn+1(ω) = Rn(ω) + Sn(ω), n = 1, 2, . . . .

It is possible that at the n0th iteration of SMETH.ACTIV the inequality (2.3) in
the procedure SPROC.ACTIV does not hold for every i = 1, 2, . . .. Thus, the method
generates a finite trajectory x1(ω), . . . , xn0(ω). In this case we set

Sn0(ω) = +∞, Sn(ω) = 0, n = n0 + 1, n0 + 2, . . .

and

Nstop(ω) = n0;

otherwise, Sn(ω) < +∞, n = 1, 2, . . ., and

Nstop(ω) = +∞.

For a subset D of X0 and s ∈ N consider the sets

{1 ≤ n ≤ s | xn(ω) ∈ D}, s = 1, 2, . . . ;

obviously,

{n ∈ N | xn(ω) ∈ D} =
∞⋃

s=1

{1 ≤ n ≤ s | xn(ω) ∈ D}.
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Let us define

N (D, s | ω) :=| {1 ≤ n ≤ s | xn(ω) ∈ D} |, s = 1, 2, . . . ,

N (D, ∞ | ω) :=| {n ∈ N | xn(ω) ∈ D} |,
and

mn(D | ω) := min{s ∈ N | N (D, s | ω) = n};

when {s ∈ N | N (D, s | ω) = n} = ∅ (i.e., N (D, ∞ | ω) < n), we set mn(D | ω) :=
+∞. It is clear that mn0(D | ω) = n∗ means that the inclusion

xn(ω) ∈ D

holds for exactly n0 of the first n∗ elements of the trajectory {xn(ω), n = 1, 2, . . .} and,
moreover, it holds for n = n∗; i.e., there exist j1, . . . , jn0 , 1 ≤ j1 ≤ · · · ≤ jn0 = n∗,
such that

xj(ω) ∈ D ∀j ∈ {j1, . . . , jn0}
and

xj(ω) 6∈ D ∀j 6∈ {j1, . . . , jn0}, 1 ≤ j ≤ n∗.

Let us denote

Ω(D) := {ω ∈ Ω | mn(D | ω) < +∞ ∀n = 1, 2, . . .}.

It follows from the definition of mn(D | ω) that

ω ∈ Ω(D) ⇔ xn(ω) ∈ D for an infinite number of n ∈ N.

Set

Ω∞ = {ω ∈ Ω | Nstop(ω) < +∞},

Ω∞ = Ω \ Ω∞ = {ω ∈ Ω | {xn(ω)} is infinite}.

Note that, for every D ⊂ X0,

Ω(D) ⊂ Ω∞.

Now we establish the basic property of the considered outer approximations
scheme.

LEMMA 5.3. For every ω ∈ Ω∞ the following property holds:

lim
n→∞ Sn(ω) = +∞.

Proof. Let us fix an arbitrary ω ∈ Ω∞ and consider the corresponding outcome
sequences {xn(ω)}, {Sn(ω)}, {Yn(ω)}, {∆Yn(ω)}, {Y n(ω)}, {θn(ω)}; for simplicity
we shall denote them by {xn}, {Sn}, {Yn}, {∆Yn}, {Y n}, and {θn}. Note that by
(2.4), (2.5)

(5.6) Yn ⊂ Yn+1, n = 1, 2, . . . .
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Suppose that

(5.7) lim
n→∞ Sn(ω) 6= +∞.

Therefore, there exist a subsequence {xtn} of {xn} and S0 ∈ N such that

(5.8) lim
n→∞ xtn = x0,

Stn
≤ S0, n = 1, 2, . . . .

It follows from the definition of SPROC.ACTIV that

(5.9) θtn
= Θ(xtn , Y tn

) > γ/Stn
> γ/S0 > 0, n = 1, 2, . . . .

By (2.4) there exists N ∈ N such that

σn < γ/S0, n = N, N + 1, . . . ;

and without loss of generality we assume that

θtn
> σtn

, n = 1, 2, . . . .

Hence by the construction of SMETH.ACTIV we have

Yn ⊃ ∆Yti ∀i : ti ≤ n

for every n ≥ t1.
Therefore

(5.10) Ytn ⊃ ∆Ytn′ ∀n, n′, n ≥ n′.

Let us define a sequence {Un} by the following rule:

U1 = Yt1 , U2 = Yt1 ∪ ∆Yt1 , . . . ,

U2n−1 = Ytn
, U2n = Ytn

∪ ∆Ytn
, . . . .

It follows from (5.6) and (5.10) that

U2n = Ytn
∪ ∆Ytn

⊂ Ytn+1 = U2n+1, n = 1, 2, . . . ;

thus,

Un ⊂ Un+1, n = 1, 2, . . . .

Set

U0 =
∞⋃

n=1

Un.

By the monotonicity of {Un} we obtain

(5.11) lim
n→∞ h(Un, U0) = 0.
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By (2.6) we get

Θ(xtn , Ytn) = Θ(xtn , U2n−1) ≤ εtn , n = 1, 2, . . . ;

hence

lim
n→∞ inf Θ(xtn , U2n−1) = 0.

Therefore from (5.8), (5.11), and Assumption A2(i) we obtain

Θ(x0, U0) = 0

and, furthermore, by Assumption A2(ii)

(5.12) lim
n→∞ Θ(xtn , U2n) = 0.

It follows from the definition of SPROC.ACTIV (see the dropping step) that

∆Yn � A(xn, Y n),

∆Yn ⊂ Yn ∪ ∆Yn ⊂ Y n, n = 1, 2, . . . ;

thus,

Θ(xn, ∆Yn) = Θ(xn, Yn ∪ ∆Yn) = Θ(xn, Y n), n = 1, 2, . . . .

Applying (5.9) we obtain

Θ(xtn , U2n) = Θ(xtn , Ytn
∪ ∆Ytn

) = Θ(xtn , Y tn
) ≥ γ/S0 > 0, n = 1, 2, . . . ;

hence

lim
n→∞ sup Θ(xtn , U2n) > 0,

which contradicts with (5.12).
Thus, (5.6) does not hold.
The lemma is proven.

6. Convergence theorem. The following lemma plays the important role in
the convergence analysis of the method SMETH.ACTIV.

LEMMA 6.1. For every x 6∈ X0
qopt there exist δ∗ = δ∗(x) > 0,

(6.1) Bδ∗(x) ∩ X0 ⊂ X0 \ X0
qopt,

and Ω∗ = Ω∗(x) ⊂ Ω∞, P (Ω∗) = 0, such that the following property holds:

lt{xn(ω)} ∩ Bδ∗(x) = ∅ ∀ω ∈ Ω∞ \ Ω∗.

Proof. Let us fix an arbitrary x 6∈ X0
qopt. By the definition of X0

qopt we have

Θ(x, Y 0) > 0;

hence by Assumption A2(i) there exist δ∗ > 0 satisfying (6.1) and η∗, d∗ > 0 such
that

(6.2) Θ(x′, U) ≥ d∗ > 0

for every x′ ∈ Bδ∗(x) ∩ X0 and U ⊂ Y 0, h(U, Y 0) < η∗.
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Set

Ω∗ = Ω(D), D = Bδ∗(x).

It is obvious that Ω∗ ⊂ Ω∞.
Let us fix an arbitrary ε > 0 and show that

P (Ω∗) ≤ ε.

By Lemma 5.1 there exist S̃ ∈ N,

(6.3) S̃ > γ/d∗,

and B̃ ∈ BS , PS(B̃) < ε, such that (5.2) holds.
It follows from Lemma 5.3 that for every ω ∈ Ω∗

lim
n→∞ Smn(D|ω)(ω) = +∞;

hence,

Ω∗ =
∞⋃

l=1

Ωl,

Ωl = {ω ∈ Ω∗ | Smn(D|ω)(ω) ≥ S + 1,

n = l, l + 1, . . .}.

It is clear that

Ωl ⊂ Ωl+1, l = 1, 2, . . . ;

therefore,

(6.4) P (Ω∗) = lim
l→∞

P (Ωl).

Let us fix an arbitrary l ∈ N and set

Ωi = {ω ∈ Ω | Rml(D|ω)(ω) = i}, i = 1, 2, . . . ;

it is easy to see that there exist Bi ∈ Bi, i = 1, 2, . . ., such that

(6.5) Ωi = Bi × ∞⊗
j=i+1

Y, i = 1, 2, . . . .

Note that

Ωi ∩ Ωi′
= ∅ ∀i 6= i′, i, i′ = 1, 2, . . . ,

Ωl ⊂
∞⋃

i=1

Ωi.

Set

Ωi
l = Ωl ∩ Ωi, i = 1, 2, . . . .

Then obtain

Ωi′
l ∩ Ωi′′

l = ∅ ∀i′ 6= i′′, i′, i′′ = 1, 2, . . . ,

Ωl =
∞⋃

i=1

Ωi
l,
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and hence

(6.6) P (Ωl) =
∞∑

i=1

P (Ωi
l).

Consider an arbitrary Ωi
l.

For every ω ∈ Ωi
l we have

Rml(D|ω)(ω) = i,

(6.7) xml(D|ω) ∈ D ∩ X0 = Bδ∗(x) ∩ X0,

Sml(D|ω)(ω) ≥ S + 1.

(For simplicity we shall use ml instead of ml(D | ω).) Therefore,

xml(ω) = xml(y1, . . . , yi),

S̃ Θ(xml(ω), Yml
∪ {yi+1, y

∗
i+1, . . . , yi+s, y

∗
i+s}) ≤ γ,

and, furthermore, by (6.3)

Θ(xml(ω), Yml
∪ {yi+1, y

∗
i+1, . . . , yi+s, y

∗
i+s}) ≤ d∗.

Thus, by (6.2) and (6.7) we obtain

h((Yml
∪ {yi+1, y

∗
i+1, . . . , yi+s, y

∗
i+s}), Y 0) ≥ η∗,

and hence

h({yi+1, . . . , yi+s}, Y 0) ≥ η∗.

Since by the choice of S̃ the property (4.2) holds,

(yi+1, . . . , yi+s) ∈ B̃ ∈ BS̃ , PS̃(B̃) < ε.

Taking into account (6.5) and applying (5.1) we get

P (Ωi
l) ≤ P (Ωi)PS̃(B̃) ≤ εP (Ωi), i = 1, 2, . . . .

Turning back to (6.6) we obtain

P (Ωl) =
∞∑

i=1

P (Ωi
l) ≤ ε

∞∑
i=1

P (Ωi) ≤ ε, l = 1, 2, . . . ;

therefore by (6.4)

P (Ω∗) ≤ ε.

Since in this estimation ε is an arbitrary positive number,

P (Ω∗) = 0.

By the definition of Ω∗ = Ω(Bδ∗(x)) for every ω ∈ Ω∞ \ Ω∗ the inclusion

xn(ω) ∈ Bδ∗(x)

holds only for a finite number of n ∈ N.
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Thus,

lt{xn(ω)} ∩ Bδ∗(x) = ∅ ∀ω ∈ Ω∞ \ Ω∗.

The lemma is proven.
We also need the property of finite trajectories of SMETH.ACTIV.
LEMMA 6.2. For every ω ∈ Ω∞ \ Ω(1), P (Ω(1)) = 0, the following property holds:

xNstop(ω) ∈ X0
qopt,

where Ω(1) is defined in Lemma 5.2.
Proof. The desired result follows immediately from Assumption A2(i) and Lemma

5.2.
THEOREM 6.1. There exists Ω(0) ⊂ Ω, P (Ω(0)) = 0, such that for every ω ∈

Ω\Ω(0) the trajectory {xn(ω)} of SMETH.ACTIV satisfies one of the following prop-
erties:

(i) Nstop < +∞ and xNstop(ω) ∈ X0
qopt;

(ii) Nstop = +∞ and {xn(ω)} converges to X0
qopt.

Proof. Let us fix an arbitrary sequence ζj ↘ 0 and consider the following sets:

Zj = X0 \ Bζj
(X0

qopt), j = 1, 2, . . . .

It is clear that Zj , j = 1, 2, . . ., are compact and

(6.8)
∞⋃

j=1

Zj = X0 \ X0
qopt.

For any j = 1, 2, . . . it follows from (6.1) that

X \ Xqopt ⊃
⋃

x∈Zj

Bδ∗(x)(x) ⊃ Zj ,

where δ∗(x) > 0 is defined in Lemma 6.1.
Since Zj is compact, there is a finite set of points xi,j , i = 1, 2, . . . , Ij , such that

X0 \ X0
qopt ⊃

Ij⋃
i=1

Bδ∗(xi,j)(xi,j) ⊃ Zj ,

for every j = 1, 2, . . ..
Hence, by (6.8)

(6.9) X0 \ X0
qopt =

∞⋃
j=1

Ij⋃
i=1

Bδ∗(xi,j)(xi,j).

Define

Ω∗
j =

Ij⋃
i=1

Ω∗(xi,j), Ω(2) =
∞⋃

j=1

Ω∗
j ,

where Ω∗(x) ⊂ Ω, P (Ω∗(x)) = 0, is defined in Lemma 6.1. It is obvious that

P (Ω(2)) = 0.
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Set

Ω(0) = Ω(1) ∪ Ω(2), P (Ω(0)) = 0,

where Ω(1) ⊂ Ω, P (Ω(1)) = 0, is defined in Lemma 5.2 (see also Lemma 6.2).
Let us fix an arbitrary ω ∈ Ω \ Ω(0).
If ω ∈ Ω∞, then ω ∈ Ω∞ \ Ω(1) and by Lemma 6.2 the trajectory {xn} satisfies

the property:

Nstop(ω) < ∞, xNstop(ω) ∈ X0
qopt.

If ω ∈ Ω∞, then

ω ∈ Ω∞ \ Ω∗(xi,j), i = 1, . . . , Ij , j = 1, 2, . . .

Therefore, from Lemma 6.1 we have

lt{xn(ω)} ∩ Bδ∗(xi,j)(xi,j) = ∅, i = 1, . . . , Ij , j = 1, 2, . . . ,

i.e.,

lt{xn(ω)} ∩
∞⋃

j=1

Ij⋃
i=1

Bδ∗(xi,j)(xi,j) = ∅;

and hence by (6.9) we obtain

lt{xn(ω)} ∩ (X0 \ X0
qopt) = ∅.

Thus,

lt{xn(ω)} ⊂ X0
qopt.

The theorem is proven.

7. Stochastic algorithm for solving the approximation problem. Con-
sider the following approximation problem:

apprx.P0: find x ∈ X 0
opt,

X 0
opt = {x ∈ X0 | max

y∈Y 0
| Φ(x, y) − F (y) |= v0

opt},

v0
opt = min

x∈X0
max
y∈Y 0

| Φ(x, y) − F (y) |,

where the functions Φ(·, ·), F (·) are assumed to be continuous and continuously dif-
ferentiable on X0 × Y 0, ∇Φ(·) = (∇xΦ(·, ·), ∇yΦ(·, ·)) ∈ CLip(X0 × Y 0, L), ∇F (·) ∈
CLip(Y 0, L), L > 0, X0 ⊂ <k is polyhedral and compact, and Y 0 ⊂ <l is convex and
compact.

To demonstrate a practical embodiment of the proposed activated random search
technique for forming relevant parameter sets within the outer approximations method
we consider a stochastic algorithm for solving the problem apprx.P0. The algorithm
is constructed as a version of the general method SMETH.ACTIV specially adapted
for apprx.P0.



1412 Y. V. VOLKOV AND S. K. ZAVRIEV

We also introduce the stationary set X 0
stat of the problem apprx.P0, i.e., the set

of all points satisfying the first-order necessary optimality conditions. For x ∈ X0

denote

R0(x) := {y ∈ Y 0 | | Φ(x, y) − F (y) | = max
y∈Y 0

| Φ(x, y) − F (y) |}.

The stationary set X 0
stat is given by

X 0
stat := {x ∈ X0 | there exist y1, . . . , ys ∈ R0(x)

and λ1, . . . , λs ∈ <1,
s∑

i=1

| λi |= 1, s ≤ k + 1, s.t.

s∑
i=1

λi∇xΦ(x, yi) + KX0(x) 3 0,

λi(Φ(x, yi) − F (yi)) ≥ 0, i = 1, . . . , s}.

Note that if the function Φ(x, y) is linear with respect to x for every y ∈ Y 0, i.e.,

(7.1) Φ(x, y) = 〈a(y), x〉 + b(y) ∀x ∈ X0, a(y) ∈ <k, b(y) ∈ <1, y ∈ Y 0,

then the objective function

ϕ(x) = max
y∈Y 0

| Φ(x, y) − F (y) |

of the problem apprx.P0 is convex on X0 and

X 0
stat = X 0

opt.

To construct the outer approximations algorithm for solving apprx.P0 we define
the simpler problems apprx.P[Y ], Y ∈ Mc(Y 0), by

apprx.P[Y ]: to find x ∈ Xopt[Y ],

Xopt[Y ] := {x ∈ X0 | max
y∈Y

| Φ(x, y) − F (y) |= vopt[Y ]},

vopt[Y ] := min
x∈X0

max
y∈Y

| Φ(x, y) − F (y) | .

It is clear that the problem apprx.P[Y 0] is the initial problem apprx.P0 and Xopt[Y 0] =
X 0

opt. For x ∈ X0 and Y ∈ Mc(Y 0) denote

R(x, Y ) := {y ∈ Y | | Φ(x, y) − F (y) | = max
y∈Y

| Φ(x, y) − F (y) |};

obviously R(x, Y 0) = R0(x). The stationary set Xstat[Y ] of the problem apprx.P[Y ]
is as follows:

Xstat[Y ] :=
{

x ∈ X0 | there exist y1, . . . , ys ∈ R(x, Y )

and λ1, . . . , λs ∈ <1,
∑s

i=1 | λi |= 1, s ≤ k + 1, s.t.

s∑
i=1

λi∇xΦ(x, yi) + K∗
X0(x) 3 0,

λi(Φ(x, yi) − F (yi)) ≥ 0, i = 1, . . . , s
}

.
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Let V ⊂ <1 be a line segment, V = [v, v], where

v < 0, max
x∈X0

max
y∈Y 0

| Φ(x, y) − F (y) | +L diam X0 < v.

It is clear that for every Y ∈ Mc(Y 0) the problem apprx.P[Y ] can be rewritten in the
following form:

apprx.P[Y ]′: v → min
x,v

s.t. Φ(x, y) − F (y) − v ≤ 0 ∀y ∈ Y,

−Φ(x, y) + F (y) − v ≤ 0 ∀y ∈ Y,

x ∈ X0, v ∈ V ;

i.e., the solution set of apprx.P[Y ]′ is equal to Xopt[Y ] × {
vopt[Y ]

}
.

Similarly to Example 3.2 we define the auxiliary quadratic programming problem:

apprx.QP(x, Y ): v +
1
2

‖ p ‖2→ min
p,v

s.t. Φ(x, y) + 〈∇xΦ(x, y), p〉 − F (x) − v ≤ 0 ∀y ∈ Y,

−Φ(x, y) − 〈∇xΦ(x, y), p〉 + F (x) − v ≤ 0 ∀y ∈ Y,

x + p ∈ X0, v ∈ V.

It is easy to show that for every x ∈ X0 and Y ∈ Mf (Y 0) there exists the unique
solution (p0(x, Y ), v0(x, Y )) of apprx.QP(x, Y ) and, moreover,

v0(x, Y ) = max
y∈Y

| Φ(x, y) + 〈∇xΦ(x, y), p0(x, Y )〉 − F (x) | .

Furthermore, the following optimality criterion holds.
LEMMA 7.1. For every x ∈ X0 and Y ∈ Mc(Y 0) a vector (p, v) ∈ <k × <1 is the

solution of apprx.QP(x, Y ) if and only if there exist y1, . . . , ys ∈ Y and λ1, . . . , λs ∈
<1,

∑s
i=1 | λi |= 1, s ≤ k + 1, such that the following properties hold:

(7.2) p +
s∑

i=1

λi∇xΦ(x, yi) + K∗
X0(x + p) 3 0,

(7.3) v = max
y∈Y

| Φ(x, y) + 〈∇xΦ(x, y), p〉 − F (x) |,

(7.4) | Φ(x, yi) + 〈∇xΦ(x, yi), p〉 − F (x) |= v, i = 1, . . . , s,

(7.5) λi(Φ(x, y) + 〈∇xΦ(x, y), p〉 − F (x)) ≥ 0, i = 1, . . . , s,

(7.6) x + p ∈ X.

From Lemma 7.1 we get immediately the following corollaries.
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COROLLARY 7.1. For every x ∈ X0 and Y ∈ Mc(Y 0) the following property
holds:

p0(x, Y ) = 0 ⇔ x ∈ Xstat(Y ).

COROLLARY 7.2. For every x ∈ X0, Y ∈ Mc(Y 0), and sequences {xn}, {Yn}
satisfying

xn ∈ X0, n = 1, 2, . . . , lim
n→∞ xn = x,

Yn ∈ Mc(Y 0), n = 1, 2, . . . , lim
n→∞ h(Yn, Y ) = 0,

the following property holds:

lim
n→∞ p0(xn, Yn) = p0(x, Y ).

Let us define a quasi-optimality function Θ(·, ·) : X0 × Mc(Y 0) → <1
+ by

Θ(x, Y ) :=‖ p0(x, Y ) ‖, x ∈ X0, Y ∈ Mc(Y 0).

Applying Corollary 7.1 we obtain that

Xqopt[Y ] = Xstat[Y ] ∀Y ∈ Mc(Y 0)

and, in particular,

(7.7) Xqopt[Y 0] = X 0
stat ⊃ X 0

opt.

From Corollary 7.2 and (7.7) we deduce the following important result.
LEMMA 7.2. The considered quasi-optimality function Θ(·, ·) satisfies Assump-

tions A1 and A2 and

Xqopt[Y 0] = X 0
stat.

Moreover, if (7.1) holds, then

Xqopt[Y 0] = X 0
opt.

For any x ∈ X0 and Y ∈ Mc(Y 0) denote

Y(x, Y ) =
{

{y1, . . . , ys} ∈ Mf (Y ) | s ≤ k + 1 and there exist

λ1, . . . , λs ≥ 0,
s∑

i=1

| λi |= 1, s.t. (7.2), (7.3), (7.4),

(7.5), and (7.6) hold for p = p0(x, Y ) and v = v0(x, Y )
}

.

It is clear that for the considered quasi-optimality function Θ(·, ·) the set of all
active parameter sets is as follows:

A(x, Y ) = {Y ′ ∈ Y(x, Y ) | there does not exist Y ′′ ∈ Y(x, Y )

s.t. Y ′′ ⊂ Y ′, Y ′′ 6= Y ′}.
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Hence, we have

(7.8) ∀∆Y ∈ Y(x, Y ) ⇒ ∆Y � A(x, Y ).

Note that for any x ∈ X0 and Y ∈ Mf (Y 0) calculating Θ(x, Y ) (i.e., solving the
problem apprx.QP(x, Y )) with the use of the conjugate gradient method (see [19])
we obtain p0(x, Y ) together with a finite set Y0(x, Y ) = {y1, . . . , ys} ⊂ Y , s ≤ k + 1,
such that

(7.9) p0(x, Y ) = −
s∑

i=1

λi∇xΦ(x, yi) − η, η ∈ K∗
X0(x + p0(x, Y )),

(7.10) Y0(x, Y ) = {y1, . . . , ys} ∈ Y(x, Y ),

and by (7.8)

(7.11) Y0(x, Y ) � A(x, Y ).

Now we construct an activation mechanism for the search of relevant parameters.
Let us fix an arbitrary x ∈ X0 and consider the inner problem

apprx.J P(x): | Φ(x, y) − F (y) |→ max
y

s.t. y ∈ Y 0;

for simplicity we denote

f(y | x) :=| Φ(x, y) − F (y) | .

For every y ∈ Y 0, f(y | x) 6= 0, define

h(y | x) := prY 0(y + sign(Φ(x, y) − F (y))(∇yΦ(x, y) − ∇F (y))) − y

= prY 0(y + ∇yf(y | x)) − y.

When f(y | x) = 0 we set

h(y | x) := arg max
h∈H

‖ h ‖,

H = {prY 0(y + (∇yΦ(x, y) − ∇F (y))) − y,

prY 0(y − (∇yΦ(x, y) − ∇F (y))) − y}.

The ε-stationary set Y ε
stat(x) of the problem apprx.J P(x) is given by

Y ε
stat(x) := {y ∈ Y 0 |‖ h(y | x) ‖≤ ε}, ε ≥ 0.

Obviously, Y 0
stat(x) is the set of all points satisfying the standard first-order necessary

optimality conditions for apprx.J P(x); in particular, if

min
y∈Y 0

f(y | x) > 0,

then we have

Y 0
stat(x) = {y ∈ Y 0 | −∇yf(y | x) + K∗

Y 0(y) 3 0}.
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The gradient projection method for the local search in apprx.J P(x) is as follows:

GPM(x): yn+1 = yn + anh(yn | x), n = 1, 2, . . . , y1 ∈ Y 0,

where stepsizes an ≥ 0, n = 1, 2, . . ., can be chosen, for instance, by Armijo’s rule:

an = ηin ,

in := min
{
i ∈ {0, 1, 2, . . .} | f(yn + ηih(yn | x) | x) − f(yn | x)

≥ κηi ‖ h(yn | x) ‖2},

0 < η, κ < 1 are parameters; y1 ∈ Y 0 is a starting point.
Based on the convergence properties of the gradient projection method we obtain

the following result.
LEMMA 7.3. Every trajectory {yn} of GPM(x) converges to Y 0

stat(x), and for
every ε > 0 there exists N ∈ N such that

f(y1 | x) ≤ f(yN | x), yN ∈ Y ε
stat.

Now following the proposed general approach we construct a stochastic algorithm
for solving the approximation problem apprx.P0.

METHOD SMETH.ACTIV.apprx.
Data. x1 ∈ X0.
Parameters. γ, ε > 0, 0 < η, κ < 1, and sequences

{εn}, {σn}, εn, σn > 0, n = 1, 2, . . ., εn, σn ↘ 0.
Stage 0. Set

n := 1,

Y1 := ∅.

Stage 1.
Step 0. Set

i := 1,

Yn := Yn.

Step 1. Determine a point yn
i ∈ Y 0 by using the

uniform probability distribution on Y 0.
Set

Yn := Yn ∪ {yn
i }.

Step 1.ACTIV. Applying GPM(xn) (with parameters η and κ),
starting with yn

i , obtain yn,∗
i ∈ Y 0 satisfying

| Φ(xn, yn,∗
i ) − F (yn,∗

i ) |≥| Φ(xn, yn
i ) − F (yn

i ) |,

yn,∗
i ∈ Y ε

stat(x
n).
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Set

Y n := Y n ∪ {yn,∗
i }.

Step 2. Solving the quadratic problem apprx.QP(xn, Yn),
obtain p0(xn, Yn) and Y0(xn, Yn) ⊂ Yn,
| Y0(xn, Yn) |≤ k + 1 (see (7.9), (7.10)).
Set

θi
n :=‖ h(xn, Y n) ‖ .

Step 3. If

iθi
n ≤ γ,

then set

i := i + 1

and go to Step 1.
Step 4. Set

θn := θi
n,

Sn := i,

∆Yn := Y0(xn, Yn).

Go to Stage 2.
Stage 2. Set

Yn+1 := ∆Yn ∪
⋃

j:θj>σj,

1≤j≤n−1

∆Yj .

Stage 3. Solving the problem apprx.P[Yn+1] (for instance, by
Pschenichny’s linearization method), find xn+1 ∈ X0 satisfying

Θ(xn+1, Yn+1) ≤ εn+1.

Stage 4. Set

n := n + 1.
Go to Stage 1.

Obviously, for every x1 ∈ X0 the method SMETH.ACTIV.apprx generates a
sequence of random vectors {xn(ω)} on the probability space (Ω, A, P ) (see section
5). And it is possible that for some ω ∈ Ω the trajectory {xn(ω)} is finite, i.e., we get
x1, x2(ω), . . . , xNstop(ω) , Nstop(ω) < +∞; in this case setting

xn(ω) := xNstop(ω), n = Nstop, Nstop + 1, . . . ,

we shall formally consider {xn(ω)} as an infinite trajectory.
Applying Theorem 6.1, Lemmas 7.2 and 7.3, and (7.11) we obtain the following

result.
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THEOREM 7.1. Every trajectory {xn} of the method SMETH.ACTIV.apprx P -a.s.
converges to the stationary set X 0

stat of the problem apprx.P0.
Moreover, under the assumption (7.1) {xn} P -a.s. converges to the optimal set

X 0
opt.

Remark 7.1. Under assumption (7.1), for every Y ∈ Mf (Y 0) we have that
apprx.P[Y ] is a linear programming problem (see its form apprx.P[Y ]′). Thus, at
Stage 3 in the method SMETH.ACTIV.apprx linear programming techniques can be
effectively employed to find xn+1 ∈ X0,

Θ(xn+1, Yn+1) = 0.

Remark 7.2. To simplify problems apprx.P[Yn], n = 1, 2, . . . (i.e., to increase
practical convergence properties of SMETH.ACTIV.apprx) it turns out to be useful
to cluster elements in Yn under the condition

| y′ − y′′ |< ε ⇒ y′′ := y′, y′, y′′ ∈ Yn.

8. Numerical experiments for the Chebyshev approximation problem.
Let us consider the linear Chebyshev approximation problem

max
y∈Y 0

∣∣∣∣∣F (y) −
k∑

i=1

xizi(y)

∣∣∣∣∣ → min
x∈<k

,

where Y 0 is an l-dimensional box. For the case dimY 0 = 2, we choose zi(·), i =
1, . . . , k, to be k(d) functions

(8.1) xi1
1 xi2

2 , i1 + i2 ≤ d,

or alternatively, the k(t) functions

(8.2) xi1
1 xi2

2 , 0 ≤ i1, i2 ≤ t.

For better presentation we employ the following definitions:
N : the number of iterations = number of solved problems apprx.P[Yn], n =

1, 2, . . . , N ;
M : the number of elements in apprx.P[YN ];
C: the number of elements in Y n;
v∗: v∗ := maxy∈Y ∗ | Φ(xN , y) − F (y) |, where Y ∗ is an equispace grid, Y ∗ ⊂ Y 0;
v: v := maxy∈YN

| Φ(xN , y) − F (y) |.
We consider the following examples (see [11, 20, 21]).
Example 8.1.
Data: F (y1, y2) = log(y1 + y2) sin y1,

Y 0 = [0, 1] × [1, 2.5],
zi(·) as in (8.1).

Parameters: γ = 0.1,
ε = 0.01, κ = 0.3, η = 0.7,
εn = max(ε0(1.2)−n, 10−3), n = 1, 2, . . .,
σn = ε0(1.2)−n, n = 1, 2, . . .,
ε0 = 2.

Results: See Tables 8.1 and 8.2 (| Y ∗ |= 10000).
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TABLE 8.1
Example 8.2, d = 2.

Method N M C v v∗
SMETH.ACTIV.apprx 10 12 224 0.012091 0.012094

Nonactivated SMETH.apprx 205 218 499 0.016666 0.014092

TABLE 8.2

Example N M C v v∗
8.2, d = 2 10 12 224 0.012091 0.012094
8.2, d = 3 14 13 226 0.001437 0.001701
8.3, d = 2 25 22 74 0.177449 0.178742
8.3, d = 3 16 15 58 0.036201 0.036202
8.4, d = 2 14 30 72 0.265867 0.263526

Example 8.2.
Data: F (y1, y2) = (1 + y1)y2 ,

Y 0 = [0, 1] × [1, 2.5],
zi(·) as in (8.1).

Parameters: See Example 8.1.
Results: See Table 8.2 (| Y ∗ |= 10000).
Example 8.3.
Data: F (y1, y2, y3) = cos(y3)(1 + y1)y2 ,

Y 0 = [0, 1] × [1, 2.5] × [0, 1],
zi(·) as in (8.1).

Parameters: See Example 8.1.
Results: See Table 8.2 (| Y ∗ |= 1000000).
Now we can provide some comparisons between SMETH.ACTIV.apprx and ex-

isting outer approximations methods.
Regarding methods based on passive random search procedures for finding rele-

vant parameters we can note that the nonactivated SMETH.apprx does not work ef-
fectively even on the simplest test problem from Example 8.1. Certainly, advantages
of SMETH.ACTIV.apprx over the nonactivated SMETH.ACTIV.apprx are already
clear after the considerations of section 4.

Regarding methods based on active search procedures we consider results of nu-
merical experiments reported in [21]. Recall that Reemtsen’s method involves a refined
active search of relevant parameters and at the nth iteration to form a simpler linear
problem apprx.P[Yn+1] it solves the following discrete inner maximization problem:

| Φ(xn, y) − F (y) |→ max
y∈Ỹn

,

where Ỹn is an equispace grid, Ỹn ⊂ Y 0.
To present results from [21] we introduce the following definitions:
N : the number of iterations = number of solved problems P[Yn], n = 1, 2, . . . , N

(for a run of Reemtsen’s method);
M : average number of elements in P[Yn], n = 1, 2, . . . , N (for a run of Reemtsen’s

method);
v∗: v∗ := maxy∈Ỹ | Φ(xN , y) − F (y) |, where Ỹ is an equispace grid, Ỹ ⊂ Y 0.
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TABLE 8.3

Example Method N M C v
8.2, d = 2 SMETH.ACTIV.apprx 10 12 224 0.012091

Reemtsen’s method 4 21 >32761 0.0280626
8.2, d = 3 SMETH.ACTIV.apprx 14 13 226 0.001437

Reemtsen’s method 6 22 >32761 0.0034744
8.3, d = 2 SMETH.ACTIV.apprx 25 22 74 0.177449

Reemtsen’s method 4 24 >32761 0.1776570
8.3, d = 3 SMETH.ACTIV.apprx 16 15 58 0.036201

Reemtsen’s method 5 23 >32761 0.0365746
8.4, d = 2 SMETH.ACTIV.apprx 14 30 72 0.265867

Reemtsen’s method 4 24 >68921 0.1524860

In the reported results

| Ỹ |=
 32761 for Example 8.2,

32761 for Example 8.3,
68921 for Example 8.4

(see [21]).
Then we set

| C |:=
{ | Y N | for a run of SMETH.ACTIV.apprx,

| ỸN | for a run of Reemtsen’s method.

The results of the comparison are presented in Table 8.3. We can see that
SMETH.ACTIV.apprx was used to solve several times more simpler linear prob-
lems than Reemtsen’s method (and these problems apprx.P[Yn], n = 1, 2, . . . , N , are
somewhat more complicated for SMETH.ACTIV.apprx), but the overall efficiency of
SMETH.ACTIV.apprx seems to be better due to less computational efforts paid at
each iteration (note that | Y n |<<| Ỹn |, n = 1, 2, . . . , N).

9. Conclusion. We suggest that important advantages of the proposed general
stochastic outer approximations method consist of the following.

First, the method has been constructed for the general problem P0, but it can
be easily essentially adapted for any special class of optimization problems involving
an infinite number of constraints. Note that, for instance, SMETH.ACTIV.glob and
SMETH.ACTIV.apprx (see also Remark 7.1) are specific such versions of the general
method SMETH.ACTIV. Moreover, for any special class of problems some new effec-
tive optimization techniques for solving simpler problems or inner problems can be
instantly employed within SMETH.ACTIV’s scheme.

In forthcoming papers we intend to present versions of the general method
SMETH.ACTIV for solving semi-infinite programming problems and minimax op-
timization problems.

Second, the construction of SMETH.ACTIV is open for further developments.
Thus, since the method SMETH.ACTIV can be considered as a developed Eaves–
Zangwill method applying at each iteration the multistart scheme for the search of
relevant parameters (note that if the inner problems J P(xn), n = 1, 2, . . . , are uni-
modal, SMETH.ACTIV appears to be similar to the Eaves–Zangwill method), some
recent advanced techniques of the multistart method can be employed to develop
SMETH.ACTIV. We shall point out some of these possible refinements:

(i) To limit the growth of the descriptions of problems P[Yn], n = 1, 2, . . . , we
can apply clustering techniques (see, for instance, [25]) in forming relevant parameter
sets Yn, n = 1, 2, . . ..



STOCHASTIC OUTER APPROXIMATIONS METHOD 1421

(ii) To improve the efficiency of the active search of relevant parameters (see
Step 1.ACTIV of SPROC.ACTIV) we can apply local descent techniques specially
developed for use within the multistart method (see, for instance, [23, 29]).
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1. Introduction. Let A be the infinitesimal generator of a strongly continuous
semigroup S(t) in a Banach space E. It is well known that existence theorems for the
semilinear control system

(1.1) y′(t) = Ay(t) + f(t, y(t), u(t)), y(0) = ζ,

with cost functional

(1.2) y0(t, u) =
∫ t

0
f0(τ, y(τ), u(τ))dτ

require assumptions of two types: (a) compactness of the semigroup S(·) and (b) some
condition such as convexity and closedness of

(1.3) {(z0, z) ∈ R × E; z0 ≥ f0(t, y, u), z = f(t, y, u) (u ∈ U)}
for every t, y, where U is the control set (see [12]). Lack of convexity or closedness
of (1.3) can be “repaired” using relaxed controls [4], [5], but lack of compactness of
the semigroup cannot, as we show in two examples in section 2. This motivates an
extension of the definition of solution discussed in section 3, a revival of Gamkre-
lidze’s sliding optimal states [7]. As shown in section 4, sliding optimal states can be
interpreted using measure-valued solutions of (1.1).

2. Two counterexamples. The systems are of the form

(2.1) y′(t) = Ay(t) + f(t, y(t)) + u(t) , y(0) = ζ,

in a separable Hilbert space H. The control set U is the unit ball of H, and the
space Cad(0, t̄; U) of admissible controls consists of all strongly measurable U -valued
functions defined in 0 ≤ t ≤ t̄. A solution y(t, u) = y(t, u(·)) of (2.1) is a function
in the space C(0, t̄; H) of H-valued continuous functions in 0 ≤ t ≤ t̄ satisfying the
integral equation

(2.2) y(t) = S(t)ζ +
∫ t

0
S(t − τ){f(τ, y(τ)) + u(τ)}dτ.
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(The definition includes the requirement that τ → f(τ, y(τ)) belong to L1(0, t̄; H).)
In the two examples, y(t, u) exists globally and is unique for every u(·) ∈ Cad(0, t̄; U).

A cost functional y0(t, u) (not necessarily of the form (1.2)) is weakly lower semi-
continuous if, for every sequence {un(·)} ⊆ Cad(0, t̄; U) such that

(2.3) un(·) → ū(·) ∈ Cad(0, t̄; U) L1(0, t̄; H) -weakly in L∞(0, t̄; H)

and such that y(t, un) exists in 0 ≤ t ≤ t̄ and

(2.4) y(·, un) → y(·) in C(0, t̄; H),

we have

(2.5) y0(t̄, ū) ≤ lim sup
n→∞

y0(t̄, un) .

Example 2.1. Consider the linear control system

(2.6) y′(t) = Ay(t) + u(t), y(0) = 0,

in the space H = L2(0, 2π). The semigroup is S(t)y(x) = y(x + t) (y(·) continued
2π-periodically outside of (0, 2π)). This semigroup has the infinitesimal generator
Ay(x) = y′(x), with domain consisting of all y(·) ∈ H absolutely continuous, with
square integrable derivative and y(0) = y(2π). The operator A is skew-adjoint, and
S(t) is a unitary group: S(t)∗ = S(−t). In particular, ‖S(t)y‖ = ‖y‖ for all y ∈ H.
The (fixed) control interval is 0 ≤ t ≤ π, there are no state constraints or target
condition, and the cost functional is

(2.7) y0(π, u) =
∫ π

0
{(S(−t)η, y(t, u))2 + (t2 − ‖y(t, u)‖2)2}dt,

where η is a fixed element of H. Weak lower semicontinuity of this functional is
obvious. (In fact, (2.5) holds with equality and lim instead of lim sup.)

We construct a minimizing sequence {un(·)}. Let

(2.8) un(t) = S(t)yn , yn(x) =
1√
π

cos nx .

Trajectories of the system are

(2.9) y(t, u) =
∫ t

0
S(t − τ)u(τ)dτ

so that

(2.10) y(t, un) = tS(t)yn .

Since yn → 0 in H weakly, the same is true of y(t, un) for all t. On the other hand,
‖y(t, un)‖ = t so that the integrand of y0(π, un) tends to zero almost everywhere (a.e.).
Thus y0(π, un) → 0 by the dominated convergence theorem. Since the functional is
nonnegative, {un} is a minimizing sequence. However, we show below that if

(2.11) η(x) =
∞∑

n=0

e−n2
cos nx,

there is no optimal control.
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LEMMA 2.2. Let H be a Hilbert space and f(τ) a strongly measurable H-valued
function in a measurable set e with ‖f(τ)‖ ≤ 1. Assume that∥∥∥∥∫

e

f(τ)dτ

∥∥∥∥ = |e| < ∞

(| · | = Lebesgue measure). Then there exists a one-dimensional subspace H0 of H
such that f(t) ∈ H0 a.e. in e.

Proof. If this is not true and y 6= 0 is arbitrary, we can write

(2.12) f(τ) = f0(τ)y + g(τ),

where g(τ) belongs to the orthogonal complement of the subspace generated by y and
g(t) 6= 0 in a subset of e of positive measure. We apply (2.12) to y =

∫
e
f(τ)dτ .

Then (y, f(τ)) = (y, y)f0(τ) so that |e|2 = (y, y) = (y, y)
∫

e
f0(τ)dτ . It follows that

f0(τ) = 1 a.e. in e, hence g(τ) = 0 a.e. in e, absurd. This ends the proof.
Assume that there is an optimal control ū(·). Then we must have ‖y(t, ū)‖ = t,

in particular ‖y(π, ū)‖ = π. Since ‖S(t − τ)ū(τ)‖ ≤ 1, we may apply Lemma 2.2 to
the integral (2.9) in e = [0, 2π] and obtain that S(π − τ)ū(τ) = ρ(τ)y, where ‖y‖ = 1
and ρ(·) is a scalar function with |ρ(τ)| = 1 a.e.; a fortiori, ū(τ) = S(τ − π)ρ(τ)y. It
then follows that

y(t, ū) = S(t − π)y
∫ t

0
ρ(τ)dτ .

Since ‖y(t, ū)‖ = t, we must have ρ(τ) ≡ 1 or ρ(τ) ≡ −1. Hence

(2.13) y(t, ū) = tS(t)z

with ‖z‖ = 1. Replacing in the cost functional,

0 = y0(π, ū) =
∫ π

0
t2(S(−t)η, S(t)z)2dt =

∫ π

0
t2(S(−2t)η, z)2dt

so that

(2.14) (S(−2t)η, z) = 0 (0 ≤ t ≤ π) .

We have S(−2t)(cos nx) = cos n(x − 2t) = cos nx cos 2nt + sin nx sin 2nt; hence (2.14)
is

φ(t) =
∞∑

n=0

e−n2
(

cos 2nt

∫ 2π

0
z(x) cos nxdx − sin 2nt

∫ 2π

0
z(x) sin nxdx

)
= 0

in 0 ≤ t ≤ π. The function φ(t/2) is then identically zero in 0 ≤ t ≤ 2π. It has a
uniformly convergent Fourier series; thus all of its Fourier coefficients must be zero,
and we have ∫ 2π

0
z(x) cos nx dx =

∫ 2π

0
z(x) sin nx dx = 0

for n = 1, 2, . . ., which implies that z(x) = 0 a.e., a contradiction since ‖z‖ = 1.
What fails in this example is not the functional, which is weakly lower semicon-

tinuous; the problem is that (2.4) does not hold because of lack of compactness of
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the semigroup. In fact, (2.3) is trivially satisfied. (Note also that (1.3) is convex and
closed for every t, y.)

Example 2.1 raises the idea of weakening the definition of weak lower semiconti-
nuity in such a way that weak rather than strong convergence is required in (2.4). We
assume below a cost functional of the form y0(t, y, u) defined for u(·) ∈ Cad(0, T ; U)
and y(·) ∈ C(0, T ; E). What makes it different from the cost functionals at play until
now is that y(·) is not necessarily the trajectory y(·, u). We call y0(t, y, u) weakly-
weakly lower semicontinuous if, for every sequence {un(·)} ⊆ Cad(0, t̄; U) such that
(2.3) holds, y(t, un) exists in 0 ≤ t ≤ t̄, the y(t, un) are uniformly bounded, and

(2.15) (y, y(t, un)) → (y, ȳ(t)) (0 ≤ t ≤ t̄, y ∈ H)

for some ȳ(·) ∈ C(0, t̄; U), we have the inequality corresponding to (2.5):

y0(t̄, ȳ, ū) ≤ lim sup
n→∞

y(t̄, y(un), un).

(The definition can be generalized to a Banach space E taking y ∈ E∗.) Under this
new definition, we can show an existence result for optimal problems for a linear
system

(2.16) y′(t) = Ay(t) + Bu(t) ,

with A the infinitesimal generator of a strongly continuous semigroup S(·) in an
arbitrary Banach space E. We take B : X∗ → E, where X is another Banach space
with X∗ separable, so that L∞(0, T ; X∗) = L1(0, T ; X)∗ (see Remark 4.5) and assume
that B∗ : E∗ → X and that U ⊆ X∗ is such that Cad(0, T ; U) is L1(0, T ; X)-weakly
compact in L∞(0, T ; X∗). If {un(·)} is a minimizing sequence, we may always assume
that {un(·)} is L1(0, t̄; X)-weakly convergent in L∞(0, t̄; X∗) so that if y∗ ∈ E∗ we
have

(2.17) 〈y∗, y(t, un)〉 = 〈y∗, S(t)ζ〉 +
∫ t̄

0
〈B∗S(t − τ)∗y∗, un(τ)〉dτ .

It follows that (2.15) holds; hence we can take lim sup in the cost functional. The
argument is much the same as that of Lemma 1.1 in [2] for the time-optimal problem.
However, the result is not generalizable to nonlinear systems, as the following example
shows.

Example 2.3. Consider the control system

(2.18) y′(t) = Ay(t) + φ(t2 − ‖y(t)‖2)ξ + u(t) , y(0) = 0,

with the same space H, operator A, and admissible control space Cad(0, t̄; U) as in
Example 2.1. The function φ(s) is infinitely differentiable, bounded, positive for s 6= 0
and φ(0) = 0 (for instance, φ(s) = s2/(1+ s2)), and ξ is an arbitrary nonzero element
of H. It is well known that under these assumptions solutions exist globally and are
uniformly bounded for u(·) ∈ Cad(0, T ; U).

We consider the optimal control problem in the fixed interval 0 ≤ t ≤ 2π with
cost functional

(2.19) y0(2π, u) =
∫ 2π

0
{(S(−t)η, y(t, u))2 + (S(t)η, y(t, u))2 + (S(t)η, u(t))2}dt ,
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and no target condition or state constraints: η ∈ H is again given by (2.11). The
functional y0(2π, u) is weakly-weakly lower semicontinuous. That this is true for the
first two terms is a consequence of the dominated convergence theorem. For the third
term, we note that if {un(·)} is a sequence in L∞(0, t̄; H) such that un(·) → ū(·)
L1(0, t̄; H)-weakly in L∞(0, t̄; H), then (S(·)η, un(·)) → (S(·)η, ū(·)) L1(0, t̄)-weakly
in L∞(0, t̄). A fortiori, (S(·)η, un(·)) → (S(·)η, ū(·)) L2(0, t̄)-weakly in L2(0, t̄); hence,∫ t̄

0
(S(τ)η, ū(τ))2dτ ≤ lim sup

n→∞

∫ t̄

0
(S(τ)η, un(τ))2dτ .

The sequence (2.8) is a minimizing sequence also for this problem, that is,

(2.20) y0(2π, un) → 0 as n → ∞ .

That this is true for the first two terms follows from (2.13) (we have ‖y(t, un)‖ = t2

for the function defined by (2.9) so that y(t, un) solves (2.6) as well as (2.18)), the
fact that yn → 0 weakly, and the dominated convergence theorem. For the third, we
note that (S(t)η, un(t)) = (S(t)η, S(t)yn) = (η, yn). These observations are of course
independent of ξ.

We show below that there are no optimal controls. In fact, assume ū(·) is optimal.
Then we must have

(2.21) (S(−t)η, y(t, ū)) = (S(t)η, y(t, ū)) = (S(t)η, ū(t)) = 0 (0 ≤ t ≤ 2π) .

Thus

(2.22) 0 = (S(t)η, y(t, ū)) =
(

S(t)η,

∫ t

0
S(t − τ){φ(τ2 − ‖y(τ, ū)‖2)ξ + ū(τ)}dτ

)
=

∫ t

0
(S(t)η, S(t − τ)ξ)φ(τ2 − ‖y(τ, ū)‖2)dτ +

∫ t

0
(S(t)η, S(t − τ)ū(τ))dτ

=
∫ t

0
(S(τ)η, ξ)φ(τ2 − ‖y(τ, ū)‖2)dτ +

∫ t

0
(S(τ)η, ū(τ))dτ

=
∫ t

0
(S(τ)η, ξ)φ(τ2 − ‖y(τ, ū)‖2)dτ (0 ≤ t ≤ 2π),

where the second integral drops out in view of the third equality (2.21). We deduce
that

(2.23) (S(t)η, ξ)φ(t2 − ‖y(t, ū)‖2) = 0 (0 ≤ t ≤ 2π).

Assume that

(2.24) (S(t)η, ξ) = 0 (0 ≤ t ≤ 2π) .

Then the argument following (2.14), this time applied to ξ, reveals that ξ = 0, a
contradiction. On the other hand, assume that (2.24) is false. Then, since the function
(S(·)η, ξ) is analytic, we must have (S(τ)η, ξ) 6= 0 a.e.; hence (2.23) and the fact
that φ(s) > 0 for s 6= 0 imply that ‖y(t, ū)‖ = t a.e. By continuity, ‖y(t, ū)‖ = t
in 0 ≤ t ≤ 2π. It follows that for the optimal control ū(·), (2.18) reduces to the
linear equation (2.6) so that the trajectory corresponding to ū(·) is given by (2.13):
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y(t, ū) = tS(t)z with ‖z‖ = 1. The first equality (2.21) then yields (S(−2t)η, z) = 0
(0 ≤ t ≤ 2π); we apply once again the argument after (2.14) to conclude that z = 0,
again a contradiction.

This time, nonexistence of optimal controls is caused by the fact that the weak
limit of the sequence {y(·, un)} is not the solution y(·, ū) of (2.18), a phenomenon
typical in nonlinear equations. Note that the function u → (y, u)2 is continuous and
convex so that the set (1.3) is closed and convex for every t, y.

3. Sliding trajectories. Paying heed to a celebrated dictum of Hilbert [8] (in
the very free translation of [14]) such problems as those in Example 2.1 and 2.3 should
have a solution if “solution” is suitably defined. One way to a suitable definition is
to generalize Gamkrelidze’s finite-dimensional definition of “sliding optimal states”
in [7]. We do this for the system (2.1) in a reflexive, separable space E with a
control set U ⊆ E. The admissible control space Cad(0, T ; U) is the subspace of
L∞(0, T ; E) = L1(0, T ; E∗)∗ (see Remark 4.5) defined by u(t) ∈ U a.e., and we
assume that Cad(0, T ; U) is L1(0, T ; E∗)-weakly compact in L∞(0, T ; E); this implies,
among other things, that U must be closed and bounded. (All assumptions on the
control space are satisfied, for instance, if U = unit ball of E.) Finally, we assume
that f(t, y) is continuous in y for t fixed, strongly measurable in t for y fixed and that
for every r > 0 there exists a constant K(r) such that

(3.1) ‖f(t, y)‖ ≤ K(r) (0 ≤ t ≤ T, ‖y‖ ≤ r).

This is enough to define solutions by (2.2), although it does not guarantee even local
existence or uniqueness. In this situation, y(t, u) means one of the solutions of (2.1)
corresponding to u(·) if any exist. We assume a cost functional of the form y0(t, y, u),
where u = u(·) ∈ Cad(0, t̄; U) and y(·) ∈ C(0, t̄; E). The definition of weak-weak lower
semicontinuity is the same in section 2.

A sliding trajectory of (2.1) in 0 ≤ t ≤ t̄ is any E-valued continuous function
y(t) such that there exists a sequence {un(·)} ⊆ Cad(0, t̄; U) with y(t, un) defined in
0 ≤ t ≤ t̄, the trajectories {y(·, un)} are uniformly bounded, and

(3.2) y(t) = lim
n→∞ y(t, un)

E∗-weakly in 0 ≤ t ≤ t̄. If y0(t̄, un) approaches the minimum value m of the functional,
we have a sliding optimal trajectory, not necessarily the trajectory corresponding to
any admissible control (as is the case in Examples 2.1 and 2.3). To give interest to such
a definition, one should be able (i) to define the cost functional for sliding trajectories
and show these provide minimizing elements in cases where ordinary trajectories fail
and (ii) to prove some version of Pontryagin’s maximum principle for the elements
{un(·)} of the minimizing sequence defining the sliding optimal trajectory. We do
(i) in Theorem 3.1 below and (ii) (for a particular optimal problem) in Example 3.2.
In part (b) of the result below, the optimal problem may include a target condition
y(t̄, u) ∈ Y or state constraints y(t, u) ∈ M(t) (0 ≤ t ≤ t̄) as long as Y and the M(t)
are E∗-weakly closed. Finally, we assume that m > −∞.

THEOREM 3.1. (a) Let {un(·)} be an arbitrary sequence in Cad(0, t̄; U) with
{y(t, un)} uniformly bounded in 0 ≤ t ≤ t̄. Then, if necessary passing to a subse-
quence,

(3.3) y(t, un) → ȳ(t) E∗-weakly in 0 ≤ t ≤ t̄

where ȳ(t) is a sliding trajectory.
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(b) If {un(·)} ⊆ Cad(0, t̄; U) is in addition a minimizing sequence, there exists
ū(·) ∈ Cad(0, t̄; U) such that ū(·) is the L1(0, t̄; E∗)-weak limit of (a subsequence of)
{un(·)} and

(3.4) y0(t̄, ȳ, ū) = m

so that ȳ(·) is an optimal sliding trajectory.
Proof. Selecting a subsequence and using (3.1) we may take for granted that

{un(·)} is L1(0, t̄; E∗)-weakly convergent to ū(·) ∈ Cad(0, t̄; U) and that {f(·, y(·, un))}
is L1(0, t̄; E∗)-weakly convergent to Φ(·) ∈ L∞(0, t̄; E). We write (2.2) for each un(t)
and each y(t, un), apply a functional y∗ ∈ E∗ to both sides, and take limits. We
deduce that y(t, un) → ȳ(t) E∗-weakly for 0 ≤ t ≤ t̄, ȳ(t) given by

(3.5) ȳ(t) = S(t)ζ +
∫ t

0
S(t − τ)Φ(τ)dτ

and thus continuous. That (3.4) holds is obvious from the definitions.
Example 3.2. We consider the time-optimal problem for (2.1) with A the infinites-

imal generator of a group S(t) in a Hilbert space H. The nonlinear term is strongly
measurable in t for y fixed and has a Fréchet derivative ∂yf(t, y) ∈ (H, H) with re-
spect to y such that ∂yf(t, y)z is strongly measurable with respect to t for y, z fixed
and continuous in y for t, z fixed. Finally, for every r > 0 there exists constants K(r),
L(r) such that

(3.6) ‖f(t, y)‖H ≤ K(r), ‖∂yf(t, y)‖(H,H) ≤ L(r) (0 ≤ t ≤ T, ‖y‖ ≤ r).

((H, H) is the space of all linear bounded operators from H into itself equipped with
the operator norm.) The target condition is y(t̄, u) ∈ Y , Y ⊆ E closed, and there are
no state constraints. We assume the existence of a minimizing sequence {un(·)} such
that

(3.7) dist(y(tn, un), Y ) = εn → 0 as n → ∞
with tn < t̄ = optimal time, and

(3.8) ‖y(t, un)‖ ≤ C (0 ≤ t ≤ tn) .

Using Theorem 5.2 in [6] we obtain a sequence {ũn}, ũn ∈ Cad(0, tn; U) with

(3.9) dn(un, ũn) = |{t ∈ [0, tn]; un(t) 6= ũn(t)}| ≤ √
εn

and sequences {ỹn} ⊆ Y, {zn} ⊆ E such that

(3.10) ‖zn‖ = 1 , (zn, ξn − wn) ≤ √
εn(1 + ‖wn‖)

for wn in the contingent cone KY (ỹn) and

ξn = lim
h→0+

1
h

(y(t̄, ũn
s,h,v) − y(t̄))

for s in a set of full measure of [0, t̄], where us,h,v(t) is the spike perturbation us,h,v(t) =
v ∈ U (s − h < t ≤ s), us,h,v(t) = u(t) elsewhere. Going to a subsequence we may
assume that {zn} is weakly convergent, and we have

(3.11) z = weak lim
n→∞ zn 6= 0
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FIG. 1.

(see [3], [6]). Assumption (3.8) on global boundedness of y(t, un), (3.9), and a simple
application of Gronwall’s lemma imply that the trajectories y(t, ũn) exist globally and
are uniformly bounded:

(3.12) ‖y(t, ũn)‖ ≤ C (0 ≤ t ≤ tn) .

Computing ξn as in [3], [6] and setting wn = 0 in (3.10) we obtain

(3.13) (S(tn, s; ũn)∗zn , v − ũn(s)) ≤ √
εn (‖v‖ ≤ 1)

a.e. in 0 ≤ t ≤ t̄, where S(t, s; u) is the solution operator of the variational equation
z′(t) = {A + ∂yf(t, y(t, u))}z(t). This inequality is exploited through the following
result.

LEMMA 3.3. Let ‖z‖ = 1, ‖u‖ ≤ 1, 0 < δ < 1,

(3.14) (z, v − u) ≤ δ (‖v‖ ≤ 1) .

Then

(3.15) ‖u − z‖ ≤
√

2δ

Proof. Inequality (3.14) implies (z, z − u) ≤ δ, while we have (z, z − u) ≥ 0, so
the proof can be read from Figure 1 and the fact that 1 − (1 − δ)2 + δ2 = 2δ.

We continue with Example 3.2. Since S(t) is a group, the solution operator
S(t, s; u) is defined for s ≤ t as well as for s ≥ t. Moreover (3.12) implies that

‖S(t, s; ũn)‖ ≤ C (0 ≤ s, t ≤ tn)

and S(t, s; ũn)−1 = S(s, t; ũn), thus the inverses are uniformly bounded as well. The
same statements apply to the adjoint operator S(t, s; ũn)∗, so ‖S(t, s; ũn)∗z‖ ≥ c‖z‖
(0 ≤ s, t ≤ tn) with c > 0. It follows from (3.10) that ‖zn‖ is bounded away from
zero, hence

(3.16) ‖S(tn, s; ũn)∗zn‖ ≥ ρ > 0

for n large enough.
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We deduce from (3.13) divided by ‖S(tn, s; ũn)∗zn‖, from (3.16), and from Lemma
3.3 that if we define

(3.17) ūn(s) =
S(tn, s; ũn)∗zn

‖S(tn, s; ũn)∗zn‖ (0 ≤ t ≤ tn),

then

(3.18) ‖ũn(t) − ūn(t)‖ → 0

uniformly in 0 ≤ t ≤ tn so that ūn(·) is a minimizing sequence as well due to continuous
dependence of the solution of (2.1) on the control. It finally results that although the
time-optimal control problem for (2.1) may not have a solution, there exists a sequence
{zn} with ‖zn‖ = 1 and weak lim zn 6= 0 and such that (3.17) is a minimizing sequence;
moreover, combining (3.9) with (3.18) we obtain

(3.19) ‖un − ūn‖Lp(0,tn) → 0

for p < ∞. This may be considered “almost as good” as the maximum principle.
Note, however, that the existence of a minimizing sequence with tn < optimal time
is a serious restriction. Note also that it does not seem possible to extend (3.17) to
ū(s), the weak limit of the un(s) in Theorem 3.1. In fact, to do this, one would have
to take limits in (3.13). Weak convergence of {ũn(·)} could be exploited integrating
against L1 functions, but convergence of S(tn, s; ũn)∗zn seems dubious in any sense.

Results for cost functionals other than time can be obtained by using the corre-
sponding “approximate maximum principles” in [3], [6].

Applied to the systems in Examples 2.1 and 2.3 and to the minimizing sequence
(2.8), the optimal sliding trajectory turns out to be y(t) ≡ 0 (the sequence (2.10)
converges weakly to zero for all t).

4. Sliding trajectories as relaxed trajectories. In an equation like (2.1),
measure-valued controls are not necessary, since the control appears linearly; what
must be relaxed are the trajectories. This will be done averaging with time-dependent
probability measures in accordance with the general idea of Young measures [13].

Let X be an arbitrary Banach space. L∞
w (0, T ; X∗) is the space of all X-weakly

measurable X∗-valued functions g(t) endowed with the norm ‖g‖ = least c with
〈y, g(t)〉 ≤ c‖y‖ a.e. in 0 ≤ t ≤ T for y ∈ X (“a.e.” depends on y). We have

(4.1) L1(0, T ; X)∗ = L∞
w (0, T ; X∗)

with duality 〈f(·), g(·)〉 =
∫ 〈f(t), g(t)〉dt. For more on the space L∞

w (0, T ; X∗) and on
more general spaces see [9, p. 78]; the proof of (4.1) and more details on the duality
are in [9, p. 94]. See also Remark 4.5 below, and [4], [5] for other control applications
of L∞

w (0, T ; X∗).
Let Br be the ball of center 0 and radius r in a Banach space E, and consider the

space BC(Br) of bounded continuous functions in Br equipped with the supremum
norm and its dual Σrba(Br, Φc) of all bounded, finitely additive regular measures
µ = µ(dξ) defined in the field Φc generated by the closed subsets of Br; Σrba(Br, Φc)
is furnished with the total variation norm. The duality map is 〈f, µ〉 =

∫
Br

f(ξ)µ(dξ).
Applied to these spaces, (4.1) gives

(4.2) L1(0, T ; BC(Br))∗ = L∞
w (0, T ; Σrba(Br, Φc)) .
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Finally, let Πrba(Br, Φc) be the set of all probability measures η in Σrba(Br, Φc) (that
is, the set of measures satisfying η ≥ 0, η(Br) = 1), and let L∞

w (0, T ; Πrba(Br, Φc))
be the subspace of L∞

w (0, T ; Σrba(Br, Φc)) consisting of all η(·) such that there exists
an element µ(·) in the equivalence class of η(·) in L∞

w (0, T ; Σrba(Br, Φc)) with µ(t) ∈
Πrba(Br, Φc) a.e. (For the technicalities associated with this definition see [9], [4], [5].)

We install the relaxed trajectories in (2.1) assuming that t → 〈y∗, f(t, ·)〉 is a
strongly measurable BC(Br)-valued function for every y∗ ∈ E∗ and satisfies (3.1).
Below, η(t, dξ, u) = η(t, dξ, u(·)) denotes an element of the space Πrba(Br, Φc) de-
pending on t ∈ [0, T ] and u = u(·) ∈ Cad(0, T ; U).

Let u = u(·) ∈ Cad(0, t̄; U). Call η(·, u) = η(·, dξ, u) ∈ L∞
w (0, t̄; Πrba(Br, Φc)) a

measure solution of (2.1) in 0 ≤ t ≤ t̄ if

(4.3)

∫
Br

〈y∗, ξ〉η(t, dξ, u) = 〈y∗, S(t)ζ〉

+
∫ t

0

∫
Br

〈S(t − τ)∗y∗, f(τ, ξ)〉η(τ, dξ, u)dτ +
∫ t

0
〈y∗, u(τ)〉dτ

for all y∗ ∈ E∗, 0 ≤ t ≤ t̄; for this definition to make sense, we need only the func-
tion τ → 〈S(t − τ)∗y∗, f(τ, ξ)〉 to belong to L1(0, t; BC(Br)), which follows from the
hypotheses, strong continuity of the adjoint semigroup, and a simple approximation
argument. The notation η(t, dξ, u) does not imply that, given u(·), there exists a
unique measure solution satisfying (4.3); it indicates only the association of η and
u = u(·) in the integral equation (4.3). The relaxed trajectory y(t, η(u)) corresponding
to the measure solution η(u) = η(· , u) = η(·, dξ, u) is the E-valued function y(t, η(u))
defined by

(4.4) 〈y∗, y(t, η(u))〉 =
∫

Br

〈y∗, ξ〉η(t, dξ, u)

for y∗ ∈ E∗, 0 ≤ t ≤ t̄. Since t → 〈y∗, ·〉 trivially belongs to L1(0, T ; BC(Br)),
y(t, η(u)) is E∗-weakly measurable and thus strongly measurable. (In fact, relaxed
trajectories are continuous; see Remark 4.3.) We also have |〈y∗, y(t, η(u))〉| ≤ r‖y∗‖
since η is a probability measure, so that

(4.5) ‖y(t, η(u))‖ ≤ r (0 ≤ t ≤ t̄) .

Usual solutions y(t, u) of (2.1) with ‖y(t, u)‖ ≤ r correspond to measure solutions

(4.6) η(t, dξ, u) = δy(t,u)(dξ) .

The assumptions on the cost functional and the target set Y are the same in section
3; in particular, m > −∞. We limit ourselves below to show that sliding trajectories
are relaxed trajectories.

THEOREM 4.1. Let ȳ(t) = lim y(t, un) be one of the sliding trajectories in Theorem
3.1. Then there exists a control ū(·) and a measure-valued solution η(·, ū) such that

ȳ(t) = y(t, η(ū)).

Proof. Let η(t, dξ, un) = δy(t,un)(dξ). Using Alaoglu’s theorem, select a (general-
ized) subsequence {uk(·), η(·, uk)} such that

(4.7) uk(·) → ū(·) L1(0, t̄; E∗)-weakly in L∞(0, T ; E) ,

(4.8) η(·, uk) → η̄(·) L1(0, T ; BC(Br))-weakly in L∞
w (0, T ; Σrba(Br, Φc)) ,
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where η̄ ∈ L∞
w (0, T ; Πrba(Br, Φc)); see [4]. Write (4.3) for η(·, uk), uk(·). Convergence

of the first (resp., the second) integral in (4.3) follows from (4.8) (resp., (4.7)), and
we deduce that ū(·) and η̄(·) satisfy (4.3), so η(·) = η(·, ū). This ends the proof.

Remark 4.2. The functional equation (4.3) is in some sense simpler than the
original equation (2.1) (for instance, it is linear in η when u = 0), and the definition
of solution is weaker; thus it would seem to be interesting (independently of control
theory) to put conditions on f(t, y) that would guarantee existence of measure-valued
solutions, although perhaps not of ordinary solutions. We don’t know of any such
results; in fact, under the usual assumptions in control theory (those of Example 3.2)
usual solutions exist and are unique (locally); measure-valued solutions only make
their appearance to provide missing minima in certain problems lacking compactness
(such as those in Examples 3.1 and 3.2).

Remark 4.3. Let ϕ(ξ) be an E-valued function defined in Br and such that
〈y∗, ϕ(ξ)〉 ∈ BC(Br), and let η(dξ) ∈ Πrba(Br, Φc). Define Φ =

∫
Br

ϕ(ξ)η(dξ) ∈ E as
the only element of E satisfying

(4.9) 〈y∗, Φ〉 =
∫

Br

〈y∗, ϕ(ξ)〉η(dξ).

Then

(4.10) Φ =
∫

Br

ϕ(ξ)η(dξ) ∈ conv(ϕ(Br)),

where conv = closed convex hull (see [5]). Let

(4.11) Φ(τ, u) =
∫

Br

f(τ, ξ)η(τ, dξ, u)

(the integral defined as in (4.9)). If y∗ ∈ E∗, then τ → 〈y∗, f(τ, ·)〉 belongs to
L1(0, t̄; BC(Br)), so that Φ(t, u) is E∗-weakly measurable, hence (under the present
assumptions on E) strongly measurable; moreover, ‖Φ(τ, u)‖ ≤ K(r). It follows that
y∗ can be “simplified from” the integral equation (4.3) defining measure solutions; in
other words, the integral equation can be written

(4.12) y(t, η(u)) = S(t)ζ +
∫ t

0
{S(t − τ)Φ(τ, u) + u(τ)}dτ

and, in view of (4.10),

(4.13) Φ(τ, u) ∈ conv(f(τ, Br))

a.e. in 0 ≤ t ≤ t̄ so that the role of the measure η(τ, dξ, u) in the integral equation
(4.3) is that of providing a (time-dependent) average of the values of f(τ, y). Not also
that (4.12) shows that relaxed trajectories are continuous.

Remark 4.4. It is apparently unknown whether the relaxed trajectory corre-
sponding to a measure-valued solution is a sliding trajectory, that is, whether it can
be approximated weakly for all t by an uniformly bounded sequence of ordinary tra-
jectories. A result of this type would be a “trajectory analogue” of the relaxation
theorems (see [11] for finite-dimensional systems, [5] for infinite-dimensional general-
izations) stating that trajectories driven by relaxed controls can be approximated by
ordinary trajectories.
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Remark 4.5. The space L∞
w (0, T ; X∗) has rather nonstandard properties when X

is not separable; its elements g(·) may not be strongly measurable, even the norm
function t → ‖g(·)‖ may not be measurable, there are equivalent elements that do not
coincide a.e., and the norm of L∞

w (0, T ; X∗) is not the same as the essential supre-
mum norm. Even when X is separable, we may have L∞

w (0, T ; X∗) 6= L∞(0, T ; X∗)
(this happens for X = C(U), the space of all continuous functions on a compact
metric space U ; the spaces L∞

w (0, T ; C(U)∗) are the basic spaces of relaxed controls
in [10]). When X is separable, however, the norm function t → ‖g(·)‖ is measur-
able and the essential supremum norm coincides with the norm of L∞

w (0, T ; X∗). We
have L∞

w (0, T ; X∗) = L∞(0, T ; X∗) when and only when X∗ has the Radon−Nikodým
property [1, Theorem 1, p. 98]; this happens for instance if X∗ is separable [1, Theo-
rem 1, p. 79] or if X is reflexive [1, Corollary 13, p. 76]. None of these “simplifications”
applies here, since the space Πrba(Br, Φc) is not separable or reflexive, or even pos-
sesses the Radon−Nikodým property. Generally speaking, a space of finitely additive
measures like L∞

w (0, T ; Πrba(Br, Φc)) is uncomfortably large and contains weird ele-
ments. For particular partial differential equations (rather than abstract differential
equations like (2.1)), spaces of countably additive measures parameterized not only
by time but by the space variables may be more suitable.

Acknowledgments. The author is most grateful to two anonymous referees for
their constructive criticism, which resulted in substantial improvements to this paper.
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Abstract. The aim of this paper is to establish formulas for the subdifferentials of the sum and
the composition of convex functions in terms of the subdifferentials of the data functions at nearby
points. Applications to general optimization problems lead to a new notion of sequential Lagrange
multipliers.
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Introduction. This paper has been motivated by the two important recent con-
tributions by Hiriart-Urruty and Phelps [10] and Attouch, Baillon, and Théra [1] to
the theory of subdifferential calculus of convex functions. In [10] a general formula
has been established without any qualification condition for the sum of two proper
convex lower semicontinuous functions over a locally convex topological vector space
X. This formula is in terms of ε-approximate subdifferentials of the functions at the
fixed point. As a consequence of the study undertaken about the variational sum of
maximal monotone operators another formula has been obtained in [1] in terms of
exact subdifferentials at nearby points but for Hilbert spaces. This latter formula
also does not require any qualification condition.

The aim of this work is twofold. First we will show how the formula by Hiriart-
Urruty and Phelps can be used to get a formula in terms of exact subdifferentials
at nearby points. Second, with this formula at hand, we will consider a new notion
of Lagrange multipliers and we will establish existence of multipliers in this sense
for general constrained convex optimization problems where no constraint qualifica-
tion is assumed. These generalized multipliers appear as sequences of multipliers at
nearby points and the optimality conditions that they provide are both necessary and
sufficient whenever all the data of the optimization problem are convex. Note that
Hanson [9] has recently showed that the existence of a similar sequence of multipliers
is a sufficient condition for a point to be optimal for minimization problems with
differentiable invex functions defined on finite-dimensional spaces. However, he did
not prove at all that this condition is necessary; that is, he did not show that such a
sequence of multipliers does exist at any optimal solution which does not satisfy any
constraint qualification.

In section 1 we will recall the formula by Hiriart-Urruty and Phelps, and we will
establish some preliminary results. Section 2 is devoted to proving our sequential
formula relative to the sum of convex functions. We will also show how the already
known general formulas under general qualification conditions can be derived. The
composition with a vector-valued convex mapping is considered in section 3. The
formula obtained for such a composition allows us to derive in section 4 the existence
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of sequential Lagrange multipliers for any general constrained convex optimization
problem without any constraint qualification. We have chosen in this article to avoid
the use of nets and subnets and hence all the results will be established for reflexive
Banach spaces. The more general spaces will be treated in other papers.

1. Preliminary results. In this section we are going to recall the main result
of Hiriart-Urruty and Phelps [10], and we will give a new version of the Brøndsted–
Rockafellar theorem which will be used in section 2.

Before stating the theorem by Hiriart-Urruty and Phelps let us recall that, for
any convex function f from a topological vector space X into R ∪ {+∞} and for any
real number ε ≥ 0, the ε-subdifferential of f at any point x ∈ dom f := {u ∈ X :
f(u) < ∞} is defined by

∂ε f(x) = {x∗ ∈ X∗ : 〈x∗, u− x〉 ≤ f(u) − f(x) + ε for all u ∈ X}.

If ε = 0 one writes ∂ f(x), which is then called the subdifferential of f at x. When
dom f 6= ∅ one says that f is proper and for x 6∈ dom f one puts ∂ε f(x) = ∅.

THEOREM 1.1 (see Hiriart-Urruty and Phelps [10]). Let X be a locally convex
vector space and f1, f2 : X −→ R∪{+∞} be two proper lower semicontinuous convex
functions. Then for any x ∈ dom f1 ∩ dom f2, one has

∂(f1 + f2)(x) =
⋂
ε>0

clw∗(∂εf1(x) + ∂εf2(x)),

where clw∗ denotes the closure with respect to the weak-star topology of X∗.
The version in Theorem 1.3 of the Brøndsted–Rockafellar theorem (which we have

not found in the form given below in the literature, although the main idea of the
proof was already used in Borwein [4]) will be needed in the next section. Note that
it could be proved by the result of the version of Brøndsted–Rockafellar theorem by
Borwein but the proof below is simple. It will be one of the keys of the proof of
Theorem 2.1. Recall first the following form of the Ekeland variational principle.

THEOREM 1.2 (see Ekeland [8]). Let (X, d) be a complete metric space and f :
X −→ R∪{+∞} be a lower semicontinuous function. Let ε > 0 and x ∈ X such that

f(x) ≤ inf
X
f + ε.

Then for any λ > 0 there exists z ∈ X such that

d(z, x) ≤ λ, |f(z) − f(x)| ≤ ε,

f(z) < f(x) + λ−1ε d(x, z) for all x 6= z in X.
In the proof below and in what follows we will denote by BX the closed unit ball

centered at zero of a Banach space X.
THEOREM 1.3 (A version of the Brøndsted–Rockafellar theorem). Let X be a Ba-

nach space and f : X −→ R∪{+∞} be a proper lower semicontinuous convex function.
Then for any real number ε > 0 and any x∗ ∈ ∂εf(x) there exists (xε, x

∗
ε) ∈ X ×X∗

such that

‖xε − x‖ ≤ √
ε, ‖x∗

ε − x∗‖ ≤ √
ε, |f(xε) − 〈x∗

ε, xε − x〉 − f(x)| ≤ 2ε,

and

x∗
ε ∈ ∂f(xε).
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Proof. By definition we have for all x ∈ X

〈x∗, x− x〉 ≤ f(x) − f(x) + ε

and hence

f(x) − 〈x∗, x〉 ≤ f(x) − 〈x∗, x〉 + ε.

By the Ekeland variational principle (see Theorem 1.2) applied to the function f −
〈x∗, .〉 (with λ =

√
ε) there exists an element xε ∈ x+

√
ε BX such that

(1.1) |f(xε) − 〈x∗, xε〉 − f(x) + 〈x∗, x〉| ≤ ε

and

f(xε) − 〈x∗, xε〉 ≤ f(x) − 〈x∗, x〉 +
√
ε ‖x− xε‖

for all x ∈ X. Then

x∗ ∈ ∂(f +
√
ε ‖.− xε‖)(xε) = ∂ f(xε) +

√
ε BX∗

and hence there exists x∗
ε ∈ ∂ f(xε) satisfying ‖x∗

ε − x∗‖ ≤ √
ε. It then follows from

(1.1) that

|f(xε) − 〈x∗
ε, xε − x〉 − f(x)| ≤ ε+ |〈x∗

ε − x∗, xε − x〉| ≤ 2ε

which completes the proof.
Remark. The usual versions of the Brøndsted–Rockafellar theorem are given

without the third inequality of the above theorem. As we will see later, this inequality
will be used in force in the proof of Theorem 2.1.

2. Sequential calculus for sums of convex functions. If f1 and f2 are two
convex functions from a Banach space X into R ∪ {+∞} and if x ∈ dom f1 ∩ dom f2,
we will denote by ‖ ‖− lim sup

ui
fi−〈,〉−→ x

[∂ f1(u1)+∂ f2(u2)] the set all limits ‖ ‖−
limn−→∞(x∗

1,n+x∗
2,n) for which there exists xi,n −−−−→

n→∞
‖ ‖ x such that x∗

i,n ∈ ∂ fi(xi,n)

and fi(xi,n) − 〈x∗
i,n, xi,n − x〉 −→

n−→∞fi(x).
In order to avoid the use of nets we will restrict ourselves to reflexive Banach

spaces. The general case will considered in another paper.
THEOREM 2.1. Let X be a reflexive Banach space and let f1, f2 : X −→ R∪{+∞}

be two proper lower semicontinuous convex functions. Then for any x ∈ dom f1 ∩
dom f2

∂ (f1 + f2)(x) = ‖ ‖− lim sup
ui

fi−〈,〉−→ x

[∂ f1(u1) + ∂ f2(u2)]

= w∗− lim sup
ui

fi−〈,〉−→ x

[∂ f1(u1) + ∂ f2(u2)]

=
{‖ ‖− lim

n
(x∗

1,n + x∗
2,n) : x∗

i,n ∈ ∂ fi(xi,n), xi,n
‖ ‖−→x,

lim inf
n

γ(x1,n, x2,n, x
∗
1,n, x

∗
2,n) ≤ 0

}
=

{
w∗− lim

n
(x∗

1,n + x∗
2,n) : x∗

i,n ∈ ∂ fi(xi,n), xi,n
‖ ‖−→x,

lim inf
n

γ(x1,n, x2,n, x
∗
1,n, x

∗
2,n) ≤ 0

}
,

where γ(x, y, x∗, y∗) := f1(x) + f2(x) − f1(x) − f2(y) + 〈x∗, x− x〉 + 〈y∗, y − x〉.
Proof. (1) Let us prove that the first member is included in the second one.

Fix any x∗ ∈ ∂ (f1 + f2)(x). Since X is reflexive it follows from the theorem by



SEQUENTIAL CONVEX SUBDIFFERENTIAL CALCULUS 1437

Hiriart-Urruty and Phelps (see section 1) that (for N∗ := N \ {0})

x∗ ∈
⋂

n∈N∗
clw∗

[
∂1/nf1(x) + ∂1/nf2(x)

]
=

⋂
n∈N∗

cl‖ ‖
[
∂1/n f1(x) + ∂1/n f2(x)

]
.

Therefore for each n ∈ N∗ we have

x∗ ∈ ∂1,nf1(x) + ∂1/nf2(x) +
1
n

BX∗

and hence there exist u∗
i,n ∈ ∂1/n fi(x) and b∗n ∈ BX∗ such that

(2.1) x∗ = u∗
1,n + u∗

2,n +
1
n
b∗n.

By the Brøndsted–Rockafellar theorem in section 1 there exists (xi,n, x
∗
i,n) ∈ graph ∂ f

such that

‖xi,n − x‖ ≤ 1√
n
, ‖x∗

i,n − u∗
i,n‖ ≤ 1√

n
,

and

|fi(xi,n) − 〈x∗
i,n, xi,n − x〉 − fi(x)| ≤ 2

n
.

We may choose b∗i,n ∈ BX∗ satisfying u∗
i,n = x∗

i,n + 1√
n
b∗i,n.

It then follows from (2.1) that

x∗ = x∗
1,n + x∗

2,n +
1√
n

(
1√
n
b∗n + b∗1,n + b∗2,n

)
and hence x∗ = ‖ ‖− lim

n
(x∗

1,n +x∗
2,n), which completes the proof of the first inclusion.

(2) Obviously the second member is included in the third and fourth ones and
the third and fourth ones are included in the fifth one. So it remains to prove that
the fifth member is included in the first one. Fix any x∗ in the fifth member. There
exist xi,n −−−−→

n→∞
‖ ‖ x, x∗

i,n ∈ ∂ fi(xi,n) such that x∗ = w∗ − lim(x∗
1,n + x∗

2,n) and
lim inf γn ≤ 0, where

γn := f1(x) + f2(x) − f1(x1,n) − f2(x2,n) + 〈x∗
1,n, x1,n − x〉 + 〈x∗

2,n, x2,n − x〉.
Fix any x ∈ X. Then

〈x∗
i,n, x− x〉 = 〈x∗

i,n, xi,n − x〉 + 〈x∗
i,nx− xi,n〉

≤ 〈x∗
i,n, xi,n − x〉 + fi(x) − fi(xi,n)

and hence

〈x∗
1,n + x∗

2,n, x− x〉 ≤ f1(x) + f2(x) − f1(x) − f2(x) + γn.

Taking the limit inferior of both members we get

〈x∗, x− x〉 ≤ (f1 + f2)(x) − (f1 + f2)(x)

and hence x∗ ∈ ∂(f1 + f2)(x). So the proof of the theorem is complete.
A similar result has been proved by Attouch, Baillon, and Théra (see Theorem

7.3 in [1]), where it is assumed that X is a Hilbert space. Their method is completely
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different and depends heavily on the use of the theory of maximal monotone set-
valued operators and of the Moreau–Yosida approximations of convex functions. In a
subsequent paper we will show how one can obtain a formula where instead of

fi(xi,n) − 〈x∗
i,n, xi,n − x〉 −→

n→∞fi(x)

one requires the stronger conditions

(2.2) fi(xi,n) −→
n→∞fi(x) and 〈x∗

i,n, xi,n − x〉 −→
n→∞0.

With this we will extend the formula as given by Attouch, Baillon, and Théra [1]
to reflexive Banach spaces. We also have to mention that this will inspire us to
derive from Borwein and Ioffe [5], for example, similar formulas in equality form for
nonconvex functions under some regularity assumptions.

Now we are going to show how the famous sum formula under the general Robin-
son qualification condition can be deduced from Theorem 2.1. Here we will restrict
ourselves to the reflexive case. The general nonreflexive case will be treated else-
where. The method below may also be applied to derive directly from Hiriart-Urruty
and Phelps’s formula, under any known qualification condition, the exact subdiffer-
ential calculus formula. This will appear elsewhere and will also be done for many
other formulas.

Recall first that a point x is in the core of a convex subset C of X if for any y ∈ X
there exists a real number t > 0 such that ty + (1 − t)x ∈ C. This is equivalent to
R+(C − x) = X.

We can now prove the following corollary of Theorem 2.1. It has been proved for
the first time by Rockafellar [18] for reflexive spaces, and then, for any Banach space,
it was a consequence of the method of Rockafellar [18] and of Corollary 1 in Robinson
[17]. Another proof has also been given in Aubin and Ekeland [3].

COROLLARY 2.2. Let X be a reflexive Banach space and f1, f2 : X −→ R∪{+∞}
be two proper lower semicontinuous convex functions. If

0 ∈ core(dom f1 − dom f2),

then for any x ∈ X

∂ (f1 + f2)(x) = ∂ f1(x) + ∂ f2(x).

Proof. We may obviously suppose that x ∈ dom f1 ∩ dom f2. We only have to
prove that the first member is included in the second one. Fix any x∗ ∈ ∂(f1 +f2)(x).
By Theorem 2.1 there exist xi,n −−−−→

n→∞
‖ ‖ x, x∗

i,n ∈ ∂ fi(xi,n) such that

x∗ = lim
n

(x∗
1,n + x∗

2,n) and γi,n := fi(xi,n) − 〈x∗
i,n, xi,n − x〉 −→

n→∞fi(x).

Consider any nonzero v ∈ X and choose s > 0 and ui ∈ domfi such that sv = u1 −u2.
Then for x∗

n := x∗
1,n + x∗

2,n we have

〈x∗
1,n, sv〉 = 〈x∗

1,n, u1 − x〉 + 〈x∗
1,n, x− u2〉

= 〈x∗
1,n, u1 − x1,n〉 + 〈x∗

1,n, x1,n − x〉 + 〈x∗
1,n, x− u2〉

≤ f1(u1) − f1(x1,n) + 〈x∗
1,n, x1,n − x〉 + 〈x∗

1,n, x− u2〉
≤ f1(u1) − γ1,n + 〈x∗

n, x− u2〉 + 〈x∗
2,n, u2 − x2,n〉 + 〈x∗

2,n, x2,n − x〉
≤ f1(u1) − γ1,n + 〈x∗

n, x− u2〉 + f2(u2) − f2(x2,n) + 〈x∗
2,n, x2,n − x〉

= (f1(u1) − γ1,n) + (f2(u2) − γ2,n) + 〈x∗
n, x− u2〉.
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It follows that the sequence (x∗
1,n)n is w∗-bounded. Since x∗ = limn

(x∗
1,n + x∗

2,n) and X is reflexive, we may suppose (extracting subsequences) that
x∗

i,n −−−−→
n→∞

w∗
x∗

i , which ensures that x∗ = x∗
1 + x∗

2. Moreover, as the graph of

∂ fi is sequentially ‖ ‖ × w∗-closed, we have x∗
i ∈ ∂ fi(x). So we have proved the

inclusion ∂ (f1 + f2)(x) ⊂ ∂ f1(x) + ∂ f2(x) and hence the proof is complete.
The formula could also be derived under the Attouch and Brézis [2] qualification

condition or under the general condition in Rubinov [19] and Kutateladze [14] of
general position of the domains.

3. Composition of convex functions. Let Y be a Banach space and Y+ a
convex cone of Y inducing a preorder ≤Y on Y defined by y1 ≤Y y2 if and only if
y2 − y1 ∈ Y+. Let +∞ be an abstract maximal element adjoined to Y .

Recall that a mapping F : X −→ Y ∪ {+∞} is convex if for all x, x′ ∈ X, and
t ∈]0, 1[ one has

F (tx+ (1 − t)x′) ≤Y t F (x) + (1 − t)F (x′).

The set dom F := {x ∈ X : F (x) ∈ Y } is the effective domain of F , ImF := F (X)
the effective image of F and epiF := {(x, y) ∈ X × Y : F (x) ≤Y y} the epigraph of
F .

A function f : Y −→ R∪{+∞} is Y+-nondecreasing on a subset S of Y if f(y1) ≤
f(y2) for all y1, y2 ∈ S satisfying y1 ≤Y y2. By convention one puts f(+∞) = +∞.
If f is convex and Y+-nondecreasing over ImF + Y+, then f ◦ F is convex.

THEOREM 3.1. Let X, Y be two reflexive Banach spaces and Y+ be a convex cone
of Y . Suppose that F : X −→ Y ∪{+∞} is a convex mapping with closed epigraph and
that f : Y −→ R ∪ {+∞} is a proper convex lower semicontinuous function which is
nondecreasing over Im(F )+Y+. Then for y := F (x) ∈ dom f one has x∗ ∈ ∂(f ◦F )(x)

if and only if there exist xn
‖ ‖−→x, yn

‖ ‖−→y, x∗
n

‖ ‖−→x∗, e∗
n

‖ ‖−→0, y′
n ∈ F (xn) + Y+ with

y′
n

‖ ‖−→F (x) and y∗
n ∈ Y ∗

+ := {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0 for all y ∈ Y+} such that

y∗
n + e∗

n ∈ ∂ f(yn), x∗
n ∈ ∂ (y∗

n ◦ F )(xn), 〈y∗
n, y

′
n〉 = 〈y∗

n, F (xn)〉
and

f(yn) − 〈y∗
n, yn − y〉 −→ f(y) and 〈y∗

n, F (xn) − y〉 −→ 0.

Proof. Put f1(x, y) := f(y) and f2(x, y) := ψ(x, y |epiF ) (the indicator function
of epi F ). One can easily verify that x∗ ∈ ∂ (f ◦ F )(x) if and only if (x∗, 0) ∈
∂ (f1 + f2)(x, y) and hence if and only if there exist

(0, y∗
n + e∗

n) + (x∗
n,−y∗

n)
‖ ‖−→(x∗, 0)

with

y∗
n + e∗

n ∈ ∂ f(yn), (x∗
n,−y∗

n) ∈ ∂ ψ(.|epiF )(xn, y
′
n),

yn
‖ ‖−→y, (xn, y

′
n)

‖ ‖−→(x, y),

(3.1) f(yn) − 〈y∗
n + e∗

n, yn − y〉 −→ f(y),

(3.2) f2(xn, y
′
n) + 〈y∗

n, y
′
n − y〉 − 〈x∗

n, xn − x〉 −→ f2(x, y) = 0.

Note that (3.2) is equivalent to
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(3.3) 〈y∗
n, y

′
n − y〉 −→ 0

since x∗
n

‖ ‖−→x∗, xn
‖ ‖−→x, and f2(xn, y

′
n) = 0. Note also that (x∗

n,−y∗
n) ∈

∂ ψ(. | epiF )(xn, y
′
n) means that

(3.4) 〈x∗
n, x− xn〉 − 〈y∗

n, y − y′
n〉 ≤ 0 for all (x, y) ∈ epiF.

On the one hand, taking for any y′ ∈ Y+, x = xn, and y = y′
n + y′ in (3.4) we obtain

〈y∗
n, y

′〉 ≥ 0 and hence y∗
n ∈ Y ∗

+. On the other hand taking x = xn and y = F (xn) in
(3.4) we obtain 〈y∗

n, y
′
n − F (xn)〉 ≤ 0 and hence 〈y∗

n, y
′
n − F (xn)〉 = 0 since y∗

n ∈ Y ∗
+

and y′
n − F (xn) ∈ Y+. Then (3.4) is equivalent to

〈x∗
n, x− xn〉 ≤ 〈y∗

n, y〉 − 〈y∗
n, F (xn)〉 for all (x, y) ∈ epiF,

which is equivalent to

〈x∗
n, x− xn〉 ≤ y∗

n ◦ F (x) − y∗
n ◦ F (xn) for all x ∈ domF,

since y∗
n ∈ Y ∗

+. As y∗
n ◦ F is convex (since y∗

n ∈ Y ∗
+) (3.4) is then equivalent to

x∗
n ∈ ∂ (y∗

n ◦ F )(xn). It also follows from the equality 〈y∗
n, y

′
n − F (xn)〉 = 0 that (3.3)

can be rewritten as

〈y∗
n, F (xn) − y〉 −→ 0.

Finally, since e∗
n

‖ ‖−→0 and yn
‖ ‖−→y, (3.1) is equivalent to

f(yn) − 〈y∗
n, yn − y〉 −→ f(y)

and hence the proof is complete.
In case the convex mapping F is assumed to be continuous, we have the following

corollary. It generalizes the result proved by Levin in [15] and also that of [7].
COROLLARY 3.2. Let X and Y be two reflexive Banach spaces and Y+ be a closed

convex cone in Y which is normal (see [16]). Suppose that F : X → Y is a continuous
convex mapping and f : Y −→ R ∪ {+∞} is a proper convex lower semicontinuous
function which is nondecreasing over Im(F ) + Y+. Then for y := F (x) ∈ dom f one
has x∗ ∈ ∂ (f ◦ F )(x) if and only if there exist

y∗
n ∈ ∂ f(yn) and x∗

n ∈ ∂ (y∗
n ◦ F )(xn),

with

xn
‖ ‖−→x, yn

‖ ‖−→F (x), x∗
n

‖ ‖−→x∗,

f(yn) − 〈y∗
n, yn − y〉 → f(y) and 〈y∗

n, F (xn) − y〉 −→ 0.

Proof. Consider x∗ ∈ ∂ (f ◦ F )(x). Let xn, yn, x∗
n, e∗

n, y′
n, and y∗

n be given by
Theorem 3.1. Put z∗

n := y∗
n + e∗

n and note that

x∗
n ∈ ∂ (y∗

n ◦ F )(xn) and y∗
n ◦ F = z∗

n ◦ F + (y∗
n − z∗

n) ◦ F

with y∗
n − z∗

n = −e∗
n

‖ ‖−→ 0. Since Y+ is normal, then F is k-Lipschitzian (for some
real number k ≥ 0) on a neighborhood V of x (see Theorem 5 in [17], for example),
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and hence (y∗
n − z∗

n) ◦F is k‖y∗
n − z∗

n‖-Lipschitzian on V . So there exists v∗
n

‖ ‖−→0 with

u∗
n := x∗

n+v∗
n ∈ ∂ (z∗

n◦F )(xn). Moreover u∗
n

‖ ‖−→x∗, z∗
n ∈ ∂ f(yn), 〈z∗

n, F (xn)−y〉 −→ 0,
and

f(yn) − 〈z∗
n, yn − y〉 −→ f(y).

Since it is not difficult to see that the converse also holds, the proof is
complete.

Remark. With the help of (2.2) another form will be established elsewhere.
In the following corollary, F is assumed to be a continuous linear mapping A.
COROLLARY 3.3. Let X and Y be two reflexive Banach spaces and A : X −→ Y

be a continuous linear mapping. Suppose that f : Y −→ R∪{+∞} is a proper convex
lower semicontinuous function. Then for Ax ∈ dom f one has x∗ ∈ ∂ (f ◦ A)(x) if
and only if there exist

y∗
n ∈ ∂ f(yn) with y∗

n ◦A ‖ ‖−→x∗,

yn
‖ ‖−→Ax and f(yn) − 〈y∗

n, yn − y〉 −→ f(Ax),

which we will translate by

∂ (f ◦A)(x) = ‖ ‖ − lim sup
y −→f−〈,〉A x

[
∂ f(y) ◦A]

.

Proof. Consider the sequences given by Corollary 3.2 for Y+ = {0}. Then

x∗
n ∈ ∂ (y∗

n ◦A)(x) = y∗
n ◦A and 〈y∗

n, A xn − y〉 = 〈y∗
n ◦A, xn − x〉,

and hence the condition 〈y∗
n, A xn − y〉 −→ 0 is superfluous. So the proof is

complete.
A mean-value result in the spirit of Zagrodny’s mean value theorem (see [22]) can

be deduced from the above corollary. An equality form (instead of the inequality one
in [22]) can be reached here because of the convexity assumption. This form has been
proved much earlier by Borwein [4] by another method.

COROLLARY 3.4. Let X be a reflexive Banach space and f : X −→ R∪{+∞} be a
proper convex lower semicontinuous function. Suppose that a and b are two different
points of domf . Then there exists some c in the open line segment (a, b), (cn) in X
converging to c and x∗

n ∈ ∂ f(cn) such that

f(b) − f(a) = lim
n→∞〈x∗

n, b− a〉.
Proof. Consider the classical function g defined on R by

g(t) := f(a+ t(b− a)) + t(f(a) − f(b)).

This convex function g is lower semicontinuous on [0,1] with g(0) = g(1) and hence
attains its minimum on [0,1] at some point r ∈]0, 1[. This ensures that O ∈ ∂ g(r),
which can be rewritten as

f(b) − f(a) ∈ ∂ (h ◦A)(r),

where h(x) := f(a + x) and A(t) := t(b − a). By Corollary 3.3 one easily sees that
there exists (cn) in X converging to c := a+ r(b− a) and x∗

n ∈ ∂ f(cn) such that

f(b) − f(a) = lim
n→∞〈x∗

n, b− a〉.
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4. Sequential Lagrange multipliers. In all of what follows, X and Y are two
reflexive Banach spaces, K a closed convex normal cone of Y , and C a closed convex
subset of X. Consider the constrained minimization problem

(P) minimize f(x) subject to x ∈ C and F (x) ∈ −K,
where f , F are mappings from X into R and Y , respectively.

Generally, under some constraint qualification, for example,

(4.1) R+[K + F (C)] is a closed vector subspace of Y,

one can prove (see [7]) that there exist a real number λ > 0, y∗ ∈ Y ∗ with 〈y∗, y〉 ≥ 0
for all y ∈ K and 〈y∗, F (x)〉 = 0 such that

(4.2) 0 ∈ ∂ (λf + y∗ ◦ F + ψ(., C))(x)

whenever x is a solution of (P) and f and F are continuous (or more generally lower
semicontinuous) and convex. Note that the qualification condition (4.1) is much less
stringent than the classical Slater condition (F (x0) ∈ −intK for some x0 ∈ C) which
requires the nonemptiness of the topological interior of the cone K. However, even
in finite-dimensional settings, when any constraint qualification is not satisfied, one
only generally proved (up to now) the necessary optimality condition corresponding
to (4.2) with λ = 0; that is,

(4.3) 0 ∈ ∂ (y∗ ◦ F + ψ(., C))(x).

This condition is not sufficient at all to ensure that x is a solution of (P), and it
does not take into account the objective function f . Moreover, when the space Y
is not finite dimensional (i.e., infinitely many inequality and equality constraints are
considered) one generally needs some extra (or compactness-like) condition on the
mapping F or the cone K (see [21]) to obtain (4.3).

In this section we are going to show how the sequential subdifferential calculus
can be used to establish new necessary and sufficient optimality conditions for the
problem (P). These conditions will make appear a new form of Lagrange multipliers
that we call sequential Lagrange multipliers. We also have to mention that Hanson
has proved very recently in [9] that a certain form of sequential Lagrange multipliers is
a sufficient optimality condition whenever f and F are convex (more generally invex)
differentiable functions and X and Y are finite dimensional. However, Hanson did
not show that there exist sequential Lagrange multipliers for the solution points. So
he did not establish any sequential Lagrange necessary optimality condition.

To prove the result we will employ a method that Jourani and the author have
introduced (to our knowledge for the first time in optimization) in a common work
which is the last chapter of the thesis [12].

This work, whose main result has been stated in [20], has constituted the article
[13]. The method consisted of reducing a constrained optimization problem to the
unconstrained minimization of a composition function and to apply an appropriate
formula estimating the approximate subdifferential of a composition when the data
nonlinear mappings are compactly Lipschitzian. There we used the distance func-
tion in the reduction procedure. In the proof below we will use a similar reduction
procedure but with the indicator function.

THEOREM 4.1. Assume that f and F are convex and continuous. Then a point
x ∈ C ∩ F−1(−K) is a solution of the minimization problem (P) if and only if there
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exist xn −→ x, wn −→ x, yn −→ F (x), y∗
n ∈ Y ∗, u∗

n ∈ ∂ f(xn), v∗
n ∈ ∂ (y∗

n ◦ F )(xn),
and w∗

n ∈ ∂ ψ(., C)(wn) such that
(i) 〈y∗

n, y〉 ≥ 0 for all y ∈ K and 〈y∗
n, yn〉 = 0,

(ii) 0 = ‖ ‖ − limn→∞(u∗
n + v∗

n + w∗
n),

(iii) 〈y∗
n, yn − F (x)〉 + 〈w∗

n, wn − x〉 −→ 0 and 〈y∗
n, F (xn) − F (x)〉 + 〈w∗

n,
xn − x〉 −→ 0.

Proof. It is easily seen that x is a solution of the problem (P) if and only if x
minimizes the unconstrained function

f + ψ(.,−K) ◦ F + ψ(., C) := g ◦G,
where G : X −→ R × Y ×X and g : R × Y ×X −→ R are defined via

G(x) = (f(x), F (x), x) and g(r, y, x) = r + ψ(y,−K) + ψ(x,C),

and ψ(., C) is the indicator function of C. Denote by Q the closed convex normal
cone [0,∞[×K × {0X} of R × Y × X. Obviously g is convex lower semicontinuous
and Q-nondecreasing and G is Q-convex and continuous. Then x is a solution of (P)
if and only if 0 ∈ ∂ g ◦G(x), and hence if and only if (by Corollary 3.2) there exist

xn −→ x, (rn, yn, wn) −→ (f(x), F (x), x),

(y∗
n, w

∗
n) ∈ ∂ ψ(.,−K)(yn) × ∂ ψ(., C)(wn),

x∗
n ∈ ∂ (f + y∗

n ◦ F + 〈w∗
n, .〉)(xn) = ∂ f(xn) + ∂ (y∗

n ◦ F )(xn) + w∗
n

(that is, x∗
n = u∗

n + v∗
n +w∗

n for some u∗
n ∈ ∂ f(xn) and v∗

n ∈ ∂ (y∗
n ◦F )(xn)) such that

‖x∗
n‖ −→ 0, g(rn, yn, wn) − (rn − f(x)) − 〈y∗

n, yn − F (x)〉 − 〈w∗
n, wn − x〉 −→ g(G(x))

and

(f(xn) − f(x)) + 〈y∗
n, F (xn) − F (x)〉 + 〈w∗

n, xn − x〉 −→ 0.

The three last relations can be rephrased, respectively, as

〈y∗
n, yn − F (x)〉 + 〈w∗

n, wn − x〉 −→ 0

and

〈y∗
n, F (xn) − F (x)〉 + 〈w∗

n, xn − x〉 −→ 0.

So x is a solution of (P) if and only if there exist (xn) and (wn) converging to

x, yn
‖ ‖−→F (x), y∗

n ∈ ∂ ψ(.,−K)(yn), w∗
n ∈ ∂ ψ(, C)(wn), u∗

n ∈ ∂ f(xn) and v∗
n ∈

∂ (y∗
n ◦ F )(xn) such that

0 = ‖ ‖ − lim(u∗
n + v∗

n + w∗
n)

and

〈y∗
n, yn − F (x)〉 + 〈w∗

n, wn − x〉 −→ 0 and 〈y∗
n, F (xn) − F (x)〉 + 〈w∗

n, xn − x〉 −→ 0.

So the proof is complete.
The theorem makes clear that the sequence (y∗

n) may be considered as a general-
ized Lagrange multiplier. It is what we call a sequential Lagrange multiplier. It does
not require any constraint qualification. Moreover, its applicability does not depend
on the analytical forms of the mappings defining the constraints, whereas this may
often be the case with the use of constraint qualifications (see comments and examples
in [9]).
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Abstract. A differential/algebraic matrix Riccati equation–based design method is developed.
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1. Introduction. This note concerns the weighted sensitivity minimization prob-
lem when the underlying plant has a single input lag. The usual solution approach
is to reduce this control design problem to a model-matching Nehari problem [16].
An account of this reduction, of the subsequent state space solution, and of relevant
references in the ordinary linear, time invariant (LTI) case can be found in [9]. Ex-
tensions to ordinary linear, time varying (LTV) systems are provided in [12, 32]. This
note concerns the LTI problem when an ordinary plant is cascaded with the pure
delay operator. The weight function is restricted to being rational. The LTI case is
selected for simplicity; LTV extensions, following the ideas outlined in [12, 32], could
be readily achieved.

Transform-based solutions of the (SISO) weighted sensitivity minimization prob-
lem in delay systems were obtained during the 1980s [7, 8, 36], including extensions
to the case of multiple commensurate input lags [25] and a rather restricted class of
distributed input delays [24]. The main tool in these solutions is the commutant lift-
ing theorem which is described in [22, 23]. More general frameworks for the solution
of distributed parameter H∞problems include the skew Toeplitz approach and a state
space approach in which abstract evolution models are used. Sample presentations of
the two approaches are, respectively, [17] and [28, 33].

A drawback of state space solutions of distributed parameter linear-quadratic
(LQ) optimization problems (LQR, LQG, H∞, etc.) is that they require the often
difficult solution of operator Riccati equations. A main contribution of this note is the
reduction of the operator Riccati equations that arise in the context of the weighted
sensitivity minimization problem to a set of algebraic and differential matrix Riccati
equations. Similar results have been previously reported in [15], which inspired the
current developments. The key idea in [15] is the use of a “lifting” technique and
a reduction to a finite state space discrete time model with distributed inputs and
outputs. [15] provides periodic solutions to a variety of delayed H∞problems. The
advantage of the method suggested here is that the generic design in the LTI case is
LTI. The approach described here has been applied in [30, 29], with a similar type
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of result, to a variant of the standard H∞problem and to the problem of robustness
optimization in the gap metric in systems that involve a pure input lag.

2. Notation. Prime will denote an adjoint of a matrix or an operator. The nota-
tion of an “L2[a, b]” space will include an indication of the value space of the functions
considered (e.g., L2([a, b],Rl)) only when ambiguous. W 1

2 [a, b] stands for the usual
Sobolev space of absolutely continuous L2[a, b] functions with L2[a, b] derivatives. The
subscript “loc” will have the usual “local” meaning, e.g., – L2 loc[0,∞) = ∩t>0L2[0, t).
The subscript “2” will indicate the L2[0,∞) norm. In other cases inner products
and norms will be distinguished by a subscript indicating the relevant space (e.g.,
‖φ‖L2[−1,0]). The subscript “e” will indicate the Euclidean inner product and norm.
H∞will stand for the Hardy space of uniformly bounded, analytic functions in the
right half-plane with the L∞(R) norm. The spectral radius of a matrix M will
be denoted ρ(M). The standard notation of “ut” will be used in reference to the
single-time unit history of the trajectory at the time t: ut(θ) = u(t+ θ), θ ∈ [−1, 0].

3. The problem. Consider a multivariable LTI system with a transfer function
G(s) = G0(s)e−s and a weight function W (s), where G0(s) and W (s) are rational.
The weighted sensitivity minimization problem concerns a search for a selection of a
stabilizing compensator C (i.e., such that S = (I+GC)−1 ∈ H∞) that minimizes the
H∞ norm ‖WS‖∞. In the commonly treated suboptimal version of this problem, one
seeks a characterization of suboptimal values γ > γ0, where

γ0 = inf {‖WS‖∞ : S ∈ H∞} ,(1)

and a parameterization of the suboptimal set,

Cγ = {C : S ∈ H∞ and ‖WS‖∞ < γ} .(2)

A standard step is the reduction of the suboptimal weighted sensitivity minimiza-
tion problem to an equivalent (or close to equivalent) Nehari problem. Details of the
reduction, which remains valid in the presence of an input delay in G(s), can be found
in [9]. Consequently, the problem addressed is stated in the following form: given a
rational transfer function Υ(s) ∈ L∞(R), characterize the optimal value

γ0 = inf
{
‖Υ(s)− e−sΘ(s)‖L∞(R) : Θ ∈ H∞

}
(3)

and, given γ > γ0, parameterize the suboptimal set

Θγ =
{

Θ ∈ H∞ : ‖Υ(s)− e−sΘ(s)‖L∞() < γ
}
.(4)

Given the focus of this note on delay systems we shall limit our attention here
to choices of Θ in the class of well-posed, neutral functional differential equations
(FDEs).1 This class has been identified [31] as containing all well-posed finite mem-
ory, Euclidean space evolutions, and the restriction is made merely for convenience
and cohesion in the presentation. This restriction can be easily replaced by other
classes of distributed parameter systems for certain closed-loop well-posedness prop-
erties to be assured, and, in particular, it effects neither the characterization of the
optimal value γ0 nor the form of the “central compensator” in this note’s main result,
Theorem 4.1.

1The issue of well-posedness of neutral FDEs is quite involved. For the purpose of this discussion
well-posedness may be interpreted as the existence of an integral, variations-of-parameters solution
formula, as described in [31, Cor. E].
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Let Υ = [A,B,C,D] be a minimal realization over the state space Rn. In view
of the assumption that Υ(s) has no purely imaginary poles there exists a partition of
the state space as the direct sum of a stable component and an antistable component:

Rn = Xst ⊕Xas.(5)

Associated with this partition are block structures of the coefficients A, B, C,
and D:

A =
[
Ast 0
0 Aas

]
, B =

[
Bst
Bas

]
, and C = [Cst Cas] ,

such that Υ = Υst+Υas with Υst = [Ast, Bst, Cst, D] stable and Υas = [Aas, Bas, Cas, 0]
antistable.

Let Xas and Yas be the positive definite, infinite time, controllability and observ-
ability Gramians of the antistable component, solving

AasXas +XasA
′
as = BasB

′
as and YasAas +A′asYas = C ′asCas.(6)

Denote

P =
[

0 0
0 X−1

as

]
and Q =

[
0 0
0 Y −1

as

]
.

It is a standard observation that P and Q are positive semidefinite, stabilizing solu-
tions of the following deficient algebraic Riccati equations (AREs):

PA+A′P − PBB′P = 0 and AQ+QA′ −QC ′CQ = 0.(7)

Left and right, stable co-prime factorizations of Υ with isometric denominators are
provided in terms of these solutions: Υ = Ml

−1Nl = NrMr
−1, where Nl = [A −

QC ′C,B − QC ′D,C,D], Ml = [A − QC ′C,−QC ′, C, I], Nr = [A − BB′P,B,C −
DB′P,D], and Mr = [A − BB′P,B,−B′P, I]. The following expressions for γ0 and
the set Θγ are written in terms of Nl and Ml:

γ0 = inf
{
‖Nl(s)−Ml(s)e−sΘ(s)‖∞ : Θ ∈ H∞

}
(8)

and

Θγ =
{

Θ ∈ H∞ : ‖Nl(s)−Ml(s)e−sΘ(s)‖∞ < γ
}
.(9)

4. The main result. The following abbreviations and notations are used in
the statement of the main result of this note, Theorem 4.1 below. They include the
notation of “ρ0” and are well defined for γ2 > ρ0.

ρ0 = max {ρ(XasYas), ρ(D′D)} , Zas = Y −1
as − 1

γ2Xas,

R =
[

0 0
0 Z−1

as

]
, E22 = −(γ2I −D′D)−1D′,

E12 = −γ(γ2I −DD′)− 1
2 , E21 = (γ2I −D′D)−

1
2 ,

H1 = γ(γ2I −DD′)− 1
2C, H2 = (γ2I −D′D)−1D′C,

G1 = (B −QC ′D)(γ2 −D′D)−
1
2 , G2 = (γ2QC ′ −BD′)(γ2I −DD′)−1,

(10)
where the block structure of R is consistent with the state space partition (5).
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THEOREM 4.1. γ > γ0 if and only if the following two conditions hold. (a)
γ2 > ρ0. (b) There exists a positive semidefinite, uniformly bounded solution of the
following differential Riccati equation over the interval [0, 1]:

Ṙ0 +R0(A−G2C) + (A−G2C)′R0+R0G1G
′
1R0+H ′1H1 = 0, R0(1) = R.(11)

Suppose that, indeed, γ > γ0. Then a complete parameterization of the family Θγ

is provided in terms of the following realization of the mapping u = Θw in members
Θ ∈ Θγ :

ẋc(t) = Acxc(t) + Bc1w(t) + Bc2u(t− 1),

u(t) = Cc1xc(t) + Dc12φ(t) + Dc13ut,

ψ(t) = Cc2xc(t) + Dc21w(t) + Dc22u(t− 1) + Dc23ut, φ = Θ0ψ,

(12)

where the coefficients are as defined below and where the design parameter is the
mapping Θ0 that is defined as the I/O mapping in a stable, neutral FDE and is
selected subject to the induced norm constraint ‖Θ0‖ < 1.

The following instructions concern the definition of the coefficients of (12). Given
the solution R0(t) of (11), define A0(t) = A−G2C +G1G

′
1R0(t), and let Φ0(t, s) be

the transition matrix generated by A0(t). In these terms define the matrices Ac, Bc1,
Bc2, Cc1, Dc12, Cc2, Dc21, and Dc22 via

Ac = A−QC ′C, Bc1 = B −QC ′D,

Bc2 = QC ′, Cc1 =
(
C(I −QR) + 1

γ2DB
′R
)

Φ0(1, 0),

Dc12 = (2E′12E12)−
1
2 , Cc2 = −G′1R0(0)− 1

γD
′H1,

Dc21 = E−1
21 , Dc22 = − 1

γD
′E12.

(13)

Define a matrix-valued function

Ξ(r) =
∫ r

0
Φ0(r, s)G1G

′
1Φ0(r, s)′ds,(14)

and let Dc13 and Dc23 be the following finite rank operators over L2[−1, 0]:

Dc13ut = (C(I −QR) + 1
γ2DB

′R)

·
∫ 0

−1
Φ0(1, s+ 1)((I + Ξ(s+ 1)R0(s+ 1)G2 + Ξ(s+ 1)H ′1E12)ut(s)ds,

Dc23ut = −G′1
∫ 0

−1
Φ0(s+ 1, 0)′(R0(s+ 1)G2 +H ′1E12)ut(s)ds.

(15)

The “central” solution that generates the suboptimal family Θγ in (12) is a delay
system, involving both discrete and distributed delay effects in the control function.
The internal dynamics in (12) are governed by both the differential equation in xc(t)
(the first equation) and the recursion formula for u(t) (the second equation). As will
become clear from the proof, this structure of the central solution fits into the general
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framework of a neutral FDE, but it arises regardless of the explicit requirement that
compensators be defined by neutral FDEs. That requirement, made merely to avoid
issues of well-posedness, affects only the selection of Θ0. It is noted that this form
adheres to the pattern of other previously obtained solutions of the delayed Nehari
problem.

5. The proof. For any selection of Θ ∈ H∞, the transfer function Nl(s) −
Ml(s)e−sΘ(s) has the following stable realization:

ẋ(t) = (A−QC ′C)x(t) + (B −QC ′D)w(t) + QC ′u(t− 1),

z(t) = Cx(t) + Dw(t) − u(t− 1),

y(t) = w(t), u = Θy,

(16)

which, ignoring the control delay, adheres to the form of a “standard H∞problem,”
with Θ being the sought controller. As is well known, due to the input delay, initial
data that are needed at any given time in order to determine the solution of (16)
comprise both the momentary value of the trajectory x and the single time unit history
of the control input. In that sense, the true state of (16) at the time t comprises the
pair (x(t), ut). Focusing on the Euclidean and the L2 topologies, these data will be
embedded with the structure of the product Hilbert space M2 = Rn × L2[−1, 0].

5.1. A differential game. Following an approach that became standard in the
treatment of H∞ optimization problems, the test of suboptimal model matching is
reduced to an equivalent differential game. The following is the basic observation.

LEMMA 5.1. If γ > γ0, then there exists a unique solution to the following differ-
ential game, given any initial data (x(0), u0) ∈M2 in (16):

inf
w∈L2[0,∞)

{
γ2‖w‖22 − inf

u∈L2[0,∞)
‖z‖22

}
,(17)

where the data for the internal optimization problem (over u) comprises both the initial
data (x(0), u0) and the selection of w.

A brief outline of the proof. The basic ideas are the same as in the ordinary case.
Details can be found in [27, 28]. The statement γ > γ0 is equivalent to the existence
of Θ ∈ H∞ such that ‖Nl −Mle

−sΘ‖∞ < γ. This bound holds, in turn, if and only
if there exists λ > 0 such that

γ2‖w‖22 − ‖z‖22 ≥ λ2‖w‖22(18)

for any w ∈ L2[0,∞), u = Θw, and with the zero initial data in (16). Assuming that
γ > γ0, the validity of (18) with u = Θw (for some choice of Θ) leads to the following
stronger, open-loop inequality:

γ2‖w‖22 − inf
u∈L2[0,∞)

‖z‖22 ≥ λ2‖w‖22.(19)

As can be easily seen, the delay in u does not affect the solvability of the optimization
problem in (19) and thus the arguments in [27, 28]. In particular, one can use (19) to
show that the assumption “γ > γ0” leads to existence and uniqueness of a solution
of (17).

Notice that in the open-loop context of (17), there is no requirement of causality
in the dependence of the optimal selection of u on w.
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5.2. Explicit solution of the differential game problem. The differential
game (17) will be divided into two subproblems. One subproblem concerns input
effects on z(t) prior to t = 1. The other subproblem concerns such effects for t > 1.

It is observed that the selection of u(t), t ≥ 0, has no effect on the values of z(t),
t ≤ 1. Once the initial data and w(t), t ∈ [0, 1], are fixed, the component of (17) that is
determined by the selection of w(t), t > 1, and of u(t), t > 0, reduces to an equivalent
problem that does not involve control delay, as follows. Denote ũ(t) = u(t−1). Then,
over the positive ray t > 1, there holds

ẋ = (A−QC ′C)x + (B −QC ′D)w + QC ′ũ,

z = Cx + Dw − ũ.
(20)

The important fact is that the only constraint in (20) is the initial value of x(1), as
determined by x(0), u0, and the restriction of w(t) to the interval [0, 1]. With (20) as
the underlying system and given x(1), the solution of (17) must define a solution of
the following min-max problem:

inf
w∈L2[1,∞)

{
γ2‖w‖2L2[1,∞) − inf

ũ∈L2[1,∞)
‖z‖2L2[1,∞)

}
.(21)

Problem (21) can be considered over the following alternative state space realization,
where z is considered as the “control input”:

ẋ = Ax+Bw −QC ′z.(22)

In this setting the optimal selection of ũ ∈ L2[1,∞) is replaced by an optimal selection
of z ∈ L2[1,∞), subject to the additional qualitative requirement that the associated
state of (22) be a member of L2[1,∞).

This is precisely the framework to which one can reduce the ordinary version of
the model-matching problem ‖Nl−MlQ‖∞ < γ. Detailed analysis can be found, e.g.,
in [32]. The conclusions are summarized as follows.

THEOREM 5.2. The infimum of values of γ for which the problem (21) has a finite
solution is γ̂ = ρ(XasYas). Given γ > γ̂, define R as in (10). Then R is the unique,
positive semidefinite solution of the deficient ARE,

RA+A′R+R

(
1
γ2B

′B −QC ′CQ
)
R = 0,(23)

with the property that A1 = A + ( 1
γ2B

′B − QC ′CQ)R is stable. Equivalently, γ > γ̂

if and only if there exists a unique, L2[1,∞) norm bounded solution to the following
Hamilton–Jacobi–Bellman problem:

ẋ = Ax +
(

1
γ2B

′B −QC ′CQ
)
p,

ṗ = −A′p
(24)

given any specified initial value x(1) ∈ Rn. That solution is characterized by the
relation p(t) = Rx(t), t ≥ 1. A complete parameterization of the suboptimal set
{Θ ∈ H∞ : ‖Nl −MlΘ‖∞ < γ} is provided by the following realization:

ẋc = (A−QC ′CQR)xc + Bw − QC ′φ,

ũ = C(I −QR)xc + Dw − φ,

ψ = − 1
γ2B

′Rxc + w, φ = Θ0ψ,

(25)
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where the free design parameter, the stable system Θ0, is selected subject to the induced
L2 norm bound ‖Θ0‖ < γ. Moreover, given any selections w, ũ ∈ L2,loc[1,∞) and
t > r ≥ 1, there holds

γ2‖w‖2L2[r,t] − ‖z‖2L2[r,t] = 〈x(α), Rx(α)〉e
∣∣∣α = t

α = r
+ γ2‖w4‖2L2[r,t] − ‖ũ4‖2L2[r,t],(26)

where, given the associated state x in (20), the trajectories w4 and ũ4 are defined as

w4 = w − 1
γ2B

′Rx and ũ4 = C(I −QR)x+Dw − ũ.(27)

The solution to the open loop min-max game (21) is given by the optimal selections
w4 = 0 and ũ4 = 0; namely,

w(t) =
1
γ2B

′Rx(t) and u(t−1) = ũ(t) =
(
C(I −QR) +

1
γ2DB

′R

)
x(t),(28)

and the optimal value of the game is −〈x(1), Rx(1)〉e.
Obviously, the infimal value of γ for which a solution exists in (17) is at least

the infimal value γ̂ from (21). That is, γ0 ≥ γ̂. Substituting −〈x(1), Rx(1)〉e for the
optimal value of the game (21) in (17), the original differential game (17) reduces to
the following finite time optimization problem with the data (x(0), u0) ∈M2:

inf
w∈L2[0,1]

{
γ2‖w‖2L2[0,1] − ‖z‖2L2[0,1] − 〈x(1), Rx(1)〉e

}
.(29)

When γ > ρ0, the following equality is obtained by direct completion-of-squares
computation and is used to simplify notation later on. There holds

γ2‖w‖2L2[0,1]−‖z‖2L2[0,1]−〈x(1), Rx(1)〉e = ‖w̄‖2L2[0,1]−‖z̄‖2L2[0,1]−〈x(1), Rx(1)〉e,(30)

where

z̄(t) = H1x(t) + E12u(t− 1) and w̄(t) = E−1
21 w(t)− 1

γ
D′z̄(t).(31)

Subject to these definitions, (16) becomes

ẋ(t) = (A−G2C)x(t) + G1w̄(t) + G2u(t− 1),

z̄(t) = H1x(t) + + E12u(t− 1),

y(t) = H2x(t) + E21w̄(t) + E22u(t− 1), u = Θy,

(32)

where the abbreviated notation of (10) is used. Problem (29) can then be stated,
equivalently, in the following form:

inf
w̄∈L2[0,1]

{
‖w̄‖2L2[0,1] − ‖z̄‖2L2[0,1] − 〈x(1), Rx(1)〉e

}
.(33)

Theorem 5.3, below, is based on results from [14, 26].
THEOREM 5.3. Let γ > γ̂. Then there exists a unique solution of the differential

game (17) and, consequently, of the optimization problem (29), given any data pair
(x(0), u0) ∈ M2, if and only if conditions (a) and (b) in the statement of Theorem
4.1 are satisfied. Assume that to be the case. Then, for any initial data (x(0), u0) ∈
M2, there exists a unique L2[0, 1] solution for the following Hamilton–Jacobi–Bellman
problem:

ẋ(t) = (A−G2C)x(t) + G1G
′
1p(t) + G2u(t− 1),

ṗ(t) = −H ′1H1x(t) − (A−G2C)′p(t) − H ′1E12u(t− 1)
(34)
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subject to the terminal constraint p(1) = Rx(1). In the particular case where u0 = 0,
the state and co-state of (34) are related via p(t) = R0(t)x(t), where R0 is the solution
of (11). The optimal selection of w in the problem (29), and the corresponding optimal
selection of w̄ in the problem (33), are then

w̄(t) = G′1p(t) and w(t) = H2x(t) + E21G
′
1p(t) + E22u(t− 1).(35)

The proof of necessity in Theorem 4.1 will be complete once the necessity claim
in Theorem 5.3 is established. The detailed characterization of the solution of (29) is
provided in preparation for the proof of the sufficiency claim in Theorem 4.1.

Proof. In the proof of necessity of the conditions (a) and (b) of Theorem 4.1 for
solvability of (29), it certainly suffices to establish the same for the particular case of
u0 = 0. Referring to that case, it has been established in [14, 26] that a solution of (29)
exists if and only if the induced norm of the mapping w̄ 7→ (R

1
2x(1), z̄): L2[0, 1] 7→

Rn × L2[0, 1] is smaller than 1, which, in turn, holds if and only if γ2 > ρ(D′D) and
the differential Riccati equation (11) has a bounded solution. It is also a standard
observation, used in [14, 26], that the state and co-state of the homogeneous (34) are
related via p = R0x (when R0 exists). The proof of necessity is therefore complete.

The fact that all solutions of (29) (hence, eventually, of (17)), should they exist,
are characterized by (34) via (35), is a standard observation which can be established
following the arguments in [14, 26] (or any other variant argument of the “Lagrange
multiplier” type). Similarly, should a solution of (34) exist, it is a basic fact from
optimal control theory that such a solution defines a solution of (29), as explained
above. It remains to show that if γ > ρ0 and a solution of (11) exists, then there also
exists a unique solution of the inhomogeneous (34), given any initial data (x(0), u0) ∈
M2.

Indeed, let the definitions of the matrix function A0(t), and of the transition
matrix Φ0(t, s) that is generated by A0, stand, as made in the statement of Theorem
4.1. Then let x and q be defined by the following boundary value problem:

ẋ(t) = A0(t)x(t) − G1G
′
1q(t) + G2u(t− 1),

q̇(t) = − A0(t)′q(t) + (R0(t)G2 +H ′1E12)u(t− 1)
(36)

subject to the specified initial value x(0) and the terminal value q(1) = 0. Existence,
uniqueness, and boundedness of the solution are guaranteed in (36) due to the fact
that the second equation is independent of the first. All that remains is to observe
that solutions of (34) and those of (36) are related by the equality p = R0x− q. The
proof is complete.

This completes the proof of necessity of conditions (a) and (b) in Theorem 4.1
for γ to be a suboptimal value. From this point on the discussion continues under the
assumption that conditions (a) and (b) in Theorem 4.1 are satisfied by a specified γ.
In particular, solvability of both (23) and (11), of the differential game (17), and of the
allied optimization problem (29) is assumed. The explicit goal of the ensuing analysis
will be to establish the validity of the parameterization (12) of the suboptimal class
Θγ , and thus, constructively, the sufficiency of the stated conditions for the inequality
γ > γ0.

LEMMA 5.4. Fix γ satisfying conditions (a) and (b) in Theorem 4.1, and let the
definitions made heretofore stand. Let x, w, and u be the optimal trajectories in
the solution of (17) along [0,∞); let p be defined as the co-state trajectory in (34),
along [0, 1], continued by the co-state trajectory of (24) along (1,∞); and let w̄ be the
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allied trajectory, as defined in (31). Then the following hold. (a) The co-state p(t)
is continuous. (b) The pair (x, p) satisfies the Hamilton–Jacobi–Bellman boundary
value problem (34) when shifted from [0, 1] to any interval [t, t + 1], t > 0. (c) At
any given time t ≥ 0, the values of p(t), w̄(t), and u(t) are determined by the pair
(x(t), ut) ∈M2 via

p(t) = R0(0)x(t) +
∫ 1

0
Φ0(r, 0)′(R0(r)G2 +H ′1E12)ut(r − 1)dr,(37)

w̄(t) = G′1

(
R0(0)x(t) +

∫ 1

0
Φ0(r, 0)′(R0(r)G2 +H ′1E12)ut(r − 1)dr

)
,(38)

u(t) =
(
C(I −QR) +

1
γ2DB

′R

)
·
(

Φ0(1, 0)x(t)

+
∫ 1

0
Φ0(1, r)((I + Ξ(r)R0(r))G2 + Ξ(r)H ′1E12)ut(r − 1)dr

)
,

(39)

where Ξ(t) is as defined in (14). For future reference we introduce the notations of
matrices K0 and L0 and operators K1 and L1 over L2[−1, 0] such that (38) and (39)
are abbreviated as

w̄(t) = L0x(t) + L1ut, w(t) = (H2 + E21L
0)x(t) + E21L

1ut + E22u(t− 1),

and u(t) = K0x(t) +K1ut.
(40)

(d) Combined, the complete state feedback expressions (38) and (39) are defining a
stabilizing feedback policy in (32) and provide for exponential decay of the complete
state

‖f(t)‖M2 ≤ αe−βt‖f(0)‖M2 ,(41)

where f(t) = (x(t), ut) and where α > 0 and β > 0 are appropriately selected and
fixed constants. (e) The optimal value of (17)–(29) is given by the quadratic form
−〈f(0),Rf(0)〉M2 , where f(0) = (x(0), u0) comprises the specified initial data and
where R is the bounded, positive semidefinite operator on M2 that is defined in terms
of the solution of (34), as R(x(0), u0) = (p(0), E′12(H1x(·+1)+E12u0(·))+G′2p(·+1)).

Proof. We have already established that the optimal state trajectory of (16)
coincides with the state of (24) along [1,∞) and with the state of (34) along the ray
[0, 1]. The co-state in (24) is related to the state via p = Rx, and in (34) it is required
to satisfy the terminal condition p(1) = Rx(1). Hence the continuity of p, which is
claim (a) in the statement of Lemma 5.4.

The purpose of the following observations is to show that the optimal trajectories
x, u, and the associated p satisfy (34) when shifted to any interval [t, t + 1]. First,
using (31), the optimal selections in (28) translate to w̄(t) = G′1Rx(t), t ≥ 1. Thus
the expression (35) for the optimal w̄ is valid for all t ≥ 0.

Second, using the expression in (28) for u(t−1), substituting Rx for p, and taking
into account the precise definitions of G1 and G2 in (10), the state equation in (34)
becomes a stable, homogeneous ODE

ẋ = A1x,(42)
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where A1 = A − ( 1
γ2B

′B − QC ′CQ)R, as defined in the statement of Theorem 5.2.
Now substitute p for Rx in (42); this equation takes the shape of the state equation
in (24). In short, we have established that the triplet x, p, and u satisfies the state
equation in (34) throughout the positive ray t ≥ 0.

Third, the combination of the expression (28) for u(t−1) and of p = Rx provides
for the equality C ′G′2p(t) − H ′1(H1x(t) + E12u(t − 1)) = 0, for all t ≥ 1. Thus the
co-state equation of (34) reduces to the co-state equation in (24). In particular, the
triplet x, p, and u satisfies the co-state equation in (34) throughout the positive ray
t ≥ 0. This completes the proof of claim (b) in Lemma 5.4.

We shall now provide explicit expressions for the solution of (34), shifted to the
interval [t, t+ 1], in terms of the data (x(t), ut). These expressions are obtained by a
straightforward manipulation of the variations-of-parameters formula, beginning with
the second equation in (36), continuing with the first equation in the same system,
and then substituting p = R0x− q:

q(t+ r) = −
∫ 1

r

Φ0(s, r)′(s)(R0(s)G2 +H ′1E12)ut(s− 1)ds,(43)

x(t+ r) = Φ0(r, 0)x(t) +
∫ r

0
Φ0(r, s)((I + Ξ(s)R0(s))G2 + Ξ(s)H ′1E12)ut(s− 1)ds

+ Ξ(r)
∫ 1

r

Φ0(s, r)′(R0(s)G2 +H ′1E12)ut(s− 1)ds,

(44)

p(t+ r) = R0(r)Φ0(r, 0)x(t)

+ R0(r)
∫ r

0
Φ0(r, s)((I + Ξ(s)R0(s))G2 + Ξ(s)H ′1E12)ut(s− 1)ds

+ (I +R0(r)Ξ(r))
∫ 1

r

Φ0(s, r)′(R0(s)G2 +H ′1E12)ut(s− 1)ds.

(45)

Substituting r = 0 in (45) one obtains the expression (37) for p(t). The expression
(38) is then a consequence of the relation w̄ = G′1p. The expression (39) is obtained
by substituting r = 1 in (44) and then using (28) to characterize u(t) in terms of
x(t+ 1). This completes the proof of claim (c) in Lemma 5.4.

To establish the stability claim we first make note of the fact that the coupling of
the complete state feedback expressions (38) and (39) with the state equation of (32)
forms a well-posed integrodifferential equation. The uniqueness of its solution forces
it to coincide with the trajectories that are associated with the solution of (17), as
discussed above. Once again, it is also noticed that for t ≥ 1 the trajectory of the
optimal x(t) is governed by the homogeneous, stable ODE (42). Invoking (28), there
must exist positive α and β such that, for all t ≥ 1, the following holds:

‖u(t− 1)‖e, ‖x(t)‖e ≤ αe−β(t−1)‖x(1)‖e.(46)

Continuity of the mapping (x(0), u0) 7→ (x(1), x(·), u(·)) : M2 7→ Rn×L2[0, 1]×L2[0, 1]
is obvious from (44) and (39). Thus (with a possible need for a modification of α),
the expression (46) leads to (41), and part (d) of Lemma 5.4 is established.

To compute the optimal value in (17)–(29) we first introduce notations of oper-
ators M, N , and J . The definition M(x(0), p(0), u0) = (x(1), x(·), p(·), u0(· + 1)) is
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made where the pair (x, p) defines the solution of (34), viewed as a causal initial value
problem with the data (x(0), p(0), u0). The mapping N (x(0), u0) = (x(0), p(0), u0)
translates the original data for the boundary value problem (34) to initial data, using
(37) with t = 0. The operator J is represented by the matrix

J =


R 0 0 0
0 H ′1H1 0 H ′1E12

0 0 −G′1G1 0
0 E′12H1 0 E′12E12

 .(47)

In these terms the solution (x, p) of the boundary value problem (34) is satisfy-
ing MN (x(0), u0) = (x(1), x(·), p(·), u0(· + 1)) and there holds JMN (x(0), u0) =
(Rx(1), H ′1z̄,−G′1w̄, E′12z̄), where z̄(t) = H1x(t) + E12u(t− 1) and w̄(t) = G′1p(t). It
is a summary of our results heretofore that the optimal value of the cost functional in
(33), hence in (29), is−〈MNf(0), JMNf(0)〉M2 . We thus denoteR = N ′M′JMN
and continue to show that R is realized by the solution of (34), as stated in the the-
orem. The following observations are made to that end.

The computation of the conjugate of the I/O operator that is defined in terms
of a causal system is straightforward. In the case of M, the relation (φ1, φ2, φ3) =
M′(ψ1, ψ2, ψ3, ψ4) is characterized by φ1 = p1(0), φ2 = −x1(0), φ3(·) = E′12H1x1(·)+
G′2p1(·)+ψ4(·+1), where the pair (x1, p1) provides a solution of the following variant
of (34):

ẋ1 = (A−G2C)x1 + G1G
′
1p1 + ψ3,

ṗ1 = −H ′1H1x1 − (A−G2C)′p1 − ψ2,
(48)

subject to the terminal conditions x1(1) = 0 and p1(1) = ψ1. In particular, when
(ψ1, ψ2, ψ3, ψ4) = JMN (x(0), u0), the pair (x1, p1) is defined in terms of the follow-
ing system:

ẋ1(t) = (A−G2C)x1(t) + G1G
′
1(p1 − p)(t),

ṗ1(t) = −H ′1H1(x+ x1)(t) − (A−G2C)′p1(t) − H ′1E12u(t− 1),
(49)

with (x, p) from the original solution of (34), x1(1) = 0, and p1(1) = Rx(1). Denoting
x2(t) = x(t) + x1(t) − Φ0(t, 0)x1(0) and p2(t) = p1(t) − R0(t)Φ0(t, 0)x1(0) and tak-
ing derivatives, one observes that the pair (x2, p2) satisfies (34) with the same data
and boundary conditions as (x, p). Following from the established uniqueness of the
solution, x2 = x and p2 = p.

Given (φ1, φ2, φ3) ∈ Rn×Rn×L2[−1, 0], it follows directly from the definition of
N that N ′(φ1, φ2, φ3) = (φ1 +R0(0)φ2, (E′12H1 +G′2R0(·+ 1))Φ0(·+ 1, 0)φ2 +φ3(·)).
In particular, when (φ1, φ2, φ3) = M′JMN (x(0), u0), the value of R(x(0), u0) =
N ′M′JMN (x(0), u0), as stated in the statement of part (e) of Lemma 5.4, is ob-
tained. The proof of the lemma is complete.

5.3. The abstract model. As mentioned earlier, the complete state of the pro-
cess that is described by the delay differential equations (16)–(32) must include an
account of the history of the control input, as provided by f(t) = (f0(t), f1(t, s)) =
(x(t), ut(s)) ∈ M2. This section concerns a brief account of an abstract evolution
model for the dynamics of the complete state f(t). General background on c0-
semigroups and on distributed parameter systems can be found, e.g., in [4, 5, 10,
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13, 18]. Abstract models for delay systems over the state space M2 (and related
spaces) have been studied extensively, and a sample of relevant sources and leads is
[1, 2, 3, 6, 11, 19, 20, 21, 31, 34, 35]. As compared with most of these references, our
system, and accordingly, the model we use, is relatively simple and dates back to the
1970s (see, e.g., [11]). We shall thus be content with a brief explanation of the model
and refer the interested reader to existing literature for more details.

Starting with formal definitions, the abstract model for the complete state dy-
namics, input, and output in (16) will be written as follows:

ḟ = Af + B1w + B2u,
z = C1f + D11w,
y = w, u = Θy,

(50)

with the coefficients

Af =
(
(A−QC ′C)f0 +QC ′f1(−1), ddsf

1
)
,

B1w = ((B −QC ′D)w, 0), B2u = (0, δ0u),

C1f = Cf0 − f1(−1), D11w = Dw,

(51)

where δ0 is the usual Dirac function, centered at the origin, and where the domain of
the infinitesimal generator is

D(A) =
{
f ∈M2 : f1 ∈W 1

2 [−1, 0], f1(0) = 0
}
.(52)

The meaning of this model will be explained via the following series of observa-
tions.

LEMMA 5.5. Let S(t) be the family of linear operators over M2, as defined by the
homogeneous dynamics in (16) (that is, with w(t) = 0 and u(t) = 0, t > 0) and the
relation (x(t), ut) = S(t)(x(0), u0). Then S(t) is a c0-semigroup, generated by A, as
defined above.

Outline of the proof. The fact that the family S(t) adheres to the axioms of a
c0-semigroup (S(0) = I, S(t+ s) = S(t)S(s) and strong continuity in t [10]) is clear.
The stated forms of A and of its domain can be motivated by formal differentiation
of f(t) = (x(t), ut) and by the fact that, in the homogeneous dynamics, ut(s) = 0 for
t+ s > 0. A complete and rigorous proof of the validity of the stated forms of A and
of its domain can be obtained, e.g., by adaptations of the arguments used in one of
the following proofs: [5, Thm. 2.4.6], [3, Thm. 2.3], or [31, Thms. A and B].

The following remarks concern the adaptation of the frameworks of [3, 31], which
originally concern neutral FDEs of the form

d

dt
Ezt = Fzt, t > 0.(53)

The current setting can be brought to this form with z = (x, u), E(zt) = zt(0) = z(t),
and F(xt, ut) = ((A − QC ′C)xt(0) + QC ′ut(−1), 0). In the framework of the cited
papers this would have called for the use of the higher-dimensional “M2” state space
Rn+l × L2([−1, 0],Rn+l) (where C ∈ Rl×n), with the complete state (Ezt, zt). The
current simplification is due to the following two facts. (a) The last l entries of Fzt
vanish, making the subspace where the last l entries of E(xt, ut) are zero, an invariant
subspace under the evolution of (53). Focusing on that subspace, the last l entries
of Ezt = E(xt, ut) can be removed from the state (Ezt, zt). (b) The dependence on
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xt in both Ezt and Fzt is restricted to the value of x(t) = xt(0). Thus, no needed
information is lost when the state component xt ∈ L2[−1, 0] is replaced by x(t) ∈ Rn
and the definitions of E and F are modified accordingly. Following these modifications,
the current state choice of f(t) = (x(t), ut) is obtained, while the arguments in the
cited articles concerning the form of the domain of the infinitesimal generator remain
valid.

In what follows, we shall encounter several other semigroups over M2 and provide,
without proof, the forms of their generators and their respective domains. Indeed, in
each of these cases, one will be able to draw on arguments from [3, 31] to verify the
association of the semigroup and the generator. In particular, in each of these cases,
the dynamics under consideration will be generated by a neutral FDE of the form
(53), to which the comments in the outline of the proof of Lemma 5.5 apply. This
association will be key to our ability to fairly freely consider perturbations of S(t), an
issue that is quite delicate in the general framework of c0-semigroup theory.

For later reference we write down the explicit form of the relationship f(t) =
S(t)f(0), as derived from the variation-of-parameters formula in (16):

f0(t) = e(A−QC′C)tf0(0) +
∫ min(t,1)

0
e(A−QC′C)(t−s)QC ′f1(0, s− 1)ds,

f1(t, θ) =

{
f1(0, t+ θ) −1 ≤ θ ≤ −t, 0 ≤ t < 1,

0 else.

(54)

As is well known, a restriction of S(t) to the dense subspace D(A) ⊂ M2 defines
a c0-semigroup over D(A) relative to the stronger graph(A) topology. Also, the
definition of S(t) extends, by dense injection, to a c0-semigroup over the larger space
D(A′)′ ⊃M2. Such extensions and restrictions are used extensively, e.g., in the much
more general discussions in [21, 19]. The definition of the restriction to D(A) is
obvious. The following details concern the extension to D(A′)′.

By direct computation one finds the form of A′,

A′g =
(

(A−QC ′C)′g0, − d

ds
g1
)
,(55)

and the domain,

D(A′) =
{
g ∈M2 : g1 ∈W 1

2 [−1, 0], g1(−1) = CQg0} .(56)

Integration by parts and (56) yield the following equality for any f ∈ M2 and g ∈
D(A′):

〈f, g〉M2 =
〈(

f0 +QC ′
∫ 0

−1
f1(r)dr,

∫ 0

s

f1(r)dr
)
,

(
g0,

d

ds
g1(s)

)〉
M2

.(57)

The emerging representation of elements g ∈ D(A′) by the associated pairs (g0, ddsg
1) ∈

M2 defines an isomorphism between D(A′) and M2, and the definition of a norm
‖g‖D(A′) = ‖(g0, ddsg

1)‖M2 is consistent with the graph(A) topology in D(A′). Us-
ing this representation, an element h ∈ D(A′)′ must be determined by an associated
element (h0, h1) ∈M2, via the pairing

〈h, g〉D(A′)′ ,D(A′) =
〈

(h0, h1) ,
(
g0,

d

ds
g1(s)

)〉
M2

.(58)
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Thus, the definition of a norm ‖h‖D(A′)′ = ‖(h0, h1)‖M2 is consistent with the adjoint
space topology of D(A′)′.

Referring to the representation of elements of D(A′) and of D(A′)′ by M2 pairs,
as explained above, one defines the following continuous injection ı : M2 7→ D(A′)′,
its unbounded inverse π : D(A′)′ 7→M2, and their adjoints:

ı(f) =
(
f0 +QC ′

∫ 0

−1
f1(r)dr ,

∫ 0

s

f1(r)dr
)
,

π(h) =
(
h0 −QC ′h1(−1) , − d

ds
h1(s)

)
,

ı′(φ) =
(
φ0 , CQφ0 +

∫ s

−1
φ1(r)dr

)
,

π′(ψ) =
(
ψ0 ,

d

ds
ψ(s)

)
.

(59)

The extended semigroup is defined as a continuous continuation of ı ◦ S(t) ◦ π from
the dense submanifold ı(M2) to the entire D(A′)′. For simplicity in what follows, we
shall use the same notation for the original semigroup S(t) and for its extension. (The
same notational policy will be applied to other semigroups that will be encountered
later on.) The following expression for the relation h(t) = S(t)h(0), h(0) ∈ D(A′)′,
in the extended semigroup, is easily obtained, appealing to the original definition of
S(t) over M2 and to the definition of its extension:

h0(t) = e(A−QC′C)th0(0)−
∫ min(t,1)

0
e(A−QC′C)(t−s)(A−QC ′C)QC ′h1(0, s− 1)ds,

h1(t, θ) =

 h1(0, t+ θ), −1 ≤ θ ≤ −t, 0 ≤ t < 1,

0 otherwise.
(60)

The input operator B1 takes values in M2. The value h = B1w is interpreted
as a member of the extended state space D(A′)′ via the injection ı. That is, h =
((B −QC ′D)w, 0). As defined, the operator B2 takes values in D(A′)′. With the M2
representation of elements of D(A′)′, as described above, h = B2u is identified with
the pair h = (QC ′u, 1(s)u), where “1(s)” is the L2[−1, 0] function that takes the
unit value throughout. Thus interpreted, B2 is a bounded operator as well. The state
response of the inhomogeneous (50) is defined in terms of “mild solutions”; that is, it
is defined in terms of the variations-of-parameters formula, which is well defined over
the extended state space D(A′)′:

h(t) = S(t)h(0) +
∫ t

0
S(t− r)(B1w(r) + B2u(r))dr.(61)

LEMMA 5.6. Given any initial data f(0) = (x(0), u0) ∈ M2, h(0) = ı(f(0)) ∈
D(A′)′, and inputs w, u ∈ L2 loc[0,∞), let h(t) be the response of (61) and let f(t) =
(x(t), ut) be defined in terms of the response of (16). Then h(t) = ı(f(t)) throughout.

Proof. The fact that the contribution of the initial data is as stated follows from
the original definition of the semigroup S(t) over M2 and its extension to D(A′)′.
As follows from the definition of S(t) and of B1, the term S(t − r)B1w(r) has a
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zero L2[−1, 0] component, and the Rn component is identical to the one from the
variations-of-parameters formula in (16). So the claim concerning the contribution of
w is clear as well. Assuming w = 0 and f(0) = 0, we thus focus on the contribution
of u.

As follows from (60), the L2[−1, 0] component of S(t−r)B2u(r), denoted φ1(t, r, θ),
is

φ1(t, r, θ) =

{
u(r), max(0, t+ θ) ≤ r ≤ t, θ ∈ [−1, 0],

0, else,
(62)

and the Rn component, denoted φ0(t, r), is

φ0(t, r) =

(
e(A−QC′C)(t−r) −

∫ min(t−r,1)

0
e(A−QC′C)(t−r−s)(A−QC ′C)ds

)
QC ′u(r),

=

{
QC ′u(r), max(t− 1, 0) ≤ r ≤ t,

eA(t−r−1)QC ′u(r), else.
(63)

Integrating over the interval r ∈ [0, t], we thus get

h0(t) =
∫ max(t−1,0)

0
e(A−QC′C)(t−r−1)QC ′u(r)dr +QC ′

∫ t

max(t−1,0)
u(r)dr

=
∫ t

min(1,t)
e(A−QC′C)(t−r)QC ′u(r − 1)dr +QC ′

∫ 0

max(−1,−t)
ut(r)dr,

h1(t, θ) =
∫ t

max(0,t+θ)
u(r)dr =

∫ 0

max(−t,θ)
ut(r)dr.

(64)

Comparing with the definition of f(t) by the variations-of-parameters formula in (16)
(with x(0) = 0,u0 = 0, and w(t) = 0, t > 0) and the definition of the injection ı, it is
obvious that, here too, h(t) = ı(f(t)).

It is noticed that while C1 is unbounded over M2, it does define a bounded op-
erator when restricted to the dense submanifold M1

2 = Rn × W 1
2 [−1, 0]. Follow-

ing from the previous lemma, when u ∈ W 1
2 loc[−1,∞), the state response in (50),

as defined via (61), is f(t) = (x(t), ut) ∈ M1
2 . Thus, z(t) = C1f(t) + D11w(t) is

a well-defined trajectory, coinciding with the value of the controlled output trajec-
tory in (16). Furthermore, embedding trajectories of z with the L2 loc[0,∞) topol-
ogy, the mapping (f(0), u, w) 7→ z extends to a continuous mapping over the entire
M2 × L2 loc[0,∞) × L2 loc[0,∞). The output equation in (50), as well as in other
abstract models that will be considered hereafter, are to be understood in this sense.
Similarly, for notational convenience, we shall identify the left-hand side of the fol-
lowing equality (and similar equalities that will be encountered) with the well-defined
right-hand side (and its appropriate counterparts),〈

f ,

∫ t

0
S(r)′C′1C1S(r)dr f

〉
M2

=
∫ t

0
〈C1S(r)f , C1S(r)f〉M2dr.

5.4. Solution of the differential game: A complete state space descrip-
tion. The following two lemmas set the groundwork for the completion of the proof
of Theorem 4.1.
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LEMMA 5.7. Assume that conditions (a) and (b) in Theorem 4.1 are satisfied,
whereby a unique solution of the differential game (17) does exist, as shown above.
Let a family of mappings f(t) = S1(t)f(0), t ≥ 0, be defined by shifts along solutions
of (17). That is, f(t) = (x(t), ut), where x and u are the optimal trajectory and
control in (17), given the initial data f(0) = (x(0), u0) ∈ M2. Then S1 defines an
exponentially stable c0-semigroup over M2, generated by

A1f =
(

(A−G2C +G1L
0)f0 +G1L

1f1 +G2f
1(−1),

d

ds
f1
)

(65)

as defined over the domain

D(A1) =
{
f ∈M2 : f1 ∈W 1

2 [−1, 0], f1(0) = K0f0 +K1f1} ,(66)

where the notation of (40) is used.
Proof. The following facts imply that, indeed, S1 is a well-defined, exponentially

stable c0-semigroup. (a) The solution of (17) is unique, given the initial data. (b) The
restriction of the solution of (17) to any positive ray [t,∞) must coincide with the
solution of the restriction of (17) to that ray, with the initial data f(t) = (x(t), ut).
(This follows from the observation in part (b) of Lemma 5.4.) (c) The stability
observation in part (d) in Lemma 5.4.

An intuitive motivation of (65)–(66) as the correct form of the generator of S(t)
and of its domain can be motivated by formal differentiation. Here too, an adaptation
of the more general arguments concerning semigroup representations of neutral FDEs
in [3, 31] will provide a complete and rigorous proof. The following are counterparts of
the similar remarks in the outlined proof of Lemma 5.5, concerning that adaptation.
As was established in Lemma 5.4, the optimal inputs in the solution of (17) are
given by (40). Thus the evolution of the optimal trajectory (x(t), ut) is governed by
the unique solution of the integrodifferential equation, coupling (16) and (40). The
coupled system can be brought to the neutral FDE form of (53) with z = (x, u) and
with

F(xt, ut) = ((A−G2C +G1L
0)xt(0) +G1L

1ut +G2ut(−1), 0),

E(xt, ut) = (xt(0), ut(0)−K0xt(0)−K1ut).

As we focus on the invariant subspace where the last l entries of E(xt, ut) vanish,
the definitions of the operators E and F allow us to simplify the state from the
standard choice of (Ezt, zt) to f(t) and yet maintain the validity of the arguments
from [3, 31].

With any initial state f(0) = (x(0), u0) ∈M2, inputs w, u ∈ L2 loc[0,∞), and the
associated response in (16), we associate trajectories

w∇(t) = w̄(t)−L0x(t)−L1ut and u∇(t) = (2E′12E12)
1
2 (u(t)−K0x(t)−K1ut).(67)

The state dynamics and the output of (16)–(50) can be represented by the following
abstract equation:

ḟ = A1f + B̄1w
∇ + B̄2u

∇,

z̄ = C̄1f,
(68)

where

B̄1w
∇ = (G1w

∇, 0), B̄2u
∇ = (2E′12E12)−

1
2B2u

∇, C̄1f = H1f
0 +E12f

1(−1).(69)
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Here, again, the state equation is to be understood in the “mild” sense, in terms of
the variations-of-parameters formula:

f(t) = S1(t)f(0) +
∫ t

0
S1(t− r)(B̄1w

∇(r) + B̄2u
∇(r))dr.(70)

In complete analogy to Lemma 5.6 it is observed that the state f(t) in (70) coincides
with (x(t), ut) in the solution of (32) with w̄(t) = w∇(t) + L0x(t) + L1ut and with
u(t) = (2E′12E12)−

1
2u∇(t)+K0x(t)+K1ut. Using the notation of (69) and the explicit

expression for R in part (e) of Lemma 5.4, it is useful to note that there holds

w∇(t) = w̄(t)− B̄′1Rf(t) and u∇(t) = 2B̄′2Rf(t).(71)

LEMMA 5.8. Let the hypotheses of Lemma 5.7 stand. Then the following hold.
(a) The operator R, as defined in Lemma 5.4, satisfies the following operator Riccati
equation, for each f ∈M2:

〈f,Rf〉M2 =
∫ ∞

0
〈f, S1(t)′

(
C̄′1C̄1 −RB̄1B̄′1R

)
S1(t)f〉M2dt.(72)

(b) The following equality is satisfied over any finite time interval:

‖w̄‖2L2[0,t] − ‖z̄‖2L2[0,t] − 〈f(t),Rf(t)〉M2 = ‖w∇‖2L2[0,t] − ‖u∇‖2L2[0,t] − 〈f(0),Rf(0)〉M2 .

(73)

Proof. It will be convenient to use the abbreviation ∆ = RB̄1B̄′1R− C̄′1C̄1. Two
facts are used in establishing (72). First, following from (71), the feedback expression
for w̄ in (40) is equivalent to w̄ = B̄′1Rf . Second, by part (e) of Lemma 5.4, the
optimal cost in (17) is −〈f(0),Rf(0)〉M2 . Combining these observations with the
definition of S1(t), we have

−〈f(0),Rf(0)〉M2 = ‖w̄‖22 − ‖z̄‖22

= ‖B̄′1Rf‖22 − ‖C̄1f‖22 =
∫∞

0 〈f(0),S1(t)′∆S1(t)f(0)〉M2dt,
(74)

which is (72).
The following fact is an immediate consequence of (72):

〈f,Rf〉M2 − 〈f,S1(t)′RS1(t)f〉M2 +
∫ t

0
〈f , S1(r)′∆S1(r)f〉M2dt = 0,(75)

holding for any t > 0 and f ∈ M2. This fact will be used in these next derivations
of (73):

‖w̄‖2L2[0,t] − ‖z̄‖2L2[0,t] − 〈f(t),Rf(t)〉M2 + 〈f(0),Rf(0)〉M2

= ‖w∇ + B̄′1Rf‖2L2[0,t] − ‖C̄1f‖2L2[0,t] − 〈f(t),Rf(t)〉M2 + 〈f(0),Rf(0)〉M2

=
∫ t

0

〈(
S1(r)f(0) +

∫ r

0
S1(r − s)(B̄1w

∇(s) + B̄2u
∇(s))ds

)
,
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∆
(
S1(r)f(0) +

∫ r

0
S1(r − q)(B̄1w

∇(q) + B̄2u
∇(q))dq

)〉
M2

dr

+ 2
∫ t

0

〈
w∇(s) , B̄′1R

(
S1(s)f(0) +

∫ s

0
S1(s− q)(B̄1w

∇(q) + B̄2u
∇(q))dq

)〉
M2

ds

+ ‖w∇‖2L2[0,t]

−
〈(
S1(t)f(0) +

∫ t

0
S1(t− s)(B̄1w

∇(s) + B̄2u
∇(s))ds

)
,

R
(
S1(t)f(0) +

∫ t

0
S1(t− q)(B̄1w

∇(q) + B̄2u
∇(q))dq

)〉
M2

+ 〈f(0),Rf(0)〉M2

=
〈
f(0),

(
R− S1(t)′RS1(t) +

∫ t

0
S1(r)′∆S1(r)dr

)
f(0)

〉
M2

+ 2
〈
f(0),

∫ t

0
S1(s)′

(
∆
∫ s

0
S1(s− q)

(
B̄1w

∇(q) + B̄2u
∇(q)

)
dq +RB̄1w

∇(s)
)
ds

〉
M2

+ 2
〈
f(0) , S1(t)′R

∫ t

0
S1(t− q)

(
B̄1w

∇(q) + B̄2u
∇(q)

)
dq

〉
M2

+ 2
∫ t

0

∫ r

0

〈
S1(r − s)

(
B̄1w

∇(s) + B̄2u
∇(s)

)
,

∆S1(r − s)
∫ s

0
S1(s− q)

(
B̄1w

∇(q) + B̄2u
∇(q)

)
dq

〉
M2

ds dr

+ 2
∫ t

0

〈
w∇(s) , B̄′1R

∫ s

0
S1(s− q)

(
B̄1w

∇(q) + B̄2u
∇(q)

)
dq

〉
M2

ds

+ ‖w∇‖2L2[0,t]

− 2
∫ t

0

〈
S1(t− s)

(
B̄1w

∇(s) + B̄2u
∇(s)

)
,

RS1(t− s)
∫ s

0
S1(s− q)

(
B̄1w

∇(q) + B̄2u
∇(q)

)
dq

〉
M2

ds

= 2
〈
f(0),

∫ t

0
S1(q)′

(∫ t−q

0
S1(r)′∆S1(r)dr +R− S1(t− q)′RS1(t− q)

)

·
(
B̄1w

∇(q) + B̄2u
∇(q)

)
dq

〉
M2

ds
(76)
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− 2
∫ t

0

〈
u∇(q) , B̄′2RS1(q)f(0)

〉
M2

dq + ‖w∇‖2L2[0,t]

+ 2
∫ t

0

〈
w∇(s) , B̄′1

(∫ t−s

0
S1(r)′∆S1(r)dr +R− S1(t− s)′RS1(t− s)

)

·
∫ s

0
S1(s− q)

(
B̄1w

∇(q) + B̄2u
∇(q)

)
dq

〉
M2

ds

+ 2
∫ t

0

〈
u∇(s), B̄′2

(∫ t−s

0
S1(r)′∆S1(r)dr − S1(t− s)′RS1(t− s)

)

·
∫ s

0
S1(s− q)

(
B̄1w

∇(q) + B̄2u
∇(q)

)
dq

〉
M2

ds

= ‖w∇‖2L2[0,t] −
∫ t

0

〈
u∇(s) , 2B̄′2Rf(s)

〉
M2

ds

= ‖w∇‖2L2[0,t] − ‖u∇‖2L2[0,t],

which establish the validity of (73) and complete the proof of Lemma 5.8.
LEMMA 5.9. The family of admissible, strictly γ suboptimal selections of the

system Θ comprises those systems that can be realized by the following abstract models:

ḟc = Acfc + Bc1w + Bc2φ,

u = Cc1fc + Dc12φ,

ψ = Cc2fc + Dc21w, φ = Θ0ψ,

(77)

where the coefficients are defined as follows:

Acfc =
(

(A−QC ′C)f0
c +QC ′f1

c (−1) ,
d

ds
f1
c

)
,

Bc1 = B1, Bc2 = B̄2,

Cc1fc = K0f0
c +K1f1

c , Dc12 = (2E′12E12)−
1
2 ,

Cc2fc = −
(
L0 +

1
γ
D′H1

)
f0
c − L1f1

c −
1
γ
D′E12f

1
c (−1), Dc21 = E−1

21 ,

(78)
where

D(Ac) =
{
fc ∈M2 : f1

c ∈W 1
2 [−1, 0], f1

c (0) = K0f0
c +K1f1

c

}
(79)

and where the free design parameter, the mapping Θ0, is defined by the I/O mapping
in a stable, neutral FDE with the L2[0,∞) induced norm bound ‖Θ0‖ < 1.

Proof. The arguments are essentially the same as in the proof of a counterpart
statement in the finite-dimensional framework of [32], where the equality (73) is play-
ing the key role. For completeness, we shall outline the arguments in the current
distributed parameter framework. These arguments are broken into several steps.
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Step 1. Well-Posedness and a Neutral FDE Interpretation of (77). Again we
draw on observations, similar to those made in section 5.3, concerning neutral FDEs
and associated semigroups. Following from the definition of Ac (and of the rest of the
coefficients) it is noted that (77) is defined in terms of a closed-loop interconnection
of two well-posed, inhomogeneous neutral FDEs. The first subsystem is the stable
neutral FDE that defines Θ0. The second neutral FDE is defined in terms of the
explicit state space formulas with Θ0 removed. A close look reveals that this abstract
model is a realization of an integrodifferential equation where the homogeneous part
couples (16), say, with the state “xc” and the regression u(t) = K0xc(t) + K1ut.
The neutral FDE interpretation of this equation is similar to the one provided in the
proof of Lemma 5.4 in the context of S1(t), omitting the terms in L0 and L1. The
inhomogeneous system includes the added input (2E′12E12)−

1
2φ(t) in the regression

for u(t), and thus creates a well-posed inhomogeneous neutral FDE. (Details on inho-
mogeneous neutral FDEs can be found in [31].) Removing Θ0, the open-loop mapping
φ 7→ ψ is strictly proper, whereby the interconnection results in a well-posed neutral
FDE. (Indeed, the restriction of Θ0 to the class of neutral FDEs is made expressly
for this purpose, and the class of admissible “Θ0” could easily be extended to any
distributed parameter systems class that will provide for a meaningful well-posedness
and state space realizability of (77).)

Since the state is defined in terms of trajectories of (16), the equality (73) remains
valid, where fc substitute for f throughout. In particular, it is noted that, with respect
to the state fc, w∇ = ψ, u∇ = φ and a counterpart z̄c of z̄ is defined as C̄1fc. These
observations will be our main tools in what follows.

Step 2. Stability of (77). Without reference to the detailed model, we shall
use the notation f0 in reference to the state of a stable abstract model of Θ0. The
bounded mapping from the initial state to the output, in that system, will be denoted
Υ0 : f0 7→ ψ : M2 7→ L2[0,∞). The associated I/O mapping will be denoted
simply Θ0 : ψ 7→ φ : L2[0,∞) 7→ L2[0,∞). Thus, having started at a nonzero
state, φ = Υ0f0(0) + Θ0ψ. The induced norm bound ‖Θ0‖ < 1 allows us to denote
λ2 = 1− ‖Θ0‖2.

To establish internal stability one considers the case where an arbitrary, combined
initial state (fc(0), f0(0)) is in place and where the external input is w = 0, whereby
w∇ = ψ = Cc2fc. Invoking (73), then for each t > 0 there holds

0 = 〈fc(0),Rfc(0)〉M2 − ‖z̄c‖2L2[0,t] − ‖ψ‖2L2[0,t] + ‖φ‖2L2[0,t]

≤ 〈fc(0),Rfc(0)〉M2 − ‖ψ‖2L2[0,t] + ‖Θ0ψ + Υ0f0(0)‖|2L2[0,t]

≤ 〈fc(0),Rfc(0)〉M2 − ‖ψ‖2L2[0,t] +
(
‖Θ0‖‖ψ‖L2[0,t] + ‖Υ0‖‖f0‖M2

)2
= 〈fc(0),Rfc(0)〉M2 + ‖Υ0‖2‖f0‖2M2

+ 2‖Θ0‖‖Υ0‖‖f0‖M2‖ψ‖L2[0,t] − λ2‖ψ‖2L2[0,t].

(80)

Viewing the rightmost term in (80) as a quadratic polynomial with a negative leading
coefficient in the variable ‖ψ‖L2[0,t], the inequality forces ‖ψ‖L2[0,t] to take values
between the two zeros of the polynomial. This leads to the following bound:

‖ψ‖L2[0,t] ≤ ‖Θ0‖‖Υ0‖‖f0‖M2 +
((
‖Θ0‖2 + λ2

)
‖Υ0‖2‖f0‖2M2

+ λ2〈fc(0),Rfc(0)〉M2

) 1
2 ,

(81)
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which holds for each t. It thus extends to a similar bound, as t → ∞, and can be
abbreviated in the form

‖ψ‖2 < α‖(f0(0), fc(0))‖M2×M2 ,(82)

with some fixed α > 0 and all initial data. Since Θ0 is defined by a stable system,
the mapping (f0(0), ψ) 7→ (f0, φ) : M2 ×L2[0,∞) 7→ L2[0,∞)×L2[0,∞) is bounded.
Thus, with a possible modification of α, (82) translates into

‖φ‖2, ‖f0‖2 < α‖(f0(0), fc(0))‖M2×M2 .(83)

We now use, once again, the observation that fc(t) = (xc(t), ut), ψ, and φ play in (16)
the precise counterpart roles that f = (x(t), ut), w∇, and u∇, respectively, play, with
xc substituting for x. In particular, the following counterpart of the state equation
from (68) is satisfied:

ḟc = A1fc + B̄1ψ + B̄2φ.(84)

The stability of A1 implies boundedness of the mapping (fc(0), ψ, φ) 7→ fc : M2 ×
L2[0,∞) × L2[0,∞) 7→ L2[0,∞). Coupling this fact with (82) and (83) it turns out
that, with the possible need to modify α, we have

‖(fc, f0)‖2 < α‖(f0(0), fc(0))‖M2×M2 .(85)

It is a standard observation (see, e.g., [5, Lem. 5.1.2]) that the bound (85) implies
uniform exponential stability in the combined system (77).

Step 3. Strict γ Suboptimality. We now consider the case where Θ is of the
form (77), w 6= 0 in (16)–(50) and in (77), and where the initial data are all zero.
Namely, f(0) = 0 = fc(0) and f0(0) = 0. As noted above, then both f(t) = (x(t), ut)
and fc(t) = (xc(t), ut) correspond to solutions of (16) with the same inputs u and w
and the zero initial data, and with the Rn “states” x(t) and xc(t). The uniqueness
of the solution of (16) implies that x(t) = xc(t) throughout, whereby f(t) = fc(t)
throughout. In particular, then w∇ = ψ and u∇ = φ = Θ0w

∇. Using the established
stability of (77), we can then let t→∞ in (73) and obtain

γ2‖w‖22 − ‖z‖22 = ‖w∇‖22 − ‖Θ0w
∇‖22 ≥ λ2‖w∇‖22.(86)

The signals w and w∇ are now related by a stable system, combining the state equation
(68) (with the zero initial data), the relation u∇ = Θ0w

∇, and the output equation

w = D−1
c21(w∇ − Cc2f).(87)

Thus defined, the mapping w∇ 7→ w is a bounded operator over L2[0,∞) and λ2‖w∇‖22
can be bounded below by µ2‖w‖22, with some fixed positive µ. Substituting this lower
bound in (86), it follows that the closed-loop induced norm of the mapping w 7→ z is,
at most,

√
γ2 − µ2.

This completes the proof of the fact that each selection of Θ via the parameter-
ization (77) is indeed a stable and a strictly γ suboptimal selection. In particular,
the family of these selections is nonempty, and the proof of the sufficiency claim in
Theorem 4.1 is complete.
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Step 4. Completeness of the Parameterization (77). Let Θ be any strictly γ
suboptimal, stable neutral FDE. The fact that Θ is strictly γ suboptimal means that
(with the zero initial data) there holds

γ2‖w‖22 − ‖z‖22 > µ2‖w‖22(88)

in the closed-loop system, with any w ∈ L2[0,∞) and some fixed µ > 0. The system
that combines (16) and Θ is defined in terms of a stable neutral FDE. Associating
the state equation in this system with the second output mapping of (77),

w∇ = Cc2f +Dc21w,(89)

one thus obtains a stable realization of the mapping w 7→ w∇ in the closed-loop
system. In particular, with the zero initial state, µ2‖w‖22 can be bounded below by
λ2‖w∇‖22, with some fixed, positive λ. Invoking (73) with the zero initial data and
with t→∞, the following closed-loop inequality emerges:

‖w∇‖22 − ‖u∇‖22 > λ2‖w∇‖22,(90)

indicating that the induced norm of the closed-loop mapping w∇ 7→ u∇ is smaller
than 1.

It has to be verified that this mapping is realized by a stable system. The following
is an abstract model for that mapping:

ḟ∇ = A∇f∇ + B∇1w
∇ + B∇2u,

u∇ = C∇1f∇ + D∇12u,

w = C∇2f∇ + D∇21w
∇, u = Θw,

(91)

where the coefficients are defined as follows:

A∇f∇ =
(

(A−G2C +G1L
0)f0
∇ +G1L

1ut +G2f
1
∇(−1) ,

d

ds
f1
)
,

B∇1 = B̄1, B∇2 = B2,

C∇1f∇ = −(2E′12E12)
1
2 (K0f0

∇ +K1f1
∇), D∇12 = (2E′12E12)

1
2 ,

C∇2 = −D−1
c21Cc2, Dc21 = D−1

c21,

(92)

where

D(A∇) = D(A) =
{
f∇ ∈M2 : f1

∇ ∈W 1
2 [−1, 0], f1

∇(0) = 0
}
.(93)

As all other models encountered heretofore, this model too is associated with (16)
(with the Rn “state” x∇(t)) via f∇(t) = (x∇(t), ut), and subject to the input lows
w = C∇2f∇ + D∇21w

∇ and u = Θw. Without specifying the details of the stable
dynamic equations by which Θ is defined, we shall refer to the complete state of
such a realization with the notation f1. The proof of closed-loop stability follows the
pattern of similar arguments in [27, 28, 32] and is now outlined for completeness.

Indeed, in contradiction, suppose that the closed-loop system in (92) is not uni-
formly exponentially stable and consider that system with the zero external input,
w∇ = 0 (hence with w = C∇2f∇). We argue that this must imply that the ratios

‖w‖L2[0,t]

‖(f∇(0), f1(0))‖M2×M2

(94)
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are not uniformly bounded over all possible selections of the combined initial data and
of t > 0. For suppose those ratios were uniformly bounded, whereby the closed-loop
mapping (f∇(0), f1(0)) 7→ w = C∇2f∇ : M2 ×M2 7→ L2[0,∞) were a bounded opera-
tor. To see that this is impossible (under the contradiction assumption), note that the
closed loop (16) is stable anyway, whereby the mapping (w, f∇(0), f1(0)) 7→ (f∇, f1):
L2[0,∞) ×M2 ×M2 7→ L2[0,∞) defines a bounded operator. Combining these two
facts we would have then concluded that the closed-loop mapping (f∇(0), f1(0)) 7→
(f∇, f1) : M2 ×M2 7→ L2[0,∞) is bounded. Yet this latter mapping is defined, by
our assumption, in an unstable system, and by [5, Lem. 5.1.2], cannot be bounded.

Having selected t and the combined initial data, let the dynamics under consider-
ation be determined over [0, t] by the closed loop (91) with w∇ = 0, as above, and by
the combined rules w∇ = 0 and u∇ = 0, over (t,∞). Over the latter ray the dynamics
of f∇ is generated by the stable A1. Let the definition w = C∇2f prevail throughout
and let z be the associated output of (16), with x∇ substituting for x.

Let κ be a uniform induced norm bound over the closed-loop mapping (f(0), f1(0))
7→ z : M2 ×M2 7→ L2[0,∞) in the stable closed-loop system (16). The same bound
applies when f∇ substitutes for f . We recall that

√
γ2 − µ2 is an induced norm bound

over the closed-loop mapping w 7→ z : L2[0,∞) 7→ L2[0,∞), in (16). Applying (73)
to the trajectories that were constructed above, we get

〈f∇(0),Rf∇(0)〉M2 + ‖u∇‖2L2[0,t] = ‖z‖22 − γ2‖w‖22

≤
(√

γ2 − µ2‖w‖2 + κ‖(f∇(0), f1(0))‖M2×M2

)2
− γ2‖w‖22

= −µ2‖w‖22
(

1− 2κ
√
γ2−µ2

µ2
‖(f∇(0),f1(0))‖M2×M2

‖w‖2 − κ2

µ2

‖(f∇(0),f1(0))‖2M2×M2
‖w‖22

)
.

(95)

If indeed it were possible for the ratios (94) to be made arbitrarily large by a selection
of t and of the combined initial state, then it would be possible to make the rightmost
expression in (95) arbitrarily close to the negative value −µ2‖w‖22. Yet, the leftmost
expression of the same inequality is nonnegative, which is a contradiction. Thus the
closed-loop system (91), governing the closed-loop mapping Θ0 : w∇ 7→ u∇, must be
stable. We have already established that its induced norm is strictly smaller than
unity. The fact that (77) is a realization of the mapping w 7→ u in terms of the
mapping w∇ 7→ u∇ is clear.

This completes the proof of Lemma 5.9.
As noted above, the abstract model (77) is a representation of a system, coupling

(16), with xc(t) substituting for x(t), the control selection that couples the regression
formula u(t) = K0xc(t) + K1ut + (2E′12E12)−

1
2φ(t), the feedback rule φ = Θ0ψ,

and the output ψ(t) = −(L0 + 1
γD
′H1)xc(t) − L1ut − 1

γD
′E12u(t − 1) + E−1

21 w(t).
These facts are precisely those that are captured in the parameterization (12), in the
statement of Theorem 4.1. The proof of the theorem is thus complete.
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Abstract. This paper develops an approach for obtaining discrete approximations to nonlinear
(affine) control systems that are of higher than first order of accuracy with respect to the discretiza-
tion step h. The approach consists of two parts: first the set U of measurable admissible controls is
replaced by an appropriate finite-dimensional subset UN ; then the differential equations correspond-
ing to controls from UN (which are in a reasonable sense “regular”) are discretized by single step
discretization methods. The main result estimates the accuracy in the first part, measured in terms
of a prescribed collection of performance indexes. The result can be interpreted both in the context
of approximation of optimal control problems and in the context of approximation of the reachable
set. In the first case, accuracy O(h2) is proven for appropriate Runge–Kutta-type discretization
methods, without explicitly or implicitly requiring any regularity of the optimal solutions. In the
case of a convex reachable set we obtain O(h2) approximation with respect to the Hausdorff distance
and O(h1.5) accuracy in the nonconvex case. An application to the time-aggregation of discrete-time
control systems is also presented.

Key words. control systems, differential inclusion, reachable set, discrete approximation,
Runge–Kutta scheme, optimal control
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1. Introduction. In this paper we consider a control system

ẋ = f(t, x, u), x(t0) = x0, u(·) ∈ U , x ∈ Rn, t ∈ [t0, T ],(1)

with a given set U of admissible control functions u(·) : [t0, T ] 7→ Rr and fixed x0, t0,
and T . In fact, the system under consideration will be linear with respect to u, but
for notational convenience, we discuss the general case in the introduction.

For a prescribed collection of functions (performance indexes) G = {g(·) ; g :
Rn 7→ R}, the set of real numbers

{inf
x(·)

g(x(T )) ; g(·) ∈ G}

will be considered as a characterization of the performance of the system. Accordingly,
if

ẏ = f̃(t, y, v), y(t0) = x0, v(·) ∈ V, y ∈ Rn, t ∈ [t0, T ],(2)

is another system, then

ε−((2), (1)) = sup
g∈G

{
inf
y(·)

g(y(T ))− inf
x(·)

g(x(T ))
}

is a measure of the “disadvantage,” with respect to the performance, of system (2)
compared with (1). In particular, if f̃ = f and only the admissible control sets differ,
ε−((2), (1)) (which will be denoted in this case by ε−(V,U)) is a measure of the “loss”
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of performance when the set U of admissible controls is replaced by V. The principle
result of the paper is an estimation of the last quantity in the case when

U = {u(·) ; u(·) ∈ Lr1[t0, T ], u(t) ∈ U for a.e. t},(3)

where U ⊂ Rr is a convex and compact set and

V = UN
def
= {u(·) ∈ U ; u(·) is constant on (ti, ti+1), i = 0, . . . , N − 1},(4)

where N is a natural number (of jumps) and ti = t0 + ih, h = (T − t0)/N . From
Dontchev and Farkhi [8] or Wolenski [23], it follows that under mild conditions

ε−(UN ,U) ≤ C/N.(5)

The problem of estimating ε−(UN ,U) can be considered from the general point of
view of the sensitivity analysis of extremal problems. It has been know since the 17th
Century that a smooth function deviates from its value at an extreme point propor-
tionally to the square of the distance of its argument to this point. This observation
(of J. Kepler, in 1615) also has a counterpart for constrained optimization problems
in normed spaces. In our case the extreme point in question is a minimizing control
function û(·) (subject to infinitely many linear constraints in Lr2(0, T ), corresponding
to the constraint u(t) ∈ U) for a particular performance index g(·) ∈ G. The general
analysis, however, fails in this case, since the Hausdorff distance, with respect to any
Lp-norm, between the sets UN and U does not even tend to zero when N −→ +∞. A
more specific analysis is needed, in this sense, even for the above-mentioned first-order
estimation (5).

On the other hand, the papers [22, 20] imply that a second-order estimation

ε−(UN ,U) ≤ C/N2(6)

holds in two rather different cases (supposing, however, that the functions g ∈ G have
equi-Lipschitz-continuous derivatives): in the case when system (1) is linear and in
the case of system (1) for which f(t, x, U) is a uniformly strongly convex set. The
main result in the present paper, presented in section 2, extends the second-order
estimation (6) to the case of nonlinear systems that are affine with respect to u
and satisfy an additional structural condition. The subsequent sections present some
applications. (The problem considered here can also be interpreted within the issue
of approximation of differential inclusions by collections of differential equations that
are finite-dimensionally parametrizable or finite; cf. [11]).

In section 3 the main result is applied for obtaining appropriate Runge–Kutta-
type discrete approximations to nonlinear optimal control problems that ensure
second-order approximation (relative to the discretization step) with respect to the
performance value. In contrast to the known results this estimation is not based on
any regularity assumptions for the optimal solution, and even the constant C in the
estimation corresponding to (6) is in a reasonable sense robust with respect to the
data. In particular, the cases of an optimal control function that is of unbounded
variation, or one that is nonintegrable in the Riemann sense, are not excluded by the
suppositions under which the second-order estimation holds.

Section 4 is devoted to the issue of discrete approximations of the reachable set
of (1), (3). The main result, together with a duality argument, implies (under an
appropriate convexity assumption) second-order error estimation in the Hausdorff
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metric for certain set-valued Runge–Kutta-type discretization schemes. Notice that,
according to [22], Runge–Kutta schemes of higher order of accuracy exist in the set-
valued case only under conditions that are rather restrictive in the context of control
theory (cf. [4]). For an extended bibliography concerning the issue of discretization
of control systems and differential inclusions, see [6, 10, 15].

Section 5 concerns the following issue with obvious practical motivation: what
is the “loss of performance” of a given N -stage discrete-time control system if the
control value is allowed to change only at the stages kM , k = 1, . . . , N/M , rather
than at each stage? The performance is defined as above, by a collection of indexes.
The main result is used to obtain an exact estimation, as well as a constructive way
of defining corresponding N/M -stage time-aggregated discrete-time systems.

2. Main result. It is supposed further that system (1) has the form

ẋ = f0(t, x) + F (t, x)u, x(t0) = x0,(7)

where f0 : [t0, T ]×Rn → Rn, F : [t0, T ]×Rn → Rn ×Rr. The set U of admissible
control functions is defined as in (3), where U ⊂ Rr is a convex and compact set.

The next theorem estimates the “loss of performance” of system (7) when the rN -
dimensional control set UN defined by (4) is used instead of the infinite-dimensional
(in general) control set U .

Denote by R(τ) the reachable set of (7) on [t0, τ ], that is, x ∈ R(τ) if and only
if there is a u(·) ∈ U such that a corresponding trajectory x(·) of (7) exists on [t0, τ ]
and x(τ) = x.

Assumption 1. There is a convex compact set S ⊂ Rn such that R(t) ⊂ intS for
every t ∈ [t0, T ].

Assumption 2. The components of f0 and F are differentiable with respect to t
and x, and all the first derivatives are Lipschitz continuous with respect to (t, x) ∈
[t0, T ]× S.

Assumption 3 (structural condition). The columns f1(t, x), . . . , fr(t, x) of F (t, x)
satisfy the relations

[fi, fj ]x(t, x)
def
=
(
∂fi
∂x

fj −
∂fj
∂x

fi

)
(t, x) = 0

for every i, j = 1, . . . , r and (t, x) ∈ [t0, T ]× S.
Assumption 4. There are constants Lg and L′g such that each function g ∈ G

is differentiable in the interior of S, and ∂g/∂x is bounded by Lg and is Lipschitz
continuous at each point of R(T ) with Lipschitz constant L′g.

We mention that Assumption 3 for the Lie brackets of the vector fields fj is
always fulfilled if F is independent of x, or dimu = 1. Otherwise it poses a restriction
on the interaction between the different control components. It is an open problem
whether Assumption 3 is essential for the claim of Theorem 2.1 below. The author
has some reason to expect that the answer might be (in general) affirmative, but a
counterexample is not available.

Remark 1. The constant in the estimation (8) below does not depend directly
on the particular function f = f0 + Fu. Rather, it depends (and can be evaluated
following the proof) on certain constants associated with f :

—the Lipschitz constants L0, LF , L′0, and L′F of f0, and the columns of F and
their first derivatives in the set [t0, T ]× S (denoted further briefly as L);

—the maximum M0 and MF of |f0(t, x)| and |F (t, x)| in [t0, T ] × S and the
maximum M ′0 and M ′F of the norms of the derivatives with respect to x of f0 and the
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columns of F in [t0, T ] × S (everywhere, the operator matrix norm is meant); these
constants will be succinctly symbolized by M .

THEOREM 2.1. Let Assumptions 1–4 be fulfilled. Then there exists a constant C
depending only on L, M , Lg, L′g, |U |, and T − t0, such that for every natural number
N

ε−(UN ,U)
def
= sup

g∈G

{
inf

v(·)∈UN
g(y(T ))− inf

u(·)∈U
g(x(T ))

}
≤ C

N2 .(8)

(Here y(·) is the trajectory corresponding to v(·), and x(·) is the trajectory correspond-
ing to u(·), according to (7)).

This theorem is a direct consequence of the following one (corresponding to the
case of a set G consisting of a single function g). For a particular g(·) ∈ G, consider
the following terminal optimal control problem for system (7):

g(x(T )) −→ min,(9)

Assumptions 1–4 ensure existence of a solution in both class U and UN of admis-
sible control functions. The corresponding optimal values will be denoted by ĝ and
ĝN .

THEOREM 2.2. Let Assumptions 1–4 be fulfilled. Then there exist constants C1
and C2 depending only on L, M , |U |, and T − t0 such that for every natural number
N

0 ≤ ĝN − ĝ ≤
C1Lg + C2L

′
g

N2 .(10)

Notice that C1 and C2 do not depend on the properties of the optimal control,
which can be even of unbounded variation, nonintegrable in the Riemann sense, or
even discontinuous almost everywhere (Assumptions 1–4 do not exclude these possi-
bilities; see Silin [19]).

The proof will be preceded by some auxiliary results.
Let l(·) : [t0, T ] 7→ Rn satisfy the conditions
(i) l(·) is Lipschitz continuous with constant Ll;
(ii) l̇(·) is of bounded variation.
The following result, playing a crucial role in the forthcoming analysis, is a con-

sequence of [5, Prop. 2].
PROPOSITION 2.3. The function

l̂(t) = sup
u∈U
〈l(t), u〉

is Lipschitz continuous and

T∨
t0

˙̂
l(·) ≤ 2Ll + 2|U |

T∨
t0

l̇(·).

The precise (natural) meaning of the variations of l̇ and ˙̂
l—these functions are

defined almost everywhere—is also given in [5].
By [2, Thm. 8.2.8] the set-valued mapping

Û(t) = {u ∈ U ; 〈l(t), u〉 = l̂(t)}

is measurable. Let û(·) be an arbitrary measurable selection of Û(·).
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The proof of the following lemma is standard.
LEMMA 2.4. If l̇(t) and ˙̂

l(t) exist for some t ∈ [t0, T ], then

˙̂
l(t) = 〈l̇(t), û(t)〉.

For the fixed selection û(·) of Û(·) define

uiN =
1
h

∫ ti+1

ti

û(t) dt(11)

and

uN (t) = uiN for t ∈ [ti, ti+1), i = 0, . . . , N − 1.(12)

LEMMA 2.5.

0 ≤
∫ T

t0

〈l(t), û(t)− uN (t)〉 dt ≤
(

2Ll + 3|U |
T∨
t0

l̇(·)
)
h2.

Proof. By definition, and using Lemma 2.4, we estimate

0 ≤
∫ T

t0

〈l(t), û(t)− uN (t)〉 dt =
1
h

N−1∑
i=0

∫ ti+1

ti

∫ ti+1

ti

〈l(t), û(t)− û(s)〉 ds dt

=
1
h

N−1∑
i=0

∫ ti+1

ti

∫ ti+1

ti

[〈l(t), û(t)〉 − 〈l(s), û(s)〉+ 〈l(s)− l(t), û(s)〉] ds dt

=
1
h

N−1∑
i=0

∫ ti+1

ti

∫ ti+1

ti

[∫ t

s

˙̂
l(τ) dτ −

〈∫ t

s

l̇(τ) dτ, û(s)
〉]

ds dt

=
1
h

N−1∑
i=0

∫ ti+1

ti

∫ ti+1

ti

∫ t

s

[˙̂l(τ)− 〈l̇(τ), û(s)〉] dτ ds dt

=
1
h

N−1∑
i=0

∫ ti+1

ti

∫ ti+1

ti

∫ t

s

[˙̂l(τ)− ˙̂
l(s) + 〈l̇(s)− l̇(τ), û(s)〉] dτ ds dt

≤
(
T∨
t0

˙̂
l(·) + |U |

T∨
t0

l̇(·)
)
h2 ≤

(
2Ll + 3|U |

T∨
t0

l̇(·)
)
h2,

where the last estimation is based on Proposition 2.3.
Further, we denote for brevity

Lf = L0 + |U |LF , Mf = M0 + |U |MF , M ′f = M ′0 + |U |M ′F .

A standard application of the Gronwall inequality gives the following estimation.
LEMMA 2.6. Let û(·) ∈ U be arbitrary and let x̂(·) be the corresponding solution of

(7). Define uN (·) as in (11), (12), and let xN (·) be the trajectory of (7) corresponding
to uN (·). Then

‖x̂(·)− xN (·)‖ ≤ eLf (T−t0)(T − t0)LF (1 +MF )|U |h.
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The proof of the following lemma goes along the line of the direct proof of the
maximum principle for the problem (9) and therefore is omitted.

LEMMA 2.7. Let û(·) ∈ U be an arbitrary optimal control of (9) and let u(·) ∈ U
be another admissible control. Let x̂(·), ĝ and x(·), g be the corresponding trajectories
and values of the objective function. Denote by ψ̂(·) the solution of the adjoined system

˙̂
ψ = − ∂f∗

∂x
(t, x̂(t), û(t))ψ̂, ψ̂(T ) = −∂g

∂x
(x̂(T )),(13)

where f(t, x, u) = f0(t, x) + F (t, x)u and ∗ denotes transposition. Then

0 ≤ g − ĝ ≤
∫ T

t0

〈ψ̂(t), F (t, x̂(t))(û(t)− u(t))〉 dt

+
∫ T

t0

〈
ψ̂(t),

r∑
k=1

(ûk(t)− uk(t))
∂fk
∂x

(t, x̂(t))(x(t)− x̂(t))

〉
dt

+ L′g|x̂(T )− x(T )|2 + (L′0 + L′F |U |)‖ψ̂‖C‖x̂− x‖2L,

where ui is the ith component of u and the constants in the above expression are
defined in Remark 1.

LEMMA 2.8. Let û(·), x̂(·), and ψ̂(·) be as in Lemma 2.7. Then the function

l(t) = F ∗(t, x̂(t))ψ̂(t)(14)

satisfies conditions (i) and (ii) above. Moreover, both the Lipschitz constant of l(·)
and the variation of l̇(·) can be estimated by CLg, where C depends only on L, M ,
|U |, and T − t0.

Proof. A straightforward estimation of the Lipschitz constant Ll of l(·) gives

Ll ≤ LF (1 +Mf )Mψ +MFLψ,

where Mψ and Lψ are the maximum of the norm and the Lipschitz constant of ψ(·),
respectively. Moreover, having in mind (13), we can estimate

Mψ ≤ eM
′
f (T−t0)Lg, Lψ ≤ eM

′
f (T−t0)M ′fLg = C ′Lg,(15)

where C ′ depends on the constants listed in the formulation of the lemma.
Let us estimate the variation of l̇(·). Direct calculation shows that the derivative

of the ith component of l(·) is

l̇i =

〈
ψ̂,
∂fi
∂t

+ [fi, f0] +
r∑
j=1

ûj [fi, fj ]

〉
,

where all the arguments in the above expression are either t or (where appropriate)
(t, x̂(t)). The last term, however, is zero, according to Assumption 3. Therefore, l̇(·)
turns out to be even Lipschitz continuous, and its Lipschitz constant can be explicitly
estimated by C ′′Lg, where C ′′ depends only on the constants listed in the formulation
of the lemma. The same applies, therefore, to the variation of l̇(·).

Now we are ready to proceed with the proof of the theorem.
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Proof of Theorem 2.2. All numbers c1, c2, . . . appearing in the subsequent proof
depend only on the constants listed in Theorem 2.2.

Let û(·) ∈ U be an arbitrary optimal control, x̂(·) be the corresponding trajectory
of (7) and ψ̂(·) be the corresponding solution of the adjoined equation (13).

Define the control function uN (·) ∈ UN as

uN (t) =
1
h

∫ ti+1

ti

û(s) ds for t ∈ [ti, ti+1), i = 0, . . . , N − 1,

and let xN (·) be the corresponding trajectory of (7). According to Lemma 2.7

0 ≤ ĝN − ĝ ≤ g(xN (T ))− g(x̂(T )) ≤
∫ T

t0

〈l(t), û(t)− uN (t)〉 dt(16)

+
r∑

k=1

∫ T

t0

〈Bk(t), xN (t)− x̂(t)〉(ûk(t)− ukN (t)) dt+ e‖x̂− xN‖2C ,

where l(t) is defined by (14),

Bk(t) =
∂f∗k
∂x

(x̂(t), t)ψ̂(t),

and e = L′g + L′fMψ ≤ L′g + c1Lg (see (15)).
Denote ∆(t) = xN (t) − x̂(t). According to Lemma 2.6, |∆(t)| ≤ c2h. Since û(·)

is an optimal control to problem (9), (7), (3) and, therefore, satisfies the maximum
principle, we have that

〈l(t), û(t)〉 = max
u∈U
〈l(t), u〉 = l̂(t).

Applying Lemmas 2.5 and 2.8, we obtain the inequality

0 ≤ ĝN − ĝ ≤
r∑

k=1

∫ T

t0

〈Bk(t), xN (t)− x̂(t)〉(ûk(t)− ukN (t)) dt+
c3Lg + c4L

′
g

N2 .

The first term in the right-hand side can be represented as

δ =
1
h

r∑
k=1

N−1∑
i=0

∫ ti+1

ti

∫ ti+1

ti

〈Bk(t),∆(t)〉(ûk(t)− ûk(s)) ds dt.

Because of the Lipschitz continuity of Bk(·) (see (15)) and the estimation of ∆(·) in
Lemma 2.6 we have

δ ≤ 1
h

r∑
k=1

N−1∑
i=0

∫ ti+1

ti

∫ ti+1

ti

〈Bk(ti),∆(t)〉(ûk(t)− ûk(s)) ds dt+ (c5Lg + c6L
′
g)/N

2.

Using the fact that the double integral of ûk(t)− ûk(s) equals zero, we obtain

δ ≤ 1
h

r∑
k=1

N−1∑
i=0

∫ ti+1

ti

∫ ti+1

ti

〈Bk(ti),∆(t)−∆(ti)〉(ûk(t)−ûk(s)) ds dt+(c5Lg+c6L′g)/N
2.
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Thanks to Lemma 2.6, we have for t ∈ [ti, ti+1]

∆(t)−∆(ti) =
∫ t

ti

∆̇(τ) dτ =
∫ t

ti

(f0(xN (τ), τ)− f0(x̂(τ), τ)) dτ

+
∫ t

ti

r∑
j=1

(fj(xN (τ), τ)ujN (τ)− fj(x̂(τ), τ)ûj(τ)) dτ

=
∫ t

ti

r∑
j=1

f̂j(ti)(u
j
N (τ)− ûj(τ)) dτ +O(h2),

where f̂j(t) = fj(x̂(t), t) (further, we use similar notation for the derivative) and
O(h2) ≤ c7/N2. Hence,

δ ≤ 1
h

r∑
k=1

N−1∑
i=0

r∑
j=1

∫ ti+1

ti

∫ ti+1

ti

∫ t

ti

〈
ψ̂(ti),

∂f̂k
∂x

f̂j(ti)

〉

× (ujN (τ)− ûj(τ))(ûk(t)− ûk(s)) dτ ds dt+ (c7Lg + c8L
′
g)/N

2

=
1
h2

N−1∑
i=0

r∑
j=1

r∑
k=1

〈
ψ̂(ti),

∂f̂k
∂x

f̂j(ti)

〉∫ ti+1

ti

∫ ti+1

ti

∫ ti+1

ti

∫ t

ti

× (ûj(θ)− ûj(τ))(ûk(t)− ûk(s)) dτ dθ ds dt+ (c8Lg + c9L
′
g)/N

2.

Using Assumption 3 one can rewrite the above sums as

1
h2

N−1∑
i=0

r∑
k=1

〈
ψ̂(ti),

∂f̂k
∂x

f̂k(ti)

〉∫ ti+1

ti

∫ ti+1

ti

∫ ti+1

ti

∫ t

ti

(ûk(θ)−ûk(τ))(ûk(t)−ûk(s)) dτ dθ ds dt

+
1
h2

N−1∑
i=0

∑
1≤j<k≤r

〈
ψ̂(ti),

∂f̂k
∂x

f̂j(ti)

〉∫ ti+1

ti

∫ ti+1

ti

∫ ti+1

ti

∫ t

ti

[(ûj(θ)−ûj(τ))(ûk(t)−ûk(s))

+ (ûk(θ)− ûk(τ))(ûj(t)− ûj(s))] dτ dθ ds dt.

It can be shown that each of the above fourtuple integrals equals zero, which completes
the proof of the theorem.

3. Discretization of optimal control problems. Theorem 2.2 provides a ba-
sis for obtaining discrete approximations of second-order accuracy (with respect to
the length of the discretization step) to optimal control problems. The underlying
idea is that thanks to Theorem 2.2 one can first restrict the consideration to control
functions that are constant between each of two neighboring grid points ti, ti+1, sac-
rificing only the O(h2) value of the objective function. For any fixed control function
from this class, one can then discretize the corresponding differential equation (7)
by means of any single-step discretization scheme that provides at least O(h3) local
accuracy. According to our smoothness assumptions and the fact that the control is
constant in any particular subinterval [ti, ti+1), such schemes exist. In this way one
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can obtain a variety of discrete-time problems, each of which provides an approxima-
tion of second-order accuracy (in the sense described in the next lines) to the original
problem. To illustrate the approach we take a second-order symmetric Runge–Kutta
scheme (known as Euler–Cauchy method).

The approach is directly applicable to terminal-type optimal control problems,
but the well-known trick used below allows us to consider the following more general
problem (where the criterion is nonlinear in u):

g(x(T )) +
∫ T

t0

[e0(t, x(t)) + 〈e(t, x(t)), ϕ(u(t))〉] dt −→ min,(17)

ẋ = f0(t, x) + F (t, x)u, x(t0) ∈ X0,(18)

u(t) ∈ U(19)

on the fixed time-interval [t0, T ]. Here e0(t, x), e(t, x) = (e1(t, x), . . . , ep(t, x)), and
ϕ(u) = (ϕ1(u), . . . , ϕp(u)) are given functions. Let Ĵ be the optimal value of the ob-
jective function. Given the natural number N we find below an N -stage discrete-time
optimal control problem PN such that for any optimal control uN = (u0

N , . . . , u
N−1
N )

of PN , if uN (·) ∈ U is defined as uN (t) = ukN for t ∈ [tk, tk+1), then the corresponding
performance value J(uN (·)) of (17), (18) satisfies

J(uN (·)) ≤ Ĵ + const/N2.

Thus, the meaning of accuracy that we employ does not imply any relation be-
tween the optimal controls or trajectories of the two problems; rather, it ensures that
the control function for the continuous-time problem that we construct by solving the
discrete-time one is O(1/N2)-optimal. We refer to Dontchev [6, 7], Mordukhovich
[17], and the papers quoted in [6, 7] for results concerning (first-order) approximation
of the optimal control function via discretization of problem (17), (18), (19).

A number of papers explicitly or implicitly prove accuracy O(1/N) of approxi-
mation if the discrete-time problem is obtained by formal application of the Euler or
other discretization schemes to the differential equation and the integral involved in
(17), (18) (see [6, 7] for a comprehensive bibliography). The known results for higher
order accuracy (cf. [12, 18]), however, are based on certain regularity requirements
for the optimal controls of (17), (18), (19), which are by no means implied by our
suppositions below. On the contrary, it might happen that all optimal controls are of
unbounded variation, nonintegrable in Riemann sense, or even discontinuous almost
everywhere (cf. [19]). Nevertheless, we prove second-order accuracy, even with a con-
stant (multiplying h2 in the estimation) that is not “sensitive” with respect to the
data, supposing, however, that a certain additional structural condition (correspond-
ing to Assumption 3) is satisfied.

The next result extends the one obtained for linear systems in [22] (accuracy
O(h2)) and the one from [21], where accuracy O(1/N1.5) is proven under similar
suppositions.

Define the following discrete-time optimal control problem.
Minimize

g(xN ) +
h

2

N−1∑
k=0

[e0(tk, xk) + e0(tk+1, xk+1) + 〈e(tk, xk) + e(tk+1, xk+1), ϕ(uk)〉](20)
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subject to

xk+1 = xk + 0.5h[f(tk, xk, uk) + f(tk+1, xk + hf(tk, xk, uk), uk)],(21)

uk ∈ U, k = 0, . . . , N − 1,(22)

where, as in the previous section, f(t, x, u) = f(t, x) + F (t, x)u.
THEOREM 3.1. Let Assumptions 1–4 from section 2 be fulfilled (for G = {g}). Let,

in addition, the functions ϕj be convex and continuous, the functions ej satisfy the
same differentiability conditions as fi, and ej(x, t) ≥ 0 for every (t, x), j = 1, . . . , p.
Let, moreover, 〈∂ej∂x , fi〉(t, x) = 0 for i = 1, . . . , r, j = 1, . . . , p, and (t, x) ∈ [t0, T ] ×
Rn. Then there are constants C1 and C2 such that for every natural number N and
for every ε-optimal control (u0, u1, . . . , uN−1) of problem (20)–(22) with corresponding
performance value JN

(1)

|Ĵ − JN | ≤ C1/N
2 + ε;(23)

(2) the control function uN (·) defined as uN (t) = uk for t ∈ [tk, tk+1), k =
0, . . . , N −1, when applied to (17), (18) gives value J(uN (·)) of the objective function,
that satisfies

J(uN (·)) ≤ Ĵ + C2/N
2 + ε.

(“ε-optimal” in the above formulation means that JN ≤ ĴN + ε, where ĴN is the
optimal value in the problem (20)–(22).)

Remark 2. The constants C1 and C2 in the above theorem do not depend on the
particular data. Rather, they depend on certain constants associated with the data,
as in Theorem 2.2 (with e0(·) and e(·) treated similarly as f0(·) and F (·)). In this
sense C1 and C2 are not sensitive with respect to the data, nor to the properties of
the optimal control.

Proof. One can reformulate problem (17), (18), (19) as follows:

g(x(T )) + x0(T ) −→ min,(24)

ẋ0 = e0(t, x) + 〈e(t, x), v〉, x0(t0) = 0,(25)

ẋ = f0(t, x) +
p∑
i=1

fi(t, x)ui, x(t0) = x0,(26)

(u(t), v(t)) ∈W,(27)

where

W = {(u, v) ; u ∈ U, ϕj(u) ≤ vj ≤ M̄, j = 1, . . . , p}

is apparently convex and compact and the constant M̄ is chosen so that

M̄ ≥ max{ϕj(u) ; u ∈ U, j = 1, . . . , p}.
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Thanks to the nonnegativity of ei(·) it is easy to verify that the optimal values of
problems (17), (18), (19) and (24)–(27) coincide. Moreover, if û(·) is an optimal
control of the former problem, then (û(·), ϕ(û(·)) is an optimal control to the latter.
The same applies also to the pair consisting of the discrete-time problem (20), (21),
(22) and the following one:

g(xN ) + x0
N −→ min,(28)

x0
k+1 = 0.5h

N−1∑
k=0

[e0(tk, xk) + e0(tk+1, xk+1) + 〈e(tk, xk) + e(tk+1, xk+1), vk〉],(29)

xk+1 = xk + 0.5h[f(tk, xk, uk) + f(tk+1, xk + hf(tk, xk, uk), uk)],(30)

(uk, vk) ∈W, k = 0, . . . , N − 1.(31)

Let û(·) be an optimal control of (17), (18), (19). Since (û(·), v̂(·)) = ϕ(û(·)) is
an optimal control of (24)–(27), we can apply Theorem 2.2. Notice that the condition
〈∂ej∂x , fi〉 = 0 implies that Assumption 3 of Theorem 2.1 is fulfilled for the extended
system (29), (30). Hence,

J(ûN (·), v̂N (·)) ≤ Ĵ +
C

N2 ,(32)

where J(u, v) is the performance value of (24)–(27) corresponding to the control func-
tion (u, v), and ûN , v̂N is the piecewise constant control with jumps only at the grid
points t1, . . . , tN−1, obtained by local averaging of (u, v), as in (11), (12). Discretiz-
ing equations (25), (26) by using the chosen Runge–Kutta scheme (and the fact that
the control is constant in each subinterval [ti, ti+1)) and thanks to the equivalence of
problems (20), (21), (22) and (28)–(31), we obtain the estimation

ĴN ≤ Ĵ +
C1

N2 .(33)

Now let (ũ0, . . . , ũN−1) be an ε-optimal control in problem (20)–(22). Then
((ũ0), . . . , ũN−1, ṽ0 =ϕ(ũ0), . . . , ṽN−1 =ϕ(ũN−1)) is an ε-optimal control to problem
(28)–(31). Therefore, the continuous-time control

ũ(t) = ũk, ṽ(t) = ṽk, t ∈ [tk, tk+1)

gives the value

J(ũ, ṽ) ≤ ĴN + ε+
C2

N2 ;

therefore,

J(ũ) ≤ ĴN + ε+
C2

N2 .

This, together with (33), gives on one hand

Ĵ ≤ ĴN + ε+
C2

N2 ,
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and on the other hand

J(ũ) ≤ Ĵ + ε+
C1 + C2

N2 .

The constants C1 and C2 result from the constants in Theorem 2.2 and from
the constant in the local O(h3)-error of the Runge–Kutta scheme, which can also be
estimated by the quantities mentioned in Remark 2.

Finally we mention that, as it is shown in [22], formal application of higher order
Runge–Kutta schemes (even to time-invariant linear optimal control problems) does
not provide better than O(h2) estimation in (23), excepting some “special” cases.

4. Approximation of the reachable set. The issue of approximation of the
reachable set of a control system (or differential inclusion) is treated in many pa-
pers, but wherever discretization schemes are employed, typically at most first-order
estimation of the error is obtained (cf. [8, 14, 11, 9, 1]). The paper [22] develops a
second-order approximation scheme applicable to linear control systems. Below, we
extend this result, as an application of Theorem 2.1.

For two compact sets P, Q ⊂ Rn the Hausdorff semidistance from P to Q is
defined as

H+(P,Q) = inf{α ≥ 0 ; P ⊂ Q+ αB}

(B is the unit ball in Rn), and the Hausdorff distance is

H(P,Q) = max{H+(P,Q), H+(Q,P )}.

If the set Q is convex, then one can represent

H+(P,Q) = sup
|l|=1
{0, inf

x∈Q
〈l, x〉 − inf

x∈P
〈l, x〉}.(34)

The above relation will be applied in the cases P = R(T ) (the reachable set of (7) in
the set U of admissible controls) and Q = RN (T ) (the reachable set of (7) in the set
UN of admissible controls). If RN (T ) happens to be convex, then in view of (34), one
can choose the collection of performance indexes

G = {g(·) = 〈l, ·〉 ; |l| = 1},

which obviously fulfills Assumption 4 with Lg = 1 and L′g = 0. Supposing that
Assumptions 1–3 are also fulfilled, one can apply Theorem 2.1 to get the estimation

H(RN (T ), R(T )) ≤ C

N2 ,

where C is as in Theorem 2.2. Then a similar argument as in section 3 leads to
a set-valued version of any single-step discretization scheme for ordinary differential
equations. The approach is illustrated by the next theorem, which corresponds to
the Runge–Kutta scheme used in section 3. The same scheme, but interpreted in a
different way in the set-valued case, is employed by Lempio [16].

THEOREM 4.1. Let Assumptions 1–3 from section 2 be fulfilled. Given N , define
the sequence of sets XN

k by

XN
k+1 =

⋃
x∈XNk

{x+ 0.5hf̃h(k, x, U)}, XN
0 = {x0}, k = 0, . . . , N − 1,(35)
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where

f̃h(k, x, u) = f(tk, x, u) + f(tk+1, x+ hf(tk, x, u), u).

Then there exists a constant C (as in Theorem 2.2) such that for any N for which
XN
N is convex

H(XN
N , R(T )) ≤ C

N2 .

In the case of a linear system (7), the set-valued dynamical system (35) has the
form

XN
k+1 = AkX

N
k +BkU

(cf. [22], where Ak and Bk are given explicitly), and XN
N is apparently convex. Com-

puter implementations of (35) are described in [13, 3].
If the convexity assumption for RN (T ) is not satisfied (or cannot be verified),

then nonlinear functions g(·) should be involved in a dual representation like (34).
However, Theorem 2.1 imposes restrictions on the set of “test” functions G, namely,
uniform boundedness of the Lipschitz constant of the derivative. This restriction
results in specific geometric requirements for the set Q = RN (T ), necessary to ensure
that the separation argument (needed in the proof of the nonconvex/nonlinear version
of (34)) still works. Here we skip this analysis, quoting only a result from [21] that is
independent of the geometry of RN (T ), but the order of the estimation is worse.

THEOREM 4.2. Let Assumptions 1–3 be fulfilled. Then there exists a constant C
(as in Theorem 2.2) such that for any N ,

H(XN
N , R(T )) ≤ C

N1.5 ,

where XN
N is the end state of the set-valued dynamic system (35).

5. Time-step aggregation of discrete-time control systems. In this sec-
tion we apply Theorem 2.1 to the following problem with obvious practical motivation.
Consider a discrete-time control system

xi+1 = F(i, xi, ui), i = 0, . . . , N − 1, x0 given,(36)

where xi ∈ Rn, ui ∈ U ⊂ Rr. Generally speaking, we shall discuss the issue of ap-
proximation of (36) by another discrete-time system with significantly smaller number
of steps, eventually sacrificing performance value. A natural way to do this is to keep
the input vector ui constant on M successive steps, changing its value only at the
“moments” i = kM . Presumably N = KM , so that from a control point of view,
system (36) becomes a K-step system (and can be explicitly approximately rewritten
as such, as shown at the end of the section). However, the main point will be the
analysis of the loss of performance, resulting from the aggregation of the input values.

The function F is supposed to be in the form

F(i, x, u) = x+ h(p0(i, x) + P (i, x)u),(37)

where p0(i, ·) : Rn 7→ Rn, P (i, ·) = [p1(i, ·), . . . , pr(i, ·)] : Rn 7→ Rn×r. The increment
factor h is supposed to be “small,” while the number of steps N is “large,” so that
T = hN is a “finite” number.
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The time-aggregated system has the form

yk+1 = FM (k, yk, vk), k = 0, . . . ,K − 1, y0 = x0,(38)

where

FM (k, y, v) = F((k + 1)M − 1, ·, v) ◦ · · · ◦ F(kM, ·, v)(y)(39)

is the M -times iterated value of y with fixed v.
For any sequence u0, . . . , uN−1, ui ∈ U , the corresponding (according to (36))

sequence x0, . . . , xN is called a trajectory of (36). Similarly, for any sequence v0, . . . ,
vK−1, vi ∈ U , the corresponding (according to (38)) sequence y0, . . . , yK is a trajectory
of (38). In order to compare the two sets of trajectories (denoted further by XN and
YK , respectively), we define the following criterion, as in section 1. Let G = {g(·)}
be a prescribed collection of functions g : Rn 7→ R, which are Lipschitz continuous
together with their first derivatives, with a common Lipschitz constant Lg. The value

δ(N,K) = sup
g∈G
{ inf

(y0,...,yK)∈YK
g(yK)− inf

(x0,...,xN )∈XN
g(xN )}

will be considered as a measure of the loss of performance when passing from (36) to
(38). In particular, if G consists of a single function g, then δ(N,K) is the difference
between the optimal values of the problems min g(yK) and min g(xN ) subject to (38)
and (36), respectively. If G consists of all linear functionals with unit norm and the
reachable sets of (36) and (38) are convex, then δ(N,K) is just the Hausdorff distance
between the reachable sets.

Under the assumptions listed below, one can obtain in a standard way that for
each M > 1

δ(N,K) ≤ const
1
K
.(40)

Below we obtain the estimation

δ(N,K) ≤ C
(

1
N

+
1
K2

)
,(41)

which is essentially better than (40). In particular, for the reasonable choice K =
M =

√
N we obtain estimation Ch, while (40) gives C

√
h. Moreover, the proof

allows us to explicitly obtain aggregated systems of the type shown in (38) (without
iterating the operator F as in (39)), for which (41) is satisfied.

We suppose the following.
Assumption 1′. There is a constant R such that

|pj(i, x)| ≤ R(1 + |x|)(42)

for every x ∈ Rn, j = 0, . . . , r, i = 0, . . . , N − 1.
Denote by S the unit ball in Rn centered at the origin and with the following

radius: (1 + |x0|) exp(3R(1 + r|U |)).
Assumption 2′. The components of p0(i, ·) and P (i, ·) and all their first derivatives

are Lipschitz continuous (with a constant LF ) in the set S. Moreover, there are
constants d0 and d1 such that

|pj(i+ 1, x)− pj(i, x)| ≤ hd0, i = 0, . . . , N − 1,(43)
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|pj(i+ 1, x)− 2pj(i, x) + pj(i− 1, x)| ≤ 2h2d1, i = 1, . . . , N − 1,(44)

for any x ∈ S and j = 0, . . . , r.
Assumption 3′.

[pα(i, ·), pβ(j, ·)](x) = 0

for every x ∈ S, α, β = 1, . . . , r and for those i, j ∈ {0, . . . N−1} for which |i− j| ≤ 4.
The growth condition (42) replaces the more general boundedness condition in

Assumption 1 just for technical convenience. Obviously, Assumption 3′ is automati-
cally fulfilled if P is independent of x or if r = dimu = 1. Conditions (43) and (44)
are the discrete analogs of the differentiability conditions with respect to t in
Assumption 2.

THEOREM 5.1. Let the right-hand side of (36) have the form of (37). Then there
exists a constant C depending only on R, Lg, LF , M , d0, d1, |U |, and T , such that
(41) is satisfied for any N , M (for which K = N/M is natural), for any functions p0
and P for which Assumptions 1′–3′ are fulfilled, and for any h ≤ T/N .

In the proof we use the following spline interpolation lemma, which can be verified
by direct inspection.

LEMMA 5.2. Let ξ0, . . . , ξN ∈ Rn be given, ti = ih, h = T/N . Denote

∆1(i) =
ξi+1 − ξi−1

2h
,

∆2(i) =
ξi+1 − 2ξi + ξi−1

2h2 , i = 1, . . . , N − 1

(by definition, ∆2(0) = ∆2(N) = 0, ∆1(0) = (ξ1 − ξ0)/h, ∆1(N) = (ξN − ξN−1)/h).
Assume that |∆1(i)| ≤ d0, |∆2(i)| ≤ d1. Then the function

ξ(t) =

{
ξi + (t− ti)∆1(i) + (t−ti)2

2 (3∆2(i)−∆2(i+ 1)) for t ∈ [ti, ti + h
2 ],

ξi+1 + (t− ti+1)∆1(i+ 1) + (t−ti+1)2

2 (3∆2(i+ 1)−∆2(i)), t ∈ (ti + h
2 , ti+1)

has the following properties:
(1) ξ(ti) = ξi, i = 0, . . . , N ;
(2) ξ(·) is Lipschitz continuous with constant d0 + 2hd1;
(3) ξ̇(·) is Lipschitz continuous with constant 4d1;
(4) t0, . . . , tN being fixed, for t ∈ [ti, ti+1) the value ξ(t) depends only on ξi−1, ξi,

ξi+1, ξi+2; the dependence is linear, with coefficients that depend only on ∆0(i) and
∆1(i);

(5) |ξ(t)| ≤ 2.5 max{|ξ0|, . . . , |ξN |}.
Proof of Theorem 5.1. For each j = 0, . . . , r we apply Lemma 5.2 for ξi = pj(i, x),

where x is considered as a parameter. The suppositions of the lemma are satisfied
according to (43) and (44) with the same d0 and d1. Denote by fj(·, x) the resulting
interpolation spline ξ(·). Thanks to property (4) of ξ(·) in Lemma 5.2 the function
fj(t, ·) is differentiable with a Lipschitz continuous derivative whose Lipschitz constant
can be estimated by d0 and d1. The same applies to fj(·, x) for any x ∈ S, because
of properties (2) and (3) of ξ(·). Thus, Assumption 2 from section 2 is fulfilled for f0
and F = (f1, . . . , fr). Assumption 3 is also satisfied because of Assumption 3′ and
the property (4) of ξ(·).
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Now consider the control system

ẋ = f0(t, x) + F (t, x)u, x(0) = x0, u ∈ U.(45)

According to property (5) in Lemma 5.2, each fj(t, ·) satisfies the growth condition
(42) with constant 3R instead of R. Therefore, Assumption 1 from section 2 is also
fulfilled with S defined above in the present section.

Because of property (1) in Lemma 5.2, system (36), (37) can be viewed as an
Euler discretization of (45) with step length h.

From [8] we obtain the following estimation of the Hausdorff distance between
the reachable set R(T ) of (45) on [0, T ] and the reachable set RN of (36):

H(RN , R(T )) ≤ C1

N
,(46)

where C1 depends only on the constants listed in the formulation of the theorem (see
also the first paragraph of the proof). Because of the equi-Lipschitz continuity of the
functions g ∈ G we obtain

sup
g∈G
| inf
xN∈RN

g(xN )− inf
x(T )∈R(T )

g(x(T ))| ≤ C1Lg
N

.(47)

On the other hand, since Assumptions 1–4 are fulfilled by system (45), we can
apply Theorem 2.1 for K (instead of N) subintervals of constant control. If RK(T ) is
the corresponding reachable set of (45) in the set UK of admissible controls, we obtain
the estimation

sup
g∈G
| inf
xK(T )∈RK(T )

g(xK(T ))− inf
x(T )∈R(T )

g(x(T ))| ≤ C2

K2 .(48)

For any u(·) ∈ UK one can discretize (45) by the Euler scheme with step h and
come back to the discrete system (36), but with ukM = ukM+1 = · · · = u(k+1)M−1.
The accuracy with respect to the performance G is as in (46), which together with
(47), (48) completes the proof.

If instead of the Euler discretization scheme we apply in the last step of the proof
the Euler–Cauchy scheme (or some other Runge–Kutta one) with step τ = T/K =
Mh, we obtain

xk+1 = xk + 0.5τ(f(tk, xk, uk) + f(tk+1, xk + τf(tk, xk, uk), uk)), k = 0, . . . ,K − 1,

where f = f0 +Fu, tk = kτ , and uk is the value of u(·) in (tk, tk+1). It is well known
that

|x(T )− xN | ≤ C3/K
2.

Hence, denoting for k = 0, . . . ,K − 1

FM (k, y, v) = y + 0.5τ(F(kM, y, v) + F((k + 1)M,y + τF(k, y, v), v)),(49)

we obtain for the reachable set R̃K of the corresponding system (38) the estimation

H(R̃K , RK(T )) ≤ C3

K2 .

Combining this with (47) and (48) we get

sup
g∈G
| inf
yK∈R̃K

g(yK)− inf
xN∈RN

g(xN )| ≤ C1LG
N

+
C2 + C3LG

K2 = C

(
1
N

+
1
K2

)
.
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The right-hand side of the K-stage system (38) is here defined by (49) instead of (39),
but the estimation (41) still holds. In fact, (49) is an approximation of (39), which
avoids the iteration in (39).
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Abstract. Controlled coupled slow and fast motions are examined in a singular perturbations
setting. The objective is to minimize a cost functional that takes into account both the fast motion,
supposing, say, tracking a fast target, and the slow dynamics. A method is offered to cope with the
possibility that the fast flow has nonstationary limits. Invariant measures of the fast motion are then
the controlled objects on the infinitesimal scale. Optimal amalgamation of them on the slow scale
induces the variational limit, whose solutions are near optimal solutions of the perturbed system.

Key words. singular perturbations, chattering systems, tracking, invariant measures

AMS subject classifications. 49J15, 93C15, 49N10

PII. S036301299528458X

1. Introduction. This paper examines systems where a control policy u(t) de-
termines simultaneously two moving states. One—say, x(t)—moves at an ordinary
pace, while the second—say, y(t)—progresses much faster. An example that motivates
our analysis is the case where y(t) is supposed to track a prescribed target Γ(t), which
also progresses very fast and whose characteristics may depend on the slow moving
state. The controller’s goal is to minimize a cost functional that takes into account
both the success in tracking and the performance of the relatively slow motion. As it
is assumed that both y(t) and Γ(t) evolve considerably faster than x(t), their motion
could be modeled as a singular perturbation relative to the slow time scale.

Indeed, we address a singularly perturbed model, where the small parameter ε
reflects the speed ratio of the slow and fast movements. As customary, we look for a
control rule associated with the limit optimization problem as ε→ 0, and hope that it
will generate a near optimal policy for ε > 0 small. To this end, it is useful to identify a
nominal control problem associated with the limit case. This nominal problem should
be such that the case ε > 0 small can be regarded as a small perturbation.

In many control and optimal control of singular perturbations problems, the
reduced-order system (where ε is actually set to be equal to 0) serves as an appro-
priate nominal problem. For a partial list of successful applications of this approach,
consult Kokotovic, Khalil, and O’Reilly [13]; Kokotovic and Sannuti [15]; Chow and
Kokotovic [8]; Kokotovic, O’Malley, and Sannuti [14]; Saksena, O’Reilly, and Koko-
tovic [20]; and Kokotovic [11]. The reduced-order approach, however, may not be
adequate for the analysis of the fast tracking. Indeed, the technique assumes that the
fast dynamics converges on the fast scale to an equilibrium (that may vary on the
slow scale). Such a consideration may not apply to optimal tracking of a fast moving
target, which may exhibit nontrivial dynamics even relative to the fast time scale.

The present paper offers a nominal limit problem which is able to analyze dynamic
limits. It is based on ideas rooted in earlier works of the authors; see [1], [3], [9],
[10], and references therein and also Vigodner [21], where the case of slowly varying
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controls is considered. The essence of our approach is that the controller solves on
an infinitesimal scale dynamic control problems associated with the fast motion, and
integrates their solutions on the slow scale. The integrated control policy is, under
appropriate conditions, a near optimal policy for the original singular perturbations
problem. In this paper we do not investigate thoroughly mathematical aspects such
as finding general conditions under which the procedure works. Rather, we do not
hesitate to assume that the solution to the limit problem exists, and we prove that
it is near optimal. In the closing section of the paper we display a broad class of
tracking problems for which the solution can be exhibited.

The paper is organized as follows. Sections 2 to 9 are devoted to the general
theory, while in the last two sections of the paper we address applications. The model
is set in section 2. Some preliminaries on invariant measures are given in section
3. The notion of near optimal solutions is defined in section 4. Sections 5 and 6
introduce and analyze control policies operating on the infinitesimal and global time
scales, respectively. These are related to the limit problem as ε→ 0, and the stability
of them with respect to the singular perturbations is checked in section 7. In sections
8 and 9 we formulate the limit problem and verify when solutions of it are indeed near
optimal solutions.

2. Setting the model. In what follows, x, which represents the slow state, is
an element in Rn, the n-dimensional Euclidean space. The fast state y is in Rm. The
admissible controls are Borel-measurable functions into a prescribed constraint set
U ⊂ Rk. The time variable is t. We use interchangeably the notations dx

dt and ẋ to
denote derivation with respect to time.

The cost function is generated by a function

(2.1) c(x, y, u) : Rn ×Rm × U → R.

The underlying problem is then as follows. (SP stands for singular perturbations.)
SP Problem 2.1.

(2.2) minimize
∫ 1

0
c(x(t), y(t), u(t))dt

subject to

(2.3)

dx

dt
= f(x, y, u),

ε
dy

dt
= g(x, y, u)

with initial conditions

(2.4) x(0) = x, y(0) = y

and where the minimization is over all admissible controls u(t) : [0, 1] → U . The
infimal value, as well as the optimal policies, may depend on ε. By

(2.5) val(ε)

we denote the infimal value of the problem for ε > 0 fixed.
Remark 2.2. This is an important remark. We did not include explicit dependence

of the equations on the slow time t. This was done only for the sake of clarity. The
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state x could include the time t, with an additional equation added, namely, ṫ = 1, to
the slow part of the equation. The time t could also be a variable in the cost c, given
in (2.1) and (2.2).

We collect here some technical assumptions of the model that are assumed through-
out the paper.

Assumption 2.3. The functions c(x, y, u), f(x, y, u), and g(x, y, u) are continuous
on their respective domains.

Assumption 2.4. For every x fixed and an admissible control u(t) : [0,∞)→ U , if
there exists a solution to the equation ẏ = g(x, y, u(t)), y(0) = y0, then it is unique.

The standing assumptions are not strong. This is possible as in later developments
the existence of solutions with prescribed properties is assumed or checked directly
rather than derived from the underlying assumptions (see the introduction). Note,
however, that we assume that the functions f , g, and c are defined globally. This can
be clearly relaxed by introducing partial domains. We leave out the details.

3. Invariant measures. For the convenience of the reader, we briefly recall
here the notion of invariant measure. It plays a major role in our definition of a near
optimal control. For background information consult Nemytskii and Stepanov [18,
Chapter VI.9] or [3].

A probability measure—say, µ—on a closed subset S of Rd is a countably additive
map defined on the Borel subset of S, with values in [0,1] and µ(S) = 1. Let σ̇ = L(σ)
be a differential equation on Rd. Suppose that for each σ0 ∈ S there exists a unique
solution ϕ(t, σ0) satisfying ϕ(0, σ0) = σ0 of the differential equation and ϕ(t, σ0) ∈ S
for t ≥ 0. A probability measure µ on S is invariant with respect to σ̇ = L(σ) if

(3.1) µ(C) = µ(ϕ(t, C))

for all C ⊂ S closed and all t ≥ 0 (here ϕ(t, C) = {ϕ(t, c) : c ∈ C}).
The support of a measure µ, denoted supp µ, is the smallest closed set C such

that µ(C) = 1. It is easy to see that if σ0 ∈ supp µ, then ϕ(t, σ0) ∈ supp µ for all t;
hence (3.1) holds actually for all t ∈ R.

If S is compact, then an invariant measure of σ̇ = L(σ) exists. If there exists a
unique invariant probability measure µ, then any solution σ(t) which is bounded for
t ≥ 0 converges in distribution to µ in the following sense. If νT is the measure on S
given by

(3.2) νT (C) =
1
T
λ{t : 0 ≤ t ≤ T, σ(t) ∈ C},

where λ is the Lebesgue measure, then νT converge weakly to µ (see the following
paragraph). This means in particular that the asymptotic statistics of the values of
σ(·) is governed by the unique invariant measure, namely,

(3.3)
1
T

∫ T

0
h(σ(τ))dτ →

∫
Rd
h(z)µ(dz)

for all h : Rd → R bounded and continuous.
The previous claim follows directly from the definition of weak convergence. The

sequence µk of probability measures on Rd converges weakly to µ0 if

(3.4)
∫
Rd
h(z)µk(dz)→

∫
Rd
h(z)µ0(dz)

for every bounded and continuous function h : Rd → R. See, e.g., [5].
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4. Near optimal solutions. The notion of near optimality is formally intro-
duced in this section. In essence it does not differ from the standard considerations of
singularly perturbed problems—say, for the reduced order form (see, e.g., Chow and
Kokotovic [8]). The novelty in the dynamic limit form is that we allow feedback of a
clock variable as follows.

DEFINITION 4.1. Let S ⊂ R` be bounded. A differential equation σ̇ = L(σ)
defined for σ ∈ S is called a clock if for every σ0 ∈ S there exists a unique solution
σ(t) satisfying σ(0) = σ0 and σ(t) ∈ S for t ≥ 0. A clock is called a proper clock if
the equation has a unique invariant measure and every solution σ(t) converges to it
in distribution (see previous section). We shall also consider a parametrized proper
clock, namely, an equation σ̇ = L(x, σ) for σ ∈ S, which is a proper clock for each
fixed x.

The controls u that we consider as candidates for solving the singular perturbation
problem 2.1 have the form

(4.1) u(x, y, σ, t) : Rn ×Rm × S × [0, 1]→ U,

where σ = σ(t) is a solution of

(4.2) ε
dσ

dt
= L(x, σ), σ(0) = σ0,

with σ̇ = L(x, σ) being a parametrized proper clock on a set S ⊂ R`; namely, we
allow feedback of the slow and fast moving states, the clock variable and the time.

Remark 4.2. Although we have stated in Remark 2.2 that the slow state x may
include the variable t and thus no explicit dependence on t is needed, we choose to
have t as an explicit variable in (4.1). This is done to emphasize that, even if the
state equations are time-invariant, an optimal control may be time-varying.

When the control u of (4.1) is inserted into the system (2.4)–(2.5) and (4.2), it
yields (under standard assumptions) a solution which depends of course on ε. We
denote it by

(4.3) (xε(t), yε(t), σε(t)).

Note that although the clock equation in (4.2) is not affected by the control, there is
an indirect dependence through the x variable.

We do not demand that the solution (4.3) be the unique solution of the control
equation, although in most cases it is. The reason is that our results hold without the
uniqueness assumption. (We shall need uniqueness for the limit problem, though.)
But, in order to simplify notations, we suppress the dependence on the triplet (4.3)
when defining cε(u), the cost of u, as follows:

(4.4) cε(u) =
∫ 1

0
c(xε(t), yε(t), u(xε(t), yε(t), σε(t), t))dt;

namely, cε(u) is the cost when applying u to Problem 2.1 with ε given. Note, however,
that when applying the control u, the precise value of ε need not be available. Instead,
the control employs the variable σ, which is affected by ε through (4.2).

DEFINITION 4.3. The control policy u is near optimal if

(4.5) cε(u)− val(ε)→ 0

as ε→ 0.



TRACKING FAST TRAJECTORIES ALONG SLOW DYNAMICS 1491

A motivation to consider a control function that depends on the auxiliary clock
variable σ is as follows. Consider the case where the fast variable y(t) has to track
a fast target, with dynamical characteristics such as periodicity, almost periodicity,
recurrence, etc., which could vary with the slow dynamics. A reasonable description
for such a target is Γ(x, σ(t)), with σ(t) a clock variable which solves an equation of
the form (4.2).

For instance, the equation σ̇ = 1−σ is a proper clock on [0, 2]. The corresponding
motion of a target Γ(σ(t)) exhibits a convergence to the stationary point Γ(1). The
convergence becomes faster when a small ε multiplies the derivative. A clock that
models a periodic motion is obtained by setting S = S1, the unit sphere {(ξ, η) :
ξ2 + η2 = 1} in R2, and letting σ = (ξ, η) be parametrized by arg(ξ + iη); namely, σ
is the angle in the polar coordinates. Then setting σ̇ = 1 induces a periodic motion
Γ(σ(t)) of the target. If σ̇ = L(x) with L(x) > 0, then the induced target Γ(x, σ(t))
exhibits periodicity in time, with period and location depending on the slow state.
A target whose movement is generated by two incommensurable periods—say, α and
β—can be modeled by a clock on S1×S1, with (σ1, σ2) being the clock variable, and
the differential system σ̇1 = 2πα−1, σ̇2 = 2πβ−1. In these examples there is clearly a
unique invariant measure on S.

This general class of problems has the form

(4.6) minimize
∫ 1

0
c(x(t), y(t), u(t),Γ(x(t), σ(t)))dt

subject to

(4.7)

dx

dt
= f(x, y, u),

ε
dy

dt
= g(x, y, u),

ε
dσ

dt
= L(x, σ),

which is a particular case of (2.2)–(2.3), namely, with (y, σ) being the fast dynamics.
It is then reasonable that the near optimal controls will employ the clock variable
which induces the target. A concrete example is solved in the closing section.

5. Infinitesimal control policies. In the present and the next section we iden-
tify a class of control policies, among which we shall find the near optimal solutions.
In this section we study their infinitesimal properties. In the next section we examine
their global structure.

DEFINITION 5.1. Let x be fixed. (x could incorporate an instant t of the slow
time; see Remark 2.2.) Let σ̇ = L(x, σ) be a parametrized proper clock on S ⊂ R`.
The control function

(5.1) u(x, y, σ) : Rn ×Rm × S → U

is called proper if the following hold.
(i) u(x, y, σ) is continuous, and for every (y0, σ0) ∈ Rm × S, the system

(5.2)

dy

dτ
= g(x, y, u(x, y, σ)),

dσ

dτ
= L(x, σ)
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with initial conditions y(0) = y0, σ(0) = σ0 has a unique solution (y(τ), σ(τ)), which
is defined and bounded on [0,∞), and

(ii) There is a unique invariant probability measure of (5.2) on Rm × S, and it is
with compact support.

Remark 5.2. Condition (ii) may need an explanation. Recall that the clock
equation σ̇ = L(x, σ) is assumed to have a unique invariant measure; see Definition
4.1. Thus, the asymptotic statistics of σ(τ), for x fixed, is determined by this in-
variant measure. It is therefore plausible that the trajectory y(τ), which, say, tracks
Γ(x, σ(τ)), will also inherit this dynamical characteristic. This is indeed the case
in the available tracking examples; see, e.g., [2] for the periodic case. The example
treated in the closing section is of such nature.

PROPOSITION 5.3. Let u(x, y, σ) be a proper control function, and let ν be the
invariant probability measure on Rm × S associated with it. Let (y(τ), σ(τ)) be the
solution of (5.2) with initial conditions (y0, σ0). Then the limit

(5.3) lim
T→∞

1
T

∫ T

0
f(x, y(τ), u(x, y(τ), σ(τ)))dτ

exists, and regardless of (y0, σ0), it is equal to

(5.4)
∫
Rm×S

f(x, y, u(x, y, σ))ν(dy × dσ).

Likewise, the limit

(5.5) lim
T→∞

1
T

∫ T

0
c(x, y(τ), u(x, y(τ), σ(τ)))dτ

exists and is equal to

(5.6)
∫
Rm×S

c(x, y, u(x, y, σ))ν(dy × dσ)

independently of (y0, σ0).
Proof. This is a version of the ergodic theorem. What follows is the argument

in brief (see also the background in section 3). The probability measures νT induced
on Rm × S by (y(τ), σ(τ)) : [0, T ] → Rm × S (see (3.2)) converge weakly to ν as
T → ∞. Since both functions f(x, y, u) and c(x, y, u) are assumed continuous and
since u(x, y, σ) is assumed continuous, it follows that the integrands in (5.4) and
(5.6) are continuous in (y, σ). They are also bounded on the support of ν and the
range of (y(τ), σ(τ)). Hence the weak convergence of νT to ν implies the respective
convergences.

Remark 5.4. The interpretation we give to the expressions (5.3)–(5.6) is as follows.
If on an infinitesimal period, where the slow state x stays put, the fast state and clock
solve (5.2) on an unbounded interval, then the limit in (5.3) constitutes the right-hand
side of the slow equation. We say then that (5.4) is a velocity at x, infinitesimally
generated by the control. Likewise, (5.5) represents the limit of the average cost of
the operation on [0, T ]. Thus (5.6) is the cost of infinitesimally generating (5.4) at x
by using the control u.

Next, we extend the definition of a proper control function and consider depen-
dence on v. We use the same adjective, namely, proper, but no confusion should arise,
since the context dictates which version is applicable.
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Convention 5.5. In what follows, we refer to domains D of the form

D ⊂ Rn ×Rm × S ×Rn.

We then agree that if (x, y, σ, v) ∈ D, then (x, y′, σ′, v) ∈ D for all (y′, σ′) ∈ Rm × S.
This is done for convenience only; see the comment closing section 2. Then we may
say that (x, v) is in D, meaning that {x} ×Rm × S × {v} is a subset of D.

DEFINITION 5.6. Let u be given as

u(x, y, σ, v) : D → U

with domain D ⊂ Rn×Rm×S ×Rn. We say that u is a proper control policy if the
following hold:

(iii) u is continuous on D.
(iv) For each (x, v) fixed in D, the function u is a proper control function.
(v) For each (x, v) fixed in D, the control u infinitesimally generates v at x,

namely,

(5.7) v =
∫
Rm×S

f(x, y, u(x, y, σ, v))νx,v(dy × dσ),

where νx,v is the invariant probability measure associated with u for (x, v) fixed.
(vi) For K ⊂ Rn×Rn a bounded set in the domain D, all the invariant probability

measures νx,v associated with u for (x, v) ∈ K, are supported in a common bounded
subset of Rm × S.

PROPOSITION 5.7. Let u be a proper control policy. The cost of generating v at
x by u, namely,

(5.8) cost(u, x, v) =
∫
Rm×S

c(x, y, u(x, y, σ, v))νx,v(dy × dσ),

is a continuous function of (x, v) in the domain of u.
Proof. The continuity of the functions u and c implies that the integrand in (5.8)

is uniformly continuous on bounded sets in Rm × S. Applying this to the common
support of νx,v for (x, v) in a bounded set (see condition (vi)) would imply the desired
continuity, provided that νx,v is weakly continuous as a function of (x, v). The weak
continuity follows from the uniqueness; see [3, Proposition 3.2, Remark 3.3]. Thus
the proof is complete.

6. Global control policies. A proper control policy, as introduced in the previ-
ous section, generates the velocity v at x. This provides the option that the derivative
of the slow motion at x will be v. But the infinitesimal policy by itself does not suffice
to induce the slow motion x(t). To this end we need to combine it with a policy on
the slow scale. This is achieved as follows.

DEFINITION 6.1. Let v be a function

(6.1) v(x, t) : Rn × [0, 1]→ Rn

continuous in (x, t) and such that for every initial condition x(0) = x, the solution
x(t) of the differential equation

(6.2)
dx

dt
= v(x, t), x(0) = x
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is determined uniquely. (We allow v to be defined on a subset of Rn × [0, 1].) Let u
be a proper control policy. The pair (u,v) is called a proper global control policy.
We say that (u,v) generates the solution x(·) of (6.2) if for all t ∈ [0, 1], the pair
(x(t), v(x(t), t)) is in the domain of u.

Remark 6.2. In the following discussion we may consider v(x, t), which is defined
globally, but this would be done for convenience only; see the closing comment in
section 2. The explicit dependence of v on t is done for the reason mentioned in
Remark 4.2.

Remark 6.3. The reasoning behind Definition 6.1 is that v determines the slow
evolution on the slow time scale, while u determines the desired velocities on the
infinitesimal scale. The differential equation (6.2) then becomes a chattering equation
(see [1], [3]), namely,

(6.3)
dx

dt
=
∫
Rm×S

f(x, y, u(x, y, σ, v(x, t))νx,v(x,t)(dy × dσ),

where νx,v is the invariant probability measure associated with u at (x, v). It is in this
sense that the pair (u,v) generates the trajectory x(t) as a solution of (6.3). Indeed,
(6.3) is defined only for (x, t) such that (x, v(x, t)) is in the domain of u. Note that in
this domain we require that solutions of (6.3) be uniquely determined by the initial
conditions.

We now identify the cost of generating a trajectory x(t) by (u,v). It will, natu-
rally, be the accumulation of the infinitesimal costs, as follows.

DEFINITION 6.4. Let (u,v) be a proper global control policy which generates x(t)
on [0, 1]. The cost of generating the trajectory is given by

(6.4) cost(u,v) =
∫ 1

0
cost(u, x(t), v(x(t), t))dt,

with cost(u, x, v) given in (5.8). Notice that denoting the cost by cost(u,v) suppresses
the dependence on the initial condition x(0), which later is assumed to be prescribed.

7. Stability. The proper global control policies (u,v) are obtained as combina-
tions of a policy v on the slow scale and a control u on the fast scale. The outcome
is a chattering equation (6.3). But the composed control policy, given by

u(x, y, σ, v(x, t)),

is of the type described in section 4 and can in particular be applied to the singular
perturbation Problem 2.1. For a given ε > 0, applying (u,v) in this manner results
in the equations

(7.1)

dx

dt
= f(x, y, u(x, y, σ, v(x, t)),

ε
dy

dt
= g(x, y, u(x, y, σ, v(x, t)),

ε
dσ

dt
= L(x, σ),

with initial conditions (2.4). A solution (xε(t), yε(t), σε(t)) then gives rise to the cost

(7.2)
∫ 1

0
c(xε(t), yε(t), u(xε(t), yε(t), σε(t), v(xε(t), t)))dt,
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which we denote by cε(u,v), suppressing the dependence on the specific solution; see
the discussion concerning (4.4).

The stability result that follows employs the notions of a direct integral of proba-
bility measures, and of statistical convergence. These concepts are examined in detail
in [3]. We briefly recall the definitions here in the framework of the theorem. Consider
a function (yε(t), σε(t)) defined on [0, 1] with values in Rm × S. With this function
we associate a measure νε defined on Rm × S × [0, 1] and given by

(7.3) νε(D) = λ{t : (yε(t), σε(t), t) ∈ D},

where λ is the Lebesgue measure. We say that (yε(t), σε(t)) converge statistically, as
ε → 0, to a measure ν, if νε given in (7.3) converges weakly to ν. The motivation is
that ν, which is defined on Rm × S × [0, 1], dominates the asymptotic distribution of
the graph of (yε(t), σε(t)).

Next consider the probability measures νt defined on Rm × S, for t ∈ [0, 1]. The
direct integral of νt is the measure ν on Rm × S × [0, 1] determined by

(7.4) ν(C × E) =
∫
E

νt(C)dt

for C ⊂ Rm×S and E ⊂ [0, 1] measurable. On the entire Borel field of Rm×S× [0, 1]
the measure ν is obtained by a standard extension.

We now state and prove the stability of applying a proper global control policy
to the singular perturbations problem.

THEOREM 7.1. Let (u,v) be a proper global control policy that generates the
trajectory x(t), with x(0) = x. Suppose also that the domain of u contains an open
neighborhood of the graph of (x(t), v(x(t), t)) in Rn×Rn. Let (xε(t), yε(t), σε(t)) be a
solution of (7.1) for ε > 0 fixed. Then, as ε→ 0,

(a) cε(u,v) converge to cost(u,v);
(b) xε(t) converge uniformly on [0, 1] to x(t);
(c) the trajectories (yε(t), σε(t)) converge statistically to the direct integral of

νx(t),v(x(t),t), where νx,v is the invariant probability measure associated with u for
(x, v).

Proof. Notice that once (u,v) is inserted into the control equations of Problem
2.1, the resulting system (7.1) is a standard system of ordinary differential equations,
some of them singularly perturbed. Claims (b) and (c) then follow from Theorem 2.5
in [3]. Indeed, the conditions in the latter paper are easily implied by the definition
of a proper global control policy, and the chattering equation (6.3) is the chattering
limit that governs the uniform limit of xε(t) and the statistical limit of the singularly
perturbed part as ε→ 0.

To verify claim (a), we use claims (b) and (c) as follows. The expression (6.4) for
cost(u,v) can also be written as

(7.5)
∫
Rm×S×[0,1]

c(x(t), y, u(x(t), y, σ, v(x(t), t))ν(dy × dσ × dt),

with ν being the direct integral of νx(t),v(x(t),t) (see (7.4)). This is an extension of
Fubini’s theorem; see, e.g., [6]. The cost cε(u,v) given in (7.2) can in turn be expressed
in the form

(7.6)
∫
Rm×S×[0,1]

c(xε(t), y, u(xε(t), y, σ, v(xε(t), t)))νε(dy × dσ × dt),
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where νε is the measure obtained as the distribution of (yε(t), σε(t), t) on Rm×S×[0, 1]
(see (7.3)). This expression is obtained from (7.2) by a change of notation only. Claim
(b) guarantees that xε(t) converge uniformly to x(t), and claim (c) implies that νε
converges weakly to ν. Hence the desired convergence of (7.6) to (7.5) as ε → 0
follows from the continuity of c, u, and v and from their boundedness on the common
supports of νε and ν. This completes the proof.

8. Infinitesimally generated velocities. As a step toward optimality consid-
erations, in this section we broaden the notion of infinitesimal generation of velocities.
The motivation is the same as the one displayed in Remark 5.4. The extension is
needed for variational considerations.

DEFINITION 8.1. Let x ∈ Rn be fixed. Let B ⊂ Rm be fixed. We say that
the velocity vector v ∈ Rn is infinitesimally generated at x using the base B if the
following holds. There exist a sequence Tk →∞ and a sequence of admissible controls
uk(τ) : [0, Tk]→ U such that

(8.1) v = lim
k→∞

1
Tk

∫ Tk

0
f(xk(τ), yk(τ), uk(τ))dτ,

where yk(τ) is a solution on [0, Tk] of

(8.2)
dy

dτ
= g(xk(τ), y, uk(τ))

and where yk(τ) ∈ B for all k and all τ ∈ [0, Tk], and sup{|xk(τ) − x| : τ ∈ [0, Tk]}
converge to 0 as k →∞. The set of velocities that are infinitesimally generated at x
from the base B is denoted by VB(x).

PROPOSITION 8.2. For a fixed B, the set VB(x) is closed in Rn, and the mapping
x→ VB(x) has a closed graph.

Proof. The claims follow from the definition by using a diagonal argument.
As mentioned, the set VB(x) represents the limit directions that the slow dynamics

could move in, in a given instant, if the fast dynamics is confined to the set B. We
consider a varying state xk(τ) in the generation of v and a sequence of controls, since
v is indeed the result of a limit process. Next we consider a more restrictive notion.

DEFINITION 8.3. Let x and B ⊂ Rm be fixed. We say that v ∈ VB(x) is properly
generated if there exist a control u(τ) : [0,∞)→ U and y0 ∈ B such that

(8.3) v = lim
T→∞

1
T

∫ T

0
f(x, y(τ), u(τ))dτ,

where y(·) is the solution of ẏ = g(x, y, u(τ)), y(0) = y0, and y(τ) ∈ B for τ ∈ [0,∞).
Note that if (x, v) is in the domain of the proper control policy u and the trajectory

y(τ) resulting from (5.2) is in B, then v ∈ VB(x), and it is properly generated.

9. Optimality. We are about to introduce two optimization problems, one on
the infinitesimal (fast) scale, the other on the global (slow) time scale. A composition
of their solutions would constitute a near optimal solution.

The infinitesimal problem depends on three parameters, x ∈ Rn, B ⊂ Rm, and
v ∈ VB(x), as follows. (IG stands for infinitesimally generating.)

IG(x, v,B) Problem 9.1.

(9.1) minimize lim
k→∞

1
Tk

∫ Tk

0
c(xk(τ), yk(τ), uk(τ))dτ,
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with the minimization being over all sequences Tk → ∞, admissible controls uk(τ) :
[0, Tk] → U , and functions xk(τ) : [0, Tk] → Rn satisfying sup{|xk(τ) − x| : 0 ≤ τ ≤
Tk} converge to 0 as k →∞, and where yk(τ) solve on [0, Tk] the equation

(9.2)
dy

dτ
= g(xk(τ), y, uk(τ))

and yk(τ) ∈ B for τ ∈ [0, Tk]. In addition, it is demanded that

(9.3) v = lim
k→∞

1
Tk

∫ Tk

0
f(xk(τ), yk(τ), uk(τ))dτ.

We denote by ΦB(x, v) the infimal value in (9.1). It is clear that the IG(x, v,B)
problem is simply the problem of infinitesimally generating the velocity v at x using
the base B (see Definition 8.1) with a minimal averaged cost. The value ΦB(x, v)
could be equal to +∞, and in fact we set ΦB(x, v) =∞ if v 6∈ VB(x).

PROPOSITION 9.2. For B ⊂ Rm fixed, the function ΦB(x, v) is lower semicontin-
uous, namely, (xk, vk)→ (x0, v0) implies lim inf ΦB(xk, vk) ≥ ΦB(x0, v0).

Proof. It follows from a simple diagonal argument.
Our next step is the global problem. It depends on a parameter B ⊂ Rm and also

refers to the initial condition x(0) = x (see (2.4)) of the original singular perturbations
problem, as follows. (GO stands for global optimization.)

GO(B) Problem 9.3.

(9.4) minimize
∫ 1

0
ΦB(x(t), v(x(t), t))dt

subject to

(9.5)
dx

dt
= v(x, t), x(0) = x

and the constraint

(9.6) v(x, t) ∈ VB(x).

A solution to the problem is a pair (x(·), v(·, ·)) such that x(t) is absolutely continuous;
v(x, t) is continuous in x and measurable in t, defined on a subset of Rn × [0, 1]; and
(9.5) produces x(t) as its unique solution.

Remark 9.4. The GO(B) problem is actually a standard Bolza problem of min-
imizing

∫ 1
0 ΦB(x, ẋ)dt subject to x(0) = x and ẋ ∈ VB(x). Indeed, we allow in our

formulation v(x, t) to be defined on the graph of x(t) only, namely v(x, t) = ẋ(t).
We prefer the formulation with the function v(x, t), for two reasons. The first one is
to make transparent the fact that in the singular perturbations setting, the velocity
v(x, t) is infinitesimally generated. The second one is that in many problems that
arise in applications, the solution is indeed given in a feedback form, generating a dif-
ferential equation on a domain larger than the optimal trajectory. It is this property
that enables us to derive the near optimal solutions for the fast tracking.

The mathematical characteristics of the two problems, 9.1 and 9.3, are of course
of interest. An avenue to a systematic treatment of them is the concept of overtaking
solutions; see, e.g., Carlson, Haurie, and Leizarowitz [7] and the recent contribution of
Zaslawski [23]. As mentioned earlier, in this paper we do not pursue these problems.
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Rather, we go ahead, assume that the two problems have solutions, and show that
under some conditions, the composition of the solutions is near optimal for the SP
Problem 2.1.

The main result is proven under a coercivity condition described in the following
definition. In the formulation we refer to control functions uε(t) that, when applied to
equations (2.3)–(2.4) and (4.2), produce trajectories (xε(t), yε(t), σε(t)). The resulting
cost is given by

(9.7) cost (uε) =
∫ 1

0
c(xε(t), yε(t), uε(t))dt.

Compare with (2.2). We shall write cε(t) for the integrand in (9.7). Recall that val(ε)
is the infimal cost.

DEFINITION 9.5. The singular perturbations problem is called coercive if, when-
ever uε(t) are control functions satisfying cost(uε) − val(ε) → 0 as ε → 0, then for
ε small enough (say, 0 < ε ≤ ε0) the trajectories (xε(t), yε(t)) are contained in one
compact subset of Rn×Rm (say, C×B) and ẋε(t) and c(t) share a common L2-bound,
namely,

∫ 1
0 |ẋε(t)|

2dt, and
∫ 1

0 |cε(t)|
2dt have a bound independent of ε.

Coercivity is very common in optimal control problems; we do not elaborate on
this concept here.

THEOREM 9.6. Suppose that the singular perturbations problem is coercive, and let
C×B be the compact subset of Rn×Rm provided by the coercivity. Let (x(t), v(x(t), t))
be a solution of the GO(B) Problem 9.3 and such that v = v(x, t) is defined and
continuous on a neighborhood of the graph {(x(t), t) : 0 ≤ t ≤ 1} in Rn × [0, 1]. Let
u = u(x, y, σ, v) be a proper control policy whose domain contains a neighborhood of
the graph of (x(·), ẋ(·)), and furthermore assume that cost(u, x, v) = ΦB(x, v). Then
the composition

u(x, y, σ, t) = u(x, y, σ, v(x, t))

is a near optimal solution of the singular perturbations problem.
Proof. We shall denote by cε(u) the cost of applying the displayed composition

of u and v to the problem with ε > 0 fixed. See (4.4).
It is clear that the pair (u,v) is a proper global control policy that generates the

trajectory x(t). By the stability result, Theorem 7.1, the convergence cε(u) = cε(u,v)
to cost(u,v) holds. The latter, in turn, is equal (by (6.4) and the assumption of the
present result) to the optimal value of the GO(B) problem. Hence we deduce that

(9.8) cε(u)−
∫ 1

0
ΦB(x(t), v(x(t), t))dt→ 0

as ε→ 0.
Next we show that

(9.9)
∫ 1

0
ΦB(x(t), v(x(t), t))dt− val(ε)→ 0

as ε → 0. To this end, let uε(t) be admissible control functions, generating the
solutions (xε(t), yε(t), σε(t)) of (2.3)–(2.4) and (4.2), with ε > 0 fixed, and such that
c(uε)−val(ε)→ 0 as ε→ 0 (namely, uε(·) provides an approximately optimal solution).
By the coercivity, there exists a subsequence εi, with εi → 0, such that (and we write
xi(t) for xεi(t), etc.)
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(1) xi(t) converge uniformly on [0, 1], say, to x0(t),
(2) ẋi(t) = f(xi(t), yi(t), ui(t)) converge weakly in L2 to ẋ0(t),
(3) ci(t) = c(xi(t), yi(t), ui(t)) converge weakly in L2, say, to c0(t).
For a fixed h > 0, consider a time t ∈ [0, 1− h]. The vector

(9.10) vh(t) =
x0(t+ h)− x0(t)

h

is the limit as εi → 0 of

1
h

(xi(t+ h)− xi(t)) =
1
h

∫ t+h

t

f(xi(s), yi(s), ui(s))ds,

which after the change of variables τ = ε−1
i (s− t) is written as

(9.11)
εi
h

∫ h/εi

0
f(xi(τ), yi(τ), ui(τ))dτ.

Likewise, the average

ch(t) =
1
h

∫ t+h

t

c0(s)ds

is the limit as εi → 0 of

(9.12)
1
h

∫ t+h

t

ci(s)ds =
εi
h

∫ h/εi

0
c(xi(τ), yi(τ), ui(τ))dτ.

Since (yi(τ), σi(τ)) on [0, h/εi] solve (9.2) with xi(τ) the parameter, and since xi(τ)
on [0, h/εi] is near x(t) if h is small, it follows that if we take a diagonal subsequence
ij associated with a sequence hj → 0, any cluster point v(t) of vh(t) is in VB(x0(t))
and any cluster point c(t) of ch(t) satisfies c(t) ≥ ΦB(x0(t), v(t)). This occurs by
Definition 8.1 and the definition of ΦB(x, v) in Problem 9.1.

But vh(t) converges almost everywhere to ẋ0(t), and ch(t) converges almost ev-
erywhere to c0(t). We therefore conclude that

(9.13)
∫ 1

0
c0(t)dt ≥

∫ 1

0
ΦB(x0(t), ẋ0(t))dt.

Since the left-hand side of (9.13) is the limit of
∫ 1

0 ci(t)dt, and since v was the solution
of the GO(B) problem, we conclude that

(9.14) lim
∫ 1

0
ci(t)dt ≥

∫ 1

0
ΦB(x0(t), ẋ0(t))dt ≥

∫ 1

0
ΦB(x(t), v(x(t), t))dt,

or in other words, lim val(εi) exists, and it is bigger or equal to the right-hand side
term of the displayed inequalities. But since cε(u) ≥ val(ε), it actually follows from
the stability part, in particular from (9.8), that

(9.15) lim
εi→0

val(εi) =
∫ 1

0
ΦB(x(t), t))dt.

Since εi was an arbitrary subsequence for which the weak convergence holds, and since
the coercivity implies weak-L2 compactness, the limit in (9.15) holds for all ε → 0.
This is the desired conclusion.
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Remark 9.7. Since B1 ⊂ B2 implies ΦB2(x, v) ≤ ΦB1(x, v), it clearly follows that
any domain containing the one given by the coercivity can be used in the calculation
of the optimal proper policy. In particular, we can use B = Rm. The coercivity,
however, is needed in the proof of the near optimality.

Remark 9.8. The proper controls u in the main result, Theorem 9.6, were as-
sumed to generate a unique invariant measure νx,v, with cost (given by (5.8)) equal
to ΦB(x, v). The result would hold even if the uniqueness of the invariant measure is
dropped, provided that the expression (5.8) is equal to ΦB(x, v) for every invariant
measure νx,v. The only change in the proof would be to refer in the stability part to
Theorem 2.2 (rather than Theorem 2.5) in [3].

10. Comments. We display two examples whose formulation does not include
a fast clock variable but which still cannot be solved with the order reduction method
(see the introduction). We show how the reasoning of the present paper applies.

Note first that the structure of the solutions suggested by the reduced-order ap-
proach is a particular case of those offered in this paper. Indeed, equating ε = 0 in
(2.3) and providing u(x, y), which makes the equation ẏ = g(x, y, u(x, y)) asymptot-
ically stable around, say, y0(x), are equivalent to proper generation of the velocity
f(x, y0(x), u(x, y0(x))) at x, with a proper control that has a special type of invari-
ant measure, namely, a measure supported at the equilibrium y0(x). So, in case our
infinitesimal optimization step can be achieved with an invariant measure supported
at a stable point, we get back the reduced-order procedure.

Here are the promised examples.
Example 10.1. Consider the problem with scalar variables

(10.1) minimize
∫ 1

0
(x2(t) + (y2

1(t) + y2
2(t)− 1)2 + u2(t))dt

subject to

(10.2)

dx

dt
= y1 + y2,

ε

(
ẏ1
ẏ2

)
=
(

0 1
−1 0

)(
y1
y2

)
+
(

0
1

)
u,

x(0) = 0, y1(0) = y1, y2(0) = y2.

A direct inspection reveals that the limit of the minimal cost as ε → 0 is 0. A
near optimal solution can be constructed by examining the fast equation

(10.3)
dy1

dτ
= y2,

dy2

dτ
= −y1 + u

and devising a feedback control u = u(y1, y2) which stabilizes the solution of (10.3)
around a periodic solution of the form (cos(ϕ + τ), sin(ϕ + τ)), while u = 0 on the
limit trajectory. This can be achieved easily. Note that there is no need to employ an
auxiliary clock variable; note also that setting ε = 0 in (10.2) will not lead to a near
optimal solution.

Example 10.2. In this example a nontrivial clock example is employed. Consider
the system with scalar variables

minimize
∫ 1

0
(x2(t) + y2

1(t) + y2
2(t) + (u2

1(t) + u2
2(t)− 1)2)dt
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subject to

(10.4)

dx

dt
= u1 + u2,

ε
dy1

dt
= u1,

ε
dy2

dt
= u2,

x(0) = 0, y1(0) = y1, y2(0) = y2.

A direct inspection reveals that the limit of the minimal value as ε → 0 is 0. A
near optimal solution can be constructed using the clock equation εσ̇ = 1, with σ ∈ S1

(namely, σ = arg(ξ + iη) on the unit circle in R2). Then

(10.5) u1 = −y1 + sinσ, u2 = −y2 + cosσ

is a near optimal solution.

11. A linear-quadratic tracking. The technique offered in the previous sec-
tions is applied in this section to a system with linear state equations and a quadratic
cost criterion. The target is assumed to be periodic. Note that the corresponding reg-
ulator problem was analyzed in the literature; see Kokotovic and Yackel [16], O’Malley
[19], and Chow and Kokotovic [8].

In what follows, a prime over a matrix—say, A′—denotes the transposed matrix;
for vectors y we use y′ to denote the row version. For a matrix Q symmetric and
positive semidefinite, we denote by ‖x‖2Q the quadratic form x′Qx.

The target to be tracked is given by

(11.1) Γ(x, σ) : Rn ×R→ Rm,

assuming that Γ(x, σ) is continuous and periodic in σ, with period T (x) > 0 (not
necessarily the minimal one) continuous in x.

The tracking problem is as follows. (SP-LQPT stands for singularly perturbed
linear quadratic periodic tracking.)

SP-LQPT Problem 11.1.

(11.2) minimize
∫ 1

0
(‖x(t)‖2Q + ‖y(t)− Γ(x(t), σ(t))‖2W + ‖u(t)‖2R)dt

subject to

(11.3)

dx

dt
= Fx+Gy +Hu,

ε
dy

dt
= Cx+Ay +Bu,

ε
dσ

dt
= 1,

with initial conditions

(11.4) x(0) = x, y(0) = y, σ(0) = σ,

and where the matrices appearing in (11.2)–(11.3) are constant and have the appro-
priate dimensions. Compare with (4.6)–(4.7).
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The following assumption is standard in the linear-quadratic trait; it is employed
throughout.

Assumption 11.2. The matrices Q and W are symmetric and positive semidefinite;
the matrix R is symmetric and positive definite. The pair (A,B) is controllable and
(A,W ) is observable.

Remark 11.3. The form in which the SP-LQPT problem is presented is with the
fast time σ being in R and with our stating explicitly that Γ(x, ·) is T (x)-periodic.
This deviates from the clock description of Definition 4.1. The latter would consider
σ in S1. We find (11.3) a bit more convenient in the purely periodic case. It is clear
that the two forms are equivalent.

The analysis of the SP-LQPT problem will follow several steps.
Note first that the positive definiteness of R implies that the problem (11.2)–

(11.3) is coercive (see Definition 9.5). Hence the base set appearing in Problems 9.1
and 9.3 can be taken as any large enough bounded set in Rn. A reference to it is
therefore suppressed in the formulas that follow.

Step I. Determination of the infinitesimally generated velocities.
For each x ∈ Rn we have to determine the set V (x) of velocities that can be in-

finitesimally generated at x; see Definition 8.1. To this end, consider the m× (m+ k)
matrix [A,B], operating on pairs (y, u) in Rm×Rk and with values in Rm. The con-
trollability of (A,B) implies that [A,B] has a full range. Therefore the m×m matrix

(11.5) M = [A,B]
[
A′

B′

]
is invertible. Denote by ker[A,B] the kernel of [A,B], namely, the family of pairs
(y, u) such that Ay +Bu = 0. Finally, let

(11.6) V = {Gy +Hu : (y, u) ∈ ker[A,B]}.

It is clear that V is a linear subspace of Rn.
PROPOSITION 11.4. The infinitesimally generated velocities at x form a transla-

tion of a linear space, given by

(11.7) V (x) =
(
F − [G,H]

[
A′

B′

]
M−1C

)
x+ V

(with M and V given in (11.5)–(11.6)).
Proof. An infinitesimally generated velocity has the form

(11.8) lim
k→∞

1
Tk

∫ Tk

0
(Fxk(τ) +Gyk(τ) +Huk(τ))dτ,

with constraints as described in Definition 8.1 and in particular when (yk(·), uk(·))
satisfy

(11.9)
dyk
dτ

(τ) = Ayk(τ) +Buk(τ) + Cxk(τ)

and yk(τ) are uniformly bounded. Taking averages on [0, Tk] and using the fact that
yk(τ) are bounded (and xk(τ)→ x) imply that the limit in (11.8) has the form

(11.10) Fx+Gy +Hu

under the constraint

(11.11) Ay +Bu+ Cx = 0,
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and the controllability clearly implies that any element obtained in this way is a limit
of the form (11.8) (in fact with xk(τ) = x). The passage from the formulation (11.10)–
(11.11) to the representation (11.7) follows simple linear algebra considerations.

Step II. An auxiliary problem.
The periodicity in σ of the target Γ(x, σ) suggests that the infinitesimal generation

problem (i.e., IG(x, v) problem 9.1) could be solved with a proper control policy that
induces an invariant measure supported on a periodic orbit. We shall see later that
this is indeed the case. At present we formulate a variational problem that determines,
as we shall see, the limit trajectory.

In what follows, Γ(τ) is T -periodic, with T > 0, c ∈ Rm, and q ∈ Rn (with a
constraint on q displayed later). The rest of the data are taken from Problem 11.1.
(LQPBVT stands for linear-quadratic periodic boundary value tracking.)

LQPBVT(Γ(·), c, q) Problem 11.5.

(11.12) minimize
1
T

∫ T

0
(‖y(τ)− Γ(τ)‖2W + ‖u(τ)‖2R)dτ

subject to

(11.13)

dy

dτ
= Ay +Bu+ c,

dz

dτ
= Gy +Hu,

with the boundary condition

(11.14)
y(T ) = y(0),
z(T ) = z(0) + Tq,

where q belongs to a translation of a subspace, namely, to

(11.15) −[G,H]
[
A′

B′

]
M−1c+ V,

with V the subspace given in (11.6). Clearly, a solution is a pair (y(τ), u(τ)) defined
on [0, T ].

In what follows, we consider the varying data Γ(·), c, and q, where the period T
may vary as well. When we say that Γj(·) converge to Γ0(·), we mean that the periods
converge and the periodic continuations converge uniformly on compact intervals.

PROPOSITION 11.6. The problem LQPBVT (Γ, c, q) has a unique optimal solution
(y∗(τ), u∗(τ)). It satisfies u∗(0) = u∗(T ), and its periodic continuation is uniformly
continuous on compact intervals with respect to the parameters (Γ(·), c, q).

Proof. First we note that a feasible pair (y(τ), u(τ)), namely, one that satisfies the
constraints, exists. In fact, there is a constant pair (y, u) which is feasible. Indeed, if

(11.16) q =
1
T

(
−[G,H]

[
A′

B′

]
M−1c+Gy0 +Hu0

)
with (y0, u0) ∈ ker[A,B], take

(11.17) (y, u) = −
[
A′

B′

]
M−1c+ (y0, u0)
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(see also Remark 11.7). The constant feasible control may not be an optimal one.
Existence and uniqueness of an optimal control follow standard arguments; see, for
instance, Lee and Markus [17, Chapters 2 and 3].

Next we verify the claim that the optimal control u∗(τ) is continuous and peri-
odic. Applying to (11.12)–(11.13) the standard necessary and sufficient conditions for
extrema in linear-quadratic systems (see, e.g., Lee and Markus [17, pp. 180, 191]), we
get that the control u∗(τ) is of the form

(11.18) u∗(τ) = R−1[B,H]
[
η∗(τ)
ζ∗(τ)

]
,

where (y∗(τ), z∗(τ), η∗(τ), ζ∗(τ)) satisfy the equations

(11.19)
d

dτ


y
z
η
ζ

 =


A 0 BR−1B′ BR−1H ′

G 0 HR−1B′ HR−1H ′

W 0 −A′ −G′
0 0 0 0



y
z
η
ζ

+


c
0

−WΓ(τ)
0

 .

We see right away that u∗(τ) must be continuous. Since the dual variable ζ∗(τ)
is constant, it follows that η∗(τ) must be periodic (by the periodicity of y(τ) and
Γ(τ) and by the transversality conditions); hence from (11.18) it follows that u∗(τ) is
indeed periodic. (Another argument for the periodicity is that, by solving the problem
on [0, 2T ], we should get on [T, 2T ] a replica of the solution on [0, T ]; otherwise
the uniqueness is violated.) (Note that (11.18)–(11.19) can be used to compute the
optimal trajectory and control.)

Finally we note that indeed (y∗(τ), u∗(τ)) depends continuously on the data.
This follows easily from continuous dependence arguments and the uniqueness. This
completes the proof of the proposition.

Remark 11.7. We showed that if q satisfies the constraint (11.15), then there is a
constant feasible pair (y, u). Note that satisfying (11.15) is a necessary condition for
the existence of any feasible control (y(τ), u(τ)). This follows from the considerations
of Proposition 11.4.

Step III. The infinitesimal generation problem.
Fix x ∈ Rn and v ∈ V (x) (see Proposition 11.4). We consider the IG(x, v)

Problem 9.1. It is shown in this step that a solution is essentially provided by applying
the solution of Problem 11.5 periodically (and where q and v are related by v = Fx+q;
see (11.7) and (11.15)), and c = Cx.

The linearity, which is reflected by the separation of x and (y, u), and the required
boundedness of y(t) imply that the infinitesimal generation problems with data (x, v)
take the form as follows. (Compare with (9.1)–(9.3); note that here proper generation,
in particular x fixed, suffices.)

IG(x, v) Problem 11.8.

(11.20) minimize lim
T→∞

1
T

∫ T

0
(‖x‖2Q + ‖y(τ)− Γ(x, τ)‖2W + ‖u(τ)‖2R)dτ

subject to

(11.21)
dy

dτ
= Ay +Bu+ Cx

and

(11.22) v = lim
T→∞

1
T

∫ T

0
(Fx+Gy(τ) +Hu(τ))dτ.
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Associated with Problem 11.8, consider the periodic-boundary value problem
LQPBVT (Γ(·), c, q) Problem 11.5 with Γ(t) = Γ(x, t), c = Cx, and q = v − Fx.
For the latter problem, we have determined an optimal pair (y∗(τ), u∗(τ)), which we
now denote by

(11.23) (y∗(τ, x, v), u∗(τ, x, v)),

and furthermore, the periodicity allows us to extend the functions periodically to the
entire line.

PROPOSITION 11.9. (y∗(τ, x, v), u∗(τ, x, v)) is an optimal solution of the IG(x, v)
Problem 11.8, and consequently the minimal value of the problem is given by

(11.24) Φ(x, v) =
1

T (x)

∫ T (x)

0
(‖x‖2Q + ‖y∗(τ, x, v)− Γ(x, τ)‖2W + ‖u∗(τ, x, v‖2R)dτ.

Proof. Let (y(τ), y(τ)) be any pair which satisfies the constraint (11.22). Take
T = kT (x) with k large enough, such that the average

(11.25)
1
T

∫ T

0
(Fx+Gy(τ) +Hu(τ))dτ

is very close to v. The controllability of (A,B) implies that we can make u(T ) = u(0)
and y(T ) = y(0) without changing much the value in (11.25). Averaging of the k
translation uj(τ) = u(τ + jT (x)), yj(τ) = y(τ + jT (x)), with j = 0, . . . , k − 1 (and
interpreting (u(·), y(·)) as periodic, with kT (x) being the period) induces a T (x)-
periodic pair, with cost smaller than or equal to the cost associated with (u(·), y(·));
this by the convexity. Still, the cost of the generated periodic pair is greater than or
equal to that of (u∗(τ), y∗(τ)), the latter being the optimal periodic one.

Step IV. Stabilization and proper control policies.
We already know that the periodic pair (y∗(τ, x, v), u∗(τ, x, v)) forms an opti-

mal trajectory for the generation of v at x. But we wish to construct a control
u = u(x, y, τ, v) which would be proper (see Definition 5.6, but note that we work
with periodic functions on R (see Remark 11.3)) and for (x, v) fixed would solve the
infinitesimal generation problem. What we do is simply find a feedback control that,
for (x, v) fixed, stabilizes the linear equation around y∗(τ, x, v) as follows.

Let K be the unique positive definite symmetric solution of the Riccati equation

(11.26) −KA−A′K +KBR−1B′K −W = 0.

Then it is well known that the controllability of (A,B) and the observability of (A,W )
imply that such a K exists and is unique, and furthermore, it is known that G =
A−BR−1B′K is a stable matrix; see, e.g., Athans and Falb [4, p. 773].

PROPOSITION 11.10. Consider the control

(11.27) u(x, y, τ, v) = −R−1B′K(y − y∗(τ, x, v)) + u∗(τ, x, v).

Then it is a periodic control, continuous in all its variables, and for each (x, v) fixed,
the solutions of

dy

dτ
= Ay +Bu+ Cx

converge uniformly to y∗(τ, x, v).
Proof. The periodicity and continuity follow from the corresponding properties

of y∗(τ) and u∗(τ), namely, Proposition 11.6. The stabilization is standard.
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COROLLARY 11.11. For u given in (11.27), cost(u, x, v) = Φ(x, v), where Φ(x, v)
is the infimal cost of generating v at x.

Proof. It follows directly from the stabilization statement of Proposition 11.10
and the form (11.24) for Φ(x, v).

Step V. The global problem.
Once the cost Φ(x, v) of optimally generating the velocity v at x is determined

(see (11.24)), the global problem GO(Rn) can be formed; see Problem 9.3. In the
tracking case we study, it can be presented in the following form:

(11.28) minimize
∫ 1

0
( ‖x(t)‖2Q + Ψ(x(t), w(t)))dt

subject to

(11.29)

dx

dt
=
(
F − [G,H]

[
A′

B′

]
M−1C

)
x+ w,

x(0) = x,

w ∈ V,

with V given in (11.6) and the vectors v and w related by

(11.30) v = w − [G,H]
[
A′

B′

]
M−1Cx

and where Ψ(x,w) is related to Φ(x, v) by Φ(x, v) = Ψ(x,w) + ‖x‖2Q, namely, (by
(11.24)) Ψ(x,w) is given by

(11.31) Ψ(x,w) =
1

T (x)

∫ T (x)

0
(‖y∗(τ, x, v)− Γ(x, τ)‖2W + ‖u∗(τ, x, v)‖2R)dτ.

Note that the state equation for the global optimization is linear in x, with coefficients
easily calculable from the data. The cost Ψ(x,w) is not separable in general. (When
C = 0 and Γ is independent of x, then Ψ(x,w) is independent of x.)

PROPOSITION 11.12. The cost Ψ(x,w) is continuous in (x,w), it tends to +∞ as
|w| → ∞, and it is a convex function of the variable w.

Proof. The continuity follows from the relations (11.31) and (11.30) together with
the continuous dependence statement in Proposition 11.6. The growth to +∞ follows
directly from the positive definiteness of R and the boundary condition (11.14). The
convexity in the variable w follows as pairs (y∗(τ, x, vi), u∗(τ, x, vi)) for i = 1, 2 can
be averaged, producing a feasible pair for the averaged vi (by the linearity) with cost
greater than or equal to the infimal one. The convexity of the quadratic cost concludes
the argument.

Step VI. The near optimal solution.
We conclude by writing down explicitly the near optimal solution to the SP-LQPT

Problem 11.1. The construction (which includes an existence statement) is as follows:
For each w ∈ V the cost Ψ(x,w) is determined by (11.31), with y∗(τ, x, v)

and u∗(τ, x, v) being the solution of the associated periodic boundary value, linear-
quadratic tracking. Once a solution w(x, t) to the global problem (11.28)–(11.29) is
found, we write

v(x, t) = w(x, t)− [G,H]
[
A′

B′

]
M−1Cx,
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and then a near optimal solution to the original singular perturbations tracking is
given by

(11.32) u(x, y, σ, t) = −R−1B′K(y − y∗(σ, x, v(x, t))) + u∗(σ, x, v(x, t)).

The near optimality of this feedback control is guaranteed by the main result, Theorem
9.6. Note that indeed the near optimal solution does not employ the parameter ε. It is
a feedback, though, of the fast time σ. Note that the near optimal solution (11.32) for
the linear-quadratic tracking example is explicit in terms of solutions of the explicitly
given two problems on finite intervals.
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Abstract. In this paper a new characterization of the class of all minimal square spectral factors
of a given rational spectral density is presented. This characterization, which is established without
assumptions on poles and zeroes of the spectral density, extends a result presented in [A. Ferrante,
IEEE Trans. Automat. Control, 39 (1994), pp. 2122–2126]. The characterization consists of two
bijective maps which relate the set of minimal square spectral factors to a set of invariant subspaces
of a certain matrix and to a set of symmetric solutions of an algebraic Riccati equation (ARE). In
the second part of the paper it is proven that these two maps are homeomorphisms. This result
extends and applies to spectral factorization theory recent results of H. Wimmer [Integral Equations
Operator Theory, 21 (1995), pp. 362–375], where it is proven that the well-known relation between
solutions of ARE and invariant subspaces of a certain matrix is, in fact, a homeomorphism.
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1. Introduction. The spectral factorization problem is a cornerstone of many
areas of systems and control theory, circuit theory, and prediction theory. Indeed,
this problem is crucial in both linear quadratic optimal control and optimal filtering
[16], [10]. In recent years, we have witnessed an increasing interest in acausal spectral
factors, i.e., spectral factors whose poles and zeroes need not be in the left half complex
plane [14], [15], [13], [4], [2], [3], [6], [7], [11]. These spectral factors are employed in
problems of estimation in which the available information is not organized in a causal
structure. For example, in [12, sect. 8] a noncausal estimation problem is considered,
and the solution is given (in the spectral domain) in terms of an acausal spectral
factor.

Also, great effort has been made to understand the relation between solutions of
the spectral factorization problem and solutions of the ARE: since the first works in
the late 1960s, the spectral factorization problem has been related to the Kalman–
Popov–Yacubovich positive-real lemma, and this, in turn, to linear matrix inequality
(see, for example, [16]) and to the ARE. In [14] and [15], the set of minimal spectral
factors with given structure of poles or zeroes was characterized in terms of solutions
of a homogeneous ARE. In [4] and [2], a characterization of the set of all minimal
square spectral factors was provided for a class (a certain condition on sets of poles and
zeroes of the spectral density was assumed) of multivariate rational spectral densities,
in terms of a homogeneous ARE of double dimension with respect to that of [14]
and [15]. In [6], a different characterization of all minimal spectral factors was given,
without any assumption on the zeroes and poles of the spectral density. In the first
part of this paper we obtain a characterization alternative, but equivalent, to that
of [6] extending the results presented in [4] and [2] to an arbitrary rational coercive
spectral density. More precisely, we show that, given a rational coercive spectral

∗Received by the editors July 21, 1995; accepted for publication (in revised form) June 5, 1996.
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density Φ(s), there is a one-to-one correspondence between the set of its minimal
spectral factors and a class of symmetric solutions of an homogeneous ARE. This
class, in turn, is in one-to-one correspondence with a set of invariant subspaces of a
certain matrix Z which contains all the information about poles and zeroes of the
spectral density. This matrix can be computed directly from the spectral density
Φ(s). The correspondence between the set of invariant subspaces of Z and the set
of solutions of the ARE has been extensively studied, and it is given by a standard
procedure; see [19], [17], [20], and references therein.

In the second part of this paper we address the issue of the continuity of the
maps which relate invariant subspaces of the above-mentioned matrix Z, solutions
of the ARE, and minimal spectral factors. In the cases in which the ARE—and
the related spectral factorization problem—have a finite number of solutions, the
map which assigns a minimal spectral factor to a solution of the ARE is clearly
continuous when we endow the domain and the image of the map with any reasonable
topology. The same is true for the map relating invariant subspaces of the matrix
Z and solutions of the ARE. However, when the ARE—and the related spectral
factorization problem—have a continuum of solutions, the issue of continuity becomes
more interesting. Indeed, in recent literature we find a relevant amount of work
studying topological properties of solutions of the ARE; see, for instance, [8], [18],
[19]. In particular, in [19] the problem of the continuity of the map which relates
invariant subspaces of Z and solutions of the ARE has been investigated. In that
paper it was shown that the function which maps an invariant subspace into a solution
of the ARE is a homeomorphism when we endow the set of subspaces of Rn with the
topology induced by the gap metric. In this paper we show that also the map which
relates solutions of the ARE to minimal spectral factors is a homeomorphism when
we endow the set of spectral factors of Φ(s) with the topology induced by the L∞
norm. By composition, we have that also the map relating invariant subspaces of Z
and minimal spectral factors is a homeomorphism.

Moreover we show that the map which assigns a minimal spectral factor to a
solution of the ARE, and its inverse, are Lipschitz continuous, and we provide an
upper-bound for the Lipschitz constant. This fact may be interesting in numerical
solutions of the spectral factorization problem where a minimal spectral factor is
computed starting from a numerical approximation of a fixed solution of the ARE.
The Lipschitz continuity is interesting also in the case when the ARE has a finite
number of solutions because it provides a bound on the distance of two minimal
spectral factors given the distance of the corresponding solutions of the ARE.

2. Mathematical preliminaries and definitions. In this paper we deal with
multivariate real rational coercive spectral densities, i.e., m×m matrix-valued rational
functions Φ(s) with real coefficients and such that (s.t.) the following properties hold:

(i) Φ(s) = Φ(−s)T .
(ii) Φ(s) is analytic on an open strip including the imaginary axis.
(iii) ∃ c ∈ R+ s.t. Φ(iω) > cI > 0 ∀ω ∈ R.

Note that property (iii) implies that R := Φ(i∞) is a symmetric positive definite
matrix.

A matrix function W (s) of dimensions (m×p) is called a spectral factor of Φ(s) if

W (s)W (−s)T = Φ(s).(2.1)

Condition (iii) implies that p ≥ m; if p = m, we have a square spectral factor. W (s)
is said to be minimal if it has least possible McMillan degree. In this paper we are
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interested in minimal square spectral factors. Therefore in the following we shall
say that a minimal square spectral factor is a solution of the spectral factorization
problem for Φ(s). Clearly if W (s) is a minimal spectral factors and O is a constant
orthogonal matrix, then also WO(s) := W (s)O is a minimal spectral factor. However,
W (s) and WO(s), considered as transfer functions of linear systems, correspond to the
same dynamics, and they differ only for a change of basis on the input space. For this
reason we shall identify spectral factors which differ by multiplication on the right
by a constant orthogonal matrix. Hence, without loss of generality, we shall suppose
that W (i∞) = Φ(i∞)1/2 = R1/2.

Given a minimal realization

W (s) = R1/2 + C(sI −A)−1B(2.2)

of a spectral factor, we define the pole structure of W (s) to be the Jordan structure of
the state matrix A. We define the zero structure of W (s) to be the Jordan structure
of the zero matrix Γ := A − BR−1/2C. It is immediate to see that the zero matrix
Γ is the state matrix of a minimal realization of W (s)−1. The eigenvalues of A and
Γ will be called poles and zeroes of W (s), respectively. The pole and zero structures
of W (s) are well defined since the Jordan forms of A and Γ do not depend on the
realization (2.2).

It is well known (see, for instance, [10]) that, given a spectral density, there exists
a minimal spectral factor W−(s) which is antistable and minimum phase; i.e., all the
poles of W−(s) are in the open right half plane, and all the zeroes of W−(s) are on
the open left half plane. This spectral factor, which may be computed from Φ(s) via
various algorithms [1], [15], will play a crucial role in this paper since it will be taken
as the reference spectral factor.

3. Characterization of minimal square spectral factors. Let Φ(s) be a
rational coercive spectral density and

W−(s) = R1/2 + C(sI +AT )−1B(3.1)

be a minimal realization of its minimal spectral factor W−(s). Define

Γ := −AT −BR−1/2C(3.2)

to be the zero matrix of W−(s). In what follows, A, B, and C will be matrices of
dimensions n × n, n × m, and m × n, respectively. Clearly Γ is an n × n matrix.
Notice that, since both A and Γ are stability matrices, their spectra σ(A) and σ(Γ)
are unmixed; i.e.,

σ(A) ∩ σ(−A) = ∅,(3.3)

σ(Γ) ∩ σ(−Γ) = ∅.(3.4)

Let SA and SΓ be the sets of invariant subspaces of AT and ΓT , respectively, and
let S be the set defined by

S := {(SA, SΓ) : SA ∈ SA, SΓ ∈ SΓ} .(3.5)

S is the set of pairs of subspaces, one invariant for AT and the other for ΓT .
The following lemma gives a first characterization of the set of minimal square

spectral factors.
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LEMMA 3.1. There exists a one-to-one correspondence between the set W of the
minimal square spectral factors of Φ(s) and the set S defined above.

Proof. Let S := (SA, SΓ) be an element of S. The first step of the proof is to
compute a spectral factor W (s) ∈ W corresponding to such S.

Consider the following homogeneous ARE:

AQ+QAT +QBBTQ = 0.(3.6)

Since A has unmixed spectrum, there is a one-to-one correspondence between sym-
metric solutions of (3.6) and invariant subspaces of AT : this correspondence is given
by the map which assigns to each solution Q̄ the AT -invariant subspace S̄ := ker Q̄;
see, for instance, [14], [15], or [17]. Then let QSA be the (unique) symmetric solution
of (3.6) whose kernel is SA, and let

H := C −R1/2BTQSA .(3.7)

Now let PSΓ be the (unique) symmetric solution of the ARE

ΓP + PΓT + PHTR−1HP = 0,(3.8)

whose kernel is SΓ. Again the existence and uniqueness of such solution is guaranteed
since Γ has unmixed spectrum [14].

Now define the all-pass functions

K(s) := I −BT (sI −A)−1QSAB(3.9)

and

Q(s) := I −R−1/2H(sI − Γ)−1PSΓH
TR−1/2.(3.10)

Computing the product W−(s)K(s)Q(s) we get

WS(s) := W−(s)K(s)Q(s)(3.11)

= [R1/2 + C(sI +AT )−1B][I −BT (sI −A)−1QSAB]Q(s)(3.12)

= [R1/2 + (C −R1/2BTQSA)(sI +AT +BBTQSA)−1B]

× [I −R−1/2H(sI − Γ)−1PSΓH
TR−1/2](3.13)

= R1/2 + (C −R1/2BTQSA)(sI +AT +BBTQSA)−1(B − PSΓC
TR−1/2),(3.14)

and hence WS(s) is clearly a minimal spectral factor.
Conversely, given any minimal spectral factor W1(s), the all-pass function defined

by U1(s) := W−(s)−1W1(s) is an inner function that admits the inner factorization
U1(s) = K(s)Q(s), where K(s) is such that W−(s) and W1,−(s) := W−(s)K(s) have
the same zero structure and Q(s) is such that W1,−(s) and W1(s) = W1,−(s)Q(s)
have the same pole structure [4, Lemma 3.6]. From this fact, using Theorems 3.1 and
3.2 in [14], we can conclude that K(s) has a realization of the form (3.9) and Q(s)
has a realization of the form (3.10) for a certain couple QSA and PSΓ of solutions of
(3.6) and (3.8), respectively. To the pair (QSA , PSΓ), there corresponds the couple of
subspaces SA := kerQSA and SΓ := kerPSΓ , invariant for AT and ΓT , respectively.

It remains to show that the map assigning a minimal spectral factor to each
S ∈ S is injective. From equation (3.14) we see that the state matrix of a minimal
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realization of WS(s) is given by F := −AT − BBTQSA , where QSA is the unique
solution of equation (3.6) s.t. its kernel is SA. Since the subspace SA is AT -invariant,
we have that, in a basis where the first vectors form a basis for SA and the remaining
vectors form a basis for (SA)⊥, AT has the structure AT =

[A11 A12
0 A22

]
. In this basis,

the matrix QSA has the structure QSA =
[ 0 0

0 QR

]
, where QR is a nonsingular matrix.

In fact QSA is a symmetric matrix whose kernel is SA. Moreover, denoting by M the
lower right block of the matrix BBT partitioned conforming with AT , QR is the
unique nonsingular solution of the following reduced-order ARE:

AT22X +XA22 +XMX = 0.(3.15)

Hence the state matrix F of WS(s) can be written as

F = −AT −BBTQSA =
[
−A11 −A12

0 −A22

]
−
[

0 ∗
0 MQR

]
(3.16)

=
[
−A11 ∗∗

0 −A22 −MQR

]
=
[
−A11 ∗∗

0 Q−1
R AT22QR

]
,(3.17)

where the values of the blocks ∗ and ∗∗ have no influence on the argument. Since A
has the structure

A =

[
AT11 0

AT12 AT22

]
,

we can conclude that the restriction of F to SA coincides with the restriction of −AT
to SA, and the map induced by F in the quotient space Rn/SA is similar to the
map induced by A in the same quotient space. Since A has unmixed spectrum, this
implies that to different AT -invariant subspaces there correspond spectral factors with
different pole structure which are therefore necessarily different.

A similar argument shows that to different ΓT -invariant subspaces there corre-
spond different spectral factors.

The following corollary characterizes the state and zero dynamics of the spectral
factor WS(s) corresponding to the pair S = (SA, SΓ).

COROLLARY 3.2. The minimal spectral factor WS(s) has a minimal realization
where the state and the zero matrices F and Λ are s.t.

(1) the restriction of F to SA coincides with the restriction of −AT to SA.
(2) the map induced by F in the quotient space Rn/SA is similar to the map

induced by A in the same quotient space.
(3) the restriction of Λ to SΓ coincides with the restriction of Γ to SΓ.
(4) the map induced by Λ in the quotient space Rn/SΓ is similar to the map

induced by −ΓT in the same quotient space.
Proof. The first two points of the corollary are proven by equation (3.16). The

proof of points (3) and (4) is similar.
Remark 3.3. We notice that, in Lemma 3.1, the choice of W−(s) as the reference

spectral factor has been made just for the sake of simplicity. In fact, from the proof of
that lemma, we see that its validity is independent on this assumption, and it remains
true starting from any minimal spectral factor W (s) such that the corresponding state
and zero matrices A and Γ satisfies conditions (3.3). For example, a spectral factor
(different from W−(s)) which satisfies condition (3.3) is W+(s), the unique minimal
stable spectral factor whose inverse is antistable.
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We now give an explicit and direct characterization of the set W in term of a set
of solutions of a unique ARE of dimension 2n. To this aim we define the two matrices
L and Z in the following way:

L := [−BT | R−1/2C], Z :=
[
A 0
0 Γ

]
.(3.18)

Notice that, since both A and Γ are stability matrices, also the spectrum σ(Z) of Z
is unmixed, i.e.,

σ(Z) ∩ σ(−Z) = ∅.(3.19)

For compactness of notation we shall represent each element S = (SA, SΓ) ∈ S as
a subspace of R2n. More precisely,

S :=
{
S =

{
z =

[
x
0

]
+
[

0
y

]
: x ∈ SA, y ∈ SΓ

}
: SA ∈ SA, SΓ ∈ SΓ

}
.

Clearly each S ∈ S is an invariant subspace of Z. The converse is true if and only if
A and Γ have disjoint spectra:

σ(A) ∩ σ(Γ) = ∅.(3.20)

Consider the following ARE whose solutions are in one-to-one correspondence
with the set of invariant subspaces of ZT :

Z∆ + ∆ZT + ∆LTL∆ = 0.(3.21)

In view of such correspondence, with each S ∈ S we can associate a symmetric
solution of equation (3.21): we shall denote by ∆S such solution. Let DS be the set
of solution of (3.21) corresponding to S:

DS := {∆S : S ∈ S}.(3.22)

We observe that, in the case when A and Γ have disjoint spectra, DS is the set of
all symmetric solutions of (3.21). Also, notice that, given the subspace S ∈ S, the
solution ∆S may be computed by employing a standard procedure.

In the following proposition we provide an explicit characterization of the set W
in terms of the elements of DS .

PROPOSITION 3.4. There exists a one-to-one correspondence between the set W
of the minimal square spectral factors of Φ(s) and the set DS above defined. More
precisely, we have

W = {W−(s)[I − L(sI − Z)−1∆LT ] : ∆ ∈ DS }.(3.23)

Proof. Let S =
{[ x

0

]
+
[ 0
y

]
: x ∈ SA, y ∈ SΓ

}
∈ S, and denote by QSA ,

PSΓ , and ∆S the solutions of (3.6), (3.8), and (3.21) corresponding to SA, SΓ, and S,
respectively. Moreover, set

∆ :=

[
QSAPSΓQSA +QSA QSAPSΓ

PSΓQSA PSΓ

]
.(3.24)
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We now show that

∆S = ∆.(3.25)

To this aim, it is sufficient to prove that the matrix ∆ given by (3.24) solves equation
(3.21) and that ker ∆ = S. The first of these two facts may be checked by plugging
the left-hand side of (3.24) into equation (3.21) and analyzing the resulting equation
block by block. The upper left block is given by

AQSA +QSAA
T +QSABB

TQSA

+ (QSABB
TQSA +AQSA −QSABR−1/2C)PSΓQSA

+ QSAPSΓ(QSABB
TQSA +QSAA

T − CTR−1/2BTQSA)

+ QSAPSΓ(QSABB
TQSA − CTR−1/2BTQSA −QSABR−1/2C + CTR−1C)PSΓQSA .

(3.26)

The sum of the first three terms vanishes in view of equation (3.6). Again, in view of
equation (3.6) and using the definition of Γ, the terms in the first parenthesis reduce
to QSAΓ. Symmetrically the second parenthesis reduces to ΓTQSA . Finally, it is easy
to see that the terms in the last parenthesis add up to HR−1H, where H is defined in
(3.7). The upper left block is therefore QSA(ΓPSΓ + PSΓΓT + PSΓC1R

−1C1PSΓ)QSA ,
and this clearly vanishes since PSΓ solves (3.8). Similarly one can check that the other
blocks are equal to zero. Therefore ∆ is a symmetric solution of (3.21).

The fact that ker ∆ = S follows from the identity[
QSAPSΓQSA +QSA QSAPSΓ

PSΓQSA PSΓ

]
=

[
I QSA
0 I

][
QSA 0

PSΓQSA PSΓ

]
,(3.27)

which implies

ker ∆ = ker

[
QSA 0

PSΓQSA PSΓ

]

=
{[

x
y

]
: QSAx = 0, PSΓQSAx+ PSΓy = 0

}

=
{[

x
y

]
: x ∈ kerQSA , y ∈ kerPSΓ

}
= S.

(3.28)

In this way equation (3.25) remains proven.
Now we show that

I − L(sI − Z)−1∆SL
T = K(s)Q(s),(3.29)

where K(s) and Q(s) are defined by (3.9) and (3.10). Taking into account that

QSABR
−1/2H = QSABR

−1/2C −QSABBTQSA
= −QSAAT −QSAΓ−QSABBTQSA(3.30)

= AQSA −QSAΓ = QSA(sI − Γ)− (sI −A)QSA ,(3.31)
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where the first equality follows from the definition (3.7) of H, the second from the
definition of Γ, and the third from (3.6), we get

K(s)Q(s) = BT (sI −A)−1QSA(PSΓH
TR−1/2 −B)(3.32)

− (R−1/2H +BTQSA)(sI − Γ)−1PSΓH
TR−1/2 + I.

From this equation, using again the definition (3.7) of H we immediately get equation
(3.29).

The previous argument, together with equation (3.11) and Lemma 3.1, proves
equation (3.23).

Remark 3.5. Proposition 3.4 extends a result presented in [4], where the assump-
tion (3.20) was made, to arbitrary coercive spectral densities. In particular, as was
pointed out in [2], if condition (3.20) fails, then there exist solutions of equation (3.21)
corresponding to nonminimal spectral factors: Proposition 3.4 characterizes the set
DS of the solutions of (3.21) corresponding to minimal spectral factors.

Remark 3.6. In [6] a characterization of minimal spectral factors in terms of
the solutions of a pair of n-dimensional ARE was presented. Proposition 3.4 gives
a characterization of minimal spectral factors at once in terms of the solutions of
a unique 2n-dimensional ARE. The advantage of such characterization is that of
representing the class of minimal spectral factors in terms of a unique parameter
∆ ∈ DS , as shown by equation (3.23). In this way, the comparison of different
spectral factors is more direct as is shown, for example, in the next section, where
the difference of minimal spectral factors is considered. Also, such a representation
of the class W in terms of a unique parameter ∆ seems to be very natural when one
minimal spectral factor has to be selected in the classW by minimizing a certain cost
function. Finally, from the numerical point of view, the 2n-dimensional ARE (3.21)
is not more complex than a pair of n-dimensional AREs. In fact, since the matrix Z
is block-diagonal, equation (3.21) may be easily decoupled.

Remark 3.7. Let ∆ be an element of DS partitioned into four n× n blocks:

∆ =

[
∆11 ∆12

∆21 ∆22

]
.(3.33)

As we have shown in the proof of the previous proposition, ∆ has the form (3.24).
Hence we have1 {

PSΓ = ∆22,

PSA = ∆11 −∆12∆]
22∆21.

(3.34)

This observation and equations (3.11) provide a minimal realization of the spectral
factor W∆(s) directly in terms of A, B, C, R, and the solution ∆.

1In this paper, if ∆ is a matrix, ∆] will denote the Moore–Penrose pseudoinverse of ∆, i.e., the
unique matrix s.t.

(1) ∆∆]∆ = ∆,
(2) ∆]∆∆] = ∆],
(3) (∆∆])T = ∆∆],
(4) (∆]∆)T = ∆]∆.
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4. Continuity. In this section we investigate the properties of continuity of the
function Θ, which associates a solution ∆S ∈ DS with the ZT -invariant subspace
S ∈ S, and of the function Ξ, which associates a minimal spectral factor W∆(s) ∈ W
to ∆ ∈ DS . To this aim, we specify a metric for each of the three sets S, DS , and
W. We endow the vector space Cn (n ∈ N) with the usual Euclidean norm; i.e., for
x ∈ Cn, ‖x‖e := (x∗x)1/2 (with the symbol x∗ we denote the conjugate transpose of
x). We define, as usual, ‖Y ‖ := max{‖Y x‖e : x ∈ Cn, ‖x‖e = 1} to be the norm of a
matrix Y ∈ Cm×n. It is well known that ‖Y ‖ equals the largest singular value of the
matrix Y , i.e., the square root of the largest eigenvalue of Y ∗Y . Since DS ⊂ Cn×n,
the norm ‖ · ‖ defined above induces a metric in the set DS .

Since Φ(s) is a spectral density, it is analytic on an open strip including the
imaginary axis. Then any minimal spectral factor W (s) ∈ W is analytic in the same
strip, and this implies that the matrix norm of W (iω) is a bounded function of ω ∈ R,
or, more compactly, W (s) ∈ L∞m×m(I). Hence, we endow the set W with the metric
induced by the L∞m×m(I) norm; i.e., if W (s) ∈ W, ‖W (s)‖∞ := supω∈R ‖W (iω)‖,
where by ‖W (iω)‖ we intend the norm of the matrix W (iω) as defined above. Finally
we endow the set S with the gap metric. This is defined as follows: Let S1, S2 ∈ S,
and define

d : S × S −→ R+,

S1 × S2 7→ d(S1, S2) := ||PS1 − PS2 ||,
(4.1)

where PSi , i = 1, 2, is the (linear) operator of orthogonal projection onto the space Si.
(This function d defines a metric in the set of subspaces of R2n). Next we recall some
well-known facts. Let L2

m[a, b] be the space of m-dimensional vector-valued functions
v(t) such that

∫ b
a
vT (t)v(t)dt < +∞. The number

∫ b
a
vT (t)v(t)dt is the L2

m[a, b]-norm
of v(t), and it is denoted by ‖v‖2. As a standard application of Parseval equality and
the Bochner theorem (see, e.g., [5]) we have that if{

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t)

(4.2)

is a linear system where A ∈ Rn×n is a stability matrix, B ∈ Rn×m, and C ∈ Rp×n,
then the transfer function G(s) = C(sI − A)−1B + D is in L∞p×m(I) and its norm is
given by

‖G(s)‖∞ = sup{‖yu(t)‖2 : u ∈ L2
m[0,∞], ‖u(t)‖2 = 1},(4.3)

where yu(t) is the forced response of system (4.2) to the input u(t). The function
G(s) is in fact in H∞p×m [5], and (4.3) is also the H∞ norm of G(s).

To prove our result on the continuity properties of Θ, Ξ, we need some preliminary
results. First, we recall from [9] that, given two matrices A ∈ Rn×n and B ∈ Rn×m
and denoting by λm(A) the smallest singular value of A, the following inequality
holds:

‖AB‖ ≥ λm(A)‖B‖.(4.4)

The next two lemmas collect some results that will be useful in what follows.
LEMMA 4.1. The pair (L,Z) defined by equation (3.18) is observable.
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Proof. Since equation (3.1) is a minimal realization of a minimal spectral factor,
the spectral density Φ(s) = W−(s)W

T

−(−s) has McMillan degree 2n (where n is the
dimension of the square matrix A). Using the realization (3.1) we get

Φ(s) = W−(s)W
T

−(−s)

= R+ C(sI +AT )−1BR1/2(4.5)

− R1/2BT (sI −A)−1CT − C(sI +AT )−1BBT (sI −A)−1CT .

We now define N to be the unique solution of the following Lyapunov equation:

BBT = ATN +NA.(4.6)

The existence and uniqueness of such N are due to the stability of A. Equation (4.6)
yields immediately BBT = (sI + AT )N − N(sI − A). Plugging this expression of
BBT in equation (4.5) we get

Φ(s) =
[
−CN −R1/2BT C

] [ sI −A 0
0 sI +AT

]−1

×
[

CT

BR1/2 +NCT

]
+R.

(4.7)

Since Φ(s) has McMillan degree 2n, its realization (4.7) is minimal and hence observ-
able. Therefore, using the celebrated Popov–Bielevich–Hautus test, we have

Rank

 λI −A 0
0 λI +AT

−CN −R1/2BT C

 = 2n ∀λ ∈ C.(4.8)

This immediately implies

2n = Rank

 λI −A 0
0 λI +AT

−CN −R1/2BT C

(4.9)

= Rank

 I 0 0
−N I 0

0 0 I

 I 0 0
0 I BR−1/2

0 0 R−1/2



×

 λI −A 0
0 λI +AT

−CN −R1/2BT C

[ I 0
N I

](4.10)

= Rank
[
λI − Z
L

]
∀λ ∈ C.(4.11)

This concludes the proof.
Before introducing the next lemma we give a definition and recall some well-

known results. Given a pair of matrices Z ∈ Rn×n and G ∈ Rn×m, we define R(Z,G)
[0.T ]

as the following reachability operator:

R(Z,G)
[0.T ] : L2

m[0, T ] −→ Rn,

u(·) 7→ R(Z,G)
[0.T ] (u) :=

∫ T

0
eZtGu(t)dt.

(4.12)
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For simplicity of notation, from now on, we shall drop the (Z,G) and simply write
R[0,T ]. We define the norm ‖R[0,T ]‖o as the operator norm induced on R[0,T ] by the
usual norms ‖ · ‖2 and ‖ · ‖e on L2

m[0, T ] and Rn, respectively. Precisely,

‖R[0,T ]‖o = sup{‖R[0,T ](u)‖e : u ∈ L2
m[0, T ], ‖u(t)‖2 = 1}.(4.13)

It is easy to see that

‖R[0,T ]‖o =

∥∥∥∥∥
∫ T

0
eZtGGT eZ

T tdt

∥∥∥∥∥
1/2

.(4.14)

In fact R[0,T ] is a linear operator on Hilbert spaces, and hence the well-known relation

‖R[0,T ]‖o = ‖R∗[0,T ]R[0,T ]‖1/2o ,(4.15)

where R∗[0,T ] is the adjoint of R[0,T ], holds.
LEMMA 4.2. Let Z ∈ Rn×n be a matrix with no eigenvalues on the imaginary

axis, G ∈ Rn×m, and R[0,1] be the corresponding reachability operator defined in
(4.12). Then, there exist a real constant k > 0 independent of G and a function
ū ∈ L2

m[0, 1] s.t. ‖ū‖2 = 1 and

‖R[0,1]‖o ≥ ‖R[0,1](ū)‖e ≥ k‖G‖.(4.16)

Proof. By definition we have ‖G‖ = max‖u‖e=1 ‖Gu‖e. Then, denoting by um the
vector um := arg max‖u‖e=1 ‖Gu‖e and by g the vector g := Gum we have

‖G‖ = ‖g‖e.(4.17)

Set ū(t) := um, t ∈ [0, 1]. Clearly, ū ∈ L2
m[0, 1] and ‖ū‖2 = 1.

Since Z has no eigenvalues on the imaginary axis, it is nonsingular, and hence we
can write

‖R[0,1]‖o ≥ ‖R[0,1](ū)‖e =
∥∥∥∥∫ 1

0
eZtGumdt

∥∥∥∥
e

(4.18)

=
∥∥∥∥∫ 1

0
eZtdtg

∥∥∥∥
e

= ‖Z−1(eZ − I)g‖e(4.19)

≥ λm(Z−1(eZ − I))‖g‖e(4.20)

= k‖G‖,(4.21)

where k := λm(Z−1(eZ − I)) is the smallest singular value of Z−1(eZ − I) and (4.20)
is obtained in view of equation (4.4). We now observe that Z has no eigenvalues on
the imaginary axis, and hence eZ − I is nonsingular. Then, so is Z−1(eZ − I), and
therefore k, the smallest singular value of Z−1(eZ − I), is strictly positive.

The following theorem, which is our main result, establishes the continuity of
functions Θ and Ξ and their inverses.

THEOREM 4.3. The maps

Θ : S −→ DS ,
S 7→ ∆S

(4.22)
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and

Ξ : DS −→ W,

∆ 7→ W∆(s)
(4.23)

are homeomorphisms.
Proof. The proof for the map Θ can be obtained with trivial modifications from

[19, Theorem 4.3].
We now prove the continuity of the map Ξ. Let µ := ‖W−(s)‖∞ and ν :=

‖L(sI − Z)−1‖∞. Since A and Z are stability matrices, they have no eigenvalues
on the imaginary axis. Hence µ and ν are finite nonnegative real numbers. Now let
∆,∆1 ∈ DS . In view of Proposition 3.4, we have

‖Ξ(∆)− Ξ(∆1)‖∞ = ‖W−(s)[L(sI − Z)−1(∆−∆1)LT ]‖∞.(4.24)

Now recall that if U(s) ∈ L∞p×q, V (s) ∈ L∞q×r, then ‖U(s)V (s)‖∞ ≤ ‖U(s)‖∞‖V (s)‖∞.
Then from equation (4.24) it follows that

‖Ξ(∆)− Ξ(∆1)‖∞ ≤ µν‖L‖‖∆−∆1‖,(4.25)

and this immediately yields

‖Ξ(∆)− Ξ(∆1)‖∞
‖∆−∆1‖→0
−−−−−−−−→ 0.(4.26)

It remains to prove continuity of the map Ξ−1. Assume that W (s) and W1(s)
are two minimal spectral factors and ∆ and ∆1 are the corresponding solutions of
equation (3.21).

Since the spectral density Φ(s) is, by assumption, coercive, the smallest singular
value λm(W−(iω)) of W−(iω), is, as a function of ω, bounded away from zero, i.e.,

inf
ω
λm(W−(iω)) = c > 0.(4.27)

Thus, in view of equation (4.4), we have

‖Ξ(∆)− Ξ(∆1)‖∞(4.28)

= ‖W−(s)L(sI − Z)−1(∆−∆1)LT ‖∞(4.29)

= sup
ω
‖W−(iω)L(iωI − Z)−1(∆−∆1)LT ‖(4.30)

≥ sup
ω

[λm(W−(iω))‖L(iωI − Z)−1(∆−∆1)LT ‖](4.31)

≥ inf
ω

[λm(W−(iω))] sup
ω
‖L(iωI − Z)−1(∆−∆1)LT ‖(4.32)

= c‖L(sI − Z)−1(∆−∆1)LT ‖∞.(4.33)

Since c > 0, the comparison of equations (4.33) and (4.28) proves that

‖L(sI − Z)−1(∆−∆1)LT ‖∞
‖Ξ(∆)−Ξ(∆1)‖∞→0
−−−−−−−−−−−−−−−−→ 0.(4.34)

We now use Lemmas 4.2 and 4.1 to prove that if ‖L(sI−Z)−1(∆−∆1)LT ‖∞ → 0,
then also

‖(∆−∆1)LT ‖ → 0.(4.35)
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Define G := (∆ − ∆1)LT . Since Z is a stability matrix, as we have recalled in
(4.3), the norm ‖L(sI − Z)−1G‖∞ is given by

‖L(sI − Z)−1G‖∞ = sup
u∈L2

m[0,+∞)

‖u‖2=1

‖yu(·)‖2,(4.36)

where yu(·) is defined by

yu(t) :=
∫ t

0
LeZ(t−σ)Gu(σ)dσ.(4.37)

From (4.36) we easily get

‖L(sI − Z)−1G‖∞ ≥ sup
u∈L2

m[0,1]

‖u‖2=1

‖yu(·)‖2.(4.38)

We observe that if u ∈ L2
m[0, 1], then yu(t) is, for t ≥ 1, the free response the

system (G,Z,L) corresponding to the initial state x(1) = R[0,1](u), where R[0,1] is the
operator defined in (4.12). Also, it is obvious that

∫ +∞
0 ‖y(t)‖2edt ≥

∫ +∞
1 ‖y(t)‖2edt,

and hence we can write

sup
u∈L2

m[0,1]

‖u‖2=1

‖yu(·)‖2 ≥ sup
u∈L2

m[0,1]

‖u‖2=1

(∫ ∞
1
‖yu(t)‖2edt

)1/2

(4.39)

= sup
u∈L2

m[0,1]

‖u‖2=1

(∫ +∞

1
‖LeZ(t−1)R[0,1](u)‖2edt

)1/2

(4.40)

= sup
u∈L2

m[0,1]

‖u‖2=1

(∫ +∞

0
‖LeZtR[0,1](u)‖2edt

)1/2

,(4.41)

where the derivation of equation (4.41) is immediate.
Since Z is a stability matrix, it has no eigenvalues on the imaginary axis. Thus,

we can employ Lemma 4.2, which proves the existence of an L2
m[0, 1] function ū

with unitary norm and of a positive constant k independent of G s.t., defining x̄ :=
R[0,1](ū), we have

‖x̄‖e ≥ k‖G‖.(4.42)

From the latter equation and equations (4.36), (4.38), and (4.39) we get

‖L(sI − Z)−1G‖∞ ≥
(∫ +∞

0
‖LeZtx̄‖2edt

)1/2

=
(
x̄TOx̄

)1/2
,(4.43)

where O is the observability Gramian of the pair (Z,L). Since, as we proved in Lemma
4.1, the pair (Z,L) is observable, the matrix O is positive definite and hence it may
be factored as O = V TV , where V is nonsingular. Thus, the smallest singular value
λm(V ) of V is strictly positive. Therefore, employing equation (4.4), we get

‖L(sI − Z)−1G‖∞ ≥ ‖V x̄‖ ≥ λm(V )‖x̄‖e ≥ k1‖G‖,(4.44)
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where k1 := kλm(V ) is strictly positive. We can then conclude that if ‖L(sI −
Z)−1(∆−∆1)LT ‖∞ → 0, then also ‖(∆−∆1)LT ‖ = ‖G‖ → 0. This clearly implies
that

‖∆LTL∆−∆1L
TL∆1‖ → 0.(4.45)

In fact, defining X := ∆LT and X1 := ∆1L
T , we have

‖∆LT −∆1L
T ‖ = ‖X −X1‖(4.46)

≥ 1
2‖Xm‖

[‖X −X1‖‖XT
1 ‖+ ‖X‖‖XT −XT

1 ‖](4.47)

≥ 1
2‖Xm‖

‖X1X
T
1 −XXT ‖(4.48)

= k2‖∆LTL∆−∆1L
TL∆1‖,(4.49)

with k2 := 1
2‖Xm‖ > 0 and Xm := ∆mL

T , where ∆m is the solution of (3.21) which
maximizes the norm ‖∆mL

T ‖. (Such solution exists since the set of solutions of (3.21)
is compact.)

Since both ∆ and ∆1 solve (3.21), equations (4.46) to (4.49) may be rewritten as

‖∆LT −∆1L
T ‖ ≥ k2‖Z(∆−∆1) + (∆−∆1)ZT ‖,(4.50)

where k2 is strictly positive. This clearly implies that if ‖(∆−∆1)LT ‖ → 0 then also

‖Z(∆−∆1) + (∆−∆1)ZT ‖ → 0.(4.51)

Finally we have to prove that (4.51) implies

‖∆−∆1‖ → 0.(4.52)

To see this define Y := ∆ −∆1 and W := Z(∆ −∆1) + (∆ −∆1)ZT . Since Z is a
stability matrix, the Lyapunov equation

ZY + Y ZT = W(4.53)

has the unique solution

Y = ∆−∆1 =
∫ ∞

0
eZtWeZ

T tdt,(4.54)

and then we have

‖∆−∆1‖ =
∥∥∥∥∫ ∞

0
eZtWeZ

T tdt

∥∥∥∥(4.55)

≤
∫ ∞

0
‖eZtWeZ

T t‖dt(4.56)

≤
∫ ∞

0
‖eZt‖2dt‖W‖(4.57)

= k3‖W‖,(4.58)
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where k3 :=
∫∞

0 ‖e
Zt‖2dt is finite since Z is a stability matrix. This proves formula

(4.52) and concludes the proof.
COROLLARY 4.4. The map Ξ and its inverse are Lipschitz continuous.
Proof. From the first part of the proof of Theorem 4.3, it immediately follows

that if ∆ and ∆1 are elements of DS , then

‖Ξ(∆)− Ξ(∆1)‖∞ ≤ K‖∆−∆1‖,(4.59)

where K is given by

K = ‖W−(s)‖∞‖L‖ · ‖L(sI − Z)−1‖∞.(4.60)

On the other hand, comparing inequalities (4.28)–(4.33), (4.44), (4.50), and
(4.55)–(4.58) we get

‖∆−∆1‖ ≤ K̄‖Ξ(∆)− Ξ(∆1)‖∞,(4.61)

where K̄ := k3
ck1k2

is finite since k3 is finite and c, k1, and k2 are strictly positive.
(See the definitions of c, k1, k2, and k3, in (4.33), (4.44), (4.50), and (4.58), respec-
tively.)

Remark 4.5. It is worth noting that equations (4.59) and (4.60) give

‖W∆(s)−W∆1(s)‖∞
‖W−(s)‖∞

≤ k‖∆−∆1‖,(4.62)

where k = ‖L‖ · ‖L(sI − Z)−1‖∞. We observe that for all spectral factors W (s) of
Φ(s) we have ‖W−(s)‖∞ = ‖W (s)‖∞ = ‖Φ(s)‖1/2∞ . Then the denominator of the
left-hand side of (4.62) is a constant depending only on Φ(s), and thus the left-hand
side of (4.62) has the meaning of relative error on determination of the spectral factor
given an error ‖∆−∆1‖ on the solution of the ARE (3.21). From equation (4.62) we
see that given a spectral density corresponding to a small k, if ∆1 is close to ∆, then
the relative error on W∆1(s) (with respect to W∆(s)) is small. On the contrary, for
spectral density corresponding to a large k, this is not guaranteed.

The value of k depends on L and Z, which depend only on the data of the problem.
Roughly speaking, once the matrix L has been fixed, the value of k depends on the
stability margin of Z and hence on the stability margin of A and Γ. Thus for spectral
factors with zeros and poles far from the imaginary axis, the relative error on the
spectral factor is not much larger of the error on the solution of the ARE (3.21).
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Abstract. We propose augmented Lagrangian methods to solve state and control constrained
optimal control problems. The approach is based on the Lagrangian formulation of nonsmooth
convex optimization in Hilbert spaces developed in [K. Ito and K. Kunisch, Augmented Lagrangian
Methods for Nonsmooth Convex Optimization in Hilbert Spaces, preprint, 1994]. We investigate a
linear optimal control problem with a boundary control function as in [M. Bergounioux, Numer.
Funct. Anal. Optim., 14 (1993), pp. 515–543]. Both the equation and the constraints are augmented.
The proposed methods are general and can be adapted to a much wider class of problems.
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elliptic equations
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1. Setting of the problem. Let Ω be an open, bounded subset of Rn, n ≤ 3,
with a smooth boundary Γ. We consider the following optimal control problem:

(P) min J(y, u) =
1
2

∫
Ω

(y − zd)2 dx+
α

2

∫
Γ

(u− ud)2 dσ,

Ay = f in Ω, y = u on Γ,(1.1)

Λ1y ∈ K, u ∈ U,(1.2)

where
• f, zd ∈ L2(Ω), u, ud ∈ L2(Γ), and either α > 0 or Uad is bounded in L2(Γ);
• A is an elliptic operator defined by

Ay = −
n∑

i,j=1

∂xi(aij(x)∂xjy) + a0(x)y with

aij , a0 ∈ C2(Ω̄) for i, j = 1, . . . , n, inf {a0(x) | x ∈ Ω̄} > 0,
n∑

ij=1

aij(x)ξiξj ≥ δ
n∑
i=1

ξ2
i ∀x ∈ Ω̄,∀ξ ∈ Rn, δ > 0;

(1.3)

• L is a Hilbert space (with dual L′ identified with L) and Λ1 ∈ L(W,L) (W
is defined just below).
• K and U are nonempty, closed, convex subsets of L and L2(Γ), respectively.
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System (1.1) is well-posed: for every (u, f) ∈ L2(Γ) × L2(Ω) there exists a unique
solution y = T (u, f) in W , where

W = { y ∈ L2(Ω) | Ay ∈ L2(Ω) , y|Γ ∈ L2(Γ)}.

Moreover T is continuous from L2(Γ) × L2(Ω) to W , when W is endowed with the
graph norm:

|y|2W = |y|2Ω + |Ay|2Ω + |y|Γ|2Γ.

For more details, one may refer to Lions and Magenes [7, Vol. 1, Chap. 2]. From now
on, when H is a Hilbert space, we denote by ( , )H (resp., ( , )Ω and ( , )Γ) the H
(resp., L2(Ω) and L2(Γ)) inner products and by | |H , | |Ω, | |Γ the H, L2(Ω), and
L2(Γ) norms, respectively.

We assume that the feasible domain

D = { (y, u) ∈W × L2(Γ) | Ay = f in Ω, y = u on Γ, (Λ1y, u) ∈ K × U }

is nonempty. It is easy to see that problem (P) has a unique solution (ȳ, ū) since the
functional J is strictly convex and coercive and D is convex, closed, and nonempty.
Our main purpose is to retrieve optimality conditions for such a problem, with a new
“penalization” method and to use them as a basis for numerical algorithms. Indeed,
this has been done via a penalization of the state equation only in Bergounioux [1],
where the existence of Lagrange multipliers for the state equation has been proved
under appropriate qualification conditions. Here we use a different point of view, since
we also use a penalization of the nonsmooth constraints Λ1y ∈ K, u ∈ U with an aug-
mented Lagrangian method as in Ito and Kunisch [6]. Optimality systems have been
derived by other authors before. We mention, for instance, the work of Bonnans and
Casas [3, 4] and the references given in [1]. In contrast to our work, these contribu-
tions are not based on augmented Lagrangian formulations, and they do not analyze
algorithmic aspects. Similarly, the algorithm we present in section 4 is based on the
augmentation of both the state equation and the state and control constraints. The
main contribution of this research is the elimination of these latter constraints from
the set of explicit constraints by augmentation. Commonly augmented Lagrangian
algorithms are based on the augmentation of the state equation only. This is the case
for instance for all the methods described in [5].

2. Augmented Lagrangian formulation. In this section we use the frame-
work of [6]. We denote

X = W × L2(Γ), H = L× L2(Γ), D = K × U.

Let Λ be defined from X to H by Λ(y, u) = (Λ1y, u) and ϕ be the characteristic
function of the convex set D. Then, following [6], we define (for any c > 0) the
function ϕc : H ×H → R by

ϕc(x, λ) = inf
ξ∈H

{
ϕ(x− ξ) + (λ, ξ)H +

c

2
|ξ|2H

}
,(2.1)

where x = (y, u).
Here ( , )H is given by (λ, ξ)H = (λ1, ξ1)Ω + (λ2, ξ2)Γ, with λ = (λ1, λ2) and

ξ = (ξ1, ξ2).
Let us give some properties of the function ϕc. (For the proof we refer to [6].)
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PROPOSITION 2.1. For all x ∈ H, λ ∈ H, the infimum in (2.1) is attained at a
unique point ξc(x, λ). ϕc is convex and Lipschitz-continuously Fréchet-differentiable
in x, and

ϕ′c(x, λ) = λ+ c ξc(x, λ) .(2.2)

Moreover limc→+∞ ϕc(x, λ) = ϕ(x).
Now we compute ϕc for our case.
PROPOSITION 2.2. For all x = (y, u) ∈ H and λ = (λ1, λ2) ∈ H

ϕc(x, λ) =
c

2

∣∣∣∣x− PD (x+
λ

c

)∣∣∣∣2
H

+
(
λ, x− PD

(
x+

λ

c

))
H

=
c

2

∣∣∣∣y − PK (y +
λ1

c

)∣∣∣∣2
L

+
(
λ1, y − PK

(
y +

λ1

c

))
L

+
c

2

∣∣∣∣u− PU (u+
λ2

c

)∣∣∣∣2
Γ

+
(
λ2, u− PU

(
u+

λ2

c

))
Γ
,

(2.3)

ϕ′c(x, λ) = c

(
y +

λ1

c
− PK

(
y +

λ1

c

)
, u+

λ2

c
− PU

(
u+

λ2

c

))
,(2.4)

where PK (resp., PU , PD) is the L (resp., L2(Γ), H) projection on K (resp., on U, D).

Proof. Setting ξ̃ = x− ξ in (2.1) we obtain the equivalent representation

ϕc(x, λ) = inf
ξ̃∈H

{
ϕ(ξ̃) +

(
λ, x− ξ̃

)
H

+
c

2
|x− ξ̃|2H

}
.

As (λ, x− ξ̃)H + c
2 |x− ξ̃|2H = c

2 |ξ̃ − (x+ λ
c )|2H − 1

2c |λ|2H and ϕ(ξ̃) = +∞, if ξ̃ /∈ D,
ϕ(ξ̃) = 0 else, it follows that

ϕc(x, λ) =
c

2

[
inf
ξ̃∈D

∣∣∣∣ξ̃ − (x+
λ

c

)∣∣∣∣2
H

]
− 1

2c
|λ|2H .(2.5)

The infimum is attained at ξ̃ = PD(x+ λ
c ). We define ξc so that ξ̃ = x− ξc; that is,

ξc =
[
y − PK

(
y +

λ1

c

)
, u− PU

(
u+

λ2

c

)]
and

ϕc(x, λ) =
c

2

∣∣∣∣PD (x+
λ

c

)
−
(
x+

λ

c

)∣∣∣∣2
H

− 1
2c
|λ|2H

=
c

2

∣∣∣∣x− PD (x+
λ

c

)∣∣∣∣2
H

+
(
λ, x− PD

(
x+

λ

c

))
H

.

Now we compute ϕ′c with formula (2.2) of Proposition 2.1, ϕ′c(x, λ) = λ+ c ξc(x, λ),
and the desired result follows.

Next we consider the “augmented” problem:

(Pc,λ) min { Fc,λ(y, u) | Ay = f in Ω , y = u on Γ },
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where Fc,λ(y, u) = J(y, u) + ϕc(Λ(y, u), λ) is the augmented Lagrangian function of
(P) associated with the constraint Λ(y, u) ∈ D. We have first an asymptotic result.

THEOREM 2.1. For all λ ∈ H and c > 0, problem (Pc,λ) has a unique solution
(yc,λ, uc,λ).

Moreover for every fixed λ ∈ H

lim
c→+∞

yc,λ = ȳ strongly in W and lim
c→+∞

uc,λ = ū strongly in L2(Γ).

Proof. Let λ ∈ H be fixed. For convenience, we shall omit the subscript λ and
write xc for xc,λ. Existence and uniqueness of a solution (yc, uc) to (Pc,λ) follows
easily since the feasible domain is nonempty, closed, and convex and Fc,λ is strictly
convex and coercive. We set xc = (Λ1yc, uc) ∈ H. To prove convergence of (yc, uc) to
the solution (ȳ, ū) of (P) we first argue that

{
(yc, uc)

}
c≥c0 is bounded, where c0 > 0

is arbitrary and fixed. Since (ȳ, ū) is feasible for (Pc,λ), we have

Fc,λ(yc, uc) ≤ Fc,λ(ȳ, ū) for all c > 0.

Observe from the definition of ϕc in (2.1) that ϕc(Λ(ȳ, ū), λ) = 0 for all c. Hence,
using (2.5), we obtain

J(yc, uc)−
1
2c
|λ|2H ≤ J(yc, uc) + ϕc(Λ(yc, uc), λ) ≤ J(ȳ, ū) for all c > 0.(2.6)

It follows that
{

(yc, uc)
}
c≥c0 is bounded in L2(Ω)×L2(Γ). Since Ayc = f for all c > 0,

the set
{

(yc, uc)
}
c≥c0 is bounded in X as well. Hence there exists (ỹ, ũ) ∈ X such

that a subsequence of
{

(yc, uc)
}
c>0, denoted by the same symbol, converges weakly

in X to (ỹ, ũ). Wellposedness of (1.1) in W implies that Aỹ = f in Ω and ỹ = ũ on
Γ. Due to Proposition 2.2 and (2.6)∣∣∣∣xc − PD (xc +

λ

c

)∣∣∣∣2
H

+
2
c

(
λ, xc − PD

(
xc +

λ

c

))
H

≤ 1
c
J(ȳ, ū)

and consequently∣∣∣∣xc +
λ

c
− PD

(
xc +

λ

c

)∣∣∣∣2
H

≤ 2J(ȳ, ū)
c

+
|λ|2
c2

for all c > 0.(2.7)

Thus (xc + λ
c − PD(xc + λ

c )) converges strongly to 0 in H. As (yc, uc) converges
weakly to (ỹ, ũ) in X and Λ is linear continuous, (xc + λ

c ) converges weakly to x̃ =
(Λ1ỹ, ũ) in H. This yields that PD(xc + λ

c ) converges weakly to x̃ as well. Since D is
closed in H and convex, it is also weakly closed and x̃ ∈ D = K × U . Thus (ỹ, ũ) is
a feasible pair for (P).

Let us prove the strong convergence of (yc, uc) to (ỹ, ũ) in X. First we note that
due to Proposition 2.1 limc→+∞ ϕc(x̃, λ) = ϕ(x̃) = 0. As (ỹ, ũ) is a feasible pair for
(P), it is also a feasible pair for (Pc,λ) for any c > 0 and we have

J(yc, uc) + ϕc(Λ(yc, uc), λ) ≤ J(ỹ, ũ) + ϕc(Λ(ỹ, ũ), λ) for all c > 0.

Relation (2.3) implies that ϕc(Λ(yc, uc), λ) ≥ (λ, xc − PD(xc + λ
c ))H , and consequently

J(yc, uc) +
(
λ, xc − PD

(
xc +

λ

c

))
H

≤ J(ỹ, ũ) +ϕc(Λ(ỹ, ũ), λ) for all c > 0.(2.8)
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We take the limits inferior in this relation. With the strong convergence of
(xc − PD(xc + λ

c )) to 0 in H, we obtain

0 ≤ J(ỹ, ũ) ≤ lim inf
c→+∞

J(yc, uc) ≤ J(ỹ, ũ) + lim
c→+∞

ϕc(Λ(ỹ, ũ), λ) = J(ỹ, ũ).

Finally

lim
c→+∞

J(yc, uc) = J(ỹ, ũ).(2.9)

This implies that (yc, uc) converges strongly to (ỹ, ũ) in L2(Ω) × L2(Γ). Moreover
Ayc = f = Aỹ, and therefore (yc, uc) converges to (ỹ, ũ) strongly in X.

It remains to prove that (ỹ, ũ) = (ȳ, ū). We use relation (2.8) with (ȳ, ū) as a
feasible pair for (P) instead of (ỹ, ũ) and obtain

J(yc, uc) +
(
λ, xc − PD

(
xc +

λ

c

))
H

≤ J(ȳ, ū) + ϕc(Λ(ȳ, ū), λ) for all c > 0.

Taking the limit as c tends to +∞ we have 0 ≤ J(ỹ, ũ) ≤ J(ȳ, ū)(≤ J(ỹ, ũ)). As (ȳ, ū)
is the unique solution of (P) we get the result.

The following section will be devoted to deriving optimality conditions. We first
consider the augmented problem Pc,λ, and we shall then pass to the limit with respect
to c.

3. Optimality conditions.

3.1. Penalized optimality conditions. We first write the necessary optimality
conditions for problem (Pc,λ). This problem can be expressed as

min { Fc,λ(y, u) | e(y, u) = 0},

where e is defined by

e : W × L2(Γ) → L2(Ω)× L2(Γ),
(y, u) 7→ (Ay − f, y|Γ − u).

As the Fréchet derivative e′(yc, uc) of e at (yc, uc) given by

e′(yc, uc) : W × L2(Γ) → L2(Ω)× L2(Γ),
(y, u) 7→ (Ay, y|Γ − u)

is surjective, we may apply the general theory of Lagrange multipliers: There exist
qc ∈ L2(Ω) and rc ∈ L2(Γ) such that the (generalized) Lagrange functional

Lc,λ(y, u, q, r) = J(y, u) + ϕc(Λ(y, u), λ) + (q, Ay − f)Ω + (r, y − u)Γ(3.1)

satisfies the optimality condition

∇(y,u)Lc,λ(yc, uc, qc, rc) = 0.(3.2)

Let us detail the above relation: we may decouple and obtain

(yc − zd, y)Ω + (qc, Ay)Ω + (rc, y)Γ + (µ1,c,Λ1y)L = 0 for all y ∈W,

α (uc − ud, u)Γ − (rc, u)Γ + (µ2,c, u)Γ = 0 for all u ∈ L2(Γ),
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where µ1,c = ∇yϕc(Λ(yc, uc), λ) = c[Λ1yc + λ1
c − PK(Λ1yc + λ1

c )] ∈ L and µ2,c =
∇uϕc(Λ(yc, uc), λ) = c[uc + λ2

c − PU (uc + λ2
c )] ∈ L2(Γ).

We summarize these calculations in the following theorem.
THEOREM 3.1. Let λ be fixed in H and (yc, uc) be the optimal solution of (Pc,λ).

Then there exist (µ1,c, µ2,c) ∈ H and (qc, rc) ∈ L2(Ω)× L2(Γ) such that

Ayc = f in Ω, yc = uc on Γ,

(yc − zd, y)Ω + (qc, Ay)Ω + (rc, y)Γ + (µ1,c,Λ1y)L = 0 for all y ∈W,(3.3)

α (uc − ud)− rc + µ2,c = 0,(3.4)

where

µ1,c = c

[
Λ1yc +

λ1

c
− PK

(
Λ1yc +

λ1

c

)]
∈ L,

µ2,c = c

[
uc +

λ2

c
− PU

(
uc +

λ2

c

)]
∈ L2(Γ).

(3.5)

3.2. Passage to the limit. The approximate optimality systems of Theorem
3.1 were obtained without assumption beyond those that are required to ascertain
existence of a solution to (P). To obtain an optimality system for (P) itself we pass
to the limit as c tends to +∞ in (3.3)–(3.5). This requires a priori estimates for qc
and rc which depend upon qualification conditions.

More precisely, let V = V1×V2 be a dense separable Banach subspace of L2(Ω)×
L2(Γ). We introduce the following assumption:

(H)

There exists a bounded (in L2(Ω)× L2(Γ)) subset M of Xsuch that
Λ(M) ⊂ K × Uand 0 ∈ IntV (V(M)),
where IntV denotes the interior with respect to the V -topology and
V(y, u) = (Ay − f, y|Γ − u).

We note that (H) is equivalent to the following:

There exists an L2(Ω)× L2(Γ)-bounded subset M⊂ Xand ρ > 0 such that
for all ξ = (ξ1, ξ2) ∈ BV (0, 1), there exists (yξ, uξ) ∈M satisfying
(Λ1yξ, uξ) ∈ K × Uand Ayξ = f − ρξ1in Ω, yξ = uξ − ρξ2 on Γ.

Here BV (0, 1) denotes the unit ball in V . For f ≡ 0 and V = L2(Ω)×L2(Γ) condition
(H) is satisfied, for example, if 0 ∈ intL×L2(Γ)(K × U).

Under this hypothesis we can pass to the limit in the previous optimality condi-
tions to obtain the main result of this section.

THEOREM 3.2. Let (ȳ, ū) be the optimal solution of (P), and assume that (H)
holds. Then there exist (q̄, r̄) ∈ V ′1 × V ′2 and (µ̄1, µ̄2) ∈ L′1 × V ′2 such that

Aȳ = f in Ω, ȳ = ū on Γ,

(ȳ − zd, y)Ω + 〈q̄, Ay〉V ′1 ,V1

+ 〈r̄, y〉V ′2 ,V2
+ 〈µ̄1,Λ1y〉L′1,L1

= 0 for all y ∈W1,2,
(3.6)
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α (ū− ud)− r̄ + µ̄2 = 0 in V ′2 ,(3.7)

〈µ̄1,Λ1(y − ȳ)〉L′1,L1
≤ 0 for all y ∈ { ȳ +W1,2} such that Λ1y ∈ K,
〈µ̄2, u− ū〉V ′2 ,V2

≤ 0 for all u ∈ U ∩ {ū+ V2},
(3.8)

where W1,2 = { y ∈ L2(Ω) | Ay ∈ V1, y|Γ ∈ V2 } endowed with the norm

|y|2W1,2
= |y|2Ω + |Ay|2V1

+ |y|Γ|2V2
,

L1 = Λ1(W1,2) endowed with the graph norm, and 〈 · , · 〉V ′,V denotes the duality
product between V and V ′.

Proof. Throughout the proof we assume that (λ1, λ2) ∈ L1×V2. We first remark
that (3.5) implies

(µ1,c, z − Λ1yc)L +
|µ1,c|2L
c

≤ 1
c

(µ1,c, λ1)L for all z ∈ K,

(µ2,c, u− uc)Γ +
|µ2,c|2
c
≤ 1
c

(µ2,c, λ2)Γ for all u ∈ U.
(3.9)

We just prove the first inequality (the second one may be proved quite similarly).
The projection PK(Λ1yc + λ1

c ) is characterized by(
z − PK

(
Λ1yc +

λ1

c

)
,Λ1yc +

λ1

c
− PK

(
Λ1yc +

λ1

c

))
L

≤ 0 for all z ∈ K,

and with (3.5) this yields

(µ1,c, z − Λ1yc)L +
|µ1,c|2
c
≤ 1
c

(µ1,c, λ1)L for all z ∈ K.

Thus the first inequality in (3.9) is verified. We next note that (3.5) may be written as

µc
c

= xc +
λ

c
− PD

(
xc +

λ

c

)
,

where xc = Λ(yc, uc). We have seen in the proof of Theorem 2.1 that xc−PD(xc+ λ
c )

converges strongly to 0 in H. Therefore µc
c converges strongly to 0 in H as well, and

there exists co > 0 and M such that(µ1,c

c
, λ1

)
L

+
(µ2,c

c
, λ2

)
Γ
≤M for all c ≥ c0.(3.10)

Now we may obtain estimates on qc and rc. Let ξ be in BV (0, 1) and (yξ, uξ) be the
associated pair given by (H). We add relations (3.3) and (3.4) used with the pair
(yξ − yc, uξ − uc) to obtain

(yc − zd, yξ − yc)Ω + (qc, A(yξ − yc))Ω + (rc, yξ − yc)Γ + (µ1,c,Λ1(yξ − yc))L
+α (uc − ud, uξ − uc)Γ + (µ2,c, uξ − uc)Γ − (rc, uξ − uc)Γ = 0

and consequently

(qc, ρξ1)Ω + (rc, ρξ2)Γ = (yc − zd, yξ − yc)Ω + α (uc − ud, uξ − uc)Γ

+ (µ1,c,Λ1(yξ − yc))L + (µ2,c, uξ − uc)Γ .
(3.11)
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Furthermore, relations (3.9) and (3.10) imply that

(µ1,c,Λ1(yξ − yc))L + (µ2,c, uξ − uc)Γ ≤
(µ1,c

c
, λ1

)
L

+
(µ2,c

c
, λ2

)
Γ
≤M for c ≥ c0.

The convergence properties of Theorem 2.1 and the boundedness assumption on M
in L2(Ω)× L2(Γ) imply that (yc − zd, yξ − yc)Ω + α (uc − ud, uξ − uc)Γ is uniformly
bounded with respect to c ≥ c0. So we obtain with (3.11) the existence of k > 0 such
that

〈qc, ξ1〉V ′1 ,V1
+ 〈rc, ξ2〉V ′2 ,V2

≤ k

ρ
for all ξ = (ξ1, ξ2) ∈ BV (0, 1) and c ≥ c0.

Therefore {qc}c≥c0 is bounded in V ′1 , and a subsequence, again denoted by qc, con-
verges weakly * to some q̄ in V ′1 . Similarly rc is bounded in V ′2 and converges weakly
* to some r̄ in V ′2 . As we have chosen V1 ⊂ L2(Ω) and V2 ⊂ L2(Γ) we may apply to
(3.3) “smooth” test functions in W1,2. Let us consider the Gelfand triple

L1 ⊂ Λ1(W1,2) ⊂ L′1,(3.12)

where Λ1(W1,2) is considered as a subset of L and Λ1(W1,2) denotes the closure of
Λ1(W1,2) in L. Further let µP1,c denote the projection of µ1,c in L onto Λ1(W1,2). It
follows that〈

µP1,c,Λ1y
〉
L′1,L1

= − (yc − zd, y)Ω − 〈qc, Ay〉V ′1 ,V1
− 〈rc, y〉V ′2 ,V2

for all y ∈W1,2.

It follows that, µP1,c is bounded in L′1. Moreover the separability of V1 and V2 implies
the separability of L1 (see Lemma 3.1 below). So a subsequence of µP1,c converges
weakly * to µ̄1 in L′1. Taking the limit in the above equality gives

(ȳ − zd, y)Ω + 〈µ̄1,Λ1y〉L′1,L1
+ 〈q̄, Ay〉V ′1 ,V1

+ 〈r̄, y〉V ′2 ,V2
= 0 for all y ∈W1,2.

Similarly µ2,c = rc−α(uc−ud) converges weakly to µ̄2 = r̄−α(ū−ud) in V ′2 . Thus (3.6)
and (3.7) are verified. It remains to show (3.8). Let y ∈ ȳ+W1,2 and u ∈ ū+V2 be such
that Λ1y ∈ K and u ∈ U . Then we add (3.3) with y−yc = (y− ȳ)+(ȳ−yc) ∈W , and
the relation that results from taking the inner product of (3.4) with u− uc ∈ L2(Γ):

(yc − zd, y − yc)Ω + α (uc − ud, u− uc)Γ + (qc, A(y − yc))Ω

+ (rc, (y − u)− (yc − uc))Γ = − (µ1,c,Λ1(y − yc))L − (µ2,c, u− uc)Γ .

As Ayc = f = Aȳ in Ω and yc = uc on Γ, we get

(yc − zd, y − ȳ)Ω + α (uc − ud, u− ū)Γ + (qc, A(y − ȳ))Ω

+ (rc, y − u)Γ = − (µ1,c,Λ1(y − yc))L − (µ2,c, u− uc)Γ

− (yc − zd, ȳ − yc)Ω − α (uc − ud, ū− uc)Γ .

(3.13)

Moreover relation (3.9) implies

− (µ1,c,Λ1(y − yc))L ≥ −
1
c

(µ1,c, λ1)Ω for all y ∈W such that Λ1y ∈ K,

− (µ2,c, u− uc)Γ ≥ −
1
c

(µ2,c, λ2)Γ for all u ∈ U.
(3.14)
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Thus (3.13) becomes

(yc − zd, y − ȳ)Ω + α (uc − ud, u− ū)Γ

+ (qc, A(y − ȳ))Ω + (rc, y − u)Γ

≥ − 1
c

[
(µ1,c, λ1)Ω + (µ2,c, λ2)Γ

]
− (yc − zd, ȳ − yc)Ω − α (uc − ud, ū− uc)Γ .

(3.15)

Let us denote by σc the term on the right-hand side of (3.15). Since by assumption
(λ1, λ2) ∈ L1 × V2, it is easy to see that limc→+∞ σc = 0.

Next we set successively u = ū and y = ȳ. First, we choose u = ū so that
inequality (3.15) becomes

(yc − zd, y − ȳ)Ω + (qc, A(y − ȳ))Ω + (rc, y − ū)Γ ≥ σc,

and consequently (yc − zd, y − ȳ)Ω + 〈qc, A(y − ȳ)〉V ′1 ,V1
+ 〈rc, y − ȳ〉V ′2 ,V2

≥ σc. We
may now pass to the limit in the previous expression to get

(ȳ − zd, y − ȳ)Ω + 〈q̄, A(y − ȳ)〉V ′1 ,V1
+ 〈r̄, y − ȳ〉V ′2 ,V2

≥ 0.

With (3.6) we finally have

〈µ̄1, y − ȳ〉W ′1,2,W1,2
≤ 0 for all y ∈ { ȳ +W1,2} such that Λ1y ∈ K.

Now we choose y = ȳ and inequality (3.15) gives

α (uc − ud, u− ū)Γ + (rc, ȳ − u)Γ ≥ σc,
α (uc − ud, u− ū)Γ − 〈rc, u− ū〉V ′2 ,V2

≥ σc.

Once again, we may pass to the limit, and we obtain

α (ū− ud, u− ū)Γ − 〈r̄, u− ū〉V ′2 ,V2
≥ 0.

Together with (3.7) this implies the second inequality in (3.8), and the proof is finished
as soon as the following lemma is proved.

LEMMA 3.1. L1 is separable.
Proof. As L1 = Λ1(W1,2) with Λ1 continuous, it is sufficient to prove that W1,2

is separable. Let D1 (resp., D2) be dense countable subsets of V1 (resp., V2). Then
the subset D = {y ∈ L2(Ω) | Ay ∈ D1, y|Γ ∈ D2} is a countable subset of W1,2 (since
T defined in section 1 is a bijection from D1 × D2 onto D). Moreover, the linear
operator T is continuous from V1 × V2 to W1,2. We may therefore assert that D is
dense because of the properties of Vi and the continuity of T .

REMARK 3.1. Let us still denote by Λ1 the restriction of Λ1 to W1,2 (i.e., from
W1,2 to L1). Then the adjoint operator Λ∗1 is defined from L′1 to W ′1,2 and satisfies

〈µ,Λ1y〉L′1,L1
= 〈Λ∗1µ, y〉W ′1,2,W1,2

for all (µ, y) ∈ L′1 ×W1,2.

Then relation (3.6) and the first part of relation (3.8) may be written as

(ȳ − zd, y)Ω + 〈q̄, Ay〉V ′1 ,V1
+ 〈r̄, y〉V ′2 ,V2

+ 〈ν̄1, y〉W ′1,2,W1,2
= 0, for all y ∈W1,2

and 〈ν̄1, y − ȳ〉W ′1,2,W1,2
≤ 0 for all y ∈ { ȳ +W1,2} such that Λ1y ∈ K,

where ν̄1 = Λ∗1µ̄1 ∈W ′1,2.
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3.3. Example. To illustrate the previous abstract result, we give an example
for a particular choice of spaces V and L. Here we set V1 = L2(Ω) and V2 = L2(Γ)
so that V ′1 = L2(Ω), V ′2 = L2(Γ), W1,2 = W .

The previous theorem gives the following optimality system:

q̄ ∈ L2(Ω), r̄ ∈ L2(Γ), and µ̄1 ∈ L′1, µ̄2 ∈ L2(Γ),
Aȳ = f in Ω, ȳ = ū on Γ,

(ȳ − zd, y)Ω + (q̄, Ay)Ω + (r̄, y)Γ + 〈µ̄1,Λ1y〉L′1,L1
= 0 for all y ∈W,

α (ū− ud) = r̄ − µ̄2 ∈ L2(Γ),
〈µ̄1,Λ1(y − ȳ)〉L′1,L1

≤ 0 for all y ∈W such that Λ1y ∈ K,

(µ̄2, u− ū)Γ ≤ 0 for all u ∈ U.

(3.16)

If in addition L is finite dimensional, we may identify the spaces L1, Λ1(W ), and L′1
of the Gelfand triple in (3.12). In this very case the optimality system becomes

q̄ ∈ L2(Ω), r̄ ∈ L2(Γ), and µ̄1 ∈ Λ1(W ), µ̄2 ∈ L2(Γ),(3.17)

Aȳ = f in Ω, ȳ = ū on Γ,(3.18)

(ȳ − zd, y)Ω + (q̄, Ay)Ω + (r̄, y)Γ + (µ̄1,Λ1y)L = 0 for all y ∈W,(3.19)

α (ū− ud) = r̄ − µ̄2 ∈ L2(Γ),(3.20)

(µ̄1,Λ1(y − ȳ))L ≤ 0 for all y such that Λ1y ∈ K,(3.21)

(µ̄2, u− ū)Γ ≤ 0 for all u ∈ U.(3.22)

As a specific example, L can be chosen as the set of linear finite elements with respect
to a triangulation of Ω and Λ1: W → L can be the L2-projection. (H1-projection is
not admitted since the elements of W are not in general H1-smooth.)

REMARK 3.2. Let us still consider the case with V1 = L2(Ω), V2 = L2(Γ), and L
finite dimensional and assume that ΛT1 (L) ⊂ L2(Ω), where ΛT1 : L→ W ′ denotes the
transpose of Λ1. In this case we may introduce p̄ ∈ H2(Ω)∩H1

o (Ω) as the solution of

A∗p̄ = −(ȳ − zd + ΛT1 µ̄1) in Ω, p̄ = 0 on Γ,(3.23)

where A∗ is the adjoint operator of A. Then with Green’s formula relation (3.19)
becomes

(q̄ − p̄, Ay)Ω +
(
r̄ − ∂p̄

∂νA∗
, y

)
Γ

= 0 for all y ∈W.(3.24)

For all z ∈ L2(Ω) there exists y ∈ H2(Ω) ∩H1
o (Ω) ⊂ W such that Ay = z in Ω. So

(3.24) implies (q̄ − p̄, z)Ω = 0 for all z ∈ L2(Ω), that is q̄ = p̄. Then (3.24) gives

r̄ =
∂p̄

∂νA∗
.

Thus we see that relations (3.19), (3.20) are equivalent to

A∗p̄+ ȳ − zd + ΛT1 µ̄1 = 0, p̄ ∈ H2(Ω) ∩H1
o (Ω),

α (ū− ud)−
∂p̄

∂νA∗
+ µ̄2 = 0.

(3.25)

A specific case in which Λ1 satisfies the assumption ΛT1 (L) ⊂ L2(Ω) is given if L is a
finite-dimensional subspace of L2(Ω) and Λ1 is the L2-orthogonal projection onto L.
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4. Lagrangian algorithms. In this section we turn to the numerical realization
of the constrained optimal control problem (P). We shall combine the techniques from
[1] and [6] augmenting the state equation as well as the constraints characterizing the
feasible set D to obtain well-performing algorithms.

First we recall an augmented Lagrangian algorithm based on the penalization of
the state equation (see [5], [1], and the references therein).

ALGORITHM Ao.
• Step 1. Initialization: Set n = 0, and choose γ > 0, qo ∈ L2(Ω), ro ∈ L2(Γ).
• Step 2. Compute

(yn, un) = Arg min { Lγ(y, v, qn, rn) | Λ(y, u) ∈ K × U},
where

Lγ(y, u, q, r) = J(y, u) + (q, Ay)Ω + (r, y − u)Γ +
γ

2
|Ay − f |2Ω +

γ

2
|y − u|2Γ

is the augmented Lagrangian with respect to the state equation constraint.
• Step 3. Set
qn+1 = qn + ρ1 (Ayn − f), where ρ1 ∈ (0, 2γ],
rn+1 = rn + ρ2 (yn|Γ − un), where ρ2 ∈ (0, 2γ].

The analysis of this algorithm is rather standard; see [1, 5] and the references
there.

THEOREM 4.1. Let (ȳ, ū) be the solution to (P), and suppose that (H) holds with
V = L2(Ω)× L2(Γ). Then the iterates of Algorithm Ao satisfy

|yn − ȳ|2Ω + α|un − ū|2Γ +
1

2ρ1
|qn+1 − q̄|2Ω +

1
2ρ2
|rn+1 − r̄|2Γ

+ (γ − ρ1

2
)|Ayn − f |2Ω + (γ − ρ2

2
)|yn − un|2Γ ≤

1
2ρ1
|qn − q̄|2Ω +

1
2ρ2
|rn − r̄|2Γ(4.1)

for all n = 0, 1, 2, . . . . With ρ1 and ρ2 given as in Step 3, this implies
∞∑
n=0

|yn − ȳ|2Ω + α

∞∑
n=0

|un − ū|2Γ +
(
γ − ρ1

2

) ∞∑
n=0

|Ayn − f |2Ω

+
(
γ − ρ2

2

) ∞∑
n=0

|yn − un|2Γ ≤
1

2ρ1
|q0 − q̄|2Ω +

1
2ρ2
|r0 − r̄|2Γ(4.2)

and in particular strong convergence of (yn, un)→ (ȳ, ū) in L2(Ω)×L2(Γ) and bound-
edness of {(qn, rn)}. If, moreover, ρ1 < 2γ and ρ2 < 2γ, then (yn, un)→ (ȳ, ū) in X,
and every weak limit (q̃, r̃) of (qn, rn) has the property that (ȳ, ū, q̃, r̃) satisfies, for all
Λ(y, u) ∈ K × U ,(

J ′(ȳ, ū), (y, u)− (ȳ, ū)
)

Ω×Γ
+
(
q̄, A(y − ȳ)

)
Ω

+
(
r̄, y − ȳ − (u− ū)

)
Γ
≥ 0

Proof. We refer to [2].
The main remaining problem is the resolution of the auxiliary problem of Step 2

in Algorithm Ao, which can be written as

(yn, un) = Arg min { Lγ(y, u) | Λ(y, u) ∈ D}.

To simplify the notation we omit to indicate the dependence of Lγ on q and r.
During Step 2 these functions are fixed. We are going to use the following algorithm
and a splitting variant to solve the auxiliary problem.
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ALGORITHM A1.
• Step 1. Initialization: Choose λo ∈ H and c > 0.
• Step 2. Compute

(yj , uj) = Arg min { Lγ(y, u) + ϕc(Λ(y, u), λj) | Λ(y, u) ∈ X},

where ϕc has been defined in the previous section.
• Step 3. Set (see 2.4)

λj+1 = ϕ′c(Λ(yj , uj), λj)

= c

(
Λ1y

j +
λj1
c
− PK

(
Λ1y

j +
λj1
c

)
, uj +

λj2
c
− PU

(
uj +

λj2
c

))
.

The convergence of this algorithm under the assumption that L is finite dimen-
sional follows from the result in [6]. The assumption on finite dimensionality of L
entails that the duality pairing between L1 and L′1 in (3.16) can be replaced by the
inner product in L (see (3.19)), which is necessary for the convergence proof. We now
write the version in which Algorithm A1 appears as an inner loop in algorithm Ao.

ALGORITHM A.
• Step 1. Initialization: Set n = 0, and choose γ > 0, c > 0.

Choose (qo, ro) ∈ L2(Ω)× L2(Γ) and λo = (λo1, λo2) ∈ L× L2(Γ).
• Step 2. Choose kn ∈ N, set λon = λn, and for j = 0, . . . , kn

(yjn, u
j
n) = Arg min {Lγ(y, u, qn, rn) + ϕc(Λ(y, u), λjn) | (y, u) ∈W × L2(Γ)},

λj+1
n = (λj+1

n,1 , λ
j+1
n,2 ) with


λj+1
n,1 = c

[
Λ1y

j
n +

λjn,1
c
− PK

(
Λ1y

j
n +

λjn,1
c

)]
,

λj+1
n,2 = c

[
ujn +

λjn,2
c
− PU

(
ujn +

λjn,2
c

)]
.

End of the inner loop: λn+1 = λkn+1
n , yn = yknn , un = uknn .

• Step 3. qn+1 = qn + ρ1
kn+1 (

∑kn
j=0Ay

j
n − f), where ρ1 ∈ (0, 2γ],

rn+1 = rn + ρ2
kn+1 (

∑kn
j=0(yjn|Γ − ujn)), ρ2 ∈ (0, 2γ].

THEOREM 4.2. Let (ȳ, ū) be the solution to (P), and suppose that (H) holds with
V = L2(Ω)× L2(Γ) and that L is finite dimensional. Let (q̄, r̄, µ̄) ∈ L2(Ω)× L2(Γ)×
L × L2(Γ) be an associated Lagrange multiplier. Then the iterates of Algorithm A
satisfy

|yn − ȳ|2Ω + α|un − ū|2Γ +
kn + 1

2ρ1
|qn+1 − q̄|2Ω +

kn + 1
2ρ2

|rn+1 − r̄|2Γ

+
(
γ − ρ1

2

)
|Ayn − f |2Ω +

(
γ − ρ2

2

)
|un − yn|2Γ +

1
2c
|λn+1 − µ̄|2L×L2(Γ)(4.3)

≤ kn + 1
2ρ1

|qn − q̄|2Ω +
kn + 1

2ρ2
|rn − r̄|2Γ +

1
2c
|λn − µ̄|2L×L2(Γ)
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for all n = 0, 1, 2, . . . . If kn is nonincreasing, this implies

∞∑
n=0

|yn − ȳ|2Ω + α
∞∑
n=0

|un − ū|2Γ

+
(
γ − ρ1

2

) ∞∑
n=0

|Ayn − f |2Ω +
(
γ − ρ2

2

) ∞∑
n=0

|un − yn|2Γ

≤ k0 + 1
2ρ1

|q0 − q̄|2Ω +
k0 + 1

2ρ2
|r0 − r̄|2Γ +

1
2c
|λ0 − µ̄|2L×L2(Γ)

(4.4)

and in particular strong convergence of (yn, un)→ (ȳ, ū) in L2(Ω)×L2(Γ) and bound-
edness of {(qn, rn, λn)}. If, moreover, ρ1 < 2γ and ρ2 < 2γ, then (yn, un) → (ȳ, ū)
in X and every weak limit (q̃, r̃, λ̃) of {(qn, rn, λn)} has the property that (ȳ, ū, q̃, r̃, λ̃)
satisfies (3.19), (3.20).

Proof. See [2].
REMARK 4.1. The resolution of the unconstrained minimization problem occurring

in algorithm A is equivalent to the resolution of

∇(y,u)Lγ(yn, un, qn, rn) + ϕ′c(Λ(yn, un), λjn) = 0;

that is,

∇y Lγ(yn, un, qn, rn) + c

[
Λ1yn +

λjn,1
c
− PK

(
Λ1yn +

λjn,1
c

)]
= 0,

∇u Lγ(yn, un, qn, rn) + c

[
un +

λjn,2
c
− PU

(
un +

λjn,2
c

)]
= 0.

(4.5)

This can be done with a Newton or a descent method for instance.
Our final goal is the analysis of Gauss–Seidel splitting techniques to solve the

auxiliary problems. The splitting avoids the minimization of the auxiliary problem
with respect to y and u simultaneously. The resulting algorithm is as follows.

ALGORITHM AGSo .
• Step 1. Initialization: Set n = 0; choose γ > 0, qo ∈ L2(Ω), ro ∈ L2(Γ),
u−1 ∈ U .
• Step 2.

yn = Arg min { Lγ(y, un−1, qn, rn) | Λ1y ∈ K},
un = Arg min {Lγ(yn, u, qn, rn) | u ∈ U}.

• Step 3.

qn+1 = qn + ρ1 (Ayn − f), where ρ1 ∈ (0, 2γ],
rn+1 = rn + ρ2 (yn|Γ − un), where ρ2 ∈ (0, 2γ].

Once again, we may use Algorithm A1 to solve the first subproblem of Step 2.
The second one is easily solved directly; see Remark 4.2 below. For convenience we
shall henceforth delete the index 1 in the notation of the state component of the
multiplier.

ALGORITHM AGS .
• Step 1. Initialization: Set n = 0 and choose γ > 0, c > 0.

Choose (qo, ro) ∈ L× L2(Γ), λo ∈ L2(Ω) and u−1 ∈ L2(Γ).
• Step 2. Choose kn ∈ N; set λon = λn, u

−1
n = un−1, and for j = 0, . . . , kn
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yjn = Arg min {Lγ(y, uj−1
n , qn, rn) + ϕc(Λ(y, uj−1

n ), (λjn, 0)) | y ∈W},

λj+1
n = c

[
Λ1y

j
n +

λjn
c
− PK

(
Λ1y

j
n +

λjn
c

)]
,

ujn = Arg min { Lγ(yjn, u, qn, rn) | u ∈ U}.

End of the inner loop: λn+1 = λkn+1
n , yn = yknn , un = uknn .

• Step 3.

qn+1 = qn +
ρ1

kn + 1

kn∑
j=0

(Ayjn − f), where ρ1 ∈ (0, 2γ],

rn+1 = rn +
ρ2

kn + 1

kn∑
j=0

(yjn|Γ − u
j
n), where ρ2 ∈ (0, γ].

REMARK 4.2. We may solve the first unconstrained minimization problem oc-
curring in the previous algorithm, as was mentioned in Remark 4.1. The second
minimization problem is indeed equivalent to

ujn = Arg min
{ ∣∣∣∣u− αud + rn + γyjn

α+ γ

∣∣∣∣
Γ

: u ∈ U
}

;

that is, ujn is the L2(Γ)-projection of αud+rn+γyjn
α+γ on U .

We end this section with a convergence analysis for Algorithm AGS .
THEOREM 4.3. Let (ȳ, ū) be the solution to (P), and suppose that (H) holds with

V = L2(Ω)× L2(Γ) and that L is finite dimensional. Let (q̄, r̄, µ̄) ∈ L2(Ω)× L2(Γ)×
L × L2(Γ) be a Lagrange multiplier associated with the state equation and the state
constraint.

Then the iterates (yn, un, qn, rn) of Algorithm AGS satisfy

|yn − ȳ|2Ω +
(
α+

γ

2

)
|un − ū|2Γ +

kn + 1
2ρ1

|qn+1 − q̄|2Ω +
kn + 1

2ρ2
|rn+1 − r̄|2Γ

+
(
γ − ρ1

2

)
|Ayn − f |2Ω +

γ − ρ2

2
|un − yn|2Γ +

1
2c
|λn+1 − µ̄|2L

≤ kn + 1
2ρ1

|qn − q̄|2Ω +
kn + 1

2ρ2
|rn − r̄|2Γ

+
1
2c
|λn − µ̄|2L +

γ − ρ2

2
|un−1 − yn−1|2Γ +

γ

2
|un−1 − ū|2Γ

(4.6)

for all n = 1, 2, . . . . If kn is nonincreasing, this implies

∞∑
n=1

(
|yn − ȳ|2Ω + α|un − ū|2Γ +

(
γ − ρ1

2

)
|Ayn − f |2Ω +

γ

2
|un − yn|2Γ

)
≤ k1 + 1

2ρ1
|q1 − q̄|2Ω +

k1 + 1
2ρ2

|r1 − r̄|2Γ +
1
2c
|λ1 − µ̄|2L +

γ − ρ2

2
|yo − uo|2Γ +

γ

2
|uo − ū|2Γ.

Proof. We use the optimality conditions issued from Step 2 of Algorithm AGS .
The iterates (yjn, u

j
n) of Step 2 satisfy, for j = 0, . . . , kn and for all y ∈W ,
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(
J ′y(yjn, u

j−1
n ), y)

)
Ω

+
(
qn +

ρ1

kn + 1
(Ayjn − f), Ay

)
Ω

+
(
γ − ρ1

kn + 1

)
(Ayjn − f,Ay)Ω +

(
rn +

ρ2

kn + 1
(yjn − uj−1

n ), y
)

Γ

+
(
γ − ρ2

kn + 1

)
(yjn − uj−1

n , y)Γ +
(
ϕ′c,1(Λ1y

j
n, λ

j
n),Λ1y)

)
L

= 0,

(4.7)

and for all u ∈ Uad(
J ′u(yjn, u

j
n), u− ujn

)
Γ
−
(
rn +

ρ2

kn + 1
(yjn − ujn), u− ujn

)
Γ

−
(
γ − ρ2

kn + 1

)
(yjn − ujn, u− ujn)Γ ≥ 0.

(4.8)

From (3.19) and (3.20) it follows that(
J ′(ȳ, ū), (y, u− ū)

)
Ω×Γ

+ (q̄, Ay)Ω + (r̄, y − (u− ū))Γ +
(
µ̄,Λ1y

)
L×L2(Γ)

≥ 0
(4.9)

for all (y, u) ∈W × Uad. From [6] it is known that(
ϕ′c(Λ(yjn, u

j
n), λjn)− ϕ′c(Λ(ȳ, ū), µ̄),Λ(yjn, u

j
n)− Λ(ȳ, ū)

)
≥ 1

2c
|λj+1
n − µ̄|2 − 1

2c
|λjn − µ̄|2

(4.10)

for j = 0, 1, . . . , kn. Combining (4.7)–(4.9) and (4.10) and setting

qjn = qn +
ρ1

kn + 1

j∑
i=0

(Ayin − f) and rjn = rn +
ρ2

kn + 1

j∑
i=0

(yin − uin)

for j = 0, . . . , kn and q−1
n := qn, r

−1
n := rn imply

|yjn − ȳ|2Ω + α|ujn − ū|2Γ +
kn + 1

2ρ1
|qjn − q̄|2Ω −

kn + 1
2ρ1

|qj−1
n − q̄|2Ω

+
(
γ − ρ1

2(kn + 1)

)
|Ayjn − f |2Ω +

kn + 1
2ρ2

|rjn − r̄|2Γ −
kn + 1

2ρ2
|rj−1
n − r̄|2Γ

− ρ2

kn + 1

j−1∑
i=0

(yin − uin, yjn − ujn)Γ −
ρ1

kn + 1

j−1∑
i=0

(Ayin − f,Ayjn − f)Ω

−
(
γ − ρ2

2(kn + 1)

)
|yjn − ujn|2Γ +

1
2c

(|λj+1
n − µ̄|2L − |λjn − µ̄|2L)

+ γ
(
ujn − uj−1

n , yjn − ȳ
)

Γ
≤ 0

for n, j = 0, 1, . . . , kn. Summing the above inequality over j and using the fact that

kn∑
j=1

j−1∑
i=0

(ai, aj)H ≤
kn
2

kn∑
j=0

|aj |2
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we arrive at

kn∑
j=0

(|yjn − ȳ|2Ω + α|ujn − ū|2Γ) +
kn + 1

2ρ1
|qknn − q̄|2Ω +

kn + 1
2ρ2

|rknn − r̄|2Γ

+
1
2c
|λn+1 − µ̄|2L +

(
γ − ρ1

2

) kn∑
j=0

|Ayjn − f |2Ω +
(
γ − ρ2

2

) kn∑
j=0

|yjn − ujn|2Γ

+ γ

kn∑
j=0

(
ujn − uj−1

n , yjn − ȳ
)

Γ
≤ kn + 1

2ρ1
|qn − q̄|2Ω +

kn + 1
2ρ2

|rn − r̄|2Γ +
1
2c
|λ0
n − µ̄|2L.

The estimation of (ujn−uj−1
n , yjn− ȳ)Γ is standard (see [5]): we obtain, for j = 1, 2, . . .

and n = 0, 1, . . .

γ
(
uj−1
n −ujn, ȳ− yjn

)
Γ
≥ α|ujn−uj−1

n |2Γ−
γ

2
(|yj−1

n −uj−1
n |2Γ + |uj−1

n − ū|2Γ− |ujn− ū|2Γ).

A similar calculus provides the estimation of (uon − u−1
n , yon − ȳ)Γ for n = 1, 2, . . . :

γ
(
u−1
n − uon, ȳ − yon

)
Γ
≥

(
α+

ρ2

2

)
|uon − u−1

n |2Γ +
ρ2 − γ

2
|yn−1 − u−1

n |2Γ

+
γ

2
|uon − ū|2Γ −

γ

2
|u−1
n − ū|2Γ.

(4.11)

We henceforth assume n ≥ 1. We obtain

γ

kn∑
j=0

(
ujn − uj−1

n , yjn − ȳ
)

Γ
≥
(
α+

ρ2

2

)
|uon − un−1|2Γ +

ρ2 − γ
2
|yn−1 − un−1|2Γ

+
γ

2
|uon − ū|2Γ −

γ

2
|un−1 − ū|2Γ + α

kn∑
j=1

|ujn − uj−1
n |2Γ

−γ
2

kn∑
j=1

(|yj−1
n − uj−1

n |2Γ + |uj−1
n − ū|2Γ − |ujn − ū|2Γ).

(4.12)

We finally get for kn ≥ 1

kn∑
j=0

(|yjn − ȳ|2Ω + α|ujn − ū|2Γ)+
kn + 1

2ρ1
|qn+1 − q̄|2Ω +

kn + 1
2ρ2

|rn+1 − r̄|2Γ

+
1
2c
|λn+1 − µ̄|2L +

(
γ − ρ1

2

) kn∑
j=0

|Ayjn − f |2Ω +
γ − ρ2

2

kn∑
j=0

|yjn − ujn|2Γ

+
γ

2
|un − ū|2Γ ≤

kn + 1
2ρ1

|qn − q̄|2Ω +
kn + 1

2ρ2
|rn − r̄|2Γ

+
1
2c
|λn − µ̄|2L +

γ − ρ2

2
|yn−1 − un−1|2Ω +

γ

2
|un−1 − ū|2Γ.

Since ρ2 ≤ γ, we deduce that
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|yn − ȳ|2Ω + α|un − ū|2Γ +
kn + 1

2ρ1
|qn+1 − q̄|2Ω +

kn + 1
2ρ2

|rn+1 − r̄|2Γ

+
(
γ − ρ1

2

)
|Ayn − f |2Ω +

(
γ − ρ2

2

)
|yn − un|2Γ +

1
2c
|λn+1 − µ̄|2Ω +

γ

2
|un − ū|2Γ

≤ kn + 1
2ρ1

|qn − q̄|2Ω +
kn + 1

2ρ2
|rn − r̄|2Γ +

1
2c
|λn − µ̄|2Ω

+
γ − ρ2

2
|yn−1 − un−1|2Γ +

γ

2
|un−1 − ū|2Γ

if kn ≥ 1. Using (4.11) the same estimate follows for kn = 0. The final claim again
follows with a telescoping argument.

5. Numerical experiments.

5.1. Implementation. Numerical experiments were carried out for one- and
two-dimensional problems. Since Algorithm AGS is the simplest for implementation,
we have used it for our tests. The discretization of the problem was done with finite-
differences discretization schemes. The size of the grid was 1

N so that L = RN+1

for the one-dimensional case and L = R2(N+1) for the two-dimensional case. Λ was
chosen as the discretization operator with respect to the given equidistant grid.

The main difficulty that remains in applying Algorithm AGS is given by the
(unconstrained) minimization with respect to y. This was done via the adjoint state
equation and results, for fixed u, q, and r, in the resolution of

A∗p = y − zd + c

[
y +

λ

c
− PK

(
y +

λ

c

)]
in Ω, p = 0 on Γ,

Ay = f − q + p

γ
in Ω, y = u− r

γ
+

1
γ

∂p

∂νA∗
on Γ,

(5.1)

for p and y. Here

∂p

∂νA∗

denotes the conormal derivative of p with respect of A∗ (which is the adjoint operator
of A). The coupled system (5.1) was solved via a descent algorithm combined with
a relaxation method. The control function was computed using the L∞-projection of
r+αud+γy

α+γ on Uad.
All numerical tests were carried out on a Hewlett-Packard workstation using the

MATLAB package. For all examples that we report here, the required accuracy and
stopping criteria were set to 10−6.

5.2. Examples.

One-dimensional example. In this example we chose
• Ω =]0, 1[ and N = 30; A = −∆ and f(x) = −(x+ 2) exp(x).
• zd ≡ −1, α = 0.1, ud(0) = −2, ud(1) = 1; Uad = [−3, 3] and
K = { Y ∈ L : − 1.1 ≤ Y ≤ 1 }.

Note that zd is quite close to the boundary of K.
In fact, as can be seen from Figure 1, the lower bound on the state is active.

The active set is a singleton. In view of the fact that the influence of the boundary



AUGMENTED LAGRANGIAN TECHNIQUES 1541

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2
Solution  for ud=[-2,1] and zd=-1

FIG. 1.

TABLE 1

c γ kn ‖∆y + f‖∞ ‖y − v‖∞ n CPU min[y−(−1.1)]
(constant) units

10 1 10 4.8 e-07 4. e-07 58 1 4. e-10
10 1 1 9.3 e-07 6. e-07 154 2.17 2.5 e-06
10 1 100 2.2 e-07 5. e-07 13 1.35 −2 e-09
100 10 10 6.2 e-07 9. e-07 95 1.01 −1.3 e-11

control at x = 0 and x = 1 is restricted to the superposition of straight lines to the
uncontrolled state, this is not surprising.

The numerical values for J and the control at the minimum are

J = 1.5862 10−1 and ū(0) = −9.9573 10−1, ū(1) = 2.6314 10−2.

One of the main questions concerning the class of algorithms that we analyzed
is the choice of the parameters ρi, c, and γ. From Table 1 we conclude that while
the choice of the parameters certainly has an influence on the convergence properties
of the algorithm, there is a wide range of parameters values for which convergence is
achieved numerically, for this and other examples that we tested. In all calculations
we chose ρi = 1. Some tests shows that the ratio γ

c = 1
10 is a good one. For (c, γ) =

(1, 1), (c, γ) = (100, 50), (c, γ) = (1, 0.5) (all with kn = 10 for all n), convergence is
achieved, but it is slower than for those pairs that are presented in Table 1. From
that table, as well as from other tests, it can also be seen that the auxiliary problem
should be solved sufficiently accurately, before the Lagrange multipliers (q, r) for the
state equation and the boundary condition are updated (see kn ≡ 1). The values
(c, γ) = (10, 0.1) still with ρi = 1 led to divergence. This is not unexpected in view of
the result of Theorem 4.3, which requires ρ2 ≤ γ.

Two-dimensional example. Now we consider
• Ω =]0, 1[×]0, 1[ and N = 30; A = −∆ and f ≡ 20.
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TABLE 2

Iteration ‖∆y + f‖∞ ‖y − v‖∞ J min (3.5− y)
0 4.688280e+00 1.223633e-02 2.414087e-01 −9.707107e-02
10 8.449125e-04 2.439992e-04 2.062097e-01 −1.030313e-02
50 2.819024e-05 3.966610e-06 2.083813e-01 −1.987233e-05
53 9.776863e-07 7.128897e-07 2.083877e-01 4.117863e-06

TABLE 3

N 10 20 30 40 50 60

N2 · 10−2 1 4 9 16 25 36
CPU units 1 3.14 7 13 21.8 35.4

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1
1.5

2

2.5

3

3.5

4

FIG. 2.

• zd(x1, x2) = 5[x1(x1 − 1) ∗ x2(x2 − 1)] + 3, ud ≡ 0, and α = 0.01.
• Uad = [−10, 10] and K = { y ∈ L | 0 ≤ y ≤ 3.5}.

The results for selected values during the iteration procedure are shown in Table 2.
The effect of the discretization is given in Table 3: the CPU time is approximately a
linear function of N2. The optimal state and control (on one side of the domain) are
given in Figures 2 and 3, respectively.

In this case the upper bound y ≤ 3.5 is active, while the lower bound y ≥ 0
is not, except in some corners of the domain. We must admit, however, that the
numerical values of y may not be accurate in the corners since no special treatment
of the discontinuities of the conormals at the corners was incorporated in the code.
The results were obtained with c = 10, γ = 1, and kn = 10 for all n.

6. Conclusion. The augmented Lagrangian algorithms with splitting into state
and control variables can effectively be used to solve state and control constrained
optimization problems. For the first-order methods that are presented in this paper,
the auxiliary problems in the inner loop must be solved sufficiently accurately before
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the Lagrange multipliers of the state equation and boundary condition are updated.
Appropriate choices for the penalty parameters (here c and γ) and the step lengths ρi
for the dual variables are easily determined since the algorithms are not particularly
sensitive to them. It is our intention to also analyze second-order methods for the
same class of problems.
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Abstract. This paper deals with a coefficient optimal control problem for the one-dimensional
(1-D) wave equation with nonhomogeneous boundary periodic inputs. A main concept is the notion
of “weak solution” for the 1-D wave equation with T -periodic conditions (Definition 2.1). For T =
(2k+ 1)/p the weak solution (hyperbolic) operator A(u) (see 2.20) has important properties such as
closed range R(A(u)), nontrival null space N(A(u)) (resonant case)—see Propositions 2.1 and 2.2.
However, the u-dependence of R(A(u)) and N(A(u)) gives rise to major difficulties. The maximum
principle (Theorem 4.1) can be viewed as information (necessary conditions) on the optimal acoustic
impedance function u∗ (the impedance for which the corresponding seismic waves have a minimal
effect given as a cost functional).

Key words. acoustic impedance, one-dimensional wave equation, periodic solutions, optimal
control, singular control systems, resonant case, trace theorems, eigenvalues and eigenfunctions,
Fourier series

AMS subject classifications. 49J20, 49K20, 35L05
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1. Introduction. The propagation of seismic waves in a medium in the presence
of a periodic seismic sourse g is described by the following wave equation:

u(x)ytt(x, t)− (u(x)yx(x, t))x = 0, x ∈ (0, 1), t ∈ R,(1.1)
− u(0)yx(0, t) = g, y(1, t) = 0, t ∈ R,(1.2)

with the T -periodic condition (T > 0)

y(x, t+ T ) = y(x, t), yt(x, t+ T ) = yt(x, t) ∀x ∈ [0, 1],∀t ∈ R.(1.3)

Here u = (ρµ)1/2 is the acoustic impedance function (ρ is the density, µ is the elasticity
modulus), y(x, t) is the displacement at level x underground at time t, and g is a T -
periodic seismic sourse at the surface x = 0. Throughout in this paper we assume
that u ∈ U with

U = {u ∈ H2(0, 1); 0 < a ≤ u(x) <∞;u(0) = u0}(1.4)

as the set of all admissible impedances. The inverse problem in seismic consists in
recovering the impedance distribution u from the observations of the displacements
y0 = y0(t) at the surface x = 0. The least square approach to this inverse problem
leads to the following optimal control problem:

minimize
∫ T

0
(y(0, t)− y0(t))2dt+ γ

∫ 1

0
((u′′(x))2 + u2(x)) dx

subject to (1.1)–(1.3) and u ∈ U , where γ > 0.

(1.5)
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Due to the resonance phenomenon in (1.1)–(1.3), the solution to this problem is not
unique and does not exist for all g, so (1.5) may be viewed as a singular control
problem. Moreover, the dependence of the range and null space of the hyperbolic
operator (1.1) on the control variable u represents a major difficulty in the study
of (1.5). For this reason section 2 is entirely devoted to existence and continuous
dependence of the weak solution of (1.1)–(1.3) on u. The main result is that if

T ∈ {(2k + 1)/p; k = 0, 1, . . . ; p = 1, 2, . . . } = Q0,(1.6)

which is dense in Q+ (the set of all positive rational numbers), then for (f, g) in a
closed space S(u) (see (2.18)) of L2((0, 1)× (0, T ))×L2(0, T ), the problem (1.1)–(1.3)
(with f in the right-hand side of (1.1)) has modulo N(u) (the null space of (1.1))
a unique weak solution which is continuous as a function of u. In this context, the
analysis of the weak solution is related to the literature devoted to periodic solutions
for 1-D hyperbolic problems (see, e.g., [6], [7]). See also [1], [3]. In sections 3 and 4,
one gives existence and a maximum principle for the optimal control u∗. For equations
(1.1)–(1.2) with Cauchy initial values, a related problem was previously studied by
G. Chavent and coworkers (see [2], [8], and [9]). For a parabolic equation, a similar
problem was recently studied by the authors in [4].

However, there is no any overlap between this paper and the previous papers
mentioned above. In addition, the methods used here are completely different.

The “cost functional” in (1.5) can be viewed as “the effect” of seismic waves y(x, t)
corresponding to the impedance function u(x) (which is determined by the density
and the elasticity modulus at level x underground). The maximal principles (con-
ditions (4.2) and (4.3)) give information on the optimal acoustic impedance u∗—the
impedance for which the corresponding seismic waves have a minimal effect. Numer-
ical determinations of u∗ would be therefore important, although difficult. We will
try it elsewhere.

2. The controlled periodic system. For the study of the optimal control
problem we need results on the existence, regularity, and continuous dependence of
the periodic solution y (of the problem below) on f , g, and u.

Precisely, in this section we are concerned with the problem

uytt − (uyx)x = f(x, t) in Q = (0, 1)× (0, T ),(2.1)
− u(0)yx(0, t) = g(t), y(1, t) = 0, t ∈ [0, T ],(2.2)
y(x, 0) = y(x, T ), yt(x, 0) = yt(x, T ), x ∈ [0, 1],(2.3)

where f ∈ L2(Q), g ∈ L2(0, T ), and u ∈ U (given as in (1.4)).
DEFINITION 2.1. A function y ∈ L2(Q) is said to be a weak solution of (2.1)–(2.3)

if ∫
Q

y(uϕtt − (uϕx)x) dxdt−
∫ T

0
g(t)ϕ(0, t) dt =

∫
Q

f(x, t)ϕ(x, t) dxdt(2.4)

for all T -periodic ϕ ∈ H2(Q) with ϕx(0, t) = 0, ϕ(1, t) = 0 ∀t ∈ [0, T ].
The following operation will be useful:

A0(u)ϕ = uϕtt − (uϕx)x,

D(A0(u)) = {ϕ ∈ H2(Q);ϕx(0, t) = 0, ϕ(1, t) = 0,
ϕ(x, 0) = ϕ(x, T ), t ∈ [0, T ], x ∈ [0, 1]}

(2.5)

for u ∈ U .
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In order to characterize the set of all (f, g) for which there is a weak solution y, we
shall use the following complete orthonormal system of eigenfunctions {ψmϕn}m∈Z

n∈N
in

L2(Q) with

ψm(t) =
1√
T
eiµmt, m ∈ Z (the set of all integers), µm =

2mπ
T

(2.6)

[12, p. 88] and λn, ϕn given by the Sturm–Liouville problem

− 1
u

(uϕ′n)x = λ2
nϕn, ϕ′n(0) = 0, ϕn(1) = 0, n ∈ N, u ∈ U,(2.6′)

where ϕ′n(x) = d
dxϕn(x) and λn is increasingly convergent to +∞. Clearly λn = λn(u)

and ϕn = ϕn(u) depend on u ∈ U . The inner product in L2(0, 1) is defined by

〈F,G〉 =
∫ 1

0
u(x)F (x)Ḡ(x) dx, u ∈ U.(2.7)

Accordingly, the L2(Q)-norm of the solution y = yu is

|y|L2(Q) =
∫
Q

u(x)|y(x, t)|2dxdt =
∫ T

0
|y(·, t)|2L2(0,1)dt,(2.8)

so |ϕn|2 =
∫ 1

0 u(x)ϕ2
n(x) dx = 1. For u = 1, the eigenvalues λn are (2n+ 1)π2 , and the

corresponding eigenfunctions are

ϕn(x) =
√

2 cos(2n+ 1)
π

2
x, n ∈ N.

For a general u ∈ U , it follows that λn = λun have the form

λn = (2n+ 1)
π

2
+

1
n
θn > 0 with |θn| = |θun| ≤M(u)(2.9)

with M bounded on bounded subsets of U .
In order to prove (2.9), set zn(x) =

(u(x)
u(0)

)1/2
ϕn(x). Then zn satisfies the Sturm–

Liouville problem

z′′n(x) + (λ2
n + ηu(x))zn(x) = 0,

−u′(0)zn(0) + 2u(0)z′n(0) = 0, zn(1) = 0,
(2.10)

with ηu(x) = 1
2
u′′

u −
1
4 (u

′

u )2. This implies [10, p. 262] that λn has the form indicated
in (2.9) and

zn(x) = cos(2n+ 1)
π

2
x+

1
n
Hn(x)(2.11)

with |Hn(x)|+ |H ′n(x)| ≤M(u), x ∈ [0, 1], n ∈ N. Therefore,

|ϕn(x)| ≤M(u), n ∈ N, x ∈ [0, 1].

We now can easily characterize the null space N(A0(u)) of A0u. Precisely,

N(A0(u)) = Span{ψmϕn,∀m ∈ Z, n ∈ N with λn = |µm|}.(2.12)

Indeed, let A0(u)ϕ = 0 and let ϕmn be the Fourier coefficients of ϕ in L2(Q), i.e.,

ϕ =
∑
m,n

ϕmnψmϕn, ϕmn =
∫
Q

uϕψ̄mϕndxdt.(2.13)
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Clearly, A0(u)ϕ = 0 if and only if (λ2
n − µ2

m)ϕmn = 0.
Remark 2.1. For T = 2k+1

p , N(A0(u)) is finite dimensional. Indeed, λn = |µm|
means (2n + 1)(2k + 1) + 2(2K+1)

πn θn = 4|m|p, which has at most a finite number of
solutions (m,n) (if any). For example, if θn = 0 for all n, then N(A0(u)) = 0. If
u(x) = (Cx+C1)2 with C2

1 = u0 and C = u1
2
√
u0

, then one can prove thatN(A0(u)) = 0
for T = 1/2. Moreover, by (2.9) we see that dim N(u) is bounded on bounded subsets
of U . Note also that the maps u → λn(u) (and u → ϕn(u)) are continuous from
H2(0, 1)∩U into R (and H1(0, 1)). This follows by the fact that λn(u) and ϕn(u) are
bounded on bounded sets of U and the eigenvalues λn of Sturm–Liouville problem
(2.6′) are simple. As A0(u) is self-adjoint in L2(Q), we have

L2(Q) = N(A0(u))⊕R(A0(u)).(2.14)

We will see below that actually R(A0(u)) is closed. We are now in a position to
study the existence and regularity of the weak solutions y as in Definition 2.1 via
Fourier series. Denote by ymn the Fourier coefficients of the component of y which is
in N(A0(u))⊥ (the orthogonal of N(A0(u))), i.e.,

y =
∑

λn 6=|µm|
ymnψmϕn, ymn =

∫
Q

uyψ̄mϕndxdt.(2.15)

Similarly, the Fourier coefficients of u−1f in L2(Q) and of g ∈ L2(0, T ) are

f̃mn = (u−1f)mn =
∫
Q

fψ̄mϕndxdt, gm =
∫ T

0
g(t)ψ̄m(t) dt(2.16)

with
∑
m∈Z
n∈N
|f̃mn|2 =

∫
Q
u(fu−1)2dx ≤ a−2

∫
Q
uf2dxdt = a−2|f |2L2(Q); |g|2L2(0,T ) =∑

m∈Z |gm|2. For ϕ = ψ̄m(t)ϕn(x), (2.4) implies

(λ2
n − µ2

m)ymn = f̃mn + ϕn(0)gm.(2.17)

Set (for u ∈ U)

S(u) = {(f, g); f ∈ L2(Q), g ∈ L2(0, T );

f̃mn + ϕn(0)gm = 0 for all (m,n) with |µm| = λn},
S0(u) = {f ∈ L2(Q); f̃mn = 0 for all (m,n) with λn = |µm|}.

(2.18)

These depend on u as λn depend on u. In view of (2.17), a necessary condition for the
existence of a weak solution y is (f, g) ∈ S(u). We will see that this is also sufficient
(Proposition 2.1 below). The following spaces are also needed:

Hj
π(0, T ) = {g ∈ Hj(0, T ); g(k)(0) = g(k)(T ), k = 0, 1, . . . , j − 1}, j = 1, 2,

H1
π(Q) = {f ∈ H1(Q); f(x, 0) = f(x, T ) a.e. x ∈ (0, 1)},

H2
π(Q) = {f ∈ H2(Q); f(x, 0) = f(x, T ); ft(x, 0) = ft(x, T ), x ∈ (0, 1)}.

(2.19)

Finally, for each u ∈ U we define the operator A(u) : D(A(u))→ L2(Q)×L2(0, T ) by

A(u)y = (f, g),(2.20)
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where y is a weak solution corresponding to f and g in the sense of Definition 2.1.
The main result of this section is given by the following proposition.

PROPOSITION 2.1. Assume that T = (2k + 1)/p as in (1.6). Then for each
u ∈ U , A(u) is a closed operator with a closed range R(A(u)) = S(u) (as in (2.18)).
Moreover, A−1(u) is continuous and one to one from S(u) onto S0(u) = N(A(u))⊥.
The following estimates hold for y = A−1(u)(f, g), with (f, g) ∈ R(A(u)):

|A−1(u)(f, g)|L2(Q) ≤ C(|f |L2(Q) + |g|L2(0,T )),(2.21)

|A−1(u)(f, g)|H1(Q) ≤ C(|f |L2(Q) + |g|H1(0,T )).(2.22)

If f ∈ H1
π(Q) and g ∈ H2

π(0, T ), then y ∈ H2(Q), t→ y(0, t) ∈ H1(0, T ), and

|A−1(u)(f, g)|H2(Q) ≤ C(|f |H1(Q) + |g|H2(0,T )).(2.22′)

Remark 2.2. Here in (2.21)–(2.22′), as well as throughout this paper, C = C(u)
(with u ∈ U) denotes several positive constants which are bounded on bounded subsets
of U .

Proof of Proposition 2.1. Let (f, g) ∈ R(A(u)). In view of (2.17), the Fourier
coefficients of y = A−1(u)(f, g) =

∑
ymnψmϕn are given by

ymn =
f̃mn + ϕn(0)gm

λ2
n − µ2

m

for λn 6= |µm|.(2.23)

A key part of the proof is the estimate

inf
λn 6=|µm|

|λn − |µm|| ≥ C > 0.(2.24)

Indeed, according to (2.6) and (2.9)

|λn − |µm|| =
π

2T
(|4|m| − (2n+ 1)T − θ1

n|)

with θ1
n → 0 as n→∞. As T = 2k+1

p , for some p ∈ N and k = 0, 1, . . . , we have

|λn − |µm|| = b|4|m|p− (2n+ 1)(2k + 1)− θ2
n|,(2.25)

with θ2
n → 0 as n→∞, b = π

2(2k+1) , which yields (2.24). We also have

λn + |µm| ≥ C(n+ |m|) for some C > 0,(2.26)

which follows from

λ+ |µm| = b(8p|m|+ (2n+ 1)(2k + 1) + θ2
n)(2.27)

with 2k+1+θ2
n > 0 for sufficiently large n and (2n+1)(2k+1)+θ2

n = (2k+1)π2λn > 0
for all n ∈ N. According to Parseval’s formula, |y|2L2(Q) =

∑
m,n y

2
mn, so (2.23) yields

|y|2L2(Q) ≤ C
∑

λn 6=|µm|

|f̃mn|2 + |gm|2
m2 + n2 ≤ C(|f |2L2(Q) + |g|2L2(0,T )),(2.28)

which is just (2.21). If g ∈ H1
π(0, T ), then the Fourier coefficient g̃m of g′ is

g̃m =
∫ T

0
g′(t)ψ̄m(t) dt = iµmgm,(2.29)
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so |g′|2L2(0,T ) =
∑
m µ

2
mg

2
m =

∑
m g̃

2
m. Therefore

|yt|2L2(Q) =
∑

λn 6=|µm|
µ2
my

2
mn

≤ C
(∑
m,n

µ2
m|f̃mn|2
m2 + n2 +

∑
m,n

|g̃m|2
m2 + n2

)
≤ C(|f |2L2(Q) + |g′|2L2(0,T )).

(2.30)

In order to estimate yx we need to recall that |ϕn|2L2(0,1) =
∫ 1

0 u(x)ϕ2
n(x) dx = 1 and

that the distributional derivative yx is given by

yx =
∑

λn 6=|µm|
ymnψmϕ

′
n.(2.31)

The system {ϕ′n} is orthogonal in L2(0, 1) and

|ϕ′n|L2(0,1) =
∫ 1

0
u(x)(ϕ′n)2dx = −

∫ 1

0
ϕn(u(x)ϕ′n)xdx = λ2

n.(2.31′)

Therefore, we have

|yx|2L2(Q) =
∑

λn 6=µm

λ2
n|ymn|2

≤ C
∑

λn 6=µm

λ2
n|f̃mn|2
λ2
n + µ2

m

+ C
∑

λn 6=µm

λ2
n|gm|2

(λn − |µm|)2(λn + |µm|)2

= C(I1 + I2).

(2.32)

Clearly, I1 ≤ |f |2L2(Q). Let us estimate I2. First, for m 6= 0, we have |gm|2 = |g̃m|2
µ2
m

(by (2.29)), so

I2 = C
∑

λn 6=µm
m6=0

λ2
n

µ2
m

|g̃m|2
(λn + |µm|)2(λn − |µm|)2 + C

∑
n

|g0|2
λ2
n

= C(I3 + I4).(2.33)

Since |g0|2 ≤ |g|2L2(0,T ), we have I4 ≤ C|g|2L2(0,T ). Finally, for I3 we must proceed as
follows:

I3 =
∑

|λn−|µm||<ελn
λn 6=|µm|

λ2
n|g̃m|2

µ2
m(λn + |µm|)2(λn − |µm|)2

+
∑

|λn−|µm||≥ελn

λ2
n|g̃m|2

µ2
m(λn + |µm|)(λn − |µm|)2 = I5 + I6

with 0 < ε < 1. Clearly |λn − |µm|| < ελn yields |1− |µm|λn
| < ε, so |µm|λn

> 1− ε, i.e.,
λn
|µm| <

1
1−ε . Therefore

I5 ≤ (1− ε)−2C
∑
m,n

|g̃m|2
m2 + n2 ≤ C|g

′|2L2(0,T ).
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For I6 a similar estimate holds. Indeed, |λn − |µm|| ≥ ελn yields

I6 ≤ ε−2
∑
m6=0
n∈N

|g̃m|2
µ2
m(m2 + n2)

≤ C|g′|L2(0,T ),

so we conclude that

|yx|2 ≤ C(|f |2L2(Q) + |g|2H1(Q)),(2.34)

and therefore y ∈ H1(Q). It is easy to see that y(x, 0) = y(x, T ) a.e. x ∈ (0, 1), i.e.,
y ∈ H1

π(Q). If f ∈ H1
π(Q) and g ∈ H2

π(0, T ), then

|ytt|2L2(Q) =
∑

λ6=|µm|
µ4
m|ymn|2

≤ C
∑

λ6=|µm|

(
µ2
m(µ2

m|f̃mn|2)6
λ2
n + µ2

m

+
µ4
m|gm|2

λ2
n + µ2

m

)
≤ C(|ft|L2(Q) + |g′′|2L2(0,T )),

(2.35)

where |g′′|2L2(0,T ) =
∑
m µ

4
m|gm|2. To estimate the distributional derivative ytx one

repeats the above procedure, namely,

|ytx|2L2(Q) =
∑

λn 6=µm

λ2
nµ

2
m|ymn|2

≤ C
∑

λn 6=µm

λ2
n(µ2

m|f̃mn|2)
λ2
n + µ2

m

+ C
∑

λn 6=µm

λ2
n(µ4

m|gm|2)
µ2
m(λ2

n + µ2
m)(λn − |µm|)2

≤ C(|ft|2L2(Q) + |g′′|2L2(0,T )).

(2.36)

Therefore ytt and ytx belong to H2(Q). Finally, as (uyx)x = uytt + f in D′(Q) and
yx, ytt ∈ L2(Q), it follows that y ∈ H2(Q). Clearly, the estimate (2.21) implies that
the range R(A(u)) of A(u) is closed in L2(Q)×L2(0, T ). Definition 2.1 implies directly
that A(u) is closed for every u ∈ U . Moreover, D(A(u)) is dense in L2(Q). This is
because D(A(u)) contains {ϕ ∈ H2(Q);ϕx(0, t) = ϕ(1, t) = 0}. Since R(A) is closed
we have L2(Q) × L2(0, T ) = R(A(u)) ⊕ N(A∗(u)); R(A(u)) = (N(A∗(u)))⊥ (i.e.,
R(A(u)) is orthogonal on N(A∗(u)), where A∗ : L2(Q) × L2(0, T ) → L2(Q) is the
adjoint of A. We also have L2(Q) = R(A∗(u))⊕N(A(u)), with N(A(u)) = N(A0(u))
and (N(A0(u)))⊥ = S0(u), u ∈ U . Since R(A(u)) = S(u) we conclude that

A−1(u) ∈ L(S(u), S0(u)) ∀u ∈ U.

This completes the proof.
In particular it follows from (2.22), (2.22′), and trace theorems that

|y(0, ·)|L2(0,T ) ≤ C(u)(|f |L2(Q) + |g|H1(0,T )),(2.37)
|y(0, ·)|H1(0,T ) ≤ C(u)(|f |H1(Q) + |g|H2(0,T ))(2.38)

for y ∈ A−1(f, g) with (f, g) ∈ R(A(u)). Note also that since dim N(A(u)) < ∞ it
follows from Proposition 2.1 that if g ∈ H1(0, T ), each weak solution y ∈ L2(Q) to
(2.4) is in H1(Q), i.e.,

A(u)y=(f, g), (f, g)∈R(A(u)) with g∈H1(Q) =⇒ y∈H1(Q),(2.39)
|y|H3(Q) ≤ C(u)|g|H3(0,1).(2.39′)
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Proposition 2.2 below gives additional information on the dependence of A−1(u)(f, g)
on bounded subsets Br of U , where

Br = {u ∈ H2(0, 1) ∩ U ; |u|H2(0,1) ≤ r}.(2.40)

Moreover, if g ∈ H3
π(0, T ) and f = 0, a simple inspection of (2.35) and (2.36) shows

that yttt and yttx are in L2(Q), which implies (by (2.1)) that ytxx and yxxx are also
in L2(Q) and therefore y ∈ H3(Q). We also get the following proposition.

PROPOSITION 2.2. Let u ∈ Br. Then there are two orthogonal subspaces S1(u)
and S2(u) of S0(u) such that

(1) S0(u) = S1(u)⊕ S2(u); dimS1(u) < +∞.
(2) For any u ∈ Br and (f, g) ∈ R(A(u)), y(u) = A−1(u)(f, g) = yu1 + yu2 ,

y1 ∈ S1(u); y2 ∈ S2(u) and y2 satisfies the estimates (2.21), (2.22), and (2.22′) with
a constant C independent of u ∈ Br.

Proof. Denote kmn = 4|m|p−(2n+1)(2k+1). By (2.25) we have (with θn(u) = θ2
n

and λn 6= |µm|)

|λn − |µm|| = b|kmn − θn(u)|, b =
π

2(2k + 1)
, θn → 0 as n→∞.(2.41)

There is d > 0 such that

|θn(u)| ≤ d ∀u ∈ Br.

Set

Z1 = {(m,n);m ∈ Z, n ∈ N, |kmn| ≥ d+ 1},
Z2 = {(m,n); |kmn| < d+ 1} (so Z1 ∩ Z2 = ∅).

(2.42)

Let N0 be a positive integer such that

|θn(u)| ≤ 1
2
∀u ∈ Br and n ≥ N0.(2.42′)

Set

Z ′1 = {(m,n) ∈ Z2, n < N0}; Z ′′2 = {(m,n) ∈ Z2;n ≥ N0}.(2.43)

Obviously

Z2 = Z ′2 ∪ Z ′′2 , Z ′2 ∩ Z ′′2 = ∅,
|λn − |µm|| ≥ b ∀(m,n) ∈ Z1,

|λn − |µm|| ≥
b

2
∀m ∈ Z,∀n ≥ N0 (as |kmn| ≥ 1).

(2.44)

Therefore, with λn = λn(u) we have

|λn − |µm|| ≥
b

2
∀(m,n) ∈ Z1 ∪ Z ′′2 ,∀u ∈ Br,(2.45)

and the set Z ′2 is finite. We now have

S1(u) = Span{ϕneiµmt; (m,n) ∈ Z ′2}, dimS1(u) < +∞,
S2(u) = Span{ϕneiµmt; (m,n) ∈ Z1 ∪ Z ′′2 }.

(2.46)
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In view of (2.23), (2.45), and (2.46) it follows that

y(u) =
∑

m,n∈Z′2

ymnϕnψm +
∑

(m,n)∈Z1∪Z′′2

ymnϕnψm (ψm = eiµmt)

= y1(u) + y2(u), y1(u) ∈ S1(u), y2(u) ∈ S2(u),

and (as |ϕn(0) ≤ C ∀u ∈ Br)

|y2(u)|2L2(Q) ≤ Cr
∑

(m,n)∈Z1∪Z′′2

|f̃mn|2 + |gm|2
m2 + n2 ≤ Cr(|f |2L2(Q) + |g|2L2(0,T ))(2.47)

with Cr independent of u ∈ Br. The proof is complete.
Remark 2.3. If y = A−1(f, g) is in H1

π(Q), then it is readily seen that y(1, t) = 0
a.e. t ∈ (0, T ) and (2.4) reduces to∫

Q

u(ytϕt − yxϕx) dx dt+
∫ T

0
g(t)ϕ(0, t) dt+

∫
Q

fϕ dx dt = 0 ∀ϕ ∈ V,(2.48)

where V = {ϕ ∈ H1
π(Q);ϕ(1, t) = 0 a.e. t ∈ (0, T )}.

3. The existence of optimal controllers. We are now in a position to define
precisely the problem (1.5), namely,

(P) minimize

{∫ T

0
|y(0, t)− y0(t)|2dt+ γ

∫ 1

0
((u′′(x))2 + u2(x))dx;

A(u)y = (0, g), u ∈ U
}
,

(3.1)

where γ > 0, g ∈ H1
π(0, T ), y0 ∈ L2(0, T ), T = 2k+1

p ∈ Q0 (as in (1.6)), and A(u) as
in Proposition 2.1. The control function u ∈ U is said to be admissible if (0, g) ∈
R(A(u)) = S(u), defined by (2.18) (Proposition 2.1), i.e., if gm = 0 for all (m,n)
for which |µm| = λn. Equivalently, u is admissible if the problem (1.1)–(1.3) has a
weak solution (in the sense of Definition 2.1). An example of admissible control is
u(x) ≡ a. Indeed, in this case the eigenvalues λn given by (2.6′) are λn = (2n+ 1)π2 ,
i.e., θn = 0 for all n = 1, 2, . . . , and according to Remark 2.1 and (2.18), the null space
N(A0(u)) = 0 soR(A(u)) = L2(Q)×L2(0, T ) for u = a and therefore (0, g) ∈ R(A(a)).

THEOREM 3.1. The problem (3.1) has at least one solution (y∗, u∗) ∈ H1
π(Q)×U .

If g ∈ H2
π(0, T ), then y∗ ∈ H2

π(Q).
Proof. Let (yk, uk) ∈ H1

π(Q)× U be a minimizing sequence, i.e.,

d ≤
∫ T

0
|yk(0, t)− y0(t)|2dt+ γ|u′′k |2L2(0,1) + γ|u|2L2(0,1) ≤ d+

1
k
, k ∈ N,(3.2)

where d = infimum of problem (3.1) and A(uk)yk = (0, g). Relabeling if necessary,
we may assume that uk → u∗ and u′k → u∗′ in C[0, 1] as k → ∞. We need to show
that one can pass to limit for k → +∞ in (3.2) and∫

Q

uk(yktϕt − ykxϕx)dxdt = −
∫ T

0
g(t)ϕ(0, t)dt ∀v ∈ V(3.3)



1-D WAVE EQUATION 1553

with V defined as in (2.48), where ykt = (yk)t, ykx = (yk)x ((3.3) is the meaning of
A(uk)yk = (0, g) as mentioned in (2.48)). On the basis of Propositions 2.1 and 2.2,
yk can be uniquely written as

yk = y1
k + y2

k + y3
k, y1

k ∈ S1(uk), y2
k ∈ S2(uk), y3

k ∈ N(A(uk)).(3.4)

This is because, by (3.2) uk ∈ Br for some suitable r. We know only that the trace
t → yk(0, t) is bounded in L2(0, T ) (by (3.2)) and that yk = A−1(uk)(0, g), which
yields

|y2
k|H1(Q) ≤ C for all k = 1, 2, . . . .(3.5)

It follows that t→ yjk(0, t), j = 1, 2, 3, are bounded in L2(0, T ), which will imply the
boundedness of y1

k and y3
k in H2(Q) (as dim S1(u) ≤ N1 and dim N(A(uk)) ≤ N2 for

all k, with N1 and N2 independent of k). Indeed,

N(A(u)) = Span{ϕnψm; (m,n) with λn = |µm|}(3.6)

(by (2.6) and (2.17)), and consequently

y3
k(0, t) =

∑
m,n

λn=|µm|

akmnϕ
k
n(0)eiµmt,(3.7)

where λn = λkn and ϕkn are the eigenvalues and eigenfunctions corresponding to u = uk.
A key remark is that for each n, ϕkn(0) → ϕ∗n(0) for k → +∞, where λ∗n and ϕ∗n are
the eigenvalues and eigenfunctions corresponding to u = u∗. Therefore ϕ∗n(0) 6= 0
(as ϕ∗n(0) = 0 jointly ϕ∗n

′(0) = 0 would imply ϕ∗n(x) ≡ 0 on [0, 1]) since ϕ∗n is an
eigenfunction:

−(u∗ϕ∗nx)x = −λ∗nu∗ϕ∗n, ϕ∗n
′(0) = ϕ∗n(1) = 0.

By (3.7) with y3
k(0, t) in L2(0, T ) and it follows that |akmnϕkn(0)| ≤ C for all k and

(m,n) with λn = |µm|. As there are only a finite number (independent of k) of such
pairs (m,n), and |ϕkn(0)| ≥ C1 > 0 for all k and a finite number of n, it follows that
|akmn| ≤ C2 for all k ∈ N and (m,n) with λn = |µm|. The conclusion is that y3

k is
bounded in H2(Q). Similarly, by (2.23) and (2.46)

y1
k(0, t) =

∑
(m,n)∈Z′2

θkmn|ϕkn(0)|2gmeiµmt, θkmn = ((λkn)2 − µ2
m)−1(3.8)

with |ϕkn(0)| ≥ C1 > 0 ∀k ∈ N and (m,n) ∈ Z ′2 (which is finite). We can also assume
gm 6= 0 in (3.8). Fix m with (m,n) ∈ Z ′2. By (3.8) it follows that∣∣∣∣ ∑

(m,n)∈Z′2

θkmn(|ϕkn(0)|2
∣∣∣∣ ≤ C3 for all k as t→ y1

k(0, t)(3.9)

is bounded in L2(0, T ) independently of k. Finally, (3.9) implies |θkmn| ≤ C4 for all k
and (m,n) ∈ Z ′2. Indeed, the sequence n→ λkn is strictly increasing, so |θkmn| → +∞
as k → +∞ can occur only for at most one n which would be in conflict with (3.9).
(Say that n1 < n2 are such that

λkn1
< |µm| < λkn2

(m,nj) ∈ Z ′2, j = 1, 2.



1554 V. BARBU AND N. PAVEL

Letting k → +∞ we can have (at most) either λ∗n1
< |µm| ≤ λ∗n2

or λ∗1 ≤ |µm| < λ∗n2

as λ∗n1
< λ∗n2

.)
Therefore, (3.9) proves the boundedness of the Fourier coefficients of y1

k(0, t);
i.e., y1

k is also bounded in H2(Q). We now can pass to limit in (3.2) and (3.3) for
k → +∞. This is because (relabeling if necessary) we have yk → y∗ weakly in H1(Q)
and strongly in L2(Q); yk(0, t)→ y∗(0, t) strongly in L2(0, T ). uk → u∗ in C1([0, 1]).
Therefore (y∗, u∗) ∈ H1(Q)× U is an optimal pair.

4. The maximum principle. Throughout this (and the next) section one as-
sumes that

T =
2k + 1
p

as in (1.6); y0 ∈ H2
π(0, T ), g ∈ H3

π(0, T ).(4.1)

The main result of this section is the following theorem.
THEOREM 4.1 (the maximum principle). Let (y∗, u∗) be an optimal pair of prob-

lems (3.1) such that N(A(u∗)) = {0}. Then there is p in H1
π(Q) such that

u∗ptt − (u∗px)x = 0 in Q,(4.2)
− u0px(0, t) = y∗(0, t)− y0(t), p(1, t) = 0, t ∈ (0, T ),∫ 1

0

∫ T

0
(y∗t pt − y∗xpx)(u∗ − u) dxdt

≤ γ
∫ 1

0
(u∗)′′(u∗ − u)′′dx+ γ

∫ 1

0
u∗(u∗ − u)dx ∀u ∈ U.(4.3)

Remark 4.1. Problem (4.2) should be viewed of course in the sense of Definition
2.1. However, since p ∈ H1

π(Q), this problem can be equivalently written as indicated
by (2.48), i.e.,∫

Q

u∗(x)(ptϕt − pxϕx) dx dt = −
∫ T

0
(y∗(0, t)− y0(t))ϕ(0, t) dt ∀ϕ ∈ V.(4.4)

Note that (in view of Proposition 2.1), y∗ ∈ H1
π(Q). Equation (4.3) is a variational

inequality which can be equivalently written as∫ T

0
(y∗t (x, t)pt(x, t)− y∗x(x, t)px(x, t)) dt ∈ NU (u∗) +B(u∗),(4.5)

where NU is the normal cone to U in (H2(0, 1))′ and B : H2(0, 1) → (H2(0, 1))′ is
defined by

〈Bu, v〉 = γ

∫ 1

0
(u′′v′′ + uv)dx, u, v ∈ H2(0, 1).(4.6)

Formally, y∗ is the solution to the following free boundary problem:

γu∗ + γu∗(4) =
∫ T

0
(y∗t pt − y∗xpx) dt in {x ∈ [0, 1);u∗(x) > a},

γu∗ + γu∗(4) ≥
∫ T

0
(y∗t pt − yxpx) dt in (0, 1),

u∗(0) = u0, u∗′′(0) = u′′(1) = 0, (u∗)′′′(1) = 0.

(4.7)
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Anyway, the solution u = u∗ to (4.5) is given by u∗ = limλ↓0 uλ strongly in H1(0, 1)
and weakly in H2(0, 1), where uλ is the solution of the problem

uIV
λ + βλ(uλ − a) = h a.e. in (0, 1),
uλ(0) = u0, u′′λ(0) = u′′λ(1) = 0, u′′′λ (1) = 0,

(4.8)

where βr = −λ−1r− for r ∈ R and h(x) =
∫ T

0 (y∗t pt − y∗xpx)dt (see [5, p. 132]).
Proof of Theorem 4.1. The fact that N(A(u∗)) = {0} implies by (2.18) that

S(u∗) = R(A(u∗)) = L2(Q) × L2(0, T ), so in view of Proposition 2.1, there is p ∈
H2
π(Q) such that A(u∗)p = (0, y∗(0, ·) − y0), which is just (4.2). In order to derive

the variational inequality (4.3) we need the tangent cone TK(u∗, y∗) to K at (u∗, y∗),
where

K = {(u, y) ∈ U ×H2
π(Q);A(u)y = (0, g)}.(4.9)

First we prove that the hypothesis N(A(u∗)) = 0 implies (for each w = u−u∗, u ∈ U)

N(A(u∗ + εw)) = {0} for some ε ↓ 0.(4.9′)

Indeed, by (2.12) and Proposition 2.1,

N(A(u∗ + εw)) = Span{ϕn(u∗ + εw)eiµmt;λn(u∗ + εw) = |µm|}.(4.10)

If (4.9′) were not true, then there would exist (m,n) and a sequence εp → 0 as
p → +∞ such that λn(u∗ + εpw) = |µm| (as N(A(u)) is finite dimensional for any
u ∈ U). Passing to limit for p → ∞ and taking into account the continuity of
u → λn(u), we get λn(u∗) = |µm|, which is in conflict with N(A(u∗)) = 0 (which
means that there are no (m,n) such that λn(u∗) = |µm|). As we mentioned above,
(4.10) implies R(u∗ + εw) = L2(q)× L2(0, T ), so the equation

A(u∗ + εw)zε = (−A0(w)y∗, 0)(4.11)

has a unique solution zε ∈ H2(Q). This is because y∗ ∈ H3(Q) (by (2.39′)), so
A0(w)y∗ ∈ H1(Q), and by (2.22′) it follows that zε ∈ H2(Q) and zε is bounded in
H2(Q). We may assume that zε ⇀ z weakly in H1(Q), and letting ε ↓ 0, (4.11) yields

A(u∗)z = (−A0(w)y∗, 0).(4.12)

Combining (4.11) and (4.12) one obtains

A(u∗)(zε − z) = −εA(w)zε = (−εA0(w)zε, 0).(4.13)

This implies zε − z = θε → 0 as ε ↓ 0 in H2(Q) and (u∗ + εw, y∗ + ε(z + θε)) ∈
TK(u∗, y∗), i.e., A(u∗ + εw)(y∗ + ε(z + θε)) = (0, g). Therefore,∫ T

0
(y∗(0, t)− y0(t))2dt+ γ|u∗|2H2(0,1)

≤
∫ T

0
((y∗ + ε(z + θε))(0, t)− y0(t))2 + γ|u∗ + εw|2H2(0,1) ∀ε > 0

with |u∗|2H2(0,1) = |u∗′′|2L2(0,1) + |u∗|2L2(0,1). This implies∫ T

0
(y∗(0, t)− y0(t))z(0, t)dt+ γ

∫ 1

0
((u∗)′′w′′ + u∗w)dx ≥ 0;(4.14)
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on the other hand p satisfies∫
Q

pA0(u∗)zdxdt =
∫ T

0
(y∗(0, t)− y0(t))z(0, t)dt

= −
∫
Q

pA0(w)y∗dxdt =
∫
Q

(y∗t pt − y∗xpx)wdxdt.
(4.15)

Clearly, (4.15) and (4.14) imply (4.3), which completes the proof.
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Abstract. We consider an optimal control problem in which both the state equation and the
cost functional have rapidly oscillating coefficients (characterized respectively by matrices Aε and
Bε, where ε is a small parameter). We make no periodicity assumption. We study the limit of the
problem when ε→ 0 and work in the framework of H-convergence. We prove that the limit satisfies
a problem similar to the original one but with matrices A0 (the H-limit of Aε) and B] (which is a
perturbation of the H-limit B0 of Bε). We also study some particular cases. This paper extends
former results obtained by Kesavan and Vanninathan in the periodic case.
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1. Introduction. The aim of this paper is to discuss the homogenization of an
optimal control problem in which both the state equation (given by a second-order
elliptic boundary value problem) and the cost function (involving a Dirichlet-type
integral of the state function) have rapidly oscillating coefficients.

Let Ω be a bounded open set in Rn. For any given constants αM > αm > 0, we
denote by M(αm, αM ,Ω) the set of all n × n matrices A = (aij) whose entries are
functions on Ω such that

(1.1) αmξiξi ≤ aij(x)ξiξj ≤ αMξiξi almost every (a.e.) (x)

for all ξ = (ξi) ∈ Rn. Here and throughout the sequel, we use the convention of
summation over repeated indices.

Let A ∈M(αm, αM ,Ω) and B ∈M(βm, βM ,Ω), and assume that B is symmetric.
We define the optimal control problem as follows. Let Uad ⊂ L2(Ω) be a closed

convex subset. Let f ∈ L2(Ω) be a given function and N > 0 be a given constant.
For θ ∈ Uad, the equation of state is given by

(1.2)

{
−div(A∇u) = f + θ in Ω,
u = 0 on ∂Ω.

The state u = u(θ) is thus defined as the weak solution in H1
0 (Ω) of problem (1.2).

Then the cost function is given by

(1.3) J(θ) =
1
2

∫
Ω

(B∇u,∇u)dx+
N

2

∫
Ω
θ2dx.

The optimal control θ? is the function in Uad which minimizes J(θ) for θ ∈ Uad.
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The problem posed above is a standard one, and a discussion of this can be found
in the book by Lions [3]. There exists a unique optimal control. The problem can be
reduced to a system of equations by introducing the adjoint state p. Thus we get

(1.4)

{
−div(A∇u) = f + θ in Ω,
div(tA∇p−B∇u) = 0 in Ω,

where u, p ∈ H1
0 (Ω). The optimal control θ? is characterized by the variational in-

equality

(1.5)
∫

Ω
(p+Nθ?)(θ − θ?)dx ≥ 0 ∀θ ∈ Uad .

The situation that we will be interested in is that in which, given a parameter
ε > 0 which tends to zero, the matrices A and B above depend on ε. Thus we suppose
that

Aε ∈M(αm, αM ,Ω) and Bε ∈M(βm, βM ,Ω).

Then as usual, the optimal control θ?ε exists and can be shown to be bounded in
L2(Ω). Thus (for a subsequence)

θ?ε ⇀ θ? weakly in L2(Ω),

and we would like to know whether θ? is an optimal control defined by a problem of
the same type with matrices A? and B? and, if so, identify these matrices.

A special case of this situation was studied by Kesavan and Vanninathan [2].
They assumed that Aε and Bε are periodic, and they computed the matrices of the
limiting problem. It turned out, as expected, that the matrix A? was indeed the limit
of the matrices Aε in the topology of H-convergence (see Murat [4] or Tartar [6]) but
the matrix B? was a perturbation of the H-limit of the Bε.

We will study the problem in the general case and identify the limiting problem.
As in the case of Kesavan and Vanninathan [2], we will first study the homogenization
of system (1.4) for a fixed θ in Uad.

Given Aε ∈ M(αm, αM ,Ω) and Bε ∈ M(βm, βM ,Ω), it is easy to see that the
corresponding solution (uε, pε) of the system

(1.6)


−div(Aε∇uε) = f + θ in Ω,
div(tAε∇pε −Bε∇uε) = 0 in Ω,
uε = pε = 0 on ∂Ω

is bounded in (H1
0 (Ω))2, uniformly with respect to (w.r.t.) ε. Thus (for a subsequence,

still denoted by the suffix ε)

uε ⇀ u0 weakly in H1
0 (Ω),

pε ⇀ p0 weakly in H1
0 (Ω).

Since div(Aε∇uε) is fixed, by the usual definition of the H-limit (see Murat [4]) we
have

(1.7)

{
ξε ≡ Aε∇uε ⇀ A0∇u0 weakly in L2(Ω),
− div(A0∇u0) = f + θ,
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where Aε
H−→ A0. By the H-limit of problem (1.6) we mean that in addition

(1.8)

{
zε ≡ tAε∇pε −Bε∇uε ⇀ z0 weakly in L2(Ω),
div (z0) = 0.

We would like to express z0 in a form similar to that of zε to identify the corresponding
matrices and, if possible, to express them in terms of A0 and B0, the H-limits of Aε
and Bε, respectively.

The plan of the paper is as follows. In section 2, we will briefly discuss the one-
dimensional case which gives a nice formula for the limiting coefficients in terms of
the H-limits. In section 3, we will prove that the limit satisfies a problem similar to
the original problem. In particular, we will show that

z0 = tA0∇p0 −B]∇u0,

where A0 is the H-limit of Aε and B] is a perturbation of B0, the H-limit of Bε.
Section 4 is reserved for the study of some properties of B].

2. The one-dimensional case. Let 0 < αm ≤ aε ≤ αM and 0 < βm ≤ bε ≤ βM
on an interval (c, d) ⊂ R. System (1.6) now reads as follows:

(2.1)


− d

dx

(
aε(x)

duε
dx

)
= f + θ in (c, d),

d

dx

(
aε(x)

dpε
dx
− bε(x)

duε
dx

)
= 0 in (c, d),

with uε and pε vanishing at c and d.
THEOREM 2.1. Suppose that the functions a0 and b] are such that

(2.2)


1
aε

⇀
1
a0

weakly ? in L∞(c, d),

b] =
a2

0

g0
,

where

(2.3)
1
gε
≡ bε
a2
ε

⇀
1
g0

weakly ? in L∞(c, d).

Then the following convergences hold:

uε ⇀ u0 weakly in H1
0 (c, d),

pε ⇀ p0 weakly in H1
0 (c, d),

where u0 and p0 satisfy the equations

(2.4)


− d

dx

(
a0
du0

dx

)
= f + θ in (c, d),

d

dx

(
a0
dp0

dx
− b] du0

dx

)
= 0 in (c, d).
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Proof. Step 1. We define gε by (2.3) and set
ξε = aε

duε
dx

,

ξ0 = a0
du0

dx
.

It is easy to see that {ue} and {pε} are bounded in H1
0 (c, d) and hence possess

weakly convergent subsequences. Working with such a subsequence (again denoted
by ε) we define u0 and p0 to be the respective limits. By the usual arguments of
H-convergence, it is obvious that ξε ⇀ ξ0 weakly in L2(c, d) and that u0 satisfies the
first equation of (2.4).

Step 2. We now observe that the second equation in (2.1) implies that

aε
dpε
dx
− bε

duε
dx

= cε, a constant,

and that the sequence {cε} is bounded. We can thus assume that cε → c0 (after
extracting a further subsequence if necessary). We write

(2.5)


dpε
dx

=
cε
aε

+
bε
aε

duε
dx

=
cε
aε

+
bε
a2
ε

ξε.

Step 3. We wish to pass to the limit in this relation. Obviously

(2.6)
cε
aε

⇀
c0
a0

in L∞ weak ? .

Moreover, since

−dξε
dx

= f + θ,

then ξε ∈ H1(c, d) and

‖ξε‖H1(c,d) ≤ C,

where C is a constant independent of ε. Note that this also holds when we have θ?ε
instead of θ since θ?ε is bounded in L2(c, d) independently of ε. Thus there exists
ξ0 ∈ H1(c, d) such that, up to a subsequence,

ξε ⇀ ξ0 weakly in H1(c, d) and ξε → ξ0 strongly in L2(c, d).

Hence, using (2.3), we have

bε
a2
ε

ξε ⇀
ξ0
g0
.

Thus
dp0

dx
=
c0
a0

+
ξ0
g0

=
c0
a0

+
a0

g0

du0

dx
.

Hence

a0
dp0

dx
− a2

0

g0

du0

dx
= c0, a constant,

which implies the second relation in (2.4).
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Remark 2.2. The limits u0 and p0 are not unique in general because the weak ?
limits 1

a0
and 1

g0
may not be unique.

Example 2.3. If aε(x) = a(x/ε) and bε(x) = b(x/ε), where a and b are periodic
functions on, say, [0, 1], we have

a0 =
[
m

(
1
a

)]−1
,

b] =
a2

0

g0
, g0 =

[
m

(
b

a2

)]−1
,

where m(h) =
∫ 1

0 h(y)dy for a periodic function h on [0, 1]. In this case, the limits u0
and p0 are unique.

Remark 2.4. One could try to imitate this proof in higher dimensions. If we set

Lε = AεB
−1
ε

tAε,

then Aε
H−→ A0,

Lε
H−→ L0,

and one might expect B] to be given by tA0(L0)−1 A0. Unfortunately the argu-
ments analogous to those of steps 2 and 3 are no longer valid. Indeed we will show
in the next section, by means of an example, that B] is not, in general, equal to
tA0(L0)−1A0.

3. Identification of the H-limit. We assume henceforth that Ω ⊂ Rn is a
bounded open set.

THEOREM 3.1. Assume that Aε ∈ M(αm, αM ,Ω) and Bε ∈ M(βm, βM ,Ω).
Assume also that A0 and B0 are H-limits of Aε and Bε. Let (uε, pε) be the solution
of system (1.6). Then uε ⇀ u0 and pε ⇀ p0 weakly in H1

0 (Ω) . Furthermore

zε ≡ tAε∇pε −Bε∇uε ⇀ z0 weakly in L2(Ω),

where

(3.1) z0 = tA0∇p0 −B]∇u0.

The matrix A0 is the H-limit of {Aε} and the matrix B] depends only on {Bε}
and {Aε}. It is given by formula (3.10) below.

Remark 3.2. In the case of the control problem, Bε is a symmetric matrix. How-
ever, to study system (1.6), Bε need not be taken to be symmetric. Also in order to
prove that B] is symmetric when the Bε are symmetric, we will need to study the
limit first without assuming the symmetry of the Bε.

Proof of Theorem 3.1. Step 1. It is obvious from (1.6) that {uε} and {pε} are
bounded sequences in H1

0 (Ω) and that {zε} is bounded in L2(Ω). Thus we assume
(working, as usual, with convergent subsequences) that uε ⇀ u0, pε ⇀ p0 weakly in
H1

0 (Ω), and zε ⇀ z0 weakly in L2(Ω). We also have ξε ≡ Aε∇uε bounded uniformly
w.r.t. ε in L2(Ω) and, by usual homogenization results,

ξε ⇀ ξ0 weakly in L2(Ω)
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with

(3.2) ξ0 = A0∇u0,

where A0 is the H-limit of {Aε}. Thus we also have

(3.3) − div(A0∇u0) = f + θ.

Step 2. We define various test functions to be used in the identification of z0. Let
ek ∈ Rn be the kth standard basis vector. Then we define Xε

k, Y
ε
k , and ψεk in H1(Ω)

as follows:

(3.4)

{
Xε
k ⇀ 0 weakly in H1(Ω),

div(Aε∇(−Xε
k + xk))→ div(A0ek) strongly in H−1(Ω),

(3.5)

{
Y εk ⇀ 0 weakly in H1(Ω),

div(tBε∇(−Y εk + xk))→ div(B0ek) strongly in H−1(Ω),

where B0 is the usual H-limit of {Bε},

(3.6)

{
ψεk bounded uniformly w.r.t. ε in H1

0 (Ω),

div (tAε∇ψεk + tBε∇(−Xε
k + xk)) = 0.

Here xk denotes the function mapping x ∈ Rn to its kth coordinate. The sequence
{ψεk} is bounded, and so it converges weakly in H1(Ω) (up to a subsequence). We
denote its limit by ψ0

k.
Let us detail how these test functions can be built. Define Xε

k by{
div(Aε∇(−Xε

k + xk)) = div(A0ek) in Ω,
Xε
k = 0 on ∂Ω.

Multiplication of this relation by Xε
k, integration by parts, and use of the fact that

Aε ∈M(αm, αM ,Ω) imply that

‖Xε
k‖H1(Ω) ≤ C,

where the constant C is independent of ε. Hence, up to a subsequence,

Xε
k ⇀ Xk weakly in H1(Ω)

and therefore

(−Xε
k + xk) ⇀ (−Xk + xk) weakly in H1(Ω).

Then a well-known H-convergence result (see Murat [4, Theorem 1]) implies that

Aε∇(−Xε
k + xk) ⇀ A0∇(−Xk + xk) weakly in (L2(Ω))n.

Hence Xk is the solution of{
div(A0∇(−Xk + xk)) = div(A0ek) in Ω,
Xk = 0 on ∂Ω;

that is,

Xk = 0 on Ω.

This holds for any subsequence Xε
k, so this is true for the whole sequence Xε

k.
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Similar arguments obviously hold for (3.5).
To establish relation (3.6), let us define for instance ψεk by{

div(tAε∇ψεk) = div(tBε∇(−Xε
k + xk)) in Ω,

ψεk = 0 on ∂Ω.

Using the assumptions Aε ∈ M(αm, αM ,Ω) and Bε ∈ M(βm, βM ,Ω) and the fact
that Xε

k is bounded in H1(Ω) independently of ε, we derive

‖ψεk‖H1(Ω) ≤ C,

where the constant C is independent of ε. Thus relation (3.6) is established.
Let us point out that there are several others procedures to build functions Xε

k,
Y εk , and ψεk satisfying relations (3.4)–(3.6). We detailed one of these for the reader’s
convenience.

Step 3. Let ϕ ∈ D(Ω) be an arbitrary function. We multiply the second equation
in (1.6) by ϕ(−Xε

k + xk) and integrate by parts. Thus we get

0 =−
∫

Ω
(tAε∇pε −Bε∇uε) . (∇ϕ)(−Xε

k + xk)dx

−
∫

Ω
(tAε∇pε) . ∇(−Xε

k + xk)ϕ dx+
∫

Ω
(Bε∇uε) . ∇(−Xε

k + xk)ϕ dx

=−
∫

Ω
zε . (∇ϕ)(−Xε

k + xk)dx−
∫

Ω
∇pε . Aε∇(−Xε

k + xk)ϕ dx

+
∫

Ω
∇uε . tBε∇(−Xε

k + xk)ϕ dx,

which yields

(3.7)
0 =−

∫
Ω
zε . (∇ϕ)(−Xε

k + xk)dx+
∫

Ω
pε div (Aε∇(−Xε

k + xk))ϕ dx

+
∫

Ω
pε Aε∇(−Xε

k + xk) . ∇ϕ dx+
∫

Ω
∇uε . tBε∇(−Xε

k + xk)ϕ dx.

Now, the first equation of (1.6) when multiplied by ϕψεk and integrated by parts
gives ∫

Ω
(f + θ)ψεkϕ dx =

∫
Ω
Aε∇uε . (∇ϕ)ψεkdx+

∫
Ω
Aε∇uε . (∇ψεk)ϕ dx

=
∫

Ω
ξε . (∇ϕ)ψεkdx+

∫
Ω
∇uε . tAε(∇ψεk)ϕ dx

=
∫

Ω
ξε . (∇ϕ)ψεkdx−

∫
Ω
uε div(tAε∇ψεk)ϕ dx −

−
∫

Ω
uε
tAε∇ψεk . ∇ϕ dx

=
∫

Ω
ξε . (∇ϕ)ψεkdx+

∫
Ω
uε div(tBε∇(−Xε

k + xk))ϕ dx

−
∫

Ω
uε
tAε∇ψkε . ∇ϕ dx,
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which yields

(3.8)

∫
Ω

(f + θ)ψεkϕ dx =
∫

Ω
ξε . (∇ϕ)ψεkdx−

∫
Ω
∇uε . tBε∇(−Xε

k + xk)ϕ dx

−
∫

Ω
uε
tBε∇(−Xε

k + xk) . ∇ϕdx

−
∫

Ω
uε
tAε∇ψεk . ∇ϕ dx.

Adding (3.7) and (3.8), we get

(3.9)



∫
Ω

(f + θ)ψεkϕ dx =−
∫

Ω
zε . (∇ϕ)(−Xε

k + xk)dx

+
∫

Ω
pεdiv (Aε∇(−Xε

k + xk))ϕ dx

+
∫

Ω
pεAε∇(−Xε

k + xk) . ∇ϕ dx+
∫

Ω
ξε . (∇ϕ)ψεk dx

−
∫

Ω
uε[ tBε∇(−Xε

k + xk) + tAε∇ψkε ] . ∇ϕ dx.

Step 4. We can pass to the limit as ε→ 0 in (3.9) since each of the terms in the
right-hand side is a product of two sequences, one converging weakly and the other
strongly in L2(Ω) (since the injection of H1

0 (Ω) in L2(Ω) is compact). In the second
term we have a weak convergence in H1

0 (Ω) and a strong convergence in H−1(Ω).
Thus,∫

Ω
(f + θ)ψ0

kϕ dx =−
∫

Ω
z0 . (∇ϕ) xk dx+

∫
Ω
p0 div(A0ek)ϕ dx

+
∫

Ω
p0(A0ek) . ∇ϕ dx+

∫
Ω
ξ0 . (∇ϕ)ψ0

k dx

−
∫

Ω
u0 lim(tBε∇(−Xε

k + xk) + tAε∇ψεk) . ∇ϕ dx

=
∫

Ω
div(z0) (ϕxk)dx+

∫
Ω
z0 . (∇xk) ϕ dx+

∫
Ω
p0 div (A0ek)ϕ dx

−
∫

Ω
p0 div(A0ek)ϕ dx−

∫
Ω
∇p0 . A0ek ϕ dx

−
∫

Ω
div(ξ0) ψ0

kϕ dx−
∫

Ω
ξ0.(∇ψ0

k) ϕ dx

+
∫

Ω
∇u0 . lim( tBε∇(−Xε

k + xk) + tAε∇ψεk)ϕ dx

+
∫
u0 div

(
lim( tBε∇(−Xε

k + xk) + tAε∇ψεk)
)
ϕ dx.

Recall that

− div ξ0 = − div(A0∇u0) = f + θ.

Moreover

div zε = 0 = div( tBε ∇(−Xε
k + xk) + tAε∇ψεk),
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and so the same is true for the divergence of their weak limits in L2(Ω). Thus we get,
on eliminating ϕ,

z0 . ek = (tA0∇p0) . ek − lim
(
tBε∇(−Xε

k + xk) + tAε(∇ψεk)
)
.∇u0 + (tA0∇ψ0

k) . ∇u0,

which we can write as

z0 = tA0∇p0 −B]∇u0,

which completes the proof of the theorem.
We would like to express B] as a perturbation of the usual H-limit B0. Hence we

write

tBε∇(−Xε
k + xk) = tBε∇(−Xε

k + Y εk ) + tBε∇(−Y εk + xk).

By (3.5) the second term on the right converges to B0ek. Thus, up to eventual
subsequences

(3.10) B]ek = B0ek + lim[ tAε∇ψεk − tA0∇ψ0
k] + lim[ tBε(Y εk −Xε

k)].

To return to the control problem that we started with, we have the following
result.

THEOREM 3.3. Set Aε ∈ M(αm, αM ,Ω) and Bε ∈ M(βm, βM ,Ω) with Bε sym-
metric. Let θ?ε be the optimal control for the problem whose state equation is given
by {

− div(Aε∇uε) = f + θ in Ω,
uε = 0 on ∂Ω

for θ ∈ Uad, and let the cost function be given by

Jε(θ) =
1
2

∫
Ω

(Bε∇uε,∇uε)dx+
N

2

∫
Ω
θ2dx.

Then

θ?ε → θ?0 strongly in L2(Ω),

and θ?0 is the optimal control for the corresponding problem defined by the matrices
A0 and B]. We also have

Jε(θ?ε)→ J0(θ?0) ≡ 1
2

∫
Ω

(B]∇u?0,∇u?0) dx+
N

2

∫
Ω

(θ?0)2 dx.

Proof. It is again obvious that θ?ε is bounded in L2(Ω) and so converges to some
θ?0 weakly in L2(Ω). If u?ε is the corresponding state function and p?ε the adjoint state
function, we can repeat the proof of Theorem 3.1. (The fact that θ is replaced by
θ?ε in the first equation poses no problem.) Thus we get that u?ε ⇀ u?0 and p?ε ⇀ p?0
weakly in H1

0 (Ω) and that{
− div(A0∇u?0) = f + θ?0 in Ω,

div( tA0∇p?0 −B]∇u?0) = 0 in Ω.
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Further, we have, for every θ ∈ Uad,∫
Ω

(p?ε +Nθ?ε)(θ − θ?ε)dx ≥ 0,

and we easily pass to the limit to get∫
Ω

(p?0 +Nθ?0)(θ − θ?0)dx ≥ 0.

Here we used the fact that lim
∫

Ω θ
2
ε dx ≥

∫
Ω θ
∗2
0 dx. Further (as will be proven in the

next section) B] is both elliptic and symmetric. This proves that θ?0 is the optimal
control for the problem involving A0 and B].

Moreover

θ?ε = projUad(−pε/N) and θ?0 = projUad(−p0/N),

where projUad denotes the projection on the set Uad. Since

pε → p?0 strongly in L2(Ω)

and the projection is an L2-contraction, we deduce that

θ?ε → θ?0 strongly in L2(Ω).

Now ∫
Ω

(Bε∇u?ε,∇u?ε) dx = −
∫

Ω
div (Bε∇u?ε) u?ε dx

= −
∫

Ω
div( tAε∇p?ε) u?ε dx

=
∫

Ω

tAε∇p?ε . ∇u?ε dx

=
∫

Ω
∇p?ε . Aε∇u?ε dx

=
∫

Ω
(f + θ?ε) p?ε dx

→
∫

Ω
(f + θ?0) p?0 dx =

∫
Ω

(B]∇u?0,∇u?0) dx.

The last equality follows by retracing the above steps. This, together with the strong
convergence of θ?ε , gives the convergence of Jε(θ?ε) to J0(θ?0).

To conclude this section we will compute the matrix B] in some special cases.
Example 3.4 (the periodic case). Let Y denote the unit cube [0, 1]n in Rn. Choose

A ∈ M(αm, αM , Y ) and B ∈ M(βm, βM , Y ) such that their coefficients are all peri-
odic. We also assume that B is symmetric. We define Aε and Bε on Rn by extending
A and B by periodicity on a grid of size ε. More precisely, we define

aεij(x) = aij(x/ε) , bεij(x) = bij(x/ε)

on [0, ε]n and then extend them to the whole of Rn by periodicity. Restricting the
functions to Ω, we thus get Aε ∈M(αm, αM ,Ω) and Bε ∈M(βm, βM ,Ω).
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Defining Xε
k, Y

ε
k , and ψεk as in (3.4)–(3.6), we observe the following:

(i) Since A0 is now a constant matrix, div(A0ek) = 0. In fact, we can define Xε
k

by

Xε
k = Xk(x/ε),

where

(3.11)


div(A∇(−Xk + yk)) = 0 in Y,

Xk is Y -periodic,
∫
Y

Xkdy = 0.

(ii) Similarly, Y εk (x) = Yk(x/ε), where

(3.12)


div (B∇(−Yk + yk)) = 0 in Y,

Yk is Y -periodic,
∫
Y

Ykdy = 0.

(iii) Finally ψεk(x) = ψk(x/ε), where ψk(y) satisfies

(3.13)


div(tA∇ψk +B∇(−Xk + yk)) = 0 in Y,

ψk is Y -periodic,
∫
Y

ψkdy = 0.

In the above definitions, yk denotes the projection onto the kth coordinate of
y ∈ Y .

Since the means of the test function are zero, the limits of Xε
k, Y

ε
k , ψ

ε
k are all zero.

In particular, ψ0
k = 0. Thus

(B])jk = lim
[
bεij

∂

∂xi
(−Xε

k + xk) + aεij
∂ψεk
∂xi

]
=
∫
Y

[
bij(y)

∂

∂yi
(−Xk + yk) + aij(y)

∂ψk
∂yi

]
dy

since f(x/ε) ⇀
∫
Y
f(y)dy in L∞(Ω)-weak ∗ for Y -periodic f . Hence

(B])jk =
∫
Y

bij(y)
∂

∂yi
(−Yk + yk)dy +

∫
Y

[
aij

∂ψk
∂yi
− bij

∂(Xk − Yk)
∂yi

]
dy.

Now ∫
Y

bij(y)
∂

∂yi
(−Yk + yk)dy =

∫
Y

bil
∂(−Yk + yk)

∂yi

∂(−Yj + yj)
∂yl

dy = (B0)jk

as per classical computations in homogenization (see, for example, Bensoussan, Lions,
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and Papanicolaou [1]). The second term in (B])jk is evaluated as follows:∫
Y

aij
∂ψk
∂yi

dy =
∫
Y

ail
∂ψk
∂yi

∂yj
∂yl

dy

=
∫
Y

ail
∂ψk
∂yi

∂Xj

∂yl
dy (using (3.11))

=
∫
Y

bil
∂(Xk − yk)

∂yi

∂Xj

∂yl
dy (using (3.13))

=
∫
Y

bil
∂(Xk − Yk)

∂yi

∂Xj

∂yl
dy (using (3.12))

=
∫
Y

bil
∂

∂yi
(Xk − Yk)

∂

∂yl
(Xj − Yj)dy +

∫
Y

bil
∂

∂yi
(Xk − Yk)

∂Yj
∂yl

dy

=
∫
Y

bil
∂

∂yi
(Xk − Yk)

∂

∂yl
(Xj − Yj)dy

+
∫
Y

bij
∂

∂yi
(Xk − Yk)dy (using (3.12)).

Thus,∫
Y

aij
∂ψk
∂yi

dy −
∫
Y

bij
∂

∂yi
(Xk − Yk)dy =

∫
Y

bil
∂

∂yi
(Xk − Yk)

∂

∂yl
(Xj − Yj) dy.

Finally we get

(3.14) (B])jk = (B0)jk +
∫
Y

bil
∂

∂yi
(Xk − Y k)

∂

∂yl
(Xj − Y j)dy,

which was announced by Kesavan and Vanninathan [2]. It is immediate from the
above form that B] is both symmetric and elliptic.

Example 3.5. (the layered material). This time we assume that n = 2, that A
and B are diagonal, and that aii and bii, (i = 1, 2) depend periodically on x1 and do
not depend on x2. Thus aεii(x) = aii(x1/ε) and bεii(x) = bii(x1/ε), where aii(y) and
bii(y) are periodic on [0, 1]. In this case (see Murat [4])

(3.15) A0 =

 1
m(1/a11)

0

0 m(a22)

 ,

where m( . ) denotes the mean, i.e., the integral over [0, 1].
It is now easy to see that Xε

1 , Y
ε
1 , and ψε1 are functions in x1 alone defined by

Xε
1(x) = X1

(x1

ε

)
, Y ε1 (x) = Y1

(x1

ε

)
, ψε1(x) = ψ1

(x1

ε

)
,

where

(3.16)



− d

dy1
(a11(y1)

d

dy1
(−X1 + y1)) = 0 in ]0, 1[,

− d

dy1
(b11(y1)

d

dy1
(−Y1 + y1)) = 0 in ]0, 1[,

− d

dy1
(a11(y1)

dψ1

dy1
+ b11(y1)

d

dy1
(−X1 + y1)) = 0 in ]0, 1[.
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Also, Xε
2 = Y ε2 = ψε2 = 0. Thus we get

(3.17) B] =


m
(
b11/a

2
11

)
m
(

1/a11

)2 0

0 m(b22)


as per usual calculations. See the one-dimensional case in section 2 for this form of
(B])11. One can also directly obtain this formula from the previous example.

Example 3.5 also illustrates the fact that the generalization of the one-dimensional
formula proposed in section 2 does not work. Indeed

Lε = AεB
−1
ε Aε =

(
(aε11)2/bε11 0

0 (aε22)2/bε22

)
.

Thus

L0 =

 1
m(b11/a2

11)
0

0 m
(
a2

22/b22

)


and so

A0L
−1
0 A0 =


m(b11/a

2
11)

(m(1/a11))2 0

0
m(a22)2

m
(
a2

22/b22

)
 ,

which is not equal to B].

4. Properties of the matrix B] . In this section we will study some of the
properties of the matrix B]. In particular we will see that the ellipticity and symmetry
of the Bε are preserved.

THEOREM 4.1. Let Aε ∈ M(αm, αM ,Ω) and Bε ∈ M(βm, βM ,Ω). Let B] be the
matrix obtained as indicated in Theorem 3.1. Consider the problem

(4.1)


− div(Aε∇uε) = f + θ in Ω,

div( tAε∇p̃ε − tBε∇uε) = 0 in Ω,
uε = p̃ε = 0 on ∂Ω.

Then

z̃ε ≡ tAε∇p̃ε − tBε∇uε ⇀ tA0∇p̃0 − t(B])∇u0 weakly in L2(Ω).

Proof. Step 1. Clearly, by Theorem 3.1, we obtain a matrix B]1 such that

z̃ε = tAε∇p̃ε − tBε∇uε ⇀ tA0∇p̃0 −B]1∇u0 = z̃0.

We have to show that B]1 = t(B]).
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Let F ∈ H−1(Ω) be an arbitrary distribution. We define (wε, qε) ∈ (H1
0 (Ω))2 by

(4.2)

{
− div(Aε∇wε) = F in Ω,

div(tAε∇qε −Bε∇wε) = 0 in Ω.

If we set

ẑε = tAε∇qε −Bε∇wε,

then ẑε ⇀ ẑ0 weakly in L2(Ω) and

ẑ0 = tA0∇q0 −B]∇w0,

where qε ⇀ q0 and wε ⇀ w0 weakly in H1
0 (Ω). We also know that

(4.3)

{
ξ̂ε = Aε∇wε ⇀ A0∇w0 = ξ̂0,

ξε = Aε∇uε ⇀ A0∇u0 = ξ0

weakly in L2(Ω).
Step 2. Since divz̃ε = div ẑε = 0, by the div-curl lemma of compensated com-

pactness (see Murat [5]) we have{
z̃ε . ∇wε → z̃0 . ∇w0 in D′(Ω),
ẑε . ∇uε → ẑ0 . ∇u0 in D′(Ω).

Thus

(4.4) z̃ε . ∇wε − ẑε . ∇uε −→ z̃0 . ∇w0 − ẑ0 . ∇u0 in D′(Ω).

We now evaluate the left-hand side of (4.4) in a different manner.

z̃ε . ∇wε − ẑε . ∇uε = tAε∇p̃ε . ∇wε − tAε∇qε . ∇uε
− tBε∇uε . ∇wε +Bε∇wε . ∇uε

= ∇p̃ε . Aε∇wε −∇qε . Aε∇uε
= ∇p̃ε . ξ̂ε −∇qε . ξε
→ ∇p̃0 . ξ̂0 −∇q0 . ξ0

once again by compensated compactness. Thus by (4.4) we get

z̃0 . ∇w0 − ẑ0 . ∇u0 = ∇p̃0 . ξ̂0 −∇q0 . ξ0

= ∇p̃0 . A0∇w0 −∇q0 . A0∇u0

= tA0∇p̃0 . ∇w0 − tA0∇q0 . ∇u0

= z̃0 . ∇w0 − ẑ0 . ∇u0

+ B]1∇u0 . ∇w0 −B]∇w0 . ∇u0.

Hence we have

B]1∇u0 . ∇w0 = B]∇w0 . ∇u0 = t(B])∇u0 . ∇w0 in D′(Ω).
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As can be observed, the matrices B] and B]1 depend only on the Aε and Bε.
Thus we can choose u0 and w0 arbitrarily. In particular, if ω ⊂⊂ Ω is any relatively
compact open set, we can find, for any λ, µ ∈ Rn, elements u0 and w0 in H1

0 (Ω) such
that

∇u0 = λ and ∇w0 = µ in ω.

Thus

(B]1 − t(B]))λ . µ = 0 in D′(ω),

and so for any ω ⊂⊂ Ω, we have B]1 = t(B]) in ω. Hence

B]1 = t(B]) in Ω,

which completes the proof.
The above theorem immediately gives the following result.
COROLLARY 4.2. If Bε is symmetric for each ε > 0, then B] is symmetric.
We now turn to the ellipticity of B].
In the periodic case we see immediately that B] has the same ellipticity constant

as B0, which is βm itself. We will now see that this is the case even without the
periodicity assumption.

THEOREM 4.3. Let Bε ∈ M(βm, βM ,Ω). Then the ellipticity constant of B] is
also βm, so for some β̃M > 0, we have

B] ∈M(βm, β̃M ,Ω).

Proof. Let F ∈ H−1(Ω) be an arbitrary distribution. We define

(wε, qε) ∈ (H1
0 (Ω))2

as in (4.2). Now

Bε∇wε . ∇wε = tAε∇qε . ∇wε − ẑε.∇wε
= ∇qε . Aε∇wε − ẑε . ∇wε
= ∇qε . ξ̂ε − ẑε . ∇wε,

where ẑε and ξ̂ε are as in Step 1 of the proof of Theorem 4.1. Then, once again by
compensated compactness,

Bε∇wε . ∇wε
D′(Ω)−−−−→ ∇q0 . ξ̂0 − ẑ0 . ∇w0

= ∇q0 . A0∇w0 − ẑ0 . ∇w0

= tA0∇q0 . ∇w0 − ẑ0 . ∇w0

= B]∇w0 . ∇w0.

Thus if ϕ ≥ 0 is any function in D(Ω),

βm

∫
Ω
ϕ|∇w0|2 dx ≤ βm lim

∫
Ω
ϕ|∇wε|2 dx

≤ lim
∫

Ω
(Bε∇wε . ∇wε)ϕ dx

=
∫

Ω
(B]∇w0 . ∇w0)ϕ dx.
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We can now choose, for any λ ∈ Rn, an element w0 such that ∇w0 = λ on the support
of ϕ so that

(B]λ, λ) ≥ βm|λ|2 in D′(Ω),

which proves the theorem.
Remark 4.4. We said nothing about the upper bound β̃M for the norm of B].

In the case of H-convergence the upper bound for the norm of B0 is dominated by
β2
M/βm, and in the case of symmetric matrices, by βM itself. However, in the case

of B], the upper bound cannot be expressed in terms of the ellipticity constant and
upper bound of Bε alone, as can be seen even in the one-dimensional case.

Indeed, in the one-dimensional case, let us take bε = b constant and aε periodic.
Thus

B] = b
m(1/a2)

(m(1/a))2 .

Let a be a step function, say,

a = aF χF + aG χG,

where the sets F and G are such that F ∪ G = [0, 1] and
◦
F∩

◦
G= ∅. For any set E,

we denote by χE its characteristic function and |E| its measure. Then

m(1/a2) = |F | 1
a2
F

+ |G| 1
a2
G

,

(m(1/a))2 =
(
|F | 1

aF
+ |G| 1

aG

)2

.

Thus

m(1/a2)
(m(1/a))2 =

|F | a2
G + |G| a2

F

(|F | aG + |G| aF )2 .

If aG → +∞, the above quantity tends to 1
|F | . Thus by choosing aG large and |F |

small we can always arrive at

B] >> b =
β2
M

βm

(since βM = βm = b).
The above considerations show that the upper bounds should depend on the

constant αm and αM as well as on βm and βM . But we have no conjecture to offer
on the form of this dependence.

Acknowledgments. The authors gratefully acknowledge the referee, who made
useful suggestions including a simplification of the proof of Theorem 2.1 and remarks
which helped us improve the paper.
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Abstract. In this paper we note the equivalence between exact controllability and exponen-
tial stabilizability for an abstract conservative system with bounded control. This enables us to
establish a frequency domain characterization for the exact controllability/uniform exponential de-
cay property of second-order elastic systems, such as the wave equation and the Petrovsky equation,
with (locally) distributed control/damping. A piecewise multiplier method for frequency domain
is introduced. For several classes of PDEs on regions which are not necessarily smooth, we obtain
a sufficient condition for the subregion on which the application of control/damping will yield the
exact controllability/uniform exponential decay property. This result provides useful information for
designing the location of controllers/dampers for distributed systems with a law of conservation.

Key words. conservative partial differential equation, exact controllability, damping, uniform
exponential decay property

AMS subject classifications. 93B05, 93D15, 35B37, 35B40

PII. S0363012995284928

1. Introduction. Many examples of conservative partial differential equations
(CPDEs) modelling wave propagations, quantum phenomena, and mechanical vi-
brations can be found in the engineering and physics literature. Boundary con-
trol/damping for CPDEs has been studied extensively (cf. Russell [Ru1] and Lions
[Li1], [Li2]). The consideration of locally distributed control of CPDEs seems to have
been initiated by Lagnese [La] in 1983. The general question is how to choose the
location of the control/damping subregion so that the exact controllability and/or
uniform exponential decay property (UEDP) for a CPDE can be achieved. Much
work has been done on this problem for special regions, such as one-dimensional,
rectangular, and spherical cases (see Lagnese [La], Chen et al. [CFNS], Haraux [Ha1],
[Ha2], Ho [Ho], Jaffard [J], Kim [Ki1], [Ki2], and Komornik [Ko]). For a general
n-dimensional region with appropriately smooth boundary, Zuazua [Li2, Chap. 7],
[Zu] showed that applying distributed control on an ε-neighborhood of a part of the
boundary with certain geometric properties is sufficient for the exact controllability
of the wave equation and the Petrovsky equation.

As indicated by Bardos, Lebeau, and Rauch [BLR1], Ralston’s result [Ra] sug-
gests that for exact controllability/UEDP, control/damping should be applied to a
subregion which satisfies the “geometric optics condition,” that is, that each ray, re-
flected at the boundary in the usual way, meets the subregion. This principle was also
noted by Lagnese [La] in contrapositive form. Indeed, Bardos, Lebeau, and Rauch
[BLR2] showed by means of microlocal analysis that the “geometric optics condition”
is necessary and sufficient for exact controllability/UEDP of a second-order hyperbolic
PDE with locally distributed control/damping when the coefficients and the bound-
ary are of class C∞. The C∞ condition recently has been relaxed by Burq [Bu1], by
proving that the C3 condition is sufficient.
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In practice, the problem of optimal location of the controllers/dampers for the
system modelled by the CPDE is more significant. When choosing as the cost func-
tion for this optimal design problem the integral of the energy over infinite time, we
must select the admissible locations of the controllers/dampers so that exact control-
lability/UEDP can be achieved. This also leads to our problem.

In this paper, by introducing the frequency domain inequality and the piecewise
multiplier method for frequency domain, we get a sufficient condition for the subregion
on which the application of control/damping will yield exact controllability/UEDP of
any of the wave equation, the Petrovsky equation, and the Schrödinger equation on
a not necessarily smooth region. We illustrate the applicability of our result with a
simple example. Consider the wave equation on a triangular region. It follows readily
from our result that applying control/damping on an ε-neighborhood (in the region)
of a straight line passing through any vertex and across the triangle is sufficient for
exact controllability/UEDP (see Remark 4.3 for other examples). This provides a
sufficient number of admissible locations for the optimal location problem. We point
out that this example is not covered under the cases studied in Bardos, Lebeau, and
Rauch [BLR2], Burq [Bu1], and Zuazua [Li2, Chap. 7]. Our sufficient condition is
formulated in terms of general sets and vectors in RN , like the result in Zuazua [Li2,
Chap. 7]. The “geometric optics condition” is formulated in terms of complicated
vector bundles. Thus, for a nondisk region, it is not easy to check whether the
“geometric optics condition” is satisfied, although it is easy to make a conjecture
directly, based on its meaning in optics.

In section 2 we exhibit in a semigroup framework the equivalence between control-
lability and stabilizability for a conservative system, as well as necessary and sufficient
conditions for both. The regularity of the control steering the system from a smoother
state to zero state is also discussed. In section 3, the results in section 2 are applied
to a second-order elastic system with control/damping. A frequency domain charac-
terization for exact controllability is given. We consider the wave equation in section
4, and the Schrödinger and Petrovsky equations in section 5. A sufficient geometric
control condition and piecewise multiplier techniques are developed. It is discovered
that exact controllability of the wave equation with Dirichlet boundary condition
implies exact controllability of the Petrovsky equation with the simply supported
boundary condition, and also that the latter is equivalent to exact controllability of
the Schrödinger equation with Dirichlet boundary condition.

Some consequences of our results (Remarks 4.3(b), 5.4, and 5.5) give answers to
several conjectures posed by Chen et al. in [CFNS]. We also point out that the fre-
quency domain inequality introduced in this paper has been applied to the Maxwell
equation and the Kirchhoff plate-like equation to establish exact internal controlla-
bility [Zh], [LY].

2. Equivalence between controllability and stabilizability; necessary
and sufficient conditions. Let H and U be Hilbert spaces. Consider the control
system (A,B),

y(u, t) = etAy0 +
∫ t

0
e(t−s)ABu(s)ds,(2.1)

where A generates a C0-semigroup etA on H, B ∈ L(U ;H), y0 ∈ H.
DEFINITION 2.1. The system (A,B) is said to be exactly controllable on [0, T ] if

for every y0, y1 ∈ H there exists u(·) ∈ L2(0, T ;U) such that y(u, 0) = y0, y(u, T ) = y1;
it is said to be exponentially stabilizable if there exists K ∈ L(H;U) such that A+BK
generates an exponentially stable C0-semigroup on H.
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Remark 2.2. When A is the infinitesimal generator of a C0-group onH, (uniform)
exact controllability on some [0, T ], defined in Definition 2.1, is equivalent to exact
null-controllability on [0, T ] (y1 ≡ 0 in Definition 2.1) and to exact controllability on
[0,∞). (For every y0, y1 ∈ H there exist T > 0 and u(·) ∈ L2(0, T ;U) such that
y(u, 0) = y0, y(u, T ) = y1; see Zabczyk’s Proposition 1 in [Za].) Thus, in this case we
can generally say that the system (A,B) is exactly controllable.

THEOREM 2.3. Let A∗ = −A, B ∈ L(U ;H). Then the following propositions are
equivalent:

(a) The system (A,B) is exponentially stabilizable with an arbitrary prefixed ex-
ponential decay rate.

(b) The system (A,B) is exponentially stabilizable.
(c) For every positive-definite self-adjoint S ∈ L(U) the operator A−BSB∗ gen-

erates an exponentially stable C0-semigroup on H.
(d) The system (A,B) is exactly controllable.
(e) (observability inequality) There exist T, δ > 0 such that∫ T

0
‖B∗etAy‖2dt ≥ δ‖y‖2 ∀ y ∈ H.(2.2)

(f) The following frequency domain condition holds:

iR ⊂ ρ(A− BB∗), the resolvent set of A− BB∗,(2.3)
sup{‖(λ−A+ BB∗)−1‖ | λ ∈ iR} < +∞.(2.4)

Proof. (a)⇒(b) This is obvious.
(b)⇒(c) For every positive-definite self-adjoint S ∈ L(U) we consider the follow-

ing algebraic inner product Riccati equation in H:

〈Py,−Az〉+ 〈−Ay, Pz〉+ 〈Cy, Cz〉 − 〈PBR−1B∗Py, z〉 = 0, P ≥ 0,(2.5)

for any y, z ∈ D(A), where C = S 1
2B∗,R−1 = S. It is obvious that P = I is a

solution. By (b) there is a K ∈ L(H;U) such that A+ BK, and therefore its adjoint
operator −A+K∗S− 1

2 C, generates an exponentially stable C0-semigroup on H. This
says that (C,−A) is detectable. It follows from Zabczyk’s Theorem 1o in [Za] that
−A−BR−1B∗I, and, hence, its adjoint operatorA−BSB∗, generates an exponentially
stable C0-semigroup on H.

(c)⇒(d) This follows from Russell’s “controllability via stabilizability” [Ru1],
[Ru2] and also from Theorem 2.4 in this section.

(d)⇒(e) This follows from ‖etA‖ = 1 and the well-known necessary and sufficient
condition for exact controllability.

(e)⇒(a) See Slemrod [S].
(c)⇒(f)⇒(b) Proposition (f) is equivalent to exponential stability of the semi-

group et(A−BB
∗), from the result in Gearhart [Ge] or Huang [Hu] or Prüss [Pr].

THEOREM 2.4. Let A be the infinitesimal generator of a C0-group on H, and
ω0(−A) = limt→+∞ t−1 ln ‖e−tA‖, the type of e−tA. Let B ∈ L(U ;H). Then the sys-
tem (A,B) is exactly controllable if and only if there exist K ∈ L(H;U), µ > ω0(−A),
and Mµ > 0 such that ∥∥∥et(A+BK)

∥∥∥ ≤Mµe
−µt ∀ t ≥ 0.(2.6)
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Proof. Also see Slemrod [S] for the case of necessity. Let

J = J(T ) = e−TAeT (A+BK).(2.7)

From (2.6) there exists T > 0 large enough such that ‖J‖ = ‖J(T )‖ < 1. Thus
(I − J)−1 ∈ L(H). For every y0 ∈ H, t ∈ [0, T ], set

z1(t) = et(A+BK)(I − J)−1y0, z2(t) = etA[I − (I − J)−1]y0.(2.8)

From the formula for perturbations of C0-semigroups [Pa] we have

y(t) ≡ z1(t) + z2(t) = etAy0 +
∫ t

0
e(t−s)ABKz1(t)ds.(2.9)

Observing that y(0) = y0 and

y(T ) = eTA[J(I − J)−1 + I − (I − J)−1]y0 = 0,(2.10)

we conclude that the control

u(·) = Kz1(·) = Ke·(A+BK)(I − J)−1y0 ∈ C([0, T ];U)(2.11)

steers the system (A,B) from the initial state y0 to rest at time T .
It should be noted that µ in (2.6) can be negative when ω0(−A) < 0.
Theorem 2.4 is an improvement of a known result on exact controllability of the

system with time reversibility (see Theorem 3.14 in the survey article [PZ]). Our
proof is suggested by Russell’s “controllability via stabilizability” method. Taking
advantage of the structure of the control in (2.11), we get the following regularity
result.

THEOREM 2.5. Let A and B be the same as in Theorem 2.4. If the system (A,B)
is exactly controllable then, for every y0 ∈ D(A), there exists u(·) ∈ C1([0, T1];U)
with T1 > 0 independent of y0 such that y(u, T1) = 0 and y(u, ·) ∈ C1([0, T1];H) ∩
C([0, T1];D(A)) strictly satisfies the differential equation in H,{

ẏ(t) = Ay(t) + Bu(t), t ∈ [0, T1],
y(0) = y0.

(2.12)

Proof. From Theorem 2.4 there exist K ∈ L(H;U), µ > ω0(−A), and Mµ > 0
such that (2.6) holds. Let J(T ) and u(·) be defined by (2.7) and (2.11), respectively.
Since

(µ+A)J(T )(µ+A)−1

= e−TA(µ+A)(λ−A− BK)−1eT (A+BK)(λ−A− BK)(µ+A)−1

for some λ > −µ and all T > 0, and since

(µ+A)(λ−A− BK)−1, (λ−A− BK)(µ+A)−1 ∈ L(H),(2.13)

there exists a fixed T1 > 0, sufficiently large, such that

‖J1‖ < 1, ‖(µ+A)J1(µ+A)−1‖ < 1(2.14)

where J1 = J(T1). Thus, for every y0 ∈ D(A),

(I − J1)−1y0 = (µ+A)−1[I − (µ+A)J1(µ+A)−1]−1(µ+A)y0 ∈ D(A),(2.15)

and, therefore, the control

u(·) = Ke·(A+BK)(I − J1)−1y0 ∈ C1([0, T1];H)(2.16)

satisfies all the requirements from the proof of Theorem 2.4 and from the well-known
result on the regularity of the mild solution of (2.12).
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3. Frequency domain characterization for the exact controllability of
second-order systems. Let H be a Hilbert space with the norm ‖ · ‖ and the inner
product 〈·, ·〉. We consider the second-order system with control

ẅ(t) +Aw(t) = Bu(t), t > 0,(3.1)
w(0) = w0, ẇ(0) = w1,(3.2)

where A is a positive-definite, self-adjoint operator with defined domain D(A) ⊂ H,
and B ∈ L(U ;H). It is clear that V = D(A

1
2 ) is also a Hilbert space with norm

‖ · ‖V = ‖A 1
2 · ‖. Introduce the state space

H = D(A
1
2 )×H(3.3)

with the inner product induced by the energy norm

〈(f1, g1), (f2, g2)〉H = 〈A 1
2 f1, A

1
2 f2〉+ 〈g1, g2〉(3.4)

for (fj , gj) := (fj , gj)T ∈ H, j = 1, 2. (Throughout this paper we omit the symbol of
transposition and use a row vector to denote the actual column vector.) It is obvious
that H is a Hilbert space with inner product (3.4). In H, define

A =
[

0 I
−A 0

]
with D(A) = D(A)×D(A

1
2 ),(3.5)

and define B : U → H,

Bu = (0, Bu) ∀ u ∈ U ,(3.6)
y0 = (w0, w1).(3.7)

Then we have that A∗ = −A, B ∈ L(U ,H). We also have the following lemma
showing that (2.1) is the variation-of-parameters formula for the first-order system
reduced from (3.1).

LEMMA 3.1. Let A,B, y0 be defined as above and y(u, t) = (w(t), w1(t)) be given
by (2.1). If y0 ∈ H and u(·) ∈ L2

loc(0,∞;U), then

w(·) ∈ C1([0,∞);H) ∩ C([0,∞);V ), ẇ(·) = w1(·)(3.8)

satisfies the variational evolution equation

d

dt
〈ẇ(t), v〉+ 〈A 1

2w(t), A
1
2 v〉 = 〈Bu(t), v〉 ∀ v ∈ V, a.e. t ∈ (0,∞),(3.9)

with initial state (3.2). The associated energy is conservative when u(·) = 0, i.e.,

E(t) ≡ 1
2

(
‖A 1

2w(t)‖2 + ‖ẇ(t)‖2
)

= E(0) ∀ t ≥ 0.(3.10)

Moreover, if y0 ∈ D(A) and u(·) ∈ C1([0,∞);U), then a classical solution of the
Cauchy problem (3.1)–(3.2) satisfies

w(·) ∈ C2([0,∞);H) ∩ C1([0,∞);V ) ∩ C([0,∞);D(A)).(3.11)
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Proof. The lemma follows straightforwardly from C0-semigroup theory and a
standard limit argument. We omit the details.

For every positive-definite, self-adjoint K ∈ L(U), it can also be verified that the
closed-loop system in H,

ẏ(t) = (A− BKB∗)y(t) =
[

0 I
−A −BKB∗

]
y(t),(3.12)

is the first-order reduction of the damped second-order system in H,

ẅ(t) +BKB∗ẇ(t) +Aw(t) = 0,(3.13)

which results from setting y(t) = (w(t), ẇ(t)).
The second-order system (3.1) is said to be exactly controllable in H if its first-

order reduction, (A,B), is exactly controllable. The damped system (3.13) is said to
possess the UEDP of energy if there exist µ > 0,Mµ > 0 such that

E(t) ≡ 1
2

(
‖A 1

2w(t)‖2 + ‖ẇ(t)‖2
)
≤Mµe

−µtE(0) ∀ t ≥ 0(3.14)

for every solution w(·) of (3.13) with initial state (w(0), ẇ(0)) ∈ H. Obviously, the
system (3.13) possesses UEDP of energy if and only if A−BKB∗ generates an expo-
nentially stable C0-semigroup on H. As an immediate consequence of Theorem 2.3,
we have Theorem 3.2.

THEOREM 3.2. The following statements are equivalent:
(a) The second-order system (3.1) is exactly controllable in H.
(b) The damped system (3.13) possesses UEDP of energy.
(c) (observability inequality) There exist T, δ > 0 such that∫ T

0
‖B∗ẇ(t)‖2dt ≥ 2δE(0)(3.15)

for every solution w(·) of (3.1) with u(·) = 0 and the initial state (w(0), ẇ(0)) ∈ H.
To characterize the frequency domain condition we need the following lemma.
LEMMA 3.3. Let AB ≡ A − BB∗ = [ 0 I

−A −BB∗ ], and define, in H, ∆(λ) =
λ2 + λBB∗ +A with D(∆(λ)) = D(A) for λ ∈ C. Then

(a) λ ∈ ρ(AB) if and only if ∆(λ) has inverse ∆−1(λ) ∈ L(H). Moreover, for
λ ∈ ρ(AB),

(λ−AB)−1 =
[

∆−1(λ)(λ+BB∗) ∆−1(λ)
λ∆−1(λ)(λ+BB∗)− I λ∆−1(λ)

]
;(3.16)

(b) 0 ∈ ρ(AB), and AB has compact resolvent whenever A has;
(c) Let Λ = i(−α, α) ⊂ ρ(AB) for some α > 0. If there exists a constant M > 0

such that

sup
{
‖A 1

2 ∆−1(λ)‖L(H) | λ ∈ Λ
}
≤M,(3.17)

then there exists a corresponding constant C = C(A,B,M) > 0 such that
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sup
{
‖(λ−AB)−1‖L(H) | λ ∈ Λ

}
≤ C.(3.18)

Proof. (a) For λ ∈ C, (f, g) ∈ H, (u, v) ∈ D(AB), we consider the resolvent
equation

(λ−AB)(u, v) = (f, g).(3.19)

This equation is equivalent to{
v = λu− f,
∆(λ)u = g + (λ+BB∗)f.(3.20)

If λ ∈ ρ(AB), then for every (f, g) ∈ H there exists a unique (u, v) ∈ D(AB)=D(A)×
D(A

1
2 ) such that (3.19) holds and, hence, that (3.20) holds. Taking f = 0, we find

that Ker∆(λ) = {0} and R(∆(λ)) = H. From the closed graph theorem we have
∆−1(λ) ∈ L(H), and therefore (3.16) follows from (3.20). Conversely, if ∆−1(λ) ∈
L(H), then (3.20) yields (3.16). Thus (λ−AB)−1 ∈ L(H), λ ∈ ρ(AB).

(b) This follows from ∆−1(0) = A−1 and (3.16).
(c) If (3.17) holds, then we have

‖A 1
2 ∆−1(λ)f‖ ≤M‖f‖ ∀ λ ∈ Λ, f ∈ H.(3.21)

Let u = ∆−1(λ)f . Since

λ2‖u‖2 + 〈λBB∗u, u〉+ ‖A 1
2u‖2 = 〈f, u〉,

we have

‖λu‖2 ≤ ‖A 1
2u‖2 + ‖λu‖ ‖BB∗A− 1

2 ‖ ‖A 1
2u‖+ ‖A− 1

2 ‖ ‖A 1
2u‖ ‖f‖

≤ 1
2
‖λu‖2 +

(
2 +

1
2
‖BB∗A− 1

2 ‖2
)
‖A 1

2u‖2 +
1
4
‖A− 1

2 ‖2‖f‖2,

where ‖ · ‖ also denotes the norm in L(H). Thus there is a positive constant M2 =
M2(A,B,M) such that

‖λ∆−1(λ)f‖ ≤M2‖f‖ ∀ λ ∈ Λ, f ∈ H.(3.22)

Observing that

[I − λ∆−1(λ)(λ+BB∗)]∗ = [∆−1(λ)A]∗ = A∆−1(λ̄) ∈ L(H),

we obtain

‖[λ∆−1(λ)(λ+BB∗)− I]A−
1
2 f‖ ≤M‖f‖ ∀ λ ∈ Λ, f ∈ H.(3.23)

Let u1 = λ∆−1(λ)A−
1
2 f . We then have

‖λu1‖ ≤M‖f‖+ ‖λ∆−1(λ)‖ ‖BB∗A− 1
2 f‖+ ‖A− 1

2 f‖
≤ (M +M2‖BB∗A−

1
2 ‖+ ‖A− 1

2 ‖)‖f‖
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and

λ2‖u1‖2 + 〈λBB∗u1, u1〉+ ‖A 1
2u1‖2 = 〈λA− 1

2 f, u1〉.

Therefore, there is a constant M1 = M1(A,B,M) > 0 such that

‖λA 1
2 ∆−1(λ)A−

1
2 f‖ = ‖A 1

2u1‖ ≤M1‖f‖ ∀ λ ∈ Λ, f ∈ H.(3.24)

Combining (3.16), (3.21)–(3.24), we know that there exists C = C(A,B,M) > 0 such
that (3.18) holds. The proof is complete.

THEOREM 3.4. The system (3.1) is exactly controllable in V × H if and only
if there exists a constant δ > 0 such that the following frequency domain inequality
holds:

‖(ω2 −A)u‖+ ‖ωBB∗u‖ ≥ δ‖A 1
2u‖ ∀ ω ∈ R, u ∈ D(A),(3.25)

or equivalently, there exists δ′ > 0 such that

‖(ω2 −A)u‖+ ‖ωBB∗u‖ ≥ δ′‖ωu‖ ∀ ω ∈ R, u ∈ D(A).(3.26)

Proof. It is easy to verify the equivalence of (3.25) and (3.26) by a contradiction
argument. The inequality (3.25) is also equivalent to

‖∆(iω)u‖ ≥ δ0‖A
1
2u‖ ∀ ω ∈ R, u ∈ D(A)(3.27)

for some δ0 > 0, where ∆ is the same as in Lemma 3.3. In fact, (3.27) implies (3.25)
immediately. On the other hand, if (3.27) is not valid, then there exist ωn ∈ R, un ∈
D(A) with ‖A 1

2un‖ = 1 such that ∆(iωn)un= (−ω2
n + iωnBB

∗ + A)un → 0 in H.
Observing that

−‖ωnun‖2 + 1 = Re〈∆(iωn)un, un〉 → 0,(3.28)

we have

〈BB∗ωnun, ωnun〉 = Im〈∆(iωn)un, ωnun〉 → 0.(3.29)

This implies that ωnBB∗un → 0 in H. Hence, (−ω2
n + A)un → 0 in H and (3.25)

is not valid, either. Thus, from Theorem 2.3, we need only prove that the inequality
(3.27) is necessary and sufficient for (2.3)–(2.4) with A and B defined by (3.5)–(3.6).

From Lemma 3.3(a), (2.3)–(2.4) obviously implies (3.27). On the other hand,
from Lemma 3.3(c) it suffices to show that if (3.27) holds, then iR ⊂ ρ(AB), where
AB = A− BB∗. Since 0 ∈ ρ(AB), there exists α0 > 0 such that i(−α0, α0) ⊂ ρ(AB).
Let

Λn = i
(
−α0 −

n

2C
, α0 +

n

2C

)
, n = 0, 1, 2, . . . ,(3.30)

where C = C(A,B, 1
δ0

) is determined by Lemma 3.3(c) with Λ := Λ0. Suppose
Λn ⊂ ρ(AB). Then by (3.27) we have (3.18) with Λ := Λn and C independent of n.
For any λ ∈ Λn+1, there is µ ∈ Λn such that |λ − µ| < 2

3C . This, combined with
(3.18), yields [

I + (λ− µ)(µ−AB)−1]−1 ∈ L(H),(3.31)
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and hence,

(λ−AB)−1 = (µ−AB)−1 [I + (λ− µ)(µ−AB)−1]−1 ∈ L(H).(3.32)

We have proved that Λn ⊂ ρ(AB) implies that Λn+1 ⊂ ρ(AB). By the induction
principle we know that

Λn ⊂ ρ(AB) ∀ n = 0, 1, 2, . . . .(3.33)

Therefore, iR ⊂ ρ(AB). The proof is complete.
In the next two sections we will use the following comparison theorem for expo-

nential stability of C0-semigroups of contractions on Hilbert spaces.
THEOREM 3.5. Suppose that L generates an exponentially stable C0-semigroup of

contractions on a Hilbert space H. If F ∈ L(H) satisfies
(F1) Re〈Fy, y〉 ≤ 0 ∀ y ∈ H,
(F2) Re〈Fyn, yn〉 → 0⇒ ‖Fyn‖ → 0 for any sequence {yn}n∈N in H,

then the semigroup et(L+F ) is also exponentially stable.
We omit the proof because the frequency domain condition [Hu] can be verified by

following the contradiction argument in [CFNS]. If F is symmetric and nonpositive,
the conditions (F1) and (F2) are naturally satisfied.

4. Control and damping for the wave equation. Consider the wave equa-
tion with locally distributed control/damping

(4.1)c ẅ(t)−∆w(t) = χG(x)u(x, t) in Ω× R+,

(4.1)d ẅ(t) + d(x)ẇ(t)−∆w(t) = 0 in Ω× R+

with the boundary and initial conditions

w = 0 on ∂Ω× R+,(4.2)

w(x, 0) = w0(x), ẇ(x, 0) = w1(x), x ∈ Ω,(4.3)

where Ω is a bounded open subset in RN with the Lipschitz boundary ∂Ω, G ⊂ Ω is an
L-measurable set, χG(·) is the characteristic function of the set G, 0 ≤ d(·) ∈ L∞(Ω).
A measurable subset D of suppd(·) is said to be an effective damping region of (4.1)d
if there is a constant d0 > 0 such that d(x) ≥ d0 on D. The system (4.1)c–(4.2) can
be rewritten in the form (3.1) by setting

H = U = L2(Ω), Bu = χG(·)u(·), u ∈ U ,
A = −∆ with D(A) = {w ∈ H1

0 (Ω) | ∆w ∈ H}.

We refer the reader to [A] and [Gr] for a discussion of Sobolev spaces. It is easy to
see that A∗ = A ≥ 0, V ≡ D(A

1
2 ) = H1

0 (Ω), and

‖A 1
2 v‖ = ‖ |∇v| ‖ ≥ C(Ω)‖v‖ ∀ v ∈ V,(4.4)

where C(Ω) is the Poincaré constant. Thus, from the Rellich–Kondrachov embedding
theorem we know that A−

1
2 , A−1 are compact operators on H. Moreover, setting

Bd ∈ L(H), Bdv = d(·)v(·) for v ∈ H, we can rewrite (4.1)d–(4.2) as

ẅ(t) +Bdẇ(t) +Aw(t) = 0, t > 0.(4.5)
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G is said to be a control region giving exact controllability of (4.1)c–(4.2) if the
corresponding system (3.1) is exactly controllable inH = V ×H. An effective damping
region D is said to be the one giving the UEDP of (4.1)d–(4.2) if the corresponding
(4.5) has the UEDP of energy, defined analogously by (3.14). Applying Theorems 3.2
and 3.5 we immediately obtain the following theorem.

THEOREM 4.1. Every D ⊃ G is an effective damping region giving UEDP of
(4.1)d–(4.2) if G is a control region giving exact controllability of (4.1)c–(4.2).

We now assume that the following geometric conditions hold on Ω and G:
(g,Ω): Ω is either convex or of class C1,1;
(g,G): There exist open sets Ωj ⊂ Ω with Lipschitz boundary ∂Ωj and points

xj0 ∈ RN , j = 1, 2, . . . , J , such that Ωi ∩Ωj = ∅ for any 1 ≤ i < j ≤ J and

G ⊃ Ω
⋂
Nε

 J⋃
j=1

Γj

⋃Ω \
J⋃
j=1

Ωj

(4.6)

for some ε > 0 where

Nε[S] :=
⋃
x∈S
{y ∈ RN | |y − x| < ε} for S ⊂ RN ,(4.7)

Γj = {x ∈ ∂Ωj | (x− xj0) · νj(x) > 0}(4.8)

with νj(x), the unit normal vector of ∂Ωj at x pointing towards the ex-
terior of Ωj , defined a.e. on ∂Ωj and being in L∞(∂Ωj ; RN ) (cf. [A], [Gr]).

THEOREM 4.2. If the geometric conditions (g,Ω) and (g,G) are satisfied, then G
is a control region giving exact controllability of (4.1)c–(4.2).

Remark 4.3. We list several pairs of regions, (Ω, G), which satisfy the geometric
conditions (g,Ω) and (g,G).

(a) Let x = (y, z) with y ∈ Rn−1 and z ∈ R, Ω−1 be an open subset in Rn−1,
f1(y) and f2(y) be real-valued functions defined on Ω−1, f1(y) < f2(y) for
all y ∈ Ω−1, and f1(y) = f2(y) = 0 for all y ∈ ∂Ω−1. Let Ω = {(y, z) | y ∈
Ω−1, f1(y) < z < f2(y)} satisfy (g,Ω), which implies f1, f2 ∈ C0,1

loc (Ω−1) ∩
C(Ω−1). Then G = Ω ∩ Nε[{(y, z)|z = 0}] for any ε > 0 satisfies (g,G) with
J = 2, Ω1 = {(y, z) | y ∈ Ω−1, f1(y) < z < −ε/4}, Ω2 = {(y, z) | y ∈
Ω−1, ε/4 < z < f2(y)}, and xj0 = (y0, zj), where y0 ∈ Rn−1, z1 < 0 small
enough, and z2 > 0 large enough.

Let G = Ω ∩ Nε[S] with S = {(y, z)|z = 0} and any ε > 0. We note the
invariability of (g,Ω) and (g,G) under translation and rotation of coordinates,
and we show some specific cases of (a) as follows:
(a1) Ω is a convex subset in R2 and S is one of the longest diameters of Ω;
(a2) Ω is an ellipsoid and S is one of the principal planes of Ω;
(a3) Ω is a convex quadrilateral in plane and S is either one of the straight

lines passing through opposite vertices of Ω.
(b) Let Ω be a rectangle and S be two straight lines which are parallel to adjacent

sides of the rectangle, respectively, and which intersect at a point in Ω. Then
G = Ω ∩ Nε[S], for any ε > 0, satisfies (g,G) with J = 4, Ωj being sub-
rectangles consisting of ∂Ω and S, xj0 being vertices of the rectangle. Thus
from Theorems 4.1 and 4.2 we know that the conjecture posed in [CFNS,
pp. 288–289] is true.
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(c) When J = 1 and Ω1 = Ω is of class C2, Theorem 4.2 was given by Zuazua
[Li2, Chap. 7].

Let

x = (x1, x2, . . . , xn), xj0 = (xj01, x
j
02, . . . , x

j
0n),

mj = (mj
1,m

j
2, . . . ,m

j
n), mj

k = xk − xj0k, k = 1, 2, . . . , n,

Dku =
∂u

∂xk
, νj = (νj1 , ν

j
2 , . . . , ν

j
n), j = 1, 2, . . . , J.

We use the summation convention for repeated lower indices k and l. Then we recall
that Green’s formula is valid on any bounded open subset Ω′ of RN with Lipschitz
boundary (see [Gr]), i.e.,∫

Ω′
(vDku+ uDkv)dx =

∫
∂Ω′

uvν
′

kdσ ∀ u, v ∈ H1(Ω′).(4.9)

For every real-valued φj ∈ C∞0 (RN ) and complex-valued u ∈ H2(Ωj), we apply (4.9)
to get

Re
∫

Ωj
φjumj

kDkūdx =
1
2

∫
∂Ωj

φj(νj ·mj)|u|2dσ(4.10)

−1
2

∫
Ωj

(nφj +mj
kDkφ

j)|u|2dx,

Re
∫

Ωj
φjmj

kDluDlDkūdx =
1
2

∫
∂Ωj

φj(νj ·mj)|∇u|2dσ

−1
2

∫
Ωj

(nφj +mj
kDkφ

j)|∇u|2dx.

Hence,

Re
∫

Ωj
φj(∆u)mj

kDkūdx =
∫

Ωj
φj
(n

2
− 1
)
|∇u|2dx+ ReXj(4.11)

+ Re
∫
∂Ωj

φj
[
(νj · ∇u)mj

kDkū−
1
2

(νj ·mj)|∇u|2
]
dσ,

where

Xj =
∫

Ωj
mj
k

(
1
2
Dkφ

j |∇u|2 −Dlφ
jDluDkū

)
dx, j = 1, . . . , J.(4.12)

Proof of Theorem 4.2. We shall verify the frequency domain inequality (3.25) for
A and B defined in this section. From the regularity results on elliptic problems [Gr]
we know that the geometric condition (g,Ω) implies

D(A) = H2(Ω) ∩H1
0 (Ω).(4.13)

If (3.25) fails, there exist ωp ∈ R, up ∈ D(A), p ∈ N, with

‖A 1
2up‖2 =

∫
Ω
|∇up|2dx = 1(4.14)
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such that ‖(ω2
p −A)up‖+ ‖ωpBB∗up‖ → 0 as p→∞; i.e.,∫

G

|ωpup|2 dx→ 0,(4.15)

ω2
pup + ∆up ≡ fp → 0 in L2(Ω).(4.16)

Then, (4.4), (4.14), and (4.16) imply∣∣∣∣ ωp
C(Ω)

∣∣∣∣2 ≥ ∫
Ω
|ωpup|2 dx→ 1.(4.17)

Let

S =

 J⋃
j=1

Γj

⋃Ω \
J⋃
j=1

Ωj

 , Q = Nεo [S](4.18)

for some 0 < ε0 < ε. Choose a fixed ξ ∈ C∞0 (RN ) satisfying 0 ≤ ξ ≤ 1, ξ = 1 on
Q, and suppξ ⊂ Nε[S]. Then we have Ω ∩ suppξ ⊂ Ω ∩ Nε[S] ⊂ G and ξ = 1 on
G0 ≡ Ω ∩Q. It follows from (4.14)–(4.17) that∫

G0

|∇up|2dx ≤
∫

Ω
ξ|∇up|2dx(4.19)

≤ |〈fp, ξup〉|+
∫
G

(ξ|ωpup|2 + |(∇ξ · ∇up)ūp|) dx→ 0,

lim
p→∞

∫
Ω\G0

|∇up|2dx = lim
p→∞

∫
Ω\G0

|ωpup|2dx = 1.(4.20)

For Ωj we can choose 0 ≤ φj ∈ C∞0 (RN ) such that φj = 1 on Ωj ∩QC and suppφj ⊂
Nε1 [S]C , j = 1, . . . , J , for some 0 < ε1 < ε0. Here the notation Y C means the relative
complement RN \ Y of any subset Y of RN . It is then easy to see that

∫
Ωj
mj
kDkφ

j |ωpup|2dx =
∫

Ωj∩Q
mj
kDkφ

j |ωpup|2dx→ 0,

Xj,p → 0,
(4.21)

where Xj,p := Xj is defined by (4.12) with u := up. Multiplying (4.16) by φjmj
kDkūp,

then integrating on Ωj , by (4.10)–(4.15), (4.19), (4.21) and the characteristics of φj ,
we obtain ∫

Ωj∩QC
|∇up|2dx =

n

2

∫
Ωj∩QC

(|∇up|2 − |ωpup|2)dx+ o(1)j(4.22)

+
∫
∂Ωj

φj(νj · ∇up)mj
kDkūp dσ −

1
2

∫
∂Ωj

φj(νj ·mj)(|∇up|2 − |ωpup|2)dσ,

where o(1)j → 0 as p → ∞, j = 1, 2, . . . , J . Let Sj = Γj ∪ (∂Ωj ∩ Ω). Then up = 0
on ∂Ωj \ Sj ⊂ ∂Ω ∩ ΓCj . This, when combined with (4.8), leads to

∇up = (νj · ∇up)νj and (mj · νj) ≤ 0 a.e. on ∂Ωj \ Sj .(4.23)
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Applying (4.23) and φj = 0 on Sj ⊂ S, we know that (4.22) implies∫
Ωj∩QC

|∇up|2dx ≤
n

2

∫
Ωj∩QC

(|∇up|2 − |ωpup|2)dx+ o(1)j .(4.24)

It is easy to verify that Ω =
⋃J
j=1(Ωj ∪ G0), Ω \ G0 =

⋃J
j=1(Ωj ∩ QC). Hence, it

follows from (4.24) that∫
Ω\G0

|∇up|2dx =
J∑
j=1

∫
Ωj∩QC

|∇up|2dx(4.25)

≤ n

2

∫
Ω\G0

(|∇up|2 − |ωpup|2)dx+ o(1).

This contradicts (4.20). The proof is complete.
From the interior regularity of the solution of an elliptic equation [GT], the argu-

ment from (4.14) to (4.22) is also valid for S = ∂Ω, Ωj = Ω even if both (g,Ω) and
(g,G) are false. Therefore, we have the following theorem.

THEOREM 4.4. Ω ∩Nε(∂Ω) is always a control region giving exact controllability
of (4.1)c–(4.2).

On the other hand, we next give a negative result which shows that the location
of the control region is more essential than its size for exact controllability.

THEOREM 4.5. Let Ω1,Ω2 be bounded open sets in Rm,Rn, respectively, and
Ω = Ω1 × Ω2 ⊂ Rm+n. Let G1 be any nonempty open subset of Ω1 and let Ω2 have
Lipschitz boundary. Then a control region G satisfying G ∩ (G1 × Ω2) = ∅ is never
the one giving exact controllability of (4.1)c–(4.2).

Proof. It is well known that the eigenproblem

−∆yψ = ω2ψ, ω ∈ R, ψ ∈ H1
0 (Ω2),(4.26)

has a sequence of solutions (ω2
p, ψp) such that

ω2
p → +∞ and

∫
Ω2

|ψp|2dy = 1.(4.27)

Choose a fixed φ(x) ∈ C∞0 (Ω1) such that

suppφ ⊂ G1 and
∫

Ω1

|φ|2dx = 1.(4.28)

Set up(x, y) = φ(x)ψp(y). We then have

up ∈ D(A), ‖up‖Ω = 1, BB∗up = χGup = 0 in Ω,

‖(ω2
p −A)up‖2Ω = ‖(ω2

p + ∆x + ∆y)up‖2Ω =
∫

Ω1

|∆xφ|2dx.

Hence, the frequency domain inequality (3.26) fails.
Remark 4.6. When dim Ω2 = n = 1, Theorem 4.5 can be deduced from Haraux’s

Proposition 1.4.1 in [Ha3] by means of Lions’s HUM [Li1], [Li2]. We see that the
size of the control region G can be arbitrarily close to that of the whole region Ω in
Theorem 4.5.
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Remark 4.7. From Theorem 4.2 in this section and the result in [BLR2] or [Bu1]
we can conclude that the condition (g,G) implies the “geometric optics condition”
when ∂Ω is sufficiently smooth. However, we have not been able to prove this by
using geometric argument, except when Ω is the disk. To our knowledge, the following
problem remains open: is a control region G whose closure is contained in the open
convex set Ω with smooth boundary never the one giving exact controllability of
(4.1)c–(4.2)?

Remark 4.8. Thanks to the fact that in applications the frequency domain
inequality (3.25) involves only elliptic problems, the regularity condition (g,Ω) posed
on Ω can be replaced by the condition that Ω is either a curvilinear polygon of class
C1,α or an open set in RN of class C1,α for some 0 < α < 1 (Bian, Chen, and Liu
[BCL]).

5. Control and damping for the Schrödinger and Petrovsky equations.
Consider the controlled/damped Schrödinger equation with Dirichlet boundary con-
dition

(Sch)c

{
ẇ + i∆w = χG · u in Ω× R+,
w = 0 on ∂Ω× R+,

(Sch)d

{
ẇ + i∆w − d(x)w = 0 in Ω× R+,
w = 0 on ∂Ω× R+

and the controlled/damped Petrovsky equation with the simply supported boundary
condition

(Pet)c

{
ẅ + ∆2w = χG · u in Ω× R+,
w = ∆w = 0 on ∂Ω× R+,

(Pet)d

{
ẅ + d(x)ẇ + ∆2w = 0 in Ω× R+,
w = ∆w = 0 on ∂Ω× R+.

Using the same notation as in section 4 we can rewrite the four above equations as
the following abstract equations in H:

(Sch)′c ẇ(t) = iAw(t) +Bu(t), t > 0,

(Sch)′d ẇ(t) = (iA−Bd)w(t), t > 0,

(Pet)′c ẅ(t) +A2w(t) = Bu(t), t > 0,

(Pet)′d ẅ(t) +Bdẇ(t) +A2w(t) = 0, t > 0.

By an argument analogous to those in section 4, we first have the following theorem.
THEOREM 5.1. Every D ⊃ G is an effective damping region giving UEDP of

(Sch)d, respectively, (Pet)d, if G is a control region giving exact controllability of
(Sch)c, respectively, (Pet)c.

We show the relationship between exact controllability of the two systems (Pet)c,
(Sch)c and (4.1)c–(4.2) by the following more general theorem.

THEOREM 5.2. Consider the abstract systems (Sch)′c, (Pet)′c, and (3.1) with the
same operators A and B. Then exact controllability of (3.1) in D(A

1
2 ) × H implies
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exact controllability of (Pet)′c in D(A) × H, and the latter is equivalent to exact
controllability of (Sch)′c.

Proof. If the system (3.1) is exactly controllable inD(A
1
2 )×H, then from Theorem

3.4 there exists a constant δ > 0 such that

‖ω−1(ω2 −A)u‖+ ‖BB∗u‖ ≥ δ‖u‖ ∀ u ∈ D(A), 0 6= ω ∈ R.(5.1)

Observing that ω4 −A2 = (ω2 +A)(ω2 −A) and

|ω|−1(ω2 +A) ≥ 2‖A− 1
2 ‖−1I ∀ 0 6= ω ∈ R,

we have that (5.1) implies

‖ω−2(ω4 −A2)u‖+ ‖BB∗u‖ ≥ δ1‖u‖, ∀ u ∈ D(A2), 0 6= ω ∈ R,(5.2)

where δ1 = δmin{1, 2‖A− 1
2 ‖−1}. Again, from Theorem 3.4, we see that the system

(Pet)′c is exactly controllable in D(A)×H.
According to Theorem 2.3(e), the system (Sch)′c is exactly controllable if and

only if there exist T, δ > 0 such that∫ T

0
‖B∗et(iA)w0‖2dt ≥ δ‖w0‖2 ∀ w0 ∈ H.(5.3)

Inequality (5.3) is equivalent to∫ T

0
‖B∗Aet(iA)w0‖2dt ≥ δ‖Aw0‖2 ∀ w0 ∈ D(A2)(5.4)

because D(A2) is dense in D(A) with the norm ‖A · ‖. Set w(t) = et(iA)w0 for
w0 ∈ D(A2). Then ẇ(t) = iAet(iA)w0 and ẅ(t) = −A2w(t) for t ≥ 0. Therefore,
from Theorem 3.2(c) we find that (5.4) holds for some T, δ > 0 if (Pet)′c is exactly
controllable in D(A)×H. The inverse proposition follows readily from the inequality

‖ω−2(ω4 −A2)u‖ ≥ ‖i(ω2 −A)u‖ ∀ u ∈ D(A2), 0 6= ω ∈ R,

and the frequency domain characterization for exact controllability.
Remark 5.3. Liu and Yu [LY] have shown by means of the frequency domain

inequality (3.25) that exact controllability of the Kirchhoff plate equation with the
simply supported-like boundary condition is equivalent to exact controllability of the
wave equation with Dirichlet boundary condition.

Remark 5.4. From Theorems 4.4, 5.1, and 5.2 we know that the conjecture about
(Sch)d posed in [CFNS, p. 284] is valid and that the assumption they made concerning
the convexity of Ω is not necessary.

Remark 5.5. It follows from Theorems 5.1 and 5.2 and Jaffard’s result [J] that
the damped system (Sch)d has UEDP when Ω is a rectangle and when the effective
damping region D has nonempty interior. (Compare with Theorem 4.5; also see
Burq [Bu2] for exact boundary controllability in the absence of the “geometric optics
condition.”) This gives a negative answer to the conjecture posed in [CFNS, p. 279].

Remark 5.6. For the case in which B is a nonnegative self-adjoint operator on H,
Theorem 3.2 was proved by Haraux [Ha1]. This special case is sufficient for Theorems
4.1 and 5.1.
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Abstract. We prove that under rather general assumptions an exactly controllable problem is
uniformly stabilizable with arbitrarily prescribed decay rates. Our approach is direct and constructive
and avoids many of the technical difficulties associated with the usual methods based on Riccati
equations. We give several applications for the wave equation and for Petrovsky systems.
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1. Introduction. Let Ω be a nonempty bounded open set in Rn having a bound-
ary Γ of class C2, and consider the following problem:

(1.1) y′′ −∆y = 0 in Ω× (0,∞),
(1.2) y(0) = y0 and y′(0) = y1 in Ω,
(1.3) y = u on Γ× (0,∞).

Considering u as a control function, a natural problem is to seek stabilizing feed-
back laws u = F (y, y′). In order to motivate our work, let us recall the following
theorem of Lions [31, Theorem 10.1] (below, we shall denote by ν the outward unit
normal vector to Γ).

THEOREM. There exist two linear maps

(1.4) P : H−1(Ω)→ H1
0 (Ω), Q : L2(Ω)→ H1

0 (Ω)

and two positive constants M and ω such that, putting

(1.5) u = ∂ν(Py′ +Qy),

the problem (1.1), (1.2), (1.3), (1.5) is well posed in H := L2(Ω) ×H−1(Ω), and its
solutions satisfy the estimates

(1.6) ‖(y(t), y′(t))‖H ≤M‖(y0, y1)‖He−ωt

for all t ≥ 0 and for all (y0, y1) ∈ H.
Several remarks are in order.
(a) This theorem was proved by applying a general and systematic approach based

on the optimal control theory. Several other results of this type were also given in
[31], and many more were provided by Lasiecka and Triggiani in [27]. See also [4], [5],
and [42] for related results.
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pp. 433–437, 581–586].
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(b) This approach does not lead to any estimate of the constants ω and M : we
have uniform exponential decay but with unknown speed.

(c) The existence of stabilizing operators P and Q was established without con-
structing them: they are obtained (in principle) by solving infinite-dimensional Riccati
equations.

(d) Compared with the related problem of exact controllability, for which a simple
and elegant approach (the Hilbert uniqueness method (HUM)) was introduced in [31],
the above method of stabilization is technically much more involved. From a purely
esthetic point of view, there is no reason for the stabilization problem to be much
more difficult than the controllability problem.

In this paper we propose another approach for the stabilization, which is similar
in spirit to the HUM. This method is as general as the former one; however, it provides
stronger results with simpler proofs. For example, in section 4 this method will give
the following improvement of Lions’s theorem.

THEOREM. Fix ω > 0 arbitrarily (large). Then there exist two linear maps P and
Q satisfying (1.4) and a positive constant M such that the problem (1.1), (1.2), (1.3),
(1.5) is well posed in H := L2(Ω) × H−1(Ω) and its solutions satisfy the estimates
(1.6) for all t ≥ 0 and for all (y0, y1) ∈ H.

The main novelty is that ω may be prescribed as large as we like. Furthermore, we
shall construct the operators P and Q explicitly, and we shall also obtain an estimate
of the constant M .

Let us remark at this point that many works were devoted to the construction of
explicit boundary feedback laws and to the proof of exponential decay by the multiplier
method or by microlocal analysis; see, e.g., [2], [3], [6], [14], [19], [24], [25], [31], [35],
[39], [40]. Sometimes this approach led to good decay rate estimates with relatively
elementary proofs; see, e.g., [16], [20], [21]. For example, for the wave equation above,
the usual feedback law has the form

y = 0 on Γ0 × (0,∞),
∂νy + ay + by′ = 0 on Γ1 × (0,∞),

where Γ0,Γ1 is a partition of Γ and a, b ∈ L∞(Γ1) are given nonnegative functions.
With this type of feedback (to our knowledge) no decay estimate was obtained with
ω > 1/(2R), where R is the radius of the smallest open ball containing Ω (except the
trivial one-dimensional case, however; see, e.g., the introduction of [19]). In any case,
it follows from a recent result of Koch and Tataru [14] that in dimension n ≥ 2 we
cannot have arbitrarily large decay rate ω by using this type of feedback.

In order to explain the novelty of our approach, let us briefly recall Lions’s proof
of the above theorem. It consists of three steps.

First step: Observability of the dual problem. Consider the problem (1.1)–(1.3)
with u = 0. Then the “observation” of the normal derivative of the solution during
some time T allows one to determine the initial data y0, y1 provided T is sufficiently
large. In technical terms, we have the equivalence of two norms:

‖(y0, y1)‖H1
0 (Ω)×L2(Ω) ∼ ‖∂νy‖L2(Γ×(0,T )).

Second step: Controllability of the primal problem. By duality, it follows from the
preceding result that for any given initial data (y0, y1) ∈ L2(Ω)×H−1(Ω) there exists
a function u ∈ L2(Γ× (0, T )) such that the solution of (1.1)–(1.3) satisfies

y(T ) = y′(T ) = 0 in Ω.
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Third step: Stabilization of the primal problem. Consider the “cost function”

J(y, u) :=
∫ ∞

0

∫
Ω
y2 dx dt+

∫ ∞
0

∫
Γ
u2 dΓ dt

defined on the set of pairs (y, u) satisfying (1.1)–(1.3). Thanks to the preceding step,
this cost function has finite values, and hence its infimum is achieved at a unique
pair (y, u). Applying the theory of optimal control, one can show that y and u are
connected by (1.4) and (1.5). Finally, the estimate (1.6) follows by applying a theorem
of Datko from the theory of semigroups.

Our main idea is to shortcut the implication chain

observability⇒ controllability⇒ stabilization

and to prove directly the implication

observability⇒ stabilization.

As we shall see, our construction is analogous to the HUM, applied in [31] and
[32] for the proof of the implication

observability⇒ controllability.

The plan of the paper is as follows. For the reader’s convenience and in order to
compare our approach with the HUM, in the next section we recall briefly some basic
notions and results (in the form needed later) on observability and controllability.

Section 3 is devoted to the proof of an abstract stabilization theorem.
In the rest of the paper (sections 4–7) we shall apply this theorem to the boundary

stabilization of the wave equation and of a Petrovsky system.

2. Observability and controllability. A review. Consider a linear evolu-
tionary problem

(2.1) x′ = Ax+Bu, x(0) = x0,

where A is a densely defined, closed linear operator in some Hilbert space H, and
B is a bounded linear operator of another Hilbert space G into D(A∗)′. Let us also
consider the dual problem

(2.2) ϕ′ = −A∗ϕ, ϕ(0) = ϕ0, ψ = B∗ϕ,

where A∗, B∗ denote the adjoints of A and B. In control-theoretical terminology, B
is a control operator, u is a control, and B∗ is an observability operator.

Assume that the following three hypotheses are satisfied (we denote by G′, H ′

the (anti)dual spaces of G and H).
(H1) The operator A∗ generates a group esA

∗
in H ′;

(H2) There exist a bounded linear operator E ∈ L(G,H) and a number λ ∈ C
such that B∗ = E∗(A+ λI)∗;

(H3) There exist two positive numbers T ′ and c′ such that

‖ψ‖L2(0,T ′;G′) ≤ c′‖ϕ0‖H′

for all ϕ0 ∈ D(A∗).
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Let us explain these assumptions. In applications, hypothesis (H1) is usually
satisfied for time-reversible problems.

Hypothesis (H2) can be considered as a weakening of the boundedness of B.
Indeed, if B is bounded, then we may choose E = (A + λI)−1B, where −λ is an
arbitrary number in the resolvent set of A. In the bounded control case many results
are available; see, e.g., [1], [11], [29], and [38]. On the other hand, in boundary control
problems the operator B is usually unbounded, and this leads to serious difficulties.
As was demonstrated in [27], the hypothesis (H2) is still satisfied for a large class of
boundary control problems. (See also the applications in the second half of this paper.)

Finally, hypothesis (H3) is a regularity property: this corresponds to the so-called
direct inequality in the terminology of HUM.

Let us begin by discussing the well-posedness of the problems (2.1) and (2.2).
It follows from (H1) that for every ϕ0 ∈ H ′ the equation in (2.2) has a unique

solution ϕ ∈ C(R;H ′), and that ϕ ∈ C1(R;H ′) ∩ C(R;D(A∗)) if ϕ0 ∈ D(A∗). In
particular, using (H2), we see that hypothesis (H3) is meaningful.

Furthermore, (H1)–(H3) imply the following strengthened version of (H3): for
every T > 0, there exists a constant cT such that the solutions of (2.2) satisfy the
estimates

(2.3) ‖ψ‖L2(−T,T ;L2(G′)) ≤ cT ‖ϕ0‖H′

for all ϕ0 ∈ D(A∗). Extending this inequality by continuity, we obtain that ψ ∈
L2
loc(R;G′) and ψ satisfies (2.3) for all ϕ0 ∈ H ′. This result also shows that the value

of T ′ in (H3) has no importance: if it is satisfied for some T ′ > 0, then in fact it is
satisfied for every T ′ > 0.

Next we define the solutions of (2.1) by transposition. Fix x0 ∈ H and u ∈
L2
loc(R;G) arbitrarily. Multiply the equation in (2.1) by the solution ϕ of the equation

in (2.2). Integrating by parts formally between 0 and T ∈ R, we easily obtain the
identity

(2.4) 〈x(T ), ϕ(T )〉H,H′ = 〈x0, ϕ0〉H,H′ +
∫ T

0
〈u(s), ψ(s)〉G,G′ ds.

Hence we define a solution of (2.1) as a continuous function x : R→ H satisfying
the identity (2.4) for all ϕ0 ∈ H ′ and for all T ∈ R. This definition is justified by the
following lemma.

LEMMA 2.1. Given x0 ∈ H and u ∈ L2
loc(R;G) arbitrarily, the problem (2.1) has

a unique solution. Moreover, we have the estimates

(2.5) ‖x‖L∞(−T,T ;H) ≤ cT (‖x0‖H + ‖u‖L2(−T,T ;G))

for all T > 0.
Proof. Thanks to the inequality (2.3), the right-hand side of (2.4) defines a boun-

ded linear form of ϕ0 ∈ H ′. It follows from hypothesis (H1) that the map ϕ0 7→ ϕ(T )
is an automorphism of H ′; therefore the right-hand side of (2.4) is also a bounded
linear form of ϕ(T ) ∈ H ′. Since H ′′ = H, we conclude the existence of a unique
x(T ) ∈ H satisfying (2.4).

Since the bounded linear form of ϕ0 defined by the right-hand side of (2.4) and
the automorphism ϕ0 7→ ϕ(T ) both depend continuously on T ∈ R, the function
x : R→ H is also continuous.

Finally, the estimates (2.5) follow easily from (2.4).
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Next we introduce some notions of controllability and observability.
DEFINITIONS. Let T > 0.
(1) The problem (2.1) is called exactly null-controllable in time T if for every

given initial state x0 ∈ H there exists a function u ∈ L2
loc(R;G) such that

‖u‖L2(0,T ;G) ≤ c‖x0‖H ,

and that the solution of (2.1) satisfies the final condition x(T ) = 0. (We say that the
control u drives the system to rest in time T .)

(2) The problem (2.1) is called exactly controllable in time T if for every pair of
data x0, x1 ∈ H there exists a function u ∈ L2

loc(R;G) such that

‖u‖L2(0,T ;G) ≤ c′(‖x0‖H + ‖x1‖H),

and that the solution of (2.1) satisfies the final condition x(T ) = x1. (The control u
drives the system from the initial state x0 to the state x1 in time T .)

(3) The problem (2.2) is called exactly observable in time T if

(2.6) ‖ϕ0‖H′ ≤ c′′‖ψ‖L2(0,T ;G′)

for all ϕ0 ∈ D(A∗).
Observe that (2.6) is the inverse inequality to that in hypothesis (H3). Contrary

to hypothesis (H3), in (2.6) the value of T is important. One can readily verify the
existence of a number 0 ≤ T0 ≤ ∞ such that (2.6) is satisfied for all T > T0 and is
not satisfied for any T < T0.

The following important result, essentially proved in [7], extends some classical
results from the finite-dimensional case (see [29]) and from the case of bounded control
operators (see [1]).

THEOREM 2.2. Assume (H1)–(H3). Then, for any given T > 0, the following
three properties are equivalent.

(a) The problem (2.2) is exactly observable in time T ;
(b) The problem (2.1) is exactly null-controllable in time T ;
(c) The problem (2.1) is exactly controllable in time T .
Proof. (a) ⇒ (b). Thanks to hypotheses (H1)–(H3) the formula

〈Λϕ0, ψ0〉H,H′ :=
∫ T

0
〈JB∗e−sA∗ϕ0, B

∗e−sA
∗
ψ0〉G,G′ ds, ϕ0, ψ0 ∈ D(A∗),

where J : G′ → G denotes the canonical Riesz isomorphism, defines a positive def-
inite self-adjoint operator Λ in L(H ′, H). Applying the Riesz–Fréchet theorem it
follows that Λ is an isomorphism of H ′ onto H. Now given x0 ∈ H arbitrarily, the
control

u(s) := −JB∗e−sA∗Λ−1x0

drives x0 to rest in time T . Indeed, using the formula (2.4), we have

〈x(T ), ϕ(T )〉H,H′

= 〈x0, ϕ0〉H,H′ +
∫ T

0
〈u(s), ψ(s)〉G,G′ ds
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= 〈x0, ϕ0〉H,H′ −
∫ T

0
〈JB∗e−sA∗Λ−1x0, B

∗e−sA
∗
ϕ0〉G,G′ ds

= 〈x0, ϕ0〉H,H′ − 〈ΛΛ−1x0, ϕ0〉H,H′
= 0

for all ϕ0 ∈ H ′, and hence x(T ) = 0. (Note that ϕ(T ) runs over H ′ if ϕ0 does.)
(b)⇒ (c). Given x0, x1 ∈ H arbitrarily, let u be a control driving x0−e−TAx1 to

rest in time T . Since the zero control drives e−TAx1 to x1 in time T , it follows that
the control u drives x0 to x1 in time T .

(c) ⇒ (a). Fix x0 arbitrarily and let u ∈ L2(0, T ;G) be a control satisfying

‖u‖L2(0,T ;G) ≤ c‖x0‖H
and driving the system (2.1) to rest in time T . Given ϕ0 ∈ H ′ arbitrarily, by (2.4)
the solution of (2.2) satisfies the equality

〈x0, ϕ0〉H,H′ = −
∫ T

0
〈u(s), ψ(s)〉G,G′ ds.

Hence

|〈x0, ϕ0〉H,H′ | ≤ c‖x0‖H‖ψ‖L2(0,T ;G′)

for all x0 ∈ H, and therefore

‖ϕ0‖H′ ≤ c‖ψ‖L2(0,T ;G′),

proving the exact observability of (2.2).
In [31] and [32] Lions developed a general and systematic approach for the study

of exact controllability of linear distributed systems, the so-called HUM. It is based
on the implication (a) ⇒ (b) of the preceding theorem.

3. Observability and stabilizability. We continue to study the problems (2.1)
and (2.2) under the assumptions (H1)–(H3). Moreover, we shall also assume that the
problem (2.2) is exactly observable in some time T > 0; in other words, we assume
that the following hypothesis (H4) is also satisfied.

(H4) There exist two positive numbers T and c such that

‖ϕ0‖H′ ≤ c‖ψ‖L2(0,T ;G′)

for all ϕ0 ∈ D(A∗).
(This is the so-called inverse inequality in the terminology of HUM.)
Given an arbitrary real number ω > 0, set Tω = T + (2ω)−1, eω(s) = e−2ωs if

0 ≤ s ≤ T , and eω(s) = 2ωe−2ωT (Tω − s) if T ≤ s ≤ Tω. It follows from assumptions
(H1)–(H4) that the formula (see a note at the end of this paper)

(3.1) 〈Λωϕ0, ψ0〉H,H′ :=
∫ Tω

0
eω(s)〈JB∗e−sA∗ϕ0, B

∗e−sA
∗
ψ0〉G,G′ ds,

where J : G′ → G denotes the canonical Riesz isomorphism, defines a positive definite
self-adjoint operator Λω ∈ L(H ′, H). Hence Λω is an isomorphism of H ′ onto H, and
the formula

‖x‖ω := 〈Λ−1
ω x, x〉1/2H′,H

defines an equivalent norm in H.
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THEOREM 3.1. Assume (H1)–(H4) for some T > 0. Fix ω > 0 arbitrarily and set

(3.2) F = −JB∗Λ−1
ω .

Then the operator A + BF generates a strongly continuous group in H, and the
solutions of the closed-loop problem

(3.3) x′ = Ax+BFx, x(0) = x0

satisfy the estimate

(3.4) ‖x(t)‖ω ≤ ‖x0‖ωe−ωt, ∀t > 0,

for all x0 ∈ H and for all t ≥ 0.
Remark. The operator A + BF is not an infinitesimal generator of a strongly

continuous group in H: it is a densely defined restriction of such a generator, naturally
related to the problem (3.3) in a sense explained in [8, pp. 99–100].

In order to explain the main ideas, let us first give a formal proof. (In fact, this
proof is entirely correct in the finite-dimensional case.) We write Λω ∈ L(H ′, H) in
the following form:

Λω :=
∫ Tω

0
eω(s)e−sABJB∗e−sA

∗
ds.

Fix x0 ∈ H arbitrarily and consider the solution of (3.2), (3.3). By a simple compu-
tation we obtain the following identity:

(3.5)
d

dt
〈Λ−1

ω x, x〉H′,H = 〈Λ−1
ω x, (AΛω + ΛωA∗ − 2BJB∗)Λ−1

ω x〉H′,H .

Since 2ωeω ≤ −e1
ω, we have

(3.6)
AΛω + ΛωA∗ + 2ωΛω ≤ −

∫ Tω

0

d

ds

(
eω(s)e−sABJB∗e−sA

∗)
ds

= BJB∗.

Hence we obtain that

AΛω + ΛωA∗ − 2BJB∗ ≤ −2ωΛω.

(It means that the right-hand side minus the left-hand side is positive semidefinite.)
Therefore, we deduce from the identity (3.5) the following inequality:

d

dt
〈Λ−1

ω x, x〉H′,H ≤ −2ω〈Λ−1
ω x, x〉H′,H .

Hence

‖x(t)‖2ω ≤ ‖x0‖2ωe−2ωt

for all t ≥ 0, and the estimate (3.4) follows.
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In the general case, the above proof is incorrect because even the strong solutions
of (3.2), (3.3) are not sufficiently smooth so as to justify the computations. We shall
overcome this difficulty by working with an equivalent integral equation.

We modify the equality (3.6) as follows. Fix ϕ0 ∈ D((A∗)2) arbitrarily and
consider the solution ϕ of (2.2). We have

−‖B∗ϕ0‖2G′ =
∫ Tω

0

d

ds

(
eω(s)‖B∗ϕ(s)‖2G′

)
ds

=
∫ Tω

0
e′ω(s)‖B∗ϕ(s)‖2G′ ds− 〈Λωϕ0, A

∗ϕ0〉H,H′ − 〈A∗ϕ0,Λωϕ0〉H′,H ,

and hence

(3.7)

−‖B∗ϕ0‖2G′

=
∫ Tω

0
e′ω(s)‖B∗ϕ(s)‖2G′ ds− 〈Λωϕ0, A

∗ϕ0〉H,H′ − 〈A∗ϕ0,Λωϕ0〉H′,H

for all ϕ0 ∈ D(A∗) by an obvious density argument. Identifying H ′ with H, thanks to
hypothesis (H3) there exists a nonnegative bounded self-adjoint operator C ∈ L(H,H)
(defined as a square root) such that

(3.8) ‖CΛωϕ0‖2H = −
∫ Tω

0
e′ω(s)‖B∗ϕ(s)‖2G′ ds

for all ϕ0 ∈ D(A∗). Then we conclude from (3.7) that Λω satisfies the algebraic Riccati
equation

(3.9) AΛω + ΛωA∗ −BJB∗ + ΛωC∗CΛω = 0.

Thanks to hypothesis (H1)–(H3) we may apply a theorem of Flandoli [8, pp. 99–100]
to conclude that Λ−1

ω satisfies the dual algebraic Riccati equation

(3.10) Λ−1
ω A+A∗Λ−1

ω − Λ−1
ω BJB∗Λ−1

ω + C∗C = 0

in the following weak sense: the operator A + BF = A − BJB∗Λ−1
ω generates (in a

sense explained in [8]) a strongly continuous group U(s) in H, and

(3.11)

Λ−1
ω = U(t− s)∗Λ−1

ω U(t− s)

+
∫ t

s

U(τ − s)∗(C∗C + Λ−1
ω BJB∗Λ−1

ω )U(τ − s) dτ

for all t, s ∈ R. (In [8] the hypothesis (H2) is used with λ = 0, but his proof extends
easily to the general case.)

Let us explain at least formally, for the convenience of the reader, the equivalence
of (3.10) and (3.11). Fixing s ∈ R arbitrarily, and denoting by f(t) the difference of
the right-hand and left-hand sides of (3.11), we obviously have f(s) = 0. Hence (3.11)
holds if and only if the derivative f ′(t) vanishes identically. Now, using the relation
U ′ = (A−BJB∗Λ−1

ω )U , a straightforward computation shows that

f ′(t) = U(t− s)∗(Λ−1
ω A+A∗Λ−1

ω − Λ−1
ω BJB∗Λ−1

ω + C∗C)U(t− s).

Hence f ′(t) vanishes identically if and only if the equality (3.10) is satisfied.
Since we obviously have (see (3.8))

C∗C + Λ−1
ω BJB∗Λ−1

ω ≥ C∗C ≥ 2ωΛ−1
ω ,
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we deduce from (3.11) the inequality

Λ−1
ω ≥ U(t− s)∗Λ−1

ω U(t− s) + 2ω
∫ t

s

U(τ − s)∗Λ−1
ω U(τ − s) dτ

for all t ≥ s.
Now fix x0 ∈ H arbitrarily and consider the solution x = x(t) of (3.2), (3.3). It

follows from the preceding inequality that

〈Λ−1
ω x(s), x(s)〉H′,H ≥ 〈Λ−1

ω x(t), x(t)〉H′,H + 2ω
∫ t

s

〈Λ−1
ω x(τ), x(τ)〉H′,H dτ

for all t ≥ s. If we can infer from this estimate the inequality

(3.12) 〈Λ−1
ω x(t), x(t)〉H′,H ≤ 〈Λ−1

ω x0, x0〉H′,He−2ωt

for all t ≥ 0, then the proof of Theorem 3.1 can be completed as above. Therefore, it
only remains to verify the following simple lemma.

LEMMA 3.2. Let f : [0,+∞) → R be a continuous function, satisfying for some
constant ω > 0 the inequalities

(3.13) f(s) ≥ f(t) + 2ω
∫ t

s

f(τ) dτ

for all 0 ≤ s < t < +∞. Then

(3.14) f(t) ≤ f(0)e−2ωt

for all t ≥ 0.
Proof of the lemma. Let us first assume that f is continuously differentiable.

Dividing the inequality (3.13) by t− s and letting s→ t we obtain easily that

f ′(t) + 2ωf(t) ≤ 0

for all t ≥ 0. Hence the function e2ωtf(t) is nonincreasing (its derivative is ≤ 0) and
the estimate (3.14) follows.

In the general case we approximate the function f by the sequence of continuously
differentiable functions fk defined by

fk(t) = k

∫ t+k−1

t

f(s) ds, t ≥ 0, k = 1, 2, . . . .

Each function fk satisfies the inequalities (3.13) with the same constant ω. There-
fore fk(t) ≤ fk(0)e−2ωt for all t ≥ 0 and for all k. Letting k → +∞, the lemma
follows.

COROLLARY 3.3. Assume (H1), (H2) and assume that for some positive constants
T , ω, c1, and c2 the following inequalities are satisfied:

(3.15) c1‖ϕ0‖2H′ ≤ 〈Λωϕ0, ϕ0〉H,H′ ≤ c2‖ϕ0‖2H′

for all ϕ0 ∈ D(A∗). Then the operator A−BJB∗Λ−1
ω generates (in the sense of [8])

a strongly continuous group in H, and the solutions of the closed-loop problem

x′ = Ax−BJB∗Λ−1
ω x, x(0) = x0



1600 VILMOS KOMORNIK

satisfy the estimate

(3.16) ‖x(t)‖H ≤ (c2/c1)‖x0‖He−ωt ∀t > 0,

for all x0 ∈ H and for all t ≥ 0.
Proof. It follows from (3.15) that hypotheses (H3) and (H4) are also satisfied.

Since Λω is self-adjoint, (3.15) implies

(3.17) c1‖ϕ0‖H′ ≤ ‖Λωϕ0‖H′ ≤ c2‖ϕ0‖H′

for all ϕ0 ∈ H ′. Therefore, we have

‖x0‖2ω = 〈Λ−1
ω x0, x0〉H′,H ≤ ‖Λ−1

ω ‖‖x0‖2H ≤ c−1
1 ‖x0‖2H

and

‖x(t)‖2ω = 〈Λ−1
ω x(t), x(t)〉H′,H ≥ c1‖Λ−1

ω x(t)‖2H′ ≥ c1c−2
2 ‖x(t)‖2H .

Substituting these inequalities into (3.4), the inequality (3.16) follows.
Remarks. (1) Let us emphasize the following facts. First of all, given ω > 0

arbitrarily large, the proof of Theorem 3.1 allows us to construct a feedback law
leading to exponential decay with rate ω. Second, in the usual applications (as in the
second half of this paper) the constants c1, c2 may be computed explicitly, and hence
we can obtain explicit estimates of the type (3.16).

(2) A similar method was used earlier by Lukes [34] in the finite-dimensional case.
His proof did not extend to the infinite-dimensional case.

(3) Subsequently, Slemrod [38] proved a variant of Theorem 3.1 by assuming
instead of (H2) and (H3) that the operator B is bounded. (We recall that this as-
sumption excludes the applications to boundary control.)

(4) There is another, earlier theorem of Lasiecka and Triggiani [27]: under the
hypotheses (H1)–(H4) there exists a linear operator F from H into G such that A+BF
generates (in a weakened sense) a strongly continuous semigroup of bounded linear
operators in H, and there are two positive constants M and ω such that the solutions
of the closed-loop problem (3.3) satisfy the estimates

‖x(t)‖H ≤M‖x0‖He−ωt ∀t > 0,

for all x0 ∈ H and for all t ≥ 0. Unlike the results of this section, they did not obtain
F explicitly, and they did not obtain estimates of ω and M . On the other hand, they
proved the existence of feedback controls for a large class of cost functions. (See the
next remark in this respect.)

(5) Let us note that the feedback F of Theorem 3.1 corresponds to the minimiza-
tion of the cost function

(3.18)
∫ ∞

0
‖Cx(t)‖2H + ‖u(t)‖2G dt

on the set of pairs (x, u) satisfying (2.1). Indeed, applying the optimal control theory
as in [27], [29], or [31], one can readily verify that this minimization problem leads to
the feedback F = −JB∗P where P is the (unique) solution of the algebraic Riccati
equation

−A∗P − PA+ PBJB∗P = C∗C.

It follows from (3.10) that P = Λ−1
ω satisfies this equation, and our assertion follows.
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This remark also explains the simplicity of our proof as compared to the usual Ric-
cati approach. Indeed, the Riccati approach works for a large class of cost functions.
Being only interested in the construction of feedbacks with good decay properties,
we have chosen the very particular cost function (3.18) (which is different from those
applied in [31]). Since for this cost function the solution of the corresponding Riccati
equation may be found explicitly, we can in fact avoid all difficulties related to the
resolution of this equation in the infinite-dimensional case.

4. Application to the wave equation I. Let us consider the problem

(4.1)


y′′ −∆y = 0 in Ω× R,
y = 0 on Γ0 × R,
y = u on Γ1 × R,
y(0) = y0 and y′(0) = y1 in Ω,

where Ω is a bounded open set in Rn, Γ1 is an open subset of its boundary Γ, and
Γ0 = Γ\Γ1. We shall denote by ν the outward unit normal vector to Γ.

Let us assume that Γ is analytic and that Γ1 satisfies the geometrical control
condition of Bardos, Lebeau, and Rauch [2], [3]: there exists a positive number T
such that every ray of geometrical optics in Ω hits Γ1 at a nondiffractive point in
some time ≤ T . We refer to [2], [3] for the detailed explication and analysis of this
important condition, practically necessary and sufficient for the uniform stabilizability
of hyperbolic problems. This condition is obviously satisfied if Γ1 = Γ; it suffices to
choose the diameter of Ω for T .

We shall prove the following theorem.
THEOREM 4.1. Fix an arbitrarily large positive number ω. Then there exist two

bounded linear maps

(4.2) P : H−1(Ω)→ H1
0 (Ω), Q : L2(Ω)→ H1

0 (Ω)

and a constant M such that, putting

(4.3) u =
∂

∂ν
(Py′ +Qy),

the problem (4.1), (4.3) is well posed in H := L2(Ω)×H−1(Ω) and its solutions satisfy
the estimates

(4.4) ‖(y, y′)(t)‖H ≤M‖(y0, y1)‖He−ωt

for all t ≥ 0 and for all (y0, y1) ∈ H.
Remarks. (1) Assume instead of the geometrical control condition that Γ is only

of class C2 but that there exists a point x0 ∈ Rn such that Γ1 contains all points x
of Γ satisfying (x − x0) · ν(x) > 0. Then the above theorem remains valid: we shall
indicate the necessary modification during the proof.

(2) Theorem 4.1 improves (in the sense mentioned in the introduction) some
earlier results of Lions [31] and Lasiecka and Triggiani [27].

Turning to the proof of the theorem, let us first consider the following (dual)
problem:

(4.5)


ξ′′ −∆ξ = 0 in Ω× R,
ξ = 0 on Γ× R,
ξ(0) = ξ0 and ξ′(0) = ξ1 in Ω,
ψ = ∂νξ|Γ1 in R.
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Putting ϕ = (ξ, ξ′), ϕ0 = (ξ0, ξ1), and introducing the linear operators A∗ and B∗ by
the formulae

D(A∗) = D(B∗) = (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω),

A∗(η0, η1) = −(η1,∆η0),

B∗(η0, η1) = ∂νη0|Γ1 ,

we may rewrite (4.5) in the form (2.2):

ϕ′ = −A∗ϕ, ϕ(0) = ϕ0, ψ = B∗ϕ.

Let us show that choosing H ′ = H1
0 (Ω) × L2(Ω) and G′ = L2(Γ1), the assumptions

(H1)–(H4) of Theorem 3.1 are satisfied. In what follows, we shall identify L2(Ω)
and L2(Γ1) with their respective duals, so that G := G′′ = L2(Γ1) and H := H ′′ =
H−1(Ω)× L2(Ω).

It is well known that A∗ generates a group in H ′; see, e.g., [33].
To prove (H2) let us introduce the Dirichlet map D : L2(Γ1)→ L2(Ω) defined by{−∆Du = 0 in Ω,

Du = 0 on Γ0,
Du = u on Γ1.

It is well known (see, e.g., [33]) that D is a bounded linear map of L2(Γ1) into H1/2(Ω).
Let us define a bounded linear map E ∈ L(G,H) by the formula Eu = (0,−Du),
u ∈ G. Now, given any (η0, η1) ∈ D(A∗), we have for every u ∈ H

3/2
0 (Γ1) the

following equality:

〈E∗A∗(η0, η1), u〉G′,G = 〈A∗(η0, η1), Eu〉H′,H
= 〈(−η1,−∆η0), (0,−Du)〉H′,H

=
∫

Ω
(∆η0)Du dx

=
∫

Ω
η0(∆Du) dx+

∫
Γ
(∂νη0)Du− η0(∂νDu) dΓ.

(The last step is correct because u ∈ H3/2
0 (Γ1) implies Du ∈ H2(Ω).) Since ∆Du ≡ 0

in Ω, η0 ≡ 0 on Γ, Du ≡ 0 on Γ0, and Du ≡ u on Γ1, we conclude that

〈E∗A∗(η0, η1), u〉G′,G = 〈∂νη0, u〉G′,G = 〈B∗(η0, η1), u〉G′,G.

Using the density of H3/2
0 (Γ1) in G = L2(Γ1), the equality B∗ = E∗A∗ follows.

Rewriting the assumptions (H3) and (H4) for the original problem (4.5), we have
to prove the existence of a positive number T and of two positive constants c1, c2
such that for every (ξ0, ξ1) ∈ (H2(Ω) ∩H1

0 (Ω))×H1
0 (Ω) the solution of (4.5) satisfies

the inequalities

(4.6) c1‖(ξ0, ξ1)‖2H1
0 (Ω)×L2(Ω) ≤

∫ T

0

∫
Γ1

|∂νξ|2 dΓ dt ≤ c2‖(ξ0, ξ1)‖2H1
0 (Ω)×L2(Ω).

The second inequality of (4.6) was proven in [26] and [30]. The first one was
established in [12] under the stronger geometrical condition mentioned in Remark (2)
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after the formulation of Theorem 4.1. The estimates of T were subsequently improved
in [31] and [15]. Finally, the general case was settled by Bardos, Lebeau, and Rauch
[2], [3].

Since hypotheses (H1)–(H4) are all satisfied, we may apply Theorem 3.1 with A
and B defined by A := A∗∗ and B := B∗∗.

Let us explicitly write the resulting closed-loop problem (3.2), (3.3). Consider
the solutions of (4.1) and (4.5). We have, at least formally,

0 =
∫ T

0

∫
Ω

(y′′ −∆y)ξ dx dt

=
[∫

Ω
y′ξ − yξ′ dx

]T
0

+
∫ T

0

∫
Ω
y(ξ′′ −∆ξ) dx dt

+
∫ T

0

∫
Γ
−(∂νy)ξ + y(∂νξ) dΓ dt.

Using (4.1) and (4.5) this equality reduces to

0 =
[∫

Ω
y′ξ − yξ′ dx

]T
0

+
∫ T

0

∫
Γ1

u(∂νξ) dΓ dt.

Putting x = (−y′, y), x0 = (−y1, y0), ϕ = (ξ, ξ′), and ϕ0 = (ξ0, ξ1) this equality
may be rewritten as (2.4). Since (4.5) is equivalent to (2.2), we conclude that (by
definition) (4.1) is equivalent to (2.1).

Furthermore, writing the operator

Λ−1
ω : H−1(Ω)× L2(Ω)→ H1

0 (Ω)× L2(Ω)

in the matrix form

Λ−1
ω =

(
P −Q
−R S

)
,

we have

u = −JB∗Λ−1
ω x =

∂

∂ν
(Py′ +Qy)

on Γ1, and (4.3) follows.
Let us end this section by writing more explicitly the feedback constructed in our

proof. Given (ξ0, ξ1) ∈ H1
0 (Ω) × L2(Ω) arbitrarily, first we solve the problem (4.5),

and then the problem 
z′′ −∆z = 0 in Ω× (0, Tω),
z(Tω) = z′(Tω) = 0 in Ω,

z = eω(s)ψ on Γ× (0, Tω).

Thanks to the inequalities (4.6) the formula

Λω(ξ1, ξ0) = (−z(0), z′(0))

defines an isomorphism of H1
0 (Ω)× L2(Ω) onto H−1(Ω)× L2(Ω).

Now our feedback law is the following: for each t > 0 we set u(t) = ∂νξ0 where
(ξ1, ξ0) = Λ−1

ω (−y(t), y′(t)).
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5. Application to the wave equation II. We consider in this section the
problem

(5.1)


y′′ −∆y = 0 in Ω× R,
∂νy = u on Γ× R,
y(0) = y0 and y′(0) = y1 in Ω

in an open ball Ω of radius R in Rn. As in the preceding section, we denote by Γ the
boundary of Ω and by ν the outward unit normal vector to Γ.

It follows from a theorem of Graham and Russell [9] (see also [18] for another
proof) that for any fixed T > 2R the formula

(ξ0, ξ1) 7→ ‖ξ‖L2(0,T ;L2(Γ)),

where ξ denotes the solution of the homogeneous problem

(5.2)


ξ′′ −∆ξ = 0 in Ω× R,
∂νξ = 0 on Γ× R,
ξ(0) = ξ0 and ξ′(0) = ξ1 in Ω,

defines a Euclidean norm in H1(Ω)×L2(Ω). Moreover, all the norms ‖ · ‖L2(0,T ;L2(Γ))
(T > 2R) are equivalent. Completing H1(Ω) × L2(Ω) with respect to any of these
norms, we obtain a Hilbert space which we shall denote by H ′.

As usual, let us identify L2(Ω) with its dual. By a theorem proved in [32,
Théorème III.1.6, p. 167] we also have the inclusions

H1(Ω)× L2(Ω) ⊂ H ′ ⊂ L2(Ω)× (H1(Ω))′,

and therefore (putting H := H ′′),

L2(Ω)×H1(Ω) ⊂ H ⊂ (H1(Ω))′ × L2(Ω).

(In [32] H ′ is denoted by F .) Setting for commodity

H = {(y0, y1) | (y1, y0) ∈ H},

we shall prove the following theorem.
THEOREM 5.1. Given ω > 0 arbitrarily large, there exists a bounded linear oper-

ator

(5.3) F : H → L2(Ω)

and a constant M such that putting

(5.4) u = F(y, y′)

the problem (5.1), (5.4) is well posed in H, and its solutions satisfy the estimates

(5.5) ‖(y, y′)(t)‖H ≤M‖(y0, y1)‖He−ωt

for all t ≥ 0 and for all (y0, y1) ∈ H.
Remarks. (1) Using the (algebraical and topological) inclusion

H1(Ω)× L2(Ω) ⊂ H,
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it follows that the restriction of F to H1(Ω)×L2(Ω) has the form F(y, y′) = Py′+Qy
with two suitable bounded linear operators P : L2(Ω) → L2(Ω) and Q : H1(Ω) →
L2(Ω).

(2) Unlike the other applications of this paper, here the estimate (5.5) involves
a nontraditional space H, which is not characterized completely by using the usual
Sobolev spaces. (But we have at least two-sided estimates of this space.) This is a
well-known feature of control problems with Neumann action, due to the absence of
direct and inverse inequalities involving the same Sobolev spaces; cf., e.g., [32].

(3) There are many former results where estimates of this type were obtained for
general domains with particular choices of the operators P and Q; see, e.g., [6], [16],
[24], [35], [36], [39], [40]. However, in these results we never had ω > 1/(2R) where
R denotes the radius of the smallest ball containing Ω. (Estimates with ω = 1/(2R)
were obtained in [16].) The fact that arbitrarily large decay rates can be achieved by
boundary feedbacks of this type seems to be new.

Let us turn to the proof of Theorem 5.1. Consider the problem

(5.6)


ξ′′ −∆ξ = 0 in Ω× R,
∂νξ = 0 on Γ× R,
ξ(0) = ξ0 and ξ′(0) = ξ1 in Ω,

ψ = ξ|Γ in R.

Putting ϕ = (ξ, ξ′), ϕ0 = (ξ0, ξ1) and introducing the linear operators A∗ and B∗ by
the formulas

D(A∗) = D(B∗) = {η0 ∈ H2(Ω) | ∂νη0 = 0 on Γ} ×H1(Ω),

A∗(η0, η1) = −(η1,∆η0),

B∗(η0, η1) = η0|Γ,

we may rewrite (5.6) in the form (2.2):

ϕ′ = −A∗ϕ, ϕ(0) = ϕ0, ψ = B∗ϕ.

It is well known (see, e.g., [33]) that A∗ generates a strongly continuous group in
H1(Ω) × L2(Ω). It follows from the above-mentioned result of Graham and Russell
that A∗ also generates a strongly continuous group in H ′. Hence hypothesis (H1) is
satisfied.

Next we show that choosing G = L2(Γ), the hypothesis (H2) is also satisfied. (We
shall identify G with its dual.) For this we introduce the Neumann map N : L2(Γ)→
H1(Ω) defined by

{−∆Nu+Nu = 0 in Ω,
∂νNu = u on Γ,

and then the operator E ∈ L(G,H) defined by Eu = (Nu,Nu). (We note that N is
in fact a bounded linear operator of L2(Γ) into H3/2(Ω).)
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Given (η0, η1) ∈ D(A∗) and u ∈ G ∩H1/2(Γ) arbitrarily, we have

〈E∗(A+ I)∗(η0, η1), u〉G′,G
= 〈(A+ I)∗(η0, η1), Eu〉H′,H

= 〈(η0 − η1, η1 −∆η0), (Nu,Nu)〉H′,H

=
∫

Ω
(η0 −∆η0)Nu dx

=
∫

Ω
η0(−∆Nu+Nu) dx+

∫
Γ
−(∂νη0)Nu+ η0(∂νNu) dΓ

=
∫

Γ
η0u dΓ

= 〈B∗(η0, η1), u〉G′,G.

Since G ∩H1/2(Γ) is dense in G, we conclude that E∗(A+ I)∗ = B∗.
Finally, hypotheses (H3) and (H4) are satisfied by the definition of H ′.
We may now apply Theorem 3.1 with A := A∗∗ and B := B∗∗. Let us determine

the resulting closed-loop problem. If y solves (5.1) and ξ solves (5.6), then (at least
formally)

0 =
∫ T

0

∫
Ω

(y′′ −∆y)ξ dx dt

=
[∫

Ω
y′ξ − yξ′ dx

]T
0

+
∫ T

0

∫
Ω
y(ξ′′ −∆ξ) dx dt

+
∫ T

0

∫
Γ
−(∂νy)ξ + y(∂νξ) dΓ dt.

Using (5.1) and (5.6), it follows that

0 =
[∫

Ω
y′ξ − yξ′ dx

]T
0

+
∫ T

0

∫
Γ
−uξ dΓ dt.

Putting x = (y′,−y), x0 = (y1,−y0), ϕ = (ξ, ξ′), and ϕ0 = (ξ0, ξ1), this is equivalent
to (2.4). Since (5.6) is equivalent to (2.2), we conclude that (by definition) (5.1) is
equivalent to (2.1).

It follows easily from the boundedness of the operator Λ−1
ω : H → H ′ and from

the definition of B∗ that u = −JB∗Λ−1
ω x may also be written as u = F(y, y′) for a

suitable bounded linear operator F : H → L2(Ω).

6. Application to a Petrovsky system I. Let us consider the problem

(6.1)


y′′ + ∆2y = 0 in Ω× R,
y = ∂νy = 0 on Γ0 × R,
y = 0 and ∂νy = u on Γ1 × R,
y(0) = y0 and y′(0) = y1 in Ω,

where Ω is a bounded open set in Rn, Γ1 is an open subset of its boundary Γ, Γ0 =
Γ\Γ1, and ν denotes the outward unit normal vector to Γ.

Let us assume that Γ is of class C4 and that there exists a point x0 ∈ Rn such
that Γ1 contains all points x of Γ which satisfy the inequality (x− x0) · ν(x) > 0.
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We shall prove the the following theorem.
THEOREM 6.1. Fix an arbitrarily large positive number ω. Then there exist two

bounded linear maps

(6.2) P : H−2(Ω)→ H2
0 (Ω), Q : L2(Ω)→ H2

0 (Ω)

and a constant M such that, putting

(6.3) u = ∆(Py′ +Qy),

the problem (6.1), (6.3) is well posed in H := L2(Ω) × H−2(Ω), and its solutions
satisfy the estimates

(6.4) ‖(y, y′)(t)‖H ≤M‖(y0, y1)‖He−ωt

for all t ≥ 0 and for all (y0, y1) ∈ H.
Remark. Theorem 6.1 improves some earlier results of Lasiecka and Triggiani

[27], obtained by the Riccati equation approach.
Turning to the proof of the theorem, let us first consider the following problem:

(6.5)


ξ′′ + ∆2ξ = 0 in Ω× R,
ξ = ∂νξ = 0 on Γ× R,
ξ(0) = ξ0 and ξ′(0) = ξ1 in Ω,
ψ = ∆ξ|Γ1 in R.

Putting ϕ = (ξ, ξ′), ϕ0 = (ξ0, ξ1) and introducing the linear operators A∗ and B∗ by
the formulas

D(A∗) = D(B∗) = (H4(Ω) ∩H2
0 (Ω))×H2

0 (Ω),
A∗(η0, η1) = (−η1,∆2η0),
B∗(η0, η1) = ∆η0|Γ1 ,

we may rewrite (6.5) in the abstract form (2.2):

ϕ′ = −A∗ϕ, ϕ(0) = ϕ0, ψ = B∗ϕ.

We are going to show that, choosing H ′ = H2
0 (Ω) × L2(Ω) and G′ = L2(Γ1), the

assumptions (H1)–(H4) of Theorem 3.1 are satisfied. As before, we identify L2(Ω)
and L2(Γ1) with their respective duals, so that G := G′′ = L2(Γ1) and H := H ′′ =
H−2(Ω)× L2(Ω).

It is well known that A∗ generates a group in H ′; see, e.g., [33].
To prove (H2) let us introduce the Dirichlet map D : L2(Γ1)→ L2(Ω) now by∆2Du = 0 in Ω,

Du = ∂νDu = 0 on Γ0,
Du = 0 and ∂νDu = u on Γ1.

We recall from [33] that D is a bounded linear map. Let us define E ∈ L(G,H) by the
formula Eu = (0,−Du), u ∈ G. Now, for every (η0, η1) ∈ D(A∗) and u ∈ H5/2

0 (Γ1),
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we have the following equality:

〈E∗A∗(η0, η1), u〉G′,G
= 〈A∗(η0, η1), Eu〉H′,H

= 〈(−η1,∆2η0), (0,−Du)〉H′,H

= −
∫

Ω
(∆2η0)Du dx

= −
∫

Ω
η0(∆2Du) dx

+
∫

Γ
−(∂ν∆η0)Du+ (∆η0)(∂νDu)− (∂νη0)(∆Du) + η0(∂ν∆Du) dΓ.

(The last step is correct because u ∈ H
5/2
0 (Γ1) implies Du ∈ H4(Ω).) Using the

definition of Du and the property η0 = ∂νη0 ≡ 0 on Γ, we conclude that

〈E∗A∗(η0, η1), u〉G′,G = 〈∆η0, u〉G′,G.

Using the density of H5/2
0 (Γ1) in G = L2(Γ1), the equality B∗ = E∗A∗ follows.

Rewriting the assumptions (H3) and (H4) for the original problem (6.5), we have
to prove the existence of a positive number T and of two positive constants c1, c2
such that for every (ξ0, ξ1) ∈ (H4(Ω) ∩H2

0 (Ω))×H2
0 (Ω) the solution of (6.5) satisfies

the inequalities

(6.6) c1‖(ξ0, ξ1)‖2H2
0 (Ω)×L2(Ω) ≤

∫ T

0

∫
Γ1

|∆ξ|2 dΓ dt ≤ c2‖(ξ0, ξ1)‖2H2
0 (Ω)×L2(Ω).

These inequalities were established in [31]. (See also [15] for a better estimate of
T by elementary means, and [41] and [19, Theorem 6.7] for two different proofs of
these estimates for any positive T .)

We may now apply Theorem 3.1 with A and B defined by A := A∗∗ and B := B∗∗.
Let us explicitly write the resulting closed-loop problem (3.2), (3.3). Consider

the solutions of (6.1) and of (6.5). We have

0 =
∫ T

0

∫
Ω

(y′′ + ∆2y)ξ dx dt

=
[∫

Ω
y′ξ − yξ′ dx

]T
0

+
∫ T

0

∫
Ω
y(ξ′′ + ∆2ξ) dx dt

+
∫ T

0

∫
Γ
(∂ν∆y)ξ − (∆y)∂νξ + (∂νy)∆ξ − y(∂ν∆ξ) dΓ dt.

Using (6.1) and (6.5) this equality reduces to

0 =
[∫

Ω
y′ξ − yξ′ dx

]T
0

+
∫ T

0

∫
Γ1

u∆ξ dΓ dt.

Putting x = (−y′, y), x0 = (−y1, y0), ϕ = (ξ, ξ′), and ϕ = (ξ0, ξ1), this equality may
be rewritten as (2.4). Since (6.5) is equivalent to (2.2), we conclude that (6.1) is
equivalent to (2.1).
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Writing the operator

Λ−1
ω : H−2(Ω)× L2(Ω)→ H2

0 (Ω)× L2(Ω)

in the matrix form

Λ−1
ω =

(
P −Q
−R S

)
,

we have

u = −JB∗Λ−1
ω x = ∆(Py′ +Qy)

on Γ1, and (6.3) follows.

7. Application to a Petrovsky system II. Consider the problem

(7.1)


y′′ + ∆2y = 0 in Ω× R,
y = ∆y = 0 on Γ0 × R,
y = 0 and ∆y = u on Γ1 × R,
y(0) = y0 and y′(0) = y1 in Ω,

where Ω is a bounded open set in Rn, Γ1 is an open subset of its boundary Γ, and
Γ0 = Γ\Γ1. We shall denote by ν the outward unit normal vector to Γ.

As in section 4, assume that Γ is analytic and that Γ1 satisfies the geometrical
control condition of Bardos, Lebeau, and Rauch [2], [3]: there exists a positive number
T such that every ray of geometrical optics in Ω hits Γ1 at a nondiffractive point in
some time ≤ T . Then we have the following theorem.

THEOREM 7.1. Fix ω > 0 arbitrarily. There exist two bounded linear maps

(7.2) P : H−1(Ω)→ H1
0 (Ω), Q : H1

0 (Ω)→ H1
0 (Ω)

and a constant M such that, putting

(7.3) u =
∂

∂ν
(Py′ +Qy),

the problem (7.1), (7.3) is well posed in H := H1
0 (Ω)×H−1(Ω) and its solutions satisfy

the estimates

(7.4) ‖(y, y′)(t)‖H ≤M‖(y0, y1)‖He−ωt

for all t ≥ 0 and for all (y0, y1) ∈ H.
Remarks. (1) Theorem 6.1 improves some earlier results of Lasiecka and

Triggiani [27].
(2) The same conclusion holds if Γ is only of class C4 but there exists a point x0 ∈

Rn such that Γ1 contains all points x of Γ which satisfy the inequality (x−x0)·ν(x) > 0.
(3) Let us note that, contrary to the wave equation, the necessity of the geo-

metrical control condition is far from clear here. (See [10], [13], and [17] for closely
related exact internal controllability results in the “right spaces” in the absence of
the geometrical control condition.)

For the proof, consider the following problem:

(7.5)


ξ′′ + ∆2ξ = 0 in Ω× R,
ξ = ∆ξ = 0 on Γ× R,
ξ(0) = ξ0 and ξ′(0) = ξ1 in Ω,
ψ = ∂νξ|Γ1 in R.
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Putting ϕ = (ξ, ξ′), ϕ0 = (ξ0, ξ1), and introducing the linear operators A∗ and B∗ by
the formulae

D(A∗) = D(B∗) = {(η0, η1) ∈ H3(Ω)×H1(Ω) | η0 = ∆η0 = η1 = 0 on Γ},
A∗(η0, η1) = (−η1,∆2η0),

B∗(η0, η1) = ∂νη0|Γ1 ,

we may rewrite (7.5) in the abstract form (2.2):

ϕ′ = −A∗ϕ, ϕ(0) = ϕ0, ψ = B∗ϕ.

Let us show that, choosing H ′ = H1
0 (Ω)×H−1(Ω) and G′ = L2(Γ1), the assumptions

(H1)–(H4) of Theorem 3.1 are satisfied. As usual, we identify L2(Ω) and L2(Γ1) with
their respective duals, so that G := G′′ = L2(Γ1) and H := H ′′ = H−1(Ω)×H1

0 (Ω).
It is well known that A∗ generates a group in H ′; see, e.g., [33].
To prove (H2) let us introduce the bounded linear map D : L2(Γ1) → H2(Ω) ∩

H1
0 (Ω) now by 

∆2Du = 0 in Ω,
Du = ∆Du = 0 on Γ0,

Du = 0 and ∆Du = u on Γ1.

Let us define E ∈ L(G,H) by the formula Eu = (0, Du), u ∈ G. Now, given any
(η0, η1) ∈ D(A∗), we have for every u ∈ H3/2

0 (Γ1) the following equality:

〈E∗A∗(η0, η1), u〉G′,G
= 〈A∗(η0, η1), Eu〉H′,H

= 〈(−η1,∆2η0), (0, Du)〉H′,H

=
∫

Ω
(∆2η0)Du dx

=
∫

Ω
η0(∆2Du) dx

+
∫

Γ
(∂ν∆η0)Du− (∆η0)(∂νDu) + (∂νη0)(∆Du)− η0(∂ν∆Du) dΓ.

(The last step is justified because u ∈ H
3/2
0 (Γ1) implies Du ∈ H4(Ω).) Using the

definition of Du and the property η0 = ∆η0 ≡ 0 on Γ, we conclude that

〈E∗A∗(η0, η1), u〉G′,G = 〈∂νη0, u〉G′,G.

Using the density of H3/2
0 (Γ1) in G = L2(Γ1), the equality B∗ = E∗A∗ follows.

Rewriting the assumptions (H3) and (H4) for the original problem (7.5), we have
to prove the existence of a positive number T and of two positive constants c1, c2
such that for every (ξ0, ξ1) ∈ D(A∗) the solution of (7.5) satisfies the inequalities

(7.6) c1‖(ξ0, ξ1)‖2H1
0 (Ω)×H−1(Ω) ≤

∫ T

0

∫
Γ1

|∂νξ|2 dΓ dt ≤ c2‖(ξ0, ξ1)‖2H1
0 (Ω)×H−1(Ω).

The second inequality is essentially a special case of a theorem proved in [31];
see also [19, Theorem 2.10]. The first inequality was proved (improving some former
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results of Lions [31]) in [19, Theorem 6.11] under the stronger geometrical assumption
mentioned in Remark (2) above, and by Lebeau [28] in the general case. In the last
two works these inequalities are established for every (arbitrarily small) positive T .

We may thus apply Theorem 3.1 with A and B defined by A := A∗∗ and B := B∗∗.
Let us show that the resulting closed-loop problem (3.2), (3.3) is equivalent to

(7.1), (7.3). Consider the solutions of (7.1) and (7.5). We have

0 =
∫ T

0

∫
Ω

(y′′ + ∆2y)ξ dx dt

=
[∫

Ω
y′ξ − yξ′ dx

]T
0

+
∫ T

0

∫
Ω
y(ξ′′ + ∆2ξ) dx dt

+
∫ T

0

∫
Γ
(∂ν∆y)ξ − (∆y)∂νξ + (∂νy)∆ξ − y(∂ν∆ξ) dΓ dt.

Using (7.1) and (7.5), this equality reduces to

0 =
[∫

Ω
y′ξ − yξ′ dx

]T
0
−
∫ T

0

∫
Γ1

u∂νξ dΓ dt.

Putting x = (y′,−y), x0 = (y1,−y0), ϕ = (ξ, ξ′), and ϕ0 = (ξ0, ξ1), this equality
may be rewritten as (2.4). Since (7.5) is equivalent to (2.2), we conclude that (7.1) is
equivalent to (2.1).

Writing the operator

Λ−1
ω : H−1(Ω)×H1

0 (Ω)→ H1
0 (Ω)×H−1(Ω)

in the matrix form

Λ−1
ω = −

(
P −Q
−R S

)
,

we have

u = −JB∗Λ−1
ω x = ∂ν(Py′ +Qy)

on Γ1, and (7.3) follows.

Note added in proof. In an earlier version of this paper we used in Theorem
3.1 a different weight function (corresponding to the change of Tω to T in the formula
(3.1)). Frédéric Bourquin observed that in that case Flandoli’s theorem cannot be
applied unless the operator C is bounded. At the same time, he also suggested the
use of the weight function appearing now in (3.1) in order to keep the formulation
of the theorem and most of the proof unchanged. We are most grateful to him for
allowing us to include his corrections in our paper.

The hypothesis (H2) of the paper is equivalent to hypothesis (H2′) below, which
is easier to verify in the applications: instead of constructing a Dirichlet type map it
suffices to invoke the elliptic regularity theory.

(H2′) We have D(A∗) = D(B∗), and there exist two numbers λ ∈ C and c ∈ R
such that

‖B∗φ‖ ≤ c‖(A+ λI)∗φ‖

for all φ ∈ D(A∗).
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Indeed, (H2) obviously implies (H2′) with c = ‖E∗‖. Conversely, (H2′) implies
that the formula

E∗(A+ λI∗)∗φ := B∗φ

defines a bounded linear map E∗ from the range of (A+λI)∗ in H ′ into G′. Extending
it continuously to the closure of range (A + λI)∗ and then defining E∗ by zero on
its orthogonal complement, we obtain an operator E∗ ∈ L(H ′, G′) satisfying (H2).
Finally we set E := E∗∗.

For example, in the example of section 4 we have

D(A∗) = D(B∗) = H2(Ω) ∩H1
0 (Ω)

by definition and

‖B∗(η0, η1)‖G′ = ‖∂νη0‖L2Γ1) ≤ c‖η0‖H2(Ω)

≤ c‖∆η0‖L2(Ω) ≤ c‖ − (η1,∆η0)‖H′ = ‖A∗(η0, η1)‖H′ ,

proving (H2′).

Acknowledgments. Some results of this paper were announced earlier without
proof in [22] and [23].

Let us remark that T. I. Seidman [37] constructed, using a different approach,
stabilizing feedbacks leading to arbitrarily large decay rates in augmented state spaces.

The author is grateful to F. Bourquin, J. Lagnese, J.-L. Lions, O. J. Staffans, and
G. Weiss for their useful advice concerning the presentation of our results.
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Abstract. We consider a simple model arising in the control of noise. We assume that the
two-dimensional cavity Ω = (0, 1)× (0, 1) is occupied by an elastic, inviscid, compressible fluid. The
potential φ of the velocity field satisfies the linear wave equation. The boundary of Ω is divided into
two parts, Γ0 and Γ1. The first one, Γ0, is flexible and occupied by a vibrating string that obeys the
one-dimensional wave equation. On Γ0 the continuity of the normal velocities of the fluid and the
string is imposed. The subset Γ1 of the boundary is assumed to be rigid, and therefore, the normal
velocity of the fluid vanishes. This constitutes a conservative system of two coupled wave equations
in dimensions two and one, respectively.

The control (an elastic force or an exterior source of noise) is assumed to act on the flexible part
of the boundary. We are interested on the controllability problem: given a large enough control time,
what are the initial conditions we can drive to the equilibrium by means of, say, L2-controls? By
using Fourier series the problem is decomposed into an infinite number of one-dimensional control
problems that we solve by classical methods that combine the Hilbert uniqueness method, multiplier
techniques, and Ingham-type inequalities. Putting these one-dimensional results together, we give a
precise characterization of the space of controllable data in terms of Fourier series.

Key words. boundary control, hyperbolic system, aeromechanic structure interaction

AMS subject classifications. 35B37, 93C20, 73K70

PII. S0363012996297972

1. Introduction. Let Ω be the two-dimensional square Ω = (0, 1)× (0, 1) ⊂ R2.
We assume that Ω is filled with an elastic, inviscid, compressible fluid whose

velocity field
→
v is given by the potential φ = φ(x, y, t) :

→
v= ∇φ. By linearization we

assume that the potential φ satisfies the linear wave equation in Ω× (0,∞).
The boundary Γ = ∂Ω of Ω is divided into two parts: Γ0 = {(x, 0) : x ∈ (0, 1)}

and Γ1 = Γ\Γ0. The subset Γ1 is assumed to be rigid, and we impose zero normal
velocity of the fluid on it. The subset Γ0 is supposed to be flexible and occupied by
a flexible string that vibrates under the pressure of the fluid on the plane where Ω
lies. The displacement of Γ0, described by the scalar function W = W (x, t), obeys the
one-dimensional wave equation. On the other hand, on Γ0 we impose the continuity
of the normal velocities of the fluid and the string. The string is assumed to satisfy
Neumann boundary conditions on its extremes. All deformations are supposed to be
small enough that linear theory applies. Under natural initial conditions for φ and W
the linear motion of this system is described by means of the following coupled wave
equations:
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φtt −∆φ = 0 in Ω× (0,∞),
∂φ
∂ν = 0 on Γ1 × (0,∞),
∂φ
∂y = −Wt on Γ0 × (0,∞),
Wtt −Wxx + φt = 0 on Γ0 × (0,∞),
Wx(0, t) = Wx(1, t) = 0 for t > 0,
φ(0) = φ0, φt(0) = φ1 in Ω,
W (0) = W 0,Wt(0) = W 1 on Γ0.

(1.1)

By ν we denote the unit outward normal to Ω.
In (1.1) we have chosen to take the various parameters of the system to be equal

to one.
The system (1.1) is well posed in the energy space X = H1(Ω)×L2(Ω)×H1(Γ0)×

L2(Γ0) for the variables (φ, φt,W,Wt). The energy

E(t) =
1
2

∫
Ω

[
| ∇φ |2 + | φt |2

]
dxdy +

1
2

∫
Γ0

[
|Wx |2 + |Wt |2

]
dx(1.2)

remains constant along trajectories.
We study the controllability of system (1.1) under the action of an exterior force

or source of noise on the flexible part of the boundary Γ0. The control is given by a
scalar function β = β(x, t), and the controlled system reads as follows:

φtt −∆φ = 0 in Ω× (0,∞),
∂φ
∂ν = 0 on Γ1 × (0,∞),
∂φ
∂y = −Wt on Γ0 × (0,∞),
Wtt −Wxx + φt = β on Γ0 × (0,∞),
Wx(0, t) = Wx(1, t) = 0 for t > 0,
φ(0) = φ0, φt(0) = φ1 in Ω,
W (0) = W 0,Wt(0) = W 1 on Γ0.

(1.3)

It is easy to see that the equilibria of these systems are of the form

(φ, φt,W,Wt) = (c1, 0, c2, 0),(1.4)

c1 and c2 being constant functions.
In view of the finite speed of propagation of the wave equation satisfied by φ, the

geometry of Ω, and the support of the control β (the subset Γ0 of the boundary of
Ω), the minimal controllability time for system (1.3) is T0 = 2.

We choose the control β to be in the space H−2(0, T ;L2(Γ0)). Of course, this is
an arbitrary choice and many others make sense. However, this is the most natural
one when solving the control problem by means of Lions’s Hilbert uniqueness method
(HUM) (see [10]), as we will do.

The problem of controllability can be formulated as follows: given T > 2, find
the space of initial data (φ0, φ1,W 0,W 1) that can be driven to an equilibrium of the
form (1.4) in time T by means of a suitable control β ∈ H−2(0, T ;L2(Γ0)).

The control set Γ0 does not satisfy the necessary geometric conditions for control-
lability given by Bardos, Lebeau, and Rauch in [6]. Indeed, any segment of the form
{(x, `) : x ∈ (0, 1)} with 0 < ` < 1 constitutes a ray of geometric optics that never
intersects the control region Γ0. Therefore, we cannot expect the space of controllable
initial data to be an energy space.
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In this paper we give a complete characterization of the controllable space in
terms of Fourier series. This space consists of initial data whose Fourier coefficients,
roughly, decay exponentially as the frequency increases.

The Fourier analysis of the system is possible because of the boundary conditions
we have chosen for W . Indeed, W is assumed to satisfy Neumann-type boundary
conditions, which are compatible with those of φ, to develop solutions in Fourier
series.

Indeed, let us decompose the control β, the solutions φ,W , and the initial data
in the following way:

β =
∞∑
n=0

βn(t) cos(nπx),

Φ =
∞∑
n=0

ψn(y, t) cos(nπx), (φ0, φ1) =
∞∑
n=0

(ψ0
n(y), ψ1

n(y)) cos(nπx),

W =
∞∑
n=0

Vn(t) cos(nπx), (W 0,W 1) =
∞∑
n=0

(V 0
n , V

1
n ) cos(nπx).

(1.5)

With this decomposition, system (1.3) can be split into the following sequence of
one-dimensional controlled systems for n = 0, 1, . . .:

ψn,tt − ψn,yy + n2π2ψn = 0 for (y, t) ∈ (0, 1)× (0,∞),
ψn,y(1, t) = 0 for t > 0,
ψn,y(0, t) = −Vt(t) for t > 0,
Vn,tt(t) + n2π2Vn(t) + ψn,t(0, t) = βn(t) for t > 0,
ψn(0) = ψ0

n, ψn,t(0) = ψ1
n in (0, 1),

Vn(0) = V 0
n , Vn,t(0) = V 1

n .

(1.6)

First we will study the controllability of system (1.6) by using classical methods
that combine HUM, multiplier techniques, and Ingham-type inequalities (see [9] and
[8]). Combining these one-dimensional results with the Fourier decomposition (1.5),
the controllability result for system (1.3) will be proved. Although the techniques we
use are well known, the obtainment of sharp estimates for the controls requires the
use of them in a rather refined way.

The control β we obtain is of the form β = ∂2

∂t2 γ, with γ ∈ L2 (Γ0 × (0, T )) having
compact support in time. Therefore

∫ T
0 β = 0. Taking this fact into account, it is

easy to see that the constants c1, c2 of the equilibrium that we reach at time t = T
are determined a priori by the initial data. Indeed, integrating the first equation of
(1.3) in Ω we obtain that

∫
Ω φtdxdy −

∫
Γ0
Wdx remains constant in time. Therefore,

necessarily,

c2 =
∫

Γ0

W 0dx−
∫

Ω
φ1dxdy.(1.7)

On the other hand, integrating the equation satisfied by W on Γ0× (0, T ) and taking
into account that

∫ T
0 β = 0, we deduce that∫

Γ0

Wt(T )dx+
∫

Γ0

φ(x, 0, T )dx =
∫

Γ0

W 1dx+
∫

Γ0

φ0(x, 0)dx,

and therefore,

c1 =
∫

Γ0

(
W 1 + φ0(x, 0)

)
dx.(1.8)
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In terms of the Fourier coefficients (1.5) these constants can be written in the
following way:

c1 = V 1
0 + ψ0

0(0), c2 = V 0
0 −

∫ 1

0
ψ1

0(y)dy.(1.9)

Therefore, the constants c1 and c2 of the equilibrium we may reach are uniquely de-
termined by the Fourier coefficients of the initial data corresponding to the frequency
n = 0 in the x-variable.

This fact is related to the different nature of systems (1.6) for n = 0 and n ≥ 1.
While for any n ≥ 1, system (1.6) is exactly controllable to zero at any time T >
2, when n = 0 we can control the system to the equilibrium given by (1.9) only in
terms of the initial data.

The system under consideration can be viewed as a hybrid system coupling a fluid
with an elastic structure. From a mathematical point of view the system couples a
two-dimensional wave equation with a one-dimensional one. This type of system is
rather common when studying the vibrations of structures connecting several flexible
bodies of different dimensions. Examples of this type can be found, for instance, in
[11], [7], and [16]. However, in all these cases the coupling is of a different nature
since the continuity of displacements is imposed, but not the continuity of normal
velocities.

The model under consideration is inspired in and related to that of Banks et al. in
[5]. However, there are some important differences between these two models. In [5]
the flexible part of the boundary Γ0 is occupied by a flexible damped beam instead of
a flexible string. But the main difference is related to the nature of the controls. In [5]
the control acts on the system through a finite number of piezoceramic patches located
on Γ0. This restricts very much the set of admissible controls, which are essentially
second derivatives of Heaviside functions, and much weaker controllability results
have to be expected. In [5] the controllability problem is not addressed. Instead,
they consider a quadratic optimal control problem. More recently, in [3], a Riccati
equation for the optimal control is derived. The problem of the controllability of
one-dimensional beams with piezoelectric actuators has been successfully addressed
by Tucsnak [17]. However, to our knowledge, there are no rigorous results on the
controllability of fluid-structure systems under such controls. To our knowledge the
present paper represents the first attempt to solve the controllability problem for the
two-dimensional system although, as we said above, we do not address the problem
in which the control is made through piezoelectric patches.

In [13], the authors have addressed the problem of the feedback stabilization of
system (1.3) with a damping term concentrated on Γ0. The results in [13] show that,
in such a situation, every trajectory converges towards an equilibrium as time goes
to infinity, but the decay rate is not uniform. A more detailed discussion on the
lack of uniform decay can be found in [12] and [15]. More recently, in [2], the system
introduced in [5] has been considered, with the condition ∂Φ

∂ν = −Wt on the continuity
of the velocity fields replaced by a dissipative condition of the form ∂Φ

∂ν = −Wt + Φt.
In [2] it is proven that when Ω is a general smooth bounded domain and the subset Γ0
of the boundary is sufficiently large (in the spirit of the geometric conditions arising
in the boundary stabilization of the wave equation), then the energy decays uniformly
to zero. In [13] the existence of periodic solutions of this dissipative system on the
presence of a periodic source of noise acting on the system through the flexible part of
the boundary is considered too. Due to the very weak effect that the damping located
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on Γ0 has on the fluid inside Ω, in order to guarantee the existence of such periodic
solutions of finite energy, the exterior source of noise has to be assumed to belong to
a rather small class of functions with rapidly decreasing Fourier coefficients. In this
sense, this result is very close to the controllability one we present in this paper. For
a detailed discussion, see [12].

The rest of the paper is organized as follows. In section 2 we rigorously present
the main results of this paper and make a discussion on their optimality. In section 3
we address the one-dimensional control problem (1.6). First, distinguishing the cases
n = 0 and n ≥ 1, we derive the necessary observability inequalities. Then, applying
HUM, the one-dimensional controllability result is deduced. In section 4, combining
the results of the previous one, we derive the controllability result for system (1.3).

In an appendix at the end of the paper we give a detailed proof of an Ingham-type
inequality that provides explicit estimates of the constants appearing in it.

2. The main results: Statements and discussion. As we said in the in-
troduction, the controllability problem of system (1.3) is reduced to study the one-
parameter family of one-dimensional systems (1.6). When n ≥ 1 we have the following
controllability result for (1.6).

THEOREM 2.1. Let Y be the space H1(0, 1) × L2(0, 1) × R × R. Assume that
T > 2 and n ≥ 1. Then, for any (ψ0, ψ1, V 0, V 1) ∈ Y, there exists a control β ∈
H−2(0, T ) with compact support such that the solution (ψ, V ) of (1.6) satisfies

ψ(T ) = ψt(T ) ≡ 0 in (0, 1), V (T ) = Vt(T ) = 0.(2.1)

Remark 1. In the statement of Theorem 2.1 and below, we drop the index n from
the unknowns (ψ, V ) to simplify the notation.

The solution (ψ, V ) is defined by transposition. Therefore, (2.1) has to be un-
derstood in a suitable weak sense. We will return to this question in the proof of the
theorem.

The proof of Theorem 2.1 provides the continuous dependence of the control β
on the initial data. More precisely,

‖β‖2H−2(0,T ) ≤ Cn
{
‖(ψ1, ψ0, V 1, V 0)‖2Y′+ | ψ0(0) |2

}
(2.2)

for any initial data (ψ0, ψ1, V 0, V 1), as in the statement of Theorem 2.1. By Y ′ we
denote the dual of the space Y, (Y ′ = (H1(0, 1)) × L2(0, 1) × R2). The constant Cn
in (2.2) will be evaluated in the next section (see also Remark 4).

As we said in the introduction, when n = 0 one can not expect the same control-
lability result due to the conservation of the quantities (1.9) along the trajectories. In
this case the controllability result reads as follows.

THEOREM 2.2. Assume that T > 2 and n = 0. Then, for any
(
ψ0, ψ1, V 0, V 1

)
∈

Y, there exists a control β ∈ H−2(0, T ) with compact support such that the solution
(ψ, V ) of (1.6) satisfies

ψ(T ) = V 1 + ψ0(0), ψt(T ) = 0 in (0, 1), V (T ) = V 0 −
∫ 1

0
ψ1dy, Vt(T ) = 0.(2.3)

Remark 2. This result asserts that, when n = 0, any solution of (1.6) can be
driven to an equilibrium configuration which is determined a priori by the initial
data.

Let us now state the controllability results for the two-dimensional system (1.3).
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We use the Fourier decomposition method described in the introduction. Thus
we develop the initial data

(
φ0, φ1,W 0,W 1

)
to be controlled in Fourier series:

φ0 =
∞∑
n=0

ψ0
n(y) cos(nπx), φ1 =

∞∑
n=0

ψ1
n(y) cos(nπx),

W 0 =
∞∑
n=0

V 0
n cos(nπx), W 1 =

∞∑
n=0

V 1
n cos(nπx).

(2.4)

We assume that for every n = 0, 1, . . . the initial data satisfy the assumptions of
Theorems 2.1 and 2.2. We set

ρ0
n = ψ0

n, ρ1
n = −ψ1

n + V 0
n δ0, µ0 = −V 0

n , µ
1
n = V 1

n + ψ0
n(0).(2.5)

We introduce the following space of initial data:

H =

{ (
φ0, φ1,W 0,W 1

)
∈ X :

∞∑
n=0

Cn
∥∥(ρ1

n, ρ
0
n, µ

1
n, µ

0
n

)∥∥2
Y′ =

∥∥(φ0, φ1,W 0,W 1)∥∥2
H
<∞

}
,

(2.6)

where the constants Cn are those appearing in (2.2).
THEOREM 2.3. Assume that T > 2. Then, for every initial data

(
φ0, φ1,W 0,W 1

)
in H, there exists a control β ∈ H−2(0, T ;L2(0, 1)) such that the solution (φ,W ) of
(1.3) satisfies

φ(T ) ≡ µ1 =
∫ 1

0
W 1(x)dx+

∫ 1

0
ψ0(x, 0)dx, φt(T ) ≡ 0,

W (T ) ≡ 〈ρ1, 1〉 =
∫ 1

0
W 0(x)dx−

∫ 1

0

∫ 1

0
ψ1(x, y)dxdy, Wt(T ) ≡ 0.

(2.7)

Moreover, there exists a constant C > 0 such that

‖β‖H−2(0,T ;L2(0,1)) ≤ C‖
(
φ0, φ1,W 0,W 1) ‖H .(2.8)

Remark 3. The control time T > 2 is optimal. Indeed, when T < 2 it is easy to
see that the set of controllable data is not dense in the space of finite energy data.
Actually, when T < 2, none of the one-dimensional problems (1.6) is approximately
controllable; i.e., the space of controllable data is not even dense in Y ′.

Remark 4. The developments of this article allow us to show that Cn = O
(
en

α)
as n → ∞ for any α > 1. Thus, roughly speaking, the Fourier coefficients in the
x-variable have to decay exponentially to guarantee the controllability. Let us explain
in more detail why this result is natural.

From the definition (2.6) of H and from the fact that Cn grows exponentially, it
is clear that there is no Sobolev space that might be contained in H (observe that
Sobolev spaces correspond roughly to polynomial weights Cn). But this is known a
priori. Indeed, as we said in the introduction, our control problem does not verify
the geometric control property given in [6], and as a consequence of this, no Sobolev
space of initial data may be exactly controllable with β in H−2(0, T ;L2(0, 1)).

After the first version of this paper was written, Allibert in [1] obtained some
complementary results. In [1], he proved that for any ε there exists T (ε) > 0 such
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that system (1.3) is controllable in time T (ε) for all initial data in the space H(ε)
which is defined as in (2.6) but with Cn = exp(εn) as n → ∞. Thus, the result in
[1] shows, roughly, that as t → ∞, the system is controllable in a larger and larger
class of analytic functions. The results in [1] are an extension of previous results by
the same author on the controllability of the classical wave equation in the square
Ω and with control in Γ0. Observe that all these problems have in common the fact
that the geometric control condition of [6] is not satisfied. The structure of the set of
controllable data in those situations is mainly unknown.

Since the constants Cn in our estimates are of order en
α

, we can control all the
initial data which belong to the Gevrey classes of exponent α > 1 in the x-variable.

Remark 5. Finally, let us mention that if a second control α ∈ L2(0, T ) is allowed
to act in the system through the condition of continuity of the velocity fields

∂Φ
∂y

= −Wt + α in Γ0 × (0, T ),(2.9)

the same result holds with Cn = O(n4e2nπ). This is a consequence of Proposition
3.2 below. From the proof of Proposition 3.2 it follows that this constant is sharp.
However, introducing controls of the form (2.9) does not seem to be realistic. This is
the reason for using only the control β, which requires important additional develop-
ments.

3. Controllability of the one-dimensional systems. This section is devoted
to proving the controllability results for the one-dimensional systems (1.6) that are
necessary to derive the controllability of system (1.3). In section 3.1, by using classical
multiplier techniques, we derive some hidden regularity results. In section 3.2, with
the same techniques, we get the first observability inequalities. In section 3.3, by using
Ingham’s inequalities, we obtain a refined version of these observability inequalities.
Finally, in sections 3.4 and 3.5, we apply HUM and prove the controllability result
for (1.6).

3.1. Hidden regularity. Let us consider the system

ηtt − ηyy + n2π2η = f in (0, 1)× (0, T ),
ηy(1) = 0 for t ∈ (0, T ),
ηy(0) = ut for t ∈ (0, T ),
utt + n2π2u− ηt(0) = g for t ∈ (0, T ),
η(0) = η0, ηt(0) = η1 in (0, 1),
u(0) = u0, ut(0) = u1.

(3.1)

System (3.1) is the adjoint of (1.6). The unknowns are η = η(y, t) and u = u(t). Of
course, since the coefficients of the system depend on n = 0, 1 . . . , solutions (η, u)
depend on n too. However, in order to simplify the notations, we will not use the
index n to distinguish the solutions of (3.1) for the different values of n.

The energy space for system (3.1) is the Hilbert space Y = H1(0, 1)× L2(0, 1)×
R× R.

It is easy to see that for any (η0, η1, u0, u1) ∈ Y and (f, g) ∈ L1(0, T ;L2(0, 1)×R)
system (3.1) has a unique solution in the class

η ∈ C
(
[0, T ];H1(0, 1)

)
∩ C1 ([0, T ];L2(0, 1)

)
; u ∈ C1([0, T ];R).(3.2)

In other words, (η, ηt, u, ut) ∈ C ([0, T ];Y).
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The energy of the system

F (t) =
1
2

∫ 1

0

[
| ηt |2 + | ηy |2 +n2π2η2] dy +

1
2
[
| ut |2 +n2π2 | u |2

]
(3.3)

satisfies

dF (t)
dt

=
∫ 1

0
f(y, t)ηt(y, t)dy + g(t)ut(t).(3.4)

Therefore, when f ≡ 0 and g ≡ 0, the energy F remains constant along trajectories.
We observe that when n ≥ 1, the square root of F defines a norm in Y equivalent

to the canonical norm ‖ · ‖Y of Y:

‖(u, v, w, z, )‖Y =
[∫ 1

0

(
| uy |2 + | u |2 + | v |2

)
dy + w2 + z2

]1/2

.(3.5)

However, when n = 0, this is not the case. Actually, for n = 0, (η, u) = (c1, c2) with
c1, c2 real constants are stationary solutions of (3.1) with f ≡ 0, g ≡ 0 for which the
energy F vanishes.

We have the following “hidden regularity” result.
PROPOSITION 3.1. For any T > 0 there exists a constant C(T ) > 0 independent

of n = 0, 1, . . . such that(∫ T

0
| utt | dt

)2

+
∫ T

0

[
| ut |2 +(1 + n4π4)u2 + (1 + n2π2)η2(0, t)

]
dt

≤ C
(
n4 + 1

) [
‖
(
η0, η1, u0, u1

)
‖2Y + ‖f‖2L1(0,T ;L2(0,1)) + ‖g‖2L1(0,T )

](3.6)

for any (η0, η1, u0, u1) ∈ Y, f ∈ L1(0, T ;L2(0, 1)), and g ∈ L1(0, T ).
If g ∈ L2(0, T ), then u ∈ H2(0, T ), and we also have∫ T

0
| utt |2 dt

≤ C(n4 + 1)
[
‖(η0, η1, u0, u1)‖2Y + ‖f‖2L1(0,T ;L2(0,1)) + ‖g‖2L2(0,T )

]
.

(3.7)

Remark 6. This proposition shows that u is more smooth than what (3.2) guar-
antees. This is due to the structure of the second-order (in time) equations that u
satisfies. The fact that the constant in (3.6) and (3.7) does not depend on the index
n is worth mentioning.

Proof of Proposition 3.1. It is enough to consider smooth solutions since a classical
density argument allows us to extend inequalities (3.6) and (3.7) to any solution with
finite right-hand side. We use a classical multiplier technique (see, for instance, [10]).
We multiply the first equation in (3.1) by (1− y)ηy and integrate over (0, 1)× (0, T ).
Integrating by parts we obtain

1
2

∫ T

0

[
| ηt |2 + | ηy |2 −n2π2η2] (0, t)dt = −

∫ 1

0
ηt(1− y)ηydy

∣∣∣∣T
0

+
1
2

∫ T

0

∫ 1

0

[
η2
t + η2

y − n2π2η2] dydt+
∫ T

0

∫ 1

0
f(1− y)ηydydt = X.
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In this identity we use the notation L |T0 = L(T ) − L(0). The right-hand side of this
identity can be easily bounded as follows:

| X |≤ 1
2

∫ 1

0

[
η2
t + η2

y

]
(y, 0)dy +

1
2

∫ 1

0

[
η1
t + η2

y

]
(y, T )dy +

∫ T

0
F (t)dt

+
1
2

[
‖f‖2L1(0,T ;L2(0,1)) + ‖ηy‖2L∞(0,T ;L2(0,1))

]
≤ F (0) + F (T ) +

∫ T

0
F (t)dt

+‖F (t)‖L∞(0,T ) +
1
2
‖f‖2L1(0,T ;L2(0,1)) ≤ C

[
‖F‖L∞(0,T ) + ‖f‖2L1(0,T ;L2(0,1))

]
,

with C > 0 independent of n.
Below, if some constant in the inequalities depends on n, we will make it explicit

by means of an index n on that constant.
On the other hand, from identity (3.4) and using Gronwall’s inequality, it is easy

to deduce that

‖F‖2L∞(0,T ) ≤ C
[
‖f‖2L1(0,T ;L2(0,1)) + ‖g‖2L1(0,T ) + F (0)

]
.

Since H1(0, 1) is continuously embedded in C([0, 1];R) we also have∫ T

0
η2(0, t)dt ≤ C

∫ T

0
F (t)dt ≤ C

[
‖f‖2L1(0,T ;L2(0,1)) + ‖g‖2L1(0,T ) + F (0)

]
.

Combining these inequalities we deduce that∫ T

0

[
| ηt |2 + | ηy |2 +n2π2η2] (0, t)dt

≤ C(n2 + 1)
[
‖(η0, η1, u0, u1)‖2Y + ‖f‖2L1(0,T ;L2(0,1)) + ‖g‖2L1(0,T )

]
.(3.8)

On the other hand,

n4π4
∫ T

0
u2(t)dt ≤ 2n2π2

∫ T

0
F (t)dt

≤ Cn4
[
‖(η0, η1, u0, u1)‖2Y + ‖f‖2L1(0,T ;L2(0,1)) + ‖g‖2L1(0,T )

]
.(3.9)

Inequalities (3.6) and (3.7) are a direct consequence of (3.8) and (3.9) and the
coupling conditions between η and u given in system (3.1), i.e.,

ηy(0, t) = ut(t);utt(t) = g(t) + ηt(0, t)− n2π2u(t) for t ∈ (0, T ).(3.10)

3.2. Observability inequalities. In this paragraph we consider the adjoint
system (3.1) in the particular case where f ≡ 0 and g ≡ 0. More precisely, assume
that η and u solve

ηtt − ηyy + n2π2η = 0 in (0, 1)× (0, T ),
ηy(1, t) = 0 for t ∈ (0, T ),
ηy(0, t) = ut(t) for t ∈ (0, T ),
utt(t) + n2π2u(t)− ηt(0, t) = 0 for t ∈ (0, T ),
η(0) = η0, ηt(0) = η1 in (0, 1),
u(0) = u0, ut(0) = u1.

(3.11)
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We have the following observability result.
PROPOSITION 3.2. For any T > 2 there exists a constant C > 0 which is inde-

pendent of n = 0, 1, . . . such that

2F (0) + ‖η0‖2L2(0,1)+ | u0 |2≤ Ce2nπ
∫ T

0

[
| utt |2 + | ut |2

+(1 + n4π4) | u |2 + (1 + n2π2) | η(0, t) |2
]
dt

(3.12)

for any solution of (3.11).
Remark 7. Let ρ : (0, T )→ [0, 1] be a nonnegative smooth function with compact

support and ρ ≡ 1 in (ε, T − ε) with ε > 0 small enough such that T − 2ε > 2. In
view of the time invariance of system (3.11), we deduce that

2F (ε) + ‖η(ε)‖2L2(0,1)+ | u(ε) |2≤ Ce2nπ
∫ T

0
ρ(t)

[
| utt |2 + (1 + n4π2) | u |2

+ (1 + n2π2) | η(0, t) |2
]
dt.

Using the conservation of energy, we deduce that

‖(η0, η1, u0, u1)‖2Y ≤ 2F (0) + ‖η0‖2L2(0,1)+ | u0 |2

≤ Ce2nπ
∫ T

0
ρ(t)

[
| utt |2 + | ut |2 +(1 + n4π4) | u |2

+(1 + n2π2) | η(0, t) |2
]
dt.(3.13)

This estimate will allow us to construct controls with compact support in time.
Proof of Proposition 3.2. The proof of this result is obtained by means of a gen-

uinely one-dimensional method which consists roughly on viewing the wave equation
in (3.11) as being an evolution equation with respect to y, while t plays the role of
the space variable. This argument was used in [18] when studying the controllability
of the one-dimensional semilinear wave equation.

For any 0 ≤ y ≤ 1, we define

G(y) =
1
2

∫ T−y

y

[
| ηt |2 + | ηy |2 +n2π2 | η |2

]
(y, t)dt.

We have

G(0) =
1
2

∫ T

0

[
| ηt |2 + | ηy |2 +n2π2 | η |2

]
(0, t)dt.(3.14)

On the other hand,

G′(y) =
∫ T−y

y

[
| ηyyηy + ηtyηt + n2π2ηyη

]
(y, t)dt

−1
2

∑
t=y,T−y

[
| ηy(y, t) |2 + | ηt(y, t) |2 +n2π2 | η(y, t) |2

]
and ∫ T−y

y

ηty(y, t)ηt(y, t)dt = −
∫ T−y

y

ηy(y, t)ηtt(y, t)dt+ ηy(y, t)ηt(y, t)

∣∣∣∣∣
t=T−y

t=y

.
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Therefore

G′(y) =
∫ T−y

y

[
ηyy − ηtt + n2π2η

]
ηy(y, t)dt+ ηy(y, t)ηt(y, t)

∣∣∣∣∣
t=T−y

t=y

− 1
2

∑
t=y,T−y

[
| ηy(y, t) |2 + | ηt(y, t) |2 +n2π2 | η(y, t) |2

]
.(3.15)

Using the first equation in (3.11) we have that∫ T−y

y

[
ηyy − ηtt + n2π2η

]
ηy(y, t)dt = 2n2π2

∫ T−y

y

ηηy(y, t)dt,

and on the other hand,

ηy(y, t)ηt(y, t)|t=T−yt=y − 1
2

∑
t=y,T−y

[
| ηy(y, t) |2 + | ηt(y, t) |2 +n2π2 | η(y, t) |2

]
≤ 0.

Combining these identities with (3.15), we deduce that

G′(y) ≤ 2n2π2
∫ T−y

y

ηηy(y, t)dt

≤ nπ
∫ T−y

y

[
| ηy |2 +n2π2 | η |2

]
(y, t)dt ≤ 2nπG(y).

Thus G(y) ≤ e2nπG(0), for all y ∈ (0, 1), and therefore
∫ 1

0 G(y) ≤ e2nπG(0).
In particular,

(T − 2)F (T ) =
∫ T−1

1
F (t)dt

=
1
2

∫ T−1

1

{[∫ 1

0
| ηy |2 + | ηt |2 +n2π2η2

]
dy+ | ut |2 +n2π2u2

}
dt

≤
∫ 1

0
G(y)dy +

1
2

∫ T−1

1

[
| ut |2 +n2π2u2] dt

≤ e2nπ

2

∫ T

0

[
| ηy |2 + | ηt |2 +n2π2η2] (0, t)dt+

1
2

∫ T

0

[
| ut |2 +n2π2u2] dt.(3.16)

Using the relations (3.11) at y = 0, we deduce that (3.12) holds when n ≥ 1.
When n = 0, it is sufficient to add in (3.16) the extra quantity

∫ T
0 [| η |2 (0, t)+

| u |2 (t)]dt to deduce that (3.12) holds in that case too.
Remark 8. When n = 0, inequality (3.12) shows that

‖η0
y‖2L2(0,1) + ‖η1‖2L2(0,1)+ | u1 |2≤ C

∫ T

0

[
| utt |2 + | ut |2

]
dt.(3.17)

This inequality does not provide any estimate on u0. This is related to the fact
that, when n = 0, system (1.6) cannot be driven exactly to zero but rather to the
equilibrium given by the constants c1, c2 in (1.9).
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3.3. Improved observability inequalities. The goal of this section is to ob-
tain observability inequalities of the form (3.12) but in which the only term appearing
on the right-hand side is

∫ T
0 | utt |

2 dt. As we will see, this is related to the control-
lability of system (1.6) using the sole control β. We have the following theorem.

THEOREM 3.3. Assume that T > 2. Then
(i) for any n ≥ 1 there exists a constant C = C(T, n) > 0 such that

‖(η0, η1, u0, u1)‖2Y ≤ C(T, n)
∫ T

0
| utt |2 dt(3.18)

for any solution of (3.11). Moreover, C(T, n) = O
(
en

α)
, for any α > 1.

(ii) if n = 0 there exists a constant C = C(T ) > 0 such that

‖η0
y‖2L2(0,1)+ | u1 |2≤ C(T )

∫ T

0
| utt |2 dt(3.19)

for any solution of (3.11).
Remark 9. As observed in Remark 7, in estimates (3.18) and (3.19) one can

replace the right-hand side by the quantity
∫ T

0 ρ(t) | utt(t) |2 dt, where ρ is a smooth
nonnegative function with compact support in (0, T ) and such that ρ ≡ 1 in (ε, T −
ε) with ε > 0 small enough such that T − 2ε > 2.

To prove Theorem 3.3 we need the following refined version of a result by Haraux
[8] on nonharmonic Fourier series.

THEOREM 3.4. Let f = f(t) be of the form f(t) =
∑
n∈Z ane

iλnt, where λn is
a sequence of real numbers. We assume that there exist N ∈ N, γ > 0, and γ∞ > 0
such that

λn+1 − λn ≥ γ∞ > 0 if | n |> N,(3.20)

λn+1 − λn ≥ γ > 0 for any n ∈ Z.(3.21)

Let J = [0, T ] ⊂ R be a finite interval with T > 2π
γ∞

. Then, there exist two positive
constants C1, C2 > 0 such that

C1

∑
n∈Z
| an |2≤

∫
J

| f(t) |2 dt ≤ C2

∑
n∈Z
| an |2(3.22)

for all (an)n ∈ l2.
More precisely C1 = C1(2N + 1) and C2 = C2(2N + 1), where Ci(j), i = 1, 2, are

given by the following recurrent formulas: C1(j + 1) =
[(

2C2(j)
| J | + 1

)
4

C1(j)(| J | γ∞ − 2π)2γ2 +
2
| J |

]−1

,

C2(j + 1) = 2 (| J | (j + 1) + C2(0)) , j = 0, 1, . . . ,
(3.23)

and C1(0), C2(0) are such that (3.22) holds in the particular case in which γ∞ = γ >
0.

Remark 10. (a) When γ∞ = γ, a sequence on the conditions of Theorem 3.4
satisfies λn+1 − λn ≥ γ > 0 , ∀n ∈ Z. In this particular case the classical result by
Ingham [9] shows the existence of c1, c2 > 0 such that (3.22) holds when | J |> 2π

γ .
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Theorem 3.4 allows us to deduce that (3.22) holds when the length of the interval
J is smaller. Indeed, it suffices that | J |> 2π/γ∞, γ∞ being the “asymptotic gap” of
the sequence {λn}, which is in general larger than γ. This relaxed gap condition was
shown to be sufficient for (3.22) in [4]. Later, Haraux in [8] gave a constructive proof
which allows us to give explicit estimates on the constants C1 and C2. Following the
construction in [8], one can easily see that (3.23) suffices. In the appendix at the end
of this paper, we give all the details of this construction.

(b) Clearly, the constants C1 and C2 degenerate as N → ∞. More precisely,
C2(N) = O(N) while γ2N (C1(N))−1 = O

(
eN

α)
for any α > 1. Indeed, we have

(C1(N))−1 ≤ 2C2(N)
|J |

4
(| J | γ∞ − 2π)2γ2 (C1(N − 1))−1 =

16N(C1(N − 1))−1

(| J | γ∞ − 2π)2γ2 .

Hence

γ2N (C1(N))−1 ≤
(

16
(| J | γ∞ − 2π)2γ2

)N
N ! (C1(0))−1 ≤ eNα (C1(0))−1.

In order to apply Theorem 3.4 and deduce that Theorem 3.3 holds, we need precise
estimates on the spectrum of (3.11). We look for solutions of (3.11) in separated vari-
ables of the form (η, u) = eνt(ϕ(y), ω) with ϕ = ϕ(y) and ω ∈ R. Due to the conserva-
tive character of the system, we know that all eigenvalues ν are purely imaginary. On
the other hand, the spectrum is symmetric with respect to the real axis. Thus, for any
n = 0, 1, . . . there exists a sequence of eigenvalues νn,m with νn,m = −νn,m = ν−n,m.

We have the following estimates.
THEOREM 3.5 (see [12] and [14]). For any n = 0, 1, . . . and m ∈ Z such that

| m |> n we have
∣∣∣νn,m −√m2 + n2πi

∣∣∣ ≤ 24√
m2 + n2π

if m > n,∣∣∣νn,m +
√
m2 + n2πi

∣∣∣ ≤ 24√
m2 + n2π

if m < −n.
(3.24)

Remark 11. This theorem shows that, for sufficiently high frequencies, the eigen-
values of (3.11) are uniformly close to the eigenvalues λ = ±

√
m2 + n2πi of the wave

equation with Neumann boundary conditions{
ηtt − ηyy + n2π2η = 0 in (0, 1)× (0,∞),
ηy(0, t) = ηy(1, t) = 0 for t > 0.(3.25)

Clearly, system (3.25) corresponds to the decomposition of the wave equation with
Neumann boundary conditions in the square Ω following the development (1.5) in
Fourier series. In other words, Theorem 3.5 asserts that the spectrum of the adjoint
system of (1.1), i.e.,

φtt −∆φ = 0 in Ω× (0,∞),
∂φ
∂ν = 0 on Γ1 × (0,∞),
∂φ
∂y = Wt on Γ0 × (0,∞),
Wtt −Wxx − φt = 0 on Γ0 × (0,∞),
Wx(0, t) = Wx(1, t) = 0 for t > 0,
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at high frequencies is uniformly close to the eigenvalues of the wave equation with
Neumann boundary conditions on the whole boundary of the cavity Ω:{

φtt −∆φ = 0 in Ω× (0,∞),
∂φ
∂ν = 0 on ∂Ω× (0,∞).

This means roughly that the effect of the flexible boundary in the interior of the
cavity is negligible for high frequencies. However, it is worth mentioning that the
high frequency asymptotics are of a different nature in the region | m |≤ n.

From Theorem 3.5 it is easy to get explicit bounds on the gaps γ and γ∞ associ-
ated with the sequence {νn,m}m∈Z for each n = 0, 1, . . . .

PROPOSITION 3.6. Given any n = 0, 1, . . . and 0 < δ < π we have

| νn,m+1 − νn,m |≥ π − δ(3.26)

for any m with | m |≥ N(n, δ), where

N(n, δ) = max

[√
96
πδ
− n2,

2nπ
δ
− n− 1

2

]
.(3.27)

On the other hand,{
| νn,m+1 − νn,m |≥ π

4 ∀m ∈ Z if n = 0, 1,

| νn,m+1 − νn,m |≥ π
1+2n ∀m ∈ Z if n ≥ 2.

(3.28)

Furthermore, (3.22) holds for functions f of the form

f(t) =
∑
m∈Z?

an,me
−νn,mt + a?ne

−ν?nt + a??n e
−ν??n t(3.29)

with C2 = C2(2N(n, δ) + 1) = O(n) and (C1)−1 = (C1(2N(n, δ) + 1))−1. Moreover,
C2 = O(n) and (C1)−1 = O

(
en

α
)

for any α > 1.
Proof. In view of (3.24) we have

| νn,m+1 − νn,m |

≥ π
∣∣∣√(m+ 1)2 + n2 −

√
m2 + n2

∣∣∣− 24
π

[
1√

(m+1)2+n2
+ 1√

m2+n2

]
≥ (2|m|+1)π

(2|m|+1)+2n −
48

π
√
m2+n2 ≥ π −

[
48

π
√
m2+n2 + 2nπ

2|m|+1+2n

]
.

It is easy to see that when | m |≥ N(n, δ), where N(n, δ) is given by (3.27), then

48
π
√
m2 + n2

+
2nπ

2 | m | +1 + n
≤ δ.

This concludes the proof of (3.26).
To prove (3.28) we observe that, for any n = 0, 1, . . . , the eigenvalues νn,m with

m > 0 are of the form

νn,m =
√
z2
n,m + n2π2,(3.30)
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where zn,m are the zeros (ordered so that zn,m increases as m does) of the equation

tgz =
z2 + n2π2

z3 .(3.31)

There are also two eigenvalues, which we denote by ν?n and ν??n , that do not satisfy
(3.30). Indeed, they are given by

ν?n =
√
n2π2 − (z?n)2,(3.32)

where z?n is the unique real positive solution of

e2z =
z3 − z2 + n2π2

z3 + z2 − n2π2 ,(3.33)

when n ≥ 1 and ν?0 = 0, and ν??n = ν?n.
By analyzing the graphs of the functions in (3.31) and (3.33) it is easy to see that

(3.28) holds. We refer to [14] for a detailed proof.
To finish the proof we have to apply Theorem 3.4 for γ = min

{
π
4 ,

π
1+2n

}
and

γ∞ = π − δ. We obtain that (3.22) holds for functions f of the form (3.29).
In order to evaluate the constants, we use the recurrent formulas (3.23). We have

C2 = C2(2N(n, δ) + 1) = 2(T (N(n, δ) + 1) + C2(0)) = O(n).

On the other hand,

(C1)−1 = (C1(2N(n, δ) + 1))−1 ≤ 8C2(N(n, δ) + 1)(C1(2N(n, δ)))−1

T (Tγ∞ − 2π)2γ2

≤Mn3(C1(2N(n, δ)))−1 ≤M2N(n,δ)+1((N(n, δ) + 1)!)3(C1(0))−1 ≤ C(α)en
α

,

where M is a positive constant and α > 1.
Now we have all the ingredients we need to prove Theorem 3.3.
Proof of Theorem 3.3. Let us consider first the case n ≥ 1. In view of Proposition

3.2 it is sufficient to show the existence of a constant C (depending on n and T ) such
that ∫ T

0

[
| ut |2 +n4π4 | u |2 +n2π2 | η(0, t) |2

]
dt ≤ C

∫ T

0
| utt |2 dt(3.34)

holds for any solution of (3.11).
Let U(t) = (η(t), ηt(t), u(t), ut(t)) be the vector-valued unknown associated with

(3.11) viewed as a first-order (in time) system. Let us denote by ξν = (ξ1
ν , ξ

2
ν , ξ

3
ν , ξ

4
ν)

the vector-valued eigenfunction of system (3.11) associated with the eigenvalue ν.
The solutions η and u of (3.11) can be written as follows:

η(t) =
∑
m∈Z?

an,me
−νn,mtξ1

n,m + a?ne
−ν?ntξ1

ν?n
+ a??n e

−ν??n tξ1
ν??n
,

u(t) =
∑
m∈Z?

an,me
−νn,mtξ3

n,m + a?ne
−ν?ntξ3

ν?n
+ a??n e

−ν??n tξ3
ν?n
,

where the coefficients {an,m, a?n, a??n } are those associated with the development of the
initial data on the orthogonal basis generated by the eigenfunctions.
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To get the bounds in (3.34) we first observe that

η(0, t) =
∑
m∈Z?

an,me
−νn,mtξ1

n,m(0) + a?ne
−ν?ntξ1

ν?n
(0) + a??n e

−ν??n tξ1
ν?n

(0)

and

ηt(0, t) = −
∑
m∈Z?

an,mνn,me
−νn,mtξ1

n,m(0)− a?nν?ne−ν
?
ntξ1

ν?n
(0)− a??n ν??n e−ν

??
n tξ1

ν??n
(0).

In view of Proposition 3.6 we can apply Theorem 3.4 to these series in any
time interval J = (0, T ) with T > 2. Therefore, taking into account that | ν?n |=
min{| νn,m |, | ν?n |, | ν??n |}, we have∫ T

0
| η(0, t) |2 dt ≤ C2

( ∑
m∈Z?

| an,mξ1
n,m(0) |2 + | a?nξ1

ν?n
(0) |2 + | a??n ξ1

ν??n
(0) |2

)

≤ C2

| ν?n |2

( ∑
m∈Z?

| an,mξ1
n,m(0) νn,m |2 + | a?nξ1

ν?n
(0) ν?n |2 + | a??n ξ1

ν??n
(0) ν??n |2

)

≤ C2

C1 | ν?n |2
∫ T

0
| ηt(0, t) |2 dt.

On the other hand, from the equation that u satisfies in (3.11), we have∫ T

0
(ηt(0, t))

2
dt ≤ 2

∫ T

0

[
| utt |2 +n4π4 | u |2

]
dt.

Thus, in order to conclude (3.34), it is sufficient to show that∫ T

0

[
| ut |2 +n4π4u2] dt ≤ C ∫ T

0
| utt |2 dt

holds. The argument we have used to bound
∫ T

0 | ψ(0, t) |2 dt allows us to show that∫ T

0
| u |2 dt ≤ C2

C1 | ν?n |4
∫ T

0
| utt |2 dt and

∫ T

0
| ut |2 dt ≤

C2

C1 | ν?n |2
∫ T

0
| utt |2 dt.

Combining these results we deduce that (3.34) holds with a constant C of the order
of

C =
C2

C1

{
1

| ν?n |2
+

n4π4

| ν?n |4

(
1 +

2C1

C1 | ν?n |2

)
+

2C2

C1 | ν?n |2

}
,(3.35)

where C1 = C1(2N + 1), C2 = C2(2N + 1) are given by (3.23) with N = N(n, δ) as in
(3.27), and δ > 0 such that T = 2π

π−δ .
We now proceed to estimate the constant C of (3.35). In [14] we prove that

ν?n ∼ nπ. On the other hand, from Proposition 3.3, we have that C2(C1)−1 = O
(
en

α)
.

Finally, we obtain that C = O
(
en

α)
for all α > 1.

Let us now consider the case n = 0. In view of (3.17) we have

‖η0
y‖2L2(0,1) + ‖η1‖2L2(0,1)+ | u1 |2≤ 1

T − 2

∫ T

0

[
| utt |2 +2 | ut |2

]
dt.(3.36)
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Therefore, it is sufficient to show that∫ T

0
| ut |2 dt ≤ C

∫ T

0
| utt |2 .(3.37)

Proceeding as above, we see that (3.37) holds with C = C2/C1 | νn,1 |2, where
C1 = C1(2N + 1), C2 = C2(2N + 1), and N = N(0, δ) with δ > 0 such that
T = 2π

π−δ .

3.4. Controllability in one space dimension for n ≥ 1: Proof of Theo-
rem 2.1. In this section, applying HUM, we prove Theorem 2.1 as a consequence of
the observability inequality (3.18).

Given any (η0, η1, u0, u1) ∈ Y we solve the adjoint system (3.11).
We fix some nonnegative smooth function ρ : (0, T ) → R with compact support

such that ρ ≡ 1 in (ε, T − ε) with T − 2ε > 2.
We then solve the backward system

ψtt − ψyy + n2π2ψ = 0 in (0, 1)× (0, T ),
ψy(1, t) = 0 for t ∈ (0, T ),
ψy(0, t) = −Vt(t) for t ∈ (0, T ),
Vtt + n2π2V + ψt(0, t) = − d2

dt2 (ρ(t)utt(t)) for t ∈ (0, T ),
ψ(T ) = ψt(T ) = 0 in (0, 1),
V (T ) = Vt(T ) = 0.

(3.38)

The solution of (3.38) is defined by transposition (see [10]). If we multiply in (3.38) by
any solution (η̃, ũ) of (3.1) and integrate (formally) by parts, we obtain the following
identity:∫ T

0
ρ(t)utt(t)ũtt(t)dt+

∫ T

0

∫ 1

0
f̃ψdydt−

∫ T

0
g̃V dt =

∫ 1

0
[−ψt(0)η̃(0)

+ψ(0)η̃t(0)] dy + V (0)η̃(0, 0) + ψ(0, 0)ũ(0)− V (0)ũt(0) + Vt(0)ũ(0).(3.39)

Notice that in the obtainment of (3.39) we have used the fact that ρ and its first
derivative vanish for t = 0 and T .

We adopt (3.39) as the definition of weak solution in the sense of transposition
of (3.38). More precisely, we say that (ψ, V ) solve (3.38) if (3.39) holds for any
(η̃0, η̃1, ũ0, ũ1) ∈ Y and (f̃ , g̃) ∈ L1(0, T ;L2(0, 1)× R).

We observe that (3.39) can be rewritten in the following way:∫ T

0
ρ(t)utt(t)ũttdt−

∫ T

0

∫ 1

0
f̃ψdydt+

∫ T

0
g̃V dt = −〈ψt(0) + V (0)δ0, η̃(0)〉

+ 〈ψ(0), η̃t(0)〉+ (Vt(0) + ψ(0, 0)) ũ(0)− V (0)ũt(0),

(3.40)

where 〈·, ·〉 denotes both the duality pairing between (H1(0, 1))′ and H1(0, 1) and the
scalar product in L2(0, 1), and δ0 ∈ (H1(0, 1))′ denotes the Dirac delta at y = 0.

We have the following existence and uniqueness result of solutions in the sense of
transposition.

PROPOSITION 3.7. System (3.38) has a unique solution in the sense of transpo-
sition. More precisely, for any solution (η, u) of (3.11) with initial data in Y, there
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exists a unique (ψ, V ) ∈ C([0, T ];L2(0, 1))×L2(0, T ), ρ0 ∈ L2(0, 1), ρ1 ∈ (H1(0, 1))′,
µ0 ∈ R, µ1 ∈ R satisfying∫ T

0
ρ(t)utt(t)ũttdt =

∫ T

0

∫ 1

0
f̃ψdydt−

∫ T

0
g̃V dt

+
〈
ρ1, η̃(0)

〉
+
〈
ρ0, η̃t(0)

〉
+ µ1ũ(0) + µ0ũt(0)

(3.41)

for any solution (η̃, ũ) of (3.1) with

(η̃0, η̃1, ũ0, ũ1) ∈ Y, f̃ ∈ L1 (0, T ;L2(0, 1)
)
, g̃ ∈ L2(0, 1).(3.42)

Remark 12. In the identity (3.41), ρ0, ρ1, µ0, and µ1 play, respectively, the roles of
ψ(0),−ψt(0) +V (0)δ0,−V (0), and Vt(0) +ψ(0, 0). It is easy to see that, in the frame
of smooth functions, there is a one to one correspondence between

(
ρ0, ρ1, µ0, µ1

)
and

(ψ(0), ψt(0), V (0), Vt(0)).
Proof of Proposition 3.7. In view of Proposition 3.1 we know that the map(

η̃0, η̃1, ũ0, ũ1, f̃ , g̃
)
−→

∫ T

0
ρ(t)utt(t)ũtt(t)dt

is linear and continuous from Y × L1
(
0, T ;L2(0, 1)

)
× L2(0, T ) into R. This implies

the existence and uniqueness of
(
ρ1, ρ0, µ1, µ0

)
× (ψ, V ) ∈ Y ′ × L∞

(
0, T ;L2(0, 1)

)
×

L2(0, T ) such that (3.41) holds. Moreover, there exists a constant C > 0 such that

‖(ψ, V )‖L∞(0,T ;L2(0,1))×L2(0,T ) + ‖
(
ρ1, ρ0, µ1, µ0) ‖Y′ ≤ C‖utt‖L2(0,T )

≤ C‖
(
η1, η0, u1, u0) ‖Y′ .(3.43)

The fact that ψ ∈ C
(
[0, T ];L2(0, 1)

)
can be deduced from (3.43) by a classical density

argument.
Remark 13. When the data of (3.11) are smooth, the solution (η, u) is smooth

too. It is easy to see that (3.38) has a finite energy solution. In this case one can
check that the element

(
ρ1, ρ0, µ1, µ0

)
∈ Y ′ obtained in Proposition 3.7 is such that

ρ0 = ψ(0), ρ1 = −ψt(0) + V (0)δ0, µ0 = −V (0), µ1 = Vt(0) + ψ(0, 0).

By a density argument, one can then deduce that the solution (ψ, V ) obtained in
Proposition 3.7 is such that the traces

ψ |t=0,−ψt + V δ0|t=0 , −V |t=0, Vt + ψ(0, t)|t=0

are well defined and coincide with
(
ρ0, ρ1, µ0, µ1

)
.

The same argument allows us to show that the traces are also well defined at
t = T . This suffices to assert that the weak solution of (3.38) we have constructed by
transposition is at rest at t = T .

We can now complete the proof of Theorem 2.1.
End of the proof of Theorem 2.1. In view of Proposition 3.7 and Remark 13, we

can define a linear and continuous map Λ from Y into Y ′ such that

Λ
(
η0, η1, u0, u1) = (−ψt + V δ0 |t=0, ψ(0), Vt + ψ(0, t) |t=0,−V |t=0) .

Taking, in (3.41), f̃ ≡ 0, g̃ ≡ 0 and (η̃, ũ) = (η, u), we deduce that〈
Λ
(
η0, η1, u0, u1) , (η0, η1, u0, u1)〉 =

∫ T

0
ρ(t) |utt(t)|2 dt,
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and in view of Theorem 3.3 and Remark 9, we deduce that there exists C > 0 such
that 〈

Λ
(
η0, η1, u0, u1) , (η0, η1, u0, u1)〉 ≥ C ∥∥(η0, η1, u0u1)∥∥2

Y .

Actually, C = [C(T, n)]−1
, where C(T, n) is as in (3.18).

This implies that Λ is an isomorphism.
This shows that given any

(
ρ1, ρ0, µ1, µ0

)
∈ Y ′ there exists

(
η0, η1, u0, u1

)
=

Λ−1
(
ρ1, ρ0, µ1, µ0

)
such that the corresponding solution of (3.38) in the sense of trans-

position satisfies

ψ(0) = ρ0, −ψt + V δ0
∣∣
t=0 = ρ1, −V

∣∣
t=0 = µ0, Vt + ψ(0, t)

∣∣
t=0 = µ1.(3.44)

If we want this to be equivalent to the initial data of (1.6), we have to take

ρ0 = ψ0, ρ1 = −ψ1 + V 0δ0, µ0 = −V 0, µ1 = V 1 + ψ0(0).(3.45)

This makes sense when the data
(
ψ0, ψ1, V 0, V 1

)
are in Y.

The control we have obtained is of the form β = − d2

dt2 (ρutt), where u corresponds
to the solution (η, u) of (3.11) with data

(
η0, η1, u0, u1

)
= Λ−1

(
ρ1, ρ0, µ1, µ0

)
, where(

ρ0, ρ1, µ0, µ1
)

is given by (3.44). From the identities above, we see that

‖β‖2H−2(0,T ) ≤ ‖ρutt‖2L2(0,T ) ≤ C‖
(
ρ1, ρ0, µ1, µ0) ‖2Y′

≤ C
{
‖
(
ψ1, ψ0, V 1, V 0) ‖2Y′+ | ψ0(0) |2

}
,

where C = C(T, n) is the constant obtained in (3.18).
Remark 14. In fact, in some sense, we obtain a stronger result, since we prove

that we can control the problem (3.41) for any initial data
(
ρ1, ρ0, µ1, µ0

)
∈ Y ′. In

order to give an interpretation of the control problem in terms of the initial data(
ψ0, ψ1, V 0, V 1

)
, we have to ensure that ψ0(0) makes sense. For this reason we con-

sider that
(
ψ0, ψ1, V 0, V 1

)
∈ Y.

3.5. Controllability in one space dimension for n = 0: Proof of Theo-
rem 2.2. First, we observe that proving Theorem 2.2 is equivalent to showing that
for any initial data as in the statement of Theorem 2.2 and satisfying the further
assumptions

V 1 + ψ0(0) = 0, V 0 −
∫ 1

0
ψ1(y)dy = 0,(3.46)

there exists a control β such that

ψ(T ) = ψt(T ) ≡ 0 in (0, 1), V (T ) = Vt(T ) = 0.(3.47)

Indeed, this is an immediate consequence of the remark made in the introduction,
which shows that when β is of zero average the following identities hold:

Vt(T ) + ψ(0, T ) = V 1 + ψ0(0), V (T )−
∫ 1

0
ψt(y, T )dy = V 0 −

∫ 1

0
ψ1(y)dy.(3.48)
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Thus, below we focus on initial data
(
ψ0, ψ1, V 0, V 1

)
satisfying (3.46). For the

adjoint system 

ηtt − ηyy = 0 in (0, 1)× (0, T ),
ηy(1) = 0 for t ∈ (0, T ),
ηy(0) = ut for t ∈ (0, T ),
utt − ηt(0) = 0 for t ∈ (0, T ),
η(0) = η0, ηt(0) = η1 in (0, 1),
u(0) = u0, ut(0) = u1

(3.49)

we consider initial data in the following subspace Y0 of Y:

Y0 =
{(
η0, η1, u0, u1) ∈ Y : u1 − η0(0) = 0,

∫ 1

0
η1dy + u0 = 0

}
.(3.50)

It is easy to see that the subspace Y0 is invariant under the flow generated by
(3.49).

Given
(
η0, η1, u0, u1

)
∈ Y0, we solve first (3.49) and then the backward system

ψtt − ψyy = 0 in (0, 1)× (0, T ),
ψy(1, t) = 0 for t ∈ (0, T ),
ψy(0, t) = −Vt(t) for t ∈ (0, T ),
Vtt(t) + ψt(0, t) = − d2

dt2 (ρ(t)utt(t)) for t ∈ (0, T ),
ψ(T ) = ψt(T ) = 0 in (0, 1),
V (T ) = Vt(T ) = 0,

(3.51)

where ρ is as in the proof of Theorem 2.1.
Proceeding as in the proof of Proposition 3.7 one can show that (3.51) has a

unique solution defined by transposition such that the traces (3.47) are well defined.
On the other hand, integrating the equations in (3.51), we deduce that∫ 1

0
ρ1(y)dy = 0, µ1 = 0.(3.52)

Let us denote by Z the subspace of Y ′ satisfying (3.52). More precisely,

Z =
{(
ρ1, ρ0, µ1, µ0) ∈ Y ′ : (3.52) holds

}
.(3.53)

It is easy to check that Z is actually the dual of Y0. Indeed, the dual of Y0 is a
quotient space of Y ′, and there is a one-to-one correspondence between Z and this
quotient space in the sense that, in Z, we have chosen the unique element of each
class of the quotient space satisfying (3.52).

As in the proof of Theorem 2.1, we can define a linear and continuous opera-
tor Λ : Y0 −→ Z that associates the trace

(
ρ1, ρ0, µ1, µ0

)
∈ Z in (3.41) with each(

η0, η1, u0, u1
)
∈ Y0.

We also have〈
Λ
(
η0, η1, u0, u1) , (η0, η1, u0, u1)〉 =

∫ T

0
ρ(t) |utt(t)|2 dt.

In view of Theorem 3.3 and Remark 9 we deduce the existence of a constant C > 0
such that〈

Λ
(
η0, η1, u0, u1) , (η0, η1, u0, u1)〉 ≥ C ∥∥(η0, η1, u0, u1)∥∥2

Y′ , ∀
(
η0, η1, u0, u1) ∈ Y0,
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since the quantity
[
‖η0
y‖2L2(0,1) + ‖η1‖2L2(0,1)+ | u1 |2

]1/2
defines a norm in Y0 which

is equivalent to the norm induced by Y.
We deduce that Λ : Y0 −→ Z is an isomorphism.
Then, given initial data as in the statement of Theorem 2.2 and such that (3.46)

holds, we define
(
ρ1, ρ0, µ1, µ0

)
∈ Z by (3.45). The control we are looking for is

β = − d2

dt2 (ρ(t)utt(t)), where u is the second component of the solution (η, u) of (3.49)
with initial data

(
η0, η1, u0, u1

)
= Λ−1

(
ρ1, ρ0, µ1, µ0

)
.

This concludes the proof of Theorem 3.5.

4. Controllability of the two-dimensional system: Proof of Theorem
2.3. In view of Theorems 2.1 and 2.2 for any n = 0, 1, . . . , there exists a control
βn ∈ H−2(0, T ) such that the solution (ψn, Vn) of (1.6) satisfies

ψn(T ) ≡ ψn,t(T ) = 0 in (0, 1), Vn(T ) = Vn,t(T ) = 0(4.1)

for n ≥ 1 and

ψ0(T ) = µ1, ψ0,t(T ) = 0 in (0, 1), V0(T ) =
〈
ρ1, 1

〉
, V0,t(T ) = 0(4.2)

when n = 0.
On the other hand,

‖βn‖2H−2(0,T ) ≤ Cn
∥∥(ρ1

n, ρ
0
n, µ

1
n, µ

0
n

)∥∥2
Y′ .(4.3)

We construct the following control for the two-dimensional system:

β(x, t) =
∞∑
n=0

βn cos(nπx).(4.4)

We have, in view of (4.3),

‖β‖2H−2(0,T ;L2(0,1)) =
∞∑
n=0

‖βn(t)‖2H−2(0,T )

≤
∞∑
n=0

Cn
∥∥(ρ1

n, ρ
0
n, µ

1
n, µ

0
n

)∥∥2
Y′ =

∥∥(ψ0, ψ1,W 0,W 1)∥∥2
H
<∞.

Therefore, β ∈ H−2
(
0, T ;L2(0, 1)

)
. On the other hand,

ψ(x, y, t) =
∞∑
n=0

ψn(y, t) cos(nπx), W (x, t) =
∞∑
n=0

Vn(t) cos(nπx)

solves (1.3) with the control β given in (4.4), and satisfies (2.7) at time t = T .
This concludes the proof of this theorem.

5. Appendix: Proof of Theorem 3.4. First, we recall a classical result due
to Ingham.

THEOREM A (see Ingham [9, Thms. 1 and 2]). Let f = f(t) be of the form
f(t) =

∑
n∈Z ane

iλnt, where λn is a sequence of real numbers.
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We assume that there exists γ > 0 such that

λn+1 − λn ≥ γ, ∀n ∈ Z.(5.1)

Let J = [0, T ] with T > 2π
γ . Then there exist two positive constants C0

1 , C
0
2 > 0

such that

C0
1

∑
n∈Z
| an |2≤

∫
J

| f(t) |2 dt ≤ C0
2

∑
n∈Z
| an |2(5.2)

for all an ∈ `2
Remark 15. The constants C0

1 and C0
2 depend only on T − 2π

γ .
To prove (3.22) we follow the ideas of Haraux [8], paying special attention to the

evaluation of the constants appearing there.
The second inequality of (3.22) results, with C2 = 2C0

2 +2|J |(2N+1), immediately
using Theorem A. Indeed we have

∫
J

|f(t)|2 dt =
∫
J

∣∣∣∣∣∣
∑
|n|>N

ane
iλnt +

∑
|n|≤N

ane
iλnt

∣∣∣∣∣∣
2

≤ 2
∫
J


∣∣∣∣∣∣
∑
|n|>N

ane
iλnt

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∑
|n|≤N

ane
iλnt

∣∣∣∣∣∣
2
 .

Now, applying Theorem A to the function g(t) =
∑
|n|≥N ane

iλnt, we obtain

∫
J

|f(t)|2 dt ≤ 2C0
2

∑
|n|>N

|an|2 + 2|J |

 ∑
|n|≤N

|an|

2

≤ 2C0
2

∑
|n|>N

|an|2 + 2|J |(2N + 1)
∑
|n|≤N

|an|2 ≤
(
2C0

2 + 2|J |(2N + 1)
) ∑
n∈Z
|an|2.

We now proceed to prove the first inequality of (3.22). We do this by induction
in p, the number of indexes n ∈ Z for which λn+1 − λn < γ∞.

If p = 0, the result follows from Theorem A with C1 = C1(0) = C0
1 . Suppose now

that p > 0.
We write the function f in the form f(t) =

∑
n6=0 ane

iλnt + a0e
iλ0t, where λ0 is

one of those values for which λn+1 − λn < γ∞. Moreover, without loss of generality,
we may suppose that λ0 = 0 (since we can consider the function f(t)e−iλ0t instead of
f(t)). We now apply the induction hypothesis for the function g(t) =

∑
n6=0 ane

iλnt,
and we obtain that

C1(p− 1)
∑
n6=0

|an|2 ≤
∫
J

|g(t)|2 ≤ C2(p− 1)
∑
n6=0

|an|2.(5.3)

We know that C2(p−1) = 2C0
2 +2|J |(p−1). Let ε > 0 be such that T ′ = T −ε >

2π
γ∞

.
We have∫ ε

0
(f(t+ η)− f(t)) dη =

∑
n6=0

an

(
eiλnε − 1
iλn

− ε
)
eiλnt ∀t ∈ [0, T ′].
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Applying the induction hypothesis to the function h(t) =
∫ ε

0 (f(t+ η)− f(t)) dη,
we obtain that

C1(p− 1)
∑
n6=0

∣∣∣∣eiλnε − 1
iλn

− ε
∣∣∣∣ |an|2 ≤ ∫ T ′

0

∣∣∣∣∫ ε

0
(f(t+ η)− f(t)) dη

∣∣∣∣2 .(5.4)

We now evaluate the coefficients
eiλnε − 1
iλn

− ε. We have

∣∣eiλnε − 1− εiλn
∣∣2 = |cos(λnε)− 1|2 + |sin(λnε)− λnε|2

= 4sin4
(
λnε

2

)
+ (sin(λnε)− λnε)2 ≥

{
4
(
λnε

2 arctg
(
π
2

))4
if |λn|ε ≤ π

2 ,

(|λn|ε− 1)2 if |λn|ε > π
2 .

Finally, taking into account that |λn| ≥ γ, we obtain that, for ε small enough,∣∣∣∣eiλnε − 1
iλn

− ε
∣∣∣∣2 ≥ γ2ε4.

We now return to (5.4), and we get that

γ2ε4C1(p− 1)
∑
n6=0

|an|2 ≤
∫ T ′

0

∣∣∣∣∫ ε

0
(f(t+ η)− f(t)) dη

∣∣∣∣2 .(5.5)

On the other hand,∫ T ′

0

∣∣∣∣∫ ε

0
(f(t+ η)− f(t)) dη

∣∣∣∣2 ≤ ∫ T ′

0
ε

∫ ε

0
|f(t+ η)− f(t)|2 dη

≤ 2ε
∫ T ′

0

∫ ε

0

(
|f(t+ η)|2 + |f(t)|2

)
dη ≤ 2ε2

∫ T

0
|f(t)|2

+2ε
∫ ε

0

∫ T ′

0
|f(t+ η)|2 dt dη ≤ 4ε2

∫ T

0
|f(t)|2 .

From (5.5) it follows that∑
n6=0

|an|2 ≤
4

ε2γ2C1(p− 1)

∫ T

0
|f(t)|2 .(5.6)

Observe that

|a0|2 =

∣∣∣∣∣∣f(t)−
∑
n6=0

ane
iλnt

∣∣∣∣∣∣
2

=
1
T

∫ T

0

∣∣∣∣∣∣f(t)−
∑
n6=0

ane
iλnt

∣∣∣∣∣∣
2

dt

≤ 2
T

∫ T

0
|f(t)|2 +

∫ T

0

∣∣∣∣∣∣
∑
n6=0

ane
iλnt

∣∣∣∣∣∣
2
 ≤ 2

T

∫ T

0
|f(t)|2 + C2(p− 1)

∑
n6=0

|an|2


≤
(

2
T

+
8C2(p− 1)

Tε2γ2C1(p− 1)

)∫ T

0
|f(t)|2 .
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From (5.6) we get that∑
n∈Z
|an|2 ≤

[
4

ε2γ2C1(p− 1)

(
2C2(p− 1)

T
+ 1
)

+
2
T

] ∫ T

0
|f(t)|2 .

We obtain the desired result and a recurrent formula to compute the constant
C1(p):

C1(p) =
[

4
ε2γ2C1(p− 1)

(
2C2(p− 1)

T
+ 1
)

+
2
T

]−1

.
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ON THE REGULARITY OF SEMIPERMEABLE SURFACES
IN CONTROL THEORY WITH APPLICATION

TO THE OPTIMAL EXIT-TIME PROBLEM (PART I)∗
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Abstract. In control theory, a semipermeable surface is an (in general nonsmooth) oriented
surface that, on one hand, contains solutions (the so-called barrier solutions) of the controlled system
and, on the other hand, may be crossed by the solutions of this system in only one direction. Without
making any assumption on the regularity of the boundary of the semipermeable surface, we show
that the barrier solutions contained in this semipermeable surface satisfy the Pontryagin principle,
that this surface is a Lipschitz manifold, and that it is, locally, the graph of a semiconcave function.
Applying these results to the optimal exit-time function from a given open set yields, without any
controllability assumption at the boundary of the open set, that this function is semiconcave on an
open dense subset of its domain.

Key words. semipermeable surfaces, differential inclusion, viability theory, minimal time func-
tion

AMS subject classifications. 49J24, 49J52, 49N60
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Introduction. Let {
x′(t) = f(x(t), u(t)), u(t) ∈ U,
x(0) = x0

(1)

be a controlled system with a hamiltonian defined by

H(x, p) := inf
u∈U(x)

〈f(x, u), p〉.

A smooth, semipermeable surface is an oriented hypersurface S such that the outward
normal p at each point x ∈ S satisfies H(x, p) = 0. Such a surface S is called
semipermeable because

(α) S can be crossed in only one direction by the trajectories of the controlled
system.

(β) From any initial position x0 ∈ S at least one solution x(·) of (1) starts, and
remains locally on S (namely, ∃τ > 0 such that, ∀t ∈ [0, τ ], x(t) ∈ S).

A solution satisfying condition (β) is called a barrier solution.
In many problems, one encounters closed sets (which are not necessarily smooth)

with a boundary enjoying properties (α) and (β). We still say that their boundary
is “a semipermeable surface.” The aim of this work is to show that a closed set with
semipermeable boundary enjoys some regularity properties. Namely, under suitable
assumptions on f , the boundary of such a set is a Lipschitz (and even semiconcave)
manifold, and the barrier solutions satisfy the Pontryagin principle.

To our knowledge, this problem has never been treated, although it is of great
interest for qualitative and quantitative control problems (see the examples below).
However, our work is related to several studies on the regularity of the value function

∗Received by the editors June 5, 1995; accepted for publication (in revised form) July 1, 1996.
http://www.siam.org/journals/sicon/35-5/28729.html
†CEREMADE, URA CNRS 749, Université Paris-Dauphine, Place du Maréchal de Lattre de

Tassigny, 75775 Paris cedex 16, France (cardaliaguet@ceremade.dauphine.fr).
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of optimal control problems (see, for instance, [1], [8], [9], [11], [14], [19], [20] [21]). It
is not easy to compare our results (which are of geometric nature) with those given
in the previous references (which are concerned with the regularity of functions). For
this reason, we illustrate our results through the study of the regularity of the optimal
exit-time function.

(1) The optimal exit-time function θΩ from the open subset Ω ⊂ RN is defined
by, ∀x0 ∈ Ω,

θΩ(x0) := inf {t ≥ 0 | ∃x(·) solution to (1) such that x(t) /∈ Ω} .

Roughly speaking, θΩ(x0) is the minimal time any solution of the controlled system (1)
starting from x0 needs to leave Ω. The regularity of the optimal exit-time function is
the aim of several works [23], [24], [6], [7], [9], [10]. In [9] Cannarsa and Sinestrari prove
that θΩ is semiconcave on its (open) domain under the following assumptions: (a) f is
smooth; (b) ∂Ω enjoys some regularity (roughly speaking, its curvature is bounded);
(c) a “controllability condition” on the boundary of Ω is required, which ensures that
θΩ is Lipschitz continuous. Thanks to conditions (b) and (c), θΩ is “smooth” in a
neighborhood of ∂Ω. Then condition (a) ensures, by using the Pontryagin principle,
that this “smoothness” propagates along the (smooth) optimal trajectories.1 So, in
this method, the crucial points are, on one hand, the smoothness of θΩ at the boundary
of Ω and, on the other hand, the propagation of this regularity.

Our method is, on the contrary, based on the local study of the epigraph of θΩ.
Combining the results of [10] and of [25] yields that this epigraph has a semipermeable
boundary for some dynamics Φf constructed from f . Thanks to the regularity results
of semipermeable surfaces given in this paper, we prove, without conditions (b) and
(c), that θΩ is (locally) Lipschitz and semiconcave on an open dense subset of its
domain.

(2) Boundary of the viability kernel: The first definition of (nonsmooth) semiper-
meability is due to Quincampoix and appeared in the framework of viability theory
(Aubin [3]). If K ⊂ RN is a closed set, the viability kernel Viabf (K) of K for f is

Viabf (K) :=
{
x0 ∈ K |

∃x(·) solution to (1)
such that x(t) ∈ K ∀t ≥ 0

}
.

Under suitable assumptions, the viability kernel of K for f is a closed subset of K (see
also [5], [15]). In [25], Quincampoix proves that the boundary of Viabf (K) enjoys the
semipermeability property in the interior of K.

(3) Boundary of the reachable set: The reachable set for f starting from a point
x0 ∈ RN is the set of points y for which there exists a solution x(·) of (1) and a time
t ≥ 0 such that x(t) = y.

If, for instance, 0 belongs to the interior of
⋃
u f(x0, u) and f is Lipschitz con-

tinuous, then the reachable set is open. Moreover, its boundary is semipermeable for
−f (see Quincampoix [26]).

This research is presented as follows. In the present paper, Part I, we give two
equivalent definitions of the semipermeability, and we also prove that semipermeable
boundaries are Lipschitz manifolds. Then we show that semipermeable surfaces are
“smooth” along barrier solutions. We also explain how to recover the Pontryagin
principle.

1A similar method based on the propagation of the regularity of the final data along optimal
trajectories is also applied to Mayer’s problem in [14] and to the Bolza problem in [11].
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Part II, also in this issue, is devoted to the regularity results for the closed sets
with semipermeable boundaries. We first show that the contingent cone to such
closed sets is a union of half-spaces and enjoys some upper semicontinuity property.
We then show, under a stronger assumption on the dynamics, that the boundaries of
such closed sets are locally graphs of semiconcave functions. We complete this paper
by applying these results to the case of the optimal exit-time functions.

1. Semipermeable boundaries.

1.1. Definition of semipermeability. Let us from now on replace the con-
trolled system (1) by the differential inclusion{

x′(t) ∈ F (x(t)),
x(0) = x0,

(2)

where F (x) :=
⋃
u∈U f(x, u). The advantage of using differential inclusions instead

of controlled systems lies in the fact that the regularity properties explained below
depend on the geometrical properties of the sets F (x) and not on its representation
as a controlled system. Moreover, the formulation as differential inclusions simplifies
the statements and the proofs of the results.

It is well known that, under conditions that we impose here, controlled system
(1) has the same solutions as differential inclusion (2). We denote by SF (x0) the
set of (Carathéodory) solutions of differential inclusion (2). With a set-valued map
F : RN  RN , we associate the hamiltonian HF defined by

∀(x, p) ∈ RN × RN , HF (x, p) := inf
v∈F (x)

〈v, p〉.(3)

Note that the hamiltonian HF is concave with respect to p.
Let us now recall two basic definitions of nonsmooth analysis.
If K is a closed subset of RN and x belongs to K, the contingent cone to K at x

is the set of vectors v ∈ RN such that

lim inf
h→0+

dK(x+ hv)/h = 0

(dK(y) denotes the distance from the point y to the set K). The contingent cone is a
closed cone. It is denoted by TK(x).

We also denote by TK(x)− the polar cone of TK(x), i.e.,

TK(x)− := {p ∈ RN | ∀v ∈ TK(x), 〈p, v〉 ≤ 0}.

The polar cone is a closed convex cone. The contingent cone plays the role of tangent
half-space, while the polar cone plays the role of exterior normal for nonsmooth sets.

If K is a subset of RN and x belongs to K, the Dubovitsky–Miljutin cone to K
at x is the set of vectors v ∈ RN for which there exists some α > 0 such that

x+]0, α](v + αB) ⊂ K.

The Dubovitsky–Miljutin cone to K at x is denoted by DK(x). It is an open cone. If
K is a closed subset of RN , then DRN\K(x) = RN\TK(x) for x ∈ K [25]. Moreover,
DK(x) ⊂ Int (TK(x)), but there is no equality in general even if the set K is a Lipschitz
manifold.
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Notation. Below, BN denotes the closed unit ball of RN (endowed with the

euclidean topology). If there is no ambiguity, we write only B. In the same way,
o

BN
denotes the open unit ball of RN .

DEFINITION 1.1 (semipermeability). A closed set M has a semipermeable bound-
ary for the set-valued map F : RN  RN (or enjoys the semipermeability property)
in a neighborhood of x0 ∈ ∂M if there is some positive radius r such that

∀x ∈M ∩ (x0 + rB), ∀p ∈ TM (x)−, HF (x, p) = 0.

An equivalent definition of semipermeability in terms of trajectories is the
following.

PROPOSITION 1.1 (semipermeability). Assume that the set-valued map F satisfies
the following conditions:

(a) F : RN  RN has convex compact values;
(b) F is `-Lipschitz, i.e.,

∀x, y ∈ RN × RN , F (y) ⊂ F (x) + `B.

(4)

Then a closed set M ⊂ RN has a semipermeable boundary in a neighborhood of x0 ∈
∂M if and only if there are open subsets O and O′ of RN with x0 ∈ O ⊂ O′ and a
time T > 0 such that

(i) ∀x ∈ M ∩ O, there is at least one solution x(·) ∈ SF (x) which remains in
M ∩O′ on [0, T ];

(ii) ∀x ∈M ∩O′, any solution of the differential inclusion for −F remains in M
on [0, T ];

(iii) ∀x ∈ ∂M ∩ O′, any solution of the differential inclusion for F remains in
M̂ := RN\M on [0, T ].

The notations of this definition are kept throughout this paper.
Before proving that result, let us point out an important consequence.
COROLLARY 1.1 (barrier solutions). Assume that F and M are as in Proposi-

tion 1.1.
If M enjoys the semipermeability property, then any solution x(·) of the differen-

tial inclusion for F starting from ∂M ∩ O which remains in M on [0, T ] remains in
∂M on [0, T ].

Such a solution is “a barrier solution.”
Remarks.
(1) Thanks to Proposition 1.1(i), at least one barrier solution starts from any

initial position of ∂M ∩O.
(2) Combining Proposition 1.1 and Corollary 1.1, we recover the definition of

semipermeability given at the beginning of this paper. Property (α) holds true thanks
to (iii), and Corollary 1.1 is exactly the same as property (β).

Proof. The solution x(·) remains in M̂ from Proposition 1.1(iii), and in M from
assumption. Since M ∩ M̂ = ∂M , the corollary holds true.

Proof of Proposition 1.1. Assume that the set M satisfies the described property
in a neighborhood of a point x0. Then M is (locally) viable2 for F in O, so that the

2If K ⊂ RN is locally compact, the viability theorem [3], [4], [17] gives the equivalence among
the following statements.
(i) K is a viability domain for F ; i.e.,∀x ∈ K, F (x) ∩ TK(x) 6= ∅.
(ii) K is viable for F ; i.e., ∀x ∈ K, ∃x(·) ∈ SF (x) and t > 0 such that x(s) ∈ K ∀s ∈ [0, t].
(iii) K satisfies the following: ∀x ∈ K, ∀p ∈ TK(x)−, HF (x, p) ≤ 0.
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viability theorem, applied to the locally compact set M ∩O, states that HF (x, p) ≤ 0
for x ∈ O ∩M and p ∈ TM (x)−. Moreover, M is locally invariant3 for −F , so that
the invariance theorem, applied to the locally compact set M ∩ O again, states that
H−F (x,−p) ≥ 0 for x ∈ O ∩M and p ∈ TM (x)−. Since

H−F (x,−p) = inf
v∈F (x)

〈−v,−p〉 = HF (x, p),

we have finally proved that HF (x, p) = 0 for any x ∈ O ∩M and p ∈ TM (x)−.
Conversely, if the boundary of M is semipermeable, there is some radius r > 0

such that

∀x ∈ (x0 + rB) ∩M, ∀p ∈ TM (x)−, HF (x, p) = 0.

Set ρ := maxx∈(x0+rB) maxv∈F (x) ‖v‖ and T := r
4ρ . Define, for any i = 1, . . . , 4,

Oi := x0 +
ir

4
o

B .

Note that any solution of the differential inclusion for F (or for −F ) starting from Oi
(i = 1, . . . , 3) remains in Oi+1 on [0, T ].

Since the tangential condition

∀x ∈ (x0 + rB) ∩M, ∀p ∈ TM (x)−, HF (x, p) ≤ 0

is satisfied, the viability theorem states that for any initial position x ∈ O1∩M , there
is an x(·) ∈ SF (x) such that x(t) ∈ M as long as x(t) ∈ x0 + rB, i.e., at least on
[0, T ]. In particular, such a solution remains in M ∩O2 on [0, T ]. Thus (i) holds true
with O := O1 and O′ := O2.

Since HF (x, p) = 0 implies that H−F (x,−p) ≥ 0, the tangential condition

∀x ∈ (x0 + rB) ∩M, ∀p ∈ TM (x)−, H−F (x,−p) ≥ 0

is fulfilled. Thus M is locally invariant for −F , and any solution of the differential
inclusion for −F starting from M ∩O2 (and also from M ∩O3) remains in M as long
as it remains in x0 + rB, and in particular, on [0, T ]. Thus (ii) holds true.

Assume, contrary to our claim, that (iii) is false. There is a solution x(·) of the
differential inclusion for F starting from ∂M ∩ O2 which does not remain in M̂ on
[0, T ]. We already know that x(·) remains in O3 on [0, T ]. There is some time t ∈]0, T ]
such that x(t) belongs to the interior of M and to O3. From Filippov’s theorem [12],
the set-valued map x  SF (x), endowed with the uniform topology, is continuous.
Thus there is a neighborhood W of x(0) such that, from any initial position y ∈ W ,
at least one solution y(·) ∈ SF (y) sufficiently close to x(·) on [0, T ] starts so that y(t)
belongs to the interior of M and to O3. Since x belongs to ∂M , there is some ȳ ∈W
which does not belong to M . Let us denote by ȳ(·) the associated solution. We now
consider the function z(·) defined by z(s) := ȳ(t − s) for s ∈ [0, T ]. Then z(·) is a
solution of the differential inclusion for −F starting from M ∩ O3, which leaves M
before T . This is in contradiction to the proof of (ii). So (iii) holds true.

3The invariance theorem [3] states that, for F satisfying (4) and for K ⊂ RN locally compact,
there is an equivalence among the following statements.
(i) K is an invariance domain for F , i.e.,∀x ∈ K, F (x) ⊂ TK(x).
(ii) K is invariant for F , i.e., ∀x ∈ K, ∃t > 0 such that ∀x(·) ∈ SF (x), ∀s ∈ [0, t], x(s) ∈ K.
(iii) K satisfies the following: ∀x ∈ K, ∀p ∈ TK(x)−, HF (x,−p) ≥ 0.
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1.2. Semipermeable boundaries are Lipschitz manifolds.
PROPOSITION 1.2. Assume that the boundary of M is semipermeable in a neigh-

borhood of x0 for a set-valued map F : RN  RN satisfying (4). If the values of F
have a nonempty interior, then ∂M is a Lipschitz manifold in a neighborhood of x0.

To prove Proposition 1.2, let us recall a sufficient condition for a closed set to be
a Lipschitz manifold (see [16, Thm. 1.2.2.2, p. 12]).

LEMMA 1.1. Let K be a closed subset of RN and let x belong to ∂K. Assume that
there exist some open set C, some ρ > 0, and some neighborhood U of x such that

∀y ∈ ∂M ∩ U,
{

y + [0, ρ]C ⊂ K,
y − [0, ρ]C ⊂ K̂,

where K̂ := RN\K.
Then ∂K is a Lipschitz manifold in a neighborhood of x.
Proof of Proposition 1.2. It is enough to combine Lemma 1.1 with the following

lemma.
LEMMA 1.2. Let M be as in Proposition 1.1 and let F satisfy (4). Also let x

belong to ∂M ∩O and v ∈ Int(F (x)). Then

x+ [0, t](v + a
2B) ⊂ M̂,

x+ [0, t](−v + a
2B) ⊂M,

where a := d∂F (x)(v) and t := min{T, a
`(2‖v‖+a)}.

Proof of Lemma 1.2. Note that v + aB ⊂ F (x).
LEMMA 1.3. If C1, C2, and C3 are compact convex subsets of RN ,

[C1 + C3 ⊂ C2 + C3] ⇒ [C1 ⊂ C2].

Since the set-valued map F is `-Lipschitz, use Lemma 1.3 to obtain

∀y ∈ x+
a

2`
B, v +

a

2
B ⊂ F (y).

The map s → x + s(v + a
2u) is a solution of the differential inclusion for F on [0, t]

(for any u ∈ B) because ‖s(v + a
2`u)‖ ≤ a

2` for s ∈ [0, t]. Since x ∈ ∂M ∩ O and M

is semipermeable, any solution of the differential inclusion for F remains in M̂ (see
Proposition 1.1(iii)). Thus

x+ [0, t]
(
v +

a

2
B
)
⊂ M̂.

We can prove in a similar way (using the fact that M is locally invariant by −F from
Proposition 1.1(ii)) that

x+ [0, t]
(
−v +

a

2
B
)
⊂M.

To complete the proof of Proposition 1.2, let v belong to the interior of F (x) and
set a := d∂F (x)(v). Then

∀y ∈ x+
a

2`
, v +

a

2
B ⊂ F (y).
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In particular, v belongs to the interior of F (y) and d∂F (y)(v) ≥ a
2 . Thus, from

Lemma 1.2,

∀y ∈ x+
a

2`
,

 y + [0, t](−v + a
4

o

B) ⊂M,

y + [0, t](v + a
4

o

B) ⊂ M̂,

where t := min{T, a
`(4‖v‖+a)}.

Recall that equality RN\TM (x) = D
M̂

(x) is always fulfilled. Moreover, we have
the following corollary.

COROLLARY 1.2. Under the assumptions and notations of Proposition 1.2, we
have, for any x ∈ ∂M ∩O,

D
M̂

(x) = DRN\M (x) and RN\T
M̂

(x) = DM (x) = DRN\M̂ (x).

Note, moreover, that

Int(F (x)) ∩ TM (x) = ∅ and − Int(F (x)) ∩ T
M̂

(x) = ∅.

Proof. We prove only the first equality, the proof of the second one being es-
sentially the same. Since RN\TM (x) = DRN\M (x) ⊂ D

M̂
(x), it remains to prove

that

D
M̂

(x) ⊂ DRN\M (x).

Let v belong to D
M̂

(x). Since ∂M is a Lipschitz manifold, there is a Lipschitz function
φ : W → R (W ⊂ RN−1 open) and an open neighborhood W ′ ⊂ RN of x such that

∂M ∩W ′ = {(y, φ(y)) | y ∈W}.

We can assume, without loss of generality, that M is the epigraph of φ, while M̂ is
the hypograph of φ and(

RN\M
)
∩W ′ = {(y, t) | t < φ(y) & y ∈W}.

Set x := (xy, xt) and v := (vy, vt) (where xy and vy belong to RN−1 and xt and vt
belong to R). There is some α > 0 such that

(xy, xt)+]0, α] ((vy, vt) + αBN ) ⊂ M̂.

Thus, for any u := (uy, ut) ∈ BN and for any θ ∈]0, α],

φ(xy + θ (vy + αuy)) ≥ xt + θ(vt + αut).

In particular, for any u := (uy, ut) ∈ BN and for any θ ∈]0, α/2],

φ
(
xy + θ

(
vy +

α

2
uy

))
≥ xt + θ

(
vt +

α√
2

)
> xt + θ

(
vt +

α

2
ut

)
,

because ( 1
2uy,

√
2

2 ) ∈ BN . This actually means that

(xy, xt) +
]
0,
α

2

] (
(vy, vt) +

α

2
BN

)
⊂ RN\M,

so that v belongs to DRN\M (x).
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2. Regularity of barrier solutions. We show here that, with any barrier solu-
tion, we can associate a Lipschitzian function p(·) : [0, T ]→ RN such that ‖p(t)‖ = 1
and

0 = 〈x′(t), p(t)〉 = H(x(t), p(t)) for almost every t ∈ [0, T ].

Moreover, p(t) is an exterior normal to M at x(t):

∀t ∈]0, T [, TM (x(t)) = (p(t))− .

The function p(·) is called the adjoint of x(·). In the case when the hamiltonian
H is derivable, this adjoint coincides with the usual adjoint up to a multiplicative
coefficient, and (x(·), p(·)) satisfies the Pontryagin principle.

2.1. Two preliminary lemmas. We first estimate the variations of the contin-
gent cone to closed sets with semipermeable boundaries along the barrier solutions.

LEMMA 2.1. Let M be as in Proposition 1.1 and let F satisfy (4). Assume that
x belongs to ∂M ∩ O and that x(·) ∈ SF (x) is a barrier solution (i.e., it remains in
∂M ∩O′ on [0, T ]).

There is a constant C, which only depends on T and on the Lipschitz constant `
of F , such that

∀0 ≤ t ≤ T, ∀v ∈ TM (x(t)), dTM (x)(v) ≤ Ct‖v‖.(5)

Moreover,

∀0 ≤ s ≤ t ≤ T, ∀v ∈ T
M̂

(x(s)), dT
M̂

(x(t))(v) ≤ C(t− s)‖v‖.(6)

Proof of Lemma 2.1. We prove only (5), since the proof of (6) is essentially the
same. If v belongs to TM (x(t)), there exist hn → 0+, vn → v such that x(t) + hnvn
belongs to M for any n. The Filippov theorem [12] provides the existence of solutions
yn(·) ∈ S−F (x(t) + hnvn) such that

‖x′(t− s) + y′n(s)‖ ≤ `e`shn‖vn‖ for almost every s ∈ [0, t].(7)

The solutions yn(·) remain in M on [0, T ] because M is (locally) invariant for −F
from Proposition 1.1.

Set wn := yn(t)−x
hn

. We now prove that the sequence {wn} converges, up to a
subsequence, to some w ∈ TM (x) such that ‖v − w‖ ≤ (e`t − 1)‖v‖. Indeed,

yn(t)− x = (yn(t)− (x(t) + hnvn)) + (x(t)− x) + hnvn

=
∫ t

0 (y′n(s) + x′(t− s))ds+ hnvn.

Combining this latter equality with (7) yields

‖wn − vn‖ ≤
1
hn

∫ t

0
‖y′n(s) + x′(t− s)‖ds ≤ ‖vn‖(e`t − 1).

Thus {wn} is bounded and converges, up to a subsequence, to some w which belongs
to TM (x) and satisfies

‖w − v‖ ≤ ‖v‖(e`t − 1).

So Lemma 2.1 is proved by setting C := supt∈[0,T ]
e`t−1
t .
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We now compute DM (x) for some particular points x.
LEMMA 2.2. Let x(·) be a barrier solution on [0, T ] and assume that condition (4)

and the following condition are satisfied:

∀x ∈ O′, ∀v ∈ ∂F (x), TF (x)(v) is a half-space.(8)

For each t ∈]0, T [ where the derivative x′(t) exists,

−Int[TF (x(t))(x′(t))] = DM (x(t))(9)

and

Int[TF (x(t))(x′(t))] = D
M̂

(x(t)).(10)

In particular, DM (x(t)) and D
M̂

(x(t)) are both equal to open half-spaces.
Assumption (8) plays a major role below. It is equivalent to{

(i) ∂F (x) is a C1 manifold for any x ∈ O′.
(ii) F (x) is convex with a nonempty interior for any x ∈ O′.

Proof of Lemma 2.2. Let t ∈]0, T [ be such that the derivative v := x′(t) exists at
time t. Recall that v belongs to F (x(t)) ∩ TM (x(t)). Let us first prove that

−Int[TF (x(t))(v)] ⊂ DM (x(t)).(11)

Let w belong to the interior of −TF (x(t))(v). Since F (x) is convex, there are some
λ > 0 and a > 0 such that w + aB is contained in λ(v − F (x(t))), i.e.,

v − τw + τaB ⊂ F (x(t)),

with τ := 1/λ. Since F is `-Lipschitz, Lemma 1.3 implies that

∀y ∈ x(t) +
a

2τ`
B, v − τw +

aτ

2
B ⊂ F (y).

For h > 0 sufficiently small (say, h ∈ [0, ε] with ε > 0) the solutions of the differential
inclusion for −F starting from x(t+h) remain in x(t) + a

2τ`B on [0, h]. In particular,
s→ x(t+h)− s(v− τw+ u) is a solution of the differential inclusion for −F on [0, h]
if ‖u‖ ≤ aτ

2 . Since x(t + h) belongs to M , the solutions of the differential inclusion
for −F starting from x(t+ h) remain in M on [0, T ]. Thus

∀s ∈ [0, h], x(t+ h)− s
(
v − τw +

aτ

2
B
)
⊂M.(12)

Since v = x′(t), there is some ε′ > 0 such that, for h ∈ [0, ε′],

‖x(t+ h)− x(t)− hv‖ ≤ haτ

4
.(13)

Combining (12) with s = h with (13) yields, for any h ∈ [0, inf{ε, ε′}],

x(t) + hτw +
haτ

4
B ⊂ M.

Thus w belongs to DM (x(t)).
We can prove in the same way that

Int[TF (x(t))(v)] ⊂ D
M̂

(x(t))

because M̂ is (locally) invariant by F . Since DM (x(t)) ∩ D
M̂

(x(t)) = ∅, and since
both sets contain an open half-space and are open, DM (x(t)) and D

M̂
(x(t))

are, respectively, equal to the interiors of the half-spaces −TF (x(t))(x′(t)) and
TF (x(t))(x′(t)).
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2.2. The adjoint of a barrier solution.
THEOREM 2.1 (definition of the adjoint). Let M be a closed set with a semiper-

meable boundary and let x belong to ∂M ∩ O (cf. Proposition 1.1). Let x(·) ∈ SF (x)
be a barrier solution on [0, T ] and C be the constant defined by Lemma 2.1. There is
a 2C-Lipschitzian function p(·) : [0, T ] → RN such that ‖p(t)‖ = 1 for any t ∈ [0, T ]
and

∀t ∈]0, T [, TM (x(t)) = (p(t))− ,

where (p(t))− = {v ∈ RN | 〈p(t), v〉 ≤ 0}. The function p(·) is called the adjoint of
x(·) on [0, T ]. Moreover, if p(·) is the adjoint of some barrier solution x(·), then

(p(0))− ⊂ TM (x(0)).(14)

The adjoint p(·) is uniquely defined. Theorem 2.1 states that the contingent cone
TM (x(t)) is a half-space for t > 0 and p(t) is the unique outward normal at x(t). This
means that, at x(t), the closed set M is “smooth.”

Proof of Theorem 2.1. Existence. If x′(t) exists, Corollary 1.2 states that

DM (x(t)) ⊂ TM (x(t)) = RN\DRN\M (x(t)) = RN\D
M̂

(x(t)).

From Lemma 2.2, the left- and right-hand sides of the inclusions are half-spaces. Thus
TM (x(t)) is a half-space and there is some p(t) satisfying ‖p(t)‖ = 1 and TM (x(t)) =
(p(t))−.

Now fix any t ∈]0, T [. Since the solution x(·) is absolutely continuous, there are
tn → t+ and sn → t− such that the derivatives x′(tn) and x′(sn) exist. The sequences
(p(tn))n∈N and (p(sn))n∈N converge, respectively, to p1 and p2 (up to a subsequence).
Lemma 2.1 yields

(p1)− ⊂ Limsup (p(tn))− ⊂ TM (x(t))

(where Limsup denotes the Kuratowski upper limit [2]) and, for any v ∈ TM (x(t)),

0 = lim inf
n

d(v, TM (x(sn))) = lim inf
n
〈v, p(sn)〉+ = 〈v, p2〉+

(where s+ := max{s, 0}), so that 〈v, p2〉 ≤ 0.
Thus (p1)− ⊂ TM (x(t)) ⊂ (p2)− and TM (x(t)) is equal to a half-space. Let us

denote by p(t) the common value p1 = p2. Then TM (x(t)) = (p(t))−. The function
p(·) is defined on ]0, T [.

Note that, for t = 0, the same proof shows that any upper limit p1 of the functions
p(tn) satisfies (p1)− ⊂ TM (x(0)). Let us now prove that p(·) is Lipschitz continuous
and so can be defined (uniquely) on [0, T ].

The adjoint is Lipschitzian. Let C be the constant of Lemma 2.1 and let 0 < s <
t < T . There are two cases.

(1) Either 〈p(t), p(s)〉 ≥ 0. Then we denote by v the projection of p(s) onto
TM (x(t)), and by w the projection of v onto TM (x(s)). From Lemma 2.1, the distance
between v and w is smaller than or equal to C(t− s)‖v‖. Since

v = p(s)− 〈p(t), p(s)〉p(t) and w = v − 〈p(s), v〉p(s),

we have ‖v − w‖ = 1− 〈p(t), p(s)〉2.
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Moreover, ‖v‖2 = 1 − 〈p(t), p(s)〉2 = ‖v − w‖. Combining this equation with
‖v − w‖ ≤ C(t− s)‖v‖ yields

‖v − w‖ ≤ C2(t− s)2.

Note that

‖p(t)− p(s)‖2 = 2− 2〈p(t), p(s)〉.

We conclude that

‖p(t)− p(s)‖2 ≤ 2− 2〈p(t), p(s)〉2 ≤ 2C2(t− s)2.

Thus

‖p(t)− p(s)‖ ≤ 2C|t− s|.(15)

(2) Or 〈p(t), p(s)〉 ≤ 0. Then p(s) belongs to (p(t))− = TM (x(t)). Thus Lemma
2.1 states that

d(p(s), (p(s))−) ≤ C(t− s).

Since the left-hand side is equal to 1, 〈p(t), p(s)〉 ≤ 0 cannot occur unless t−s ≥ 1/C.
In that case, equation (15) is fulfilled. Thus we have proved that p(·) is a 2C-Lipschitz
function.

LEMMA 2.3 (characterization of the adjoint). The adjoint p(·) of a barrier solution
x(·) on [0, T ] is the unique continuous function satisfying{

(a) ∀t ∈ [0, T ], ‖p(t)‖ = 1,
(b) HF (x(t), p(t)) = 〈x′(t), p(t)〉 = 0 for almost every t ∈ [0, T ].

(16)

COROLLARY 2.1. Under the notations and the assumptions of Lemma 2.3,

TM (x(t)) = −TF (x(t))(x′(t)) = (p(t))−

for almost every t ∈]0, T [.
COROLLARY 2.2. Assume, moreover, that F (x) is strictly convex for any x ∈ O′.

Then any barrier solution is C1.
Proof. Indeed, the set-valued map t  Arg minv∈F (x(t))〈v, p(t)〉 is upper semi-

continuous and, in fact, single-valued because F (x) is strictly convex. So it is contin-
uous. From Lemma 2.3, x′(t) is almost everywhere equal to the continuous function
t→ Arg minv∈F (x(t))〈v, p(t)〉 and so is continuous.

Proof of Lemma 2.3 Assume that p(·) is the adjoint of x(·) on [0, T ]. We have
to prove (16). Let t ∈]0, T [. The set F (x(t)) is convex and has a nonempty interior
from assumption (8). Let w belong to the interior of F (x(t)). From Corollary 1.2,
w /∈ TM (x(t)). Thus 〈w, p(t)〉 > 0 from Theorem 2.1. Since F (x(t)) = Int(F (x(t))),
we have proved HF (x(t), p(t)) ≥ 0. If x′(t) exists, then x′(t) belongs to F (x(t))
and so 〈x′(t), p(t)〉 ≥ 0. Moreover, x′(t) belongs to TM (x(t)) = (p(t))−, and thus
〈x′(t), p(t)〉 ≤ 0. So (16(b)) holds true because x(·) is almost everywhere derivable.

Conversely, let us now assume that some continuous function p(·) : [0, T ] → RN
satisfies (16). We have to prove that p(·) is the adjoint of x(·) on [0, T ]. Fix any
t ∈ (0, T ] where the derivative x′(t) exists and where (16(b)) is fulfilled. Combining
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Lemma 2.2 and Theorem 2.1 yields that TM (x(t)) is the closure of the half-space
DM (x(t)). Thus

TM (x(t)) = −TF (x(t))(x′(t)) =
⋃
λ>0

λ(x′(t)− F (x(t))).(17)

Thanks to (16), for any λ ≥ 0 and any w ∈ F (x(t)), one has

〈λ(x′(t)− w), p(t)〉 ≤ 0.(18)

Combining (17) and (18) yields

∀v ∈ TM (x(t)), 〈v, p(t)〉 ≤ 0.

So (p(t))− = TM (x(t)) for almost every t ∈ (0, T ]. In particular, p(t) coincide almost
everywhere with the adjoint of x(·), which is continuous. So p(·) is equal to the adjoint
of x(·).

We study here the regularity properties of the function which associates its adjoint
to a solution.

PROPOSITION 2.1. Assume that xn(·) are barrier solutions starting from xn ∈
∂M ∩ O and converging to some x(·) barrier solution starting from x ∈ ∂M ∩ O. If
pn(·) are the adjoint of xn(·) on [0, T ], then the pn(·) converge uniformly to the adjoint
of x(·) on [0, T ].

Proof of Proposition 2.1. Since the (pn(·)) are uniformly continuous, Ascoli’s
theorem states that pn(·) converge uniformly to some continuous function p(·) (up to
a subsequence). To prove that p(·) is the adjoint of x(·), it is sufficient to show that
p(·) satisfies (16). For any t ∈ [0, T ], ‖p(t)‖ = 1. From Lemma 2.3, for almost every
t ∈ (0, T ], 〈x′n(t), pn(t)〉 = 0. Thus

∀t ∈ [0, T ],
∫ t

0
〈x′n(s), pn(s)〉ds = 0.

The sequence of functions pn(·) converges uniformly to p(·), and the sequence x′n(·)
converges weakly to x(·). Thus

∀t ∈ [0, T ],
∫ t

0
〈x′(s), p(s)〉ds = 0,

which implies that 〈x′(t), p(t)〉 = 0 for almost every t ∈]0, T [.
Let t ∈ (0, T ] and v belong to F (x(t)). We are going to prove that 〈v, p(t)〉 ≥ 0.

From Michael’s theorem [22], a continuous function ṽ(·) : RN → V exists, such that

∀x ∈ RN , ṽ(x) ∈ F (x) and ṽ(x(t)) = v.

Note that ṽ(xn(t)) converge to ṽ(x(t)), and that 〈ṽ(xn(t)), pn(t)〉 ≥ 0. Letting n →
+∞ yields 〈v, p(t)〉 ≥ 0 for any v ∈ F (x(t)) and any t ∈ (0, T ].

Thus p(·) satisfies (16) and is indeed the adjoint of x(·). Since any converging
subsequence of the uniformly continuous sequence (pn(·)) converges to the adjoint of
x(·), we have proved that the pn(·) converge to the adjoint of x(·).
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2.3. Barrier solutions and the Pontryagin principle. We now prove that,
under some assumptions of differentiability of the hamiltonian H, barrier solutions
satisfy the Pontryagin principle.

In Isaacs’ pioneering work on differential games [18], semipermeable hypersurfaces
are constructed by using the method of characteristics, which is very close to the
Pontryagin principle. We show here that this method of construction is a priori
justified since the barrier solutions indeed satisfy the Pontryagin principle.

THEOREM 2.2. Assume that the set-valued map F satisfies (4), (8) and, moreover,
that its associated hamiltonian H is C2 on RN × [RN\{0}].

Let M be a closed set with a semipermeable boundary. If x(·) is a barrier solution
and p(·) is its adjoint, and if q(·) : [0, T ]→ RN is defined by

∀t ∈ [0, T ], q(t) := p(t) exp
(
−
∫ t

0

〈
∂H

∂x
(x(s), p(s)), p(s)

〉
ds

)
,

then (x(·), q(·)) is a solution to the hamiltonian system
x′(t) = ∂H

∂p (x(t), q(t)),

q′(t) = −∂H∂x (x(t), q(t)),

q(0) := p(0).

(19)

COROLLARY 2.3. Suppose that the assumptions of the previous theorem are sat-
isfied. If x(·) is a barrier solution, then x(·) is C1 on [0, T ]. Moreover, for any q 6= 0
such that

〈q, x′(0)〉 = H(x(0), q) = 0,

the solution (x(·), q(·)) of (19) with initial condition (x(0), q) satisfies

∀t ∈]0, T [, TM (x(t)) = (q(t))−.

Proof of Theorem 2.2. Since, for any t ∈ [0, T ], H(x(t), p(t)) = 0, since 〈x′(t), p(t)〉 =
0 for almost every t ∈ [0, T ], and since H is differentiable, one has

x′(t) = Arg min
v∈F (x(t))

〈v, p(t)〉 =
∂H

∂p
(x(t), p(t))

for almost every t ∈ [0, T ]. In fact, these equalities hold true everywhere because
the right-hand side is continuous. Thus x′(·) is defined everywhere on [0, T ] and is
continuous.

Let t ∈]0, T [ be such that p′(t) exists. Let us prove that

∀v ⊥ p(t),
〈
v,

(
∂2H

∂x∂p
(x(t), p(t))

)∗
p(t) + p′(t)

〉
≥ 0.(20)

Since v ⊥ p(t), v belongs to the boundary of TM (x(t)) from Theorem 2.1, and so to
T∂M (x(t)). Thus there are hn → 0+ and vn → v with x(t) + hnvn ∈ ∂M . For any n,
let us consider the solutions xn(·) (with final conditions) to{

x′n(s) = ∂H
∂p (xn(s), p(s)) for s ∈ [0, t],

xn(t) := x(t) + hnvn.
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Note that the xn(·) converge to x(·) and that, moreover,

∀s ∈ [t, T ],
xn(s)− x(s)

hn
→ z(s),(21)

where z(·) is the solution to{
z′(s) = ∂2H

∂x∂p (x(s), p(s))z(s),

z(t) = v.

Since xn(t) ∈ ∂M , the functions s→ xn(t−s) are solutions of the differential inclusion
for −F starting from M , and thus remain in M from the semipermeability of M . From
Theorem 2.1, TM (x(s)) = (p(s))− for every s. From (21), z(s) belongs to TM (x(s))
so that 〈z(s), p(s)〉 ≤ 0. In particular,

∀s ∈ [0, t], 〈z(s), p(s)〉 − 〈z(t), p(t)〉 ≤ 0,

because 〈z(t), p(t)〉 = 〈v, p(t)〉 = 0. Dividing by s− t and letting s→ t− gives

〈z′(t), p(t)〉+ 〈z(t), p′(t)〉 ≥ 0,

and thus inequality (20) holds true.
Since H is positively homogeneous, Euler’s rule states that(

∂2H

∂x∂p
(x(t), p(t))

)∗
p(t) =

∂H

∂x
(x(t), p(t)).

From (20), for every t where p′(t) exists, there is some λ(t) ∈ R such that

p′(t) = −∂H
∂x

+ λ(t)p(t).

(Note that one can compute λ(t) explicitly because ‖p(t)‖ = 1 implies that 〈p(t), p′(t)〉 =
0, and thus λ(t) = 〈∂H∂x , p(t)〉.)

Now let µ(t) := exp(−
∫ t

0 λ(s)ds) and q(t) := µ(t)p(t). Using the fact that H is
positively homogeneous, it is easy shown that (x(·), q(·)) is a solution to the hamilto-
nian system.
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Abstract. In control theory, a semipermeable surface is an (in general nonsmooth) oriented
surface that, on one hand, contains solutions (the so-called barrier solutions) of the controlled system
and, on the other hand, may be crossed by the solutions of this system in only one direction. Without
making any assumption on the regularity of the boundary of the semipermeable surface, we show
that the barrier solutions contained in this semipermeable surface satisfy the Pontryagin principle,
that this surface is a Lipschitz manifold, and that it is, locally, the graph of a semiconcave function.
Applying these results to the optimal exit-time function from a given open set yields, without any
controllability assumption at the boundary of the open set, that this function is semiconcave on an
open dense subset of its domain.

Key words. semipermeable surfaces, differential inclusion, viability theory, minimal time func-
tion
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Introduction. In this paper, we continue our investigation of the regularity of
semipermeable surfaces for the differential inclusion{

x′(t) ∈ F (x(t)),
x(0) = x0,

where F is given by F (x) :=
⋃
u∈U f(x, u). (Se Part I of this paper, published in the

same issue.)
In this paper, we prove that, under suitable assumptions, semipermeable surfaces

for f are locally the graph of some semiconcave function. We apply this result to
the optimal exit-time function, which is proved to be locally semiconcave in an open
dense subset of its domain.

1. Regularity of semipermeable boundaries. In this section, we show that
the contingent cone and the Dubovitsky–Miljutin cone at a point x to a closed set M
with semipermeable boundary are determined by the “regulation map” [3], which is
the set-valued map R : M  RN defined by

∀x ∈M, R(x) := F (x) ∩ TM (x).

We also show that, if the boundary of M is semipermeable in a neighborhood of
x ∈ ∂M , then TM (x) is a union of closed half-spaces and

DM (x) = Int (TM (x)) .

Moreover, we give a formula relating TM (x) and R(x).
We finally prove that the restriction of TM (·) to ∂M ∩O has a closed graph.
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http://www.siam.org/journals/sicon/35-5/31215.html
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Tassigny, 75775 Paris cedex 16, France (cardaliaguet@ceremade.dauphine.fr).

1653



1654 PIERRE CARDALIAGUET

1.1. Characterization formula for the computation of the contingent
cone.

PROPOSITION 1.1. Assume that F satisfies (i) F : RN  RN has convex compact values,
(ii) F is `-Lipschitz, i.e.,

∀x, y ∈ RN × RN , F (y) ⊂ F (x) + `B,

(1)

and that the boundary of M is semipermeable in a neighborhood of x ∈ ∂M . Then we
have the following estimate of TM (x):⋃

v∈R(x)

−TF (x)(v) ⊂ TM (x).(2)

Proof. Let v belong to F (x)∩TM (x). There exist sequences vn → v and hn → 0+

such that, for any n, x+hnvn belongs to M . Any solution of the differential inclusion
for −F remains in M on [0, T ]. So for t ∈ [0, T ],

A−F (x+ hnvn)(t) ⊂M,

where AG(y)(s) denotes the reachable set from y at time s for the set-valued map G.
Then1

x+ hnvn − tF (x+ hnvn) ⊂ A−F (x+ hnvn)(t) + o(t)B,

where o(t)/t→ 0+ if t→ 0+. (Note that o(t) does not depend on n.) Thus we have

x+ hnvn − tF (x+ hnvn) ⊂M + o(t)B.

If we set t = hn, we deduce

x+ hn(v − F (x)) ⊂M + o(hn)B,

which proves that v−F (x) is contained in TM (x). Since TM (x) is a closed cone, this
completes the proof of (2) because

−TF (x)(v) =
⋃
λ>0

λ(v − F (x)).

Unfortunately, inclusion (2) may be strict. Moreover, it may happen that the
contingent cone to a closed set with a semipermeable boundary is not completely
determined by the regulation map.

Example. Let F (x, y, z) := [0, 1] × [0, 1] × [2, 3] be the dynamics. Set K1 :=
{(x, y, z) | x ≤ 0} and K2 := {(x, y, z) | x ≤ 0 or x+ y ≤ 0}. Then ∂K1 and ∂K2 are
semipermeable barriers for F . Moreover,

F (0, 0, z) ∩ TK1(0, 0, z) = F (0, 0, z) ∩ TK2(0, 0, z) = {0} × [0, 1]× [2, 3]

1If G : RN  RN is an `-Lipschitzian set-valued map, with compact values; then

y + tG(y) ⊂ AG(y)(t) + o(t)B,

where o(t)/t→ 0+ if t→ 0+, and o(t) depend only on ` (see Frankowska [7]).
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for any z ∈ R. But

TK1(0, 0, z) 6= TK2(0, 0, z).

However, under some additional assumptions on F , there is an equality in equa-
tion (2).

THEOREM 1.1 (characterization formula for the contingent cone). Let F satisfy
(1) and

∀x ∈ O′, ∀v ∈ ∂F (x), TF (x)(v) is a half-space.(3)

Let M be a closed set with a semipermeable boundary in a neighborhood of x ∈ ∂M .
Then ⋃

v∈R(x)

−TF (x)(v) = TM (x).(4)

Thus, in general, TM (x) is a union of half-spaces.
To prove Theorem 1.1, we need two remarks.
LEMMA 1.1. Let F satisfy (1). If xn → x, hn → 0+, and, for any n, xn(·) ∈

SF (xn), then (xn(hn)−xn
hn

) converges, up to a subsequence, to some element of F (x).
LEMMA 1.2. Let C be a convex compact subset of RN , vn ∈ C converge to v, and

ln → +∞. Then

−TC(v) ⊂ Limsup
n→∞

ln(vn − C).

The proof of Lemma 1.1 is straightforward, so we give only the proof of Lemma
1.2. If w belongs to C, then

[m < l] ⇒ [m(w − C) ⊂ l(w − C)],(5)

because (w − C) is a convex set and contains 0. If we can find a subsequence of the
(vn) such that vnk = v for any k, then the result is an obvious consequence of equation
(5) with w = v. If it is not the case, set

mn = inf{
√
ln, ‖v − vn‖−1/2}.

Then ln(vn−C) containsmn(vn−C), because vn belongs to C andmn ≤ ln. Moreover,

mn(vn − C) = mn(v − C) +mn(vn − v).

Since the sequence mn(vn − v) converges to 0 and the upper limit of mn(v − C) is
equal to −TC(v) because mn → +∞, we have proved Lemma 1.2.

Proof of Theorem 1.1. Let w belong to TM (x). There exist hn → 0+ and wn → w
such that, for any n, x + hnwn belongs to M . For any n ∈ N, there exists xn(·) ∈
SF (x+ hnwn), which remains in M on [0, T ].

From Lemma 1.1, for any fixed l > 0, the sequence vnl := xn(lhn)−(x+hnwn)
lhn

converges (up to a subsequence) to a limit vl, which belongs to F (x).
With the same ideas used in the proof of Proposition 1.1, we have

xn(lhn)− tF (xn(lhn)) ⊂ M + o(t)B
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so that, by setting t = mhn, with m > 0, we can deduce

x+ hnwn + lhnv
n
l −mhnF (x) ⊂ M + o(mhn)B.

Thus

w + lvl −mF (x) ⊂ TM (x).(6)

Dividing by l and letting l→ +∞ yield

Limsup
l→+∞

vl ⊂ TM (x).

This upper limit (in the Kuratowski sense) is nonempty because the vl belong to
F (x), which is compact. Let v belong to this upper limit. Note that v belongs to
R(x) because F (x) and TM (x) are closed. There exists ln converging to +∞ such
that the limit of vln is equal to v. For simplicity, we set vn := vln .

Inclusion (6) holds true for any m ≥ 0. So, with m := ln,

w + ln[vn − F (x)] ⊂ TM (x).

Since TM (x) is closed, Lemma 1.2 yields

w − TF (x)(v) ⊂ TM (x).

Assume for a while that w does not belong to −TF (x)(v). From assumption (3),
−TF (x)(v) is a half-space. So the cone spanned by w−TF (x)(v) is equal to RN and is
contained in TM (x). This is impossible, since TM (x) cannot be the full space, as we
showed in Corollary 1.2 in Part I of this paper.

1.2. The Dubovitsky–Miljutin cone. We now compute the Dubovitsky–Miljutin
cone in terms of the regulation map. For that purpose, we shall need a result con-
cerning the existence of particular barrier solutions.

Throughout this section, we assume that the set-valued map F satisfies (1)
and (3).

PROPOSITION 1.2. Let M be a closed set with a semipermeable boundary in a
neighborhood of x ∈ ∂M . Assume that w belongs to R(x). Then there is some barrier
solution x(·) starting from x such that the adjoint p(·) of x(·) satisfies

〈w, p(0)〉 = 0.

Let us point out a particular case of that proposition.
COROLLARY 1.1. Assume, moreover, that F (x) is strictly convex. Then there is

a barrier solution x(·) starting from x such that x′(0) = w.
The proof of this corollary is a straightforward consequence of Proposition 1.2

and of the following lemma.
LEMMA 1.3. Let x(·) be a barrier solution and p(·) be its adjoint. Set

Fp := {v ∈ F (x) | 〈v, p(0)〉 = 0}.

Then

Limsup
t→0+

x(t)− x(0)
t

⊂ Fp,

where Limsup denotes the Kuratowski upper limit [2].
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Proof. The upper limit of x(t)−x
t is contained in F (x). It remains to prove that,

if z belongs to this upper limit, then 〈z, p(0)〉 = 0. But

|〈x(t)−x
t , p(0)〉| ≤ 1

t

∫ t
0 |〈x

′(s), p(0)〉|ds
≤ 1

t

∫ t
0 |〈x

′(s), p(s)〉|ds+ 1
t

∫ t
0 ‖x

′(s)‖2Csds
≤ ρCt,

where ρ := maxt∈[0,T ] ‖x′(t)‖ and the constant C comes from Theorem 2.1 of Part I.
Letting t→ 0+ proves our claim.

Proof of Proposition 1.2. We use the same kind of ideas as in the proof of Theorem
1.1. Since w belongs to T∂M (x), there exists hn → 0+, wn → w such that x + hnwn
belongs to ∂M . There also exist barrier solutions xn(·) starting from x+ hnwn. We
denote by pn(·) their adjoint. From Theorem 5.3.1 of [2], the xn(·) converge, up to a
subsequence, to some solution x(·) starting from x while the pn(·) converge to some
function p(·) which is the adjoint of x(·) (see Proposition 2.1 of Part I).

As in Theorem 1.1, for any λ > 0, there exists vλ ∈ F (x) such that

xn(λhn)− (x+ hnwn)
λhn

→ vλ

up to a subsequence. Moreover, a subsequence of the (vλ) converge to some v ∈
F (x) ∩ TM (x). As in the proof of Theorem 1.1, we can prove that

w ∈ −TF (x)(v).(7)

We want to prove that 〈w, p(0)〉 = 0. For that purpose, let us first show that
〈p(0), v〉 = 0. We denote by ρ the following bound:

ρ := sup{‖F (xn(t))‖ | n ∈ N and t ∈ [0, T ]}.

For any n ∈ N,

|〈pn(0) , xn(λhn)− (x+ hnwn)〉|
≤
∫ λhn

0 |〈pn(0), x′n(s)〉|ds
≤
∫ λhn

0 |〈pn(s), x′n(s)〉|ds+
∫ λhn

0 2Cs‖x′n(s)‖ds
≤ ρCλ2h2

n

because pn(·) are 2C-Lipschitz. Dividing these inequalities by λhn and letting n →
+∞ yields 〈p(0), vλ〉 = 0. Finally, letting λ → +∞ gives the desired formula:
〈p(0), v〉 = 0.

Since p(·) is an adjoint,

0 = inf
z∈F (x)

〈z, p(0)〉 = 〈v, p(0)〉.

To complete the proof, we need the following remark.
LEMMA 1.4. Assume that F satisfies (3). If p ∈ RN\{0} and v ∈ F (x) are such

that H(x, p) = 〈v, p〉, then

TF (x)(v) = (p)+,

where (p)+ := {w ∈ RN | 〈w, p〉 ≥ 0 }.
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Thus Lemma 1.4 states that

(p(0))− = −TF (x)(v).

Since, from (7), w belongs to the right-hand side of the equality, 〈w, p(0)〉 ≤ 0. But
w belongs to F (x). So 〈w, p(0)〉 ≥ 0 from Theorem 2.1 of Part I. So 〈w, p(0)〉 = 0,
and Proposition 1.2 is proved.

THEOREM 1.2 (the Dubovitsky–Miljutin cone). Let M be a closed set with a
semipermeable boundary in a neighborhood of x ∈ ∂M . The Dubovitsky–Miljutin cone
is determined by the regulation map

DM (x) =
⋃

v∈R(x)

Int
(
−TF (x)(v)

)
= Int TM (x).

COROLLARY 1.2. Under the notations and assumptions of the previous theorem,

T
M̂

(x) =
⋂

v∈R(x)

TF (x)(v) and D
M̂

(x) =
⋂

v∈R(x)

Int
(
TF (x)(v)

)
.

Proof. Combining Corollary 1.2 of Part I with Theorem 1.2 gives the first formula.
The second formula comes from Theorem 1.1.

Proof of Theorem 1.2.
(1) Let us first prove that⋃

v∈R(x)

Int
(
−TF (x)(v)

)
= Int TM (x).(8)

The left-hand side of the equality is contained in the right-hand side of Theorem 1.1.
Let us prove the converse inclusion. For that purpose, we denote by A the left-hand
side of the equality.

Let w belong to the interior of TM (x). Let us set

P := {p ∈ RN , ‖p‖ ≤ 1 and ∃v ∈ R(x) with (p)+ = −TF (x)(v)}.

Note that P is compact since R(x) is compact. Since w belongs to Int(TM (x)),
Theorem 1.1 states that there is some positive α such that, for any b ∈ B, there is
some v ∈ R(x) such that w + αb ∈ −TF (x)(v). Then

inf
b∈B

sup
p∈P
〈w + αb, p〉 ≥ 0

so that

sup
p∈Co(P)

inf
b∈B
〈w + αb, p〉 ≥ 0.

In particular,

sup
p∈Co(P)

〈w, p〉 ≥ α inf
p∈Co(P)

‖p‖.

Note that the right-hand side of the inequality is positive since, otherwise, there would
exist pi ∈ P, λi ∈ [0, 1], Σλi = 1, such that

∑
i λipi = 0. Then RN =

⋃
i(pi)

+ ⊂



SEMIPERMEABLE SURFACES II 1659

TM (x), which is in contradiction with Corollary 1.2 of Part I. So we have proved that
there is some p ∈ P such that 〈w, p〉 > 0, and so w belongs to the interior of −TF (x)(v)
for some v ∈ R(x). Thus equality (8) is proved.

(2) Since DM (x) is open and contained in TM (x), DM (x) is contained in the
interior of TM (x). So, from equality (8), it remains to prove that⋃

v∈R(x)

Int
(
−TF (x)(v)

)
⊂ DM (x).

For that purpose, let v belong to R(x).
From Proposition 1.2, there is some solution x(·) which remains on ∂M and some

adjoint p(·) to x(·) on [0, T ] such that 〈p(0), v〉 = 0. Let us denote

Fp := {z ∈ F (x) | 〈z, p(0)〉 = 0}.

Lemma 1.3 states that

Limsup
t→0+

x(t)− x
t

⊂ Fp.(9)

Now let w belong to the interior of −TF (x)(v). We have to prove that w belongs
to DM (x). For any z ∈ Fp,

〈z, p(0)〉 = inf
v′∈F (x)

〈v′, p(0)〉 = 0,

and so, Lemma 1.4 states that

−TF (x)(z) = (p(0))− = −TF (x)(v).

Since, for any z ∈ Fp,

Int
(
−TF (x)(z)

)
=
⋃
λ>0

λ(z − Int(F (x))),

there is some λz > 0 such that w is contained in the interior of λz(z − F (x)). Since
Fp is compact, the λz are bounded on Fp by some λ > 0 and there is some α > 0 such
that w+αB is contained in λ(z−F (x)) for any z ∈ Fp. Since we want to prove that
w ∈ DM (x) and that DM (x) is a cone, we can assume, without loss of generality, that
λ = 1. So, z − w + αB is contained in F (x) for any z ∈ Fp.

Since F is Lipschitz,

∀y ∈ x+
α

2`
B, ∀z ∈ Fp, z − w +

α

2
B ⊂ F (y).

For t sufficiently small (say, t ≤ ε with ε > 0), the reachable set for −F from x(t) at
time t is contained in x+ α

2`B. Thus

∀z ∈ Fp, x(t)− t
(
z − w +

α

2
B
)
⊂ A−F (x(t))(t).(10)

From (9), there is some ε′ > 0 such that x(t)−x
t is contained in Fp + α

4B for t ∈]0, ε′].
Thus, for any t ≤ inf{ε, ε′},

x+ t(w + α
4B) ⊂ x− t[zt − x(t)−x

t − w + α
2B]

= x(t)− t[zt − w + α
2B],

(11)
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where zt ∈ Fp is the projection onto Fp of x(t)−x
t . Since A−F (x(t))(t) is con-

tained in M , combining (10) and (11) yields that x + t(w + α
4B) is contained in

M for any t ∈ inf{ε, ε′}. Thus w belongs to DM (x), which completes the proof of
Theorem 1.2.

1.3. Upper semicontinuity of the contingent cone. We are now ready to
state the main theorem of this section.

THEOREM 1.3 (regularity of the contingent cone). Assume that F satisfies (1)
and (3) and that the boundary of M is semipermeable in a neighborhood of x ∈ ∂M .
Then

Limsup
x′→x, x′∈∂M

TM (x′) ⊂ TM (x).

In other words, the set-valued map x TM (x)∩B from ∂M ∩O to RN is upper
semicontinuous.

Remarks.
(1) In some problems, we already know that M is convex. Then the set-valued

map x  TM (x) is lower semicontinuous with convex values [2]. Thus Theorem 1.3
yields that the set-valued map x TM (x) is continuous on ∂M , and TM (x) is always
equal to a half-space. This means that ∂M is a C1 manifold. This is, in particular,
the case when
• K is convex and F has a convex graph2; then the viability kernel ViabF (K) is

convex [4]. Thus the boundary of ViabF (K), which is semipermeable in the interior
of K, is a smooth manifold in the interior of K.
• F has a convex graph and 0 belongs to Int(F (x0)); then the reachable set from

x0 is convex. Thus its boundary, which is semipermeable, is a smooth manifold.
(2) From Corollary 1.2, T

M̂
(x) = RN\TM (x) for x ∈ ∂M . Thus the set-valued

map x T
M̂

(x) is lower semicontinuous; i.e., M̂ is sleek [2].
Proof of Theorem 1.3. Let wn belong to TM (xn), with xn → x, wn → w, xn and

x belonging to ∂M ∩O. We have to prove that w belongs to TM (x).
Theorem 1.1 yields the existence of some vn ∈ R(xn) such that wn belong to

−TF (xn)(vn). From Proposition 1.2, for any n ∈ N, there exists some barrier solu-
tion xn(·) starting from xn, with associated adjoint denoted by pn(·) and satisfying
〈vn, pn(0)〉 = 0.

From Theorem 5.3.1 in [2], a subsequence of the xn(·) converges to some barrier
solution x(·) starting from x. Moreover, the adjoint maps pn(·) converge to the adjoint
function p(·) of x(·) from Proposition 2.1 of Part I.

Since, HF (xn, pn(0)) = 〈vn, pn(0)〉 = 0, Lemma 1.4 states that

−TF (xn)(vn) = (pn(0))−.

Thus, for any n ∈ N, 〈wn, pn(0)〉 ≤ 0, and so 〈w, p(0)〉 ≤ 0. Moreover, p(·) is the
adjoint of the solution x(·), so that Theorem 2.1 of Part I states that

(p(0))− ⊂ TM (x(0)).

In particular, w belongs to TM (x).

2This assumption is satisfied in particular if the controlled system is affine in x.
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2. Semiconcavity property. The aim of this section is to show that, under
suitable assumptions, semipermeable surfaces are locally the graphs of semiconcave
functions.

2.1. A new assumption on the controlled system. We now introduce a
new assumption:

(a) The values of F are convex and have nonempty interior.
(b) ∃γ > 0 such that

∀x ∈ O′, ∀v ∈ ∂F (x) and ∀w ∈ TF (x)(v),
dF (x)(v + w) ≤ γ‖w‖2.

(12)

It can be proved that condition (12) is stronger than (3). Condition (12) is related to
the boundedness of the curvature of the convex sets F (x) for x ∈ O′. It is also related
to some property of “uniform strict concavity” of the hamiltonian H. Namely, we
have the following proposition.

PROPOSITION 2.1. Let F satisfy (1) and H : RN × RN → R be the hamiltonian
associated with F . The following assertions are equivalent.

(i) F satisfies (12).
(ii)

There is some ε > 0 such that
∀x ∈ O′, p→ H(x, p) + ε‖p‖ is concave.(13)

(iii) There is some convex set-valued map F0 : O′  RN and some ε > 0 such
that F (x) = F0(x) + εB.

(iv) F has C1 convex values with a nonempty interior, and the normal map3

nx : ∂F (x)→ ∂BN is λ-Lipschitz, with λ independent of x ∈ O′.
Proposition 2.1 can be proved by using classical arguments of convex analysis,

and thus we do not give its proof.
Remark. If F is Lipschitz, then the set-valued map F0 defined in (iii) is also

Lipschitz.
Let us now give an example of a set-valued map satisfying (12).
PROPOSITION 2.2. Assume that f : RN → RN is Lipschitz and that A : RN →

L(RN ,RN ) and A−1 : RN → L(RN ,RN ) are Lipschitz. Then the set-valued map

F (x) := f(x) +
⋃
u∈B

A(x)u

satisfies (1) and (12) on bounded sets.
Proof. The hamiltonian associated with F is

H(x, p) = 〈f(x), p〉 − ‖A∗(x)p‖,

and it satisfies (13) thanks to the following lemma.
LEMMA 2.1. Assume that Q is a positive definite quadratic form with largest

eigenvalue a and smallest eigenvalue b. Then, for any α ∈ [0, b/a
1
2 ], the map

p→ (〈p,Qp〉)
1
2 − α‖p‖

is convex.

3That is, the map such that ‖nx(v)‖ = 1 for any v ∈ ∂F (x) and nx(v) is an outward normal to
F (x) at v.
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2.2. Further regularity.
THEOREM 2.1. Assume that the boundary of M is semipermeable and that F :

RN  RN satisfies (1) and (12). There is some constant k such that, for any x ∈
∂M ∩O, for any w ∈ TM (x) with ‖w‖ ≤ T 2,

dM (x+ w) ≤ k‖w‖ 3
2 .(14)

The notations O and T are defined in Proposition 1.1 of Part I.
The exponent 3

2 is rather surprising: one would expect an exponent 2, as for
F . We have an example proving that this exponent is optimal at least when F is
Lipschitz. For smooth hamiltonians, the problem is still open.

Proof. If the vector w belongs to TM (x) with x ∈ ∂M , Proposition 1.2 states that
there is some barrier solution x(·) ∈ SF (x) which remains in ∂M on [0, T ] and some
adjoint p(·) of x(·) on [0, T ] such that 〈p(0), w〉 ≤ 0.

Set τ := ‖w‖ 1
2 and let w(t) be the projection of w onto TM (x(t)). Let us set, for

any t ≤ τ ,

α(t) := dF (x(t))

(
x′(t)− w(t)

τ

)
.

Let y(·) be defined on [0, τ ] by{
y′(t) := −x′(τ − t) + 1

τw(τ − t),
y(0) := x(τ).

(Recall that ‖w‖ ≤ T 2, so that τ ≤ T .) The Filippov theorem yields the existence of
a solution z(·) ∈ S−F (x(τ)) such that

∀t ∈ [0, τ ], ‖z(t)− y(t)‖ ≤ e`t
∫ t

0
α(s)ds.(15)

Let us prove that ∫ τ

0
α(s)ds ≤ γ‖w‖ 3

2(16)

and that

‖y(τ)− (x+ w)‖ ≤ C‖w‖ 3
2 .(17)

Proof of (16). From Corollary 2.1 of Part I, for almost every t ∈]0, T [, TM (x(t)) =
−TF (x(t))(x′(t)). From its very definition, w(t) belongs to TM (x(t)), so −w(t) belongs
to TF (x(t))(x′(t)). Thus assumption (12) yields that

α(t) := dF (x(t))

(
x′(t)− w(t)

τ

)
≤ γ ‖w(t)‖2

τ2 ≤ γ‖w‖

(note that ‖w(t)‖ ≤ ‖w‖ because w(t) is the projection of w onto a half-space). After
integration, we obtain (16).

Proof of (17). From Corollary 2.1 of Part I, for almost every t ∈]0, T [, TM (x(t)) =
(p(t))−. Thus

w(t) = w − 〈p(t), w〉+p(t),
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where x+ denotes sup{0, x}. Recall that p(·) is 2C-Lipschitz. (See Theorem 2.1 of
Part I.) Thus

〈w, p(t)〉+ ≤ [〈w, p(0)〉+ 2Ct‖w‖]+ ≤ 2Ct‖w‖,

which implies

‖w(t)− w‖ ≤ 2Ct‖w‖.

After integration, we obtain∥∥∥∥∫ τ

0
w(τ − s)ds− τw

∥∥∥∥ ≤ C‖w‖τ2.

Since y(τ) := x+ 1
τ

∫ τ
0 w(τ − s)ds, we have obtained (17).

Combining (15), (16), and (17), we conclude that

‖z(τ)− (x+ w)‖ ≤ (C + e`T
2
γ)‖w‖ 3

2 .

Let us now recall that z(·) is a solution of the differential inclusion for −F starting
from x(τ) which belongs to M ∩O′. Thus z(t) belongs to M for any t ≤ τ and

dM (x+ w) ≤ ‖z(τ)− (x+ w)‖ ≤ k‖w‖ 3
2 ,

which is the desired conclusion.

2.3. A criteria of semiconcavity. We show here that the result described in
Theorem 2.1 is related to semiconcavity of a function. Let us first recall what a
semiconcave function is [8].

DEFINITION 2.1. Let Ω be a open convex subset of RN and φ : Ω → R. The
function φ is semiconcave on Ω if, ∀x, y ∈ Ω, ∀λ ∈ [0, 1],

λφ(x) + (1− λ)φ(y) ≤ φ (λx+ (1− λ)y) + λ(1− λ)ω(‖y − x‖),

where ω : R+ → R+ is the modulus of semiconcavity, ω(t)→ 0+ if t→ 0+.
We now provide a criterion for semiconcavity.
PROPOSITION 2.3. Let Ω be a convex open subset of RN and φ : Ω→ R. Assume

that φ satisfies the following conditions:
(i) φ is ρ-Lipschitz;
(ii) ∀x ∈ Ω, −TEpi(φ)(x, φ(x))

⋃
TEpi(φ)(x, φ(x)) = RN+1;

(iii) There exists a constant k such that, ∀x ∈ Ω, ∀(vx, vt) ∈ TEpi(φ)(x, φ(x))
such that x+ vx ∈ Ω, dEpi(φ) ((x, φ(x)) + (vx, vt)) ≤ k‖(vx, vt)‖

3
2 .

Then φ is semiconcave with a modulus ω(t) := k(ρ2 + 1)2t
3
2 .

Let us point out that condition (ii) is fulfilled in particular if TEpi(φ)(x, φ(x)) is a
union of half-spaces, as in Theorem 1.1. Condition (iii) is exactly the same as (14).

Proof of Proposition 2.3. First step. We claim that condition (ii) implies that,
if (vx, vt) belongs to ∂TEpi(φ)(x, φ(x)), then −(vx, vt) belongs to TEpi(φ)(x, φ(x)). In-
deed, since (vx, vt) belongs to ∂TEpi(φ)(x, φ(x)), there exists a sequence (vnx , v

n
t ) /∈

TEpi(φ)(x, φ(x)) converging to (vx, vt). From assumption (ii), −(vnx , v
n
t ) belongs to

TEpi(φ)(x, φ(x)) for any n. Letting n → +∞ yields −(vx, vt) ∈ TEpi(φ)(x, φ(x)),
which is the desired conclusion.
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Second step. We now prove that, if (vx, vt) belongs to TEpi(φ)(z, φ(z)), then, for
any h ∈ [0, 1] such that z + hvx ∈ Ω, one has

φ(z + hvx)− (φ(z) + hvt) ≤ k(ρ2 + 1)
1
2 (h‖(vx, vt)‖)

3
2 .

Let (yh, ρh) belong to the projection of (z + hvx, φ(z) + hvt) onto Epi(φ). Then

φ(z + hvx)− (φ(z) + hvt)
= (φ(z + hvx)− φ(yh)) + (φ(yh)− ρh) + (ρh − (φ(z) + hvt))
≤ ρ‖yh − (z + hvx)‖+ 0 + |ρh − (φ(z) + hvt)|
≤ (ρ2 + 1)

1
2 ‖(yh, ρh)− (z + hvx, φ(z) + hvt)‖

≤ k(ρ2 + 1)
1
2 (h‖(vx, vt)‖)

3
2

from assumption (iii).
Third step. Let x and y belong to Ω and λ ∈ (0, 1). Set z := λx+ (1− λ)y. Let

us define τ by

τ := min{t | (y − x, t) ∈ TEpi(φ)(z, φ(z))}.

Note that τ > −∞ because φ is ρ-Lipschitz. In fact, it is easily seen that |τ | ≤ ρ‖y−x‖.
Note also that (y − x, τ) belongs to the boundary of TEpi(φ)(z, φ(z)). Thus, from the
first step, −(y − x, τ) belongs to TEpi(φ)(z, φ(z)). Applying the second step with
vx := −(y − x), vt := −τ , and h := 1− λ yields

φ(x)− (φ(z)− (1− λ)τ) ≤ k(ρ2 + 1)
1
2 ((1− λ)‖(y − x, τ)‖) 3

2 ,(18)

while applying the second step with h := λ and (vx, vt) := (y − x, τ) yields

φ(y)− (φ(z) + λτ) ≤ k(ρ2 + 1)
1
2 (λ‖(y − x, τ)‖) 3

2 .(19)

Summing (18) multiplied by λ and (19) multiplied by (1− λ) gives

λφ(x) + (1− λ)φ(y)− φ(λx+ (1− λ)y)
≤ k(ρ2 + 1)

1
2 [λ((1− λ)‖(y − x, τ)‖) 3

2 + (1− λ)(λ‖(y − x, τ)‖) 3
2 ]

≤ k(ρ2 + 1)
1
2λ(1− λ)‖(y − x, τ)‖ 3

2 .

Since |τ | ≤ ρ‖y − x‖, ‖(y − x, τ)‖ ≤ (ρ2 + 1)
1
2 ‖y − x‖. Thus we have finally proved

that

λφ(x) + (1− λ)φ(y)− φ(λx+ (1− λ)y)
≤ k(ρ2 + 1)2λ(1− λ)‖y − x‖ 3

2 ,

which is the desired conclusion.
COROLLARY 2.1. Suppose that the assumptions of Theorem 2.1 are fulfilled. As-

sume that the boundary of M is semipermeable. Then M is locally the epigraph of a
semiconcave function with a modulus of semiconcavity of the form ω(t) := kt

3
2 .

Semiconcave functions enjoy nice regularity properties. For instance, singularities
of semiconcave functions (i.e., the points at which this function is not differentiable)
propagate [1].

Corollary 2.1 is an application of Proposition 1.2 of Part I, Theorem 2.1, and
Proposition 2.3.
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3. Regularity of the optimal exit-time map. An important application of
the previous results is the study of the optimal exit-time problem. For an open set
Ω, we study the map

θΩ(x) := inf{t ≥ 0 | ∃x(·) ∈ SF (x) with x(t) /∈ Ω}.(20)

We set θΩ(x) := +∞ if no solution reaches the complement of Ω. We refer to the
introduction of the first part for bibliographical comments on the regularity of θΩ. In
Cardaliaguet, Quincampoix, and Saint-Pierre [5], it is proved that the epigraph of θΩ,
denoted by Epi(θΩ), is the viability kernel of H := Ω × R+ for the set-valued map
Φ : RN+1  RN+1 defined by

∀(x, t) ∈ RN+1, Φ(x, t) :=
{
F (x)× {−1} if x ∈ Ω,
Co ({0} × {0}

⋃
F (x)× {−1}) otherwise.

The set-valued map Φ obviously satisfies condition (1) on Ω× R.
Since, for any x ∈ Ω, θΩ(x) > 0, (x, θΩ(x)) belongs to the boundary of ViabΦ(H)

and to the interior of H. Thus the Quincampoix theorem [9] states that the boundary
of Epi(θΩ) is semipermeable for Φ in a neighborhood of any point (x, φ(x)) for x ∈ Ω.

Unfortunately, the set-valued map Φ never satisfies condition (3) (because Φ(x)
always has an empty interior), and we cannot straightforwardly apply the regularity
results previously obtained. For this reason, we first prove the existence of a set-
valued map Ψ satisfying (12) (provided that F satisfies (12)) such that the boundary
of ViabΦ(H) is still semipermeable for Ψ. Then we apply Theorems 1.3 and 2.1 to the
particular case of the map θΩ. We complete this paper by showing that θΩ is smooth
along some optimal trajectories.

Notation. Below, the variable in RN+1 is divided into (x, t), with x belonging to
the state space RN and t to the time space R.

3.1. Reduction of the problem. The hamiltonian associated with map Φ is

HΦ(x, t, px, pt) := −pt +H(x, px),

where H is the hamiltonian associated with F .
PROPOSITION 3.1. Assume that the set-valued map F : RN  RN satisfies (1)

and (12). Then there is a set-valued map Ψ : RN+1  RN+1 satisfying (1) and (12)
such that

∀(x, t) ∈ RN+1, ∀(px, pt) ∈ RN+1,
HΨ(x, t, px, pt) = 0 ⇐⇒ HΦ(x, t, px, pt) = 0,

(21)

and moreover, Φ(x, t) ⊂ Ψ(x, t) for any (x, t) ∈ RN+1.
In that case, Proposition 1.1 of Part I states that it is equivalent for a closed set

M to enjoy the semipermeability property for Φ and to enjoy the semipermeability
property for Ψ.

Proof of Proposition 3.1. Construction of Ψ. From Proposition 2.1, there is some
set-valued map F0 : RN  RN such that F (x) = F0(x) + εB and has associated
hamiltonian h(x, p) := H(x, p) + ε‖p‖. Since F is Lipschitz, F0 is Lipschitz.

Let us define Ψ by

Ψ(x, t) := Co

 ⋃
‖ux‖2+|ut|2≤2

(2 + ut)[F0(x)× {−1}] + ε{ux} × {0}

 .
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The set-valued map Ψ satisfies the regularity condition (1). Setting ut = −1, it is
easily seen that Φ(x, t) ⊂ Ψ(x, t). So it remains to show that the hamiltonian HΨ of
Ψ satisfies (13) and (21).

HΨ satisfies (13) and (21). A little computation gives

HΨ(x, t, px, pt)

= minv∈F0(x)

[
−2pt + 2〈v, px〉 −

√
2
(
(−pt + 〈v, px〉)2 + ε2‖px‖2

) 1
2
]
.

Note that equivalence (21) is fulfilled. The eigenvalues of the quadratic form Qv
defined by (px, pt)→ (−pt + 〈v, px〉)2 + ε2‖px‖2 are

λ1 = ε2 (eigenvector (w, 0) where w ⊥ v),

λ2 =
ε2+‖v‖2+1+((ε2+‖v‖2+1)2−4ε2)

1
2

2 (eigenvector (v, ε2 + ‖v‖2 − λ2)),

λ3 =
ε2+‖v‖2+1−((ε2+‖v‖2+1)2−4ε2)

1
2

2 (eigenvector (v, ε2 + ‖v‖2 − λ3)).

Thus Qv is positive definite and Lemma 2.1 states that, for

α := min
x∈O′

min
v∈F0(x)

ε2

(ε2 + ‖v‖2 + 1)
3
2
,

the map (px, pt)→
[
(−pt + 〈v, px〉)2 + ε2‖px‖2

] 1
2−α‖(px, pt) | is convex. So (px, pt)→

HΨ(px, pt)+α
√

2‖(px, pt)‖ is concave, and Proposition 3.1 is proved since α > 0.

3.2. The regularity results. We now apply Theorems 1.3 and 2.1 in the case
when M is the epigraph of θΩ.

THEOREM 3.1 (regularity of θΩ). Let F : RN  RN be a set-valued map satisfying
(1) and (12). Then

(i) θΩ is Lipschitz continuous in a open subset L of RN which is dense in dom(θΩ).
Moreover, θΩ is also semiconcave in L with a modulus of semiconcavity of the form
ω(t) = kt

3
2 .

(ii) A point x belongs to dom(θΩ)\L if and only if

lim inf
x′→x

θΩ(x′)− θΩ(x)
‖x′ − x‖ = −∞.

Remarks.
(1) We do not assume in Theorem 3.1 that the set Ω is smooth or that the hamil-

tonian is differentiable. In this situation, assumption (12) is crucial. For instance, for
the dynamic F (x, y) := [−1, 1] × [−1, 1] (which clearly does not satisfy (12)), there
are open sets Ω such that the optimal exit-time θΩ for F is not continuous in any
open subset of Ω.

(2) Theorem 3.1 still holds partially true for constrained optimal exit-time prob-
lems (for the formulation of this problem, see [5]). Then L is an open dense subset
of dom(θΩ) ∩ Int(K), where K is the constraint and θΩ is (locally) Lipschitz and
semiconcave in L.

(3) In the proof of Theorem 3.1, we never need the fact that the function we are
studying is the optimal exit-time function. So our results are still valid in any case
when the boundary of the epigraph of the lower semicontinuous function is semiper-
meable for a set-valued map Ψ satisfying (1) and (12).
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Before beginning the proof of Theorem 3.1, let us recall some basic facts concern-
ing the epigraph of a lower semicontinuous function.

LEMMA 3.1. Let φ : RN → R ∪ {+∞} be a lower semicontinuous function. We
set dom(φ) := {x | φ(x) < +∞} and M := Epi(φ). Let x ∈ dom(φ).

(α) If (vx, vt) belongs to DM (x, φ(x)), then vx belongs to Ddom(φ)(x).
(β) If φ is not continuous at x, then there is some t > 0 such that (x, φ(x) + t)

belongs to ∂Epi(φ).
(γ) If x belongs to dom(φ), then, for any t > 0, the vector (0,−1) belongs to

TEpi(φ)(x, φ(x) + t).
Proof of Theorem 3.1. Thanks to the construction of Proposition 3.1, M :=

Epi(θΩ) satisfies the conclusion of Theorems 1.3 and 2.1.
Set

A := {x ∈ dom(θΩ) | (0,−1) ∈ TM (x, θΩ(x))}

and L := dom(θΩ)\A.
Let us show that A is closed in dom(θΩ) and has an empty interior, and that L

is open. Then we prove that θΩ is locally Lipschitz on L. Note that, from the very
definition of the contingent cone, (b) is satisfied.
• A is closed. Let (xn) be a sequence of A converging to x ∈ dom(θΩ). We have

to prove that x belongs to A. There are two cases.
(1) Either

lim inf
n

θΩ(xn) = θΩ(x).

Then a subsequence (xn′ , θΩ(xn′)) converges to (x, θΩ(x)) and so

Limsup TM (xn′ , θΩ(xn′)) ⊂ TM (x, θΩ(x))

from Theorem 1.3. In particular, (0,−1) belongs to TM (x,θΩ(xn)) and thus belongs
to TM (x, θΩ(x)). So x belongs to A.

(2) Or θΩ is not continuous at x. Then Lemma 3.1 (β) states that there is some
τ > 0 such that (x, τ + θΩ(x)) belongs to ∂M . So, for any t ∈ (0, τ ], the point
(x, θΩ(x) + t) belongs to the boundary of M and (0,−1) belongs to TM (x, θΩ(x) + t)
(Lemma 3.1 (γ)). Letting t→ θΩ(x) means that (0,−1) belongs to TM (x, θΩ(x)).

So we have proved that, in both cases, x belongs to A. Thus A is closed in
dom(θΩ).
• A has an empty interior. Assume to the contrary that x + rB is contained in

A. Then, if (y, ρ) belongs to [(x+ rB)×R]∩M , (0,−1) belongs to TM (y, ρ) because
either ρ = θΩ(y) (and so it is true from the very definition of A) or ρ > θΩ(y) (and

then it is true from Lemma 3.1). So [(x+ r
o

B)×R]∩M is a locally compact viability
domain for the map (y, ρ)→ (0,−1). The viability theorem states that there is some
τ > 0 such that (x, θΩ(x)− t) remains in M on [0, τ ]. This is impossible, because M
is the epigraph of θΩ.
• L := dom(θΩ)\A is open. Let x belong to dom(θΩ), but not to A. From Theo-

rem 1.1, TM (x, θΩ(x)) is a union of half-spaces, so that there is some (px, pt) ∈ RN+1

such that (px, pt)− ⊂ TM (x, θΩ(x)). Since (0,−1) does not belong to TM (x, θΩ(x)),
pt < 0. Moreover, Theorem 1.2 states that

Int[(px, pt)]− ⊂ DM (x, θΩ(x)).



1668 PIERRE CARDALIAGUET

Since, for any v ∈ RN , one can find some ρ such that 〈px, v〉 + ptρ < 0 because
pt 6= 0, v belongs to Ddom(θΩ)(x) from Lemma 3.1 (α). Thus RN\{0} is contained in
Ddom(θΩ)(x), which means that x belongs to the interior of dom(θΩ).
• θΩ is locally Lipschitz on L. Let x+ rB be contained in L. In a first step, we

prove that θΩ is continuous on x+ rB. Then we prove that there is some γ > 0 such
that

∀y ∈ x+ rB, ∀v ∈ RN ,
(
{v} ×

[
−‖v‖

γ
,
‖v‖
γ

])
∩ T∂M (x, φ(x)) 6= ∅.(22)

We finally show that θΩ is 1/γ-Lipschitz on x+ rB.
First step. From Lemma 3.1, if θΩ is not continuous at a point y ∈ dom(θΩ), there

is some τ > 0 such that (y, θΩ(y)+τ) belongs to ∂M . From Lemma 3.1 again, (0,−1)
belongs then to TM (y, θΩ(y) + τ). With the same arguments as we used previously,
we can show that (0,−1) belongs to TM (x, θΩ(x)), which contradicts y ∈ L. So θΩ is
continuous on x+ rB.

Second step. The graph of the restriction of θΩ to x+rB is compact because θΩ is
continuous on x+ rB. From Theorem 1.3, the set-valued map TM (·) on the compact
Graph(θΩ) restricted to x + rB has a closed graph. Let ε > 0 be the distance from
(0,−1) to this closed graph. Set γ := ε/2.

Let y ∈ x+ rB and v ∈ RN . Since(
v,−‖v‖

γ

)
∈
⋃
λ≥0

λ
(

(0,−1) + ε
o

BN+1

)
,

(v,−‖v‖γ ) does not belong to TM (y, θΩ(y)). From Theorem 1.1, TM (y, θΩ(y)) is a

union of half-spaces. Thus (−v, ‖v‖γ ) belongs to TM (y, φ(y)). So we have obtained,
∀w ∈ RN , (

w,
‖w‖
γ

)
∈ TM (y, θΩ(y)) and

(
w,−‖w‖

γ

)
/∈ TM (y, θΩ(y)).

Then the Quincampoix lemma [9] gives (22).

Third step. Thanks to (22), the set ∂M∩((x+r
o

B)×R) is a locally viable domain
for the constant set-valued map Gv defined by y  {v} × [−‖v‖γ−1, ‖v‖γ−1] and for
any v ∈ RN .

Let y and z belong to x + rB. For v := z − y, the viability theorem states
that there is a solution (y(·), ρ(·)) of the differential inclusion for Gv starting from
(y, θΩ(y)) which remains in ∂M until it leaves (x + rB) × R. For t = 1 the solution
still satisfies (y(1), ρ(1)) ∈ ∂M . Thus ρ(1) is equal to θΩ(z). From the very definition
of the set-valued map Gv, |ρ(1)− ρ(0)| ≤ ‖z−y‖γ , i.e.,

|θΩ(z)− θΩ(y)| ≤ ‖z − y‖
γ

.

So θΩ is Lipschitz. Thanks to Proposition 2.3, θΩ is semiconcave with a modulus of
semiconcavity of the form ω(t) = kt

3
2 . This completes the proof of Theorem 3.1.

3.3. Regularity along optimal trajectories. With any initial position x ∈ Ω,
one can associate at least one optimal solution x(·) ∈ SF (x) with the optimal exit-time
problem, i.e., a solution such that

θΩ(x) = inf{t ≥ 0 | x(t) /∈ Ω}.
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The aim of this section is to show that, for any optimal trajectory x(·), either the
optimal exit-time θΩ is differentiable at x(t) for any t ∈]0, θΩ(x(0))[ or it is not differ-
entiable at any point x(t) for any t ∈]0, θΩ(x(0))[. A similar phenomenon is observed
in [6] for the Bolza problem, where any optimal solution enters immediately into the
differentiability domain of the (Lipschitz continuous) value function.

Throughout this section, we assume that the set-valued map F satisfies (1) and
(12).

LEMMA 3.2. If a solution x(·) ∈ SF (x) is optimal for the optimal exit-time
problem, then the map (x(·), θΩ(x(·))) is a barrier solution for the set-valued map Ψ
and the closed set Epi(θΩ).

Proof. Note first that θΩ(x(t)) = θΩ(x) − t. Thus (x(·)), θΩ(x(·))) is a solution
for Φ and so for Ψ (because Φ(x, t) ⊂ Ψ(x, t) from Proposition 3.1). This solution
remains on the boundary of Epi(θΩ) from the very definition of the epigraph of a
function. Thus this solution is a barrier solution.

PROPOSITION 3.2. Let x ∈ Ω and x(·) ∈ SF (x) be an optimal solution of the
optimal exit-time problem.

If x belongs to L, then x(t) belongs to L for any t ∈]0, θΩ(x)[.
If x does not belong to L and if the adjoint (px(·), pt(·)) of the barrier solution

(x(·), θΩ(x(·))) satisfies pt(0) = 0, then x(t) does not belong to L for t ∈ [0, θΩ(x)[.
COROLLARY 3.1. Let x ∈ Ω and x(·) ∈ SF (x) be an optimal solution of the

optimal exit-time problem.
• If x belongs to L, then θΩ is differentiable at x(t) for t ∈]0, θΩ(x)[.
• If θΩ is not differentiable at some point x(t) with t ∈]0, θΩ(x)[, then θΩ is not

differentiable at any point x(s) for s ∈ [0, θΩ(x)[. Moreover, x(s) does not belong to
L for s ∈]0, θΩ(x)[.

Proof of Corollary 3.1. We set M := Epi(θΩ). From Proposition 3.2, x(t) be-
longs to L for t ∈ [0, θΩ(x)[. From Lemma 3.2, (x(·), θΩ(x(·))) is a barrier solution.
Thus Theorem 2.1 of Part I states that there is a function (px(·), pt(·)) adjoint of
(x(·), θΩ(x(·))) on ]0, θΩ(x)[. Moreover,

TEpi(θΩ)(x(t), θΩ(x(t))) = (px(t), pt(t))−.

Since x(t) belongs to L for t ∈ [0, θΩ(x)[, pt(t) 6= 0 on [0, θΩ(x)[. In particular,

∇θΩ(x(t)) = −px(t)
pt(t)

,

and θΩ is derivable on [0, θΩ(x)[.
For proving the second point, note first that x(t) /∈ L. Indeed, since t > 0,

TM (x(t), θΩ(x(t)) is a half-space (Theorem 2.1 of Part I). Thus θΩ is derivable at x(t)
unless the half-space TM (x(t), θΩ(x(t)) is vertical, i.e., x(t) /∈ L.

If 0 ≤ s < t, then x(s) does not belong to L from Proposition 3.2, and thus θΩ
is not derivable at x(s). If we denote by (px(·), pt(·)) the adjoint of (x(·), θΩ(x(·))),
Theorem 2.1 of Part I states that

∀s ∈]0, θΩ(x)[, TM (x(s), θΩ(x(s))) = (px(·), pt(·))−.

Since x(t) /∈ L, pt(t) = 0. Thus Proposition 3.2 states that x(s) /∈ L for s ∈ [t, θΩ(x)[.
This completes the proof of the corollary.

Proof of Proposition 3.2.
• Let us assume that x(t) does not belong to L for some t ∈]0, θΩ(x)[. Thus

(0,−1) belongs to TM (x(t), θΩ(x(t))) and there are sequences hn → 0+, vn → 0, and
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τn → −1 such that, for any n, (x(t) + hnvn, θΩ(x(t)) + hnτn) belongs to M , i.e.,

θΩ(x(t) + hnvn) ≤ θΩ(x(t)) + hnτn.

From Filippov’s theorem applied to −F , there is a sequence of solutions yn(·) ∈
S−F (x+ hnvn), such that

∀s ∈ [0, t], ‖yn(s)− x(t− s)‖[0,t] ≤ e`thn‖vn‖.

Since yn(·) are solutions to the differential inclusion for−F , (yn(·), θΩ(x(t)) + hnτn + ·)
is a solution for −Φ and so for −Ψ starting from M and remaining in M from semiper-
meability of M . Let us recall that θΩ(x(t)) = θΩ(x)− t. Thus

(yn(t), θΩ(x) + hnτn) ∈M.

Since ‖yn(t) − x‖ ≤ hn‖vn‖ from the very definition of yn(·), we have finally proved
that (0,−1) belongs to TM (x, θΩ(x)).
• Let us now assume that x does not belong to L, that x(·) is an optimal solution

starting from x, and that the adjoint (px(·), pt(·)) of (x(·), θΩ(x(·))) satisfies pt(0) = 0.
In a first step, we show that, if 0 < s < t < θΩ(x) and if (v, τ) belongs

to T
M̂

(x(s), θΩ(x(s))), then there is some w with (w, τ) ∈ T
M̂

(x(t), θΩ(x(t))) and
‖w − v‖ ≤ e`t‖v‖.

Since (v, τ) belongs to T
M̂

(x(s), θΩ(x(s))), there are sequences hn → 0+, vn → v,
and τn → τ such that (x(s) + hnvn, θΩ(x(s)) + hnτn) belongs to M̂ . From Filippov’s
theorem, there are solutions xn(·) of the differential inclusion for F starting from
x(s) + hnvn at time s such that

‖xn(·)− x(·)‖[s,t] ≤ e`thn‖vn‖.

Then xn(t)−x(t)
hn

converges, up to a subsequence, to some w with ‖w − v‖ ≤ e`t‖v‖.
Moreover, the solutions (xn(·), θΩ(x(s))+hnτn−·) start from M̂ , so that, for semiper-
meability, (xn(t), θΩ(x(t)) + hnτn) belongs to M̂ . So (w, τ) belongs to T

M̂
(x(t),

θΩ(x(t))) with ‖w − v‖ ≤ e`t‖v‖, and our claim is proved.
Let us now prove that, for any t ∈]0, θΩ(x)[, pt(t) = 0. Recall that, from Theorem

2.1 of Part I, the adjoint (px(·), pt(·)) is Lipschitz. In particular, pt(s) → 0 when
s → 0+. Fix t ∈]0, θΩ(x)[ and let 0 < s < t. Let (vs, τs) be the projection of (0, 1)
onto T

M̂
(x(s), θΩ(x(s))) = (px(s), pt(s))+. Note that (vs, τs) converges to (0, 1) when

s → 0+ since (px(s), pt(s)) → (px(0), 0). We previously proved that there is some
ws such that (ws, τs) belongs to T

M̂
(x(t), θΩ(x(t))) and ‖ws − vs‖ ≤ e`t‖vs‖. Since

vs → 0, ws → 0 when s → 0+. The contingent cone T
M̂

(x(t), θΩ(x(t))) is closed, so
that (0, 1), which is the limit of (ws, τs), belongs to T

M̂
(x(t), θΩ(x(t))). Thus we have

proved that, for any t ∈]0, θΩ(x)[, (0, 1) belongs to T
M̂

(x(t), θΩ(x(t))), which is equal
to (px(t), pt(t))+; thus pt(t) ≥ 0. Since M is an epigraph, pt(t) is nonpositive, and so
pt = 0 for any t ∈]0, θΩ(x)[.

To complete the proof, let us recall that TM (x(t), θΩ(x(t))) is equal to (px(t), pt(t))−

for any t ∈]0, θΩ(x)[. Since pt(t) = 0, the vector (0,−1) belongs to TM (x(t), θΩ(x(t))),
which means that x(t) does not belong to L for any t ∈]0, θΩ(x)].
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Abstract. In this paper we consider the problem of minimizing the `1 norm of the transfer
function from the exogenous input to the regulated output over all internally stabilizing controllers
while keeping its H2 norm under a specified level. The problem is analyzed for the discrete-time,
single-input single-output (SISO), linear-time invariant case. It is shown that an optimal solution
always exists. Duality theory is employed to show that any optimal solution is a finite impulse
response sequence, and an a priori bound is given on its length. Thus, the problem can be reduced
to a finite-dimensional convex optimization problem with an a priori determined dimension. Finally,
it is shown that, in the region of interest of the H2 constraint level, the optimal is unique and
continuous with respect to changes in the constraint level.

Key words. robust control, duality, `1 optimization, discrete time

AMS subject classifications. 49N05, 49N10, 49N15, 49N35, 93C55

PII. S0363012995286666

1. Notation. The following notation is employed in this paper:
int(X) The interior of a set X.
|x|1 The 1-norm of the vector x ∈ Rn.
|x|2 The 2-norm of the vector x ∈ Rn.
x̂(λ) The λ transform of a right-sided real sequence x = (x(k))∞k=0 defined

as x̂(λ) :=
∑∞
k=0 x(k)λk.

`1 The Banach space of right-sided absolutely summable real sequences
with the norm given by ‖ x ‖1:=

∑∞
k=0 |x(k)|.

`∞ The Banach space of right-sided, bounded sequences with the norm
given by ‖ x ‖∞:= supk |x(k)|.

c0 The subspace of `∞ with elements x that satisfy limk→∞ x(k) = 0.
`2 The Banach space of right-sided square summable sequences with the

norm given by ‖ x ‖2:=
[∑∞

k=0 x(k)2
] 1

2 .
H2 The isometric isomorphic space of l2 under the λ transform x̂(λ) with

the norm given by ‖ x̂(λ) ‖2=‖ x ‖2 .
X∗ The dual space of the Banach space X. 〈x, x∗〉 denotes the value of

the bounded linear functional x∗ at x ∈ X.
W (X∗, X) The weak star topology on X∗ induced by X. In this topology,

x∗n → x∗ if and only if 〈x, x∗n〉 → 〈x, x∗〉 for all x ∈ X.
T ∗ The adjoint operator of T : X → Y which maps Y ∗ to X∗.
The following identities also hold (see, e.g., [7]): (`1)∗ = `∞, (c0)∗ = `1, (`2)∗ = `2.

2. Introduction. Consider the finite-dimensional linear time invariant system
depicted in Figure 2.1, where P denotes the plant and K denotes the controller. The
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FIG. 2.1. Plant controller configuration.

signal w is the exogenous input and z is the regulated output. The signals u and
y denote the control input and the measured output, respectively. Let Tzw be the
closed-loop transfer function which maps w to z.

Many important control problems can be reduced to the above setup, where the
objective is to minimize a suitably defined measure of Tzw. In the standard `1 problem
the design of an internally stabilizing controller such that the `∞ norm of the regulated
output z due to the worst-case magnitude bounded disturbance w is addressed. It is
shown in [3] that this problem reduces to solving finite-dimensional linear programs.
The analogous problem, with the signal measures being the `2 norm, is the standard
H∞ problem. The standard H2 problem is concerned with the minimization of the
energy contained in the pulse response of the closed loop, Tzw. This can be viewed
as minimizing the variance of the regulated output z due to a white noise input w.
Both problems are discussed in [4].

It is well known (see, e.g., [2]) that optimization with respect to a particular
norm may not necessarily yield good performance with respect to another. Thus,
if enhanced performance is required with respect to multiple measures, then it is
necessary to include all these measures directly into the design process. As a logical
step, the design of controllers to satisfy mixed performance criteria has recently been
the focus of researchers. Several state-space results on the interplay between the
H2 and H∞ are available (see, e.g., [5]). In [1] it is shown that a wide variety of
mixed control problems reduce to convex optimization problems, and it is argued
that the present technology makes it possible to deem the problem solved if it can be
reduced to a convex optimization problem. In this light it is appropriate to exploit
as much structure in the problem as possible, so that the standard software available
becomes computationally efficient. In [6] the problem of minimizing the `1 norm of
the closed loop under linear inequality constraints is addressed. Every such problem
is equivalent to a linear programming problem which has a canonical dual problem
associated with it. Contrary to the finite-dimensional case, it is not true that every
infinite-dimensional linear program has the same optimal value as its dual. However,
it was shown by the authors that under some conditions this “duality gap” does not
exist between the primal and the dual, which is advantageous from a computational
point of view. The problem of minimizing the `1 norm of the closed loop while
keeping the H∞ norm under a prescribed level falls under the above category. In [8]
the problem of minimizing the `1 norm of a single-input single-output (SISO) transfer
function while keeping the H∞ norm of the closed-loop system under a specified value
is reduced to solving a sequence of finite-dimensional convex optimization problems
and an unconstrained H∞ problem. In [9] it is shown that the H2/`1 problem, the
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problem of minimizing the H2 norm of the closed loop while maintaining the `1
norm below a prescribed value, reduces to a finite-dimensional convex optimization
problem. However, no a priori bound on its dimension is furnished, which substantially
degrades the efficiency of the solution procedure since it may require a large number
of iterations.

In this paper, the `1/H2 problem, which is the problem of minimizing the `1
norm of Tzw while keeping the H2 norm below a prescribed level, is considered. This
problem not only complements the one studied in [9], but it also turns out that
much stronger results can be obtained which make this problem considerably more
attractive to solve. In particular, it is shown that the problem reduces to a convex
finite-dimensional one, and an a priori bound on its dimension is established. The
latter feature is important in reducing the computational burden. Furthermore, the
developments in this paper are substantially different than those in [9] and are more
far reaching.

The paper is organized as follows. In section 3 relevant duality theory results
are given. In section 4 the problem statement is made precise. In section 5 it is
shown that an optimal solution always exists, and that it is a finite impulse response
sequence. An a priori bound is given on its length. In section 6 the region of interest
of the constraint level on the H2 norm is determined. It is shown that in this region
the optimal is unique and is continuous with respect to changes in the constraint level.
In section 7 an example is given to demonstrate the theory developed.

3. Mathematical preliminaries. In this section we present a Lagrange duality
theorem that applies to the minimization of a convex functional subject to both
equality and inequality constraints. A sensitivity result which follows directly from
the Lagrange duality theorem is presented. We employ the terminology used in [7],
which is standard. First, we need the following definitions.

DEFINITION 3.1. Let P be a convex positive cone in a vector space X. We write
x ≥ y if x−y ∈ P. We write x > 0 if x ∈ int(P ). Similarly, x ≤ y if x−y ∈ −P := N
and x < 0 if x ∈ int(N). Given a vector space X with positive cone P the positive
cone in X∗, P⊕ is defined as

P⊕ := {x∗ ∈ X∗ : 〈x, x∗〉 ≥ 0 for all x ∈ P}.

DEFINITION 3.2. Let X be a vector space and Z be a vector space with positive cone
P. A mapping G : X → Z is convex if G(tx+(1−t)y) ≤ tG(x)+(1−t)G(y) for all x, y
in X and t with 0 ≤ t ≤ 1 and is strictly convex if G(tx+(1−t)y) < tG(x)+(1−t)G(y)
for all x 6= y in X and t with 0 < t < 1.

The following is a Lagrange duality theorem.
THEOREM 3.3. Let X be a Banach space, Ω be a convex subset of X, Y be a

finite-dimensional normed space, and Z be a normed space with positive cone P. Let
Z∗ denote the dual space of Z with a positive cone P⊕. Let f : Ω→ R be a real valued
convex functional, g : X → Z be a convex mapping, H : X → Y be an affine linear
map, and 0 ∈ int[range(H)]. Define

µ0 := inf{f(x) : g(x) ≤ 0, H(x) = 0, x ∈ Ω}.(3.1)

Suppose that there exists x1 ∈ Ω such that g(x1) < 0 and H(x1) = 0, and suppose
that µ0 is finite. Then

µ0 = max{ϕ(z∗, y) : z∗ ≥ 0, z∗ ∈ Z∗, y ∈ Y },(3.2)
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where ϕ(z∗, y):= inf{f(x) + 〈g(x), z∗〉 + 〈H(x), y〉 : x ∈ Ω }, and the maximum is
achieved for some z∗0 ≥ 0, z∗0 ∈ Z∗, y0 ∈ Y .

Furthermore, if the infimum in (3.1) is achieved by some x0 ∈ Ω, then

〈g(x0), z∗0〉+ 〈H(x0), y0〉 = 0,(3.3)

and

x0 minimizes f(x) + 〈g(x), z∗0〉+ 〈H(x), y0〉 over all x ∈ Ω.(3.4)

Proof. Given any z∗ ≥ 0, y ∈ Y , we have inf{f(x)+〈g(x), z∗〉+〈H(x), y〉 : x ∈ Ω}
≤ inf{f(x) + 〈g(x), z∗〉 + 〈H(x), y〉 : x ∈ Ω, g(x) ≤ 0, H(x) = 0} ≤ inf{f(x) : x ∈
Ω, g(x) ≤ 0, H(x) = 0}= µ0. Therefore, it follows that max{ϕ(z∗, y) : z∗ ≥ 0, y ∈
Y }≤ µ0. From Problem 7 of [7, Chap. 8] (see Lemma 9.1 in the Appendix for problem
statement and proof), we know that there exists z∗0 ∈ Z∗, z∗0 ≥ 0, y0 ∈ Y such that
µ0 = ϕ(z∗0 , y0). This proves (3.2).

Suppose there exists x0 ∈ Ω, H(x0) = 0, g(x0) ≤ 0, and µ0 = f(x0); then
µ0 = ϕ(z∗0 , y0) ≤ f(x0) + 〈g(x0), z∗0〉+ 〈H(x0), y0〉 ≤ f(x0) = µ0. Therefore, we have
〈g(x0), z∗0〉+ 〈H(x0), y0〉 = 0 and µ0 = f(x0) + 〈g(x0), z∗0〉+ 〈H(x0), y0〉. This proves
the theorem.

We refer to (3.1) as the primal problem and (3.2) as the dual problem.
COROLLARY 3.4. Let X,Y, Z, f,H, g,Ω be as in Theorem 3.3. Let x0 be the

solution to the problem

minimize f(x)
subject to x ∈ Ω, H(x) = 0, g(x) ≤ z0,

with (z∗0 , y0) as the dual solution. Let x1 be the solution to the problem

minimize f(x)
subject to x ∈ Ω, H(x) = 0, g(x) ≤ z1,

with (z∗1 , y1) as the dual solution. Then

〈z1 − z0, z
∗
1〉 ≤ f(x0)− f(x1) ≤ 〈z1 − z0, z

∗
0〉.(3.5)

Proof. From Theorem 3.3 we know that for any x ∈ Ω,

f(x0) + 〈g(x0)− z0, z
∗
0〉+ 〈H(x0), y0〉

≤ f(x) + 〈g(x)− z0, z
∗
0〉+ 〈H(x), y0〉.

In particular, we have

f(x0) + 〈g(x0)− z0, z
∗
0〉+ 〈H(x0), y0〉

≤ f(x1) + 〈g(x1)− z0, z
∗
0〉+ 〈H(x1), y0〉.

From Theorem 3.3 we know that 〈g(x0) − z0, z
∗
0〉 + 〈H(x0), y0〉 = 0 and H(x1) = 0.

This implies

f(x0)− f(x1) ≤ 〈g(x1)− z0, z
∗
0〉 ≤ 〈z1 − z0, z

∗
0〉.

A similar argument gives the other inequality. This proves the corollary.
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4. Problem formulation. Consider the standard feedback problem represented
in Figure 2.1, where P and K are the plant and the controller, respectively. Let w
represent the exogenous input, z represent the output of interest, y be the measured
output, and u be the control input where z and w are assumed scalar. Let φ be the
closed-loop map which maps w → z. From the Youla parametrization (see, e.g., [2])
it is known that all achievable closed-loop maps under stabilizing controllers are given
by φ = h− u ∗ q (∗ denotes convolution), where h, u, q ∈ `1, h, u depend only on the
plant P , and q is a free parameter in `1. Throughout the paper we make the following
assumption.

ASSUMPTION 1. All the zeros of û (the λ transform of u) inside the unit disc are
real and distinct. Also, û has no zeros on the unit circle.

The assumption that all zeros of û which are inside the open unit disc are real
and distinct is not restrictive and is made to streamline the presentation of the paper.
Let the zeros of u which are inside the unit disc be given by z1, z2, . . . , zn. Let

Θ := {φ : there exists q ∈ `1 with φ = h− u ∗ q}.

Θ is the set of all achievable closed-loop maps under stabilizing controllers. Let
A : `1 → Rn be given by

A =


1 z1 z2

1 z3
1 . . .

1 z2 z2
2 z3

2 . . .
...

...
...

...
...

1 zn z2
n z3

n . . .

 ,

and b ∈ Rn be given by

b =


ĥ(z1)
ĥ(z2)

...
ĥ(zn)

 .

THEOREM 4.1. The following is true:

Θ = {φ ∈ `1 : φ̂(zi) = ĥ(zi) for all i = 1, . . . , n}
= {φ ∈ `1 : Aφ = b}.

Proof. The proof is given in [2, pp. 104–105].
The problem

ν∞ := inf{‖ h− u ∗ q ‖1 : q ∈ `1}
= inf{‖ φ ‖1 : φ ∈ `1 and Aφ = b}(4.1)

is the standard `1 problem. In [3] it is shown that this problem has a solution which
is possibly nonunique. Optimal solutions are shown to be finite impulse response
sequences. Let

µ∞ := inf{‖ h− u ∗ q ‖22 : q ∈ `1},
= inf{‖ φ ‖22 : φ ∈ `1 and Aφ = b},(4.2)
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which is the standard H2 problem. The solution to this problem is unique, and the
solution is an infinite impulse response sequence. Define

m1 := inf
Aφ=b,‖φ‖2≤µ∞

‖ φ ‖1,(4.3)

which is the `1 norm of the unique optimal solution of the standard H2 problem. Let

m2 := inf
Aφ=b,‖φ‖≤ν∞

‖ φ ‖22
,(4.4)

which is the infimum over the `2 norms of the optimal solutions of the standard `1
problem.

The problem of interest is as follows: given a positive constant γ > µ∞ obtain a
solution to the following mixed objective problem:

νγ := inf{‖ h− u ∗ q ‖1 : q ∈ `1 and〈h− u ∗ q, h− u ∗ q〉 ≤ γ}
= inf{‖ φ ‖1 : φ ∈ `1 , Aφ = b and 〈φ, φ〉 ≤ γ}.(4.5)

Note that 〈., .〉 is the inner product associated with `2. In the following sections we
will study this problem from the point of view of existence, structure, continuity, and
computation of the optimal solutions.

5. Analysis of optimal solutions and their properties. In the first part of
this section we show that (4.5) always has a solution. In the second part we show that
any solution to (4.5) is of finite length, and in the third, we give an a priori bound on
the length.

5.1. Existence of a solution. Here we show that a solution to (4.5) always
exists. We use the following lemma (see, e.g., [7]) to prove the main result of this
subsection.

LEMMA 5.1 (Banach–Alaoglu). Let X be a Banach space with X∗ as its dual.
Then the set {x∗ : x∗ ∈ X∗, ‖ x∗ ‖≤M} is W (X∗, X) compact for any M ∈ R.

THEOREM 5.2. There exists φ0 ∈ Φ such that

‖ φ0 ‖1 = inf
φ∈Φ
{‖ φ ‖1},

where Φ:={φ ∈ `1 : Aφ = b and〈φ, φ〉 ≤ γ} with γ > µ∞. Therefore, the infimum in
(4.5) is a minimum.

Proof. We denote the feasible set of our problem by Φ:={φ ∈ `1 : Aφ =
b and〈φ, φ〉 ≤ γ}. νγ < ∞ because γ > µ∞, and therefore the feasible set is not
empty. Let B := {φ ∈ `1 : ‖ φ ‖1 ≤ νγ + 1}. It is clear that

νγ = inf
φ∈Φ∩B

{‖ φ ‖1}.

Therefore, given i > 0, there exists φi ∈ Φ ∩ B such that ‖ φi ‖1 ≤ νγ + 1
i . B is a

bounded set in `1 = c∗0. It follows from the Banach–Alaoglu lemma that B is W (c∗0, c0)
compact. Using the fact that c0 is separable, we know that there exists a subsequence
{φik} of {φi} and φ0 ∈ Φ∩B such that φik → φ0 in the W (c∗0, c0) sense; that is, for
all v in c0,

〈v, φik〉 → 〈v, φ0〉 as k →∞.(5.1)
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Let the jth row of A be denoted by aj and the jth element of b be given by bj . Then,
as aj ∈ c0 we have

〈aj , φik〉 → 〈aj , φ0〉 as k →∞ for all j = 1, 2, . . . , n.(5.2)

As A(φik) = b we have 〈aj , φik〉 = bj for all k and for all j which implies 〈aj , φ0〉 = bj
for all j. Therefore, we have A(φ0) = b. As l2 ⊂ c0 we have from (5.1) that for all v
in l2,

〈v, φik〉 → 〈v, φ0〉 as k →∞,(5.3)

which shows that φik → φ0 in W (l∗2, l2). Also, from the construction of φik , we know
that ‖ φik ‖2 ≤

√
γ. From Lemma 5.1 we conclude that 〈φ0, φ0〉 ≤ γ, and therefore

we have shown that φ0 ∈ Φ. Recall that φik were chosen so that ‖ φik ‖1 ≤ νγ + 1
ik
.

From Lemma 5.1 we have that ‖ φ0 ‖1 ≤ νγ + 1
ik

for all k. Therefore ‖ φ0 ‖1 ≤
νγ . As φ0 ∈ Φ (which is the feasible set) we have ‖ φ0 ‖1 = νγ . This proves the
theorem.

5.2. Structure of optimal solutions. In this subsection we use Lagrange du-
ality results to show that every optimal solution is of finite length. The following two
lemmas establish the dual problem.

LEMMA 5.3.

νγ = max{ϕ(y1, y2) : y1 ≥ 0 and y2 ∈ Rn},(5.4)

where

ϕ(y1, y2) := inf
φ∈`1
{‖ φ ‖1 + y1(〈φ, φ〉 − γ) + 〈b−Aφ, y2〉}.

Proof. We will apply Theorem 3.3 to get the result. Let X,Ω, Y, Z in Theorem 3.3
correspond to `1, `1, Rn, and R, respectively. Let g(φ) := 〈φ, φ〉 − γ, H(φ) := b−Aφ.
With this notation, we have Z∗ = R.

A has full range, which implies 0 ∈ int[range(H)]. γ > µ∞, and therefore there
exists φ1 such that 〈φ1, φ1〉 − γ < 0 and H(φ1) = 0. Therefore, all the conditions of
Theorem 3.3 are satisfied. From Theorem 3.3 we have

νγ = max
y1≥0,y2∈Rn

inf
φ∈`1
{‖ φ ‖1 + y1(〈φ, φ〉 − γ) + 〈b−Aφ, y2〉}.

This proves the lemma.
The right-hand side of (5.4) is the dual problem.
LEMMA 5.4. The dual problem is given by

max{ϕ(y1, y2) : y1 ≥ 0 and y2 ∈ Rn},(5.5)

where

ϕ(y1, y2) := inf
φ∈`1,φ(i)v(i)≥0

{‖ φ ‖1 + y1(〈φ, φ〉 − γ) + 〈b, y2〉 − 〈φ, v〉}.

v(i) is defined by v(i) := A∗y2(i).
Proof. Let y1 ≥ 0, y2 ∈ Rn. It is clear that

inf
φ∈`1
{‖ φ ‖1 + y1(〈φ, φ〉 − γ) + 〈b−Aφ, y2〉}

= inf
φ∈`1
{‖ φ ‖1 + y1(〈φ, φ〉 − γ) + 〈b, y2〉 − 〈φ, v〉}.
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Suppose φ ∈ `1 and there exists i such that φ(i)v(i) < 0; then define φ1 ∈ `1
such that φ1(j) = φ(j) for all j 6= i and φ1(i) = 0. Therefore, we have ‖ φ ‖1 +
y1(〈φ, φ〉 − γ) + 〈b, y2〉 − 〈φ, v〉 ≥ ‖ φ1 ‖1 + y1(〈φ1, φ1〉 − γ) + 〈b, y2〉 − 〈φ1, v〉. This
shows that we can restrict φ in the infimization to satisfy φ(i)v(i) ≥ 0. This proves the
lemma.

The following theorem is the main result of this subsection. It shows that any
solution of (4.5) is a finite impulse response sequence.

THEOREM 5.5. Define T :={φ ∈ `1 : there exists L∗ with φ(i) = 0 if i ≥ L∗}.
The dual of the problem is given by

max{ϕ(y1, y2) : y1 ≥ 0, y2 ∈ Rn},(5.6)

where

ϕ(y1, y2) := inf
φ∈T ,φ(i)v(i)≥0

{‖ φ ‖1 + y1(〈φ, φ〉 − γ) + 〈b, y2〉 − 〈φ, v〉}.

v(i) defined by v(i) = A∗y2(i). Also, any optimal solution φ0 of (4.5) belongs to T .
Proof. Let yγ1 ≥ 0, yγ2 ∈ Rn be the solution to

max
y1≥0,y2∈Rn

inf
φ∈`1,φ(i)v(i)≥0

{‖ φ ‖1 + y1(〈φ, φ〉 − γ) + 〈b−Aφ, y2〉}.

It is easy to show that there exists L∗ such that vγ(i) := (A∗yγ2 )(i) satisfies |vγ(i)| < 1
if i ≥ L∗. If φ(i)vγ(i) ≥ 0 for all i, then,

‖ φ ‖1 + yγ1 (〈φ, φ〉 − γ) + 〈b, yγ2 〉 − 〈φ, vγ〉

=
∞∑
i=0

{|φ(i)|+ yγ1 (φ(i))2 − φ(i)vγ(i)} − yγ1γ + 〈yγ2 , b〉

=
∞∑
i=0

{φ(i)(sgn(vγ(i))− vγ(i)) + yγ1 (φ(i))2} − yγ1γ + 〈yγ2 , b〉

=
L∗∑
i=0

{φ(i)(sgn(vγ(i))− vγ(i)) + yγ1 (φ(i))2}

+
∞∑

i=L∗+1

{φ(i)(sgn(vγ(i))− vγ(i)) + yγ1 (φ(i))2} − yγ1γ + 〈yγ2 , b〉.

Suppose |vγ(i)| < 1. Then we have

φ(i)(sgn(vγ(i))− vγ(i)) + yγ1 (φ(i))2 ≥ 0

and equal to zero only if φ(i) = 0. Therefore, in the infimization, we can restrict
φ(i) = 0 whenever |vγ(i)| < 1. As |vγ(i)| < 1 for all i ≥ L∗ it follows that we can
restrict φ to T in the infimization. In Theorem 5.2 we showed that there exists a
solution φ0 to the primal. From Theorem 3.3 we have that φ0 minimizes

‖ φ ‖1 + yγ1 (〈φ, φ〉 − γ) + 〈b, yγ2 〉 − 〈φ, vγ〉,

over all φ in `1. From the previous discussion it follows that φ0 ∈ T . This proves the
theorem.
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5.3. An a priori bound on the length of any optimal solution. In this
subsection we give an a priori bound on the length of any solution to (4.5). First we
establish the following three lemmas.

LEMMA 5.6. Let γ > µ∞, m1 := inf
Aφ=b,〈φ,φ〉≤µ∞

‖ φ ‖1, and νγ := inf
Aφ=b,〈φ,φ〉≤γ

‖ φ ‖1.

Let yγ1 , y
γ
2 represent a dual solution as obtained in (5.5). Then yγ1 ≤ Mγ where

Mγ := m1
γ−µ∞ .

Proof. Let γ > γ1 > µ∞ and νγ1 := infAφ=b,<φ,φ>≤γ1 ‖ φ ‖1. Let yγ1 , y
γ
2 represent

a dual solution as obtained in (5.5). From Corollary 3.4 we have

〈γ − γ1, y
γ
1 〉 ≤ νγ1 − νγ ≤ νγ1 ≤ m1,

which implies that yγ1 ≤ m1
γ−γ1

. This holds for all γ > γ1 > µ∞. Therefore, Mγ :=
m1

γ−µ∞ is an a priori bound on yγ1 . This proves the lemma.
LEMMA 5.7. Let φ0 be a solution of the primal (4.5). Let yγ1 , y

γ
2 represent the

corresponding dual solution as obtained in (5.5). Let vγ := A∗yγ2 , then

yγ1φ0(i) =
vγ(i)− 1

2
if vγ(i) > 1

=
vγ(i) + 1

2
if vγ(i) < −1

= 0 if |vγ(i)| ≤ 1.

Also, ‖ vγ ‖∞ ≤ αγ where αγ = 2m1
√
γ

γ−µ∞ + 1.
Proof. Let

L(φ) :=
∞∑
i=0

{φ(i)(sgn(vγ(i))− vγ(i)) + yγ1 (φ(i))2} − γyγ1 + 〈b, yγ2 〉.

Suppose |vγ(i)| = 1. Now, if yγ1 = 0, then it is clear that yγ1φ0(i) = 0. If yγ1 > 0, then
as φ0 minimizes L(φ) we have φ0(i) = 0. We have already shown that if |vγ(i)| < 1,
then φ0(i) = 0. Therefore, yγ1φ0(i) = 0 if |vγ(i)| ≤ 1.

Suppose vγ(i) > 1. Then it is easy to show that there exists φ(i) such that
φ(i) ≥ 0 and φ(i)(sgn(vγ(i))−vγ(i))+yγ1 (φ(i))2 < 0. As any optimal minimizes L(φ),
we know that φ0(i)(sgn(vγ(i))− vγ(i)) + yγ1 (φ0(i))2 < 0, which implies φ0(i) > 0 and
therefore 1 − vγ(i) + 2yγ1φ0(i) = 0. This implies that yγ1φ0(i) = vγ(i)−1

2 . Similarly,
the result follows when vγ(i) < −1. Therefore, ‖ vγ ‖∞ ≤ 2Mγ‖ φ0 ‖∞ + 1 ≤

2m1
γ−µ∞ ‖ φ0 ‖∞ + 1 ≤ 2m1

√
γ

γ−µ∞ + 1. The last inequality follows from the fact that

〈φ0, φ0〉 ≤ γ. This implies that αγ := 2m1
√
γ

γ−µ∞ + 1 is an a priori upper bound on
‖ vγ ‖∞. This proves the lemma.

LEMMA 5.8 (see [2]). If y2 ∈ Rn is such that ‖ A∗y2 ‖∞ ≤ αγ , then there exists a
positive integer L∗ independent of y2 such that |(A∗y2)(i)| < 1 for all i ≥ L∗.

Proof. Define

A∗L =


1 1 1 . . . 1
z1 z2 z3 . . . zn
...

...
...

...
...

zL1 zL2 zL3 . . . zLn

 ,
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A∗L : Rn → RL+1. With this definition we have A∗∞ = A∗. Let y2 ∈ Rn be such
that ‖ A∗y2 ‖∞ ≤ αγ . Choose any L such that L ≥ (n − 1). As zi, i = 1, . . . , n,
are distinct, A∗L has full column rank. A∗L can be regarded as a linear map taking
(Rn, ‖ . ‖1) → (RL+1, ‖ . ‖∞). As A∗L has full column rank, we can define the left
inverse of A∗L, (A∗L)−l, which takes (RL+1, ‖ . ‖∞) → (Rn, ‖ . ‖1). Let the induced
norm of (A∗L)−l be given by ‖ (A∗L)−l ‖∞,1. y2 ∈ Rn is such that ‖ A∗y2 ‖∞ ≤ αγ ,
and therefore ‖ A∗Ly2 ‖∞ ≤ αγ . It follows that

‖ y2 ‖1 ≤‖ (A∗L)−l ‖∞,1 ‖ A∗Ly2 ‖∞ ≤‖ (A∗L)−l ‖∞,1 αγ .(5.7)

Choose L∗ such that

max
k=1,...,n

|zk|L
∗ ‖ (A∗L)−l ‖∞,1 αγ < 1.(5.8)

There always exists such an L∗ because |zk| < 1 for all k = 1, . . . , n. Note that L∗

does not depend on y2. For any i ≥ L∗ we have

|(A∗y2)(i)| =
∣∣∣∣∣
k=n∑
k=1

ziky2(k)

∣∣∣∣∣ ≤ max
k=1,...,n

|zk|i‖ y2 ‖1

≤ max
k=1,...,n

|zk|i ‖ (A∗L)−l ‖∞,1 αγ

≤ max
k=1,...,n

|zk|L
∗ ‖ (A∗L)−l ‖∞,1 αγ .

The second inequality follows from (5.7). From (5.8) we have |(A∗y2)(i)| < 1 if i ≥ L∗.
This proves the lemma.

The following theorem is the main result of the section.
THEOREM 5.9. Every solution φ0 of the primal (4.5) is such that φ(i) = 0 if

i ≥ L∗, where L∗ given in Lemma 5.8 can be determined a priori. Furthermore, the
upper bound on lengths of the optimal solutions is nonincreasing as a function of γ.

Proof. Using Lemma 5.7 we can bound on ‖ vγ ‖∞ by αγ .Applying Lemma 5.8, we
conclude that there exists L∗γ (which can be determined a priori) such that |vγ(i)| < 1
if i ≥ L∗γ . Using the fact that φ0(i) = 0 if |vγ(i)| < 1, we conclude that φ0 = 0 if
i ≥ L∗γ . L∗γ ; was chosen to satisfy

max
k=1,...,n

|zk|L
∗ ‖ (A∗L)−l ‖∞,1 αγ < 1.

αγ is nonincreasing as a function of γ. Therefore L∗γ is nonincreasing as a function of
γ. This proves the theorem.

Note that as αγ = 2m1
√
γ

γ−µ∞ + 1, we have that the upper bound on lengths of the
solutions increases to infinity as γ decreases to µ∞. This is commensurate with the
fact that the optimal solution for the standard H2 problem (4.2) is an infinite impulse
response sequence.

The above theorem shows that the problem at hand is a finite-dimensional convex
problem of a priori determined dimension. In particular, in view of Theorem 5.9 the
problem that needs to be solved is as follows:

νγ = min
AL∗φ=b,〈φ,φ〉≤γ

L∗∑
k=0

|φ(k)|,(5.9)
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where

AL∗ =


1 z1 z2

1 . . . zL
∗

1
1 z2 z2

2 . . . zL
∗

2
...

...
...

...
...

1 zn z2
n . . . zL

∗

n

 ,

and L∗ is given in Lemma 5.8. An alternative representation can be given, as the
following lemma suggests.

LEMMA 5.10. The primal is given by

minimize

L∗∑
k=0

φ+(k) + φ−(k)(5.10)

subject to AL∗(φ+ − φ−) = b

〈φ+ − φ−, φ+ − φ−〉 ≤ γ
φ+, φ− in RL

∗
with φ+, φ− ≥ 0.

Proof. Note that in the above theorem the ordering is componentwise for the
inequalities. We will show that (5.9) is equivalent to (5.10). Let p0 denote the value
attained by the objective functional in (5.10). Suppose φ+, φ− satisfy the constraints
of (5.10). Let φ := φ+ − φ−. Then it is clear that φ satisfies the constraints of (5.9).
Also, for each k, |φ(k)| = |φ+−φ−| ≤ |φ+|+ |φ−| = φ+(k) +φ−(k). This implies that
νγ ≤ p0.

Suppose that φ satisfies the constraints of (5.9). Define φ+ such that φ+(k) = φ(k)
if φ(k) ≥ 0, and 0 otherwise. Similarly, define φ− such that φ−(k) = −φ(k) if φ(k) ≤ 0,
and 0 otherwise. It is clear that φ = φ+ − φ− and that φ+, φ− satisfy the constraints
of (5.10). Also, |φ(k)| = φ+(k)+φ−(k). This proves that νγ ≥ p0. Therefore, νγ = p0.
It is easy to show that if φ+

0 , φ
−
0 is optimal for (5.10) then φ0 := φ+

0 − φ−0 is optimal
for (5.9). This proves the lemma.

This type of convex problem can be solved efficiently using standard methods [1].

6. Uniqueness and continuity of the optimal solution. In this section we
address the issue of uniqueness and continuity of solutions to the primal problem with
respect to changes in the constraint level on the H2 norm of the closed-loop map. In
the first part we address the issue of uniqueness, and in the second part, we show that
the optimal solution is continuous in the region where it is unique.

6.1. Uniqueness of the optimal solution. The following three lemmas are
established before the main result of this subsection.

LEMMA 6.1. Let yγ1 ≥ 0, yγ2 ∈ Rn be a solution to (5.5). If yγ1 = 0, then νγ = ν∞.
This implies that (4.5) reduces to solving a standard `1 problem.

Proof. Let v := A∗y2 and φ1 be such that Aφ1 = b. If yγ1 = 0, then the dual (5.5)
is given by

max
y2∈Rn

inf
φ(i)v(i)≥0

{‖ φ ‖1 + 〈b−Aφ, y2〉}

= max
y2∈Rn

inf
φ(i)v(i)≥0

∞∑
i=0

{φ(i)(sgn(v(i))− v(i))}+ 〈φ1, v〉

= max
v∈Range(A∗)

inf
φ(i)v(i)≥0

∞∑
i=0

{φ(i)(sgn(v(i))− v(i))}+ 〈φ1, v〉.
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Suppose ‖ v ‖∞ > 1; then there exists j such that |v(j)| > 1. Thus we can choose
φ(j) with φ(j)v(j) ≥ 0 such that φ(j)(sgn(v(j))−v(j)) < M for any M . This implies
that

inf
φ(i)v(i)≥0

∞∑
i=0

{φ(i)(sgn(v(i))− v(i))}+ 〈φ1, v〉 = −∞.

Therefore, we can restrict v in the maximization to satisfy ‖ v ‖∞ ≤ 1. From ar-
guments similar to that of the proof of Theorem 5.9, φ(i) = 0 whenever |v(i)| < 1.
Therefore, the infimum term is zero whenever ‖ v ‖∞ ≤ 1. This implies that the dual
problem reduces to

max
v∈Range(A∗),‖v‖∞≤1

〈φ1, v〉,

which is the same as the dual of the standard `1 problem as given in (4.1) [2]. This
proves the lemma.

LEMMA 6.2. Let Ω be a convex subset of a Banach space X and f : Ω → R be
strictly convex. If f achieves its minimum on Ω then the minimizer is unique.

Proof. Let m := minx∈Ω f(x). Let x1, x2 ∈ Ω be such that f(x1) = f(x2) = m.
Let 0 < λ < 1. From convexity of Ω we have λx1+(1−λ)x2 ∈ Ω. From strict convexity
of f we have that if x1 6= x2 then f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2) = m,
which is a contradiction. Therefore x1 = x2. This proves the lemma.

LEMMA 6.3. Let yγ1 ≥ 0, yγ2 ∈ Rn be a solution in (5.5). If yγ1 > 0 then the
solution φ0 of (4.5) is unique.

Proof. Let L(φ) := ‖ φ ‖1 + yγ1 (〈φ, φ〉 − γ) + 〈b−Aφ, yγ2 〉. From Theorem 3.3 we
know that φ0 minimizes L(φ), φ ∈ `1. If yγ1 > 0 then it is easy to show that L(φ)
is strictly convex in `1. From the previous lemma it follows that φ0 is unique. This
proves the lemma.

The main result of this subsection is now presented.
THEOREM 6.4. Define S := {φ : Aφ = b and ‖ φ ‖1 = ν∞}, m2 := infφ∈S〈φ, φ〉.

The following is true.
(1) If γ ≥ m2, then problem (4.5) is equivalent to the standard `1 problem whose

solution is possibly nonunique.
(2) If µ∞ < γ < m2, then the solution to (4.5) is unique.
Proof. Suppose m2 < γ. Then there exists φ1 ∈ `1 such that Aφ1 = b, ‖ φ1 ‖1 =

ν∞, and 〈φ1, φ1〉 ≤ γ. This implies that νγ = infAφ=b,〈φ,φ〉≤γ ‖ φ ‖1 ≤ ν∞. The other
inequality is obvious. This proves (1).

Let µ∞ < γ < m2 and suppose yγ1 = 0; then we have shown in Lemma 6.1
that νγ = ν∞. Therefore, there exists φ1 ∈ `1 such that ‖ φ1 ‖1 = ν∞, Aφ1 = b,
and 〈φ1, φ1〉 ≤ γ < m2. This implies that φ1 ∈ S and 〈φ1, φ1〉 < m2, which is a
contradiction. Therefore yγ1 > 0. From Lemma 6.3 we know that φ0 is unique. This
proves (2).

The above theorem shows that in the region where the constraint level on the H2
is essentially of interest (i.e., active) the optimal solution is unique.

6.2. Continuity of the optimal solution. Following is a theorem which shows
that the `1 norm of the optimal solution is continuous with respect to changes in the
constraint level γ.

THEOREM 6.5. Let νγ := infAφ=b,〈φ,φ〉≤γ ‖ φ ‖1. Then νγ is a continuous function
of γ on (µ∞,∞).



1684 M. SALAPAKA, M. DAHLEH, AND P. VOULGARIS

Proof. If γ ∈ (µ∞,∞), then it is obvious that γ ∈ int{dom(νγ)}, where
dom(νγ) := {γ : −∞ < νγ < ∞} is the domain of νγ . From Proposition 1 of [7,
§8.3] we know that νγ is a convex function of γ. The theorem follows from the fact
that every convex function is continuous in the interior of its domain.

Now we prove that the optimal solution is continuous with respect to changes in
the constraint level in the region where the optimal is unique.

THEOREM 6.6. Let µ∞ < γ < m2. Let φγ represent the solution of νγ =
minAφ=b,〈φ,φ〉≤γ ‖ φ ‖1. Then φγk → φγ in the norm topology if γk → γ.

Proof. Let m1 := minAφ=b,〈φ,φ〉≤µ∞ ‖ φ ‖1. Then it is obvious that ‖ φγ ‖1 =
νγ ≤ m1. Without loss of generality, assume that γk ≥ γ/2. Let L∗ represent the
upper bound on the length of φ γ

2
. Then, as the upper bound is nonincreasing (see

Theorem 5.9) we can assume that φγk ∈ RL
∗
. Let B := {x : x ∈ RL∗ : ‖ x ‖1 ≤ m1};

then we have φγk ∈ B. Therefore, there exists a subsequence φki of φγk and φ1 such
that

φki → φ1 as i→∞ in (RL
∗
, ‖ . ‖1).(6.1)

It is clear, as in the proof of Theorem 5.2, that Aφ1 = b as Aφki = b for all i. Also,

‖ φ1 ‖22 ≤ ‖ φ1 − φki ‖2
2 + ‖ φki ‖2

2 ≤ ‖ φ1 − φki ‖2
2 + γki .

Taking limits on both sides as i → ∞ we get 〈φ1, φ1〉 ≤ γ. This implies that φ1 is
a feasible element in the problem of νγ . From Theorem 6.5 we have ‖ φki ‖1 → νγ .
From (6.1) we have ‖ φ1 ‖1 = νγ . From uniqueness of the optimal solution we have
φ1 = φγ . From uniqueness of the optimal solution, it also follows that φγk → φγ . This
proves the theorem.

7. An example. In this section we illustrate the theory developed in the previ-
ous sections with an example. Consider the SISO plant,

P̂ (λ) = λ− 1
2
,(7.1)

where we are interested in the sensitivity map φ := (I − PK)−1. Using Youla
parametrization, we get that all achievable transfer functions are given by φ̂ =
(I − P̂ K̂)−1 = 1 − (λ − 1

2 )q̂ where q̂ is a stable map. The matrices A and b are
given by

A =
(

1,
1
2
,

1
22 , . . .

)
, b = 1.

It is easy to check that for this problem

µ∞ := inf{‖ φ ‖22 : φ ∈ `1 and Aφ = b} = 0.75

and

m1 := inf
Aφ=b,‖φ‖ 2

2 ≤µ∞
‖ φ ‖1 = 1.5,

with the optimal solution φ2 given by

φ̂2(λ) =
∞∑
t=0

0.75
2t

λt.



MIXED OBJECTIVE `1/H2 CONTROL 1685

Performing a standard `1 optimization [2] we obtain

ν∞ := inf{‖ φ ‖1 : φ ∈ `1 and Aφ = b} = 1

and

m2 := inf
Aφ=b,‖φ‖1≤ν∞

‖ φ ‖22 = 1,

with the optimal solution φ1 = 1. We choose the constraint level to be 0.95. Therefore,
αγ = 2m1

√
γ

γ−µ∞ + 1 = 15.62. For this example n = 1 and z1 = 1
2 . L∗, the a priori bound

on the length of the optimal, is chosen to satisfy

max
k=1,...,n

|zk|L
∗ ‖ (A∗L)−l ‖∞,1 αγ < 1,(7.2)

where L is any positive integer such that L ≥ (n−1). We choose L = 0, and therefore
AL = 1 and ‖ (A∗L)−l ‖∞,1= 1. We choose L∗ = 4, which satisfies (7.2). Therefore,
the optimal solution φ0 satisfies φ0(i) = 0 if i ≥ 4. The problem reduces to the
following finite-dimensional convex optimization problem:

νγ = min
AL∗φ=1,‖φ‖ 2

2 ≤0.95

{
3∑
k=0

|φ(k)| : φ ∈ R4

}
,

where AL∗ = (1, 1
2 ,

1
22 ,

1
23 ). We obtain (using Matlab Optimization Toolbox) the op-

timal solution φ0 to be

φ̂0(λ) = 0.9732 + 0.0535λ.

Therefore, we have ‖ φ0 ‖1 = 1.02670 and ‖ φ0 ‖22 ∼= 0.95. The same computation
was carried out for various values of the constraint level, γ ∈ [0.75, 1]. The tradeoff
curve between the `1 and the H2 norms of the optimal solution is given in Figure
7.1. For all values of γ in the chosen range, the square of the H2 norm of the optimal
closed loop was equal to the constraint level γ. Although, when the constraint level γ
equals 0.75, the optimal closed-loop map is an infinite impulse response sequence, the
optimal closed-loop map has very few nonzero terms in its impulse response even for
values of γ very close to 0.75. For example, with γ = 0.755 the optimal closed-loop
map is given by

φ̂0.755 = 0.7708 + 0.3632λ+ 0.1596λ2 + 0.0578λ3 + 0.0065λ4.

As a final remark, we can use the structure of this example to illustrate that
the optimal unconstrained H2 solution can have H2 norm much smaller than the H2
norm of the optimal `1 (unconstrained) solution. Hence, minimizing only the `1 norm,
which is an upper bound on the H2 norm, may require substantial sacrifices in terms
of H2 performance. Indeed, instead of the P used in the example before, consider the
plant P̂a(λ) = λ − a, where now a is a zero in the unit disk (i.e., |a| < 1) and very
close to the unit circle (i.e., |a| ∼= 1). Then the optimal unconstrained H2 norm given
by

(ba(AaA∗a)−1ba)1/2 = (1− |a|2)1/2,

where Aa = (1, a, a2, . . .), ba = 1 [2], is close to 0. On the other hand, for the
optimal `1 unconstrained solution φa,1, we have φa,1 = 1, which has H2 norm equal
to 1. Therefore, minimizing only with respect to `1 may lead to undesirable H2
performance.
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FIG. 7.1. Here the `1 and the H2 norms of the optimal closed loop for various values of γ are
plotted. The x axis can be read as the square of H2 norm or the value of γ.

8. Conclusions. In this paper the mixed problem of `1/H2 for the SISO discrete-
time case is solved. The problem was reduced to a finite-dimensional convex optimiza-
tion problem with an a priori determined dimension. The region of the constraint level
in which the optimal is unique was determined, and it was shown that in this region
the optimal solution is continuous with respect to changes in the constraint level of the
H2 norm. A Lagrange duality theorem and a sensitivity result were used. The tech-
niques used in obtaining the results of this paper are general enough to be adapted to
analyze other mixed objective problems. Also, several of the results seem to have nat-
ural extensions for the multiple-input, multiple-output case, but a full investigation
of this case is beyond the scope of this paper.

9. Appendix. Here we give the lemma needed in the proof of Theorem 3.3.
LEMMA 9.1. Let X be a Banach space, Ω be a convex subset of X, Y be a finite-

dimensional normed space, and Z be a normed space with positive cone P. Let Z∗

denote the dual space of Z with a positive cone P⊕. Let f : Ω → R be a real valued
convex functional, g : X → Z be a convex mapping, H : X → Y be an affine linear
map, and 0 ∈ int[{y ∈ Y : H(x) = y for some x ∈ Ω}]. Define

µ0 := inf{f(x) : g(x) ≤ 0, H(x) = 0, x ∈ Ω}.(9.1)

Suppose there exists x1 ∈ Ω such that g(x1) < 0 and H(x1) = 0 and suppose µ0
is finite. Then, there exist z∗0 ≥ 0 and y∗0 such that

µ0 = inf{f(x) + 〈g(x), z∗0〉+ 〈H(x), y∗0〉 : x ∈ Ω}.(9.2)

Proof. Let

Ω1 := {x : x ∈ Ω, H(x) = 0}.
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Applying Theorem 8.3.1 of [7, p. 217] to Ω1 we know that there exists z∗0 ∈ P⊕ such
that

µ0 = inf{f(x) + 〈g(x), z∗0〉 : x ∈ Ω1}.(9.3)

Consider the convex subset

H(Ω) := {y ∈ Y : y = H(x) for some x ∈ Ω}

of Y. For y ∈ H(Ω), define

k(y) := inf{f(x) + 〈g(x), z∗0〉 : x ∈ Ω, H(x) = y}.

We now show that k is convex. Suppose y, y′ ∈ H(Ω) and x, x′ are such that H(x) = y
and H(x′) = y′. Suppose 0 < λ < 1. We have

λ(f(x) + 〈g(x), z∗0〉) + (1− λ)(f(x′) + 〈g(x′), z∗0〉) ≥ f(λx+ (1− λ)x′)

+〈g(λx+ (1− λ)x′), z∗0〉
≥ k(λy + (1− λ)y′).

(The first inequality follows from the convexity of f and g. The second inequality
is true because H(λx + (1 − λ)x′) = (λy + (1 − λ)y′). Taking the infimum on the
left-hand side, we obtain λk(y) + (1 − λ)k(y′) ≥ k(λy + (1 − λ)y′). This proves that
k is a convex function.

We now show that k : H(Ω)→ R (i.e., we show that k(y) > −∞ for all y ∈ H(Ω)).
As 0 ∈ int[H(Ω)], we know that there exists an ε > 0 such that if ||y|| ≤ ε, then y ∈
H(Ω). Take any y ∈ H(Ω) such that y 6= 0. Choose λ, y′ such that

λ = ε
2||y|| and y′ = −λy.

This implies that y′ ∈ H(Ω). Let β = λ
λ+ 1 . We have

(1− β)y′ + βy = 0.

Therefore, from convexity of the function k, we have

βk(y) + (1− β)k(y′) ≥ k(0) = µ0.

But µ0 > −∞ by assumption. Therefore, k(y) > −∞. Note that for all y ∈
H(Ω), k(y) <∞. This proves that k is a well-defined function.

Let [k,H(Ω)] be defined as given below:

[k,H(Ω)] := {(r, y) ∈ R× Y : y ∈ H(Ω), k(y) ≤ r}.

We first show that [k,H(Ω)] has a nonempty interior. As k is a well-defined convex
function on the finite-dimensional convex set H[Ω] and 0 ∈ int[H(Ω)], we have from
Corollary 7.9.1 of [7, p. 194] that k is continuous at 0. Let r0 = k(0) + 2 and choose
ε′ such that 0 < ε′ < 1. As k is continuous at 0 we know that there exists δ > 0 such
that y ∈ H(Ω), and ||y|| ≤ δ implies that
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|k(y)− k(0)| < ε′.

This means that if y ∈ H(Ω) and ||y|| ≤ δ, then

k(y) < k(0) + ε′ < k(0) + 1 < r0 −
1
2
.

Therefore, for all y ∈ H(Ω) with ||y|| ≤ δ, we have k(y) < r0 − 1
2 . This implies that

for all (r, y) ∈ R×Y such that |r−r0| < 1
4 , y ∈ H(Ω), and ||y|| ≤ δ, we have k(y) < r.

This proves that (r0, 0) ∈ int([k,H(Ω)]).
It is clear that (k(0), 0) ∈ R×Y is not in the interior of [k,H(Ω)]. Using Theorem

5.12.2 of [7, p. 133] we know that there exists (s, y∗) 6= (0, 0) ∈ R × Y ∗ such that for
all (r, y) ∈ [k,H(Ω)] the following is true:

〈y, y∗〉+ rs ≥ 〈0, y∗〉+ k(0)s = sµ0.(9.4)

In particular, rs ≥ sµ0 for all r ≥ µ0 (note that (r, 0) ∈ [k,H(Ω)] for all r ≥ µ0).
This means that s ≥ 0.

Suppose s = 0. We have from (9.4) that 〈y, y∗〉 ≥ 0 for all y ∈ H(Ω). As 0 ∈
int[H(Ω)], it follows that there exists an ε ∈ R such that ||y|| ≤ ε implies that
〈y, y∗〉 ≥ 0 and 〈−y, y∗〉 ≥ 0. This implies that if ||y|| ≤ ε, then 〈y, y∗〉 = 0. But then,
for any y ∈ Y , one can choose a positive constant α such that ||αy|| ≤ ε, and therefore
〈αy, y∗〉 = 0. This implies that (s, y∗) = (0, 0), which is not possible. Therefore, we
conclude that s > 0.

Let y∗0 = y∗/s. From (9.4) we have

〈y, y∗0〉+ r ≥ µ0 for all (r, y) ∈ [k,H(Ω)].(9.5)

This implies that for all y ∈ H(Ω),

〈y, y∗0〉+ k(y) ≥ µ0.(9.6)

(This is because (k(y), y) ∈ [k,H(Ω)].) Therefore, for all x ∈ Ω,

〈H(x), y∗0〉+ f(x) + 〈g(x), z∗0〉 ≥ µ0,(9.7)

which implies that

inf{f(x) + 〈g(x), z∗0〉+ 〈H(x), y∗0〉 : x ∈ Ω} ≥ µ0.(9.8)

But if x ∈ Ω is such that H(x) = 0, then

f(x) + 〈g(x), z∗0〉 = f(x) + 〈g(x), z∗0〉+ 〈H(x), y∗0〉(9.9)

≥ inf{f(x) + 〈g(x), z∗0〉+ 〈H(x), y∗0〉 : x ∈ Ω} ≥ µ0.(9.10)

Taking the infimum on the left-hand side of the above inequality over all x ∈ Ω which
satisfy H(x) = 0 (that is infimum over all x ∈ Ω1), we have

µ0 = inf{f(x) + 〈g(x), z∗0〉+ 〈H(x), y∗0〉 : x ∈ Ω}.(9.11)

This proves the lemma.
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Abstract. A numerically stable algorithm is described for the computation of the optimal H∞
performance γopt when the feedthrough matrices D12 or D21 are rank-deficient. Using only orthog-
onal transformations, the singular H∞ problem is reduced to a regular subproblem and a standard
Riccati-based γ-iteration is applied to this subproblem to compute γopt. Various interpretations of
this scheme are given in terms of the infinite zero structure of the plant and the deflation of Hamil-
tonian pencils. The implementation of this algorithm is straightforward and its performance and
reliability are confirmed by extensive numerical testing.

Key words. H∞ optimal control, singular problem, numerical computation, algebraic Riccati
equation, linear matrix inequality

AMS subject classifications. 93C05, 93C35, 93C60, 93C45, 93B40, 49B99

PII. S0363012994269958

1. Introduction. It is well known that the solvability of regular H∞ problems
can be characterized in terms of the stabilizing solutions X∞ and Y∞ of two indefinite
Riccati equations [9]. In addition, a particular solution, called the central controller,
is given by explicit formulas in terms of X∞ and Y∞ [18, 9, 20]. Extensions of
this Riccati-based characterization to singular problems where D12 or D21 are rank-
deficient have been proposed in [32, 34, 5, 27]. The suboptimality conditions of [32,
34] involve reduced-order algebraic Riccati equations (AREs) that are extracted via
coordinate transformations on the plant matrices. Suboptimal controllers are then
obtained by solving an almost disturbance decoupling problem on the transformed
plant. Unfortunately, this approach involves nonorthogonal similarity transformations
and is therefore prone to numerical instability.

A numerically more appealing approach is proposed in [5, 6]. There the authors
consider ε-regularizations of singular H∞ problems and characterize suboptimality in
terms of the limits as ε goes to zero of the regularized Riccati solutions X∞(ε) and
Y∞(ε). It is further argued that these limits can be directly computed via standard
pencil-based algorithms. However, the possible singularity of the pencils considered
in [5, 6] may also be a source of numerical difficulties as shown in subsection 5.1
of this paper. Moreover, the controller formulas in [5] are obtained as the limit
of the entropy-maximizing central controller of [9]. As discussed previously in [33],
this limit may be improper and even ill defined in terms of transfer functions (see
also [5]). The zero-compensation scheme of [6] is also likely to produce improper
controllers.

The main contribution of the present paper is a new algorithm for computing the
optimal H∞ performance in the singular case. While relying on the suboptimality
conditions of [5, 6], this algorithm proceeds by reducing these conditions to standard,
reduced-order Riccati equations. In contrast to [32, 34], this reduction involves only
numerically stable singular value decompositions (SVDs) and is straightforward to
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implement. And even though our algorithm amounts to a unitary deflation of the
pencil W12∞ considered in [5], it does not attempt to explicitly compute the stable
eigenspace of this potentially singular pencil. This makes it an efficient and reliable
alternative to previously available schemes.

The paper is organized as follows. Section 2 gives some background on matrix
pencils, in particular on singular pencils. Section 3 recalls the problem statement
and the linear matrix inequality (LMI)–based suboptimality conditions for general
H∞ problems. Section 4 explores the connection between the LMI- and Riccati-
based characterizations of suboptimality for singular H∞ problems. While leading
to Riccati-based conditions similar to those of [5, 6], this analysis lays the ground
for the subsequent derivation of our algorithm. Section 5 contains the main re-
sults on the computation of the Riccati “solutions” X∞ and Y∞ in the singular
case. An iterative scheme to extract a regular subproblem is presented, and it is
shown that the resulting subproblem fully determines X∞ and Y∞. The overall
algorithm for the computation of γopt is presented in section 6, and section 7 dis-
cusses numerical stability issues. Finally, section 8 reports the results of numer-
ical testing.

2. Background on singular matrix pencils. This section recalls basic notions
on matrix pencils that are useful in the subsequent analysis. A more complete discus-
sion is found in [17, 37]. A matrix pencil is any pair (A,B) of matrices of the same
dimensions and is usually denoted by A−λB. Note that A,B need not be square. The
pencil A−λB is called regular if A is square and det(A−λB) 6= 0 for some λ ∈ C, and
is called singular otherwise. Two pencils A1−λB1 and A2−λB2 are said to be equiv-
alent if there exist two invertible matrices P,Q such that A2−λB2 = P (A1−λB1)Q.

Kronecker’s theory of matrix pencils [17] shows that any pencil A − λB can be
brought by equivalence transformation to the canonical form

P (A− λB)Q = Diag (Rp1 , . . . , Rpr , Cq1 , . . . , Cqs , I − λN,M − λI) ,(2.1)

where

• Rpi is a pi × (pi + 1) bidiagonal matrix of the form


−λ 1

. . .
. . .

−λ 1

 ;

• Cqj is a (qj + 1)× qj bidiagonal matrix of the form


1

−λ
. . .

. . . 1
−λ

 ;

• N ∈ Rm×m is a nilpotent Jordan matrix and M ∈ Rn×n.
The rectangular R and C blocks determine the Kronecker row and column structure,
respectively, and constitute the singular part of the pencil. The two regular pencils
M − λI and I − λN constitute the regular part of the pencil and determine its finite
and infinite eigenstructure, respectively. Indeed, all generalized eigenvalues of I−λN
are at infinity since N is nilpotent, while all eigenvalues of M − λI are finite.

While computing the decomposition (2.1) is an ill-conditioned problem, the singu-
lar/regular decomposition and the pencil eigenstructure can be computed in a back-
ward stable manner using Van Dooren’s deflation algorithm [37]. Using orthogonal
transformations P and Q, this algorithm deflates any pencil A− λB to the staircase
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form

P (A− λB)Q =


Ar − λBr ? ? ?

0 Af − λBf ? ?
0 0 Ai − λBi ?
0 0 0 Ac − λBc

 ,(2.2)

where
• Af − λBf and Ai − λBi are square regular pencils associated with the finite

and infinite generalized eigenvalues, respectively;
• Ar − λBr and Ac − λBc are singular rectangular pencils, Ar having full row

rank and Ac having full column rank.
Note that backward stability does not suppress the intrinsic sensitivity of this de-
composition to rounding errors. In particular, the dimensions of each characteristic
subpencil can be drastically altered by small perturbations of the data.

Note finally that the finite generalized eigenvalues of A − λB have the following
simple rank characterization.

LEMMA 2.1. If

ν := max
λ

Rank(A− λB)

denotes the normal rank of the pencil A − λB, the finite generalized eigenvalues of
A− λB are the complex values λk such that

Rank (A− λkB) < ν .(2.3)

Proof. The proof is essentially in [17] and is included for completeness. The rank
of A−λB is readily assessed from the canonical decomposition (2.1). Observing that
each Rpi is of rank pi and each Cqj is of rank qj regardless of λ, it follows that

Rank(A− λB) =
r∑
i=1

pi +
s∑
j=1

qj + Rank(I − λN) + Rank(M − λI).

Now, I − λN remains invertible for all λ since N is a nilpotent Jordan matrix. Thus,
the overall rank can change only when Rank(M − λI) drops, that is, when λ is an
eigenvalue of M and hence a finite generalized eigenvalue of A− λB.

3. Singular H∞ control.

3.1. Problem statement. Consider a linear time-invariant plant P (s) with
state-space equations  ẋ = Ax+B1w +B2u,

z = C1x+D11w +D12u,
y = C2x+D21w +D22u,

(3.1)

where the vectors w, u, z, and y denote the exogenous inputs, control inputs, con-
trolled outputs, and measured outputs, respectively. The plant dimensions are sum-
marized by

A ∈ Rn×n, D11 ∈ Rp1×m1 , D22 ∈ Rp2×m2 .

Let Twz(s) denote the closed-loop transfer function from w to z under dynamic output-
feedback u = K(s)y.
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Given some performance level γ > 0, the suboptimal H∞ control problem consists
of finding an internally stabilizing controller K(s) such that

‖Twz(s)‖∞ < γ.

Solutions of this problem (if any) will be called γ-suboptimal controllers. The optimal
H∞ gain γopt is defined as the smallest achievable performance γ. The following
assumptions on the plant matrices are made throughout the paper:

(A1) (A,B2, C2) is stabilizable and detectable;
(A2) D22 = 0;
(A3) the matrix pencils (A−λIC1

B2
D12

) and (A−λIC2

B1
D21

) have no finite generalized
eigenvalue on the imaginary axis.

Note that (A2) incurs no loss of generality and merely amounts to redefining the
measured outputs as y −D22u. For simplicity, most results and proofs are stated for
the case D11 = 0. See section 6 for the general case D11 6= 0.

Of particular interest in this paper are plants where D12 and/or D21 are rank-
deficient. The corresponding H∞ problem is traditionally referred to as singular,
following the LQG terminology. Singular problems are more difficult since they cannot
be handled by the standard Riccati-based approach to H∞ control [9]. Note, however,
that such problems are all but ill-posed from both theoretical and control viewpoints.
On the contrary, most singular H∞ problems have meaningful solutions, especially
suboptimal ones. Singularity means only that Riccati-based central controllers [9] are
not well defined [5]. Note finally that singular problems are by no means exotic and
do frequently arise in applications such as loop-shaping, µ-synthesis, etc.

3.2. LMI-based conditions for solvability. The derivation of the algorithm
presented in this paper makes extensive use of the LMI-based characterization of H∞
suboptimality [12, 24]. This result is recapped in the next theorem and applies to any
plant, whether it be regular or singular.

THEOREM 3.1 (solvability of the suboptimal H∞ problem). Consider a proper
continuous-time plant P (s) of order n and minimal realization (3.1), and assume
(A1)–(A2) and D11 = 0. Given bases N12 and N21 of the null spaces of (BT2 , D

T
12)

and (C2, D21), respectively, the suboptimal H∞ problem with performance γ is solvable
if and only if there exist pairs of symmetric matrices (R,S) in Rn×n such that

N T
12

(
AR+RAT + γ−2B1B

T
1 RCT1

C1R −I

)
N12 < 0,(3.2)

N T
21

(
ATS + SA+ γ−2CT1 C1 SB1

BT1 S −I

)
N21 < 0,(3.3)

R > 0, S > 0, λmin(RS) ≥ γ−2.(3.4)

Theorem 3.1 shows that the performance γ is achievable if and only if the following
feasibility problem is solvable:

find R ∈ R and S ∈ S such that λmin(RS) ≥ γ−2,(3.5)

where

R := {R > 0 : (3.2) holds} , S := {S > 0 : (3.3) holds} .(3.6)

Since (3.2)–(3.4) are LMI constraints on the matrices R and S [12], this feasibility
problem could be tackled directly by convex optimization techniques. In particular, it
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falls within the scope of efficient LMI solvers such as those described in [3, 26, 36, 25].
However, solving LMIs is of higher complexity than solving Riccati equations. For
this reason, solvability conditions involving only standard linear algebra techniques
remain computationally appealing.

4. Riccati-based conditions for singular problems. Henceforth, the discus-
sion is implicitly specialized to the singular case (D12 or DT

21 column-rank deficient),
most results becoming trivial in the regular case. Although the Riccati-based char-
acterization of [9] is not applicable to singular problems, it can be generalized along
the lines of [5]. This section sheds new light on the results of [5], in particular on the
connection between the LMI- and Riccati-based characterizations of suboptimality.
This analysis is the foundation of the new algorithm proposed in section 5.

4.1. From LMIs to Riccati equations. We first outline the procedure for
turning the LMI conditions of Theorem 3.1 into Riccati equations. This procedure is
adapted from [31, 12] and relies on the following two technical lemmas.

LEMMA 4.1 (Finsler’s lemma [35, 28]). Given a symmetric matrix M , an unstruc-
tured matrix P , and any matrix WP whose columns form a basis for the null space of
P , there exists α > 0 such that M − α PTP < 0 if and only if WT

P M WP < 0.
LEMMA 4.2. Given any matrices A ∈ Rn×n, F = FT ∈ Rn×n, C ∈ Rm×n such

that (C,A) has no unobservable mode on the imaginary axis, the set

R :=
{
R > 0 : AR+RAT +RCTCR+ F < 0

}
(4.1)

is nonempty if and only if the Riccati equation ATX +XA+XFX + CTC = 0 has
a stabilizing solution Xst ≥ 0. (Here “stabilizing” means that the closed-loop matrix
A+ FX has all its eigenvalues in the open left-half plane.)

Moreover, Xst is a lower limit point for the set Rinv :=
{
R−1 : R ∈ R

}
in such

cases. That is,
• Xst < R−1 for all R ∈ R;
• there exists a sequence {Rn} of elements of R such that limn→∞ R−1

n = Xst.
In other words, Xst lies on the boundary of Rinv.

Proof. See Appendix A.
A straightforward application of these two lemmas leads to the following ARE-

based condition for the existence of positive definite solutions to the LMI (3.2).
LEMMA 4.3. Assume (A3) and let

π12 := I −D+
12D12, B̂2 := B2D

+
12, Â := A− B̂2C1, Ĉ1 := (I −D12D

+
12)C1.(4.2)

The set R defined in (3.6) is nonempty if and only if the Riccati equation

ÂTX +XÂ+X(γ−2B1B
T
1 − B̂2B̂

T
2 )X + ĈT1 Ĉ1 − α XB2π12B

T
2 X = 0(4.3)

has a stabilizing solution X(α) ≥ 0 for α > 0 large enough.
Proof. Following [12], (3.2) is equivalent to

WT
12

{
ÂR+RÂT +RĈT1 Ĉ1R+ γ−2B1B

T
1 − B̂2B̂

T
2

}
W12 < 0,(4.4)

where W12 denotes any full-rank matrix whose columns span the null space of π12B
T
2 .

Invoking Lemma 4.1, this inequality is feasible if and only if

ÂR+RÂT +RĈT1 Ĉ1R+ γ−2B1B
T
1 − B̂2B̂

T
2 − α B2π12B

T
2 < 0.(4.5)
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is feasible for some α > 0. Now, (Ĉ1, Â) has no unobservable mode on the imaginary
axis by virtue of (A3). By Lemma 4.2, it follows that (4.5) has positive definite
solutions if and only if the ARE (4.3) has a stabilizing solution X(α) ≥ 0 for α > 0
large enough.

Remark 4.4. The Riccati equation (4.3) can be viewed as the standard H∞ ARE
for some ε-regularization of the plant P (s). Specifically, define ε :=

√
1/α; introduce

an orthogonal transformation V = (V1, V2) such that D12(V1, V2) = (∆, 0), where ∆
has full column rank; and consider the plant obtained by replacing C1, D11, and D12
with (

C1
0

)
,

(
D11

0

)
,

(
∆ 0
0 εI

)
V T ,

respectively. The resulting D12 matrix has full column rank, and it is readily verified
from the definition (4.2) of Â, B̂2, and Ĉ1 that the corresponding controller ARE for
X∞ coincides with (4.3).

4.2. Riccati-based characterization of suboptimality. In the regular case
(full-rank D12), (4.3) reduces to the usual ARE for X∞ since π12 = 0. In the singular
case, however, (4.3) defines a family of AREs parametrized by α, and testing the
existence of a stabilizing solution for large enough α becomes nontrivial. To remove
the dependence on α, note that X(α) has the following properties:

(i) there exists α0 > 0 such that (4.3) has a stabilizing solution X(α) for all
α > α0;

(ii) X(α) is a monotonically decreasing function of α on the half-line (α0,+∞)
[39].
When R is nonempty, (i) is an immediate consequence of Lemma 4.3. More generally,
observe that the dependence on α and the dependence on γ are of the same nature.
As a result, (i) follows from the analysis in [30, 11] (see, e.g., Corollary 5.2 in [11]).

Since X(α) is a decreasing function of α > α0, it has a (not necessarily finite)
limit as α goes to +∞. This suggests introducing the following extension of the usual
Riccati solution X∞.

DEFINITION 4.5 (asymptotic stabilizing solution). The family of Riccati equations
(4.3) is said to have an asymptotic stabilizing solution X∞ if and only if

(1) these equations have a stabilizing solution X(α) on some interval (α0,+∞);
(2) X(α) has a finite limit X∞ as α goes to +∞:

X∞ := lim
α→+∞

X(α).(4.6)

Note that X∞ coincides with the limit of the Riccati solutions X(ε) considered
in [5] (see Remark 4.1 above). Lemma 4.3 has a simple reformulation in terms of
asymptotic stabilizing solution.

LEMMA 4.6. The set R defined in (3.6) is nonempty if and only if the family of
α-parametrized Riccati equations (4.3) has an asymptotic stabilizing solution X∞ ≥ 0.
Moreover, X∞ is a lower limit point for the set Rinv :=

{
R−1 : R ∈ R

}
.

Proof. Sufficiency is immediate from Lemma 4.3, Definition 4.5, and the fact that
X∞ ≤ X(α) since X(α) is monotonically decreasing in α. To prove necessity, recall
from Lemma 4.3 that R 6= ∅ implies that X(α) ≥ 0 for α large enough. Hence, X(α)
is bounded from below as α→ +∞, and its limit X∞ is finite and satisfies X∞ ≥ 0.

Finally, recall from Lemma 4.2 that, for α large enough, X(α) is a lower limit
point for the set

{
R−1 : R > 0 and R solves (4.5)

}
. Now, as α goes to +∞, this set
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tends to
{
R−1 : R > 0 and R solves (4.4)

}
. Since (4.4) and (3.2) are equivalent [12],

we conclude that X∞ is a lower limit point for Rinv.
By duality, similar properties hold for the stabilizing solutions Y (α) of

ÃY + Y ÃT + Y (γ−2CT1 C1 − C̃T2 C̃2)Y + B̃1B̃
T
1 − αY CT2 (I −D21D

+
21)C2Y = 0,(4.7)

where C̃2 = D+
21C2, Ã = A−B1C̃2, and B̃1 = B1(I −D+

21D21). Defining Y∞ as

Y∞ := lim
α→+∞

Y (α),(4.8)

the solvability of the suboptimal singular H∞ problem can be characterized as follows
(see also Theorem 4 in [5]).

THEOREM 4.7. The singular H∞ problem with performance γ is solvable if and
only if both

(a) the α-dependent Riccati equations (4.3) and (4.7) have asymptotic stabilizing
solutions X∞ and Y∞;

(b) X∞ and Y∞ further satisfy

X∞ ≥ 0, Y∞ ≥ 0, ρ(X∞Y∞) ≤ γ2.(4.9)

Proof. Necessity is immediate from the previous discussion. Note that the con-
dition ρ(X∞Y∞) ≤ γ2 follows from the existence of (R,S) ∈ R × S such that
λmin(RS) ≥ γ−2, and from the fact that 0 ≤ X∞ < R−1 and 0 ≤ Y∞ < S−1 for
all (R,S) ∈ R × S. As for sufficiency, (a) together with Lemma 4.3 and Definition
4.5 ensure that R and S are nonempty. Moreover, there exist sequences Rn ∈ R and
Sn ∈ S such that R−1

n → X∞ and S−1
n → Y∞. Since ρ(X∞Y∞) < γ2, we deduce that

ρ(R−1
n S−1

n ) < γ2 for n large enough, or equivalently that λmin(RnSn) > γ−2. Hence,
there exist R ∈ R and S ∈ S such that λmin(RS) ≥ γ−2, which ensures that the H∞
performance γ is achievable by virtue of Theorem 3.1.

Remark 4.8. From Lemma 4.6, the asymptotic stabilizing solution X∞ coincides
with the strict lower limit point P (µ) in Theorem 13 of [32]. The matrix X∞ is also
a particular solution of the quadratic matrix inequality (QMI)(

ATX +XA+ γ−2XB1B
T
1 X + CT1 C1 XB2 + CT1 D12

BT2 X +DT
12C1 DT

12D12

)
≥ 0(4.10)

considered in [34]. To see this, let V = (V1, V2) be any orthogonal matrix such that
D12(V1, V2) = (∆, 0) with ∆ full-column-rank. Postmultiplying and premultiplying
by diag(I, V ), the QMI (4.10) reads ATX +XA+ γ−2XB1B

T
1 X + CT1 C1 XB2V1 + CT1 ∆ XB2V2

V T1 B
T
2 X + ∆TC1 ∆T∆ 0
V T2 B

T
2 X 0 0

 ≥ 0,

which is equivalent to

XB2V2 = 0, ÂTX +XÂ+X(γ−2B1B
T
1 − B̂2B̂

T
2 )X + ĈT1 Ĉ1 ≥ 0.(4.11)

To show that X∞ satisfies these constraints, recall that

ÂTX(α)+X(α)Â+X(α)(γ−2B1B
T
1 −B̂2B̂

T
2 )X(α)+ĈT1 Ĉ1 = αX(α)B2π12B

T
2 X(α) ≥ 0.

Taking the limit as α → +∞ shows that X∞ satisfies the inequality in (4.11) and
that 0 = X∞B2π12B

T
2 X∞ = X∞B2V2V

T
2 B

T
2 X∞, whence X∞B2V2 = 0.
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5. Computation of X∞ and Y∞ in the singular case. From Theorem 4.7,
the main task when testing the feasibility of some H∞ performance γ is the compu-
tation of the asymptotic stabilizing solutions X∞ and Y∞ defined by (4.6) and (4.8).
This section contains the main results of the paper. It begins with a discussion of the
pencil-based algorithm proposed in [5] and brings out some numerical shortcomings
of that approach. A new and numerically stable algorithm to compute X∞ and Y∞
is then presented. Using only SVDs, this algorithm proceeds by iterative row/column
compressions of the plant matrices A,B1, B2, C1, D12 until a reduced-order, regular
subproblem has been extracted. That is, until obtaining a standard reduced-order
Riccati equation that is equivalent to the LMI feasibility condition (3.2). A formal
description and a justification of this algorithm are given in subsections 5.2 and 5.3.
Finally, subsection 5.4 brings out insightful connections with the deflation of the
Hamiltonian pencil considered in [5].

5.1. Pencil-based computation of X∞. In principle, to determine whether a
given performance γ is achievable, we could approximate X∞ and Y∞ by X(α) and
Y (α) for α large enough and iteratively increase α until (4.3) and (4.7) have stabilizing
solutions that satisfy

X(α) ≥ 0, Y (α) ≥ 0, ρ(X(α)Y (α)) ≤ γ2.

In practice, however, this scheme will run into two difficulties. First, the convergence
toward X∞ or Y∞ may be very slow, thus requiring a large number of iterations.
Worse, the computation of the Riccati solutions X(α) and Y (α) becomes ill condi-
tioned for large values of α. For these reasons, a direct computation of X∞ and Y∞
is numerically desirable.

To this end, Copeland and Safonov [5] recall that the stabilizing solution X(α) is
related to the stable eigenspace S(α) of the matrix pencil

M(α)−λN =

 Â γ−2B1B
T
1 − B̂2B̂

T
2 B2π12

−ĈT1 Ĉ1 −ÂT 0
0 π12B

T
2 α−1I

−λ
 I 0 0

0 I 0
0 0 0

(5.1)

(“stable eigenspace” refers to the invariant subspace associated with the finite and
stable generalized eigenvalues) [22, 38]. Specifically, given any basis Pα

Qα
Zα


of S(α), (4.3) has a stabilizing solution if and only if Pα is square invertible, in
which case X(α) is given by X(α) = QαP

−1
α . As a result, computing X∞ amounts to

computing the limit of S(α) as α goes to infinity. Introducing M∞ := limα→+∞M(α),
this limit is explicitly characterized in [5] as

lim
α→+∞

S(α) = Span

 P1

Q1

Z1

 ⊕ Span

 P2

0
Z2

 ,(5.2)

where the first subspace is the stable eigenspace S∞ of the limit pencil M∞ − λN ,
and the columns of (P2

Z2
) span the lower infinite eigenspace of (A−λIC1

B2
D12

) (see [5] for
details). Consequently, the asymptotic stabilizing solution X∞ of (4.3) exists if and



1698 PASCAL GAHINET AND ALAN LAUB

only if (P1, P2) is square and invertible, in which case it is given by

X∞ = (Q1, 0) (P1, P2)−1.

In fact, [19] further shows that X∞ depends only on P1 and Q1.
The computation of S∞ requires deflation of the pencil M∞ − λN . To enhance

numerical stability, [5] advises using the deflation algorithm 3.6 of [37] rather than
the QZ algorithm because of possible generalized eigenvalues at infinity. In fact, the
most pressing reason for ruling out the QZ algorithm is the possible singularity of
the pencil M∞ − λN (or equivalently, of the pencil W12∞(0, s) considered in [5]).
Such singularities have been overlooked in [5] and complicate the computation of the
required eigenspace. First, a combination of Algorithms 4.1 and 4.5 in [37] should be
used rather than Algorithm 3.6. Second, the computation of the finite spectrum of
a singular pencil is a badly conditioned problem [37]. Finally, the algorithms of [37]
will not produce, in general, the regular decomposition assumed in [5, equation (293),
p. 387]. Instead, they will deflate M∞ − λN to the staircase form (2.2).

To compute the stable eigenspace S∞ in the presence of the singular component
Mr − λNr, we must either swap the diagonal blocks Mr − λNr and Mf − λNf or
block-diagonalize the subpencil (Mr−λNr

0
?

Mf−λNf ). Both operations involve non-
orthogonal equivalence transformations [8]. Besides their possible ill-conditioning,
these transformations are often nonunique, in which case the remaining degrees of
freedom add dimensions to the stable eigenspace S∞. These various difficulties are
illustrated by the simple example below.

Example 5.1. Consider a plant with state-space matrices

A =
(

3 −2
−2 0

)
, B1 =

(
1
1

)
, B2 =

(
1 5
−1 0

)
, C1 =

(
2 −1
0 1

)
, D11 = 0, D12 =

(
1 0
0 0

)
;

take γ = 1; and form the pencil M∞ − λN . Running Algorithms 4.1 and 4.5 of [37]
on this pencil yields the following deflated form (2.2):

M∞ − λN ≡


5 1− λ 1 2 0
0 0 −1− λ 0 −2
0 0 1 1− λ 1
0 0 0 0 1 + λ
0 0 0 0 5

 .(5.3)

This pencil is clearly singular with regular part Mf − λNf = (−1−λ
1

0
1−λ ). The only

stable eigenvalue being λ = −1, the stable eigenspace is spanned by the nontrivial
solutions of the linear system of equations 5 2 1 2

0 0 0 0
0 0 1 2




x1
x2
x3
x4

 = 0.(5.4)

The stable eigenspace is therefore of dimension 2, whereas the stable eigenspace of
Mf − λNf is of dimension 1. This extra dimension comes from the nonuniqueness of
the diagonalizing equivalence transformations.

In the general case when Mf −λNf has several stable eigenvalues, we need either
to assemble and solve the system (5.4) for each eigenvalue or to diagonalize the pencil
[8] while keeping a record of the remaining degrees of freedom. Both approaches
involve nonorthogonal equivalence transformations, are difficult to implement, and
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will produce nonorthonormal bases for the stable eigenspace in general. A more
extensive discussion of these difficulties is found in [8].

Finally, the finite spectrum of singular pencils is highly sensitive to rounding
errors. For instance, a perturbation ε = 1.0 × 10−10 in the (2,2) entry of the pencil
(5.3) is enough to make its finite spectrum vanish entirely! Computing the stable
eigenspace of singular pencils may thus be numerically hazardous.

Circumventing such numerical hazards was our main motivation for seeking an
alternative algorithm to compute X∞. The results of this research are presented next.

5.2. A new algorithm to compute X∞. We begin with an overall description
of the algorithm in terms of computational procedure and major operations performed.

ALGORITHM 5.2
Purpose: Test the existence of a nonnegative asymptotic stabilizing solution X∞ to
the α-parametrized Riccati equation (4.3), and compute it when it exists.
Initialization: Set k := 0, Z := I, and

A0 := A, G0 := B1, B0 := B2, C0 := C1, D0 := D12.

Regularization loop: Iteratively update the matrices Ak, Gk, Bk, Ck, and Dk at
iteration k as follows:

1. Perform a column compression on Dk. That is, compute (via SVD, say) an
orthogonal matrix V = (V1, V2) such that

Dk (V1, V2) = (∆ , 0)(5.5)

with ∆ full column rank. Terminate if Dk has full column rank.
2. Perform a row compression on BkV2. That is, compute (via SVD, say) an

orthogonal matrix W = (W1,W2) such that(
WT

1

WT
2

)
BkV2 =

(
0
L

)
(5.6)

with L full row rank. Terminate if BkV2 is either full row rank or identically zero.
3. Define

Ak+1 := WT
1 Ak W1 , Gk+1 := WT

1 Gk , Ck+1 := CkW1

Bk+1 := WT
1 (AkW2 , BkV1) , Dk+1 := (CkW2 , DkV1).(5.7)

4. Overwrite Z by ZW1, set k := k + 1, and return to Step 1.
Reduced-order Riccati equation: Let K denote the number of iterations per-
formed in the regularization loop, and let ÂK , B̂K , and ĈK be the counterparts of
Â, B̂2, and Ĉ1 in (4.2) when replacing A, B2, C1, and D12 with AK , BKV1, CK , and
DKV1.

If BKV2 has full row rank, X∞ = 0. Otherwise, (4.3) has a nonnegative asymptotic
stabilizing solution X∞ if and only if the Riccati equation

ÂTKXr +XrÂK +Xr (γ−2GKGTK − B̂KB̂TK)Xr + ĈTK ĈK = 0(5.8)

has a stabilizing solution Xr ≥ 0, and X∞ is then given by

X∞ = Z Xr Z
T .(5.9)

In simple terms, this algorithm extracts a regular subproblem from the original
singular H∞ problem. Specifically, it iteratively reduces the original plant (A, B1, B2,
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C1, D12) to the subproblem of state-space data (AK , GK , BKV1, CK , DKV1 ). This
subproblem is then handled in the usual way by solving the reduced-order Riccati
equation (5.8). Since the size of Ak is strictly decreasing, the regularization loop will
terminate in a finite number of steps. Note that the row and column compressions
involve only numerically stable operations (SVDs). In addition, the matrix Z relating
Xr to X∞ has orthonormal columns since each W1 satisfies WT

1 W1 = I. Thus, the
overall regularization amounts to an orthonormal change of coordinates that isolates
the nontrivial part of X∞ (simply observe from (5.9) that the orthogonal complement
of Span(Z) lies entirely in the null space of X∞). Incidentally, this regularization
is equivalent to an implicit unitary deflation of the pencil W12∞(0, s) considered in
[5], as will be seen in subsection 5.4. Finally, note that (5.9) is closely related to the
identity in Theorem 13 of [32], the main difference here being the orthogonality of the
coordinate transformation Z.

5.3. Justification. To justify the regularization scheme of Algorithm 5.2, we
show that each iteration of the regularization loop produces an equivalent problem
of smaller dimension. This property is best seen by working with the LMI-based
characterization of Theorem 3.1. For notational simplicity, start with the original
problem data A, B1, B2, C1, D12 and apply one iteration of Algorithm 5.2. Denote
the resulting matrices by

A := WT
1 AW1, G := WT

1 B1, B := WT
1 (AW2, B2V1),

C := C1W1, D := (C1W2,∆),(5.10)

where V = (V1, V2) and W = (W1,W2) are orthogonal matrices such that

D12 (V1, V2) = (∆ , 0), (B2V2)T (W1,W2) = (0, LT ).(5.11)

(∆ and L have full column and row rank, respectively.) The next theorem shows that
X∞ is fully determined by the reduced problem of data (A,G,B, C,D).

THEOREM 5.3. With the notation (5.10), (5.11) and the assumptions (A1)–(A3),
there is equivalence between the following two statements:

(a) the α-parametrized Riccati equation (4.3) has an asymptotic stabilizing solu-
tion X∞ ≥ 0;

(b) the counterpart of (4.3) resulting from the substitutions

(A,B1, B2, C1, D12)→ (A,G,B, C,D)

has an asymptotic stabilizing solution X1 ≥ 0.
Moreover, X∞ and X1 are related by

X∞ = W1X1W
T
1 .(5.12)

Proof. See Appendix B.
By applying Theorem 5.3 to each iteration of the regularization loop, we can

characterize X∞ in terms of the stabilizing solution of the final reduced-order Riccati
equation (5.8). This corollary completes the justification of Algorithm 5.2.

COROLLARY 5.4. For plants satisfying (A1)–(A3), there is equivalence between
(a) (4.3) has an asymptotic stabilizing solution X∞ ≥ 0;
(b) the reduced-order Riccati equation (5.8) has a stabilizing solution Xr ≥ 0 (with

the convention Xr = 0 when BKV2 has full row rank upon termination).



RELIABLE COMPUTATION OF OPTIMAL H∞ PERFORMANCE 1701

If either property holds, the asymptotic stabilizing solution X∞ of (4.3) is given by

X∞ = ZXrZ
T ,(5.13)

where Z is the matrix accumulated during the iterative regularization of the
plant.

Summing up, the regularization loop clears the way to turning the LMI (3.2) into
a well-defined Riccati equation that can be solved with standard Riccati solvers [21, 2]
(see section 6 for more details).

5.4. Interpretation in terms of pencil deflation. This subsection gives two
interpretations of Algorithm 5.2 in terms of the deflation of

(1) the system matrix

P12(λ) =
(
A− λI B2
C1 D12

)
,(5.14)

(2) the extended Hamiltonian pencil associated with the H∞ controller ARE

ÂTX +XÂ+X(γ−2B1B
T
1 − B̂2B̂

T
2 )X + ĈT1 Ĉ1 = 0.(5.15)

Algorithm 5.2 is shown to perform an orthogonal deflation of these pencils to extract
their finite eigenstructures. However, this algorithm differs from the pencil algorithm
discussed in [5] in two important ways:

• the deflation is performed implicitly in a highly efficient and numerically
stable manner;
• no attempt is made to compute the stable eigenspace of the Hamiltonian pen-

cil associated with (5.15) or to deal with related difficulties when this pencil is
singular (see discussion in subsection 5.1). Instead, Algorithm 5.2 extracts a
reduced Hamiltonian pencil which is regular, contains all information needed
to compute X∞, and can be deflated in a numerically stable way.

First consider the effect of one iteration of Algorithm 5.2 on the system matrix
P12(λ). With the notation (5.10), (5.11), we have

(
WT 0

0 I

)
P12(λ)

(
W 0
0 V

)
=

 A− λI WT
1 AW2 WT

1 B2V1 0
? ? ? WT

2 B2V2

C C1W2 ∆ 0


≡

 WT
2 B2V2 ? ?

0 A− λI B
0 C D

 ,(5.16)

where ≡ stands for “equivalent by row and column permutations.” Recalling that
WT

2 B2V2 has full row rank by construction, it is immediate from Lemma 2.1 that
P12(λ) and (A−λIC

B
D ) have the same finite zeros. Repeating the argument for each

iteration, we conclude that P12(λ) and

PK(λ) =
(
AK − λI BKV1

CK DKV1

)
(5.17)

share the same finite eigenvalues (finite zeros). Moreover, the deflated system matrix
PK(λ) is associated with a regular problem since DKV1 has full column rank, and
subsection 5.3 shows that this problem contains all the information needed to compute
X∞. A more complete interpretation in terms of infinite zero structure can be found
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in [32]. From [10, 11], note that the finite zeros of PK(λ) are exactly the unobservable
modes of

(ĈK , ÂK) =
(
(I − (DKV1)(DKV1)+)CK , AK − BKV1(DKV1)+CK

)
.

The previous analysis has an immediate counterpart in terms of extended Hamil-
tonian pencils. Recall that the Hamiltonian matrix associated with (5.15) is

HX :=

(
Â γ−2B1B

T
1 − B̂2B̂

T
2

−ĈT1 Ĉ1 −ÂT

)
.(5.18)

Following [38, 22, 2], we can eliminate all pseudoinversions by replacing HX with the
extended Hamiltonian pencil

H− λE =
(
H11 H12

H21 H22

)
− λ

(
I 0
0 0

)

:=


A γ−2B1B

T
1

0 −AT
0 B2

−CT1 0
C1 0
0 −BT2

−I D12

−DT
12 0

− λ


I 0
0 I

0 0
0 0

0 0
0 0

0 0
0 0

 .(5.19)

In the regular case, H22 is invertible since D12 has full column rank. Hence, H− λE
is a regular pencil and given any basis

P
Q
?
?


of its stable eigenspace, it is easily verified from the identity HX = H11−H12H

−1
22 H21

that the columns of (PQ ) span the stable eigenspace of the Hamiltonian matrix HX .
Consequently, X = QP−1 is the stabilizing solution of (5.15) whenever P is invertible
[2]. Note that the pencil H − λE is an extended version of the pencil W12∞(0, s)
considered in [5].

When D12 is rank-deficient, by contrast, the pencil H− λE may be singular and
the connection with the (asymptotic) stabilizing ARE solution becomes fuzzier. To
understand the deflating action of Algorithm 5.2, observe that H − λE is equivalent
by row and column permutations to

H− λE ≡
(
P12(λ) Diag(γ−2B1B

T
1 ,−I)

0 −PT12(−λ)

)
.(5.20)

From the previous discussion and (5.16), we readily infer that one iteration of Algo-
rithm 5.2 deflates the pencil H−λE , via orthogonal transformations, to the equivalent
pencil  WT

2 B2V2 ? ?
0 H1 ?

0 0 −V T2 BT2 W2

− λ
 0 ? 0

0 E1 ?
0 0 0

 ,(5.21)

where

H1 − λE1 :=


A γ−2G 0 B
0 −AT −CT 0
C 0 −I D
0 −BT −DT 0

− λ


I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

 .(5.22)
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By inspection of (5.21), (5.22), it follows that
• one iteration of Algorithm 5.2 extracts a subpencil H1 − λE1 with the same

Hamiltonian structure;
• H − λE and H1 − λE1 have the same finite generalized eigenvalues. This

follows from (5.21) together with Lemma 2.1 and the fact that WT
2 B2V2 has

full row rank;
• upon termination, either HK is empty (case X∞ = 0) or HK − λEK is the

regular extended Hamiltonian pencil associated with the reduced-order ARE
(5.8).

Summing up, Algorithm 5.2 amounts to a particular orthogonal deflation of the Hamil-
tonian pencil H− λE . Unlike in [5], the stable eigenspace of H− λE is not explicitly
computed. Instead, X∞ is computed from the stable eigenspace of the reduced pencil
HK − λEK .

6. Computation of γopt. This section summarizes the overall procedure for
computing the optimal H∞ performance γopt in the singular case. The algorithm
is given for the general case D11 6= 0, which is a straightforward extension of the
previous results. The regularization loop of Algorithm 5.2 remains unchanged in
this general setup, and its SVD-based implementation is straightforward. Once the
reduced-order ARE (5.8) has been extracted, it can be solved by standard Schur
techniques. To enhance numerical stability, we recommend using the generalized
eigenproblem implementation described in [2] as follows.

(1) Form the (regular) extended pencil

HK−λEK =


AK 0 0 γ−1GK BKV1

0 −ATK −CTK 0 0
CK 0 −I γ−1D11 DKV1

0 γ−1GTK γ−1DT
11 −I 0

0 (BKV1)T (DKV1)T 0 0

−λ


I 0 0 0 0
0 I 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

where AK , GK , BK , CK , DK , and V1 are the matrices returned by Algorithm 5.2 upon
termination.

(2) Eliminate its infinite eigenstructure by using Algorithm 3.6 of [37].
(3) Compute an orthonormal basis for its stable eigenspace by using the QZ

algorithm with reordering of the stable eigenvalues [38].
Algorithm 5.2 is readily dualized to test the existence of Y∞ and compute it: simply
replace (A,B1, B2, C1, D11, D12) with (AT , CT1 , C

T
2 , B

T
1 , D

T
11, D

T
21) in the initialization

step.
Combining this regularization algorithm with the characterization of Theorem

4.7, the optimal H∞ performance γopt is estimated to the desired accuracy via the
usual γ-iteration scheme. Note that the trick proposed in [29] to avoid numerical
difficulties when testing X∞ ≥ 0 or Y∞ ≥ 0 is also applicable to our context.

7. Numerical stability and related issues. This section discusses the numer-
ical reliability of the algorithm outlined in section 6. Recall that the main difficulty
is the computation of X∞ and Y∞. Since Algorithm 5.2 relies on SVDs and since
the SVD is a backward stable operation, the computed γopt is the exact value for a
nearby problem (i.e., for slightly perturbed values of the plant matrices). Yet this
is not enough to guarantee that this computed value is meaningful from a control
viewpoint. Indeed, it was shown in [13] that the optimal H∞ gain γopt may be dis-
continuous near singular problems. In other words, arbitrarily small perturbations of
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the plant data may result in large variations of γopt. To understand how this might
affect Algorithm 5.2, we first recall a few important facts about such discontinuities.

7.1. Discontinuities of γopt. As shown in [13], γopt is an upper semicontinuous
function of the plant data that may be discontinuous near singular plants. Consider a
singular plant P (s) with optimal performance γ∗ := γopt(P ), and suppose that γopt
is discontinuous at P with a gap δ > 0 between its upper and lower limits. Then
there exist arbitrarily small perturbations Pε of P such that

γopt(Pε) < γ∗ − δ/2 .

While the value γopt(Pε) is mathematically correct, it is clearly not meaningful from a
control standpoint. Indeed, the H∞ performance should be robust to small perturba-
tions in the state-space data, while here γopt(Pε) jumps up by at least δ/2 (a possibly
large amount) when Pε is perturbed to P .

For these reasons, we claim that only the upper limit γ∗ is meaningful in the
vicinity of the singular plant P . This value is typically insensitive to small perturba-
tions of the data and can be achieved with reasonable control effort. In contrast, the
lower limit(s) are only achievable via high gain or marginal closed-loop stability.

7.2. Implementation tips. Based on the previous discussion, we recommend
the following “singularity-preferring” policy: if the plant is nearly singular, make it
singular and compute the optimal H∞ performance for the resulting singular plant.
This amounts to computing the upper limit of γopt in the vicinity of the plant. Now,
singularity has to do with the rank of the matrices Dk and BkV2 in Algorithm 5.2.
(The regularization is complete when these matrices have full rank.) Thus, “nearly
singular” is equivalent to “nearly rank-deficient,” which in turn has to do with small
singular values. Due to the finite precision of computer arithmetic, singular val-
ues should be considered zero when they fall below some adequate relative tolerance
TOL:

SVD truncation rule: Given the SVD of a matrix M , zero all singular values
smaller than TOL× σmax(M) where σmax(M) denotes the largest singular value of
M .

To implement our singularity-preferring policy, it suffices to set TOL to some
conservative value, e.g., the square root of the relative machine precision. This will
automatically turn nearly singular problems into truly singular ones. Note that steer-
ing clear of nearly rank-deficient matrices also improves the numerical conditioning
of the reduced Riccati equation (5.8).

8. Numerical experiments. The following simple example illustrates the per-
formance of Algorithm 5.2.

Example 8.1. Consider the plant data

A =

 0 −1 2
1 −2 3
0 1 0

 , B1 =

 1
−1

0

 , B2 =

 1 0
0 0
0 −1

 ,

C1 =
(

1 0 1
1 0 1

)
, D12 =

(
0 1
0 0

)
.

Clearly D12 is rank-deficient and the standard Riccati equation for X∞ is ill-defined
for this problem.
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With this data and γ = 1, Algorithm 5.2 performs one regularization iteration
and returns the asymptotic stabilizing solution

X∞ =

 0 0 0
0 0.06857 0.18733
0 0.18733 0.51180

 .

The eigenvalues of X∞ are 0.58037, 0, 0.
By comparison, the eigenvalues of the computed solution X(α) of (4.3) for α =

1010 are 0.5804, 1.12 × 10−5, and 7.73 × 10−12. This illustrates the relatively slow
convergence of X(α) to X∞. Note that α = 1010 corresponds to the following ε-
regularization of the true plant data:

C1 →

 1 0 1
1 0 1
0 0 0

 , D12 →

 0 1
0 0

10−5 0

 .

Algorithm 5.2 has been implemented in Matlab’s LMI Control Toolbox [16] de-
veloped by the authors and Nemirovski. To solve the reduced-order Riccati equations
we used the Riccati solvers developed by Laub [23]. The algorithm was tested on a
large number of randomly generated singular problems, and the computed γopt was
compared with (1) the optimal value obtained from LMI-based optimization using
Nestorov and Nemirovski’s projective method [14, 25, 16] and (2) the optimal value
obtained with a standard γ-iteration algorithm after ε-regularization of the plant. Al-
gorithm 5.2 proved extremely reliable and always returned an optimal value within
1% of the LMI-based optimum. In contrast, the ε-regularization scheme proved very
sensitive to the choice of ε. Algorithm 5.2 therefore appears as a fast and reliable
alternative to ε-regularization for singular problems.

9. Concluding remarks. We have presented a new and numerically stable al-
gorithm to compute the optimal H∞ gain γopt when D12 or D21 are rank-deficient.
Its efficiency and reliability have been confirmed by extensive numerical testing.

Given γopt, there remains the issue of computing (sub)optimal controllers that
achieve some performance γ ≥ γopt. As pointed out in [5], the usual central controller
formulas applied to the asymptotic stabilizing solutions X∞ and Y∞ do not always
yield a proper or well-posed controller. In fact, there does not seem to be any obvious
way of deriving adequate controllers from knowledge of X∞ and Y∞ (see [15] for
insight drawn from the LMI approach). Consequently, the ε-regularization of the
plant data remains useful for the computation of the H∞ controller. Even so, exact
knowledge of the optimal performance prior to any regularization proves valuable for
two reasons. First, it eliminates the dependence of the computed optimal performance
on the chosen regularization level ε. Here the true value is obtained at once and
without the possible numerical instability introduced by ε. Second, increasing ε tends
to improve numerical conditioning and to yield better-behaved controllers. Once some
performance γ > 0 has been unambiguously diagnosed as feasible with Algorithm 5.2,
it is easy to maximize ε subject to γ remaining feasible.

Appendix A.
Proof of Lemma 4.2. The proof is adapted from [31]. Temporarily assuming that

(C,−A) is detectable, Theorem 2.23 of [31] shows that the set

G :=
{
R = RT : AR+RAT +RCTCR+ F < 0

}
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is nonempty if and only if the Riccati equation

−AR−RAT −RCTCR− F = 0(A.1)

has a stabilizing solution Rst. Moreover, it is shown that Rst is then an upper limit
point of G.

If R 6= ∅, the set G contains a positive definite element R0 and consequently
Rst > R0 is positive definite and invertible. Defining Xst := R−1

st , it is readily verified
thatXst is a positive definite and stabilizing solution of ATX+XA+XFX+CTC = 0.
In addition, from 0 < R < Rst for all R ∈ R, we deduce that 0 < Xst < R−1 for all
R ∈ R. This, together with the upper limiting property of Rst, guarantees that Xst
is a lower limit point of Rinv.

Conversely, if ATX +XA+XFX +CTC = 0 has a stabilizing solution Xst > 0,
it retains a positive definite stabilizing solution Xst(ε) when CTC is perturbed to
CTC + εI with ε > 0 small enough [7]. Hence, R is nonempty since X−1

st (ε) ∈ R.
Finally, the case where (C,A) has stable unobservable modes can be handled by

a limiting argument (see, e.g., Lemma 8.1 in [12]). Note that the stable unobservable
subspace of (C,A) determines the null space of Xst.

Appendix B. We begin with a useful technical lemma.
LEMMA B.1 (Projection lemma) [12, 4]. Consider a symmetric matrix M and

matrices P,Q of compatible dimensions, and let WP and WQ be any matrices whose
columns form bases for the null spaces of P and Q, respectively.

With this notation, the matrix inequality M +QTXP + PTXTQ < 0 is solvable
for X if and only if the inequalities WT

P M WP < 0 and WT
Q M WQ < 0 hold.

The regularizing effect of Algorithm 5.2 is best analyzed in the LMI framework,
that is, using the LMI characterization of Theorem 3.1. The implications in terms
of asymptotic stabilizing Riccati solutions are then easily deduced from the results
of section 4. The next theorem shows that one regularization iteration reduces the
characteristic LMI (3.2) to a smaller LMI with the same structure and where A, B1,
B2, C1, and D12 are replaced by A, G, B, C, and D, respectively.

THEOREM B.2. Assume that D12 is column-rank deficient. With the notation
(5.10), (5.11) there exists a symmetric matrix R satisfying the LMI

N T
12

(
AR+RAT + γ−2B1B

T
1 RCT1

C1R −I

)
N12 < 0(B.1)

if and only if there exists a symmetric matrix R1 satisfying the reduced-order LMI

Ñ T

(
AR1 +R1AT + γ−2GGT R1CT

CR1 −I

)
Ñ < 0,(B.2)

where Ñ is any orthonormal basis for the null space of (BT ,DT ). Moreover, all
solutions of (B.1) are of the form

R = W

(
R1 ?

(?)T Ψ

)
WT ,(B.3)

where R1 solves (B.2) and Ψ is an arbitrary symmetric matrix.
Proof. Applying Lemma 4.1 with P = (BT2 , D

T
12), the LMI (B.1) is feasible if and

only if there exists R = RT such that(
AR+RAT + γ−2B1B

T
1 RCT1

C1R −I

)
− α

(
B2

D12

)(
B2

D12

)T
< 0 , α > 0 .(B.4)



RELIABLE COMPUTATION OF OPTIMAL H∞ PERFORMANCE 1707

Using the decomposition ( B2
D12

)V = (B2V1
∆

B2V2
0 ), (B.4) can also be written as(

AR+RAT + γ−2B1B
T
1 RCT1

C1R −I

)
− α

(
B2V1

∆

)(
B2V1

∆

)T
−α

(
B2V2

0

)(
B2V2

0

)T
< 0.

Recalling that W1 is a basis for the null space of V T2 B
T
2 by construction, we can elim-

inate the last term by invoking Lemma 4.1 once again, this time with P = (V T2 B
T
2 , 0)

and WP = (W1
0

0
I ). It follows that (B.4) is feasible if and only if(

WT
1 (AR+RAT + γ−2B1B

T
1 )W1 WT

1 RC
T
1

C1RW1 −I

)
− α

(
WT

1 B2V1

∆

)(
WT

1 B2V1

∆

)T
< 0

(B.5)
holds for some α > 0. With the notation (5.10), (5.11) and

(R1, R2) := WT
1 R (W1,W2), Ω1 :=

(
WT

1 AW2
C1W2

)
, Ω2 :=

(
WT

1 B2V1
∆

)
,

condition (B.5) is equivalent to the existence of α > 0 and of matrices R1 = RT1 and
R2 such that{(

AR1 +R1AT + γ−2GGT R1CT
CR1 −I

)
− α Ω2ΩT2

}
+
(
I
0

)
R2 ΩT1 + Ω1R

T
2 (I , 0) < 0.

(B.6)
To obtain the reduced LMI (B.2), it now suffices to eliminate the variable R2 by

invoking Lemma B.1 with P = ΩT1 and Q = (I , 0). Observing that the projected
inequality WT

QMWQ < 0 is trivial here, we conclude that (B.4) is feasible if and only
if the other projected inequality WT

P M WP < 0 holds or, equivalently from Lemma
4.1, if and only if the LMI{(

AR1 +R1AT + γ−2GGT R1CT
CR1 −I

)
− α Ω2ΩT2

}
− β Ω1ΩT1 < 0

holds for some symmetric R1 and positive scalars α, β. Without loss of generality, we
may take α = β and group the last two terms into the single term

−α(Ω1,Ω2)
(

ΩT1
ΩT2

)
.

Then the LMI condition (B.2) readily follows by applying Lemma 4.1 with P =
(Ω1,Ω2)T = (BT ,DT ) and WP = Ñ .

By construction, the solutions R of (B.1) are related to the solutions R1 of (B.2)
by

R = W

(
R1 R2
RT2 Ψ

)
WT ,

where R2 satisfies (B.6) and Ψ = ΨT is arbitrary: the proof is complete.
To prove Theorem 5.3, it now suffices to reinterpret this result in terms of asymp-

totic stabilizing solutions of the corresponding AREs.
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Proof of Theorem 5.3. First observe that Theorem B.2 can be strengthened to
positive definite solutions of the LMIs (B.1), (B.2). Specifically, if R > 0 solves (B.1),
then R1 = WT

1 RW1 is a positive definite solution of (B.2) from the proof of Theorem
B.2. Conversely, given a solution R1 > 0 of (3.3) and any R2 solving (B.6), the matrix

R := W

(
R1 R2
RT2 Ψ

)
WT(B.7)

solves (B.1) for any symmetric Ψ, and Ψ can always be chosen to make R positive
definite.

Now, from Lemma 4.3 together with (A3), the LMI (B.1) has positive definite
solutions if and only if (a) holds. Similarly, (B.2) has positive definite solutions if and
only if (b) holds since the pencil

P (λ) =
(
A− λI B
C D

)
has no finite eigenvalue on the imaginary axis. Indeed, P12(λ) and P (λ) share the
same finite spectra as established in subsection 5.4. Consequently, (a) and (b) are
equivalent.

This leaves us with proving the identity X∞ = W1X1W
T
1 . Schematically, this

identity stems from the correspondence (B.7) between solutions of the LMIs (B.1)
and (B.2) as well the fact that X∞ and X1 are lower limit points for these LMIs (see
Lemma 4.2). Specifically, X∞ ≤ R−1 for all solutions R > 0 of (B.1) while X1 ≤ R−1

1
for all solutions R1 > 0 of (B.2).

Let R > 0 solve (B.1), and partition R as in (B.7). By the standard inversion
formula for 2× 2 block matrices, we have

WTR−1W =
(
R−1

1 0
0 0

)
+
(
R−1

1 R2
−I

)
(Ψ−RT2 R−1

1 R2)−1
(
R−1

1 R2
−I

)T
≥
(
R−1

1 0
0 0

)
.

Since R1 solves (B.2), it follows that R−1 ≥W1R
−1
1 WT

1 ≥W1X1W
T
1 . Now this holds

for any solution R > 0 of (B.1), whence X∞ ≥W1X1W
T
1 .

Conversely, for any R1 > 0 solving (B.2), construct a solution R > 0 of (B.1) as
indicated above and choose Ψ = αI with α > 0 large enough. Then

W

(
R1 R2
RT2 αI

)−1

WT = R−1 ≥ X∞,

which, by letting α go to +∞, ensures that W1R
−1
1 WT

1 ≥ X∞. Since this must
hold for any R1 > 0 solving (B.2), we infer that W1X1W

T
1 ≥ X∞, and the proof is

complete.
By applying these results to each iteration, it becomes clear that Algorithm 5.2

generates a sequence of LMIs that are equivalent to (B.1) and of decreasing order (i.e.,
the size of the matrix variable R is strictly decreasing). From the algorithm descrip-
tion, the regularization loop terminates with either of the following two situations.

Termination type (A): BKV2 has full row rank. Then W1 is “empty,” (B.5) is
trivially satisfied, and any R > 0 solves (B.1). From Lemma 4.6, this case yields
X∞ = 0.
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Termination Type (B): DK has full column rank or BKV2 = 0. In both cases, the
resulting data AK ,GK ,BK , CK ,DK define a regular problem, and the final “reduced”
LMI is equivalent to the Riccati inequality (with the notation of Algorithm 5.2):

ÂKRr +RrÂTK +Rr ĈTK ĈK Rr + γ−2GKGTK − B̂KB̂TK < 0.(B.8)

When DK has full column rank, this last equivalence readily follows from subsection
3.3. When BKV2 = 0 instead, the identity(

BK
DK

)
V2 = 0

shows that the input directions along V2 are disconnected from both the plant dy-
namics and the output z; hence, they can be discarded to obtain a regular problem.
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Abstract. We show that the well-known relationship between the dual extremal arc in the
maximum principle and the optimal value function (of dynamic programming), calculated on the
optimal trajectory, is valid for the control of parabolic variational inequalities. It follows that every
optimal control is given by a feedback law. In the case when the functions defining the performance
index are convex also with respect to the state variable, a more specific result is obtained.

Key words. optimal control, dual extremal arc, optimal value function, parabolic variational
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1. Introduction. The aim of this paper is to establish the expected relationship
between the maximum principle and dynamic programming for optimal control prob-
lems governed by a certain class of variational inequalities of parabolic type, including
the parabolic obstacle problem and semilinear parabolic equations.

Let Ω be an open and bounded subset of RN having a sufficiently smooth bound-
ary. The control system we deal with is described by an abstract version of the
following nonlinear parabolic equation (with boundary and initial conditions):

(1.1)


∂y

∂t
+A0y + β(y) 3 Bu+ f a.e. in Q = (0, T )× Ω,

α1y + α2
∂y

∂ν
= 0 on (0, T )× ∂Ω,

y(0, x) = y0(x) in Ω,

where −A0 is a strictly elliptic differential operator in Ω having its principal part in
divergence form, β is a maximal monotone graph in R2, and B is a linear continuous
operator from a given Hilbert space U (the control space) to L2(Ω) (the state space).
Of course, the cases of semilinear parabolic equations and parabolic obstacle problem
are covered by (1.1).

In the present paper we shall be concerned with a certain class of free final state
optimal control problems of Bolza type governed by (1.1), in which the involved
integrand is convex, lower semicontinuous and possibly +∞ with respect to the control
variable u, and Lipschitz continuous (on bounded subsets of L2(Ω)) with respect to the
state variable y. For such problems, V. Barbu has obtained in [2] (see also [1] for the
convex case) first-order necessary conditions of optimality (the maximum principle) by
an approach involving their regularization and penalization. For systems governed by
the parabolic obstacle problem or by semilinear parabolic equations, these conditions
(in fact the adjoint equations) take a more explicit form.

Now let (t, y) 7→ V (t, y) be the optimal value function of dynamic programming
associated with one of the optimal control problems of the considered class. Our main

∗Received by the editors November 22, 1994; accepted for publication (in revised form) July 15,
1996.
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result states that, for every optimal pair (u∗, y∗) of the fixed problem, we can select
a dual extremal arc p which besides the optimality conditions (in Barbu’s form) also
satisfies the following inclusion:

(1.2) −p(t) ∈ ∂yV (t, y∗(t)) a.e. t ∈ (0, T ).

This is the above-mentioned connection between the maximum principle and dynamic
programming. Moreover, we shall prove that it is possible to choose p such that the
following additional inclusion is simultaneously verified:

(1.3) −p(0) ∈ ∂yV (0, y0).

However, when the domain of the elliptic operator y 7→ A0y + β(y) is not dense in
L2(Ω) but its closure is a convex cone (this is the case of parabolic obstacle problem),
a less precise result is established: the inclusions (1.2) and (1.3) must be adjusted
by adding the normal cones to the closure of the domain at its vertex and at y0,
respectively.

In the finite-dimensional case, the inclusions (1.2), (1.3) have been proved for
a very large class of nonsmooth free endpoint problems by F. H. Clarke and R. B.
Vinter in [7]. Let us describe in a few words the ingenious idea behind their approach.
According to the dynamic programming principle, they introduce an auxiliary control
variable v (in our notation) into the state equation, corresponding to the new term

−
∫ T

0
inf{(p, v(t)) : p ∈ ∂yV (t, y), |y − y∗(t)| ≤ δ} dt

in the performance index. So the optimal control problem obtained in this way is
solved by the same optimal pair as the original one. The part of the maximum
principle which refers to the additional control variable is just the relation (1.2), as
δ → 0.

This paper shows that the above idea works also in our infinite-dimensional frame-
work. But here we shall combine it with Barbu’s approach to the optimality conditions
for the control of parabolic variational inequalities. However, some specific difficulties
arise when we try to adapt the approach in [7] to our case. First, the way used there
to prove that the given optimal pair solves also the auxiliary optimal control problem
involves a certain approximation procedure for the new state equation. Expressing
this approximation in the form of an integral equation, one easily shows that it con-
verges uniformly on [0, T ]. But this does not work here mainly due to the fact that
the operator y 7→ A0y + β(y) in (1.1) is not Lipschitz continuous in L2(Ω) norm.
(Generally, differential operators are not continuous.) How could we surpass this dif-
ficulty? The key idea is based on the following simple observation: the approximation
proposed in [7] for the new state equation (applied to our situation) can be regarded
as a Trotter product formula approximation in L2(Ω); its convergence will follow
by applying an extension due to Y. Kobayashi of a well-known result of Brézis and
Pazy. The reduction of the convergence to this result is rather technical and requires
a previous approximation of both original and auxiliary controls by step functions
followed by a refined partition of the time interval. (It is the author’s opinion that,
for infinite-dimensional control systems, Trotter-type product formulas represent just
the adequate tool to prove the convergence of such an approximation scheme as that
proposed in [7] for the new state equation.) On the other hand, the adjoint equation
of (1.1) arising in the optimality conditions is a much more complicated object than
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in the finite-dimensional case. So the procedure of passing to the limit as δ → 0
used in [7] must be modified according to Barbu’s approach to optimality conditions.
In a few words, we can express the new situation in the following way: since a new
parameter η arises in the regularization process, we have to take limits when both δ
and η tend to zero.

For optimal control problems involving parabolic infinite-dimensional systems,
the inclusion (1.2) was proved by Barbu for two special situations by using two types
of arguments. The first refers to convex optimal control problems governed by linear
parabolic equations (see [3, p. 319]). In this case every dual extremal arc satisfies
(1.2). This happens because the necessary optimality conditions here are also suffi-
cient, and so any optimal pair of the considered problem solves also all the problems
defining V (t, y∗(t)) for t ∈ [0, T ]. The second situation concerns optimal control of
semilinear parabolic equations, but under two very restrictive additional hypotheses:
the integrand in the performance index is Gâteaux differentiable with respect to the
control variable u (therefore the subdifferential of the integrand with respect to u is
single valued) and B∗ is injective (see [2, Cor. 5.1, p. 209]).

But here we work under natural hypotheses, i.e., those under which the necessary
conditions of optimality are obtained in [2]. However, as in the finite-dimensional
case, additional assumptions lead to more specific results. So we shall show that
if the two functions defining the performance index are convex also with respect to
the state variable, then (1.2) holds not only almost everywhere but even everywhere
(see [7, Prop. 5.5] for a related finite-dimensional result). As an intermediate stage
we shall prove the convexity of the optimal value function with respect to the space
variable. This involves a Trotter-type product formula for the corresponding dynamic
programming equation.

Finally, let us mention that, as a consequence of the main results (Theorems 2.1
and 2.2), we find that every optimal control of our considered problems is given by a
feedback law (Theorems 2.3 and 2.4).

2. The framework and the main results. Let U be a real Hilbert space,
and set H = L2(Ω), where Ω is a fixed open and bounded subset of RN having
a sufficiently smooth boundary. The scalar products and norms of U and H are
denoted by the same symbols: (·, ·) and | · |, respectively. Also, let V be a real Hilbert
space continuously and densely imbedded in H with V ′ its dual space. Identifying H
with its own dual, we assume

V ⊂ H ⊂ V ′.

Denote by (·, ·) the pairing between V and V ′, and by | · |V the norm of V.
Consider the following optimal control problem:

(P) Minimize

(2.1)
∫ T

0
(h(u(t)) + g(y(t))) dt+ `(y(T ))

over all u ∈ L2(0, T ;U), where y ∈W 1,2([0, T ];H) satisfies the state equation

(2.2) y′(t) +Ay(t) + β(y(t)− ψ) 3 Bu(t) + f(t) a.e. t ∈ (0, T )

and the initial condition

(2.3) y(0) = y0.
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We impose on the data of (P) the following hypotheses:
(H1) The inclusion V ⊂ H is compact.
(H2) A : V → V ′ is a linear continuous and symmetric operator which, for some
ω > 0 and α ∈R, satisfies

(2.4) (Ay, y) ≥ ω|y|2V − α|y|2 for all y ∈ V.

Moreover, there exists c ≥ 0 such that, for every nondecreasing function ξ ∈
C1(R) with ξ(0) = 0 and ξ′ ≤ 1,

(2.5) (Ay, ξ(y)) ≥ −c(1 + |ξ(y)|)(1 + |y|) for all y ∈ D(A) = {z ∈ V : Az ∈ H}.

(H3) β is a maximal monotone graph in R×R with 0 ∈ D(β) and ψ is a given
function in H such that for some c ≥ 0,

(2.6) (Ay, βη(y − ψ)) ≥ −c(1 + |βη(y − ψ)|)(1 + |y|) for all y ∈ D(A) and η > 0,

where βη(r) = η−1(r − (I + ηβ)−1r) for all r ∈ R, η > 0.
(H4) B : U → H is a linear continuous operator.
(H5) f ∈ L2(0, T ;H).
(H6) y0 is a given function in V such that∫

Ω
j(y0(x)− ψ(x)) dx < +∞,

where j : R→ (−∞,+∞] is a convex function whose subdifferential is β.
(H7) h : U → (−∞,+∞] is convex, lower semicontinuous, and not identically +∞
and, for some c1 > 0 and c2 ∈ R, satisfies

(2.7) h(u) ≥ c1|u|2 − c2 for all u ∈ U .

(H8) g, ` : H → R are Lipschitz continuous on bounded subsets and bounded
from below by affine functions.
By means of j (specified in (H6)), we define the following convex function φ : H →
(−∞,+∞]:

(2.8) φ(y) =
∫

Ω
j(y(x)− ψ(x)) dx.

We have (see [2, Prop. 1.9, p. 24])

∂φ(y) = {w ∈ H : w(x) ∈ β(y(x)− ψ(x)) a.e. x ∈ Ω}

so that we may write (2.2) like this:

(2.9) y′ +Ay + ∂φ(y) 3 Bu+ f a.e. t ∈ (0, T ).

Notice that (H6) can be rewritten as
(H6)′ y0 ∈ V ∩D(φ).
A standard existence result (see [2, Thm. 4.3, p. 131]) states that, under the

hypotheses (H2)–(H6) (except (2.5)), for every u ∈ L2(0, T ;U), the problem (2.9),
(2.3) has a unique solution y ∈ W 1,2([0, T ];H) ∩ L2(0, T ;D(A)) ∩ C([0, T ];V). If,
instead of (H6), y0 ∈ V ∩D(φ) = D(φ), then (2.9), (2.3) has a unique solution
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y ∈ C([0, T ];H) such that
√
ty′ ∈ L2(0, T ;H) and

√
ty ∈ L2(0, T ;D(A)). Let us

mention that (2.6) ensures the maximal monotonicity of A+ ∂φ in H×H.
One also knows that, under the hypotheses (H2)–(H5) (without (2.5)), (H7), and

(H8), the control problem (P) admits at least one optimal pair for every y0 ∈ D(φ)
(see [2, Prop. 5.1, p. 173]). (Note only that (2.7) and the boundedness from below
by affine functions of g and ` ensure here that the functional (2.1) tends to +∞ as∫ T

0 |u|
2 dt→∞.)

We associate with the optimal control problem (P) the corresponding optimal
value function V : [0, T ]×D(φ)→ R, i.e.,

(2.10)

V (t, y) = inf

{ ∫ T

t

(h(u(s)) + g(z(s))) ds+ `(z(T )) :

z′ +Az + β(z − ψ) 3 Bu+ f a.e. s ∈ (t, T ), z(t) = y, u ∈ L2(t, T ;U)

}
.

The following result is well known, but we shall give its proof for the reader’s conve-
nience.

PROPOSITION 2.1. Under the hypotheses (H2)–(H5) (except (2.5)), (H7), and
(H8), the function D(φ) 3 y 7→ V (t, y) is Lipschitz continuous on bounded subsets,
uniformly with respect to t ∈ [0, T ].

(Note that only here and in the proof of the existence of an optimal pair the
condition (2.7) and the boundedness from below by affine functions of g and ` are
needed.)

Proof. Let y1, y2 ∈ D(φ), arbitrary, such that |y1|, |y2| ≤ r. By (2.10), we have

V (t, y2)− V (t, y1) ≤
∫ T

t

(g(z2(s))− g(z1(s))) ds+ `(z2(T ))− `(z1(T )),

where z2 and z1 are the solutions of (2.2) corresponding to the initial states y2 and y1
at the time t, and the infimum defining V (t, y1) is attained. Taking (2.7) into account,
we obtain ∫ T

t

|u(s)|2 ds ≤ const.,

where the above constant depends only on r. (It is independent of t.) So |z1(s)|
and |z2(s)| are bounded by a constant which depends only on r. Thus we may use
the Lipschitz continuity on bounded subsets of g and ` to deduce the same thing for
V (t, ·) uniformly with respect to t ∈ [0, T ]. The proof is finished.

Now to give a sense to the gradient of V with respect to y also at those points
of D(φ) which are not interior points for D(φ), we consider the extension of V to the
whole space H denoted by Ṽ and defined as follows:

Ṽ (t, y) = V (t, PKy) for (t, y) ∈ [0, T ]×H,

where PK is the projection operator of H onto K = D(φ). Obviously, by virtue of
Proposition 2.1, the function H 3 y 7→ Ṽ (t, y) is also Lipschitz continuous on bounded
subsets uniformly with respect to t ∈ [0, T ]. So we may define

∂yV (t, y) = ∂yṼ (t, y) for (t, y) ∈ [0, T ]×D(φ),

where ∂yṼ (t, y) is the generalized gradient (in Clarke’s sense) of y 7→ Ṽ (t, y).
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Finally, let Y = Hs(Ω) ∩ V, where s > N/2, and set Q = (0, T )×Ω. We are now
prepared to state our main results.

THEOREM 2.1. Let (u∗, y∗) be an arbitrary optimal pair of the control problem
(P) where β : R→ R is Lipschitz continuous on bounded subsets. Suppose that (H1)–
(H8) are satisfied. Then there exist p ∈ BV ([0, T ];Y ′)∩L∞(0, T ;H)∩L2(0, T ;V) and
µ ∈ (L∞(Q))′ such that

(2.11) p′ −Ap− µ ∈ ∂g(y∗) a.e. in Q, p′ −Ap− µ ∈ L∞(0, T ;H),

(2.12) µa(t, x) ∈ p(t, x)∂β(y∗(t, x)− ψ(x)) a.e. in Q,

(2.13) −p(T ) ∈ ∂`(y∗(T )),

(2.14) B∗p(t) ∈ ∂h(u∗(t)) a.e. t ∈ (0, T ),

and

(2.15) −p(t) ∈ ∂yV (t, y∗(t)) a.e. t ∈ (0, T ).

If the following additional hypothesis on β holds:
(H9) φ (given by (2.8)) is bounded on bounded subsets of V ∩D(φ) in the V norm,

then p (together with µ) can be chosen such that besides (2.11)–(2.15) it also satisfies

(2.16) −p(0) ∈ ∂yV (0, y0).

Moreover, if, for some c ≥ 0, β satisfies

(2.17) β′(r) ≤ c(|β(r)|+ |r|+ 1) a.e. r ∈ R,

then p ∈ AC([0, T ];Y ′) ∩ Cw([0, T ];H) and µ = µa ∈ L1(Q).
Here p′ is the derivative of p in the sense of V ′-valued distribution and µa ∈

L1(Q) is the absolutely continuous part of µ; also, ∂β, ∂g, and ∂` are the generalized
gradients of β, g, and `, and ∂h is the subdifferential of h. Finally, Cw([0, T ];H) is
the space of weakly continuous functions from [0, T ] to H.

Now set K = {y ∈ L2(Ω) : y ≥ ψ a.e. in Ω}.
THEOREM 2.2. Let (u∗, y∗) be an arbitrary optimal pair for the control problem

(P) where β is defined by

(2.18) β(r) =


0 if r > 0,
(−∞, 0] if r = 0,
∅ if r < 0.

Suppose that (H1)–(H8) hold. Then there exists a function p ∈ BV ([0, T ];Y ′) ∩
L∞(0, T ;H) ∩ L2(0, T ;V), which with the necessary conditions of optimality
(2.19)

(p′ −Ap)a ∈ ∂g(y∗) a.e. in {(t, x) ∈ Q : y∗(t, x) > ψ(x)} (p′ −Ap ∈ (L∞(Q))′),

(2.20) p(f +Bu∗ −Ay∗ − y∗′) = 0 a.e. in Q,

(2.21) −p(T ) ∈ ∂`(y∗(T )),
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(2.22) B∗p(t) ∈ ∂h(u∗(t)) a.e. t ∈ (0, T )

also satisfies

(2.23) −p(t) ∈ ∂yV (t, y∗(t)) +NK(ψ) a.e. t ∈ (0, T ),

(2.24) −p(0) ∈ ∂yV (0, y0)−NK(y0).

Here NK(ψ) and NK(y0) denote the normal cones to K at ψ and y0, respectively;
for example, NK(ψ) = {w ∈ H : (w, y − ψ) ≤ 0 for all y ∈ K}. Note also that
K = D(φ) = D(φ), where φ (defined by (2.8)) corresponds to β given by (2.18).

Remark 2.1. While for semilinear parabolic equations (in Theorem 2.1), D(φ) = H
and therefore all points of D(φ) are interior (consequently, in (2.15), (2.16), ∂yV (t, ·)
is just Clarke’s generalized gradient), in the case of the parabolic obstacle problem
(of Theorem 2.2), D(φ) = {y ∈ L2(Ω) : y ≥ ψ a.e. in Ω}, and no point of D(φ) is
interior.

Remark 2.2. It would be interesting to see if similar results (to those above) can
be obtained if we use other (possibly more intrinsic) notions of gradient of V (with
respect to y) at the noninterior points of D(φ). An alternative way to define ∂yV (t, y)
is to consider as extension Ṽ the function

Ṽ (t, y) =

{
V (t, y) if y ∈ K,
+∞ if y 6∈ K,

and as ∂yṼ (t, y), the subdifferential of Ṽ with respect to y at (t, y) defined in [11]

with the aid of the upper subderivative h 7→ Ṽ
↑
(t, y;h). It would also be useful to

compare the results corresponding to various notions of gradient.
Let us give now some examples of parabolic variational inequalities covered by

the abstract formulation (2.2) and satisfying (H1)–(H3). Let A0 be the second-order
elliptic differential operator defined by

A0y = −
N∑

i,j=1

∂

∂xi

(
aij(x)

∂y

∂xi

)
+ a0(x)y,

where aij ∈ C1(Ω), a0 ∈ L∞(Ω), aij = aji for all i, j, a0(x) ≥ 0 a.e. x ∈ Ω and, for
some ω > 0,

N∑
i,j=1

aij(x)ξiξj ≥ ω
N∑
i=1

|ξi|2 for all (ξ1, . . . , ξN ) ∈ RN a.e. x ∈ Ω.

Consider the following mixed boundary value problem:

(2.25)


∂y

∂t
(t, x) +A0y(t, x) + β(y(t, x)− ψ(x)) 3 Bu(t) + f(t, x) a.e. (t, x) ∈ Q,

α1y + α2
∂y

∂ν
= 0 on (0, T )× ∂Ω,

y(0, x) = y0(x), x ∈ Ω,

where β,B, f, and y0 satisfy (H3)–(H6), ψ ∈ H2(Ω), and α1, α2 ≥ 0 with α1 +α2 > 0.
By shifting the range of β, we may assume, without any loss of generality, that
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0 ∈ β(0). To interpret (2.25) as an evolution equation of the form (2.2), we have to
specify the space V and the operator A: If α2 6= 0, we take V = H1(Ω) and we define
A : V → V ′ by

(2.26) (Ay, z) =
N∑

i,j=1

∫
Ω
aij

∂y

∂xi

∂z

∂xj
dx+

∫
Ω
a0yz dx+

α1

α2

∫
∂Ω
yzdσ for all y, z ∈ V.

If α2 = 0, take V = H1
0 (Ω) and define A : H1

0 (Ω)→ H−1(Ω) by

(2.27) (Ay, z) =
N∑

i,j=1

∫
Ω
aij

∂y

∂xi

∂z

∂xj
dx+

∫
Ω
a0yz dx for all y, z ∈ H1

0 (Ω).

We have (Ay)(x) = (A0y)(x) a.e. x ∈ Ω for all y ∈ D(A), where D(A) = {y ∈
H2(Ω) : α1y + α2∂y/∂ν = 0 a.e. on ∂Ω}. In particular, D(A) = H1

0 (Ω) ∩ H2(Ω) if
α2 = 0. Obviously, for V and A defined as above, (H1) and (H2) hold. It remains to
examine (2.6). It is easy to show (see [2, p. 137]) that, in the case when α2 6= 0, the
condition (2.6) is satisfied if one assumes in addition that

(2.28)
(
α1ψ + α2

∂ψ

∂ν

)
βη(y − ψ) ≥ 0 a.e. on ∂Ω for all y ∈ D(A) and η > 0.

If α2 = 0, the condition (2.6) is satisfied if one has

(2.29) βη(−ψ) = 0 a.e. on ∂Ω for all η > 0.

In the case of the parabolic obstacle problem (in which β is given by (2.18)), βη(r) =
η−1 min(r, 0), and, consequently, the conditions (2.28), (2.29) are satisfied if

α1ψ + α2
∂ψ

∂ν
≤ 0 a.e. on ∂Ω,

respectively,

ψ ≤ 0 a.e. on ∂Ω.

Remark 2.3. The additional hypothesis (H9), which assures the validity of (2.16)
in Theorem 2.1, is automatically verified for β given by (2.18). Indeed, in this case
φ = IK , where IK is the indicator function of K = {y ∈ L2(Ω) : y ≥ ψ a.e. in Ω};
therefore φ = 0 on D(φ) = K. As regards Theorem 2.1, if, for some c1 ≥ 0, c2 ∈ R,
β satisfies also the growth condition

|β(r)| ≤ c1|r|+ c2 for all r ∈ R

(in particular, if β is Lipschitz continuous on R), then (H9) clearly holds. But this
happens even for a sharper growth of β at ∞. Here is an example. Take (2.2)
given by (2.25) as state equation with N ≤ 4, β(r) = r3, and α2 = 0. We have
V = H1

0 (Ω), D(φ) = L4(Ω), and

φ(y) =
1
4

∫
Ω
y4(x) dx.

By Sobolev imbedding theorem, H1(Ω) ⊂ L4(Ω) for N ≤ 4, whence (H9) immediately
follows.
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Finally, combining (2.14) and (2.22) (after a previous use of [3, Prop. 2.1, p. 103])
with (2.15) and (2.23), respectively, we obtain the following direct consequences of
Theorems 2.1 and 2.2, which state that every optimal control for the problem (P) is
also a feedback optimal control.

THEOREM 2.3. Let (u∗, y∗) be an arbitrary optimal pair of the control problem
(P) where, as in Theorem 2.1, β : R→ R is Lipschitz continuous on bounded subsets.
Suppose that (H1)–(H8) hold. Then

u∗(t) ∈ ∂h∗(−B∗∂yV (t, y∗(t))) a.e. t ∈ (0, T ).

THEOREM 2.4. Under the assumptions of Theorem 2.2, if (u∗, y∗) is an arbitrary
optimal pair of the problem (P), then

u∗(t) ∈ ∂h∗(−B∗(∂yV (t, y∗(t)) +NK(ψ))) a.e. t ∈ (0, T ).

Under the additional assumption (2.17), Theorem 2.3 was proved by V. Barbu [2,
Thm. 5.6, p. 208].

3. Proofs of Theorems 2.1 and 2.2. Likewise as in [7] we shall construct an
auxiliary optimal control problem by introducing a new control variable v into the
control system (2.2). So we consider the following perturbed system:

(3.1)

{
y′ +Ay + β(y − ψ) 3 Bu+ f + v,

y(0) = y0.

For every δ > 0, define the function kδ : [0, T ]×H → R by

(3.2) kδ(t, v) = sup{(p, v) : p ∈ ∂yV (t, y), |y − y∗(t)| ≤ δ}.

It is easy to see that v 7→ kδ(t, v) is convex on H and Lipschitz continuous on H
uniformly with respect to t ∈ [0, T ] (by virtue of Proposition 2.1). So ∂vkδ(t, v) is well
defined. Also, for every v ∈ L2(0, T ;H), the function t 7→ kδ(t, v(t)) is measurable
(see [7, Lem. 8.1] and [6]); moreover, it belongs to L2(0, T ).

Now let 0 < δ′ < δ. The following lemma is an expression of the dynamic
programming principle, and it is the key of the proof (see [7, Lem. 8.4] for the finite-
dimensional version).

LEMMA 3.1. Suppose that (H2)–(H5) (except (2.5)), (H7), and (H8) hold and,
in addition, K = D(φ) is a (closed) convex cone in H with the vertex ψ. Let u ∈
L2(0, T ;U), v ∈ L2(0, T ;H), and y0 ∈ K such that h(u) ∈ L1(0, T ), v(t) ∈ K − ψ
a.e. t ∈ (0, T ) and |y(t)− y∗(t)| ≤ δ′ for all t ∈ [0, T ], where y is the solution of (3.1)
corresponding to the given u, v and y0. Then

(3.3)
∫ T

0
(h(u(t)) + g(y(t))) dt+ `(y(T )) +

∫ T

0
kδ(t,−v(t)) dt− V (0, y0) ≥ 0.

Proof. We shall prove Lemma 3.1 in several steps.
1. Reduction to the case in which u and v are step functions. We assert that

it suffices to prove Lemma 3.1 for every triple of step functions u : [0, T ] → U ,
v : [0, T ] → H, f : [0, T ] → H, which are constant on the same subintervals of the
form (kθ, (k + 1)θ], k = 0, 1, . . . , p− 1, such that h(u) ∈ L1(0, T ), v(t) ∈ K − ψ, and
|y(t) − y∗(t)| ≤ δ′′ for all t ∈ [0, T ], where y is the solution of (3.1) and δ′ < δ′′ < δ.
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Indeed, let us assume that we have proved Lemma 3.1 in this case. Then the general
case will immediately follow if, for every u, v, y0 as in the statement of Lemma 3.1,
we construct two sequences of step functions um : [0, T ] → U , vm : [0, T ] → H
taking constant values on (kθm, (k + 1)θm], k = 0, 1, . . . , pm − 1, such that h(um) ∈
L1(0, T ), vm(t) ∈ K − ψ for all t ∈ [0, T ], and

(3.4) um → u strongly in L2(0, T ;U),

(3.5)
∫ T

0
h(um(t)) dt→

∫ T

0
h(u(t)) dt,

(3.6) vm → v strongly in L2(0, T ;H).

To see this, let ym satisfy{
y′m +Aym + β(ym − ψ) 3 Bum + fm + vm a.e. in (0, T ),

ym(0) = y0,

where fm → f strongly in L2(0, T ;H). We have

ym → y strongly in C([0, T ];H),

and, by uniform Lipschitz continuity of v 7→ kδ(t, v),∫ T

0
kδ(t,−vm(t)) dt→

∫ T

0
kδ(t,−v(t)) dt.

But for sufficiently large m, |ym(t) − y∗(t)| ≤ δ′′ for all t ∈ [0, T ], whence, by virtue
of our assumption,∫ T

0
(h(um(t)) + g(ym(t))) dt+ `(ym(T )) +

∫ T

0
kδ(t,−vm(t)) dt− V (0, y0) ≥ 0.

Letting m→∞, we obtain the statement of Lemma 3.1 in the general case.
It remains only to indicate the construction of {um}, {vm}. Clearly, there exist

two sequences of step functions ũm : [0, T ]→ U , ṽm : [0, T ]→ H, which are constant
on (kθm, (k + 1)θm], k = 0, 1, . . . , pm − 1, such that ũm → u strongly in L2(0, T ;U),
ṽm → v strongly in L2(0, T ;H). Define the function um, vm by

um(t) = (I + λm∂h)−1ũm(t) with λm =

(∫ T

0
|ũm(s)− u(s)|2 ds

)1/2

,

vm(t) =
(
I +

1
m
∂IK−ψ

)−1

ṽm(t)

for all t ∈ [0, T ], where, of course, IK−ψ is the indicator function of K−ψ. Obviously,
um, vm are step functions, vm(t) ∈ K − ψ for all t ∈ [0, T ], and by assumptions on
ũm, ṽm we obtain (3.4) and (3.6). For the proof of (3.5) we refer to [9, Lem. 1].

2. Approximation of the perturbed system. Let u, v, and f be a triple of step
functions as above, which are constant on (kθ, (k+1)θ], k = 0, 1, . . . , p−1 (do not forget
that v(t) ∈ K−ψ for all t ∈ [0, T ]), and let y be the solution of (3.1) corresponding to
these u, v, and y0. By virtue of Proposition 7.1 from [7] (note that t 7→ kδ(t,−v(t)) is
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an essentially bounded function), we can choose τ ∈ (0, T ) and a subsequence {Nj}
of the positive integers such that T/τ is an irrational number and

(3.7)
nj∑

i=mj

T

Nj
kδ

(
τ + i

T

Nj
,−v

(
τ + i

T

Nj

))
→
∫ T

0
kδ(t,−v(t)) dt as j →∞,

where

mj = min
{
i : τ + i

T

Nj
> 0
}
, nj = max

{
i : τ + i

T

Nj
< T

}
.

Clearly, since T/τ is irrational, τ + iT/Nj cannot be either 0 or T .
Define yj : [0, T ]→ H as being the solution of

(3.8)

{
y′j +Ayj + β(yj − ψ) 3 Bu+ f,

yj(0) = y0

on the subinterval [0,mjT/Nj + τ); the solution of

(3.9)


y′j +Ayj + β(yj − ψ) 3 Bu+ f,

yj(iT/Nj + τ) = yj(iT/Nj + τ − 0) +
T

Nj
v(iT/Nj + τ)

on the subinterval [iT/Nj + τ, (i+ 1)T/Nj + τ), i = mj , . . . , nj − 1; and the solution
of (3.9) but with i = nj on the subinterval [njT/Nj + τ, T ]. We shall show that for
every t ∈ [0, T ]

(3.10) yj(t)→ y(t) strongly in H.

Moreover, an uniform estimate holds at the points t = iT/Nj + τ : For any η > 0, we
can find a positive integer jη such that if j ≥ jη, then

(3.11) |yj(iT/Nj + τ)− y(iT/Nj + τ)| < η for i = mj , . . . , nj .

To prove these, for every j = 1, 2, . . ., consider the moments t(0)
j , t

(1)
j , . . . , t

(p)
j and

the positive integers ν(1)
j , ν

(2)
j , . . . , ν

(p)
j defined by

t
(k)
j = t

(k−1)
j +

T

Nj
+ ν

(k)
j

T

Nj
, k = 1, 2, . . . , p,

t
(0)
j = (mj − 1)

T

Nj
+ τ,

t
(k)
j < kθ < t

(k)
j +

T

Nj
, k = 1, 2, . . . , p.

Since T/τ is irrational, t(k)
j are well defined (because kθ cannot take the values iT/Nj+

τ). Obviously, t(p)j = njT/Nj+τ . Next, for k = 1, 2, . . . , p, define the operators Ak,Bk
by

Aky = Ay + β(y − ψ)−Bu(kθ)− f(kθ), y ∈ D(A) ∩D(∂φ),
Bky = −v(kθ) ∈ −(K − ψ), y ∈ H.
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Clearly, since K is a cone, if y ∈ K, e−Bkty = y + tv(kθ) also belongs to K for
t ≥ 0, and so the expression e−Akte−Bkty makes sense. Therefore we may define the
operators Tk(t) with t ≥ 0 like this:

Tk(t)y = e−Akte−Bkty for y ∈ K, k = 1, 2, . . . , p.

Finally, denote by Sk(t) the nonlinear semigroup generated by the operator y 7→
Ay + β(y − ψ)−Bu(kθ)− f(kθ)− v(kθ).

Let t ∈ (0, T ] arbitrary but fixed. Let us denote by k0 that integer for which
t ∈ (k0θ, (k0 + 1)θ]. Define tj and the positive integer νj by

tj = t
(k0)
j +

T

Nj
+ νj

T

Nj
, tj ≤ t < tj +

T

Nj
.

We set now the following notations:

εj =
T

Nj
, ε

(k)
j = t

(k−1)
j +

T

Nj
− (k− 1)θ, ε

(k)
j = kθ− t(k)

j , θ
(k)
j = t

(k)
j − t

(k−1)
j − T

Nj
.

We can write yj (given by (3.8), (3.9)) as

yj(t) =



e−Ak0+1(t−tj)e−Bk0+1εjTk0+1

(
tj − t(k0)

j − εj
νj

)νj
e−Ak0+1ε

(k0+1)
j

×

 k0∏
k=1

e−Akε
(k)
j e−BkεjTk

(
θ

(k)
j

ν
(k)
j

)ν(k)
j

e−Akε
(k)
j

 y0 for t ∈ (θ, T ],

e−A1(t−tj)e−B1εjT1

(
tj − t(0)

j − εj
νj

)νj
e−A1ε

(1)
j for t ∈ (0, θ].

For simplicity we set

Y
(k)
j = e−Akε

(k)
j e−BkεjTk

(
θ

(k)
j

ν
(k)
j

)ν(k)
j

e−Akε
(k)
j , k = 1, 2, . . . , p,

Y
(k0+1)
j (t− k0θ) = e−Ak0+1(t−tj)e−Bk0+1εjTk0+1

(
tj − t(k0)

j − εj
νj

)νj
e−Ak0+1ε

(k0+1)
j ,

Y
(k+1)
j (t− kθ) = Y

(k0+1)
j (t− k0θ)Y

(k0)
j · · ·Y (k+1)

j , k = 1, 2, . . . , k0 − 1.

Obviously, all the above operators are contractions. In order to estimate |yj(t)−y(t)|,
we shall write
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(3.12)
yj(t)− y(t)

=
k0∑
k=1

(
Y

(k+1)
j (t− kθ)Y (k)

j y((k − 1)θ)

− Y
(k+1)
j (t− kθ)e−Akε

(k)
j e−BkεjTk

(
θ

(k)
j

ν
(k)
j

)ν(k)
j

y((k − 1)θ)

+ Y
(k+1)
j (t− kθ)e−Akε

(k)
j e−BkεjTk

(
θ

(k)
j

ν
(k)
j

)ν(k)
j

y((k − 1)θ)

− Y (k+1)
j (t− kθ)e−Akε

(k)
j e−BkεjSk(θ(k)

j )y((k − 1)θ)

+ Y
(k+1)
j (t− kθ)e−Akε

(k)
j e−Bkεjy((k − 1)θ + θ

(k)
j )− Y (k+1)

j (t− kθ)e−Akε
(k)
j e−Bkεjy(kθ)

+ Y
(k+1)
j (t− kθ)e−Akε

(k)
j e−Bkεjy(kθ)− Y (k+1)

j (t− kθ)y(kθ)

)

+ Y
(k0+1)
j (t− k0θ)y(k0θ)− e−Ak0+1(t−tj)e−Bk0+1εjTk0+1

(
tj − t(k0)

j − εj
νj

)νj
y(k0θ)

+ e−Ak0+1(t−tj)e−Bk0+1εjTk0+1

(
tj − t(k0)

j − εj
νj

)νj
y(k0θ)

− e−Ak0+1(t−tj)e−Bk0+1εjSk0+1(tj − t(k0)
j − εj)y(k0θ)

+ e−Ak0+1(t−tj)e−Bk0+1εjy(k0θ + tj − t(k0)
j − εj)− e−Ak0+1(t−tj)e−Bk0+1εjy(t)

+ e−Ak0+1(t−tj)e−Bk0+1εjy(t)− y(t) for t ∈ (θ, T ].

If t ∈ (0, θ] (therefore k0 = 0), then the corresponding expression for yj(t) − y(t)
consists only of the last five lines of (3.12). Take j →∞ in (3.12). Since εj , ε

(k)
j , ε

(k)
j

tend to 0, t(k)
j → kθ, tj → t, ν

(k)
j and νj tend to +∞, and θ

(k)
j → θ, we obtain (3.10).

Here we have used the continuity at 0 of the functions s 7→ e−Aksy((k − 1)θ) for k =
1, 2, . . . , k0 + 1, s 7→ e−Aksy(kθ), and s 7→ e−Bksy(kθ) for k = 1, 2, . . . , k0,
s 7→ e−Ak0+1sy(t), and s 7→ e−Bk0+1sy(t); the uniform continuity of y; and a Trotter-
type product formula due to Brézis and Pazy (see [4, Prop. 4.4]), and proved for
multivalued operators (our case) by Y. Kobayashi in [8]; that is,

Tk

(
s

ν
(k)
j

)ν(k)
j

y((k − 1)θ)→ Sk(s)y((k − 1)θ) as ν(k)
j →∞, k = 1, 2, . . . , k0,

Tk0+1

(
s

νj

)νj
y(k0θ)→ Sk0+1(s)y(k0θ) as νj →∞,

both uniformly in s ∈ [0, T ].
Now let t = iT/Nj + τ . In this case tj = t. According to (3.12), we shall obtain

(3.11) as soon as we show that for any η′ > 0 there exits jη′ > 0 such that, if j ≤ jη′ ,
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we have∣∣∣∣∣Tk0+1

(
tj − t(k0)

j − εj
νj

)νj
y(k0θ)− Sk0+1(tj − t(k0)

j − εj)y(k0θ)

∣∣∣∣∣ < η′

for νj = 1, 2, . . . , θ(k0+1)
j /εj , k0 = 0, 1, . . . , p− 1.

(Note that e−Bk0+1εjy(t) − y(t) = εjv((k0 + 1)θ) → 0 uniformly in t as j → ∞.) To
this end, first, by the above-mentioned Trotter product formula, we choose a positive
integer νη′ such that if ν > νη′ , then

(3.13) |Tk0+1(εj)νy(k0θ)− Sk0+1(νεj)y(k0θ)| < η′, k0 = 0, 1, . . . , p− 1.

Next choose jη′ such that for j > jη′

|Tk0+1(εj)y(k0θ)− y(k0θ)| <
η′

2νη′
,

|Sk0+1(εj)y(k0θ)− y(k0θ)| <
η′

2νη′
,

k0 = 0, 1, . . . , p − 1. (Obviously, jη′ depends on η′ also via νη′ .) Hence, if j > jη′ ,
(3.13) holds also for ν ≤ νη′ , therefore for all ν.

3. The case when u and v are step functions. The rest of the proof is similar
to the proof of Lemma 8.4 from [7]. Using a variant of the dynamic programming
principle (see [7, Lem. 8.3]) applied to the problem (P), we have

∫ mjT/Nj+τ

0
(h(u(t)) + g(yj(t))) dt+ V (mjT/Nj + τ, yj(mjT/Nj + τ − 0))− V (0, y0)

≥ 0,∫ (i+1)T/Nj+τ

iT/Nj+τ
(h(u(t)) + g(yj(t))) dt+ V ((i+ 1)T/Nj + τ, yj((i+ 1)T/Nj + τ − 0))

− V (iT/Nj + τ, yj(iT/Nj + τ)) ≥ 0, i = mj , mj + 1, . . . , nj − 1,∫ T

njT/Nj+τ
(h(u(t)) + g(yj(t))) dt+ V (T, yj(T ))− V (njT/Nj + τ, yj(njT/Nj + τ)) ≥ 0.

We can write the sum of all these inequalities as follows:

(3.14)∫ T

0
(h(u(t)) + g(yj(t))) dt+ V (T, yj(T ))− V (0, y0)

−
nj∑

i=mj

(V (iT/Nj + τ, yj(iT/Nj + τ))− V (iT/Nj + τ, yj(iT/Nj + τ − 0))) ≥ 0.

But by the mean value theorem for generalized gradients (see [2, Cor. 1.2]), we have
when v(iT/Nj + τ) 6= 0
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−
(
V

(
iT/Nj + τ, yj(iT/Nj + τ − 0) +

T

Nj
v(iT/Nj + τ)

)

− V (iT/Nj + τ, yj(iT/Nj + τ − 0))

)

=
T

Nj
(pj(iT/Nj + τ),−v(iT/Nj + τ)),

where

pj(iT/Nj + τ) ∈ ∂yV (iT/Nj + τ, zj(iT/Nj + τ)),

zj(iT/Nj + τ) = λyj(iT/Nj + τ − 0) + (1− λ)yj(iT/Nj + τ) for some λ ∈ (0, 1).

Since |y(t) − y∗(t)| ≤ δ′′ < δ for all t ∈ [0, T ], by using (3.11), we obtain for j large
enough

|yj(iT/Nj + τ − 0)− y∗(iT/Nj + τ)| ≤ δ and |yj(iT/Nj + τ)− y∗(iT/Nj + τ)| ≤ δ,

whence

|zj(iT/Nj + τ)− y∗(iT/Nj + τ)| ≤ δ, i = mj , . . . , nj .

Returning to (3.14), we have for sufficiently large j∫ T

0
(h(u(t))+g(yj(t))) dt+`(yj(T ))−V (0, y0)+

nj∑
i=mj

T

Nj
kδ(iT/Nj+τ,−v(iT/Nj+τ)) ≥ 0.

Letting now j → ∞, by Lebesgue dominated convergence theorem, (3.10) and (3.7)
one obtains (3.3), which completes the proof of Lemma 3.1.

Remark 3.1. Obviously, in both our situations, D(φ) is a (closed) convex cone in
H.

In other words, Lemma 3.1 states that u∗, v∗ ≡ 0 and y0 solve the following
optimal control problem (remind that 0 < δ′ < δ):

(Pδ,δ′) Minimize∫ T

0
(h(u(t)) + g(y(t))) dt+ `(y(T )) +

∫ T

0
kδ(t,−v(t)) dt− V (0, y0)

over all u ∈ L2(0, T ;U), v ∈ L2(0, T ;H) with v(t) ∈ K − ψ a.e. t ∈ (0, T ), y0 ∈
V ∩D(φ), where y ∈W 1,2([0, T ];H) satisfies{

y′ +Ay + β(y − ψ) 3 Bu+ f + v a.e. in (0, T ),

y(0) = y0,

and

(3.15) |y(t)− y∗(t)| ≤ δ′ for all t ∈ [0, T ].

But we can introduce the constraint on v and the state constraint (3.15) into the per-
formance index. Indeed, for δ > 0, consider the function Iδ : [0, T ]×H → (−∞,+∞]
defined by

Iδ(t, y) =

 0 if |y − y∗(t)| ≤ δ

2
,

+∞ otherwise.
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Then, for δ′ = δ/2, the problem (Pδ,δ′) is clearly equivalent with the following one:
(Pδ) Minimize

(3.16)

∫ T

0
(h(u(t)) + g(y(t))) dt+ `(y(T )) +

∫ T

0
kδ(t,−v(t)) dt− V (0, y0)

+
∫ T

0
IK−ψ(v(t)) dt+

∫ T

0
Iδ(t, y(t)) dt

over all u ∈ L2(0, T ;U), v ∈ L2(0, T ;H), y0 ∈ V ∩D(φ), where y ∈W 1,2([0, T ];H)
satisfies

(3.17)

{
y′ +Ay + β(y − ψ) 3 Bu+ f + v a.e. in (0, T ),

y(0) = y0.

Suppose for the rest of the proof that the additional hypothesis (H9) holds (see
Remark 2.3). If this is not the case, we impose on the initial state y0 of the problem
(Pδ) to be fixed, i.e., y0 = y0, the modifications which must be made being obvious.

As we have already mentioned in the introduction, the inclusions (2.15), (2.16)
and (2.23), (2.24) will follow from a set of optimality conditions for (Pδ) as δ → 0.
To this end, we associate with (Pδ) the following family of smooth (and penalized)
problems:

(Pδ,η) Minimize

(3.18)

∫ T

0
(h(u(t)) + gη(y(t))) dt+ `η(y(T )) +

∫ T

0
kδ(t,−v(t)) dt− Vη(0, y0)

+
∫ T

0
IK−ψ(v(t)) dt+

∫ T

0
Iδ,η(t, y(t)) dt

+
1
2

∫ T

0
|u(t)− u∗(t)|2 dt+

1
2

∫ T

0
|v(t)|2 dt

+
1
2
|Vη(0, y0)− Vη(0, y0)|2 +

1
2
|y0 − y0|2V

over all u ∈ L2(0, T ;U), v ∈ L2(0, T ;H), y0 ∈ V ∩D(φ), where y ∈W 1,2([0, T ];H)
satisfies

(3.19)

{
y′ +Ay + βη(y − ψ) = Bu+ f + v a.e. in (0, T ),

y(0) = y0.

Here gη, `η, Vη are regularizations of g, `, V , respectively (see [2, p. 28]), Iδ,η(t, ·) is the
convex regularization of Iδ(t, ·), i.e., Iδ,η(t, y) = inf{|z − y|2/2η : |z − y∗(t)| ≤ δ/2},
and βη is a certain regularization of βη (see [2, p. 75]).

LEMMA 3.2. Each of the problems (Pδ,η) has at least one solution (uδ,η, vδ,η, y0
δ,η) ∈

L2(0, T ;U)× L2(0, T ;H)× (V ∩D(φ)).
Proof. Let {(uδ,η,m, vδ,η,m, y0

δ,η,m)} ⊂ L2(0, T ;U)×L2(0, T ;H)× (V ∩D(φ)) be a
minimizing sequence for (Pδ,η). For simplicity, we set um = uδ,η,m, vm = vδ,η,m and
y0
m = y0

δ,η,m. It is easy to see that

(3.20) kδ(t, v) ≥ −L|v|, (t, v) ∈ [0, T ]×H,

where L is a nonnegative constant which depends only on the bounds of t 7→ |y∗(t)|.
Using (2.7), the boundedness from below by affine functions of g and `, (3.20), and
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the fact that IK−ψ and Iδ,η are nonnegative, we easily deduce that {um}, {vm}, and
{y0
m} are bounded in L2(0, T ;U), L2(0, T ;H), and V, respectively. Hence, we find

(uδ,η, vδ,η, y0
δ,η) ∈ L2(0, T ;U) × L2(0, T ;H) × V such that, on a subsequence of {m},

again denoted {m}, um → uδ,η weakly in L2(0, T ;U), vm → vδ,η weakly in L2(0, T ;H),
and y0

m → y0
δ,η weakly in V and strongly in H (because the inclusion V ⊂ H is

compact). Moreover, by hypothesis (H9) (which is verified also for β given by (2.18))
and the lower semicontinuity of φ, we see that φ(y0

δ,η) < +∞, that is, y0
δ,η ∈ D(φ).

Now let ym be the solution of (3.19) corresponding to u = um, v = vm, and
y0 = y0

m. We can rewrite (3.19) as

(3.21)

{
y′m +Aym + βη(ym − ψ) = Bum + f + vm + βη(ym − ψ)− βη(ym − ψ),

ym(0) = y0
m.

Note that, by definition of βη, |βη(r)−βη(r)| ≤ 2η for all r ∈ R (see [2, p. 75]). Define

φη(y) =
∫

Ω

∫ y(x)−ψ(x)

0
βη(r) dr dx for all y ∈ H.

It is easy to see that φη is just the convex regularization of φ, i.e., φη(y) = inf{|z −
y|2/2η + φ(z) : z ∈ H}. Moreover, for every y ∈ H, we have

∇φη(y) = βη(y − ψ) a.e. in Ω.

Fix y1 ∈ V ∩D(∂φ). We multiply (scalarly in H) (3.21) first by ym − y1 and then by
y′m, and next we integrate on [0, t]. After some calculation (do not forget (2.4)), we
obtain for every t ∈ [0, T ]:

|ym(t)| ≤
(
|y0
m|+

∫ t

0
(|Bum(s)|+ |vm(s)|+ |f(s)|) ds

+ t(|Ay1|+ |(∂φ)0(y1)|+ 2η(measΩ)1/2)
)
eαt + (1 + eαt)|y1|

and

1
2

∫ t

0
|y′m(s)|2 ds+

1
2
ω|ym(t)|2V + φη(ym(t)) ≤ 1

2
(Ay0

m, y
0
m) + φη(y0

m)

+
1
2
α|ym(t)|2 + 2

∫ t

0
(|Bum(s)|2 + |vm(s)|2 + |f(s)|2) ds+ 8tη2measΩ.

Here |(∂φ)0(y1)| = inf{|z| : z ∈ ∂φ(y1)}. Using the boundedness in V of y0
m and the

hypothesis (H9), we see that (Ay0
m, y

0
m) and φη(y0

m) (φη(y0
m) ≤ φ(y0

m)) are bounded.
Thus, in view of the above two estimates, we may apply the Arzelà–Ascoli theorem (do
not forget that the inclusion V ⊂ H is compact) to conclude that, on a subsequence,

(3.22) yδ,η,m → yδ,η strongly in C([0, T ];H) as m→∞.

Denote by yδ,η the solution of the equation (with initial condition)

(3.23)

{
y′δ,η +Ayδ,η + βη(yδ,η − ψ) = Buδ,η + f + vδ,η,

yδ,η(0) = y0
δ,η.
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Subtracting (3.23) from (3.21) and multiplying the difference by yδ,η,m−yδ,η, we have
(after an integration on [0, t])

1
2
|yδ,η,m(t)− yδ,η(t)|2 ≤ 1

2
|y0
δ,η,m − y0

δ,η|2 + α

∫ t

0
|yδ,η,m(s)− yδ,η(s)|2 ds

+
∫ t

0
(B(uδ,η,m(s)− uδ,η(s)) + vδ,η,m(s)− vδ,η(s), yδ,η,m(s)− yδ,η(s)) ds.

Letting m→∞ and taking (3.22) into account, we obtain

yδ,η,m → yδ,η strongly in C([0, T ];H).

Finally, by standard arguments, it follows that (uδ,η, vδ,η, y0
δ,η) solves the problem

(Pδ,η), thereby completing the proof.
Fix now δ > 0. The following result is an effect of the penalization terms.
LEMMA 3.3. Let (uδ,η, vδ,η, y0

δ,η) ∈ L2(0, T ;U) × L2(0, T ;H) × (V ∩ D(φ)) be a
solution for the problem (Pδ,η). Then we have as η → 0

uδ,η → u∗ strongly in L2(0, T ;U),

vδ,η → v∗ ≡ 0 strongly in L2(0, T ;H),

y0
δ,η → y0 strongly in V.

Proof. Let us denote by Jδ,η(u, v, y0) the functional (3.18) and by Jδ(u, v, y0) the
functional (3.16). Also, we denote by J̃δ,η(u, v, y0) the functional obtained from (3.18)
by eliminating the penalization terms 1

2

∫ T
0 |u(t)−u∗(t)|2 dt, 1

2

∫ T
0 |v(t)|2 dt, 1

2 |Vη(0, y0)−
Vη(0, y0)|2, and 1

2 |y0 − y0|2V .
Let y∗δ,η be the solution of (3.19) corresponding to u = u∗, v = v∗ ≡ 0, and y0 = y0.

Arguing as below, one shows that y∗δ,η → y∗ strongly in C([0, T ];H) as η → 0. At the
same time one observes that Iδ,η(t, y∗δ,η(t)) = 0 when |y∗δ,η(t) − y∗(t)| ≤ δ/2. Taking
these into account, for each δ > 0, we find ηδ > 0 such that if η ≤ ηδ,

(3.24) Jδ,η(uδ,η, vδ,η, y0
δ,η) ≤ Jδ,η(u∗, 0, y0) ≤ 1.

Now, as in the proof of the preceding lemma, there exists M > 0 (which can be chosen
independent of δ) such that if η ≤ ηδ,(∫ T

0
|uδ,η(t)|2 dt

)1/2

≤M,

(∫ T

0
|vδ,η(t)|2 dt

)1/2

≤M, |y0
δ,η|V ≤M.

Consequently, there exists (uδ, vδ, y0
δ ) ∈ L2(0, T ;U) × L2(0, T ;H) × (V ∩D(φ)) such

that, on a subsequence of {η},

uδ,η → uδ weakly in L2(0, T ;U),

vδ,η → vδ weakly in L2(0, T ;H),

y0
δ,η → y0

δ weakly in V.

Next, let yδ,η be the solution of (3.23) (where, of course, uδ,η, vδ,η, and y0
δ,η are

those from the statement of this lemma). We shall show that if the above conver-
gences hold, then yδ,η converges (possibly on a subsequence) to the solution of (3.17)
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corresponding to u = uδ, v = vδ, y0 = y0
δ . As in the proof of Lemma 3.2, one obtains

|yδ,η(t)| ≤ const. and
∫ T

0
|y′δ,η(s)|2 ds+ |yδ,η(t)|2V ≤ const. for t ∈ [0, T ],

where the constants are independent of η (and even of δ). Multiplying (3.23) by
∇φη(yδ,η(t)), we also obtain (after an integration on [0, T ])∫ T

0
|∇φη(yδ,η(s))|2 ds ≤ const.,

with the constant as above. Thus we have as η → 0

yδ,η → yδ strongly in C([0, T ];H) and weakly in W 1,2([0, T ];H)

(therefore y′δ,η → y′δ weakly in L2(0, T ;H)),

∇φη(yδ,η)→ ξδ weakly in L2(0, T ;H).

Hence,

Ayδ,η → Buδ + f + vδ − y′δ − ξδ weakly in L2(0, T ;H).

But sinceAyδ,η → Ayδ weakly in L2(0, T ;V ′) (because yδ,η → yδ weakly in L2(0, T ;V)),
we have

y′δ +Ayδ + ξδ = Buδ + f + vδ a.e. in (0, T ).

Now we define the lower semicontinuous convex function Φ : L2(0, T ;H)→ (−∞,+∞]
by

Φ(y) =
∫ T

0
φ(y(t)) dt.

We have

∂Φ(y) = {w ∈ L2(0, T ;H) : w(t) ∈ ∂φ(y(t)) a.e. t ∈ (0, T )}

and, if we denote by Φη the convex regularization of Φ,

∇Φη(yδ,η) = ∇φη(yδ,η) a.e. in (0, T ).

Since yδ,η → yδ strongly in L2(0, T ;H) and ∇Φη(yδ,η)→ ξδ weakly in L2(0, T ;H), by
a well-known result (see [2, Thm. 1.2]) ξδ ∈ ∂Φ(yδ), whence, as we have stated above,{

y′δ +Ayδ + ∂φ(yδ) 3 Buδ + f + vδ a.e. in (0, T ),

yδ(0) = y0
δ .

We still need the following semicontinuity property:

(3.25) lim inf
η→0

∫ T

0
Iδ,η(t, yδ,η(t)) dt ≥

∫ T

0
Iδ(t, yδ(t)) dt.
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To see this, let us observe that, by virtue of (3.24),
∫ T

0 Iδ,η(t, yδ,η(t)) dt is bounded
with respect to η. Hence, by a well-known expression of the convex regularization
(see [3, p. 121]), it readily follows that

(I + η∂Iδ(t, ·))−1yδ,η(t)− yδ,η(t)→ 0 strongly in L2(0, T ;H) as η → 0,

whence, by the lower semicontinuity of y 7→ Iδ(t, y), we derive (3.25).
Now, using the convergence of {uδ,η}, {vδ,η}, and {yδ,η} in conjunction with (3.25)

and the weak lower semicontinuity of u 7→
∫ T

0 (h(u(t)) + 1
2 |u(t) − u∗(t)|2) dt, v 7→∫ T

0 (k
δ
(t,−v(t)) + IK−ψ(v(t)) + 1

2 |v(t)|2) dt, and y0 7→ 1
2 |y0 − y0|2V , we obtain the

following chain of inequalities:

lim inf
η→0

Jδ,η(uδ,η, vδ,η, y0
δ,η) ≥ lim inf

η→0
J̃δ,η(uδ,η, vδ,η, y0

δ,η)

≥Jδ(uδ, vδ, y0
δ ) ≥ Jδ(u∗, 0, y0) = lim

η→0
Jδ,η(u∗, 0, y0)

≥ lim sup
η→0

Jδ,η(uδ,η, vδ,η, y0
δ,η) ≥ lim sup

η→0
J̃δ,η(uδ,η, vδ,η, y0

δ,η).

Consequently,

lim
η→0

Jδ,η(uδ,η, vδ,η, y0
δ,η) = lim

η→0
J̃δ,η(uδ,η, vδ,η, y0

δ,η) = Jδ(u∗, 0, y0),

and hence the conclusion of the lemma follows.
Remark 3.2. As a by-product of the preceding proof we have obtained the follow-

ing statement: If

(uδ,η, vδ,η, y0
δ,η)→ (uδ, vδ, y0

δ ) weakly in L2(0, T ;U)× L2(0, T ;H)× V as η → 0,

then, on a subsequence of {η},

yδ,η → yδ strongly in C([0, T ];H)

and

βη(yδ,η − ψ)→ ξ weakly in L2(0, T ;H),

where yδ and ξ satisfy{
y′δ +Ayδ + ξ = Buδ + f + vδ a.e. in (0, T ),

yδ(0) = y0
δ ,

and

ξ ∈ β(yδ − ψ) a.e. in (0, T ).

Remark 3.3. One can obtain in addition

yδ,η → yδ strongly in L2(0, T ;V) as η → 0

(see [2, Thm. 4.5]).
In order to obtain the needed optimality conditions for (Pδ,η), we shall compare

the optimal value with the values of Jδ,η corresponding to u = uδ,η+λu, v = vδ,η+λv,
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and y0 = y0
δ,η + λy0, where 0 < λ < 1 and u ∈ L2(0, T ;U), v ∈ L2(0, T ;H), y0 ∈

(V ∩D(φ))− y0
δ,η are arbitrary. We have

(3.26)
Jδ,η(uδ,η + λu, vδ,η + λv, y0

δ,η + λy0)− Jδ,η(uδ,η, vδ,η, y0
δ,η) ≥ 0

for all λ ∈ (0, 1) and (u, v, y0) ∈ L2(0, T ;U)× L2(0, T ;H)× ((V ∩D(φ))− y0
δ,η).

(Note that y0
δ,η + λy0 ∈ V ∩D(φ) since V ∩D(φ) is convex.)

Let yδ,η,λ be the solution of (3.19) corresponding to u = uδ,η + λu, v = vδ,η + λv,
and y0 = y0

δ,η + λy0. It is easy to show that

1
λ

(yδ,η,λ − yδ,η)→ zδ,η strongly in C([0, T ];H) as η → 0,

where zδ,η is the solution of the following equation (with initial condition):

(3.27)

{
z′ +Az + (βη)′(yδ,η − ψ)z = Bu+ v a.e. in (0, T ),

z(0) = y0.

Divide (3.26) by λ and then let λ→ 0. Since Iδ,η(t, yδ,η,λ(t)) = Iδ,η(t, yδ,η(t)) = 0 for
all t ∈ [0, T ] if η > 0 and λ > 0 are sufficiently small, we obtain for η small enough

(3.28)

∫ T

0
h′(uδ,η(t);u(t)) dt+

∫ T

0
(∇gη(yδ,η(t)), zδ,η(t)) dt

+ (∇`η(yδ,η(T )), zδ,η(T )) +
∫ T

0
k′δ(t,−vδ,η(t);−v(t)) dt

− (∇yVη(0, y0
δ,η), y0) +

∫ T

0
I ′K−ψ(vδ,η(t); v(t)) dt

+
∫ T

0
(uδ,η(t)− u∗(t), u(t)) dt+

∫ T

0
(vδ,η(t), v(t)) dt

+ ((Vη(0, y0
δ,η)− Vη(0, y0)) · ∇yVη(0, y0

δ,η), y0) + (y0
δ,η − y0, y

0)V ≥ 0

for all (u, v, y0) ∈ L2(0, T ;U)× L2(0, T ;H)× ((V ∩D(φ))− y0
δ,η),

where h′(uδ,η(t);u(t)) and k′δ(t,−vδ,η(t);−v(t)), I ′K−ψ(vδ,η(t); v(t)) denote the direc-
tional derivatives of h and v 7→ kδ(t, v), IK−ψ at uδ,η(t) and −vδ,η(t) in the directions
u(t) and −v(t), respectively.

Next, define pδ,η as the unique solution in C([0, T ];H) ∩ L2(0, T ;V) (with p′δ,η ∈
L2(0, T ;V ′)) of the following equation (with initial condition):

(3.29)

{
p′ −Ap− (βη)′(yδ,η − ψ)p = ∇gη(yδ,η) a.e. in (0, T ),
p(T ) = −∇`η(yδ,η(T )).

Some calculation in (3.28) involving (3.27) and (3.29) together with an integration by
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parts gives for sufficiently small η > 0∫ T

0
(h′(uδ,η;u) + (−B∗pδ,η + uδ,η − u∗, u)) dt

+
∫ T

0
(k′δ(t,−vδ,η;−v) + I ′K−ψ(vδ,η; v) + (−pδ,η + vδ,η, v)) dt

+ (−pδ,η(0)−∇yVη(0, y0
δ,η) + (Vη(0, y0

δ,η)− Vη(0, y0)) · ∇yVη(0, y0
δ,η), y0)

+ (y0
δ,η − y0, y

0)V ≥ 0

for all (u, v, y0) ∈ L2(0, T ;U)× L2(0, T ;H)× ((V ∩D(φ))− y0
δ,η).

So, using [3, Prop. 2.3, p. 106], we infer for η > 0 small enough

(3.30) B∗pδ,η(t) + u∗(t)− uδ,η(t) ∈ ∂h(uδ,η(t)) a.e. t ∈ (0, T ),

(3.31) −pδ,η(t) + vδ,η(t) ∈ ∂vkδ(t,−vδ,η(t)) + ∂IK−ψ(vδ,η(t)) a.e. t ∈ (0, T ),

(3.32)
(−pδ,η(0)−∇yVη(0, y0

δ,η) + (Vη(0, y0
δ,η)− Vη(0, y0)) · ∇yVη(0, y0

δ,η), z0 − y0
δ,η)

+ (y0
δ,η − y0, z

0 − y0
δ,η)V ≥ 0 for all z0 ∈ V ∩D(φ).

Now, we shall take limits in (3.30)–(3.32) as δ → 0, η → 0. To this end, we use
Lemma 3.3. Thus, for each δ > 0, we choose ηδ > 0 such that

(3.33)
∫ T

0
|uδ,ηδ(t)− u∗(t)|2 dt < δ,

∫ T

0
|vδ,ηδ(t)|2 dt < δ, |y0

δ,ηδ
− y0|V < δ.

Obviously, we can choose ηδ such that, in addition, limδ→0 ηδ = 0. For simplicity,
set uδ,ηδ = uδ, vδ,ηδ = vδ, and y0

δ,ηδ
= y0

δ . Let yδ = yδ,ηδ be the solution of (3.19)
corresponding to η = ηδ, u = uδ, v = vδ, and y0 = y0

δ . Since, by (3.33), we have as
δ → 0

(3.34) uδ → u∗ strongly in L2(0, T ;U),

(3.35) vδ → 0 strongly in L2(0, T ;H),

(3.36) y0
δ → y0 strongly in V,

likewise as in the proof of Lemma 3.3 (see also Remark 3.2), one obtains on a subse-
quence of {δ}:

(3.37) yδ → y∗ strongly in C([0, T ];H),

(3.38)
βηδ(yδ − ψ)→ ξ weakly in L2(0, T ;H),

where ξ = Bu∗ + f − y∗′ −Ay∗ ∈ β(y∗ − ψ) a.e. in (0, T ).

Also we have

(3.39) Vηδ(0, y
0
δ )− Vηδ(0, y0)→ 0 as δ → 0.
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Let pδ be the solution of (3.29) corresponding to η = ηδ. The proof of the following
lemma is given in [2, Lem. 5.3]. (Note that only here one needs the assumption (2.5).)

LEMMA 3.4. For all δ > 0, we have

|pδ(t)| ≤ const. for all t ∈ [0, T ],∫ T

0
|pδ(t)|2V dt ≤ const.,∫

Q

|(βηδ)′(yδ − ψ)pδ| dx dt ≤ const.,

where the constants are independent of δ.
By Lemma 3.4, arguing as in [2, p. 181], we find p ∈ BV ([0, T ];Y ′)∩L∞(0, T ;H)∩

L2(0, T ;V) and µ ∈ (L∞(Q))′ such that, on a subsequence of {δ}, pδ(t) → p(t)
strongly in Y ′ for every t ∈ [0, T ] and

(3.40) pδ → p weak star in L∞(0, T ;H) and weakly in L2(0, T ;V),

(3.41) pδ → p strongly in L2(0, T ;H),

(3.42) (βηδ)′(yδ − ψ)pδ → µ weak star in (L∞(Q))′.

Using (3.37) in conjunction with (H8), we obtain on a subsequence of {δ}:

(3.43) ∇gηδ(yδ)→ γ weak star in L∞(0, T ;H).

Next, an application of [2, Lem. 5.4] (do not forget (3.37)) gives

(3.44) γ(t) ∈ ∂g(y∗(t)) a.e. t ∈ (0, T ).

Similarly,

∇`ηδ(yδ(T )) = −pδ(T )→ −p(T ) weakly in H (and strongly in Y ′).

Applying this time [2, Prop. 1.12], we obtain (2.13) (or (2.21)).
Likewise as above (take (3.36) into account),

∇yVηδ(0, y0
δ )→ q weakly in H, where q ∈ ∂yV (0, y0).

By Lemma 3.4, we have on a subsequence of {δ}

pδ(0)→ p(0) weakly in H (and strongly in Y ′).

Hence, as δ → 0, (3.32) (with η = ηδ) becomes (do not forget (3.36), (3.39))

(p(0) + q, z0 − y0) ≤ 0 for all z0 ∈ V ∩D(φ).

Since V ∩D(φ) is dense in K = D(φ), the above inequality holds for all z0 ∈ K. But
this means (2.16) or (2.24). (In the case of Theorem 2.1, K = H; therefore IK ≡ 0
and ∂IK(y0) = {0}.)

Now letting δ → 0 in (3.29) with η = ηδ, by (3.40)–(3.44), it follows that

p′ −Ap− µ ∈ ∂g(y∗) a.e. in (0, T ),
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where p′ − Ap − µ = γ ∈ L∞(0, T ;H); but this is just (2.11). (Recall that p′ is
considered in the sense of V ′-valued distributions.)

Passing to the limit also in (3.30) with η = ηδ as δ → 0, since ∂h : U → U is
demiclosed, by (3.34), (3.41) we obtain (2.14) (or (2.22)).

It remains to take limits only in (3.31) with η = ηδ. To this end, let us write
(3.31) as

(3.45) pδ(t)− vδ(t) = p
(1)
δ (t) + p

(2)
δ (t) a.e. t ∈ (0, T ),

where

(3.46) −p(1)
δ (t) ∈ ∂vkδ(t,−vδ(t)) a.e. t ∈ (0, T )

and

(3.47) −p(2)
δ (t) ∈ ∂IK−ψ(vδ(t)) a.e. t ∈ (0, T ).

Since v 7→ kδ(t, v) is Lipschitz continuous onH uniformly with respect to t ∈ [0, T ], p(1)
δ

is bounded in L∞(0, T ;H); consequently, it is bounded in L2(0, T ;H). But, by (3.40)
and (3.35), the same is true also for p(2)

δ . Therefore, on a subsequence of {δ}, we have

(3.48) p
(1)
δ → p(1) weakly in L2(0, T ;H) (even weak star in L∞(0, T ;H)),

(3.49) p
(2)
δ → p(2) weakly in L2(0, T ;H).

Taking (3.40), (3.35), (3.48), and (3.49) into account, let δ → 0 in (3.45). We obtain

(3.50) p(t) = p(1)(t) + p(2)(t) a.e. t ∈ (0, T ).

Next, (3.35), (3.49), and (3.47) give

(3.51) −p(2)(t) ∈ ∂IK−ψ(0) = ∂IK(ψ) a.e. t ∈ (0, T ).

Finally, we shall briefly repeat (with small differences) considerations from [7], but
in our infinite-dimensional context. Let us clarify at first the meaning of (3.46). We
assert that (3.46) implies

(3.52) −p(1)
δ (t) ∈ co

⋃
|y−y∗(t)|≤δ

∂yV (t, y) a.e. t ∈ (0, T ).

Indeed, otherwise, there exists a closed hyperplane strictly separating −p(1)
δ (t) and

the closed convex set from the right-hand side of (3.52) (see [3, Cor. 1.9, p. 22]), i.e.,
there is v ∈ H such that

(−p(1)
δ (t),−v + vδ(t))

> sup

(p,−v + vδ(t)) : p ∈ co
⋃

|y−y∗(t)|≤δ
∂yV (t, y)


= sup

(p,−v + vδ(t)) : p ∈
⋃

|y−y∗(t)|≤δ
∂yV (t, y)


≥ sup{(p,−v)− kδ(t,−vδ(t)) : p ∈ ∂yV (t, y), |y − y∗(t)| ≤ δ}
= kδ(t,−v)− kδ(t,−vδ(t)),
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which contradicts (3.46). (Here we have used also the definition (3.2).) Now, we take
limits in (3.52). Let t be fixed but arbitrary in the subset of full measure of [0, T ]
in which (3.52) holds on a subsequence of {δ}. As before, p(1)

δ (t) is bounded in H;
therefore, on a subsequence of {δ},

p
(1)
δ (t)→ p(1)(t) weakly in H.

Letting δ → 0 in (3.52), we obtain

−p(1)(t) ∈
⋂
δ>0

co
⋃

|y−y∗(t)|≤δ
∂yV (t, y)

for all t in a subset of full measure of [0, T ]. But this implies

(3.53) −p(1)(t) ∈ ∂yV (t, y∗(t)) a.e. t ∈ (0, T )

by the same argument as at the end of the proof of Theorem 3.1 from [7]. (Among
others things, one uses Propositions 2.1.2 and 2.1.1 from [5].) We can write (3.50),
(3.51), and (3.53) as (2.15) or (2.23).

As regards the proofs of (2.12) and (2.19), (2.20) as well as the proof of the last
assertion of Theorem 2.1, we refer to [2, Thms. 5.1, 5.2]. (These will require also
(3.38).) Thus, the proofs of Theorems 2.1 and 2.2 are complete.

Remark 3.4. A discrete variant of (1.2) also holds when the equation (2.2) is
replaced by a certain Trotter product formula approximation (see [10, Thm. 6.1]).

Remark 3.5. While the arising of the normal cone NK(y0) in (2.24) is (to all
appearances) intrinsic for the case when K 6= H, that of NK(ψ) in (2.23) seems to
be caused by our approach. Indeed, in the proof of Lemma 3.1, we need that e−Bkt

maps K into K (to make sense e−Akte−Bkty for all y ∈ K), so we must impose on the
auxiliary control v the constraint v(t) ∈ K−ψ a.e. t ∈ (0, T ). But there are signs (see
also the formula (6.24) from [10], to which Remark 3.4 refers) that the presence of
NK(ψ) in (2.23) can be removed. Can a modification of our approximation procedure
for the perturbed state equation (3.1) lead to such an effect (without making major
changes in our approach)?

4. The convex case. Inspired by [7], we also raise the question: Can the in-
clusion (1.2) be satisfied everywhere on [0, T ] (instead of almost everywhere) in our
infinite-dimensional context? We shall show that the answer is positive at least in the
case when the control system is governed by semilinear parabolic equations with β
nondecreasing and concave, and the functions g and ` are convex. More specifically,
we impose on g and ` the following hypothesis:

(H8)′ g, ` : H →R are convex and bounded on bounded subsets.
It is clear (by virtue of some well-known results) that (H8) follows from (H8)′. In

particular, (H8)′ implies that g and ` are Lipschitz continuous on bounded subsets of
H and, at every point, the generalized gradients of g and ` coincide with their convex
subdifferentials. An additional monotonicity condition is assumed to be verified by
the functions g and `:

(H10) If y, z ∈ H satisfy y ≤ z a.e. on Ω, then g(y) ≤ g(z) and `(y) ≤ `(z).
We are now prepared to state the following result.
THEOREM 4.1. Besides the hypotheses of Theorem 2.1 but with (H8)′ replacing

(H8), assume that A is given by (2.27) (consequently (H1) and (H2) are automatically
verified), β is concave, ψ ≡ 0, and f ≡ 0. Finally, suppose (H10) holds. Then, the
dual extremal arc p given by Theorem 2.1 satisfies

(4.1) −p(t) ∈ ∂yV (t, y∗(t)) for t ∈ [0, T ] except possibly a countable subset.
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If in addition β satisfies (2.17), then the above inclusion holds for all t ∈ [0, T ].
Remark 4.1. The above result may be viewed as a generalization of Proposition

5.5 from [7] to the case of infinite-dimensional and nonlinear systems.
The proof of Theorem 4.1 is, in essence, a succession of three lemmas.
LEMMA 4.1. Under the assumptions of Theorem 4.1, y 7→ V (t, y) is convex on H

for all t ∈ [0, T ].
Proof. It is easy to verify that V (t, y) = W (T − t, y), where

W (t, y) = inf

{ ∫ t

0
(h(u(s)) + g(z(s))) ds+ `(z(T )) :

z′ +Az + β(z − ψ) 3 Bu+ f a.e. s ∈ (0, t), z(0) = y, u ∈ L2(0, t;U)

}
.

So we have to prove that y 7→W (t, y) is convex on H for every t ∈ [0, T ]. To this end,
we shall use a Trotter-type product formula from [10] for the dynamic programming
equation associated with (P).

Let ε = T/n (n being a positive integer). Define

W ε(t, y) =



inf{εh(u) + εg((I + εA)−1(I + ε∂φ)−1(y + εBu))

+W ε(t− ε, (I + εA)−1(I + ε∂φ)−1(y + εBu)) : u ∈ U}

for (t, y) ∈ (ε, T ]×H,

inf{th(u) + εg((I + εA)−1(I + ε∂φ)−1(y + tBu))

+ `((I + εA)−1(I + ε∂φ)−1(y + tBu)) : u ∈ U}

for (t, y) ∈ (0, ε]×H,

W ε(0, y) = `(y) for y ∈ H.

Obviously,

((I + ε∂φ)−1y)(x) = (I + εβ)−1(y(x)) a.e. x ∈ Ω.

By convexity of g, `, and r 7→ (I + εβ)−1(r) (do not forget that β is concave),
using also (H10), we deduce that the functions y 7→ g((I + εA)−1(I + ε∂φ)−1y)
and y 7→ `((I + εA)−1(I + ε∂φ)−1y) are convex on H. Also, these functions are
nondecreasing in the sense of (H10). (Indeed, it suffices to apply the monotonicity
of r 7→ (I + εβ)−1(r) and the maximum principle to the elliptic operator I + εA0.)
Assume that t/ε is not an integer (the other case is completely similar). Let y1, y2 ∈ H
and 0 ≤ λ ≤ 1. We have

λW ε

(
t−
[
t

ε

]
ε, y1

)
+ (1− λ)W ε

(
t−
[
t

ε

]
ε, y2

)
≥
(
t−
[
t

ε

]
ε

)
h(λu1 + (1− λ)u2)

+εg
(

(I + εA)−1(I + ε∂φ)−1
(
λy1 + (1− λ)y2 +

(
t−
[
t

ε

]
ε

)
B(λu1 + (1− λ)u2)

))
+`
(

(I + εA)−1(I + ε∂φ)−1
(
λy1 + (1− λ)y2 +

(
t−
[
t

ε

]
ε

)
B(λu1 + (1− λ)u2)

))
≥W ε

(
t−
[
t

ε

]
ε, λy1 + (1− λ)y2

)
.
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Here u1, u2 ∈ U are minimizing elements in the expressions defining W ε(t− [t/ε]ε, y1)
and W ε(t− [t/ε]ε, y2), respectively. Also, one readily shows that y 7→W ε(t− [t/ε]ε, y)
is nondecreasing. Now we successively argue [t/ε] times as above to obtain that
y 7→W ε(t, y) is convex on H (and nondecreasing).

But the following Trotter-type product formula holds (see [10, Thm. 3.2]):

lim
ε→0

W ε(t, y) = W (t, y) for every (t, y) ∈ [0, T ]×H.

So letting ε tend to zero in the inequality proving the convexity of W ε(t, y), we obtain
the conclusion of Lemma 4.1.

Remark 4.2. As a by-product of the above proof, we have also obtained that
y 7→ V (t, y) is nondecreasing in the sense of (H10).

Remark 4.3. Compare the proof of Lemma 4.1 with that of Proposition 5.5 from
[7].

Remark 4.4. Lemma 4.1 remains valid (with the same proof) but with D(φ)
instead of H if we replace β from Theorem 2.1 with β from Theorem 2.2 (given
by (2.18)). Also, in the above proof, we can change the places of the resolvents
(I+εA)−1, (I+ε∂φ)−1 between them, but in this case we must apply [10, Thm. 3.1].

Remark 4.5. The hypothesis (H10) is needed only in the proof of Lemma 4.1.
Remark 4.6. We point out that the Trotter-type product formulas for the dynamic

programming equation are proved to be adequate tools to establish some qualitative
properties for the optimal value function such as convexity or monotonicity.

LEMMA 4.2. Under the hypotheses of Theorem 2.1, the optimal value function
(t, y) 7→ V (t, y) is continuous on [0, T ]×H.

Proof. Similar arguments to those from the proof of Proposition 2.1 lead to the
continuity of t 7→ V (t, y) for all y ∈ H. But this in conjunction with Proposition 2.1
gives the statement of the lemma.

The following result is an infinite-dimensional version of Corollary 5.2 from [7].
LEMMA 4.3. Under the assumptions of Theorem 4.1, the multifunction (t, y) 7→

∂yV (t, y) is strongly-weakly closed.
Proof. The proof is the same with that of Corollary 5.2 from [7]; however, we

give it for the reader’s convenience. First let us remark that, by Lemmas 4.1 and 4.2,
the gradient ∂yV (t, y) coincides with the convex subdifferential of y 7→ V (t, y). Now
let tm → t, ym → y strongly in H, and pm → p weakly in H, where pm ∈ ∂yV (tm, ym),
that is,

V (tm, z)− V (tm, ym) ≥ (z − ym, pm) for all z ∈ H.

Letting m→∞ in the above inequality, by Lemma 4.2, we obtain

V (t, z)− V (t, y) ≥ (z − y, p) for all z ∈ H,

that is, p ∈ ∂yV (t, y), and the proof of Lemma 4.3 is complete.
Proof of Theorem 4.1. The conclusion of the theorem will follow by combin-

ing Lemma 4.3 with the continuity properties of the function p. Indeed, since p ∈
BV ([0, T ];Y ′), p : [0, T ] → Y ′ is continuous on [0, T ] except a countable subset. Let
t ∈ [0, T ] be an arbitrary point of continuity for p : [0, T ] → Y ′. By virtue of (2.15)
and the fact that p belongs also to L∞(0, T ;H), there exists a sequence {tm} ⊂ [0, T ]
converging to t such that, for every m,
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−p(tm) ∈ ∂yV (tm, y∗(tm)),

|p(tm)| ≤ ||p||L∞(0,T ;H).

Hence, extracting a subsequence of {m}, p(tm)→ p ∈ H weakly in H. Since p(tm)→
p(t) strongly in Y ′, on a subsequence of {m}, we have

p(tm)→ p(t) weakly in H.

But we also have

y∗(tm)→ y∗(t) strongly in H,

so that, by applying Lemma 4.3, we get

−p(t) ∈ ∂yV (t, y∗(t)).

If also the condition (2.17) holds, then, by Theorem 2.1, p ∈ Cw([0, T ];H),
whence, arguing as above, one obtains (4.1) for all t ∈ [0, T ]. This completes the
proof.

Remark 4.7. When β is given by (2.18), one cannot expect to obtain a similar
result to Theorem 4.1 by using the same proof as above and the same definition for
∂yV (t, y). Indeed, although y 7→ V (t, y) is convex on D(φ) also in this case (see
Remark 4.4), y 7→ Ṽ (t, y) is not in general convex on H, so it is possible that, at some
points y ∈ D(φ), ∂yV (t, y) does not coincide with the subdifferential of any convex
extension of y 7→ V (t, y); consequently, the argument in the proof of Lemma 4.3 does
not work.

Acknowledgment. The author is greatly indebted to Professor V. Barbu for
suggesting the problem and for the useful discussions.
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Abstract. In this paper, we continue to study the (bound constrained) linear-quadratic regu-
lator problem in distributed boundary control systems governed by the elliptic equation with point
observations. Due to the appearance of singularities in the problem, the traditional Galerkin varia-
tional method that leads to an adjoint system is not desirable, and the classical Lagrangian multiplier
method is not reliable for providing numerical results. A characterization formula of the optimal con-
trol and its singularity decomposition formula are derived in [Z. Ding, L. Ji, and J. Zhou, SIAM J.
Control Optim., 34 (1996), pp. 264–294; Z. Ding and J. Zhou, Appl. Math. Optim., to appear] by
using the boundary integral equation and potential theory coupled with a variational inequality in
a Banach space setting. Based on the characterization formula, a conditioned gradient projection
method (CGPM) has been proposed in [Z. Ding and J. Zhou, Appl. Math. Optim., to appear]. Nu-
merical experiment has shown that CGPM is efficient and also insensitive to the partition number of
the boundary. In this paper, we estimate the rate of convergence for CGPM. First it is proved that
for N = 2, CGPM converges exponentially in the L2 norm, and for N = 3, CGPM converges subex-
ponentially in the Lp norm. Then, under a reasonable condition, it is proved that for N = 2, CGPM
converges uniformly exponentially, and for N = 3, CGPM converges uniformly subexponentially.

Key words. LQR, distributed boundary control, point observation, singularity decomposition,
(sub)exponential convergence, uniformly (sub)exponential convergence

AMS subject classifications. 49N10, 49J20, 49J22, 49M07, 49M20, 65N38
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1. Introduction. Let Ω be an (interior or exterior) open domain in <N (N =
2, 3) with a bounded, C∞ boundary Γ. In this paper, we study numerical meth-
ods to solve the following constrained linear-quadratic regulator (LQR) problem in
a distributed boundary control system governed by the elliptic equation with point
observations:

(LQR)



min
u
J(u) =

M∑
k=1

µk|w(Pk)− Zk|2 + γ

∫
Γ
u2(x)dσx

subject to
(1.1)


∆w(x) = 0 in Ω
∂w(x)
∂n

= u(x) on Γ

 (1.2)

u ∈ U ,

where U is the admissible control set defined by

U = {v ∈ Lp0(Γ) | Bl(x) ≤ v(x) ≤ Bu(x) on Γ} ,(1.3)

Lp0(Γ) =
{
f ∈ Lp(Γ)|

∫
Γ
f(ξ)dσξ = 0

}
, 1 ≤ p <∞,
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and the lower and upper bounds Bl ≤ Bu ∈ Lp(Γ) are given s.t.∫
Γ
Bl(ξ)dσξ < 0,

∫
Γ
Bu(ξ)dσξ > 0.

Throughout this paper, we assume that p = 2 for N = 2 and p > 2 for N = 3, and
q ≤ 2 is given s.t. 1

p + 1
q = 1. In the above setting,

∂
∂n is the outward normal derivative,
u ∈ U is a Neumann-type boundary control on Γ,
γ, µk > 0, 1 ≤ k ≤M , are given weighting factors,
Pk ∈ ∂Ω, 1 ≤ k ≤M , are prescribed “sensor locations,”
Zk ∈ <, 1 ≤ k ≤M , are prescribed “target values” at Pk.
The objective of the above problem is to find the distribution of u(x) on Γ s.t.

at sensor locations Pk, 1 ≤ k ≤ M , the observation values w(Pk) are as close as
possible to the target values Zk with least possible control cost

∫
Γ u

2(x)dσx. The
well-posedness of the problem has been justified in [2, 3, 4].

The study of the above system is motivated by problems in cathodic protection
systems in corrosion engineering [20, 21] and contemporary “smart sensors.” Since
in most applications, point sensors are much cheaper and easier to design than dis-
tributed sensors [19, 15, 18], point sensors (observations) are used in our problem
setting. Once point sensors are placed on the boundary, singularities will appear in
the problem. Mathematically and computationally, it becomes very tough to han-
dle. The usual Galerkin variational method [13] leading to an adjoint system cannot
effectively handle this problem.

Recently, Ji and Chen [11] studied a similar problem by using the potential theory
and boundary element method (BEM). Their approach has certain important advan-
tages over others. It can provide rather explicit information about the control and
state, and it is amenable to direct numerical computation through BEM. In [2, 3],
Ding, Ji, and Zhou and Ding and Zhou applied this approach to study the above-
constrained LQR problems. They derived a feedback characterization of the optimal
control and established a singularity decomposition formula for the characterization
of the optimal control to overcome the singularity problem. They also pointed out
that the classical Lagrangian multiplier method (LMM) is not reliable for providing
a numerical solution for unconstrained LQR; the finite-dimensional gradient projec-
tion method is sensitive to the partition number of the boundary. In [4], Ding and
Zhou proposed a conditioned gradient projection method (CGPM) to solve the above-
constrained LQR problem. Strong convergence and uniform convergence have been
verified numerically and mathematically in [4].

In this paper, we estimate the rate of convergence for CGPM. Due to the different
space settings, for N = 2, our problem is in a Hilbert space L2 setting, and for
N = 3, it is in a Banach space Lp setting. Thus we have to treat these two cases
differently. We prove that for N = 2, CGPM converges exponentially in the L2

norm and that for N = 3, CGPM converges subexponentially in the Lp norm; i.e., it
converges faster than any power of 1

n , where n is the number of iterations. Finally,
under a quite reasonable assumption, we prove that for N = 2, CGPM converges
uniformly exponentially, and forN = 3, CGPM converges uniformly subexponentially.
The motivation to investigate uniform convergence and uniform convergence rate is
due to the concern about the discretization of the above-constrained LQR problem,
as partially explained in [2, 4]. First, for a discretization of a constrained optimal
control problem, if a numerical algorithm is sensitive to the partition of the boundary
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(dimension) (such as the finite-dimensional gradient projection method used in [4]), a
refinement of the partition on the boundary will add more constraints to the problem.
It then slows down the computation and convergence and ultimately fails to provide
reliable numerical solutions if the partition number is very large. While our governing
differential equation is a PDE, the partition number on the boundary can be quite
large. On the other hand, if the optimal control u∗ is in Lp(Γ), the strong convergence
cannot guarantee the convergence of u∗(x) on a set of zero measure. While in real
computation, we can only approximate the optimal control u∗ at a finite number
of boundary points. Therefore, it is important to study uniform convergence and
uniform convergence rate.

Let

E(x, ξ) =


− 1

2π
ln |x− ξ|, x, ξ ∈ <2,

1
4π

1
|x− ξ| , x, ξ ∈ <3

(1.4)

be the fundamental solution of the Laplacian operator. For f ∈ L2(Γ), define opera-
tors

S(f)(x) =
∫

Γ
E(x, ξ)f(ξ)dσξ, x ∈ <N ,(1.5)

K(f)(x) = limε→0+

∫
Γ
⋂
{|x−ξ|>ε}

∂

∂nξ
E(x, ξ)f(ξ)dσξ, x ∈ Γ,(1.6)

K∗(f)(x) = limε→0+

∫
Γ
⋂
{|x−ξ|>ε}

∂

∂nx
E(x, ξ)f(ξ)dσξ, x ∈ Γ.(1.7)

Their basic properties can be found in [2, 3]. According to [1, Chap. 6], a solution w
of (1.2) can be written as

w(x) = S(η)(x), x ∈ Ω,(1.8)

where η is the layer density to be determined from the boundary condition

∂w(x)
∂n

=
(

1
2
I +K∗

)
(η)(x) = u(x), x ∈ Γ.(1.9)

Once the layer density η is found, the solution w(x) of (1.1) can be computed from
(1.8).

By Theorem 2.4 in [3], for each given u ∈ U , (1.2) has a unique solution w ∈ C(Ω)
s.t.

M∑
k=1

µk(w(Pk)− Zk) = 0.(1.10)

Once a control u is given, the corresponding optimal state can be obtained by solving
(1.2) and (1.10). From now on, we use w(x, u) to stand for this solution.

Remark 1. The difference between the cases N = 2 and N = 3 is that for each
fixed x, E(x, ·) ∈ L2(Γ) for N = 2 and E(x, ·) ∈ L2−ε(Γ) (0 < ε < 2) for N = 3.

LEMMA 1.1. For any u ∈ Lp0(Γ), (1.2) and (1.10) have a unique solution w(x, u),
and for any α, β ∈ <, v1, v2 ∈ Lp0(Γ), we have

w(x, αv1 + βv2) = αw(x, v1) + βw(x, v2) + (1− α− β)µ,(1.11)
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where µ =
∑M
k=1 µkZk/

∑M
k=1 µk. In addition, for any u ∈ Lp0(Γ), we have

|w(x, u)− µ| ≤ C(x,Ω)‖u‖2 for N = 2,(1.12)
|w(x, u)− µ| ≤ C(x,Ω, p)‖u‖p for N = 3,(1.13)

where the constant C(x,Ω) depends only on x and Ω, and the constant C(x,Ω, p)
depends only on x, Ω, and p.

Proof. (1.11) can be verified directly. (1.12) and (1.13) follow from Theorem 2.4
in [3] and (1.10).

Notice that U is a bounded, convex, and closed subset in Lp(Γ). Let

D = max{2‖Bl‖p, 2‖Bu‖p, 1};

then

‖u‖p ≤ D, ‖u− v‖p ≤ D ∀ u, v ∈ U .

Define the truncation [u]BuBl of any function u(x) on Γ by

[u]BuBl (x) = [u(x)]Bu(x)
Bl(x) =


Bl(x) if u(x) < Bl(x),
u(x) if Bl(x) ≤ u(x) ≤ Bu(x),
Bu(x) if u(x) > Bu(x).

(1.14)

Introduce the projection operator PU : Lp(Γ)→ U :

PU (u) = [u+ cu]BuBl ∀ u ∈ Lp(Γ),(1.15)

where cu is a constant defined in Lemma 6 in [4] s.t. PU (u) ∈ Lp0(Γ). Applying the
characterization of truncation from Lemma 8 in [4], we obtain the following lemma.

LEMMA 1.2 (see (2.8) and Theorem 1 in [4]). u∗ is an optimal control to the
constrained LQR problem if and only if

u∗ =
[
u∗ − 1

2γ
∇J(u∗) + c∗

]Bu
Bl

=

[
− 1
γ

(
1
2
I +K

)−1 M∑
k=1

µk(w∗(Pk, u∗)− Zk)E(Pk, ·)(ξ) + C∗

]Bu
Bl

,(1.16)

where c∗ is defined by Lemma 6 in [4] s.t.∫
Γ

[
u∗(x)− 1

2γ
∇J(u∗)(x) + c∗

]Bu
Bl

dσx = 0.(1.17)

Let 〈·, ·〉 be the pairing on Lq(Γ) and Lp(Γ). The following facts on the objective
function J are needed.

LEMMA 1.3. The functional J(u) is convex (quadratic) and differentiable, so for
any t ∈ < and u, v ∈ Lp0(Γ), we have

(1.18)

J(u+ tv) = J(u) + t〈∇J(u), v〉+ t2

{
M∑
k=1

µk|w(Pk, v)− µ|2 + γ

∫
Γ
v2(x)dσx

}
,

J(u)− J(v) ≤ 〈∇J(u), u− v〉,(1.19)

J

(
u+ v

2

)
≤ max{J(u), J(v)} − 1

4
γ‖u− v‖22.(1.20)
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Proof. (1.18) and (1.19) can be verified directly. By virtue of (1.11) and (1.18),
we get

J(u) + J(v)− 2J
(
u+ v

2

)
=

1
2

M∑
k=1

|w(Pk, u)− w(Pk, v)|2 +
1
2
γ‖u− v‖22.

(1.20) then follows from the fact that (J(u) + J(v)) ≤ 2 max{J(u), J(v)}.
2. Numerical algorithm. Based on the characterization of the optimal control,

Lemma 1.2, a CGPM has been proposed in [4] to solve the constrained LQR problem.
Its strong convergence and uniform convergence are proved in [4]. To estimate its
convergence rate, we modify CGPM as follows.

Given 1
2 < α < 1. Choose any initial trial u1 ∈ U .

un+1 = un + λ∗ndn, n = 1, 2, 3, . . . ,(2.1)

where

dn = ūn − un,(2.2)

ūn = PU

(
un − 1

2γ
∇J(un)

)
=
[
un(x)− 1

2γ
∇J(un) + Cn

]Bu(x)

Bl(x)
,(2.3)

λ∗n = min{α, λn},(2.4)
λn = arg min

λ
J(un + λdn),(2.5)

and Cn has the smallest magnitude s.t.∫
Γ

[
un(x)− 1

2γ
∇J(un) + Cn

]Bu
Bl

dσx = 0.(2.6)

Remark 2.
(i) In order to estimate the convergence rate, the CGPM in [4] has been modified

s.t. the constant Cn in (2.6) has the smallest magnitude. Due to Lemma 6 in [4], the
function

φn(λ) =
∫

Γ

[
un(x)− 1

2γ
∇J(un) + λ

]Bu
Bl

dσx

is monotonically increasing in λ. So the constant Cn with the smallest magnitude s.t.
φn(Cn) ∈ Lp0(Γ) can be easily found. Once the convergence rates are obtained, we
may use Lemma 7 in [4]; i.e., if φn(λ1), φn(λ2) ∈ Lp0(Γ), then φn(λ1) = φn(λ2), a.e.
in Γ, to relax this condition.

(ii) Due to the appearance of singularities in the control variable, an adaptive
local refinement scheme has been used in numerical computation to enhance the con-
vergence stability; see [2, 4].

3. Results on the convergence rate. In this section, we estimate the con-
vergence rate of the above CGPM. Due to different natures of the space settings, we
have to treat N = 2 and N = 3 separately.

LEMMA 3.1. For the above CGPM, we obtain the following:
(i) J(un) is decreasing, so limn→∞ J(un) ≥ J(u∗);
(ii) J(un)− J(u∗) ≥ 1

4γ‖un − u∗‖22;
(iii) 〈∇J(un), ūn − z〉 ≤ 2γ〈un − ūn, ūn − z〉 ∀ z ∈ U .
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In particular, if z = un, we have

〈∇J(un), dn〉 ≤ −2γ‖dn‖22.

Proof. (i) follows from a direct computation that leads to

J(un+1)−J(un)



=
−1

4
|〈∇J(un), dn〉|2{

M∑
k=1

µk|w(Pk, dn)− µ|2 + γ‖dn‖22

} < 0 if λ∗n = λn,

≤ α

2
〈∇J(un), dn〉 < 0 if λ∗n = α,

(3.1)

where we have used the fact that λ∗n = α < λn means

2α

{
M∑
k=1

µk|w(Pk, dn)− µ|2 + γ‖dn‖22

}
< −〈∇J(un), dn〉.

Point (ii) can be derived from (1.20), and (iii) follows from Lemma 8 in [4], by taking
u = ūn.

The following lemma is a special case of Lemma 1.4 in [5], which will be used in
estimating the convergence rate.

LEMMA 3.2. Suppose that {rn}∞n=1 ⊂ [0,∞) and q > 0 satisfy

rn − qrkn ≥ rn+1

for n ≥ 0, with k a fixed exponent in the range (1,∞); then

rn ≤ r0[1 + (k − 1)rk−1
0 qn]−

1
k−1

for all n, i.e.,

lim
n→∞

sup rnn
1
k−1 ≤ [(k − 1)q]−

1
k−1 .

Case 1. N = 2.
THEOREM 3.3. For N = 2, let {un}∞n=1 and {ūn}∞n=1 be the sequences generated

by the algorithm CGPM, (2.1)–(2.5); then rn = J(un)−J(u∗), un, and ūn all converge
exponentially; i.e.,

rn ≤ r1δ
n,(3.2)

where δ = 1− 15−6
√

6
8

γ
L ∈ (0, 1), with L =

∑M
k=1 µkC

2(Pk,Ω) + γ. Hence

‖un − u∗‖2 ≤
√

4r1

γ
δ
n
2(3.3)

and

‖ūn − u∗‖2 ≤
2
√
L+ 2

√
3γ√

3γ
r

1
2
1 δ

n
2 .(3.4)
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LEMMA 3.4. For λ∗n defined in the algorithm (2.1)–(2.5), we have λ∗n ≥ λ∗0 ∀ n,
where λ∗0 = min{α, γL} ∈ (0, 1).

Proof. From (1.12), (1.18), and Lemma 3.1 (iii), we get

λn =
−〈∇J(un), dn〉

2
{∑M

k=1 µk|w(Pk, dn)− µ|2 + γ
∫

Γ d
2
n(x)dσx

}
≥ γ∑M

k=1 µkC
2(Pk,Ω) + γ

.

This completes our proof.
Proof of Theorem 3.3. Let n > 0; by (1.19) and Lemma 3.1 (iii), we have

rn : = J(un)− J(u∗)
≤ 〈∇J(un), un − u∗〉
≤ 〈∇J(un), un − ūn〉+ 〈∇J(un), ūn − u∗〉
≤ 〈∇J(un), un − ūn〉+ 2γ〈un − ūn, ūn − u∗〉(3.5)
= 〈∇J(un), un − ūn〉+ 2γ〈un − ūn, un − u∗〉 − 2γ‖un − ūn‖22
≤ −〈∇J(un), dn〉+ 2γ‖un − ūn‖2‖un − u∗‖2.

On the other hand, for any β ∈ [0, λ∗0], from (1.18), Lemma 3.4, and Lemma 3.1 (iii),
we obtain

rn+1 − rn = J(un+1)− J(un)
≤ β〈∇J(un), dn〉+ Lβ2‖un − ūn‖22(3.6)
≤ (−2γβ + Lβ2)‖un − ūn‖22.

Let β = γ
2L < λ∗0 = min{α, γL}; then

‖un − ūn‖2 ≤
2
√
L√

3γ
(rn − rn+1)

1
2 .(3.7)

From (3.6), we get

−〈∇J(un), dn〉 ≤
2L
γ

(rn − rn+1) +
1
γ
‖un − ūn‖22.(3.8)

Also from Lemma 3.1 (ii), we have

‖un − u∗‖2 ≤
2
√
γ
r

1
2
n .(3.9)

Substituting (3.7), (3.8), and (3.9) into (3.5), we have

rn ≤ 2L
γ

(rn − rn+1) +
γ

2
‖un − ūn‖22 + 2γ‖un − ūn‖2‖un − u∗‖2

≤ 8L
3γ

(rn − rn+1) + 8

√
L

3r
(rn − rn+1)

1
2 r

1
2
n

=
8L
3γ

(
(rn − rn+1)

1
2 +

1
2

√
3γ
L
r

1
2
n

)2

− 2rn.

(3.10)
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Thus

9γ
8L
rn ≤

(
(rn − rn+1)

1
2 +

1
2

√
3γ
L
r

1
2
n

)2

.

Taking the square root on both sides and rearranging the terms, we obtain

3−
√

6
2
√

2

√
γ

L
r

1
2
n ≤ (rn − rn+1)

1
2 .

From here we get

rn+1 ≤
(

1− 15− 6
√

6
8

γ

L

)
rn.(3.11)

So, letting δ = (1 − 15−6
√

6
8

γ
L ), we get (3.2). (3.3) follows directly from Lemma 3.1

(ii). For (3.4), notice (3.7) and (3.9). We then have

‖ūn − u∗‖2 ≤ ‖ūn − un‖2 + ‖un − u∗‖2

≤ 2
√
L√

3γ
(rn − rn+1)

1
2 +

2
√
γ
r

1
2
n

≤
(

2
√
L√

3γ
+

2
√
γ

)
r

1
2
n .

Thus (3.4) follows.
Case 2. N = 3.
For any 2 < p′ ≤ p, notice that Γ is a compact set. We thus have Lp(Γ) ⊂

Lp
′
(Γ) ⊂ L2(Γ), and the interpolation inequality gives

‖u‖p′ ≤ ‖u‖
2(p−p′)
p′(p−2)
2 ‖u‖

p(p′−2)
p′(p−2)
p .

Thus

‖u‖p′ ≤ D‖u‖1−ν2 ∀ u ∈ U ,(3.12)

where ν = p(p′−2)
p′(p−2) .

THEOREM 3.5. For N = 3, let {un}∞n=1 and {ūn}∞n=1 be the sequences generated
by the algorithm CGPM, (2.1)–(2.5); then rn = J(un)−J(u∗), un, and ūn all converge
subexponentially, i.e.,

rn ≤ E1n
−s,(3.13)

where

s =
1− ν

2ν
=

p− p′
p(p′ − 2)

for any 2 < p′ ≤ p.(3.14)

Moreover,

‖un − u∗‖2 ≤ E2n
− s2(3.15)
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and

‖ūn − u∗‖2 ≤ E3n
− s

2(1+ν) ,(3.16)

where E1, E2, and E3 are constants depending only on Ω, γ, p′, and Pk, Zk, µk, k =
1, . . . ,M .

Proof. Letting n > 0, by the last inequality in (3.5), we get

rn : = J(un)− J(u∗)
≤ −〈∇J(un), dn〉+ 2γ‖un − ūn‖2‖un − u∗‖2.

(3.17)

On the other hand, we have

J(un+1)− J(un) = λ∗n〈∇J(un), dn〉+ λ∗n
2

{
M∑
k=1

µk|w(Pk, dn)− µ|2 + γ‖dn‖22

}
,(3.18)

where

λ∗n = min

{
α,

−〈∇J(un), dn〉
2{
∑M
k=1 µk|w(Pk, dn)− µ|2 + γ‖dn‖22}

}
.(3.19)

If λ∗n = α, i.e.,

−〈∇J(un), dn〉 ≥ 2α

{
M∑
k=1

µk|w(Pk, dn)− µ|2 + γ‖dn‖22

}
,

then

rn+1 − rn = J(un+1)− J(un)

= α〈∇J(un), dn〉+ α2

{
M∑
k=1

µk|w(Pk, dn)− µ|2 + γ‖dn‖22

}
≤ α

2
〈∇J(un), dn〉.

Taking α ≥ 1
2 into account, we have

−〈∇J(un), dn〉 ≤
2
α

(rn − rn+1) ≤ 4(rn − rn+1)(3.20)

and

‖dn‖2 ≤
√

2
γ

(rn − rn+1)
1
2 .(3.21)

If λ∗n < α, i.e., if

−〈∇J(un), dn〉 < 2α

{
M∑
k=1

µk|w(Pk, dn)− µ|2 + γ‖dn‖22

}

< 2

{
M∑
k=1

µk|w(Pk, dn)− µ|2 + γ‖dn‖22

}
,
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then by (1.13), (3.12), and Lemma 3.1 (iii), we get

rn − rn+1 = J(un)− J(un+1)

=
1
4

|〈∇J(un), dn〉|2∑M
k=1 µk|w(Pk, dn)− µ|2 + γ‖dn‖22

≥ 1
4

(2γ‖dn‖22)2∑M
k=1 µkC

2(Pk,Ω, p′)‖dn‖2p′ + γ‖dn‖22
≥ γ2∑M

k=1 µkC
2(Pk,Ω, p′)D2 + γD2ν

‖dn‖2(1+ν)
2 .

(3.22)

Therefore

‖dn‖2 ≤
(
L1

γ2

) 1
2(1+ν)

(rn − rn+1)
1

2(1+ν) ,(3.23)

where L1 = (
∑M
k=1 µkC

2(Pk,Ω, p′) + γ)D2. And

−〈∇J(un), dn〉 < 2

{
M∑
k=1

µk|w(Pk, dn)− µ|2 + γ‖dn‖22

}

< 2

{
M∑
k=1

µkC
2(Pk,Ω, p′)D2 + γD2ν

}
‖dn‖2(1−ν)

2

≤ 2
L

2
1+ν
1

γ2 1−ν
1+ν

(rn − rn+1)
1−ν
1+ν .

Combining (3.20), (3.21), (3.22), and (3.23), and using the fact that ν < 1 and
{|rn − rn+1|}∞n=1 is bounded by B = 2r1, we obtain that in all cases

‖dn‖2 ≤ C1(rn − rn+1)
1

2(1+ν)(3.24)

and

−〈∇J(un), dn〉 ≤ C2(rn − rn+1)
1−ν
1+ν ,(3.25)

where

C1 =
√

2 max

{
B

ν
2(1+ν)

√
γ

,

(
L1

γ2

) 1
2(1+ν)

}
,

C2 = 2 max

2B
2ν

1+ν ,
L

2
1+ν
1

γ2 1−ν
1+ν

 .

Substituting (3.24), (3.25), and (3.9) into (3.17), we obtain

rn ≤ C2(rn − rn+1)
1−ν
1+ν + 4

√
γC1(rn − rn+1)

1
2(1+ν) r

1
2
n

≤ C2(rn − rn+1)
1−ν
1+ν + 4

√
γC1(rn − rn+1)

1−ν
2(1+ν) r

1
2
n

≤
(√

C2(rn − rn+1)
1−ν

2(1+ν) +
2
√
γC1√
C2

r
1
2
n

)2

− 4γC2
1

C2
rn.
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Thus √
C2(rn − rn+1)

1−ν
2(1+ν) +

2
√
γC1√
C2

r
1
2
n ≥

(
1 +

4γC2
1

C2

) 1
2

r
1
2
n .

Rearranging the terms and simplifying, we get

rn − rn+1 ≥ C3r
1+ν
1−ν
n ,(3.26)

where

C3 = ((C2 + 4γC2
1 )

1
2 + 2

√
γC1)−2 1+ν

1−ν .

By Lemma 3.2, we have

rn ≤ r0

[
1 +

(
2ν

1− ν

)
C3r

2ν
1−ν
0 n

]− 1−ν
2ν

.(3.27)

Now (3.9) gives

‖un − u∗‖2 ≤
2
√
γ
r

1
2
0

[
1 +

(
2ν

1− ν

)
C3r

2ν
1−ν
0 n

]− 1−ν
4ν

.(3.28)

Combining (3.9) with (3.24) leads to

‖ūn − u∗‖2 ≤ ‖dn‖2 + ‖un − u∗‖2

≤ C1(rn − rn+1)
1

2(1+ν) +
2
√
γ
r

1
2
n

≤
(
C1 +

2
√
γ

)
r

1
2(1+ν)
n

≤
(
C1 +

2
√
γ

)
r

1
2(1+ν)
0

[
1 +

(
2ν

1− ν

)
C3r

2ν
1−ν
0 n

]− 1−ν
4ν(1+ν)

.

So the proof is complete.
Next we provide the rate estimate of the uniform convergence.
THEOREM 3.6. Let {ūn}∞n=1 be the sequence generated by the algorithm CGPM,

(2.1)–(2.5). If we assume that w(Pk, u∗) 6= Zk and that Bu and Bl are locally bounded
at Pk for all k = 1, 2, . . . ,M , then for N = 2, ūn converges uniformly exponentially,
and for N = 3, ūn converges uniformly subexponentially; i.e., for all x ∈ Γ,

|ūn(x)− ū∗(x)| ≤
{
B2δ

n
2 for N = 2,

B3n
− s2 for N = 3,(3.29)

where the constants B2 and B3 are independent of n and x, δ = 1− 15−6
√

6
8

γ
L ∈ (0, 1)

with L =
∑M
k=1 µkC

2(Pk,Ω) + γ, and s = p−p′
p(p′−2) for all 2 < p′ < p.

Proof. By taking account of (1.8), (1.9), (1.17), and Lemmas 1 and 2 in [4], we
may denote

w̄(Pk, u) =
∫

Γ
E(Pk, ξ)

[(
1
2
I +K∗

)−1

u

]
(ξ) dσξ

=
∫

Γ

(
1
2
I +K

)−1

[E(Pk, ·)− CE ] (ξ) · u(ξ) dσξ,
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where the constant CE is defined s.t. E(Pk, ·) − CE ∈ Lq⊥f0
(Γ); see [4]. Due to the

fact that S(f0) = constant, CE is independent of k. We have

w(Pk, un) = w̄(Pk, un) + ρn,

where by (1.10),

ρn = −
∑M
k=1 µk(w̄(Pk, un)− Zk)∑M

k=1 µk
.

By Lemma 2 in [4], we obtain

|w(Pk, un)− w(Pk, u∗)|

=

∣∣∣∣∣
∫

Γ

(
1
2
I +K

)−1

(E(Pk, ·)− CE) (ξ) · (un(ξ)− u∗(ξ)) dσξ + (ρn − ρ∗)
∣∣∣∣∣

≤ B0‖un − u∗‖p,(3.30)

where

B0 = 2 max
1≤k≤M


∥∥∥∥∥
(

1
2
I +K

)−1

(E(Pk, ·)− CE)

∥∥∥∥∥
q

 .

Applying (1.16) and the singularity decomposition formula, Lemma 3 in [2], we write

ūn(x) =
[
un(x)− 1

2γ
∇J(un)(x) + cn

]Bu
Bl

=

[
− 2
γ

M∑
k=1

µk(w(Pk, un)− Zk)E(Pk, x) +
M∑
k=1

µk(w(Pk, un)− Zk)f0(Pk, x)

+
M∑
k=1

µk(w(Pk, un)− Zk)f1(Pk, x) + cn

]Bu
Bl

,

where for N = 2, f0 ≡ 0, and for N = 3, f0(Pk, x) has the only singularity at x = Pk,
which is dominated by E(Pk, x) and while f1(Pk, x) is continuous and bounded. Since
we assume that w(Pk, u∗) 6= Zk and both Bu and Bl are locally bounded at Pk for
all k = 1, 2, . . . ,M and also notice the fact that limx→Pk E(Pk, x) = +∞ and all
cn and c∗ are bounded, there exist N > 0, δ0 > 0, en > 0 and e∗ > 0 s.t. for all
n > N , −en ≤ en ≤ en, −e∗ ≤ e∗ ≤ e∗ and for all x ∈ Γ with |x− Pk| < δ0 for some
k = 1, 2, . . . ,M ,[

un(x)− 1
2γ
∇J(un)(x) + cn + en

]Bu
Bl

= either Bu(x) or Bl(x)

and [
u∗(x)− 1

2γ
∇J(u∗)(x) + c∗ + e∗

]Bu
Bl

= either Bu(x) or Bl(x),

but only one of them is reached for each k. Let

Γ1 = {x ∈ Γ : |x− Pk| < δ0 for some k = 1, 2, . . . ,M} ,
Γ2 = {x ∈ Γ : |x− Pk| ≥ δ0 for all k = 1, 2, . . . ,M} .
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By the uniform convergence theorem, Theorem 3 in [4], we have for all n > N and
x ∈ Γ1,[

un(x)− 1
2γ
∇J(un)(x) + cn + en

]Bu
Bl

=
[
u∗(x)− 1

2γ
∇J(u∗)(x) + c∗ + e∗

]Bu
Bl

.(3.31)

As for x ∈ Γ2, all functions E(Pk, x), f0(Pk, x), and f1(Pk, x) are continuous and
bounded, and there exists a constant B1 = B1(δ0) > 0, independent of n, s.t.∣∣∣∣{un(x)− 1

2γ
∇J(un)(x)

}
−
{
u∗(x)− 1

2γ
∇J(u∗)(x)

}∣∣∣∣
=

∣∣∣∣∣
M∑
k=1

µk(w(Pk, un)− w(Pk, u∗))
{

2
γ
E(Pk, x) + f0(Pk, x) + f1(Pk, x)

}∣∣∣∣∣
≤ B1B0‖un − u∗‖p.(3.32)

Next we prove that |cn − c∗| ≤ B1B0‖un − u∗‖p. Write

δn = B1B0‖un − u∗‖p
and

Fl(x) = ul(x)− 1
2γ
∇J(ul)(x)

=
M∑
k=1

µk(w(Pk, ul)− Zk)
{

2
γ
E(Pk, x) + f0(Pk, x) + f1(Pk, x)

}
for l = n or l = ∗. Then (3.31) becomes

[Fn(x) + cn]BuBl = [Fn(x) + cn + en]BuBl = [F∗(x) + c∗ + e∗]BuBl = [F∗(x) + c∗]
Bu
Bl(3.33)

for all n > N , x ∈ Γ1, −en ≤ en ≤ en, and −e∗ ≤ e∗ ≤ e∗. (3.32) now means

|Fn(x)− F∗(x)| ≤ δn ∀ n > N, ∀ x ∈ Γ2.(3.34)

Notice that cn and c∗ are of the smallest magnitudes s.t.∫
Γ

[Fn(x) + cn]BuBl dσx = 0 and
∫

Γ
[F∗(x) + c∗]

Bu
Bl dσx = 0.(3.35)

So, for all −en ≤ en ≤ en and −e∗ ≤ e∗ ≤ e∗, we have∫
Γ2

[F∗(x) + c∗]
Bu
Bl dσx = −

∫
Γ1

[F∗(x) + c∗ + e∗]BuBl dσx

= −
∫

Γ1

[Fn(x) + cn + en]BuBl dσx(3.36)

=
∫

Γ2

[Fn(x) + cn]BuBl dσx.

If |cn − c∗| = δn + e′n with e′n > 0 (e.g., c∗ = cn + δn + e′n), then by (3.36) we have∫
Γ2

[Fn(x) + cn]BuBl dσx =
∫

Γ2

[F∗(x) + c∗]
Bu
Bl dσx

=
∫

Γ2

[F∗(x) + cn + δn + e′n]BuBl dσx

≥
∫

Γ2

[Fn(x) + cn + e′n]BuBl dσx.
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By Lemma 6 in [4], we have∫
Γ2

[Fn(x) + cn]BuBl dσx =
∫

Γ2

[Fn(x) + cn + e′n]BuBl dσx

and then∫
Γ2

[Fn(x) + cn]BuBl dσx =
∫

Γ2

[Fn(x) + cn + en]BuBl dσx ∀ 0 ≤ en ≤ e′n.

It follows that∫
Γ

[Fn(x) + cn + en]BuBl dσx = 0, ∀ 0 ≤ en ≤ min{en, e′n}.(3.37)

Since cn has the smallest magnitude s.t.∫
Γ

[Fn(x) + cn]BuBl dσx = 0,

(3.37) implies cn ≥ 0. On the other hand, we have∫
Γ2

[F∗(x) + c∗]
Bu
Bl dσx =

∫
Γ2

[Fn(x) + cn]BuBl dσx

=
∫

Γ2

[Fn(x) + c∗ − δn − e′n]BuBl dσx

≤
∫

Γ2

[F∗(x) + c∗ − e′n]BuBl dσx.

Again by Lemma 6 in [4], we obtain∫
Γ2

[F∗(x) + c∗]
Bu
Bl dσx =

∫
Γ2

[F∗(x) + c∗ − e′n]BuBl dσx,

and then∫
Γ2

[F∗(x) + c∗]
Bu
Bl dσx =

∫
Γ2

[F∗(x) + c∗ − en]BuBl dσx ∀ 0 ≤ en ≤ e′n.

It follows that∫
Γ

[F∗(x) + c∗ − en]BuBl dσx = 0, ∀ 0 ≤ en ≤ min{e∗, e′n}.(3.38)

Since c∗ has the smallest magnitude s.t.∫
Γ

[F∗(x) + c∗]
Bu
Bl dσx = 0,

(3.38) implies c∗ ≤ 0. It leads to

0 ≥ c∗ = cn + δn + en > 0,

which is a contradiction. Similarly, we can show that cn = c∗ + δn + e′n with e′n > 0
will also lead to a contradiction. Therefore

|cn − c∗| ≤ δn = B1B0‖un − u∗‖p.(3.39)
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Now for all n > N and for all x ∈ Γ1, by applying (3.33), we get

|ūn(x)− ū∗(x)| =
∣∣∣[Fn(x) + cn]BuBl − [F∗(x) + c∗]

Bu
Bl

∣∣∣ = 0,

and for all x ∈ Γ2, taking account of (3.34) and (3.39), we have

|ūn(x)− ū∗(x)| =
∣∣∣[Fn(x) + cn]BuBl − [F∗(x) + c∗]

Bu
Bl

∣∣∣
≤ |Fn(x) + cn − F∗(x)− c∗|
≤ 2B1B0‖un − u∗‖p.

For n = 1, 2, . . . , N , let

B3 = max

{
max

1≤n≤N
max

|x−Pk|≥δ0
|Fn(x) + cn − F∗(x)− c∗|,

max
1≤k≤M

sup
|x−Pk|<δ0

[Bu(x)−Bl(x)]

}
.

Then

|ūn(x)− ū∗(x)| ≤ B3 ≤ B4‖un − u∗‖p
with

B4 = max
{

B3

‖un − u∗‖p
: 1 ≤ n ≤ N, ‖un − u∗‖p 6= 0

}
.

In the above, since ‖un − u∗‖p = 0 implies ūn(x) = ū∗(x) for all x ∈ Γ, the iterate
will stop, and the case in which ‖un − u∗‖p = 0 may be excluded. If we denote

B = max{B4, 2B1B0},

then for all x ∈ Γ we have

|ūn(x)− ū∗(x)| ≤ B‖un − u∗‖p ≤

 2B
√
r1

γ
δ
n
2 for N = 2,

BE2n
− s2 for N = 3,

where r1 and δ are defined in (3.3), and E2 and s are defined in (3.14) and (3.15).
Therefore the proof is complete.

Remark 3. Notice that in (3.13), (3.14), (3.15), (3.16), and (3.29), s = p−p′
p(p′−2)

and 2 < p′ < p. So s can be made to be greater than any number by a proper choice
of p′. Therefore, the convergence is faster than any power of 1

n . That is why we call
it subexponential convergence. Of course, the constants E1, E2, and E3 in (3.13),
(3.15), and (3.16), respectively, and the constant B3 in (3.29) all depend on s but are
independent of n.

Also, the assumption that w(Pk, u∗) 6= Zk for all k = 1, 2, . . . ,M is important in
computing the value of the optimal control ū∗ at x = Pk. When w(Pk, u∗) = Zk for
some k, since the term E(Pk, x) has a singularity at x = Pk, any error in computing
w(Pk, u∗) will result in a huge error in computing (w(Pk, u∗) − Zk)E(Pk, x), as x
is sufficiently close to Pk and then destroys the reliability of the numerical value of
the optimal control at x = Pk. So the strong convergence of un cannot guarantee
the convergence of un(Pk). Therefore, the condition that w(Pk, u∗) 6= Zk for all
k = 1, 2, . . . ,M is indeed a necessary and sufficient condition for un to converge at
Pk, k = 1, 2, . . . ,M .
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Abstract. In this paper we consider an optimal control problem for a class of systems governed
by nonlinear evolution equations containing a nonlinear monotone operator and a nonmonotone
operator with uncertain parameters. We prove existence of solutions and present necessary conditions
of optimality. Our result is illustrated by an example from quasi-linear partial differential equations
with uncertain coefficients. This result is further illustrated by a more practical example.

Key words. uncertain system, monotone operator, existence, Galerkin method, optimal control,
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1. Introduction. Many physical systems arising from thermodynamics, electro-
dynamics, and population biology are modeled by differential equations, integrodiffer-
ential equations, and evolution inequalities with uncertain (or undetermined) param-
eters. Generally, such models can be described by differential inclusions on Banach
spaces as follows: {

ẋ ∈ −A(t, x) + F (t, x),
x(0) = x0,

(1)

where A is a linear or a nonlinear unbounded operator in a suitable Banach space and
F is a multivalued map. An associated control system may be described as{

ẋ ∈ −A(t, x) + F̃ (t, x, u),
x(0) = x0,

(2)

where F̃ is a multivalued map and u is a suitable function representing the control
actions. In recent years optimal control of systems governed by differential inclusions
and, more generally, functional differential inclusions has been studied by Ahmed and
Papageorgiou (see [2, 8, 9, 10] and the references therein). These studies were mainly
concerned with the question of existence of optimal controls or parameters. Here we
are concerned with the necessary conditions of optimality for a min-max problem (see
[3, 5]).

For each admissible control u, X (u) denotes the set of solutions of (2) correspond-
ing to u (usually generalized solutions). A natural problem (P) is to find u0 ∈ Uad
(admissible controls) so that

J0(u0) = inf
u∈Uad

J0(u),(3)

where

J0(u) = sup
x∈X (u)

{∫
I

l(t, x, u)dt
}
.
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The system designer wishes to find a control policy to minimize the maximum risk
or maximize the minimum revenue. Since competing interests are involved, this is
precisely a problem of game theory—here, conflicting with nature. Similar and closely
related problems have been studied by Papageorgiou in [11, 12] and Ahmed and Xiang
in [2, 4, 6, 7]. In [11, 4] existence questions were addressed. Here we are concerned
with the necessary conditions of optimality.

In the case when F̃ admits a parameterization in the following form:

F̃ (t, x, u) ≡
{∫

Σ
g̃(t, x, u, σ) µ(dσ), µ ∈M(Σ)

}
,(4)

whereM(Σ) is the space of probability measures, we obtained a series of results. We
studied the question of existence of optimal controls for nonlinear uncertain systems
(see [4]) and presented necessary conditions of optimality for semilinear uncertain
systems whose principal operator is the infinitesimal generator of a strongly continuous
semigroup or a linear monotone operator (see [6], [7]).

In this paper we will present necessary conditions of optimality for problem (P)
subject to the more general class of systems given by (2). Here A is assumed to
be a nonlinear monotone operator and g̃(t, x, u, σ) is a nonlinear but not monotone
operator. For this purpose we prove, in section 2, the existence and uniqueness of
solutions of nonlinear first-order evolution equations. In section 3, we study some
necessary regularity properties of solutions of the associated nonlinear control sys-
tem. In section 4 we give the necessary conditions of optimality, and in section 5 we
present an example of a system, governed by a quasi-linear partial differential equa-
tion with uncertain parameters to which our results apply. This is further illustrated
by a reaction-diffusion-transport system. The differences between the work of Papa-
georgiou [11, 12] on this topic and that considered in this paper are as follows. In [11],
the system model considered consists of a nonlinear monotone operator perturbed by
a nonmonotone but regular operator (mapping within the same Hilbert space, thereby
excluding differential expressions) with controls appearing linearly. In [12] the princi-
pal operator is also a monotone operator arising from the subdifferential of a proper,
convex, lower semicontinuous functional. The lower-order terms are Lipschitz and
contain the uncertain parameters. In contrast, in this paper the perturbing operator
admits differential expressions (though more regular than the principal operator) with
controls appearing nonlinearly. This is a significant difference. Our assumptions, like
those of Papageorgiou on the nonlinear monotone operator and the cost integrand,
are standard and match those of Papageorgiou. Further, Papageorgiou considers exis-
tence questions, and we consider necessary conditions of optimality. These approaches
are complementary.

2. Existence and uniqueness of solutions. Let H be a Hilbert space and
V be a subspace of H having the structure of a reflexive Banach space, with the
embedding V ↪→ H being dense and continuous. Identifying H with its dual, we have
V ↪→ H ↪→ V ∗, where V ∗ is the topological dual of V . The system model considered
here is based on this evolution triple.

Let 〈x, y〉 denote the pairing of an element x ∈ V and an element y ∈ V ∗. If
x, y ∈ H, then 〈x, y〉 = (x, y), where ( , ) is the scalar product on H. The norm in
any Banach space X will be denoted by ‖.‖X .

Let {e1, e2, . . .} be a basis of V and set

Hn = lin.span{e1, . . . , en}.
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We introduce in the n-dimensional space Hn the scalar product of Hilbert space H.
Note Hn ⊆ V ⊆ H.

Let 0 < t ≤ T <∞, It ≡ [0, t], I ≡ [0, T ], and let p, q ≥ 1 such that

1/p+ 1/q = 1 and 2 ≤ p <∞.

For economy of notation, we write Ltp(V ) ≡ Lp(It, V ), Lp(V ) ≡ Lp(I, V ), Ltq(V
∗) ≡

Lq(It, V ∗), Lq(V ∗) ≡ Lq(I, V ∗). For p, q satisfying the preceding conditions, it follows
from the reflexivity of V that both Ltp(V ) and Ltq(V

∗) are reflexive Banach spaces
(see Theorem 1.1.17 of [1]). The pairing of Ltp(V ) and Ltq(V

∗) is denoted by 〈〈, 〉〉t.
In particular, for t = T , we use 〈〈, 〉〉 ≡ 〈〈, 〉〉T . Clearly, for u, v ∈ L2(H), 〈〈u, v〉〉 =
((u, v)) is the scalar product in Hilbert space L2(H).

Define

Wp,q = {x : x ∈ Lp(V ), ẋ ∈ Lq(V ∗)},

‖x‖2Wp,q
= ‖x‖2Lp(V ) + ‖ẋ‖2Lq(V ∗).

{Wp,q, ‖ ‖Wp,q
} is a Banach space, and the embedding Wp,q ↪→ C(I,H) is continuous.

If the embedding V ↪→ H is compact, then Wp,q ↪→ Lp(H) is also compact (see
Proposition 23.23 and problem 23.13 of [3]).

Let L(X,Z) denote the space of bounded linear operators from X to Z and A∗

the dual of the operator A.
We introduce the following assumptions.
(A1) A : I × V → V ∗.
(1) t→ A(t, x) is measurable.
(2) x → A(t, x) is uniformly monotone and hemicontinuous; i.e., there exists a

constant c > 0 such that

〈A(t, x1)−A(t, x2), x1 − x2〉 ≥ c ‖x1 − x2‖pV ∀ x1, x2 ∈ V, t ∈ I;

A(t, x+ sy) w→ A(t, x) in V ∗ ∀ x, y ∈ V, as s→ 0.

(3) There exist positive constants c1, c2, c3 and a nonnegative function c4(t) ∈
Lq(I,R) such that

〈A(t, x), x〉 ≥ c1‖x‖pV − c2 ∀ x ∈ V, t ∈ I;

‖A(t, x)‖V ∗ ≤ c4(t) + c3‖x‖p−1
V ∀ x ∈ V, t ∈ I.

(G1) g : I ×H → V ∗.
(1) g is measurable in the first variable and continuous in the second argument.
(2) There exist a constant α ≥ 0 and h ∈ Lq(I,R+) such that

‖g(t, x)‖V ∗ ≤ h(t) + α‖x‖
2
q

H ∀ x ∈ V, t ∈ I.

(3) g is locally Lipschitz continuous with respect to x, that is, for any b > 0,
there exists a constant L(b) such that for x1, x2 ∈ H, ‖x1‖H , ‖x2‖H ≤ b,

‖g(t, x1)− g(t, x2)‖V ∗ ≤ L(b)‖x1 − x2‖H ∀ t ∈ I.



1758 N. AHMED AND X. XIANG

Remark 2.1. Note that assumption (A1) implies coerciveness (see [3]).
Under the above assumptions we consider the following basic initial value problem:{

ẋ+A(t, x) = g(t, x),
x(0) = x0.

(5)

For given x0 ∈ H, we seek a function x ∈ Wp,q such that (5) is satisfied in a weak
sense, as explained later.

For x ∈ Lp(V ), we set

A(x)(t) = A(t, x(t)), G(x)(t) = g(t, x(t)), t ∈ I.

It follows from Theorem 30.A of [3] that the operator A : Lp(V )→ Lq(V ∗) is bounded,
uniformly monotone, hemicontinuous, and coercive. The operator G : Lp(V ) →
Lq(V ∗) is also bounded (see assumption (G1)) and has the following important prop-
erties.

LEMMA 2.2. Suppose that the embedding V ↪→ H is compact. Then, whenever
xn

w→ x in Wp,q, G(xn)→ G(x) in Lq(V ∗).
Proof. Since the embedding V ↪→ H is compact, the embedding Wp,q ↪→ Lp(H)

is compact. This means that if

xn
w→ x in Wp,q,

then

xn → x in Lp(H).

Since xn
w→ x in Wp,q, there exists a constant b > 0 such that ‖x‖C(I,H) ≤

b, ‖xn‖C(I,H) ≤ b. By virtue of assumption (G1) and the embeddings Lp(H) ↪→
Lq(H) ↪→ Lq(V ∗), one can easily verify that

‖G(xn)−G(x)‖Lq(V ∗)

=
(∫

I

‖g(t, xn(t))− g(t, x(t))‖qV ∗dt
)1/q

≤ L(b)
(∫

I

‖xn(t)− x(t)‖qHdt
)1/q

≤ L∗
(∫

I

‖xn(t)− x(t)‖pHdt
)1/p

,

where L∗ is a constant depending on p, q, b and the Lebesgue measure of I. Hence
the conclusion follows.

Remark 2.3. In fact, following a similar argument as in the proof of Lemma 2.5.1
of [1], we can prove Lemma 2.2 without the local Lipschitz continuity.

It is often convenient to write system (5) as an operator equation in

W 0
p,q ≡ {x ∈Wp,q : x(0) = x0} :

{
ẋ+A(x) = G(x),
x ∈W 0

p,q.
(6)



NONLINEAR UNCERTAIN SYSTEMS: OPTIMALITY CONDITIONS 1759

The purpose of this section is to present an existence result for equation (5)
based on Galerkin approximation. At first, we give an a priori bound and prove the
uniqueness of the solution.

LEMMA 2.4. There exists a finite positive number b such that

‖x‖C(I,H) ≤ b, ‖x‖Lp(V ) ≤ b,
‖ẋ‖Lq(V ∗) ≤ b,

for any solution x (if one exists) of equation (5).
Proof. If x is any solution of (5), then for each t ∈ I,

〈〈ẋ, x〉〉t + 〈〈A(x), x〉〉t = 〈〈G(x), x〉〉t,

giving

1
2

(‖x(t)‖2H − ‖x(0)‖2H) + 〈〈A(x), x〉〉t = 〈〈G(x), x〉〉t.

Using the assumptions and the Cauchy inequality, for any ε > 0, we have

1
2

(‖x(t)‖2H − ‖x(0)‖2H) + c1 ‖x‖pLtp(V )

≤ c2 +
∫ t

0
‖g(t, x(t))‖V ∗‖x(t)‖V dt

≤ c2 +
∫ t

0
(h(t) + ‖x(t)‖

2
q

H)‖x(t)‖V dt

≤ c2 +
1
qεq

∫ t

0
(h(t) + ‖x(t)‖

2
q

H)qdt+
εp

p

∫ t

0
‖x(t)‖pV dt.

Choosing ε > 0 sufficiently small, one can easily verify that there exist positive con-
stants c5, c6, c7 such that

‖x(t)‖2H + c5‖x‖pLtp(V ) ≤ c6 + c7

∫ t

0
‖x(t)‖2Hdt.(7)

From the Gronwall lemma it follows from the above inequality that

‖x(t)‖H ≤ c8 ∀ t ∈ I,

for some constant c8 depending on c6 and c7. Again, by virtue of assumptions (3) of
(A1) and (2) of (G1) and inequality (7), it is easy to verify that there exist positive
constants c9, c10 such that

‖x‖Lp(V ) ≤ c9, ‖ẋ‖Lq(V ∗) ≤ c10.

Choosing b = max{c8, c9, c10}, the assertion follows.
LEMMA 2.5. The solution of (5), if one exists, is unique.
Proof. Let x1, x2 ∈ W 0

p,q be two solutions of (5). Using integration by parts and
the monotonicity of the operator A, we obtain that

1
2
‖x1(t)− x2(t)‖2H + c‖x1 − x2‖pLtp(V )

≤
∫ t

0
〈g(t, x1(t))− g(t, x2(t)), x1(t)− x2(t)〉dt.
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By virtue of assumption (G1), Lemma 2.4, and the Cauchy inequality, for any ε > 0,
we have

1
2
‖x1(t)− x2(t)‖2H + c‖x1 − x2‖pLtp(V )

≤
∫ t

0
‖g(t, x1(t))− g(t, x2(t))‖V ∗‖x1(t)− x2(t)‖V dt

≤ L(b)
∫ t

0
‖x1(t)− x2(t)‖H‖x1(t)− x2(t)‖V dt

≤ L(b)ε
2

∫ t

0
‖x1(t)− x2(t)‖2V dt+

L(b)
2ε

∫ t

0
‖x1(t)− x2(t)‖2Hdt.

Using Lemma 2.3 and the continuous embedding Ltp(V ) ↪→ Lt2(V ), we obtain

‖x1(t)− x2(t)‖2H + 2c‖x1 − x2‖pLtp(V )

≤ L1ε

∫ t

0
‖x1(t)− x2(t)‖pV dt+

L(b)
ε

∫ t

0
‖x1(t)− x2(t)‖2Hdt,

where L1 is a constant depending on b and the embedding constant. Consequently,
for sufficiently small ε > 0, there exists a constant c′ > 0 such that

‖x1(t)− x2(t)‖2H + c′‖x1 − x2‖pLtp(V )

≤ L(b)
ε

∫ t

0
‖x1(t)− x2(t)‖2Hdt.

Using the Gronwall lemma, uniqueness follows from the above inequality.
THEOREM 2.A. Under assumptions (A1) and (G1), the evolution equation (5) has

a unique solution.
Proof. Let the sequence {x0

n} be an approximation of the given initial state
x0 ∈ H, i.e., x0

n ∈ Hn, x0
n → x0 in H, as n→∞.

Consider the sequence

xn(t) =
n∑
k=1

Ck,n(t)ek,

and seek a function xn such that 〈ẋn(t), ej〉+ 〈A(t, xn(t)), ej〉 = 〈g(t, xn(t)), ej〉, j = 1, 2, . . . , n;
xn(0) = x0

n;
xn ∈ Lp(I,Hn), ẋn ∈ Lq(I,Hn).

(8)

It follows from the existence theorem of Carathéodory for ordinary differential equa-
tions in Rn (see problem 30.3 of [3]) and Lemma 2.4 that, for each n ∈ N , the
finite-dimensional system (8) has a unique solution xn. It can be seen from Lemma
2.4 that {xn} is contained in a bounded subset of Wp,q. Hence, by assumption (A1),
{A(xn)} is bounded in Lq(V ∗). Since Lp(V ) and Lq(V ∗) are reflexive Banach spaces,
there exists a subsequence, again denoted by {xn}; an element x ∈ Lp(V ) with its
distributional derivative ẋ ∈ Lq(V ∗); and W ∈ Lq(V ∗) such that

xn
w→ x in Lp(V ),

ẋn
w→ ẋ in Lq(V ∗),

A(xn) w→W in Lq(V ∗)
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as n→∞. Combining the assumptions with Lemma 2.2, we have

G(xn)→ G(x) in Lq(V ∗),
xn(0)→ x0 in H,

xn(T ) w→ z in H

as n→∞.
Let ψ ∈ C∞(I,R) and v ∈ Hn. Using equation (8) and integration by parts, one

can obtain

(xn(T ), ψ(T )v)− (xn(0), ψ(0)v)

=
∫
I

〈g(t, xn(t))−A(t, xn(t)), ψ(t)v〉+ 〈ψ̇(t)v, xn(t)〉dt.

Letting n→∞, we have

(z, ψ(T )v)− (x0, ψ(0)v) = 〈〈G(x)−W,ψv〉〉+ 〈〈ψ̇v, x〉〉.(9)

Using this, one can easily verify that the limit elements x,W, z satisfy{
ẋ+W = G(x), x ∈Wp,q,
x(0) = x0, x(T ) = z.

Again using equation (8) and integration by parts, we have

1
2

(‖xn(T )‖2H − ‖xn(0)‖2H) = 〈〈G(xn)−A(xn), xn〉〉.

By virtue of the fact that

limn→∞‖xn(T )‖H ≥ ‖x(T )‖H ,

we obtain

lim
n→∞

〈〈A(xn), xn〉〉

≤ 〈〈G(x), x〉〉+
1
2

(‖x(0)‖2H − ‖x(T )‖2H)

= 〈〈W,x〉〉.

Since A is monotone and hemicontinuous, A satisfies property (M) (see section 27.1
of [3]), and hence

W = A(x).

Thus the limit element x satisfies equation (6) and hence is a solution of (5). The
uniqueness follows from Lemma 2.5. This finishes the proof of the theorem.

Remark 2.6. It follows from Proposition 21.23 of [3] and Lemma 2.5 that the
Galerkin sequence {xn} weakly converges to x in Lp(V ). Furthermore, following an
argument similar to that in Lemma 30.7 of [3], one can show that xn → x in C(I,H).
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3. Controlled uncertain system. Let Σ be a compact Polish space andM(Σ)
be the space of probability measures on Σ. A sequence µn ∈M(Σ) is said to converge
weakly to µ ∈M(Σ) if ∫

Σ
g(σ)µn(dσ) →

∫
Σ
g(σ)µ(dσ)

for every g ∈ C(Σ).
In addition to assumption (A1) we shall introduce the following assumptions.
(U) (1) Y is a reflexive Banach space.
(2) U : I → CC(Y ) = {class of nonempty, closed, convex subsets of Y } is a

measurable multifunction satisfying U(t) ⊆ U for almost all t ∈ I, where U is a fixed
weakly compact convex subset of Y . For the admissible controls, we choose the set
Uad ≡ {u ∈ Lr(Y ) : u(t) ∈ U(t) a.e.} (r ≥ 2).

(G) g̃ : I ×H × Y ×Σ→ V ∗, for µ ∈M(Σ), g(t, x, u, µ) ≡
∫

Σ g̃(t, x, u, σ)µ(dσ).
(1) g is measurable in the first variable and continuous in the last three arguments.
(2) g(., ., u, µ) satisfies assumption (G1) uniformly with respect to u ∈ U , µ ∈

M(Σ).
(3) g is Fréchet-differentiable with respect to x ∈ H and u ∈ Y , and the mappings

G1(x, u, µ) : Lp(H)× Lr(Y )×M(Σ)→ L(Lp(H), Lq(V ∗)),
G2(x, u, µ) : Lp(H)× Lr(Y )×M(Σ)→ L(Lr(Y ), Lq(V ∗))

are bounded and continuous, where

G1(x, u, µ)(t) ≡ gx(t, x(t), u(t), µ),
G2(x, u, µ)(t) ≡ gu(t, x(t), u(t), µ).

(L) l : I ×H × Y → R
⋃
{∞} is continuous and Fréchet-differentiable in both

x and u on H and Y , respectively, so that lx ∈ Lq(I,H) and lu ∈ Lr′(I, Y ∗) (r′ =
r/r−1) in the neighborhood of the optimal control state pair (u0, x0), whenever such
a pair exists.

Under the above assumptions, we consider the following controlled uncertain sys-
tem: {

ẋ(t) +A(t, x(t)) = g(t, x(t), u(t), µ) for almost all t ∈ I,
x(0) = x0 ∈ H.(10)

DEFINITION 3.1. A function x is said to be a solution of the problem (10) corre-
sponding to u ∈ Uad if

(1) x ∈Wp,q,
(2) for a given µ ∈M(Σ), x satisfies (10).
Define the solution set

X (u) ≡ {x | x is a solution of (10) corresponding to u}.

Our problem, called (P), is to find u0 ∈ Uad such that

J0(u0) = inf
u∈Uad

J0(u)

where

J0(u) = sup
x∈X (u)

{∫
I

l(t, x, u)dt
}
.
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Occasionally, we use the notation x(u, µ) to denote the solution of (10) corre-
sponding to u ∈ Uad and µ ∈M(Σ). Then we can write

X (u) =
⋃

µ∈M(Σ)

x(u, µ).

Set

X =
⋃

u∈Uad

X (u).

Using the results of section 2, one can easily obtain the following theorem.
THEOREM 3.A. Suppose that assumptions (A1), (G), and (U) hold. Then for

every u ∈ Uad and µ ∈ M(Σ), equation (10) has a unique solution. Further, the set
X is a bounded subset of Wp,q.

For necessary conditions, we need some results on continuous dependence of so-
lutions on controls u and parameters µ.

PROPOSITION 3.2. Suppose that assumptions (A1), (G), and (U) hold. For any
fixed µ0 ∈M(Σ), let u, u0 ∈ Uad and uε = u0 + ε(u− u0) (0 ≤ ε ≤ 1). Then we have

xε ≡ x(uε, µ0)→ x0 ≡ x(u0, µ0) in C(I,H)
⋂
Lp(V ),

as ε→ 0.
Proof. Define

Gε1 =
∫ 1

0
G1(x0 + s(xε − x0), uε, µ0)ds,

Gε2 =
∫ 1

0
G2(x0, u0 + s(uε − u0), µ0)ds.

By assumptions (G) and (U), there exists a constant K such that

‖Gε1‖L(Lp(H),Lq(V ∗)) ≤ K, ‖Gε2‖L(Lr(Y ),Lq(V ∗)) ≤ K.

Following similar steps as in the proof of Lemma 2.5, we have

1
2
‖xε(t)− x0(t)‖2H + 〈〈A(xε)−A(x0), xε − x0〉〉t

=
∫ t

0
〈g(t, xε, uε, µ0)− g(t, x0, u0, µ0), xε − x0〉dt

=
∫ t

0
〈g(t, xε, uε, µ0)− g(t, x0, uε, µ0), xε − x0〉dt

+
∫ t

0
〈g(t, x0, uε, µ0)− g(t, x0, u0, µ0), xε − x0〉dt

= 〈〈Gε1(xε − x0), xε − x0〉〉t + ε〈〈Gε2(uε − u0), xε − x0〉〉t.

Using assumptions (3) of (A1) and (3) of (G1), Lemma 2.4, and the Cauchy inequality,
one can verify that there exist positive constants c′′,K1, and K2 such that

‖xε(t)− x0(t)‖2H + c′′‖xε − x0‖pLtp(V )

≤ K1ε+K2

∫ t

0
‖xε − x0‖2Hdt.

The conclusion now follows from the Gronwall lemma.



1764 N. AHMED AND X. XIANG

Remark 3.3. Note that Proposition 3.2 remains valid if g is merely locally Lipschitz
continuous with respect to x and u.

PROPOSITION 3.4. Suppose that the assumptions (A1), (G), and (U) hold. For
any fixed u0 ∈ Uad, let µ, µ0 ∈M(Σ) and µε = µ0 + ε(µ− µ0) (0 ≤ ε ≤ 1). Then

xε ≡ x(u0, µ
ε)→ x0 ≡ x(u0, µ0) in C(I,H)

⋂
Lp(V ),

as ε→ 0.
Proof. The proof is similar to that of Proposition 3.2.

4. Necessary conditions of optimality. In this section, we present our main
results, the necessary conditions of optimality for the problem (P) as stated in section
3. In what follows, we shall assume that an optimal control exists (see [4, 11, 12]).

DEFINITION 4.1. The pair (u0, µ0) ∈ Uad×M(Σ) is said to be the optimal strategy
pair for the problem (P) if

inf
u∈Uad

sup
µ∈M(Σ)

J(u, µ) = sup
µ∈M(Σ)

inf
u∈Uad

J(u, µ) = J(u0, µ0),

where J(u, µ) =
∫
I
l(t, x(u, µ), u)dt, with x(u, µ) being the solution of equation (10).

In other words, the optimal strategy pair is the saddle point of the loss (cost) functional
J .

Clearly, if (u0, µ0) is the saddle point, the following system of inequalities must
hold:

J(u0, µ) ≤ J(u0, µ0) ≤ J(u, µ0) ∀ u ∈ Uad, µ ∈M(Σ).(11)

In the game-theoretic language, J(u0, µ0) is called the value of the game.
Letting x0 denote the solution corresponding to the saddle point {u0, µ0}, we

have the optimal triple {u0, x0, µ0}. In this section we assume that p = q = 2.
In order to derive the necessary optimality conditions, we need some additional

assumptions for the operator A.
(A) A : I × V → V ∗.
(1) A satisfies conditions (A1).
(2) A is Fréchet-differentiable with respect to x ∈ V and for each ξ ∈ W2,2 the

Nemytski operator Ax defined by Ax(ξ)(t) ≡ Ax(t, ξ(t)) belongs to L(L2(V ), L2(V ∗)).
Further, the map ξ −→ Ax(ξ) is continuous and bounded on bounded subsets of W2,2.

Remark 4.2. Under assumption (A), for any x ∈ V , Ax(t, x) is strictly positive,
i.e.,

〈Ax(t, x)y, y〉 ≥ c‖y‖2V ∀ t ∈ I, ∀ y ∈ V.

In fact, by the monotonicity of A, we have, for s > 0,

〈A(t, x+ sy)−A(t, x), sy〉 ≥ c‖sy‖2V ;

hence 〈
A(t, x+ sy)−A(t, x)

s
, y

〉
≥ c‖y‖2V .

The assertion follows upon letting s→ 0.
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For the optimal triple {u0, x0, µ0}, define

A0≡ Ax(x0), G0
1 ≡ Gx(x0, u0, µ0),

G0
2≡ Gu(x0, u0, µ0).

LEMMA 4.3. For each f ∈ L2(V ∗), the linear evolution equation{
ẏ +A0y = G0

1y + f,
y(0) = 0(12)

has a unique solution y ∈W2.2.
Proof. By virtue of assumptions (A) and (G), it is easy to verify that A0 and

G0
1 satisfy (A1) and (G1), respectively. Then, by Theorem 2.A, equation (12) has a

unique solution y ∈W2.2.
As usual, in the study of optimal control problems, we need an associated ad-

joint problem. Here we present an existence result for the following adjoint Cauchy
problem.

THEOREM 4.A. Define l0x(t) ≡ lx(t, x0(t), u0(t)). The adjoint problem{
−ψ̇ + (A0)∗ψ = (G0

1)∗ψ + l0x,
ψ(T ) = 0

(13)

has a unique solution ψ ∈W2.2.
Proof. By assumption (L), l0x ∈ L2(H). Since L2(H) ↪→ L2(V ∗), l0x ∈ L2(V ∗).

Reversing the flow of time t→ T − t, the conclusion follows from Lemma 4.3.
THEOREM 4.B (necessary conditions). Suppose that assumptions (A), (G), (U),

and (L) hold. In order that {u0, x0, µ0} be the optimal triple for problem (P), it is
necessary that there exist a ψ ∈W2,2 such that the following equations and inequalities
hold:

(1) ẋ0 +A(t, x0) = g(t, x0, u0, µ0), x0(0) = x0;
(2) −ψ̇ + (A0)∗ψ = (G0

1)∗ψ + l0x(t), ψ(T ) = 0;
(3)

∫
I
〈(G0

2)∗ψ + l0u, u− u0〉Y ∗,Y dt ≥ 0 ∀ u ∈ Uad,
where l0u(t) = lu(t, x0(t), u0(t));
(4)

∫
I
〈ψ,G(x0, u0, µ)〉dt ≤

∫
I
〈ψ,G(x0, u0, µ0)〉dt ∀ µ ∈M(Σ).

Proof. Let (u0, µ0) be a saddle point for the problem (P) and x0 = x(u0, µ0)
be the corresponding optimal trajectory. For any u ∈ Uad, by the convexity of Uad,
uε ≡ u0 + ε(u − u0) ∈ Uad for 0 ≤ ε ≤ 1. By Theorem 3.A, the state equation
(10) has a unique strong solution xε = x(uε, µ0) corresponding to the control uε and
parameter µ0.

Using the second part of the inequality (11), we have∫
I

l(t, xε(t), uε(t))dt−
∫
I

l(t, x0(t), u0(t))dt ≥ 0 ∀ u ∈ Uad.(14)

Define yε = (xε − x0)/ε, Aεx =
∫ 1

0 Ax(x0 + s(xε − x0))ds, Gε1 =
∫ 1

0 G1(x0 + s(xε −
x0), uε, µ0)ds, Gε2 =

∫ 1
0 G2(x0, u0 + s(uε − u0), µ0)ds. Note that yε satisfies the fol-

lowing equation:

ẏε +
A(xε)−A(x0)

ε
= [G(xε, uε, µ0)−G(x0, u0, µ0)]/ε

= [G(xε, uε, µ0)−G(x0, uε, µ0)]/ε
+[G(x0, uε, µ0)−G(x0, u0, µ0)]/ε,
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which can be written as{
ẏε +Aεxyε = Gε1yε +Gε2(u− u0),
yε(0) = 0.(15)

Following similar steps as in the proof of Lemma 2.4, using assumptions (A), (G),
and (U), we can obtain the following a priori estimate: there exists a constant d such
that for all 0 ≤ ε ≤ 1,

‖yε‖C(I,H) ≤ d, ‖yε‖L2(V ) ≤ d.

Consider the following equation:{
ẏ +A0y = G0

1y +G0
2(u− u0),

y(0) = 0.(16)

Since G0
2(u − u0) ∈ L2(V ∗), by Lemma 4.3, equation (16) has a unique solution

y0 ∈W2.2.
To show that yε −→ y0, use integration by parts to obtain

1
2
‖yε(t)− y0(t)‖2H + 〈〈Aεxyε −A0y0, yε − y0〉〉t

=
1
2
‖yε(t)− y0(t)‖2H + 〈〈Aεx(yε − y0), yε − y0〉〉t

+〈〈(Aεx −A0)y0, yε − y0〉〉t
≤ 〈〈Gε1(yε − y0), yε − y0〉〉t + 〈〈(Gε1 −G0

1)y0, yε − y0〉〉t
+〈〈(Gε2 −G0

2)(u− u0), yε − y0〉〉t.

From assumptions (A) and (G), Remark 4.2, and the Cauchy inequality, it follows
that there exist constants c∗, η0, η1, η2, and η3 such that

‖yε(t)− y0(t)‖2H + c∗‖yε − y0‖2Lt2(V )

≤ η0

∫ t

0
‖yε(t)− y0(t)‖2Hdt+ η1‖(Aεx −A0)y0‖2Lt2(v∗)

+η2‖(Gε1 −G0
1)y0‖2Lt2(v∗) + η3‖(Gε2 −G0

2)(u− u0)‖2Lt2(v∗).(17)

Since uε → u0 in Lr(Y ) and xε → x0 in C(I,H)
⋂
L2(V ) (see Proposition 3.2), we

have

‖(Aεx −A0)y0‖2Lt2(v∗) → 0,

‖(Gε1 −G0
1)y0‖2Lt2(v∗) → 0,

‖(Gε2 −G0
2)(u− u0)‖2Lt2(v∗) → 0.

By virtue of the Gronwall lemma, it follows from (17) that

yε → y0 in C(I,H)
⋂
L2(V ),

as ε→ 0, where y0 is the Gâteaux differential of x with respect to u in the direction
u− u0.



NONLINEAR UNCERTAIN SYSTEMS: OPTIMALITY CONDITIONS 1767

By the use of hypothesis (L), after some elementary computations, one obtains
from inequality (14) that∫

I

[(l0x, y0) + 〈l0u, u− u0〉Y ∗,Y ]dt ≥ 0.(18)

By Theorem 4.A, the adjoint equation (13) has a unique solution ψ ∈ W2.2, and
y0 ∈W2,2 is the solution of (16). Hence

〈〈l0x, y0〉〉 = 〈〈−ψ̇ + (A0)∗ψ − (G0
1)∗ψ, y0〉〉

= 〈〈ψ, ẏ0 +A0y0 −G0
1y0〉〉

= 〈〈ψ,G0
2(u− u0)〉〉

= 〈〈(G0
2)∗ψ, u− u0〉〉.

It follows from (14) and the preceding arguments that∫
I

〈(G0
2)∗ψ + l0u, u− u0〉dt ≥ 0 ∀ u ∈ Uad.

This proves the inequality (3) as stated in Theorem 4.B.
Since (u0, µ0) is an optimal solution of problem (P), it follows from the first part

of inequality (11) that∫
I

l(t, x(u0, µ), u0) dt−
∫
I

l(t, x0, u0) dt ≤ 0 ∀ µ ∈M(Σ).(19)

For any µ ∈ M, µε = µ0 + ε(µ − µ0) ∈ M(Σ) (0 ≤ ε ≤ 1), xε ≡ x(u0, µ
ε) is the

unique solution of the system (10) corresponding to the control u0 and parameter µε.
Clearly, we have ∫

I

l(t, xε, u0) dt−
∫
I

l(t, x0, u0) dt ≤ 0.(20)

Define ωε = (xε−x0)/ε, Ãεx =
∫ 1

0 Ax(x0 +s(xε−x0))ds, G̃ε1 =
∫ 1

0 G1(x0 +s(xε−
x0), u0, µ

ε)ds. Clearly, ωε satisfies the following equation:

ω̇ε + Ãεxω
ε = [G(xε, u0, µ

ε)−G(x0, u0, µ0)]/ε
= G̃ε1ω

ε + [G(x0, u0, µ)−G(x0, u0, µ0)].

Following similar steps, as in the case of controls, one can verify that the Gâteaux
differential of x with respect to µ in the direction µ−µ0 is the solution of the following
equation: {

ω̇ +A0ω = G0
1ω + [G(x0, u0, µ)−G(x0, u0, µ0)],

ω(0) = 0.(21)

Again, following similar arguments as in the case of control, proving inequality
(3), one can verify that∫

I

〈ψ,G(x0, u0, µ)〉dt ≤
∫
I

〈ψ,G(x0, u0, µ0)〉dt ∀ µ ∈M(Σ),

where ψ satisfies the adjoint equation (13). This completes the proof of Theorem 4.B.
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5. An example. Let Ω be an open connected bounded region in Rn with smooth
boundary ∂Ω, QT = I × Ω, (I = (0, T ), 0 < T < ∞). Let α = (α1, . . . , αn) be a
multi-index with {αi} nonnegative integers and | α |=

∑n
1 αi. Suppose p ≥ 2 and

q = p/(p− 1), Wm,p(Ω), mp > n, denotes the standard Sobolev space with the usual
norm:

‖ϕ‖Wm,p =

 ∑
|α|≤m

‖Dαϕ‖pLp(Ω)

1/p

, m = 0, 1, . . . .

Let Wm,p
o ≡ {ϕ ∈ Wm,p | Dβϕ |∂Ω= 0, | β |≤ m − 1}. It is well known that

C∞0 ⊂W
m,p
0 ⊂ L2 ⊂W−m,p and the embedding Wm,p

0 ↪→ L2 is compact.
We consider a minimax problem of a typical uncertain system governed by the

following controlled quasi-linear parabolic partial differential equation of order 2m
with uncertain coefficients as described below:

∂/∂tϕ(ξ, t) +
∑
|α|≤m(−1)|α|DαAα(ξ, t, η(ϕ)(ξ, t))

=
∑
|α|≤mD

α[σα(ξ)fα(ξ, t, ϕ, u)],
Dβϕ(ξ, t) = 0 on ∂Ω× [0, T ] ∀β :| β |≤ m− 1,
ϕ(ξ, 0) = ϕ0(ξ) ∈ L2(Ω),

(22)

where η(ϕ) ≡ {(Dαϕ), | α |≤ m}. Let M ≡ card{| α |≤ m}.
The coefficients {σα, | α |≤ m} are the uncertain parameters. Suppose {λi,α}(i =

1, 2; | α |≤ m) are given constants and σα : Ω→ R are bounded measurable functions
satisfying

λ1,α ≤ σα(ξ) ≤ λ2,α ∀ ξ ∈ Ω, | α |≤ m.

We denote this class of functions by Σ. It is assumed that these functions are not
known to the control system designer, except their range Σ. In other words, the system
has unknown (uncertain) coefficients. For example, in the mathematical models for
pollutant transport equations described by reaction-diffusion-transport equations (see
the comments following this example), the three-dimensional velocity distribution of
the water (or air) is impossible to determine at every point of the medium. However,
it is possible to set lower and upper limits to these quantities.

Let β1(ξ, t), β2(ξ, t) : QT → R be bounded continuous functions so that

β1(ξ, t) ≤ β2(ξ, t) ∀ (ξ, t) ∈ QT .

Set

U(t) ≡ {w ∈ L∞(Ω, RM1) ≡ Z : β1(ξ, t) ≤ wi(ξ) ≤ β2(ξ, t), ξ ∈ Ω, 1 ≤ i ≤M1}.

The set of admissible controls Uad is chosen as

Uad ≡ {u ∈ L∞(I, Z) : u(t) ∈ U(t) a.e.}.

The cost function for the control problem is given by

J0(u) ≡ sup
σ∈Σ

∫
I

∫
Ω
l0(ξ, t, η(ϕ(σ)(ξ, t)), u(ξ, t))dξdt.

Our problem (P∗) is to find u0 such that

J0(u0) = inf{J0(u), u ∈ Uad}.
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For ϕ,ψ ∈Wm,p
0 , t ∈ I, we set

a(t, ϕ, ψ) ≡
∫

Ω

∑
|α|≤m

Aα(ξ, t, η(ϕ(ξ)))Dαψdξ

and assume that the function Aα(| α |≤ m) : QT × RM → R satisfies the following
properties.

(A1) (ξ, t) → Aα(ξ, t, η) is measurable on QT for η ∈ RM , η → Aα(ξ, t, η) is
continuously differentiable on RM for almost all (ξ, t) ∈ QT .

(A2) There exist positive constants c, c1, c2, c3, c4 for η = (ηα) ∈ RM such that∑
|α|≤m

(Aα(ξ, t, η)−Aα(ξ, t, η̃))(ηα − η̃α) ≥ c
∑
|α|≤m

| ηα − η̃α |p;∑
|α|≤m

Aα(ξ, t, η)ηα ≥ c1
∑
|α|≤m

| ηα |p −c2;

| Aα(ξ, t, η) |≤ c4 + c3
∑
|α|≤m

| ηα |p−1 .

Under the above assumptions one can verify that for each ϕ ∈ Wm,p
0 and t ∈ I,

ψ → a(t, ϕ, ψ) is a continuous linear form on Wm,p
0 and hence there exists exactly one

operator A : I ×Wm,p
0 →W−m,q such that

〈A(t, ϕ), ψ〉W−m,q,Wm,p
0

= a(t, ϕ, ψ).

Identifying V ≡ Wm,p
0 , H ≡ L2(Ω), V ∗ ≡ W−m,q, it follows from the above as-

sumptions that the operator A as defined above satisfies the assumption (A) of
section 4.

Clearly, the set Σ is a closed bounded convex subset of L∞(Ω, RM ), and hence
w∗ is compact. Thus, with respect to the w∗ topology, it is a compact Hausdorff
space. Since L1(Ω, RM ) is separable, the set Σ is metrizable with respect to which
it is a complete separable metric space and hence a compact Polish space. Therefore
M(Σ) is a compact Polish space. For our control problem we choose this as our para-
meter set.

Assume the function fα : QT ×R×RM1 → R (| α |≤ m) satisfies the following
properties:

(F1) (ξ, t)→ fα(ξ, t, γ, v) is measurable on QT for all (γ, v) ∈ R×RM1 ; (γ, v)→
fα(ξ, t, γ, v) is continuously differentiable on R×RM1 for almost all (ξ, t) ∈ QT .

(F2) There exist b1 ∈ Lq(QT ) and b2 ≥ 0 such that

| fα(ξ, t, γ, v) |≤ b1(ξ, t) + b2 | γ |2/q

for all (ξ, t) ∈ QT , v ∈ U(t).
For ϕ ∈ L2(Ω), v ∈ U(t), t ∈ I, set

bv,σ(t, ϕ, ψ) ≡
∫

Ω

∑
|α|≤m

σα(ξ)fα(ξ, t, ϕ, v)Dαψdξ.

Under the above assumptions it is not difficult to verify that ψ → bv,σ(t, ϕ, ψ) is a
continuous linear form on Wm,p

0 , and hence, for each σ ∈ Σ, there exists an operator
Fσ : I × L2(Ω)× U(t)→W−m,q such that

bv,σ(t, ϕ, ψ) = 〈Fσ(t, ϕ, v), ψ〉V ∗,V ,

and Fσ satisfies assumption (G) of section 3.
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Using the operators A and Fσ as defined above, equation (22) can be written as
the abstract evolution equation{

ϕ̇+A(t, ϕ) = Fσ(t, ϕ, u),
ϕ(0) = ϕ0.

(23)

For each u ∈ Uad, define the set

X (u) ≡ {ϕ ∈ C(I,H) | ϕ is a generalized solution of (23)}

(see section 30.4 of [3]). Theorem 3.A shows that X (u) 6= ∅.
For φ ∈Wm,p

0 , v ∈ U(t), define

l(t, φ, v) =
∫

Ω
l0(ξ, t, η(φ(ξ)), v)dξ.

Suppose that the function l0 : QT × RM ,×RM1 → R ∪ {∞} is continuous and
continuously differentiable with respect to the last M + M1 variables and, further,
the inequality

| l0(ξ, t, η, v) |≤ k(1+ | η |2RM ), v ∈ U(t), (ξ, t) ∈ QT ,

holds. Under the above hypothesis, it is easy to see that the function l(t, ϕ, v) :
I ×Wm,p

0 × U(t) → R satisfies assumption (L) of section 4. Thus the problem (P∗)
can be restated as follows.

Minimize J0(u), u ∈ Uad, subject to the differential equation (23), where

J0(u) = sup
{∫

I

l(t, ϕ, u)dt, ϕ ∈ X (u)
}
.

Hence our result of Theorem 4.B can be used to solve this problem.
Further remarks. For further illustration we present here a more practical

example dealing with a reaction-diffusion-transport system, as remarked earlier. The
system is governed by

(∂/∂t)C(ξ, t)−D4C +∇Cσ = f(σ,C, u) on Ω× (0, T ],
C(ξ, t) = 0 on ∂Ω× [0, T ],
C(ξ, 0) = C0(ξ), ξ ∈ Ω.

(24)

Here, Ω is an open bounded subset of R3 with smooth boundary representing, for
example, the aquatic body (lakes, rivers); C represents the concentration of n dif-
ferent biochemical pollutants in the aquatic system. D ≡ diag{d1, d2, . . . , dn} is the
diffusion matrix, σ = σ(ξ) represents the three-dimensional velocity field of the water
body, and u = u(t, ξ) represents the control vector. The second term in the equa-
tion accounts for pollutant movement by diffusion, the third represents transport (of
pollutants) by the flow field, and the last term on the right-hand side of the equa-
tion represents interaction between the pollutants and the control agents. Note that
∇C is an n × 3 matrix. The controls may consist of (a) biological agents such as
micro-organisms capable of producing biodegradation of pollutants, (b) chemicals,
or (c) simple physical means of extraction. For the mathematical setting, we take
p = q = 2, H = L2(Ω, Rn), V = H1

0 (Ω, Rn), with V ∗ being the dual of V . Assuming
that D is positive definite, we take, for the operator A, the L2(Ω, Rn) realization of
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the Laplacian −D4 with Dirichlet boundary condition. It is obvious in this case that
the operator A ∈ L(V, V ∗), and it is coercive and hence monotone. For the nonlinear
operator Fσ, we take

Fσ(C, u) ≡ −∇Cσ + f(σ,C, u).

Here we assume that the velocity field σ is unknown and that

σ ∈ Σ ≡ {σ ∈ L∞(Ω, R3) : divσ = 0, λ1 ≤ σi(ξ) ≤ λ2, ξ ∈ Ω, i = 1, 2, 3},

where the upper and lower bounds are known. For the admissible controls, define

U ≡ {v ∈ L∞(Ω, Rm) ≡ Z : βi(ξ) ≤ vi(ξ) ≤ γi(ξ), i = 1, 2, . . . ,m},

where βi, γi ∈ L∞(Ω) are a given set of functions satisfying βi(ξ) ≤ γi(ξ), ξ ∈ Ω. The
admissible controls are given by

Uad ≡ {u ∈ L∞([0, T ], Z) : u(t) ∈ U a.e.}.

We assume that f is locally Lipschitz in y ∈ Rn and continuous in all the variables
satisfying

|f(σ, y, v)|Rn ≤ b1(ξ) + b2|y|Rn , for all σ ∈ Σ, v ∈ U,

where b1 ∈ L+
2 (Ω), b2 > 0. For Lotka–Volterra-type logistical interactions, the local

Lipschitz property holds. Under the above assumptions it is easy to verify that for
each σ ∈ Σ,

Fσ : H × U 7→ V ∗ and also Fσ : V × U 7→ H.

Hence equation (24) can be written in abstract form as{
Ċ +AC = Fσ(C, u),
C(0) = C0.

(25)

For the cost integrand l, one may choose the quadratic function

l(C, u) ≡
∫

Ω
{(Q(ξ, t)(C − Cd), C − Cd)Rn + (R(ξ, t)u, u)Rm}dξ,

where Q and R are positive semidefinite matrix-valued functions on Ω×[0, T ], possibly
with essentially bounded measurable entries and Cd denotes the acceptable pollution
level. Note that variables Q and R signify regional and temporal variation in the cost
of pollutant extraction. Since all the assumptions of our abstract result and those of
the example are satisfied in this particular case, our result applies.

Remark. The optimal strategy pair can be computed by use of the computational
algorithm for the min-max problem given in [6]. This algorithm is based on simi-
lar optimality conditions as given in our Theorem 4.B. For details, the reader may
see [6].
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Abstract. We study the controllability problem for a distributed parameter system governed
by the damped wave equation

utt −
1

ρ(x)
d

dx

(
p(x)

du

dx

)
+ 2d(x)ut + q(x)u = g(x)f(t),

where x ∈ (0, a), with the boundary conditions

u(0) = 0, (ux + hut)(a) = 0, h ∈ C ∪ {∞}.

This equation describes the forced motion of a nonhomogeneous string subject to a viscous damping
with the damping coefficient d(x) and with damping (if Re h > 0) or energy production (if Re h < 0)
at one end. (All results extend to the case when a similar condition is imposed at the other end as
well.) The function f(t) is considered as a control. Generalizing well-known results by D. Russell
concerning the string with d(x) = 0, we give necessary and sufficient conditions for exact unique
controllability and approximate controllability of the system. Our proofs are based on recent results
by M. Shubov concerning the spectral analysis of a class of nonselfadjoint operators and operator
pencils generated by the above equation.

Key words. nonselfadjoint operators, exact and approximate controllability, eigenvectors and
root vectors, Riesz basis, nonharmonic exponential basis, hyperbolic equations, damping, distributed
parameter control, stability

AMS subject classifications. 35C20, 35J10, 35L20, 93B05, 93B60, 93C20

PII. S0363012996291616

1. Introduction. We consider the one-dimensional wave equation which governs
the vibrations of a string with spatially nonhomogeneous positive damping, modulus
of elasticity, and density coefficients. The equation is defined on a finite interval with
linear first-order nonselfadjoint boundary conditions containing damping terms. We
use the spectral decomposition method to construct a control law that brings the
system to rest in a specified finite time. This control law is implemented through
the forcing term of the form g(x)f(t), where g is the force distribution function and
f is the control. We give necessary and sufficient conditions on the initial data and
the force distribution function under which the construction of the desired control is
possible, and then we give an explicit construction of the control. If these conditions
are not satisfied but are replaced by weaker conditions, the system is, nevertheless,
approximately controllable.

Our results can be considered as generalization of classic results by D. Russell [1]–
[4], who solved the above controllability problem for the one-dimensional wave equa-
tion without damping term. The main difference between the damped wave equation
and the undamped one [1]–[6] is the fact that our equation generates a nonselfadjoint
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operator, for which the spectral theory has only recently been developed. Our solu-
tion is based on recent results obtained by M. Shubov [7]–[9], who showed that the
system of eigenvectors and associated vectors of the aforementioned nonselfadjoint
operator forms a Riesz basis in the energy space. The case of a string with constant
density, nonconstant damping, and the Dirichlet boundary conditions was recently
studied in [23], [24]. For the case of a nonconstant density, zero damping coefficient
and damping in the boundary conditions see [25]–[28], [6]. However, the combination
of nonconstant damping and density with the damping in the boundary conditions
makes the problem significantly more complicated even if the coefficients are smooth.

This paper is organized as follows. In section 2 we provide all necessary definitions,
collect the necessary information from [7]–[9], and formulate our main results. In
section 3 we reformulate the original problem in operator format and reduce it to a
nonclassical moment problem. The solution of the moment problem is based on the
fact that the system of nonharmonic exponentials {eiλnt}, where λn are the complex
eigenfrequencies of the string, forms a Riesz basis in the space L2(0, T ), where T is
the control time. This fact follows from the asymptotic formulas for λn obtained in [7]
in the general case (even if the density has zeros or singularities) and in [6], [23]–[27]
in the aforementioned particular cases.

In section 3 we, also, define the strong solution of the original initial-boundary
problem following the spirit of works by J.-L. Lions [10], [11] and mention that our
solution obtained by the method of spectral decomposition satisfies all the require-
ments of this definition if the initial data are sufficiently regular. In section 4 we
use the variational approach to define the weak solution. However, our definition is
nonstandard. It is adapted to our operator formulation of the control problem, and
we suggest that it might be of interest in itself. We prove the uniqueness of our weak
solution using the spectral properties of the dynamics generator and show that the
solution of the control problem satisfies this definition for a wider class of initial data.

Using the spectral decomposition method, we give an explicit construction of the
control function in terms of the eigenvalues and the eigenvectors of the nonselfadjoint
operator, which is the dynamic generator of the damped string. We also give the
formula for the minimal time which is required to damp the motion. This time turns
out to be equal to twice the time it takes for a wave to travel from one end of the
string to the other. This means that the control time for the damped string is the
same as in the case of undamped string [2].

We mention in conclusion that the controllability problem for hyperbolic equa-
tions is treated in an extensive literature (see, e.g., the classic book [29] and references
therein). The general controllability results for linear hyperbolic equations are given
in [30]. However, as far as we know, the controllability problem for the damped wave
equation has never been treated by the spectral decomposition method. This method
allows one to consider the control of the form g(x)f(t) and to provide an explicit
construction of the control function.

2. Auxiliary propositions and statement of main results. Our main ob-
ject of interest is the following wave equation:

utt −
1

ρ(x)
d

dx

(
p(x)

du

dx

)
+ 2d(x)ut + q(x)u = g(x)f(t), x ∈ [0, a, ], t ≥ 0.(2.1)

Equation (2.1) describes forced motion of a string with density ρ(x) and modulus of
elasticity p(x), subject to an external harmonic force with the rigidity coefficient q(x)
and in the presence of viscous damping 2d(x). Precise conditions for these functions
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will be formulated later. The force distribution function is denoted by g ∈ L2(0, a),
and f(t) is called an admissible control function on the interval [0, T ] if it is an element
of L2(0, T ).

We will assume that u(x, t) satisfies the boundary conditions

u(0, t) = 0, (ux + hut)(a) = 0, h ∈ C ∪ {∞},(2.2)

and the initial conditions

u(x, 0) = u0
0(x), ut(x, 0) = u0

1(x).(2.3)

Let us mention some particular cases of problem (2.1)–(2.3). If h = 0 (the Neumann
boundary condition at x = a), the problem describes the vibrations of a finite string
with the left end fixed and the right end free. If h = ∞ (the Dirichlet boundary
condition u(a) = 0), we deal with the vibrations of a finite string with both ends
fixed. If h = 1 (the so-called Sommerfeld radiation boundary condition), the problem
describes the resonance phenomena in the scattering of acoustical waves on the semi-
infinite string. (For more details on the resonance phenomenon see [6], [8]). We
consider the Dirichlet condition at x = 0 only for the simplification of the exposition.
All our proofs can be extended to the case (ux + kut)(0) = 0, k ∈ C ∪ {∞}. We
consider the following problem.

Let initial conditions (2.3) and T > 0 be given. Does there exist an admissi-
ble control f on [0, T ] such that the solution of problem (2.1)–(2.3) also satisfies an
additional condition at t = T :

u(x, T ) = 0, ut(x, T ) = 0, x ∈ [0, a]?(2.4)

Due to the uniqueness theorem, (2.4) means that u(x, t) = 0 for t > T .
For a satisfactory solution of the control problem it is necessary that the set of

aforementioned initial conditions be sufficiently large. Conditions (2.13), (2.14) of our
main Theorem 2.4 below define a dense linear subspace of the energy space H which
consists of initial data that can be steered to zero in time T = 2M (see (2.10) below).

To describe the energy space we first formulate the precise conditions on the
coefficients of (2.1):

ρ(x), p(x), d(x) > 0, q(x) ≥ 0, ρ, p ∈ H2(0, a), d ∈ H1(0, a), q ∈ L∞(0, a).(2.5)

Remark 2.1. (a) As was already mentioned in the introduction, in this paper we
consider the case of a nonconstant positive viscous damping. It is certainly possible
that d(x) = const > 0, but it is important that d(x) does not vanish identically.
Assumptions (2.5) about the coefficients of our problem are sufficient for Theorems
2.1–2.3 below to be correct. These theorems are also correct in the case d(x) = 0 for
all x ∈ [0, a] (see the aforementioned works [25]–[28], [6]) or if d(x) vanishes on a set of
a positive Lebesgue measure. However, in these cases certain additional assumptions
about the parameters of the problem should be satisfied. See Remark 2.2 below for a
more detailed commentary.

(b) In fact, the assumption d(x) > 0 is also unnecessary. It is introduced in order
to treat d(x)ut as a dissipative term. d(x) may take negative values on [0, a]. In this
case we should require that d(x) = 0 only on a set of Lebesgue measure zero and a
certain integral involving d, p, and ρ does not vanish (see [7], [8]). (If d(x) = 0 on a
set of a positive measure, then the aforementioned conditions from Remark 2.2 must
be satisfied.)
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(c) Note that due to (2.5) and the embedding H1(0, a) ⊂ C[0, a], the function
d(x) is continuous. So, the condition d(x) > 0 for x ∈ [0, a] means that d(x) ≥ d0 > 0.

As the space H we take the closure of all smooth, two-component functions
U(x) = (u0(x)

u1(x) ), such that u0(x) = 0 in a vicinity of x = 0 with respect to the standard
energy metric:

‖U‖2H =
1
2

∫ a

0

[
p(x)|u′0|2 + q(x)ρ(x)|u0|2 + ρ(x)|u1|2

]
dx.(2.6)

Under our assumption (q > 0) the above quantity is always positive and can be
treated as the energy of the system. The case q ≤ 0 is also treatable as a problem
with indefinite metric [12].

Now we reproduce some important corollaries of the results from [7]–[9]. Let us
look for a solution of (2.1), (2.2) in the form eiλtu(x), and for u(x) we obtain the
following one-dimensional boundary value problem:

d

dx

(
p(x)

du

dx

)
+ λ2ρ(x)u− 2iλd(x)ρ(x)u− q(x)ρ(x)u = 0, x ∈ [0, a],(2.7)

u(0) = 0, (ux + iλhu)(a) = 0, h ∈ C ∪ {∞}.(2.8)

Problem (2.7), (2.8) is nonselfadjoint for two reasons: the damping term in the equa-
tion (d(x) 6= 0) and the complex parameter h in the boundary condition.

DEFINITION 2.1. We say that λ ∈ C is an eigenvalue of the nonselfadjoint
quadratic operator pencil generated by (2.1), (2.2) if problem (2.7), (2.8) has a non-
trivial solution, which is called an eigenfunction.

The necessary results from [7]–[9] are given by Theorems 2.1–2.3 below.
THEOREM 2.1. (1) The problem defined by (2.7), (2.8) has an infinite discrete

spectrum {λn}n∈Z. All eigenvalues, except for at most a finite number of finite mul-
tiplicity, are simple. There are no real eigenvalues.

(2) All eigenvalues are located in a strip parallel to the real axis, and Reλn → ±∞
as n→ ±∞. The simple eigenvalues are strongly separated:

inf
n,m,n 6=m

|λn − λm| > 0.(2.9)

The following asymptotics are valid for {λn}n∈Z:

lim
n→±∞

λn/n =M, M =
∫ a

0

√
ρ(x)/p(x)dx <∞.(2.10)

The next statement (Theorem 2.2 below) describes the geometry of the set of
eigenfunctions. We notice that each eigenvalue of the quadratic operator pencil (2.7),
(2.8) may have only a finite number of associated functions. (For the definition of
associated functions of an operator pencil see [13, p. 56].) In the future, we will denote
by {ϕn}n∈Z the set of all linearly independent eigenfunctions and associated functions,
making no difference between them. (For more information about the structure of
this set see [8]).

THEOREM 2.2. (1) The eigenfunctions {ϕn}n∈Z, specified by the condition ϕ′n(0) =
d0λn, where d0 is an absolute constant that can be given in terms of ρ, p, d, and q,
and corresponding associated functions are almost normalized (i.e., their norms are
bounded from above and below by positive constants) in the space L2

η(0, a), where
η = ρ/p.
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(2) The set of two-component vectors

Φn(x) =

 1
iλn

ϕn(x)

ϕn(x)

 , −∞ < n <∞,(2.11)

forms a Riesz basis in the energy space (see (2.6)).
THEOREM 2.3. The set of nonharmonic exponentials {eiλnt}n∈Z forms a Riesz

basis in the space L2(0, 2M), where M is given in (2.10).
This theorem follows immediately from the results established in [8]. It is shown

in [8] that the points {λn}n∈Z coincide with the roots of the so-called generalized
Jost function. The latter function (see [8, Theorem 2.1]) is an entire function of the
first order and of the exponential typeM, which is also a sine-type function with the
width of the indicator diagram equal to 2M. All these properties imply the statement
of Theorem 2.3 due to the Levin–Golovin theorem (see, e.g., [28]).

An alternative proof of Theorem 2.3 can be obtained based on the combination
of Theorem 2.1 with the general approach to bases of exponentials developed in [28]
(see also references in [28]). The latter approach gives additional information about
the above set of exponentials. Namely, this set forms a Riesz basis in its closed linear
span in L2(0, `) for any ` : 2M ≤ ` > ∞. For ` < 2M, the set of exponentials is
overloaded in L2(0, `). The only value of ` for which the above exponentials form a
Riesz basis in the whole space L2(0, `) is ` = 2M. We briefly outline the argument
which leads to all of the above conclusions. It follows immediately from statement
(2) of Theorem 2.1 that the set of points {λn}n∈Z satisfies the well-known Carleson
condition [14], [15]:

(C) inf
i

∞∏
j=−∞
j 6=i

∣∣∣∣λj − λiλj − λ̄i

∣∣∣∣ = δ > 0.

Condition (C) is necessary and sufficient for a system of exponentials to form a Riesz
basis in its closed linear span E in the space L2(0,∞). Consider the natural projection
P` : L2(0,∞) → L2(0, `), 0 < ` < ∞. If the restriction P`|E of this projection to
the subspace E is a linear isomorphism, then the set {eiλnt}n∈Z is a Riesz basis in
its closed span in the space L2(0, `) as well. The information about the spectrum,
contained in Theorem 2.1, combined with the results in [28] allows us to conclude that
the latter statement is true precisely for 2M≤ ` <∞. If ` = 2M, then the range of
P`|E coincides with L2(0, 2M), and therefore, the exponentials form a Riesz basis in
L2(0, 2M). We refer to [28] for more details.

Remark 2.2. Theorems 2.1–2.3 are also correct without any additional assump-
tions in the case when d(x) ≡ 0, x ∈ [0, a], and Im h 6= 0. However, if d(x) ≡ 0 or
vanishes on a set of positive Lebesgue measure and h is real, one must assume, in
addition to (2.5), that at least one of the following three conditions is satisfied:

(a)
√
p(a)/ρ(a) 6= |h|;

(b) lim
x→a−

d

dx

√
p(x)
ρ(x)

6= 0;

(c) lim
x→a−

d2

dx2

√
p(x)
ρ(x)

6= 0.
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If all of the above relations (a)–(c) are not satisfied, i.e., we have equalities, and
p, ρ ∈ C2(0, a) ∩ C[0, a], then Theorems 2.1–2.3 do not take place. In this case the
spectrum (it is not empty if p(x)/ρ(x) is not identically equal to |h|) does not belong to
a strip parallel to the real axis: Im λn →∞. This behavior of the spectrum destroys
the basis property of both the eigenfunctions and the nonharmonic exponentials. In
particular, the above conditions are not satisfied if p(x) = ρ(x) = const, h = 1. In
this case, since it is easy to check by an elementary computation, the spectrum of the
problem is empty. However, we stress once again that if d(x) > 0 for x ∈ [0, a], then
the behavior of the spectrum described in Theorem 2.1 is immediately restored and
all three theorems take place. We refer to [6]–[8] for more detailed information.

The above-described situation has a natural physical interpretation. Assume for
simplification that p(x) = 1, d(x) = 0, h = 1, but ρ(x) may be nonconstant. Let us
extend ρ(x) to the whole semiaxis [0,∞) by the rule ρ(x) = 1 for x ∈ (a,∞). As was
mentioned above, in this case our problem describes the scattering of elastic waves on
an obstacle concentrated on the interval [0, a]. Problem (2.7), (2.8) describes the so-
called resonances and resonance states, i.e., quasi-stationary oscillations of the string
with finite lifetime. The lifetime of a particular resonance is τn = |Imλn|−1. If the
eigenvalues λn behave as described in Theorem 2.1, then τn ≥ τ◦ > 0. So we have an
infinite series of “long-lived” resonance states (eigenfunctions of pencil (2.7), (2.78))
(τn 9 0). The above conditions (a)–(c) adapted to this case say that for an existence
for such a series of resonances it is necessary that at least one of the functions ρ(x),
ρ′(x), or ρ′′(x) have a jump at x = a; i.e., the obstacle is not “too smooth.” If the
conditions (a)–(c) are not satisfied and the density (extended to [0,∞) by the above
rule) is smooth (ρ ∈ C2[0,∞)) but nonconstant (ρ(x) 6= const for x ∈ [0, a]), then
the resonance spectrum {λn} still exists. However, in this case Imλn → ∞ and the
lifetime of resonance states τn → 0. In other words, for a smooth obstacle we have
an infinite series of “short-lived” resonance states. Such a behavior of the spectrum
destroys the Riesz basis property of the resonance states and of the corresponding
nonharmonic exponentials. Finally, if ρ(x) = 1 for all x ∈ [0,∞), then there is no
obstacle at all and, therefore, there are no resonances, i.e., the spectrum is empty.

We remark in conclusion that the case when Im h 6= 0 also has a natural physical
interpretation. In this case we have a jump of the “refraction coefficient” at x = a.
In other words, there is a refraction of elastic waves at the boundary of the obstacle.
This explains why the nonsmoothness conditions (a)–(c) are not necessary for the
existence of long-lived resonance states if Im h 6= 0.

Now we make the following important remark. From this moment on, we assume
that for each eigenvalue we have only one normalized eigenvector and no associated
vectors. The above assumption makes the exposition below more transparent. If
we took into account a possible finite number of nonsimple eigenvalues, then the
formulation of our main result would become somewhat more complicated. However,
its proof would not become significantly more difficult.

Now we formulate our main results.
THEOREM 2.4 (unique controllability). Let

U0(x) =

(
u0

0(x)

u0
1(x)

)

be initial data (2.3) and G(x) = ( 0
g(x) ), where g(x) is the force distribution function

from (2.1). Assume that U0, G ∈ H have the following expansions with respect to
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basis (2.11):

U0(x) =
∑
n∈Z

u0
nΦn(x), G(x) =

∑
n∈Z

gnΦn(x).(2.12)

(1) Assume that

gn 6= 0 for all n ∈ Z.(2.13)

The following statements hold.
(a) System (2.1)–(2.3) is controllable in the time interval [0, 2M] if and only if

{γn = u0
n/gn}n∈Z ∈ `2(Z), i.e.,

∑
n∈Z
|γn|2 <∞.(2.14)

(b) Let {ωn(t)}n∈Z be the Riesz basis in L2(0, 2M), biorthogonal [13], [15] to the
basis {eiλnt}n∈Z, i.e.,

∫ 2M
0 e−iλmtωn(t)dt = δm,n. The desired control function which

brings the system to zero state on the time interval [0, 2M] is uniquely defined by the
formula

f(t) = −
∑
n∈Z

γnωn(t).(2.15)

(c) If T < 2M, then the system is not controllable in time T .
(d) If T > 2M, then the system is controllable in time T and our control problem

has infinitely many solutions f ∈ L2(0, T ).
(2) Assume now that (2.13) is not satisfied, and let R = {n ∈ Z : gn = 0}. Let γn

be defined by (2.14) only for n ∈ Z\R. Let S = {n ∈ Z : u◦n = 0}.
The following statements hold.
(a) The system is controllable in time T = 2M if and only if

R ⊆ S and
∑
n∈Z\S

|γn|2 <∞.(2.16)

(b) The desired control function is not unique and can be given by

f(t) = −
∑
n∈Z\S

γnωn(t) +
∑
m∈R

αmωm(t),(2.17)

where αm ∈ C are arbitrary coefficients such that
∑
m∈R |αm|2 <∞.

(c) If the set R\(R ∩ S) is not empty, then the problem is not controllable in any
time.

Remark 2.1. (a) An explicit formula for ωn(t) (in terms of the truncated Blaschke
product) is known but is rather complicated [17], [18]. (b) Statement (2) of Theorem
2.4 is a generalization of statement (1). We formulate statement (1) separately because
of its importance.

THEOREM 2.5 (approximate controllability). Assume that condition (2.14) is not
satisfied but

{γn}n∈Z ∈ `p(Z) for some p ∈ (2,∞],(2.18)

i.e.,
∑
n∈Z
|γn|p <∞ (if 2 < p <∞) or sup

n∈Z
|γn| <∞ (if p =∞).
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Then for any ε > 0, there exists N such that for the control function

fN (t) = −
∑
|n|6N

γnωn(t)(2.19)

we have

‖U(·, T )‖H 6 ε for T = 2M.(2.20)

However, ‖fN‖L2(0,2M) →∞ as N →∞.

3. Reduction to the moment problem and strong solution of the control
problem. In this section we first give an operator reformulation of the problem and
then using the generalized Fourier method obtain a formal solution. This allows us
to prove our main results from section 2. If the initial data are sufficiently regular
(Theorem 3.2 below), then our formal solution is, in fact, the strong solution of the
control problem.

Let us represent our initial-boundary problem in the form of the following non-
selfadjoint operator equation for the function U = ( u

ut
) ≡ ( u0

u1
):

Ut = iLU + Ĝ, U |t=0 = U0 ∈ H,(3.1)

where

U0(x) =
(
u0

0(x)
u0

1(x)

)
, Ĝ(x, t) = f(t)G(x), G(x) =

(
0
g(x)

)
,

and L is the following matrix differential operator in H:

L = −i

 0 1

1
ρ(x)

d

dx

(
p(x)

d

dx

)
− q(x) −2d(x)

 .(3.2)

L is a closed maximal (dissipative if Re h ≥ 0) nonselfadjoint operator in H with the
domain

D(L) = {U ∈ H : u0 ∈ H2(0, a), u1 ∈ H1(0, a), u1(0) = 0, (u′0 + hu1)(a) = 0.}(3.3)

LEMMA 3.1. The set of all root vectors (eigenvectors and associated vectors to-
gether) of L forms a Riesz basis (linear isomorphic image of an orthonormal basis)
in H. It coincides with the set of two-component functions (2.11).

Proof. If Φ ∈ H is an eigenvector of L, then we see that the second component
of Φ = ( ϕ1

ϕ2
) satisfies (2.1) and conditions (2.2), while the first component ϕ1 =

(iλ)−1ϕ2. If we normalize the function ϕ1 by the condition ϕ′1(0) = 1, then Theorems
2.1 and 2.2 provide the Riesz-basis property of the set of root-vectors of L.

Utilizing the Fourier method and the Riesz basis property of vectors (2.11), we
look for a solution of (3.1) in the form

U(x, t) =
∑
n∈Z

an(t)Φn(x).(3.4)
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We also decompose both functions Ĝ and U0 with respect to {Φn}n∈Z:

Ĝ(x, t) = f(t)
(

0
g(x)

)
= f(t)

∑
n∈Z

gnΦn(x),
∑
|gn|2 <∞,(3.5)

U0(x) =

(
u0

0(x)

u0
1(x)

)
=
∑
n∈Z

u0
nΦn,

∑
n∈Z
|u0
n|2 <∞.(3.6)

Substituting (3.4)–(3.6) into (3.1) gives the following formal series for U(x, t):

U(x, t) =
∑
n∈Z

[
u0
ne
iλnt + gn

∫ t

0
eiλn(t−τ)f(τ)dτ

]
Φn(x).(3.7)

Assume for now that series (3.7) does represent the solution of (3.1). (All neces-
sary justifications are given below.) Can we find the moment T such that u(x, T ) =
ut(x, T ) = 0? From (3.7) and the Riesz basis property of {Φn} it follows that
U(x, T ) = 0 if and only if the following infinite system has a solution f ∈ L2(0, T ):

u0
n + gn

∫ T

0
e−iλnτf(τ)dτ = 0, n ∈ Z.(3.8)

Theorem 3.1 below provides the proof of Theorem 2.4 (up to necessary justifications
given at the end of this section and in section 4).

THEOREM 3.1.
(1) Assume that (2.13) is satisfied and γn = u0

n/gn are defined by (2.12). Then
moment problem (3.8) has a unique solution if and only if condition (2.14) is satisfied.
This solution is given by (2.15).

(2) Assume that (2.13) is not satisfied. Then the moment problem (3.8) has a
solution if and only if conditions (2.16) are satisfied. This solution is not unique and
is given by (2.19), (2.20).

Proof. If (2.13) is satisfied, (3.8) can be written as

(f, χn)L2(0,T ) = −γn, n ∈ Z.(3.9)

Thus {−γn}n∈Z is just the sequence of generalized Fourier coefficients of f with respect
to the Riesz basis {χn = eiλnt}n∈Z. It follows from the Riesz-basis property of the
system {χn}n∈Z that (3.9) has a unique solution f ∈ L2(0, T ) if and only if (2.13) is
satisfied. This solution (see [16, 21]) has the form

f(t) =
∑
n∈Z

(f, χn)L2(0,T )ωn(t),(3.10)

where {ωn}n∈Z is the basis in L2(0, T ), which is biorthogonal to {χn}n∈Z. Substituting
(3.9) into (3.10) we obtain precisely (2.15).

Assume now that (2.13) is not satisfied, i.e., gn = 0 for n ∈ R ⊂ Z, but (2.16)
takes place. Then (3.18) is equivalent to the system

(f, χn)L2(0,T ) = −γn, n ∈ Z\R and (f, χn)L2(0,T ) = αn, n ∈ R,(3.11)

where αn, n ∈ R, are arbitrary complex numbers. Since {χn}n∈Z is a Riesz basis, the
solution to (3.11) exists if and only if (2.16) and is satisfied. This solution again has
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the form (3.10). Substituting (3.11) into (3.10) and taking into account that γn 6= 0
only if n ∈ Z\S, we obtain (2.17).

In the conclusion we prove the proposition, which implies Theorem 2.5.
PROPOSITION 3.1. Assume that the sequence {γn}n∈Z from (2.9) is bounded:

|γn| ≤ Γ <∞.(3.12)

Assume also that the control function f(t) = fN (t) where fN (t) is defined in (2.19).
Then the following statement takes place for the function U(x, t) defined by (3.7): for
every ε > 0 there exists N0 such that

‖U(·, T )‖H 6 ε for N ≥ N0.(3.13)

Proof. Substituting control function (2.19) into (3.7) and taking t = T , we obtain

U(x, T ) =
∞∑

|n|=N+1

eiλntu0
nΦn(x).(3.14)

Now we estimate the H-norm of (3.14) using (3.12) and the fact that the system {Φn}
is almost normalized (we write ϕ � ψ if C1ϕ ≤ ψ ≤ C2ϕ, C1, C2 > 0):

‖U(·, T )‖2H �
∞∑

|n|=N+1

|u0
n|2 =

∞∑
|n|=N+1

|gn|2|γn|2

6 Γ2
∞∑

|n|=N+1

|gN |2 → 0 as N →∞.
(3.15)

Remark 3.1. (a) If {γn}n∈Z ∈ `q(Z) with q > 2, then we can make the estimate
(3.15) more precise. Indeed, due to the R-basis property of {γn}n∈Z we can change the
numeration of the sequence {λn} such that each sequence {|γn|}∞n=1 and {|γn|}−1

n=−∞
becomes nonincreasing: |γ|n|| > |γ|n+1||. Then estimate (3.15) can be continued:

‖U(·, T )‖2H 6 max{|γN+1|2, |γ−N−1|2}
∞∑

|n|=N+1

|g0
n|2.(3.16)

As |γ||N+1| → 0, we see that ‖U‖H from (3.16) decreases much faster than in (3.15).
(b) As follows from (2.19), for the control function fN we have ‖fN‖2L2(0,T ) �∑N
|n|=1 |γn|2. If |γn| 6 Γ < ∞, then ‖fN‖ � N → ∞ as N → ∞. This means that

we can “kill” as many low-frequency harmonics as we need but at the expense of the
increasing of the norm of fN .

(c) If {γn}n∈Z ∈ `q(Z), then we can give an approximation for the number of
harmonics, which should “be killed” to keep estimate (3.16). Namely, if α = ‖G‖H,
then we can take N = [(εα)−q] + 1, where ε is the same as in (3.13) and [x] denotes
the greatest integer that does not exceed x.

Now we come back to formula (3.7) and show that under appropriate conditions
on U0 and Ĝ it defines the strong solution of problem (3.1). The existence and
uniqueness theorems for a linear evolutionary problem (3.1) are well known both
for abstract Hilbert space setting [21] and for hyperbolic equations [22]. Using the
semigroup approach we can construct a mild or a strong solution of (3.1). However, in
our case a complete spectral information about the nonselfadjoint operator L allows
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us to point out some additional properties of the solution which cannot be obtained
by purely semigroup methods.

The operator L generates a continuous scale of Hilbert spaces Hα(α ≥ 0) in the
following way. Based on Theorem 2.2 and the Bari’s theorem [15], any vector Ψ ∈ H
can be expanded as

Ψ(x) =
∑
n∈Z

ψnΦn(x),
∑
n∈Z
|ψn|2 <∞.(3.17)

We define Hα(α ≥ 0) as the set of all vectors Ψ ∈ H such that

‖Ψ‖2Hα ≡
∑
n∈Z
|λn|α|ψn|2 <∞.(3.18)

Since λ = 0 does not belong to the spectrum of L, Hα is a Hilbert space with the
norm given by (3.18). It is clear that H0 = H and the norm ‖ · ‖H0 is equivalent to
the energy norm (2.6). It is possible to show that H2 = D(L) (see (3.3)). Moreover,
Hα = D(Lα/2), where powers of L can be defined based on its spectral decomposition.

DEFINITION 3.1. Let Ĝ ∈ L2(0, T ;H2) (Ĝ is not necessarily of form (3.5)). A
function U : [0, T ] → H2 is a strong solution of problem (3.1) on the interval [0, T ]
if it satisfies the following conditions: (i) U ∈ C(0, T ;H2); (ii) U is differentiable
with respect to t in the sense of distributions with values in H and the derivative
Ut ∈ L2(0, T ;H); (iii) U is strongly differentiable with respect to t in the sense of H-
norm a.e. on [0, T ] and the strong derivative coincides a.e. with the distributional
derivative Ut; (iv) U satisfies (3.1) for almost all t ∈ [0, T ]; (v) U = U0 ∈ H2 for
t = 0.

There are two classic approaches to the notion of a strong solution of an evolution
equation Ut + AU = Ĝ(t) in a Banach space X [11, p. 405]. If Ĝ ∈ C(0, T ;X), it is
required that U is strongly differentiable for all t ∈ [0, T ] and U(t) ∈ D(A) for all t.
If, however, Ĝ ∈ Lp(0, T ;X) (p ≥ 1), then the first definition is not applicable. It is
required that Ut exists in the sense of distributions with values in X, U(t) ∈ D(A) a.e.,
and the equation is satisfied a.e. on [0, T ]. In our problem the control f ∈ L2(0, T ).
So we have to use the second approach. However, our Definition 3.1 differs from the
classical one in two aspects. First, U ∈ C(0, T ;D(A)), and second, we point out
(property (iii)) that the strong H-derivative of U exists a.e. and coincides with the
distributional derivative. This property cannot be obtained based on purely semigroup
argument, and it takes place due to our spectral representation for A.

THEOREM 3.2. Assume that Ĝ ∈ L2(0, T ;H2) and U0 ∈ H2. Then the series in
(3.7) is convergent in the norm of H2 for any t ∈ [0, T ] and defines the unique strong
solution of problem (3.1). (If Ĝ is not of form (3.5), then formula (3.7) can be easily
modified and the statement of the theorem remains valid.)

We omit the proof of this theorem since it is based on standard estimates. The
only step which might require some commentary is the proof of the property (iii). It
is obvious that the distributional derivative of U has the form

Ut(x, t) =
∑
n∈Z

ȧn(t)Φn(x) for almost all t ∈ [0, T ],

since distributional derivatives commute with limits. So to prove (iii) one estimates
the H norm of the difference between this expression and δ−1[U(x, t+ δ)− U(x, t)].

We also recall that, according to Theorem 2.1 (statement (2)), the spectrum
belongs to a strip parallel to the real axis and, therefore, the imaginary parts of
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the eigenvalues are bounded. The latter fact is necessary for the series (3.7) to be
convergent.

4. Weak solution of the control problem. In this section we show that for
a wider class of U0 and Ĝ than in Theorem 3.2 formula (3.7) gives a weak solution
of problem (3.1). The definition of the weak solution, as well as its existence and
uniqueness, for problem (2.1), (2.2) are well known [10, 11, 22]. However, the standard
definition is inconvenient for us. We need a modified definition of the weak solution
which is adjusted to the operator formulation (3.1) of the problem. To simplify the
exposition we give proofs only for the case of the Dirichlet boundary conditions at
x = a(h =∞).

Since {Φn}n∈Z forms a Riesz basis inH, its biorthogonal system {Xn}n∈Z (defined
by (Φn,Xm)H = δnm) also forms a Riesz basis [19]. From the Riesz-basis property
it follows that the operator L admits the spectral representation which allows us to
define powers of L:

LαΨ =
∑
n∈Z

λαn(Ψ, χn)HΦn, Ψ ∈ D(Lα), α ≥ 0.(4.1)

To define λαn uniquely one should use the principal branch of the logarithm. L gener-
ates the scale of Hilbert spaces

Hα = D(Lα/2) =

{
Ψ ∈ H : ‖Ψ‖2Hα =

∑
n∈Z
|λn|α|(Ψ,Xn)H|2 <∞

}
.(4.2)

The operator L∗ adjoint to L in H can be described as the differential operator

L∗ = −i

 0 1

1
ρ(x)

d

dx

(
p(x)

d

dx

)
− q(x) 2d(x)

(4.3)

on the domain

D(L∗) = D(L) = {U ∈ H : u0 ∈ H2(0, a), u1 ∈ H1(0, a), u1(0) = u0(a) = 0}.

The operator L has the discrete spectrum {λ̄n}n∈Z of the same multiplicity as the
spectrum of L. The system of the root vectors of L∗ coincides with the biorthogonal
basis {Xn}n∈Z. The adjoint operator L∗ and its powers have the spectral representa-
tion

(L∗)αΨ =
∑
n∈Z

λ̄αn(Ψ,Φn)HXn, Ψ ∈ D((L∗)α), α ≥ 0,(4.4)

and L∗ also defines a scale of Hilbert spaces:

Ĥα = D((L∗)α/2) =

{
Ψ ∈ H : ‖Ψ‖2Ĥα =

∑
n∈Z
|λn|α|(Ψ,Φn)H|2 <∞

}
.(4.5)

It follows from the general properties of the biorthogonal Riesz bases that Hα and
Ĥα coincide as vector spaces. We use different notation for these spaces to emphasize
that norms (4.2) and (4.5) are different. These norms are, however, equivalent.
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In the following we will use the space W (0, T ; Ĥα). It consists of all functions
V ∈ L2(0, T ; Ĥα) which have derivative, Vt, in the sense of distributions with values
in Hα (see, e.g., [11, Chap. 3]) and Vt ∈ L2(0, T ;Hα). The norm in W (0, T ; Ĥα) is

‖V ‖2W =
∫ T

0
(‖V (·, t)‖2Ĥα + ‖Vt(·, t)‖2Ĥα)dt.(4.6)

It is equivalent to the norm

|V |2W =
∑
n∈Z
|λn|α‖v̂n‖2H1(0,T ), v̂n(t) = (V (·, t),Φn)H.(4.7)

The following bounded embedding takes place: W (0, T ; Ĥα) ⊂ C(0, T ; Ĥα) ([26] or
[11, Chap. 3]). We use the notation (·, ·)L for the inner product in L2(0, T ;H).

We give a formal “derivation” of the definition of the weak solution. Let us
take the L2(0, T ;H)-inner product of (3.1) with arbitrary two-component function

V (x, t) = (
v0(x, t)

v1(x, t)
), v0, v1 ∈ C∞(Ω × [0, T ]). Using the initial condition (3.1) we

obtain for (Ut, V )L

(Ut, V )L = (U(·, T ), V (·, T ))H−(U0, V (·, 0))H−(U, Vt)L = i(LU, V )L+(Ĝ, V )L.(4.8)

From (4.8) we get the first necessary condition V (x, T ) = 0 for all x ∈ Ω. We rewrite
i(LU, V )L from (4.8) as follows:

i(LU, V )L =
1
2

∫ T

0
dt

∫ a

0
[p(x)(u′1v

′
0 − u′0v′1) + q(x)ρ(x)(u1v0 − u0v1)

−2d(x)ρ(x)u1v1]dx+
1
2

∫ T

0
[p(x)u′0(x, t)v1(x, t)]x=0

x=adt.(4.9)

To get rid of the boundary term we impose the second restriction on V : v1(0, t) =
v1(a, t) = 0. Our next step is to rewrite (4.9) in the operator form. Setting τ(x) =
i
√
p(x)/ρ(x), we introduce the following matrix operators on H:

A =

(
0 1

−τ(x) d
dx 0

)
, B =

(
1 0

0 τ(x) d
dx

)
, C =

(
0 0

−q(x) −2d(x)

)
.

(4.10)

It can be verified by a straightforward calculation that by taking into account the
boundary conditions on V and the fact V (x, T ) = 0, we can rewrite (4.9) as follows:

(U0, V (·, 0))H + (U, Vt)L = (AU,BV )L + (CU, V )L + (Ĝ, V )L.(4.11)

DEFINITION 4.1. A function U ∈ L2(0, T ;H1) is a weak solution of problem (3.1)
if for any V ∈W (0, T ; Ĥ1), V (·, T ) = 0, v1(0, t) = v1(a, t) = 0 integral identity (4.11)
holds.

To show that the definition makes sense, we describe the domains of A and B and
give an alternative description of H1 = D(L1/2) in terms of Sobolev spaces.

LEMMA 4.1. (a) A and B are closed operators in H with the domains

D(A) = H1
0 (0, a)×H1

0 (0, a); D(B) = H1
0 (0, a)×H1(0, a).(4.12)
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(With our assumptions about p, ρ, and d we have H = H1
0 (0, a)× L2(0, a)).

(b) The space H1 can be described in terms of Sobolev spaces as follows:

H1 = D(L1/2) = D((L∗)1/2) = H3/2(0, a)×H1
0 (0, a).(4.13)

Here and below Hα
0 (0, a) = {u ∈ Hα(0, a), u(0) = u(a) = 0}, α > 1/2. For

α > 1/2 the restriction u(0) = u(a) = 0 makes sense due to the embedding theorems.
Remark 4.1. First, from (4.12) and (4.13) we haveH1 ⊂ D(A) ⊂ D(B) and, there-

fore, definition (4.11) makes sense. Second, it is clear from (4.13) that all functions
U ∈ L2(0, T ;H1) satisfy the necessary boundary condition a.e. on [0, T ].

Proof of Lemma 4.1. Formula (4.12) follows immediately from the definitions
of the operators A and B. To prove (4.13) we note that it can be verified by a
straightforward calculation that the operator L1/2 can be represented in the form
L1/2 = (I +K)L1/2

0 , with K given by the formula

K = I − (I + PL−1
0 )1/2, P = −i

(
0 0

−q(x) −2d(x)

)
,(4.14)

where L0 is the positive selfadjoint operator

L0 = −i

 0 I

1
ρ(x)

d

dx

(
p(x)

d

dx

)
0

(4.15)

with the domain D(L0) = D(L) = H2 = H2
0 (Ω)×H1

0 (Ω). We see from (4.14) that K
is a compact Hilbert–Schmidt operator [20]. Therefore, D(L1/2) = D(L1/2

0 ). It is not
difficult to check by a straightforward computation that

L1/2
0 =

i

2
L1/4

 I −L1/2

L1/2 I

 ,(4.16)

where L is the selfadjoint operator on L2(0, a) given by the expression

L =
1

ρ(x)
d

dx

(
p(x)

d

dx

)
, D(L) = H2

0 (0, a).(4.17)

Using (4.16), (4.17), for any U ∈ H we have

L1/2
0 U =

i

2

 L1/4u0 − L−1/4u1

L3/4u0 + L1/4u1

 ∈ H = H1
0 (0, a)× L2(0, a).

From the latter relation, (4.13) follows immediately.
THEOREM 4.1. The weak solution of the problem (3.1) in the sense of Definition

4.1 is unique.
Proof. Using a contradiction argument, assume that we have two different weak

solutions. Their difference U satisfies the homogeneous integral identity

(U, Vt)L + (AU,BV )L + (CU, V )L = 0.(4.18)
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Due to the completeness of {Xn}n∈Z in H, we claim that there exists a number n0
such that u(t) = (U,Xn0)H 6= 0, i.e., ‖u‖L2(0,T )0. Let us choose a particular test
function V (x, t):

V (x, t) = ĝ(t)Xn0 , ĝ(t) =
∫ T

t

e−iλn0 (t−τ)u(t)dt.(4.19)

Since Xn0 ∈ D(L∗), we have V (0, t) = V (a, t) = V (x, T ) = 0. So V can be used as a
test function. For this test function relation (4.18) has the form

(U, (ĝt + iλn0 ĝ)Xn0)L =
∫ T

0
(ĝt + iλn0 ĝ)(U,Xn0)Hdt = 0.(4.20)

A straightforward computation shows that for ĝ(t) from (4.20) we have

ĝt + iλn0 ĝ = −u(t).(4.21)

Substituting (4.21) into (4.20) we obtain ‖u‖L2(0,T ) = 0, which contradicts our as-
sumption.

THEOREM 4.2. Let Ĝ ∈ L2(0, T ;H1) and U0 ∈ H1. Then the series in (3.7) is
convergent in the norm of H1 for any t ∈ [0, T ] and defines the unique weak solution
U of problem (3.1). Moreover, U ∈ C(0, T ;H1).

Proof. First, the fact that series (3.17) defines a function from C(0, T ;H1) can
be shown by means of standard estimates. The only nontrivial step is to show that
the function given by (3.17) satisfies integral identity (4.11).

Consider the following sequences of functions:

Um =
∑
|n|6m

an(t)Φn(x), U0m =
∑
|n|6m

u0
nΦn(x), Ĝm = f(t)

∑
|n|6m

gnΦn(x),(4.22)

where u0
n and gn are defined by (3.5), (3.6) and an(t) are the coefficients from (3.7).

The following integral identity holds for every m > 1 and any V ∈ W (0, T ; Ĥ1),
V (·, T ) = 0:

(U0m, V (·, 0))H + (Um, Vt)L = (AUm,BV )L + (CUm, V )L + (Ĝm, V )L.(4.23)

Now we show that every sequence in (4.23) is a Cauchy sequence. In order to
conserve space, we will prove the convergence for the two of the five sequences
which are the most complicated: {S1(m)}∞m−1 = {(Um, Vt)}∞m=1 and {S2(m)}∞m=1 =
{(AUm,BV )L}∞m=1. For any positive integers p and m we have

|S1(p)− S1(m)| 6 |(Up − Um)t, V )L|+ |(U0p − U0m, V (·, 0))H|

6

∣∣∣∣∣∣∣
f, p∑

|n|=m
gnvn(t)


L2(0,T )

∣∣∣∣∣∣∣+

∣∣∣∣∣∣
p∑

|n|=m
iλn(an(t), vn(t))L2(0,T )

∣∣∣∣∣∣+

∣∣∣∣∣∣
p∑

|n|=m
u0
nvn(0)

∣∣∣∣∣∣ .
The following estimates are valid:

(a)∣∣∣∣∣∣∣
f(t),

p∑
|n|=m

gnvn(t)


L2(0,T )

∣∣∣∣∣∣∣ 6 ‖f‖L2(0,T )

√√√√ p∑
|n|=m

|gn|2
√∑
n∈Z
‖vn‖2H1(0,T ).
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(b)∣∣∣∣∣∣
p∑

|n|=m
iλn(an(t), vn(t))L2(0,T )

∣∣∣∣∣∣ 6
√√√√ p∑
|n|=m

|λn|‖an‖2L2(0,T )

√∑
n∈Z
|λn|‖vn‖2H1(0,T ).

Since V ∈W (0, T ; Ĥ1), the latter series in (b) converges.
(c) ∣∣∣∣∣∣

p∑
|n|=m

u0
nvn(0)

∣∣∣∣∣∣ 6
√√√√ p∑
|n|=m

|u0
n|2
√∑
n∈Z
|vn(0)|2.

Collecting together (a)–(c) we obtain with some absolute constant d:

|((Up − Um), Vt)L| 6 d

‖V (·, 0)‖L

√√√√ p∑
|n|=m

|u0
n|2

+ ‖V ‖W (0,T ;Ĥ1)

√√√√ p∑
|n|=m

|gn|2 +

√√√√ p∑
|n|=m

|λn| ‖an‖2L2(0,T )

.(4.24)

Due to (4.22) we can pass to the limit: limm→∞ S1(m) = (limUm, Vt)L = (U, Vt)L.
At last we justify the passage to the limit for S2. We have

|(S2(p)− S2(m)) + (C(Up − Um), V )L| 6
p∑

|n|=m
|λn|

∣∣(an(t), vn(t))L2(0,T )
∣∣

6 d1‖U‖L2(0,T ;H1)‖V ‖W (0,T ;Ĥ1)

√√√√ p∑
|n|=m

|λn| ‖an‖2L2(0,T ).(4.25)

Based on (4.22) and limm→∞(CUm, V )L = (CU, V )L we have limm→∞ S2(m) =
(AU,BV )L, and thus, the integral identity is shown.
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RISK-SENSITIVE CONTROL OF FINITE STATE MACHINES
ON AN INFINITE HORIZON I∗
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Abstract. In this paper we consider robust and risk-sensitive control of discrete time finite
state systems on an infinite horizon. The solution of the state feedback robust control problem is
characterized in terms of the value of an average cost dynamic game. The risk-sensitive stochastic
optimal control problem is solved using the policy iteration algorithm, and the optimal rate is ex-
pressed in terms of the value of a stochastic dynamic game with average cost per unit time criterion.
By taking a small noise limit, a deterministic dynamic game which is closely related to the robust
control problem is obtained.

Key words. risk-sensitive control, robust control, finite state machines, large deviations
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1. Introduction. There are various approaches to treating disturbances in con-
trol systems. In stochastic control, disturbances are modelled as stochastic processes
(random noise). On the other hand, in H∞/robust control theory, disturbances are
modelled deterministically. The theory of risk-sensitive optimal control provides a
link between stochastic and deterministic approaches. The link is made by consider-
ing small noise limits for stochastic control problems with exponential cost criteria.
For continuous variable, finite time horizon problems this idea was introduced by
Whittle [18], [19]. For the state feedback (complete state observation) case, Whittle’s
idea was put on a mathematically rigorous basis in [14], [9] using viscosity solution
methods. Discrete time, output feedback (partial state information) problems on a
finite time horizon were treated in [15]. See also [7], where a solution approach for
risk-sensitive control problems for hidden Markov models is given.

In [1] robust and risk-sensitive control of discrete time finite state systems on
a finite horizon is considered. The purpose of the present paper is to study such
systems on an infinite time horizon. We consider here only the state feedback case.
In a sequel, output feedback control on an infinite horizon will be considered. Our
approach is similar in spirit to [10], [11], where continuous variable systems modelled
by differential equations are considered. However, the technical details are quite
different for the discrete (finite state machine) case.

To illustrate the ideas in a simple setting, we begin in section 2 with uncontrolled
finite state machines described by the difference equation (2.1). In the robust/H∞ for-
mulation, deterministic perturbations are described by (2.2). The H∞-norm is charac-
terized in terms of a deterministic optimal control problem, in which the
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perturbations (or disturbances) are chosen to maximize some long run average cost
per unit time criterion. The maximum average cost λ0 is nonnegative, and is zero if
and only if H∞-control is achieved. The corresponding cost potential function W0(x)
has the role of a “storage function” in H∞-control terminology. It is unique, provided
that the H∞-norm parameter γ exceeds the critical value γ∗.

Following [1], stochastic perturbations of the finite state machine model are in-
troduced in section 2.2. The strength of the perturbations are described through a
parameter ε. Stochastic analogues λε,Wε of λ0,W0 are introduced, with λε the maxi-
mal expected average cost per unit time for a corresponding ergodic stochastic control
problem. In section 3, convergence of λε,Wε to λ0,W0 as ε→ 0 is proved.

In section 4, we consider controlled finite state machines. With the deterministic
robust /H∞ formulation, the optimal H∞-norm is characterized in terms of a dynamic
game with average cost per unit time. In the stochastic risk-sensitive formulation, a
corresponding stochastic difference game is introduced, with payoff involving a relative
entropy function. Results like those in section 3 are obtained as the noise intensity
parameter ε→ 0.

2. Risk-sensitive analysis. In this section we consider both deterministic and
stochastic perturbations of a discrete time finite state system. In order to measure the
size of the deterministic perturbations, an analogous definition of the H∞-norm for
nonlinear continuous variable systems is given. This norm is characterized in terms of
the value of a long run average cost deterministic control problem. The risk-sensitive
index is used to measure the effect of the stochastic perturbations, and it is expressed
as the value of an average cost stochastic optimal control problem.

2.1. The H∞-norm. Consider the deterministic finite state machine

(2.1) xt+1 = f(xt), t = 0, 1, . . . ; x0 = x,

where xt takes values in the finite set X and f is a function from X into itself that
defines the dynamics of the system. The set X has N elements, X = {x1, . . . , xN}.

Let us now define a perturbed system Σ,

(2.2) xt+1 = b(xt, wt), t = 0, 1, · · · ; x0 = x.

Here the exogenous inputs (disturbances) wt take values in a finite set W , the state
variable xt evolves in X, and b : X ×W → X is a given function.

Remark 2.1 (notation). Throughout this paper we denote by [0, T ] the time
interval {0, 1, . . . , T}. If Z is a generic set, then Z[0, T ] denotes the set of functions
z : [0, T ]→ Z. Moreover, given any function v : Z → R, ‖v‖ stands for the supremum
norm of v, i.e., ‖v‖ = supz∈Z |v(z)|.

We assume the following.
(A1) There exists a null state xφ and a null disturbance wφ ∈W such that

(i) f(xφ) = xφ and (ii) b(x,wφ) = f(x) for all x ∈ X.

(A2) Given x, x
′′ ∈ X, there exist T1, 0 < T1 ≤ N , and w ∈ W [0, T1] such that,

for the initial condition x0 = x and input w, the system Σ reaches x
′′

after T1 steps.
(A3) There exists a positive integer N0 such that for any initial condition x0 = x,

the unperturbed system (2.1) reaches the null state xφ after N0 steps.
Let us introduce a pair of functions θ : W → R and ` : X → R such that

(2.3)

{
θ(wφ) = 0,

θ(w) > 0 if w 6= wφ ∈W
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and {
`(xφ) = 0,

`(x) > 0 if x 6= xφ ∈ X.

The values θ(w) and `(x) represent the magnitude of disturbance w and the cost per
stage generated by the system (2.2), respectively.

Now, let us give the definition of the H∞-norm of the discrete system Σ; this
definition is analogous to the one given for nonlinear continuous variable systems; see,
e.g., [17, 2].

DEFINITION 2.2. We say that the H∞-norm ‖Σ‖H∞ is less than or equal to a
positive number γ if and only if for every x0 = x, there exists a nonnegative constant
K(x), with K(xφ) = 0, such that

(2.4) K(x) +
T∑
t=0

[
γ2θ(wt)− `(xt)

]
≥ 0 for all w ∈W [0, T ], T ≥ 0.

Then ‖Σ‖H∞ is the smallest γ such that ‖Σ‖H∞ ≤ γ.
Straightforward calculations show that ‖Σ‖H∞ ≤ γ if and only if there exists a

nonnegative function W0 defined on X, called a storage function, such that

(2.5)


W0(x) ≥ sup

T>0
sup

w∈W [0,T ]

{
W0(xT+1)−

T∑
t=0

[
γ2θ(wt)− `(xt)

]}
,

W0(xφ) = 0.

If there exists a storage function, then the system Σ is called dissipative with respect
to the supply rate (x,w) → γ2θ(w) − `(x). Actually, the inequality (2.5) can be
rewritten as

(2.5
′
)

{
W0(x) ≥ max

w∈W
{W0(b(x,w)) + `(x)− γ2θ(w)},

W0(xφ) = 0.

The H∞-norm shall be characterized in terms of the value of an average cost optimal
control problem, but first we introduce some preliminary results.

PROPOSITION 2.3. Assume (A2). Then there exist a nonnegative number λ0 and
a function W0 : X → R such that

(2.6) λ0 +W0(x) = max
w∈W

[W0(b(x,w)) + `(x)− γ2θ(w)].

Proof. The proof is based on the standard vanishing discount approach.
Define the value function

(2.7) Vβ(x) : = sup
w∈W [0,∞)

∞∑
t=0

βt[`(xt)− γ2θ(wt)],

where β ∈ (0, 1) and xt obeys the dynamic described by (2.2). This function satisfies
the dynamic programming equation

(2.8) Vβ(x) = sup
w∈W

[βVβ(b(x,w)) + `(x)− γ2θ(w)] for all x ∈ X.
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On the other hand, from (2.7), we have

(2.9) 0 ≤ (1− β)Vβ(x) ≤ ‖`‖.

Then, for each x ∈ X, (2.8)–(2.9) yield

(2.10)

Vβ(x) ≥ βVβ(b(x,w))− γ2‖θ‖
= Vβ(b(x,w))− [(1− β)Vβ(b(x,w)) + γ2‖θ‖]
≥ Vβ(b(x,w))− C1 for all w ∈W,

with C1 = ‖`‖ + γ2‖θ‖. Thus, given x, x
′′ ∈ X, from (A2) and iterating (2.10) T1

times, we have

Vβ(x) ≥ Vβ(x
′′
)− T1C1.

Thus, interchanging the roles of x and x
′′
, for some constant T

′
depending on x and

x
′′
,

(2.11) |Vβ(x)− Vβ(x
′′
)| ≤ T ′C1.

Let βn → 1 be a sequence in (0, 1). Then, (2.9)–(2.11) imply that, by a suitable
diagonalization, we may pick a subsequence {βn} (denoting it again by {βn}) along
which Vβn(x)− Vβn(xφ), x ∈ X, and (1− βn)Vβn(xφ) converge to some limits W0(x)
and λ0, respectively.

Set V̄β(x) := Vβ(x)− Vβ(xφ), x ∈ X. Then, V̄β(xφ) = 0 and

(1− β)Vβ(xφ) + V̄β(x) = max
w∈W

[
βV̄β(b(x,w)) + `(x)− γ2θ(w)

]
.

Passing to the limit βn → 1, we get

λ0 +W0(x) = max
w∈W

[W0(b(x,w)) + `(x)− γ2θ(w)].

Remark 2.4. The number λ0 in the above theorem is unique, as follows from
the next theorem. Regarding the uniqueness of the function W0 (up to an additive
constant), at the end of this subsection we prove that if γ > γ∗, for γ∗ being the
H∞-norm, then this holds. For γ ≤ γ∗ we still do not have any uniqueness result.

The equation (2.6) corresponds to the dynamic programming equation of the
following average cost deterministic optimal control problem. The dynamic is given
by

(2.12) xt+1 = b(xt, wt), t = 0, 1, . . . ; x0 = x,

where the disturbances w = {wt} ∈ W [0,∞) play the role of a maximizing control.
The cost per stage is (x,w) → `(x) − γ2θ(w), and the cost functional we try to
maximize is given by

Jw(x) = lim sup
T→∞

1
T

T−1∑
t=0

[`(xt)− γ2θ(wt)].

The next theorem is a straightforward application of standard dynamic program-
ming arguments.
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THEOREM 2.5. For any x ∈ X,

λ0 = sup
w∈W [0,∞)

Jw(x),

and an optimal control is w∗t = w∗(xt), where w∗(x) achieves the maximum in (2.6).
The link between the above optimal control problem and the H∞-norm of the

system Σ is given in the next theorem.
THEOREM 2.6. Assume that (A.1)–(A.3) hold. Then λ0 = 0 if and only if

‖Σ‖H∞ ≤ γ.
Proof. Assume λ0 = 0. Let W0 be the function defined in Proposition 2.3. Since

this function satisfies (2.6), it solves in particular the first part of (2.5
′
), and the

second part follows from the construction of W0. To prove that W0 is nonnegative,
let T > 0 and w ∈ W [0, T ] with wt = wφ for all t = 0, 1, . . . , T . Then, in view of
(2.6), it follows that

W0(x) ≥
T∑
t=0

`(xt) +W0(xT+1),

where xt evolves according to the dynamic (2.12) (or equivalently (2.1)) with initial
condition x0 = x. However, from (A3), xT = xφ for T ≥ N0. Hence

W0(x) ≥W0(xφ) = 0.

Conversely, assume (2.5
′
). Then, for any T > 0 and w ∈W [0, T ],

T∑
t=0

[`(xt)− γ2θ(wt)] ≤W0(xφ)−W0(xT+1) ≤ 0,

where the state dynamics (2.12) start at the initial condition x0 = xφ. This implies
that

lim sup
T→∞

1
T

T−1∑
t=0

[`(xt)− γ2θ(wt)] ≤ 0.

Then, from Theorem 2.5, λ0 ≤ 0. However, in view of Proposition 2.3, λ0 ≥ 0. Hence,
λ0 = 0.

For the rest of this subsection let us make explicit the dependence on γ of λ0 and
W0 in Proposition 2.3, denoting them by λγ0 and W γ

0 , respectively.
Define the set

Γ = {γ : λγ0 = 0}.

Note that this set is not empty, since for γ great enough, the optimal control w∗ in
Theorem 2.5 is such that w∗(xφ) = wφ, and in view of (A1), λγ0 = 0. Note also that,
from Theorem 2.5, λγ0 is a nonincreasing function of γ. Let γ∗ = inf Γ. Then, in view
of the above facts, Γ = [γ∗,∞), and by Theorem 2.6,

(2.13) γ∗ = ‖Σ‖H∞ .

PROPOSITION 2.7. For any γ > γ∗ the function W γ
0 , with W γ

0 (xφ) = 0, is the
unique solution of (2.6).
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Proof. Let γ > γ∗ be arbitrary but fixed, and define the value function

W̃0(x) = sup
w∈W̃ [0,∞)

{ ∞∑
t=0

[
`(xt)− γ2θ(wt)

]}
, x ∈ X.

Here xt obeys the dynamic (2.12), and W̃ [0,∞) = {w ∈ W [0,∞) : wt = wφ except
for finitely many t}. Then, by well-known dynamic programming methods (see, e.g.,
[3]), it follows that W̃0 is a solution of (2.6) with λ0 = 0.

We claim that W̃0 = W γ
0 . Actually, by (2.6) with λ0 = 0 and the definition of

W̃0, it follows immediately that W γ
0 ≥ W̃0. Thus, we shall just prove the reverse

inequality, i.e., that W γ
0 (x) ≤ W̃0(x) ∀ x ∈ X. Let x ∈ X and γ1 ∈ (γ∗, γ). Then,

(2.6) yields

W γ1
0 (x) ≥

T−1∑
t=0

[
`(xt)− γ2

1θ(wt)
]

+W γ1
0 (xT ) for all w ∈W [0,∞), T > 0.

On the other hand, if w∗ is the optimal control defined in Theorem 2.5, then

(2.14)

W γ
0 (x) =

T−1∑
t=0

[
`(x∗t )− γ2θ(w∗t )

]
+W γ

0 (x∗T )

=
T−1∑
t=0

[
`(x∗t )− γ2

1θ(w
∗
t )
]
− (γ2 − γ2

1)
T−1∑
t=0

θ(w∗t ) +W γ
0 (x∗T )

for all T > 0. Therefore,

(2.15)

T−1∑
t=0

θ(w∗t ) ≤ W γ1
0 (x)−W γ

0 (x) +W γ
0 (x∗T )

γ2 − γ2
1

≤ C

γ2 − γ2
1

for some suitable constant C.
Thus, in view of (2.3), (2.15) implies that w∗ ∈ W̃ [0,∞), and by (A3), if T is

large enough, x∗t = xφ for t ≥ T . Finally, the above facts and (2.14) imply that
W γ

0 (x) ≤ W̃0(x). This completes the proof.

2.2. Stochastic perturbation. In this subsection we define a finite state Mar-
kov chain, which represents a stochastic perturbation of the system (2.1). This model
has been described in [1].

Throughout this subsection we assume (A2). However, we will need (A1) and
(A3) for the small noise limit analysis in section 3.

Let V : X ×X → R ∪ {+∞} be the function defined by

V (x, x
′′
) = min{θ(w) : x

′′
= b(x,w)},

with the standard convention that the minimum over an empty set equals +∞. The
value V (x, x

′′
) represents the minimum “magnitude” associated with the disturbances

(see (2.3)) to go from x to x
′′

in one time step.
Let us define the following stochastic matrix Πε: given x, x

′′ ∈ X,

Πε(x, x
′′
) =

1
Zε(x)

e−
V (x,x

′′
)

ε ,



1796 W. FLEMING AND D. HERNÁNDEZ-HERNÁNDEZ

where ε > 0 is a small noise parameter and Zε(x) is a normalizing constant satisfying∑
x′′∈X Πε(x, x

′′
) = 1.

This stochastic matrix satisfies the consistency condition

lim
ε→0

Πε(x, x
′′
) =

{
1 if x

′′
= f(x),

0 otherwise.

Remark 2.8. Note that (A2) implies that Πε is irreducible. Remember that an
N ×N nonnegative matrix M is irreducible if, for every x, x

′′ ∈ X, there exist T > 0
such that MT (x, x

′′
) > 0, where MT denotes the T -power of M .

DEFINITION 2.9. The risk-sensitive index for Πε is defined by

(2.16) λε = lim
T→∞

ε

µ
· 1
T

logEx exp

{
µ

ε

T−1∑
t=0

`(xt)

}
,

where µ > 0 has the role of a risk-averse factor.
The existence of the limit in (2.16) is implied by Sanov’s theorem (see, e.g., [4]),

and it coincides with the optimal value of an average cost infinite horizon optimal
control problem, which we will define later in this section. Keeping this in mind, we
shall prove that e

µ
ε λε is the dominant eigenvalue of the nonnegative matrix defined

by

L(x, x
′′
) = e

µ
ε `(x)Πε(x, x

′′
) for x, x

′′ ∈ X.

Note that, since Πε is irreducible, so is L.
Remark 2.10 (notation). If M is any matrix on X and h : X → R is any function,

we denote by Mh their product, that is,

Mh(x) =
∑
x′′∈X

M(x, x
′′
)h(x

′′
) for each x ∈ X.

On the other hand, given x ∈ X, the x-row vector of M is denoted by M(x), i.e.,
M(x) = (M(x, x1), . . . ,M(x, xN )).

THEOREM 2.11. There exist αε > 0 and a unique strictly positive function Ψε :
X → R, with Ψε(xφ) = 1, such that

(2.17) αεΨε = LΨε.

Further,

(2.18) λε =
ε

µ
logαε.

Proof. The first part follows from the Perron–Frobenios theorem; see, e.g., [16].
To prove the rest, let xt be the Markov chain governed by Πε with initial condition
x0 = x.

Thus, (2.17) yields

(2.19)

Ex exp{µ
ε

T−1∑
t=0

`(xt)} = Ex

T−1∏
t=0

αε
Ψε(xt)

ΠεΨε(xt)

= αTε Ex

T−1∏
t=0

[
Ψε(xt)

ΠεΨε(xt)

]
.



RISK-SENSITIVE CONTROL 1797

Using the Markovian property of xt, we have

(2.20) Ex

[
T−1∏
t=0

Ψε(xt)
ΠεΨε(xt)

·ΠεΨε(xT−1)

]
= Ψε(x).

Since Ψε is strictly positive, so is ΠεΨε, and in view of (2.20), there follows the
existence of suitable positive constants K1 and K2 such that

(2.21) K1 ≤
Ψε(x)

maxx∈X ΠεΨε(x)
≤ Ex

[
T−1∏
t=0

Ψε(xt)
ΠεΨε(xt)

]
≤ Ψε(x)

minx∈X ΠεΨε(x)
≤ K2.

Therefore, from (2.19)–(2.21) we have

ε

µ
logαε = lim

T→∞

ε

µ
· 1
T

logEx exp

{
µ

ε

T−1∑
t=0

`(xt)

}
.

This completes the proof.
Let us define Wε(x) = ε

µ log Ψε(x), x ∈ X, and rewrite (2.17) as

(2.22) λε +Wε(x) =
ε

µ
log Πεe

µ
εWε(x) + `(x) for all x ∈ X.

In order to transform (2.22) into the dynamic programming equation of some
ergodic cost optimal control problem, we now introduce the relative entropy function.
Let P (X) be the set of probability vectors on X, i.e.,

P (X) =

{
π = (π1, . . . , πN ) : πi ≥ 0,

N∑
i=1

πi = 1

}
.

Let us fix ν ∈ P (X). We define the relative entropy function I(·‖ν) : P (X) →
R ∪ {+∞} by

I(π‖ν) =


∑
x′′∈X

log[r(x
′′
)]π(x

′′
) if π << ν,

+∞ otherwise,

where

r(x
′′
) =


π(x
′′

)
ν(x′′ )

if ν(x
′′
) > 0,

1 otherwise.

The next lemma is proved in an appendix at the end of the paper. Actually, it is
a particular case of Proposition II.4.2 in [5].

LEMMA 2.12. The pair λε,Wε satisfies the equation

(2.23) λε +Wε(x) = sup
π∈P (X)

 ∑
x′′∈X

Wε(x
′′
)π(x

′′
) + `(x)− ε

µ
I(π‖Πε(x))

 .

Moreover, the supremum in the right-hand side (r.h.s.) is attained at the unique
probability vector η∗(x) defined by

(2.24) η∗(x, x
′′
) =

e
µ
εWε(x

′′
)

Πεe
µ
εWε(x) Πε(x, x

′′
), x

′′ ∈ X.
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Now we describe the stochastic optimal control problem associated with the dy-
namic programming equation (2.23). The set P (X) plays the role of a control set, and
we denote by Q the set of stationary controls, i.e., the set of functions η : X → P (X).
Actually, the set Q can be identified with the set of stochastic matrices on X, which
we denote again by Q.

Given a stationary control η ∈ Q and an initial condition x0 = x, the controlled
process is the Markov chain xt with stochastic matrix η and initial condition x0 = x.
On the other hand, (x, η(x))→ `(x)− ε

µI(η(x)‖Πε(x)) is the reward per stage. Note
that we are allowing rewards equal to −∞. Finally, the associated reward functional
is

Jη(x) = lim sup
T→∞

1
T

T−1∑
t=0

Eηx

[
`(xt)−

ε

µ
I(η(xt)‖Πε(xt))

]
.

Then, by standard dynamic programming methods, it follows that, for any x ∈ X,

λε = sup
η∈Q

Jη(x),

and the optimal control is given by (2.24).

3. Small noise limit. In order to relate the H∞-norm of the system Σ and the
risk-sensitive index λε, we will take the limit when the noise intensity ε goes to zero
in (2.23). Therefore, we are first concerned about the existence of a limit point of
the family {λε,Wε}; that is, we want to prove the existence of a sequence {εn}, with
εn → 0, and a pair λ0,W0 such that

(3.1)


lim
εn→0

λεn = λ0,

lim
εn→0

Wεn(x) = W0(x) for all x ∈ X.

Since X is finite, in order to get (3.1) we just need to prove that the family {λε,Wε}
is uniformly bounded.

By (2.16), we have

(3.2) 0 ≤ λε ≤ ‖`‖.

So it just remains to prove that {Wε} is uniformly bounded.
Throughout this section we assume the following condition.
(A4) There exists a positive integer T2 such that ΠT2

ε (x, x
′′
) > 0 for all x, x

′′ ∈ X.
Remark 3.1. Note that (A1)–(A2) imply that the stochastic matrix Πε is aperiodic

irreducible. In particular, (A1)–(A2) imply (A4).
THEOREM 3.2. Let Wε be the solution of (2.23) satisfying the normalizing con-

dition Wε(xφ) = 0. Then, for any ε0 > 0, there exists a constant K1 such that for
ε < ε0

‖Wε‖ ≤ K1.

Proof. Let xt be the Markov chain with stochastic matrix Πε with initial condition
x0 = x, and let T > 0 be arbitrary.

Let us define

e
µ
ε Vε(x,T ) := Exe

µ
ε

∑T−1
t=0 `(xt)+µ

εWε(xT ).
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Then, one can prove by induction that

(3.3) e
µ
ε Vε(x,T ) = LT e

µ
εWε(x),

where LT is the T -power of the matrix L; see Theorem 2.11. Indeed, by (2.17)

LT e
µ
εWε(x) = e

µ
ε [Tλε+Wε(x)].

Substituting this in (3.3), and making the logarithmic transformation on both sides,
we get

Vε(x, T )− Tλε = Wε(x).

Since x was chosen arbitrarily, in particular we have

(3.4) Vε(x, T )− Vε(xφ, T ) = Wε(x).

Now we shall get a uniform bound for x → Vε(x, T ) − Vε(xφ, T ). Let x, x
′′ ∈ X,

and let ν0 (ν̃0) be the distribution of xT2 with initial condition x0 = x (x0 = x
′′
,

respectively), with T2 as in (A4). Then, in view of the definition of the stochastic
matrix Πε,

1
NT2

e
−T2‖θ‖

ε ≤ ν̃0(y) ≤ 1 for all y ∈ X,

and therefore,

ν0(y)
ν̃0(y)

≤ e
T2‖θ‖
ε NT2 for all y ∈ X.

Thus,

e
µ
ε Vε(x,T ) ≤ eµε T2‖`‖Eν̃0 [e

µ
ε

∑T−1
t=T2

`(xt)+µ
εWε(xT ) · ν0(xT2 )

ν̃0(xT2 ) ]

≤ NT2e
1
εT2(µ‖`‖+‖θ‖) · eµε Vε(x

′′
,T ) for all T > T2.

Then,

Vε(x, T ) ≤ Vε(x
′′
, T ) + T2

(
‖`‖+

1
µ
‖θ‖
)

+
ε

µ
T2 logN,

and therefore, given any ε0 > 0 arbitrary but fixed,

Vε(x, T )− Vε(x
′′
, T ) ≤ T2

(
‖`‖+

1
µ
‖θ‖+

ε0

µ
logN

)
for ε < ε0. Hence, interchanging the roles of x and x

′′
, we get

(3.5) |Vε(x, T )− Vε(x
′′
, T )| ≤ T2

(
‖`‖+

1
µ
‖θ‖+

ε0

µ
logN

)
.

Therefore, in view of (3.4)–(3.5), taking K1 = T2(‖`‖+ 1
µ‖θ‖+ ε0

µ logN) and x
′′

= xφ,
the theorem follows.
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THEOREM 3.3. There exist a number λ0 ≥ 0 and a function W0 : X → R limit
point of the family {(λε,Wε)}, such that

(3.6) λ0 +W0(x) = max
w∈W

{
W0(b(x,w)) + `(x)− 1

µ
θ(w)

}
.

Proof. Estimate (3.2) and Theorem 3.2 imply the existence of a limit point
(λ0,W0) of the family (λε,Wε) through a sequence εn → 0. Now we rewrite (2.22) as
follows:

(3.7) λε +Wε(x) =
ε

µ
log

∑
x′′∈X

e
µ
εWε(x

′′
) · e

− 1
εV (x,x

′′
)

Zε(x)
+ `(x).

Using a version of the Laplace–Varadhan lemma (see the appendix), it follows that
the r.h.s. of (3.7) converges to

sup
w∈W

{
W0(b(x,w)) + `(x)− 1

µ
θ(w)

}
as εn → 0.

Thus, letting ε = εn and εn → 0 in (3.7), we get that the pair (λ0,W0) solves
(3.6).

Remark 3.4. Note that (3.6) is the equation (2.6) we had introduced in Proposition
2.3 with γ2 = 1

µ . Actually, assuming (A1)–(A3), W0 is the same as in section 2.1 for
µ small enough (by uniqueness); see Proposition 2.7. Note also that uniqueness of
λ0(= 0) and W0 implies convergence of λε to 0 and Wε(x) to W0(x) as ε → 0—not
just convergence for sequences εn → 0.

4. Risk-sensitive control problem. In this section we set up the state feed-
back robust control problem. Paralleling the approach of the previous sections, we
introduce an infinite horizon risk-sensitive control problem that is solved using the
policy iteration algorithm. The optimal rate is interpreted as the upper value of a
stochastic dynamic game with average cost per unit time criterion.

4.1. State feedback control problem. Consider the finite state controlled
machine defined by

(4.1) xt+1 = f(xt, ut), t = 0, 1, . . . ; x0 = x,

where the state xt takes values in the finite set X, the control ut evolves in the finite
set U , and f : X × U → X is a given function. We recall that N is the number of
states in X.

We now define a deterministic perturbation of the system (4.1). Let b : X × U ×
W → X be the function that defines the dynamics of the system Σu given by

(4.2) xt+1 = b(xt, ut, wt),

where xt and ut take values in X and U , respectively, and the disturbance wt takes
values in a finite set W .

We assume the following.
(H1) There exist a null control uφ ∈ U , an equilibrium state xφ ∈ X, and a null

disturbance wφ ∈W such that

(i) f(xφ, uφ) = xφ and (ii) b(x, u, wφ) = f(x, u) for all x ∈ X,u ∈ U.
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(H2) Let U be the finite set of all stationary control policies ũ : X → U . Given
ũ ∈ U and x, x

′′ ∈ X, there exist T1, 0 < T1 ≤ N , and w ∈W [0, T1] such that for the
initial condition x0 = x, the system

∑ũ reaches x
′′

after T1 steps.
Let θ : W → R and ` : X × U → R be functions such that{

θ(wφ) = 0,

θ(w) > 0 for w 6= wφ ∈W

and

(4.3)

{
`(xφ, uφ) = 0,

`(x, u) > 0 for (x, u) 6= (xφ, uφ) ∈ X × U.

The functions θ and ` play the same role as in previous sections.
Let U1 ⊂ U be the subset of stationary policies ũ such that the following condition

is satisfied. For each initial condition x0 = x, there exists a positive integer N0 such
that the system (4.1) reaches the equilibrium state xφ after N0 steps, and ũ(xφ) = uφ.
Note that, given ũ ∈ U (ũ ∈ U1), letting f ũ(x) = f(x, ũ(x)), with bũ(x,w) and `ũ(x)
defined similarly, then (A2) ((A1) and (A3), respectively) of section 2 holds, with
f , b replaced by f ũ, bũ. Indeed, for ũ ∈ U1, the H∞-norm ‖

∑ũ ‖H∞ is defined (see
(2.13)).

The state feedback robust control problem is the following; see, e.g., [2]. Given
γ > 0, find a control ũ ∈ U1 such that for each initial condition x0 = x, there exists a
nonnegative constant K(x), with K(xφ) = 0, satisfying

K(x) +
T∑
t=0

[
γ2θ(wt)− `(xt)

]
≥ 0 for all w ∈W [0, T ], T > 0.

In other words, given γ > 0 we want to find ũ ∈ U1 such that ‖Σũ‖H∞ ≤ γ.
Following the same arguments as in section 2, we deduce that the existence of a

nonnegative function W0 : X → R such that{
W0(x) ≥ min

u∈U
max
w∈W
{W0(b(x, u, w)) + `(x, u)− γ2θ(w)},

W0(xφ) = 0

is a necessary and sufficient condition for the existence of solution to the state feedback
robust control problem. Actually, the solution can be characterized in terms of the
value of an average cost dynamic game, as we shall see later in this section.

The proof of the next proposition is structurally similar to the one given for
Proposition 2.3, and we sketch it in the appendix at the end of the paper.

PROPOSITION 4.1. If (H2) holds, then there exist a nonnegative number λ0 and
a function W0 : X → R such that

(4.4) λ0 +W0(x) = min
u∈U

max
w∈W

[
W0(b(x, u, w)) + `(x, u)− γ2θ(w)

]
.

COROLLARY 4.2. Let ũ∗ ∈ U be a control achieving the minimum in the r.h.s. of
(4.4). If (H1)–(H2) hold, then the following conditions are equivalent:

(i) λ0 = 0,

(ii) ‖Σũ∗‖ ≤ γ.
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Proof. The proof of this corollary is the same as that of Theorem 2.6, noting that
λ0 = 0 implies that ũ∗ ∈ U1. To see this, note that, for any x ∈ X and T > 0,

T∑
t=0

`(xt, ũ∗(xt)) ≤W0(x)−W0(xT+1),

where xt obeys the dynamic (4.1). Thus, for T great enough, `(xT , ũ∗(xT )) = 0, and
in view of (4.3), xT = xφ and ũ∗(xT ) = uφ.

The equation (4.4) is the Isaacs equation of the following average cost zero-sum
dynamic game.

Dynamic game. Consider the difference equation

xt+1 = b(xt, ut, wt), t = 0, 1, . . . ; x0 = x.

Here u = {ut} ∈ U [0,∞) and w = {wt} ∈W [0,∞), and they play the role of controls
for Player 1 (minimizer) and Player 2 (maximizer), respectively. The associated cost
functional is

(4.5) J(x;u,w) = lim sup
T→∞

1
T

T−1∑
t=0

[
`(xt, ut)− γ2θ(wt)

]
.

We use the following definition of value of a dynamic game [8], which is given
in terms of strategies. A strategy

→
u for Player 1 consists of a sequence of functions

ū0, ū1, . . . , with values in U such that ūt is a function of xs, xt, ws, 0 ≤ s < t. A
strategy

→
w for Player 2 is a sequence of functions w̄0, w̄1, . . ., with values in W such

that w̄t is a function of xs, us, 0 ≤ s ≤ t. We say that a strategy
→
u is stationary

feedback if ūt depends only on the current state xt, i.e., ūt : X → U , and ūt = ũ

is independent of t. Analogously,
→
w is stationary feedback if w̄t depends only on the

current state xt and the current control ut of Player 1, and w̄t = w̃ : X × U → W is
independent of t.

Given a pair of strategies (
→
u,
→
w) and the initial condition x0 = x, the controls for

Player 1 and Player 2 are generated recursively as

u0 = ū0(x), w0 = w̄0(x, u0), u1 = ū1(x, x1, w0), w1 = w̄1(x, x1, u0, u1), . . . .

DEFINITION 4.3. When there exists a pair of strategies (
→
u
∗
,
→
w
∗
) such that

J(x;
→∗
u ,
→
w) ≤ J(x,

→∗
u ,
→
w
∗
) ≤ J(x,

→
u,
→
w
∗
) for all

→
u,
→
w,

the value V (x) = J(x,
→
u
∗
,
→
w
∗
) is called the value of the game, and (

→
u
∗
,
→
w
∗
) are

referred to as optimal strategies.
Remark 4.4. V (x) is often called the upper value of this infinite horizon dynamic

game, since the maximizing Player 2 has the advantage of knowing Player 1’s choice ut
before choosing wt. This is also reflected in the order min max (rather than max min)
in the Isaacs equation (4.4). For continuous variable differential games, an alternative
definition due to Elliott and Kalton is often used. See, e.g., [6]. The discrete time
version of the Elliott–Kalton definition is as follows. The minimizing Player 1 chooses
any control sequence u ∈ U [0,∞), while the maximizing Player 2 chooses a map
ξ : U [0,∞) → W [0,∞) such that ξ[u]t depends only on u0, u1, . . . , ut. The Elliott–
Kalton upper value of our discrete time dynamic game can be easily shown to be the
same as the one defined above.
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PROPOSITION 4.5. For every x ∈ X,

λ0 = V (x).

Furthermore, the stationary strategies

ũ∗(x) ∈ arg min
u∈U

{
max
w∈W

[
W0(b(x, u, w)) + `(x, u)− γ2θ(w)

]}
and

w̃∗(x, u) ∈ arg max
w∈W

{
W0(b(x, u, w)) + `(x, u)− γ2θ(w)

}
are optimal.

The proof of this proposition is an immediate application of (4.4), and we omit
it.

4.2. Risk-sensitive optimal control problem. We regard system (4.1) as a
deterministic controlled Markov chain and define a random perturbation as follows.
Given x, x

′′ ∈ X and u ∈ U we define

V (x, u;x
′′
) = min

{
θ(w) : x

′′
= b(x, u, w)

}
.

Here the minimum over an empty set is defined as +∞.
For each u ∈ U , we define the stochastic matrix

(4.6) Πu
ε (x, x

′′
) =

1
Zε(x, u)

exp
{
−1
ε
V (x, u;x

′′
)
}
,

where ε > 0 is a noise parameter and Zε(x, u) is a normalizing constant satisfying the
condition Σx′′∈XΠu

ε (x, x
′′
) = 1.

Throughout this subsection we assume (H2).
For each ũ ∈ U the cost functional (to be minimized) is the infinite horizon

exponential growth criterion

(4.7) λε(ũ) = lim
T→∞

ε

µ
· 1
T

logEx exp

{
µ

ε

T−1∑
t=0

`(xt, ũ(xt))

}
,

where µ > 0 is given.
The risk-sensitive optimal control problem is to find a control ũ∗ ∈ U that mini-

mizes λε(ũ). Let

Λε := inf
ũ∈U

λε(ũ).

Next we have a verification theorem.
THEOREM 4.6. Suppose that there exist a number α > 0 and a strictly positive

function Ψ : X → R such that

αΨ(x) = min
u∈U

{
e
µ
ε `(x,u)Πu

εΨ(x)
}

for all x ∈ X.

Then Λε = ε
µ logα, and the control ũ∗ ∈ U , with ũ∗(x) achieving the minimum on the

r.h.s., is optimal.
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Proof. Let ũ ∈ U . Following the same arguments as in the proof of Theorem 2.11,
we have

ε

µ
logα ≤ λε(ũ),

with equality for the control ũ∗.
Now, in order to get an optimal policy, we use the policy iteration algorithm,

which is described as follows. Given an arbitrary policy ũ0 ∈ U , we have proved
already the existence of a number α0 > 0 and a function Ψ0 : X → R strictly positive
(see Theorem 2.11), such that for all x ∈ X

α0Ψ0(x) = e
µ
ε `(x,ũ0(x))Πũ0

ε Ψ0(x)

≡ T0Ψ0(x).

Let ũ1 ∈ U be defined by

ũ1(x) ∈ arg min
u∈U

{
e
µ
ε `(x,u)Πu

εΨ0(x)
}
.

Calculate α1 and Ψ1, and repeat the process. If we reach a point where

TkΨk(x) = min
u∈U

[e
µ
ε `(x,u)Πu

εΨk(x)] for all x ∈ X,

then, according to Theorem 4.6, ũk is optimal, and we stop.
THEOREM 4.7. The policy iteration generates a finite sequence of controls {ũ0,

ũ1, . . . , ũm = ũ∗} with strictly monotonically decreasing λε(ũk) until the iteration
reaches a stopping point.

Proof. Let ũk and ũk+1 be control policies generated by the policy iteration
algorithm, and αk,Ψk (αk+1,Ψk+1) be the dominant eigenvalue and eigenfunction of
Tk (Tk+1, respectively). Thus,

(4.8) Tk+1Ψk ≤ αkΨk(= TkΨk).

If Tk+1Ψk = αkΨk, then

TkΨk(x) = min
u∈U

{
e
µ
ε `(x,u)Πu

εΨk(x)
}

for all x ∈ X,

and the iteration terminates. In this case, ũk is optimal by Theorem 4.6.
So, assume that there exists some component x0 ∈ X such that the inequality

(4.8) is strict, i.e.,

Tk+1Ψk(x0) < αkΨk(x0).

Then, Theorem 1.6 in [16] implies that αk+1 < αk, and therefore,

λk(ũk+1) < λε(ũk).

Thus, since there exist just a finite number of policies, the iteration will stop after a
finite number of steps.

COROLLARY 4.8. There exist Λε > 0 and a function Wε : X → R such that

(4.9) exp
{µ
ε

(Λε +Wε(x))
}

= min
u∈U

[
e
µ
ε `(x,u)Πu

ε e
µ
εWε(x)

]
.
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Proof. The proof follows immediately taking e
µ
εΛε = αm and e

µ
εWε = Ψm, where

m is the step where the iteration finishes.
Using the variational equality (A.1) in the appendix, we rewrite (4.9) as

(4.9
′
) Λε +Wε(x) = min

u∈U
max

π∈P (X)

 ∑
x′′∈X

Wε(x
′′
)π(x

′′
) + `(x, u)− ε

µ
I(π‖Πu

ε (x))

 .

This equation is the Isaacs equation associated with the following stochastic game
with average cost per unit time criterion.

Stochastic dynamic game. Let X be the state space, U be the control set for
Player 1 (minimizer), and P (X) (the set of probability vectors on X) be the control
set for Player 2 (maximizer). On the other hand, (x, u, π) → `(x, u) − I(π‖Πu

ε (x)),
with (x, u, π) ∈ X×U ×P (X), is the reward function. Note that the reward function
is allowed to take the value −∞.

The system evolves as follows: at each time t ∈ {0, 1, . . .} the state of the system
is observed, say xt = x ∈ X. Then, a control ut ∈ U is chosen for Player 1, and
πt ∈ P (X) is chosen for Player 2. (Actually, πt will turn out to be a conditional
probability based on the past up to time t.) Then, a reward `(xt, ut)− I(πt‖Πut

ε (xt))
is earned, and the state of the system moves to the state xt+1 according to the
probability distribution πt.

Strategies. For each t ≥ 0, let Ht and Kt be the set of feasible histories up to time t
for Player 1 and Player 2, respectively. That is, H0 = X and Ht = (X ×P (X))t×X,
while K0 = X × U and Kt = (X × U)t × (X × U). A strategy for Player 1 is a
sequence

→
u= {ūt} of functions ūt from Ht to U . We say that

→
u is stationary feedback

(or stationary Markov policy) if, for all t ≥ 0, ūt depends only on the current state xt,
and ūt = ũ is independent of t; i.e., ūt ≡ ũ : X → U for all t ≥ 0. A strategy for Player
2 is a sequence

→
π= {π̄t} of functions π̄t from Kt to P (X). Analogously,

→
π is stationary

feedback (or stationary Markov policy) if for all t ≥ 0, π̄t ≡ π̃ : X × U → P (X).
Let Ω := X[0,∞) and B(Ω) = σ-field generated by the subsets of the form

A1 ×A2 × · · · ×AT ×X · · ·, with At ⊂ X, t = 1, . . . , T . A generic element of Ω is an
infinite sequence ω = (ξ0, ξ1, . . .), and the state process is defined as the projection
from Ω to X, i.e., xt(ω) = ξt. Given the initial condition x0 = x and the strategies
→
u,
→
π being used, there exists a unique probability measure P

→
u,
→
π on (Ω,B(Ω)) such

that

(i) P
→
u,
→
π (x0 = x) = 1,

(ii) P
→
u,
→
π (xt+1 = ξt+1|xt = ξt, . . . , x0 = ξ0)

= π̄t[ξ0, u0, ξ1, u1, . . . , ξt, ut](ξt+1).

We denote by E
→
u,
→
π

x the corresponding expectation operator. Finally, we observe that,
under the action of stationary strategies, the state process {xt}∞t=0 is a Markov chain
with stationary transition matrix. Now let us define the associated cost functional

J(x,
→
u,
→
π ) = lim sup

T→∞

1
T

T−1∑
t=0

E
→
u,
→
π

[
`(xt, ut)−

ε

µ
I(πt‖Πut

ε (xt))
]
.

The same definition of value given for deterministic dynamic games is applied
for stochastic dynamic games; see Definition 4.3. We denote by Vε(x) the value of
the game.
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THEOREM 4.9. Let Λε and Wε be as in (4.9
′
). Then, for every x ∈ X,

Λε = Vε(x).

Furthermore, the stationary strategies ũ∗ and π̃∗, with

ũ∗(x) ∈ arg min
u∈U

[
e
µ
ε `(x,u)Πu

ε e
µ
εWε(x)

]
and

π̃∗[x, u](x
′′
) =

e
µ
εWε(x

′′
)

Πu
ε e

µ
εWε(x) Πu

ε (x, x
′′
)

are optimal.
The proof of this theorem is based on standard dynamic programming arguments

and the variational equation (A.1) in the Appendix.
Remark 4.10. A stochastic analogue of the Elliott–Kalton definition of strategy

for differential games has been given in [12]. In order to make an analogous definition
here, it would be necessary to model the disturbances wt as exogenous random inputs
(in analogy with the Brownian motions, which drive the stochastic differential game
dynamics). This could be done. However, following [1], we have instead modelled the
stochastic effects via conditional state probabilities.

4.3. Small noise limit and deterministic dynamic game. Paralleling sec-
tion 3, in this section we relate the state feedback robust control problem and the
risk-sensitive optimal control problem taking small noise limit. First, we introduce
the following condition, which is analogous to (A4) in section 3.

(H4) For each ũ ∈ U , there exists a positive integer T2 such that all the entries of
the T2-power of Πũ

ε are strictly positive.
THEOREM 4.11. If (H4) holds, then there exist a number λ0 ≥ 0 and a function

W0 : X → R limit point of the family {λε,Wε}, such that

λ0 +W0(x) = min
u∈U

max
w∈W

{
W0(b(x, u, w)) + `(x, u)− 1

u
θ(w)

}
.

Sketch of proof. The proof of this theorem will be reduced to the one given for
Theorem 3.3. Let {εn} be a sequence converging to zero as n → ∞, and denote by
ũ∗εn the optimal policy defined in Theorem 4.9. Since there exist just a finite number
of policies, there exist a subsequence of {εn}, which we denote again as {εn}, and a
policy ũ∗ = ũ∗εn independent of n. Then, in view of (H4), the same arguments used
in the proof of Theorem 3.3 can be applied again.

THEOREM 4.12. Assume (H2) and that U1 is not empty. Then there exists µ̃∗

with the following property. For µ < µ̃∗ there exist a sequence {εn}, with εn → 0 as
n→∞, and a policy ũ∗ ∈ U1 not depending on n, such that

Λεn = λεn(ũ∗) for n = 1, 2, . . . .

Furthermore,

lim
n→∞

Λεn = 0.

Proof. Let ũ ∈ U1. Then (2.13) implies the existence of µ̃∗ such that limε→0 λε(ũ) =
0 for µ < µ̃∗. Therefore, since λε(ũ) ≥ Λε ≥ 0, letting ε→ 0, we get

(4.10) lim
ε→0

Λε = 0.
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Let {εn} be a sequence converging to zero as n → ∞, and ũ∗εn be the optimal
policy defined in Theorem 4.9. Since there are just a finite number of policies, there
exist a subsequence of {εn}, which we denote again as {εn}, and a policy ũ∗ = ũ∗εn
independent of n. Now, to prove that ũ∗ belongs to U1, we need to verify that (i)
given any initial condition x0 = x ∈ X, there exists a positive integer N0 such that
the system (4.1), with ut = ũ∗(xt), reaches the null state xφ after N0 steps, and (ii)
ũ∗(xφ) = uφ. We will just prove the first part, since the argument to prove the second
one is the same.

So, suppose that ũ∗ does not satisfy (i). Since ũ∗ is optimal for each εn,

Λεn = lim
T→∞

εn
µ
· 1
T

logEx

{
µ

εn

T−1∑
t=0

`(xt, ũ∗(xt))

}
for all n = 1, 2, . . . .

Then, in view of our assumption, and noting that the functions Zε and V defined in
(4.6) satisfy

1 ≤ Zε ≤ N and V (x, u, x
′′
) = 0 if x

′′
= f(x, u),

we have

Ex exp

{
µ

εn

T−1∑
t=0

`(xt, ũ∗(xt))

}
≥
[
e
µ
εn
`∗

N

]T
,

where `∗ := minx6=xφ∈X
u∈U

`(x, u) and N is the number of states.

Therefore,

1
T

εn
µ

logEx exp

{
µ

εn

T−1∑
t=0

`(xt, ū∗(xt))

}
≥ `∗ − εn

µ
logN.

Letting T →∞ and n→∞, we have

lim
n→∞

Λεn ≥ `∗ > 0,

which contradicts (4.10). Thus, ũ∗ satisfies (i).
COROLLARY 4.13. If U1 is not empty and µ is small enough, then there exists a

unique nonnegative function W0 : X → R, with W0(xφ) = 0, such that

W0 = min
u∈U

max
w∈W

{
W0(b(x, u, w)) + `(x, u)− 1

µ
θ(w)

}
.

In particular, the control ũ∗, where ũ∗ achieves the minimum in the r.h.s., solves the
state feedback robust control problem.

This corollary is a straightforward consequence of Theorems 4.12 and 3.3 and
Proposition 2.7.

Appendix.
Proof of Lemma 2.12. From (2.22), it is sufficient to prove that

(A.1)
ε

µ
log Πεe

µ
εWε(x) = sup

π∈P (X)

 ∑
x′′∈X

Wε(x
′′
)π(x

′′
)− ε

µ
I(π‖Πε(x))

 ,
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and that the supremum on the r.h.s. is achieved at the unique probability vector
η∗(x) defined by

η∗(x, x
′′
) =

e
µ
εWε(x

′′
)

Πεe
µ
εWε(x) Πε(x, x

′′
).

Let π ∈ P (X), and fix x ∈ X. Let us assume that π is absolutely continuous with
respect to Πε(x). Then, since Πε(x) is absolutely continuous with respect to η∗(x),
we have

−I(π‖Πε(x)) +
µ

ε

∑
x′′∈X

Wε(x
′′
)π(x

′′
) = −

∑
x′′∈X

log

[
π(x

′′
)

Πε(x, x
′′)

]
π(x

′′
)

+
µ

ε

∑
x′′∈X

Wε(x
′′
)π(x

′′
)

= −
∑
x′′∈X

log

[
π(x

′′
)

η∗(x, x′′)

]
π(x

′′
)−

∑
x′′∈X

log

[
η∗(x, x

′′
)

Πε(x, x
′′)

]
π(x

′′
)

+
µ

ε

∑
x′′∈X

Wε(x
′′
)π(x

′′
)

= −I(π‖η∗(x)) + log Πεe
µ
εWε(x).

Noting that I(π‖η∗(x)) ≥ 0, and that I(π‖η∗(x)) = 0 if and only if π = η∗(x), (A.1)
follows.

The next lemma is a version of the Varadhan–Laplace lemma. See [13].
LEMMA A.1. Let A be a finite set, and F εa , Fa be real valued functions defined on

a finite set X such that

lim
ε→0

max
a∈A

max
x∈X
|F εa (x)− Fa(x)| = 0.

Then

(A.2) lim
ε→0

max
a∈A

∣∣∣∣∣ε log
∑
x∈X

e
Fεa (x)
ε −max

x∈X
Fa(x)

∣∣∣∣∣ = 0

Proof. Define

F̄ εa := max
x∈X

F εa (x), F̄a := max
x∈X

Fa(x).

Then

lim
ε→0

max
a∈A

F̄ εa = F̄a.

Therefore,

e
F̄a
ε ≤

∑
x∈X

e
Fεa (x)
ε ≤ Ne

F̄a
ε ,

where N is the number of elements of X, and (A.2) follows.
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Sketch of proof of Proposition 4.1. Consider the dynamic game described at the
end of section 4.2, but with the cost functional given by

J(x, u, w) =
∞∑
t=0

βt[`(xt, ut)− γ2θ(wt)],

where β is the discount factor, 0 < β < 1.
Let Vβ(x) be the value of the game; see Definition 4.3. Then Vβ is the unique

solution of the Isaacs equation

(A.3) Vβ(x) = min
u∈U

max
w∈W

[βVα(b(x, u, w)) + `(x, u)− γ2θ(w)].

Following the same arguments as in the proof of Proposition 2.3, we get

(i) |Vβ(x)− Vβ(xφ)| < C1,

(ii) 0 ≤ (1− β)Vβ(x) ≤ ‖`‖

for some suitable constant C1. Then, the above estimates imply the existence of a
sequence {βn}, with βn → 1 as n → ∞, such that (1 − βn)Vβn(xφ) and Vβn(x) −
Vβn(xφ) converge to some limit λ0 and W0(x) as n→∞. Then, rewriting (A.3) as

(1− β)Vβ(xφ) + V̄β(x) = min
u∈U

max
w∈W

[βV̄β(b(x, u, w)) + `(x, u)− γ2θ(u)],

with V̄β(x) := Vβ(x)− Vβ(xφ), and passing the limit βn → 1,

λ0 +W0(x) = min
u∈U

max
w∈W

[αW0(b(x, u, w)) + `(x, u)− γ2θ(w)].
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Abstract. Weighted averages of Kiefer–Wolfowitz-type procedures, which are driven by larger
step lengths than usual, can achieve the optimal rate of convergence. A priori knowledge of a lower
bound on the smallest eigenvalue of the Hessian matrix is avoided. The asymptotic mean squared
error of the weighted averaging algorithm is the same as would emerge using a Newton-type adaptive
algorithm. Several different gradient estimates are considered; one of them leads to a vanishing
asymptotic bias. This gradient estimate applied with the weighted averaging algorithm usually
yields a better asymptotic mean squared error than applied with the standard algorithm.

Key words. stochastic approximation, acceleration by weighted averaging, weak invariance
principle, consistency, Kiefer–Wolfowitz procedure, gradient estimation, optimization
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1. Introduction. In stochastic approximation the minimizer ϑ of an unknown
regression function f : Rd → R can be estimated by running the recursion

Xn+1 = Xn − anYn,(1.1)

where Yn is a gradient estimate of f at the point Xn and an are positive step lengths
decreasing to zero. For instance, for d = 1 and decreasing span cn, Kiefer and Wol-
fowitz [11] used divided differences Yn = (Yn,1 − Yn,2)/(2cn) as approximation of
f ′(Xn), where Yn,1 and Yn,2 are error-contaminated observations of f(Xn + cn) and
f(Xn − cn), respectively. If f is p-times differentiable at ϑ, and if the gradient esti-
mates Yn are constructed appropriately, one can obtain

n
α
2 (1− 1

p )(Xn − ϑ) D→ N(µ,K) (n→∞)

with step lengths an = an−α for some a > 0 and α ∈ (0, 1] (see Fabian [8] for p ≥ 3
odd). Hence, for step lengths an = a/n, the convergence rate n(1−1/p)/2 is obtained.
This is the exact minimax order in the problem of estimating the minimizer of f for f
belonging to a certain class of p-times differentiable functions (Polyak and Tsybakov
[18]).

In this paper we investigate weighted means

X̃n,δ = 1+δ
n1+δ

n∑
i=1

iδXi(1.2)

of Kiefer–Wolfowitz-type processes (Xn) generated by recursion (1.1) with some gra-
dient estimates Yn for p-times differentiable regression functions and step lengths
converging slower to zero than 1/n. We obtain

n
1
2 (1− 1

p )
(
X̃n,δ − ϑ

)
D→ N(µ̃, K̃) (n→∞)
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for some weight parameters δ and various types of gradient estimates (Theorems 3.2
and 4.2). The main advantages are the following. First, a priori knowledge of a lower
bound on the smallest eigenvalue λ0 of the Hessian Hf(ϑ) of f at ϑ is avoided. If,
in the standard algorithm with an = a/n, the constant a is chosen too small, i.e.,
a ≤ (1 − 1/p)/(2λ0), convergence can be very slow. To be safe one might choose
a pretty large. But the asymptotic mean squared error (AMSE) produced by the
standard algorithm grows approximately linearly in a. These problems do not arise
when the averaging algorithm is applied. On the other side, if an asymptotic bias is
present, the AMSE of the averaging algorithm cannot be greater than four times the
AMSE of the standard algorithm with the optimal, but usually unknown, constant a.
In this sense the averaging algorithm can be considered to be more stable than the
standard one. Furthermore, the averaging algorithm shows the same limit distribution
as the Newton-type adaptive procedure suggested by Fabian [9] (section 5).

The method proposed in this paper is inspired by an idea of Ruppert [21] and
Polyak [16], who suggested considering the arithmetic mean of the trajectories of a
Robbins–Monro process, which is driven by step lengths slower than 1/n, too. In
this case one obtains the best possible convergence rate and the optimal covariance
of the asymptotic distribution in a certain sense [17]. Since then Yin [27], Pechtl [15],
Kushner and Yang [13], Györfi and Walk [10], Nazin and Shcherbakov [14], and others
have studied this idea.

A further contribution of this paper is a new design to estimate the gradient
which leads to a vanishing asymptotic bias µ̃ (for d = 1 see Renz [19]) regardless
of which method (with or without averaging, or with adaptation) is used. Applying
the weighted averaging algorithm together with this gradient estimate leads to a
second moment of the asymptotic distribution which is minimal within a large class
of procedures (relation (5.4)).

Spall [22] introduced another gradient estimate Yn, the so-called simultaneous
gradient perturbation method. It uses only two observations at each step instead
of 2d observations, as in the standard Kiefer–Wolfowitz method in Rd. This makes
it suitable for certain optimization problems in high-dimensional spaces Rd. Taking
weighted averages of the process generated with Spall’s gradient estimate stabilizes
the performance as discussed below (Theorem 4.2 and section 5).

All these central limit theorems require consistency of the stochastic approxima-
tion method (Propositions 3.1 and 4.1). To prove the central limit theorems we apply
a weak invariance principle stated in Lemma 7.1. Taking weighted averages of the
trajectories leads to an accumulation of terms due to the nonlinearity of the regression
function. To cope with this effect the assumptions of this lemma are partly stronger
than those of a functional central limit theorem for the nonweighted case (see Walk
[24]). But fortunately, the additional conditions can be shown to be fulfilled for many
stochastic approximation procedures. The assertions of both central limit theorems
in this paper can be formulated as invariance principles in the spirit of Lemma 7.1.

As already indicated in Dippon and Renz [4], taking weighted averages of the
trajectories works well with the original gradient estimate of Kiefer and Wolfowitz
(p = 3).

2. Notations. For a d-dimensional Euclidean space the linear space of d × d
matrices is denoted by L(Rd). x∗ is the transposed vector of x ∈ Rd, A∗ is the adjoint
matrix, and trA is the trace of A ∈ L(Rd). The tensor product x ⊗ y : Rd → Rd is
defined by 〈y, ·〉x, where x, y ∈ Rd and 〈·, ·〉 is the usual inner product. The space
C([0, 1],Rd) of Rd-valued continuous functions on [0, 1] is equipped with the maximum
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norm. Hf(ϑ) is the Hessian of a function f : Rd → R at ϑ ∈ Rd. For x ∈ R we use
bxc and dxe, denoting the integer part of x and the least integer greater than or equal
to x, respectively.

Let (Ω,A, P ) be a probability space. Then a sequence (Xn) of Rd-valued random
variables (r.v.’s) is called bounded in probability whenever limR→∞ limnP (‖Xn‖ ≥
R) = 0; (Xn) converges to zero almost in Lr or is bounded almost in Lr (r ∈
(0,∞)) if for each ε > 0 there exists an Ωε ∈ A with P (Ωε) ≥ 1 − ε such that
(
∫

Ωε
‖Xn‖r dP )1/r = o(1) or = O(1), respectively. Convergence almost in Lr implies

convergence in probability, but it is weaker than a.s. convergence or convergence in
the rth mean.

3. A Kiefer–Wolfowitz procedure with an improved gradient estimate.
The Kiefer–Wolfowitz procedure, which finds the minimizer ϑ of a regression function
f : Rd → R, has been modified by Fabian [6] in such a way that the rate of convergence
nearly reaches the rate of a Robbins–Monro procedure if f is assumed to be sufficiently
smooth in a neighborhood of ϑ. The method uses multiple observations per step.

We consider here, including the Fabian procedure, a modified Kiefer–Wolfowitz
procedure which is given by recursion (1.1). There Yn is an estimate of the gradient
∇f(Xn) based on error-contaminated observations of f . It is defined by

Yn = c−1
n

m∑
j=1

vj

(
{f(Xn+cnujei)− V (i)

n,2j−1} − {f(Xn−cnujei)− V (i)
n,2j}

)
i=1,...,d

,(3.1)

where the following definitions and relations are used throughout section 3: m ∈N,
0<u1 < · · ·<um≤ 1, v1, . . . , vm are real numbers with

∑m
j=1 vju

2i−1
j = (1/2)δ1i for

all i= 1, . . . ,m (as to the existence, compare Fabian [6]), and cn = cn−γ with c > 0
and 0<γ<1/2. The unit vectors in Rd are denoted by e1, . . . , ed.

For future reference, we state the following additional conditions:
(A) ∇f exists on Rd with ∇f(ϑ) = 0.

Concerning the local differentiability of f at ϑ we consider two cases. In the first
case (p = 2) we assume that there exists ε>0, τ ∈(0, 1], K1 and K2 such that
(B1a) Hf(ϑ) exists with ‖∇f(x)−Hf(ϑ)(x− ϑ)‖ ≤ K1‖x− ϑ‖1+τ for all x∈Uε(ϑ),
(B1b) ‖∇f(x)−∇f(y)‖ ≤ K2‖x− y‖ for all x, y ∈ Uε(ϑ).

(B1b) holds, for instance, if all second partial derivatives of f exist and are
bounded on Uε(ϑ). For the second case (p ≥ 3), we assume that there exist ε>0 and
L such that
(B2a) derivatives of f up to order p− 1 exist on Uε(ϑ),
(B2b) the pth derivative of f at ϑ exists,
(B2c) ‖Hf(x)−Hf(y)‖ ≤ L‖x− y‖ for all x, y ∈ Uε(ϑ).

A sufficient condition for (B2c) to hold is that all third partial derivatives of f
exist and are bounded on Uε(ϑ).

For brevity, (B1) stands for (B1a) and (B1b), and (B2) for (B2a), (B2b), and
(B2c). We use (B) to indicate that either (B1) or (B2) holds.

So far, m has not been specified. The number m must be adapted to the particular
value of p given by (B1) or (B2). Fabian [6] considers in this connection the case
(C1) m := bp/2c = (p− 1)/2 for an odd p ≥ 3, γ := 1/(2p).

We will consider in addition the following case (for d = 1 see Renz [19]):
(C2) m := dp/2e for p ≥ 2 (p not necessarily odd), γ := 1/(2p),
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which will result in an unbiased limit distribution, whereas (C1) generally leads to a
nonzero bias (Theorem 3.2).

Similarly as above, (C) means that either (C1) or (C2) holds. We note here that
the assumptions (B1) and (C1) do not occur together.

The sequence (Wn) of random variables Wn :=
∑m
j=1 vj

(
V

(i)
n,2j−1−V

(i)
n,2j

)
i=1,...,d

satisfies
(D) ∀

n≥m
‖EWm ⊗Wn‖ ≤ %n−m(E‖Wm‖2E‖Wn‖2)

1
2

with
∞∑
l=0

%l <∞ and E‖Wn‖2 = O(1).

Regarding assumption (B2b) it is worthwhile to note that this condition is in-
variant under rotation of coordinates (compare Fabian [8]). As a further comparison
with related work (Fabian [8], Spall [23]), we remark that our results, Theorems 3.2
and 4.2, do not assume continuity of the highest-order partial derivatives.

Results about asymptotic normality in stochastic approximation usually rely on
local smoothness of the regression function f around ϑ and on the consistency of the
procedure. The next proposition shows consistency of the modified procedure. The
assumptions imposed on f allow us to decouple the influence of the r.v.’s Wn and to
use the weak dependence condition (D).

PROPOSITION 3.1. Let an = a/nα with α ∈ (max{1/2 + 1/(2p), 1 − 1/p}, 1) or
an = (a lnn)/n, a > 0. For recursion (1.1) with gradient estimate (3.1), assume that
conditions (A) and (D) hold, f is bounded from below and has a Lipschitz continuous
derivative with ∇f(x) 6= 0 for all x 6= ϑ, and sup{‖x‖ : f(x) ≤ λ} < ∞ for all
λ > inf{f(x) : x ∈ Rd}. Then Xn → ϑ (n→∞) a.s.

Under condition (C1) a nonweighted analogue of the next theorem can be found
in Fabian [8].

THEOREM 3.2. Let an=(a lnn)/n for p=2 and an=a/nα with α∈(1/2+1/(2p), 1)
for p ≥ 3. For recursion (1.1) with gradient estimate (3.1), assume that conditions
(A)–(D) hold, A := Hf(ϑ) is positive definite, and Xn → ϑ a.s. Let Bn(t) :=
n−1/2

{∑bntc
i=1 Wi + (nt− bntc)Wbntc+1

}
. Suppose the existence of a Brownian mo-

tion B with covariance matrix S of B(1) and

Bn
D→ B in C([0, 1],Rd) (n→∞).

Then, for all δ > −(p+1)/(2p),

n
1
2 (1− 1

p )
(
X̃n,δ − ϑ

)
D→ N

(
2p(1+δ)
p+1+2pδ c

p−1A−1b, p(1+δ)2

p+1+2pδ c
−2A−1SA−1

)
(n→∞),

where b = − 1
p !

(∑m
j=1 vju

p
j (1 + (−1)p+1) ∂p

(∂xi)p
f(ϑ)

)
i=1,...,d

and X̃n,δ is defined in

(1.2). In particular, under condition (C2), b = 0.
REMARK 3.3. The choices δ = 0 and δ = −2γ = −1/p are of special interest.

Provided b 6= 0, the pair (δ, c) = (0, c0) with c0 as given in (5.1) minimizes the second
moment of the limit distribution. However, for fixed c > 0, the limit’s covariance is
minimized by δ = −2γ = −1/p. In particular, Theorem 3.2 yields for n→∞

n
1
2 (1− 1

p )
(
n−1

n∑
k=1

Xk − ϑ
)
D→ N

(
2p
p+1 c

p−1A−1b, p
p+1 c

−2A−1SA−1
)
,

n
1
2 (1− 1

p )
(
p−1
p n−

p−1
p

n∑
k=1

k−
1
pXk − ϑ

)
D→ N

(
2 cp−1A−1b, p−1

p c−2A−1SA−1
)
.
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4. A Kiefer–Wolfowitz procedure with simultaneous perturbation gra-
dient approximation. The classical Kiefer–Wolfowitz (finite difference) stochastic
approximation method (FDSA) needs 2d observations to obtain a finite difference
approximation of the gradient belonging to the function f : Rd → R of which the
minimizer ϑ is sought. To reduce the number of observations in each step, random-
ized gradient approximation methods have been considered in the literature. Two
examples are random direction stochastic approximation (RDSA), suggested by Kush-
ner and Clark [12], and simultaneous perturbation stochastic approximation (SPSA),
suggested by Spall [22]. Both methods are based on only two observations in each
iteration. Depending on the dimension d and the third derivatives of the regres-
sion function f the AMSE of the SPSA method can be better or worse than that of
the FDSA and RDSA methods. At least for second-order polynomials f , the FDSA
method needs d times more observations than the SPSA method to achieve the same
level of mean squared error asymptotically, when the same span cn = cn−γ is used
(Spall [23]).

Before the idea of weighted averages is applied to the SPSA method, we will
describe this algorithm in more detail. Again recursion (1.1) is used, but with step
lengths an = an−α and with the following so-called simultaneous perturbation gradient
estimate of ∇f(Xn):

Yn =
1

2cn

 (∆(1)
n )−1

...
(∆(d)

n )−1

 ([f(Xn + cn∆n)−Wn,1]− [f(Xn − cn∆n)−Wn,2])(4.1)

consisting of (artificially generated) random vectors ∆n ∈ M(Ω,Rd), observation
errors Wn,1, Wn,2 ∈M(Ω,R), and span cn.

We consider the following set of conditions.

(E) The components ∆(i)
n of ∆n, i = 1, . . . , d, for n ∈ N fixed, form a set

of independent, identically and symmetrically distributed r.v.’s with |∆(l)
n |

having values between fixed positive numbers α0 < α1. The r.v. ∆n is as-
sumed to be independent of {X1, . . . , Xn,∆1, . . . ,∆n−1}. Furthermore, we
use ξ2 = E|∆(l)

n |2 and ρ2 = E|∆(l)
n |−2. For simplicity, the column vector

appearing in (4.1) is denoted by ∆−1
n .

(F) The difference Wn = Wn,1 −Wn,2 of the observation errors satisfies E(Wn |
Fn) = 0 and supnE

(
W 2
n | Gn

)
<∞ a.s., where Fn and Gn denote the σ-fields

generated by {X1, . . . , Xn, ∆1, . . . ,∆n} and {X1, . . . , Xn, ∆1, . . . ,∆n−1},
respectively.

(G) ∞ > E(W 2
n | Fn) → σ2 a.s. and E(W 2

n1[W 2
n≥rn] | Fn) → 0 a.s. for every

r > 0.
(H) (B2) holds for p = 3, and A = Hf(ϑ) is a positive definite matrix.

The proposition below presents conditions for the recursion’s consistency. It is
related to Blum’s result [2] on multivariate Kiefer–Wolfowitz procedures. Under dif-
ferent and less intuitive assumptions and with a different method of proof, Spall [23]
asserts consistency as well.

PROPOSITION 4.1. Let an = a/nα with α ∈ (max{γ + 1/2, 1− 2γ}, 1] and γ > 0.
For recursion (1.1) with gradient estimate (4.1), assume that conditions (A), (E), and
(F) hold, and that f is bounded from below and has a Lipschitz continuous gradient.

(a) If sup{‖x‖ : f(x) ≤ λ} <∞ for all λ > inf{f(x) : x ∈ Rd}, then supn ‖Xn‖ <
∞ a.s.
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(b) Assume ∇f(x) 6= 0 and f(x) > f(ϑ) for all x 6= ϑ. If supn ‖Xn‖ < ∞ a.s.,
then Xn → ϑ (n→∞) a.s.

A nonweighted analogue of the following theorem is stated in Spall [23].
THEOREM 4.2. Let α ∈ (2/3, 1) and γ = 1/6. For recursion (1.1) with gradient

estimate (4.1), assume conditions (A), (E)–(H), and Xn → ϑ a.s. Then, for all
δ > −2/3,

n
1
3

(
X̃n,δ − ϑ

)
D→ N

(
1+δ

2/3+δ c
2A−1b, (1+δ)2

4/3+2δ c
−2A−1SA−1

)
(n→∞),

where

S =
σ2ρ2

4
I, b = −1

6
ξ2

 ∂3

(∂xi)3 f(ϑ) + 3
d∑

j=1, j 6=i

∂3

∂xi(∂xj)2 f(ϑ)


i=1,...,d

,

and X̃n,δ is as defined in (1.2).

5. Comparison of stochastic approximation procedures with respect
to their asymptotic mean squared error and further comments. Based on
recursion (1.1) with any of the gradient estimates Yn discussed in this paper, we
consider the following three variants of algorithms:

(i) the basic recursion with an = a/n,
(ii) an adaptive variant obtained from the basic recursion with an = (a/n)Mn

and random matrices Mn converging to M = Hf(ϑ)−1 a.s.,
(iii) the basic recursion with an converging to zero slower than 1/n combined with

averaging of the trajectories
and compare the corresponding estimators with regard to their asymptotic behavior.
Some of these estimators have been treated in the literature (Fabian [6], [9], Spall [22],
[23]). The adaptive procedure has been introduced by Fabian [9] to improve the limit
distribution. There the auxiliary sequence Mn is built up from information available
up to stage n. For both algorithms (i) and (ii), with any gradient estimate considered
in this paper, the limit distribution can be obtained by Theorem 1 in Walk [24] and
by the representations derived in the proofs of Theorems 3.2 and 4.2.

Assuming that A = Hf(ϑ) is a positive definite matrix, the related second mo-
ments of the asymptotic distributions turn out to be

E(a, c) :=
(
2cp−1a‖(2aA− β)−1b‖

)2
+
a2

c2
tr
(

(2aA− β)−1
S
)
, a > β/(2λ0),

Ê(a, c) :=
(

2cp−1a

2a− β ‖A
−1b‖

)2

+
a2

c2(2a− β)
tr
(
A−1SA−1) , a > β/2,

Ẽ(δ, c) :=
(

2cp−1(1 + δ)
2− β + 2δ

‖A−1b‖
)2

+
(1 + δ)2

c2(2− β + 2δ)
tr
(
A−1SA−1) , δ > β/2− 1,

respectively, where β = 1− 1/p, λ0 = min{λ : λ ∈ specA}, and c > 0 (concerning E
and Ê, use Theorem 5.8 and Remark 5.9 of [25]). Under appropriate assumptions these
quantities are equal to the AMSEs limnE‖n

1
2 (1− 1

p )(Xn − ϑ)‖2 shown by algorithm
(i) or (ii), and limnE‖n

1
2 (1− 1

p )(X̃n,δ − ϑ)‖2 shown by algorithm (iii). Apparently it
holds that Ê(a, c) = Ẽ(a− 1, c).
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If b 6= 0, the asymptotic distribution is biased. In this case Ê and Ẽ are minimized
by (a, c) = (1, c0) and (δ, c) = (0, c0), respectively, with

c0 =
(

(2− β)
4(p− 1)

tr(A−1SA−1)
‖A−1b‖2

) 1
2p

,(5.1)

which is usually unknown. At the end of section 6 we show that

∀c > 0
1
4
<

(
p+ 1

2p

)2

< min
a>β/(2λ0)

E(a, c)

Ẽ(0, c)
< sup

a>β/(2λ0)

E(a, c)

Ẽ(0, c)
= ∞(5.2)

and

1
4
<

(
p+ 1

2p

)2

< min
a>β/(2λ0)

min
c>0

E(a, c)

Ẽ(0, c0)
< sup

a>β/(2λ0)
min
c>0

E(a, c)

Ẽ(0, c0)
= ∞.(5.3)

Noticing the last equation of the preceding paragraph, these relations can be rewritten
in terms of Ê instead of Ẽ. Thus the AMSE of the adaptive algorithm (ii) and the
averaging algorithm (iii) is less than four times the AMSE of the standard algorithm (i)
for any admissible a, no matter whether a common c is used or the optimal values
of c are chosen. On the opposite side, a bad choice of a (a close to β/(2λ0) or a too
large) results in an arbitrarily large AMSE of the standard algorithm (i), whereas
this difficulty does not arise when the adaptive or averaging method is used. In this
sense one may say that the averaging and adaptive algorithms are more stable than
the standard algorithm.

In the one-dimensional case the AMSE of the standard algorithm (i) is minimized
by a′0 = 1/A and c′0 = ( 2−β

4(p−1)
S
b2 )1/(2p). Hence, for d = 1, the second relation in (5.3)

can be sharpened to E(a′0, c
′
0)/Ẽ(0, c0) = 1.

In section 3 the design (u1, . . . , um) was fixed. If condition (C1) holds, the gra-
dient estimate (3.1) usually produces an asymptotic bias. In this case Fabian [7] and
Erickson, Fabian, and Mařik [5] investigated how the AMSE can be further reduced
by the choice of an optimal design.

If the gradient estimate (3.1) is constructed under condition (C2), the bias is
vanishing (since b = 0). Then, for a fixed positive c, the AMSEs Ê and Ẽ attain their
minimum c−2(1− 1/p) tr(A−1SA−1) for a = 1− 1/p and δ = −1/p, respectively. We
get

∀c > 0 1 ≤ min
a>β/(2λ0)

E(a, c)

Ẽ(−1/p, c)
< sup

a>β/(2λ0)

E(a, c)

Ẽ(−1/p, c)
= ∞.(5.4)

Assume that a0 (> β/(2λ0)) minimizes E(a, c) for a fixed c. Then, only in special
cases can E(a0, c) = Ẽ(−1/p, c) be achieved. In any of the three variants the related
AMSE can be made arbitrarily small by choosing c sufficiently large. Hence, with
respect to the AMSE criterion, the procedures using the gradient estimate leading to
b = 0 are superior to those leading to b 6= 0, although they need 2d more observations
per step.

It must be emphasized that in the case b 6= 0 the adaptive recursion employing
consistent estimators (Mn) of M = A−1 instead of some other matrix M is, due to
(5.2) and (5.3), a fairly good choice but not the best one with respect to the optimal
AMSE. For fixed c > 0, a better choice would require consistent estimators Mn of
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a matrix M which minimizes c2p−2‖(MA − β
2 I)−1Mb‖2 + c−2 trZ where min{reλ :

λ ∈ spec(MA − β
2 I)} > 0 and Z is the unique solution of (MA − β

2 I)Z + Z(MA −
β
2 I)∗ = MSM∗. Hence, averaging applied in the Kiefer–Wolfowitz situation with
nonvanishing asymptotic bias does not optimize the AMSE. This is in contrast to the
Robbins–Monro situation. Minimizing the expression above in both M and c would
lead to an even better AMSE, but we do not pursue this possibility here.

Let ϑn(f) be an estimator of the minimum ϑ(f) of a p-times differentiable regres-
sion function f on R using n observations. Consider, for fixed c > 0,

sup
f
P [n

p−1
2p |ϑn(f)− ϑ(f)| > c],

where the supremum is taken over all regression functions f satisfying conditions (A)
and (B) and some further boundedness conditions. Then, according to results by
Chen [3] and by Polyak and Tsybakov [18], this supremum as a function of n has a
universal positive lower bound independent of the choice of ϑn(f). This raises the
interesting problem of determining which type of algorithm, together with which type
of gradient estimate, leads to the smallest supremum above.

The condition sup{‖x‖ : f(x) ≤ λ} <∞ for all λ > inf{f(x) : x ∈ Rd} appearing
in Propositions 3.1 and 4.1 is equivalent to inf{f(x) : ‖x‖ ≥ K} → ∞ as K → ∞.
In applications this condition can be satisfied by adding the function values of an
appropriate increasing and differentiable function to the basic observations taken at
x. A possible choice is x 7→ ‖x− d x

‖x‖‖21[‖x‖≥d] for a fixed d large enough.

Finally, it is worth mentioning that the weighted means X̃n,δ can easily be recur-
sified by(

Xn+1

X̃n+1,δ

)
=

(
1 0

1+δ
n+1

(
n
n+1

)1+δ

)(
Xn

X̃n,δ

)
− an

(
Yn

1+δ
n+1Yn

)
, X̃1,δ = (1 + δ)X1.

6. Proofs.
Proof of Proposition 3.1. For x ∈ Rd and h > 0 define

g(x, h) :=
(
g(i)(x, h)

)
i=1,...,d

:=
m∑
j=1

vj(f(x+hujei)− f(x−hujei))i=1,...,d.

Then, with Vn := c−1Wn and Hn := ∇f(Xn)− c−1
n g(Xn, cn), we obtain

Xn+1 = Xn − an(∇f(Xn)− nγVn −Hn).(6.1)

By Lipschitz continuity of ∇f we have f ∈ C1(Rd). This leads, with a Lipschitz
constant K, to

∣∣∣h−1g(i)(x, h)− ∂
∂xi

f(x)
∣∣∣ =

∣∣∣∣∣∣
m∑
j=1

vjuj

∫ 1

−1
( ∂
∂xi

f(x+ shujei)− ∂
∂xi

f(x)) ds

∣∣∣∣∣∣
≤

m∑
j=1

|vj |uj
∫ 1

−1
‖∇f(x+ shujei)−∇f(x)‖ ds ≤ K

m∑
j=1

|vj |u2
jh.

Therefore ‖Hn‖ ≤
√
dK

∑m
j=1 |vj |u2

jcn. Our assumptions yield
∑
a2
nn

1/p(logn)2 <

∞ and
∑
ann

−1/p < ∞. Proposition 4.1 in Dippon and Renz [4] implies the as-
sertion.
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Proof of Theorem 3.2. First step: Expansions for h−1g(x, h). In what follows, we
assume x ∈ Uε/2(ϑ) and h ∈ (0, ε/2). As a consequence we have x + shei, ϑ + t(x −
ϑ)± hujei ∈ Uε(ϑ) for all t ∈ [0, 1] and s ∈ [−1, 1].

First we consider the case of an at least three-times differentiable function f
(p ≥ 3). Using (B2c), we obtain f ∈ C2(Uε(ϑ)), and therefore, according to Taylor’s
formula,

g(i)(x, h) =
m∑
j=1

vj(f(x+ hujei)− f(x− hujei))(6.2)

=
m∑
j=1

vj(f(ϑ+ hujei)− f(ϑ− hujei))

+
m∑
j=1

vj(∇f(ϑ+ hujei)−∇f(ϑ− hujei))∗ (x− ϑ)

+ (x− ϑ)∗
∫ 1

0
(1− t)

m∑
j=1

vj(Hf(ϑ+ t(x− ϑ) + hujei)

−Hf(ϑ+ t(x− ϑ)− hujei)) dt (x−ϑ) .

Let us denote the first term of this sum by t(i)(h) (i = 1, . . . , d). (B2a) implies

dl

(dh)l t
(i)(h) =

m∑
j=1

vju
l
j

(
∂l

(∂xi)l
f(ϑ+hujei) + (−1)l+1 ∂l

(∂xi)l
f(ϑ−hujei)

)
for l = 0, . . . , p−1. Then dl

(dh)l t
(i)(0) = 0 for all l = 0, . . . , p−1. This is obvious for l

even. For l odd with 1 ≤ l ≤ 2m−1, this follows from (A) and the choice of the vk. In
the case m := dp/2e, we have p−1 ≤ 2m−1, and in the case m := bp/2c = (p−1)/2,
p odd, we have 2m− 1 = p− 2 and p− 1 is even. (B2b) implies

dp

(dh)p t
(i)(0) =

m∑
j=1

vju
p
j

(
1 + (−1)p+1) ∂p

(∂xi)p
f(ϑ).

In the case m := dp/2e we obtain dp

(dh)p t
(i)(0) = 0. For p even, this is again obvious,

and for p odd, it follows from 2m − 1 = p and from the choice of the vk. Taylor’s
formula yields

t(i)(h) = hp

p!

(
dp

(dh)p t
(i)(0) + o(1)

)
(h→ 0).(6.3)

For the discussion of the second term of the sum on the right-hand side (r.h.s.)
in (6.2) we define

s(i,k)(h) :=
m∑
j=1

vj

(
∂
∂xk

f(ϑ+hujei)− ∂
∂xk

f(ϑ−hujei)
)

(i, k = 1, . . . , d).

Using (B2a) we obtain by a consideration analogous to that above

dl

(dh)l s
(i,k)(h) =

m∑
j=1

vju
l
j

(
∂l

(∂xi)l
∂
∂xk

f(ϑ+hujei) + (−1)l+1 ∂l

(∂xi)l
∂
∂xk

f(ϑ−hujei)
)
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for l = 0, . . . , p−2, where s(i,k)(0) = 0, d
dhs

(i,k)(0) = ∂
∂xi

∂
∂xk

f(ϑ) and dl

(dh)l s
(i,k)(0) = 0

for all l = 2, . . . , p − 2. (B2b) implies, by reasoning similar to that in the case of
dp

(dh)p t
(i)(0),

dp−1

(dh)p−1 s
(i,k)(0) =

m∑
j=1

vju
p−1
j (1 + (−1)p) ∂p−1

(∂xi)p−1
∂
∂xk

f(ϑ) = 0.

Again, by using Taylor’s formula, we obtain

s(i,k)(h) = h ∂
∂xi

∂
∂xk

f(ϑ) + hp−1o(1) (h→ 0).(6.4)

Finally, for every i = 1, . . . , d, the expression

q(i)(x, h) :=

(x− ϑ)∗
∫ 1

0
(1− t)

m∑
j=1

vj(Hf(ϑ+ t(x−ϑ) + hujei)−Hf(ϑ+ t(x−ϑ)− hujei)) dt

can be bounded in the following way by using (B2c):

‖q(i)(x, h)‖ ≤ h
m∑
j=1

|vj |uj L‖x− ϑ‖.(6.5)

Because of (6.2), (6.3), (6.4), and (6.5) we obtain the following representation:

h−1g(x, h) =
(
Hf(ϑ) + hp−2P (h) +Q(x, h)

)
(x− ϑ)− hp−1

cp−1 T (h)(6.6)

with matrices P (h), Q(x, h) and a vector T (h) satisfying the relations ‖P (h)‖ = o(1)
(h→ 0), ‖Q(x, h)‖ ≤

√
dL
∑m
j=1 |vj |uj ‖x − ϑ‖, and T (h) → T = cp−1b (h → 0).

Notice that Q is a measurable function (x ∈ Uε/2(ϑ), h ∈ (0, ε/2)).
Now we are going to consider the case of a twice differentiable function f (p = 2).

(B1a) implies the existence of a measurable matrix-valued function R with

∇f(x) = (Hf(ϑ) +R(x)) (x− ϑ) , where ‖R(x)‖ ≤ K1‖x− ϑ‖τ for x ∈ Uε(ϑ).

Because of p = 2 we have m = 1. Without loss of generality, we may assume that
u1 = 1. Then we have v1 = 1/2. By (B1b) we obtain f ∈ C1(Uε(ϑ)), and therefore

g(i)(x, h)= 1
2 (f(x+ hei)− f(x− hei)) = 1

2 h

∫ 1

−1

∂
∂xi

f(x+ shei) ds

= 1
2 h

∫ 1

−1
( ∂
∂xi

f(x+ shei)− ∂
∂xi

f(x)) ds+ h ∂
∂xi

f(x).

Putting the last two relations together gives the following representation:

h−1g(x, h) = (Hf(ϑ) +R(x)) (x− ϑ) + s(x, h)(6.7)

with vector s(x, h) satisfying ‖s(x, h)‖ ≤ 0.5
√
dK2 h. Notice that s is also a measur-

able function (x ∈ Uε/2(ϑ), h ∈ (0, ε/2)).
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While the last representation and Lemma 7.1(b) yield a rate of convergence, we
will need a second representation to apply Lemma 7.1(a). We obtain

g(i)(x, h) = 1
2 h

∫ 1

−1

(
∂
∂xi

f(x+ shei)− (∇ ∂
∂xi

f(ϑ))∗(x− ϑ+ shei)
)
ds

+h (∇ ∂
∂xi

f(ϑ))∗(x− ϑ).

For r(i)(x, h) := 1
2

∫ 1
−1( ∂

∂xi
f(x+shei)−(∇ ∂

∂xi
f(ϑ))∗(x−ϑ+shei)) ds, our assumptions

imply

|r(i)(x, h)|

≤ 1
2

∫ 1

−1
‖∇f(x+ shei)−Hf(ϑ)(x− ϑ+ shei)‖ ds ≤ 1

2

∫ 1

−1
K1 ‖x− ϑ+ shei‖1+τ ds

≤ 2τ−1K1

∫ 1

−1

(
‖x− ϑ‖1+τ + |s|1+τh1+τ) ds ≤ 2τK1

(
‖x− ϑ‖1+τ + h1+τ

2+τ

)
.

As a consequence of the last two relations we obtain the following representation:

h−1g(x, h) = Hf(ϑ)(x− ϑ) + r(x, h),(6.8)

where the vector r(x, h) = (r(i)(x, h)) is bounded by ‖r(x, h)‖ ≤ 2τ
√
dK1(‖x−ϑ‖1+τ

+ h1+τ/(2 + τ)). Again, r is a measurable function (x ∈ Uε/2(ϑ), h ∈ (0, ε/2)).
Second step: Rate of convergence for Xn → ϑ and proof of asymptotic normality.

Let us define Un := Xn − ϑ, Vn := c−1Wn, and Ω(n) := [‖Un‖ < ε/2 and cn < ε/2].
First we consider the case p ≥ 3. We define An := (Hf(ϑ) + cp−2

n P (cn) +
Q(Xn, cn))1Ω(n) and Tn := T (cn)1Ω(n)−n1/2c−1g(Xn, cn)1Ω(n)c . In the case p = 2 we
defineAn := (Hf(ϑ)+R(Xn))1Ω(n) and Tn := −n1/4s(Xn, cn)1Ω(n)−n1/2c−1g(Xn, cn)
·1Ω(n)c . Regarding properties (6.1), (6.6), and (6.7), the so-defined quantities fulfill re-
cursion (7.2) and satisfy An → A = Hf(ϑ) a.s. and Tn = O(1) almost in L2. Condition
(7.12) holds by assumption (D). Therefore, Lemma 7.1(b) yields Un = O(a1/2

n n1/(2p))
almost in L2.

For p ≥ 3 the above quantities satisfy Tn → T a.s. and ‖An−A‖ ≤ C1 n
−(p−2)/(2p)

+C2 ‖Un‖+C31Ω(n)c . In the case p = 2 we have to alter the definition of An and Tn.
Let An := Hf(ϑ)1Ω(n) and Tn := −n1/4r(Xn, cn)1Ω(n)−n1/2c−1g(Xn, cn)1Ω(n)c . Due
to (6.8) recursion (7.2) holds. Note that ‖n1/4r(Xn, cn)1Ω(n)‖ ≤ C4 n

1/4‖Un‖1+τ +
C5 n

−τ/4.
In both cases we get Tn−T = o(1) almost in L1 and An−A = o(1/

√
nan) almost

in L2 , where we have used 2/p ≤ 1/2+1/(2p) < α for p ≥ 3. Thus the assertion
follows from Lemma 7.1 (a).

Proof of Proposition 4.1. We may assume ϑ = 0 and f(ϑ) = 0. Lipschitz conti-
nuity of ∇f implies

|f(x+ h)− f(x− h)− 〈2h,∇f(x)〉| =
∣∣∣∣∫ 1

−1
〈h,∇f(x+ sh)−∇f(x)〉 ds

∣∣∣∣(6.9)

≤ ‖h‖
∫ 1

−1
K|s| ‖h‖ ds = K‖h‖2,

where K is, here and in the following inequalities, a constant that may vary from
formula to formula. The last inequality, together with

E
(

∆(k)
n

∆(l)
n

∂
∂xk

f(Xn) | Gn
)

= δkl
∂
∂xk

f(Xn) a.s.,
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proves

‖E (Yn | Gn)−∇f(Xn)‖ ≤ Kcn a.s.(6.10)

Due to (6.9), (6.10), and assumption (F), we obtain

E(‖Yn‖2 | Gn) ≤ Kc2n +K ‖∇f(Xn)‖2 +K c−2
n E(W 2

n | Gn) a.s.(6.11)

and

〈∇f(Xn), E (Yn | Gn)〉 ≥ ‖∇f(Xn)‖2 −Kcn ‖∇f(Xn)‖ a.s.(6.12)

Lipschitz continuity of ∇f implies, as above,

f(Xn+1) ≤ f(Xn)− an〈∇f(Xn), Yn〉+Ka2
n ‖Yn‖2.

Taking conditional expectations and using inequalities (6.11) and (6.12), we obtain

E (f(Xn+1) | Gn)
≤ f(Xn)− an

(
‖∇f(Xn)‖2 −Kcn ‖∇f(Xn)‖

)
+Ka2

n ‖∇f(Xn)‖2 +Ka2
n/c

2
n

(
E(W 2

n | Gn) + 1
)

≤ f(Xn)− an/2 (‖∇f(Xn)‖ −Kcn)2 +K2/2 anc2n +Ka2
n/c

2
n

(
E(W 2

n | Gn) + 1
)

a.s.

for all n with Kan < 1/2. Let An := an/2 (‖∇f(Xn)‖ −Kcn)2 and Bn := K2/2 anc2n
+Ka2

n/c
2
n

(
E(W 2

n | Gn) + 1
)
. For n large enough

E (f(Xn+1) | Gn) ≤ f(Xn)−An +Bn a.s.,

where An ≥ 0, Bn ≥ 0, and
∑∞
n=1Bn < ∞ a.s. On a set Ω0 of measure 1 we have

convergence of f(Xn) and
∑∞
n=1An according to a theorem of Robbins and Siegmund

[20] for nonnegative almost-supermartingales.
Fix ω ∈ Ω0 and denote xn := Xn(ω). Then for almost all n the relation f(xn) ≤

λ := lim f(xn) + 1 holds. Since {x : f(x) ≤ λ} is bounded, (xn) is bounded as well.
To prove (b) fix ω ∈ Ω0 with supn ‖xn‖ < ∞. Select a subsequence (xn′) with

∇f(xn′) → 0. Then there exists a convergent subsequence (xn′′) of (xn′). Since
∇f(xn′′) → 0 and ∇f is continuous, (xn′′) converges to zero. Hence f(xn′′) → 0 and
f(xn) → 0. Choose ε > 0 such that ‖xn‖ < 1/ε for all n. For n sufficiently large we
have f(xn) < inf {f(x) : ε < ‖x‖ < 1/ε}. This proves xn → 0.

Proof of Theorem 4.2. We will verify the assumptions of Lemma 7.1. For this
purpose let us define Un := Xn − ϑ, Dn := (2cn)−1∆−1

n (f(Xn + cn∆n) − f(Xn −
cn∆n)), Vn,1 := (2c)−1∆−1

n Wn, Ω(n) := [‖Un‖ < ε/2 and cn < ε/(2d1/2α1)], Vn,2 :=
−n−1/6(Dn1Ω(n) − E(Dn1Ω(n) | Gn)), Vn := Vn,1 + Vn,2, and T := c2b.

For x, z ∈ Rd and h > 0 with x, x±hz, ϑ±hz ∈ Uε(ϑ), we obtain by condition (H)

f(x+ hz)− f(x− hz)
= f(ϑ+ hz)− f(ϑ− hz) + 〈∇f(ϑ+ hz)−∇f(ϑ− hz), x− ϑ〉

+(x− ϑ)∗
∫ 1

0
(1−t)(Hf(ϑ+ t(x− ϑ) + hz)−Hf(ϑ+ t(x− ϑ)− hz))dt (x− ϑ)

where

f(ϑ+ hz)− f(ϑ− hz) =
2h3

6

∑
i,j,k

∂3

∂xi∂xj∂xk
f(ϑ) zizjzk + o(h3‖z‖3),

∇f(ϑ+ hz)−∇f(ϑ− hz) = 2hHf(ϑ)z + o(h2‖z‖2),
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and ∥∥∥∥∫ 1

0
(1−t)(Hf(ϑ+ t(x− ϑ) + hz)−Hf(ϑ+ t(x− ϑ)− hz))dt

∥∥∥∥ ≤ Lh ‖z‖.
This expansion, together with condition (E), leads to the following representation:

E
(
Dn1Ω(n) | Gn

)
= (Hf(ϑ) + o(cn) +O(‖Un‖))Un1Ω(n) − n−

1
3 (T + o(1)) 1Ω(n).

With An := (Hf(ϑ)+o(cn)+O(‖Un‖))1Ω(n), Tn := (T+o(1))1Ω(n)−n1/3Dn1Ω(n)c ,
and the quantities defined at the beginning of the proof, recursion (1.1) can be rewrit-
ten in the form of recursion (7.2).

Let Bn,j(t) := 1/
√
n (
∑bntc
i=1 Vi,j + (nt − bntc)Vbntc+1,j), t ∈ [0, 1], j ∈ {1, 2}. To

show that Bn,1 converges in distribution to a Brownian motion B, and that Bn,2 con-
verges to zero in probability, we apply an invariance principle for martingale difference
sequences of Berger [1].

We first consider the case j = 1. Since

E(Vn,1 | Fn) = 1
2c∆

−1
n E(Wn | Fn) = 0 a.s.

and Vn,1 is Fn+1-measurable, (Vn,1) is a martingale difference sequence with respect
to (Fn+1). Similarly, we get from the assumptions,

1
n

n∑
i=1

E(Vi,1 ⊗ Vi,1 | Fi)

= 1
4c2

1
n

n∑
i=1

∆−1
i ⊗∆−1

i E(W 2
i | Fi)

= σ2

4c2
1
n

n∑
i=1

∆−1
i ⊗∆−1

i + 1
4c2

1
n

n∑
i=1

∆−1
i ⊗∆−1

i

(
E(W 2

i | Fi)− σ2)
→ σ2ρ2

4c2
I (n→∞) a.s.

according to Kolmogorov’s strong law of large numbers. Further, we obtain

1
n

n∑
i=1

E(‖Vi,1‖21[‖Vi,1‖2≥ri] | Fi) ≤ 1
n

n∑
i=1

E( d
4c2α2

0
W 2
i 1

[W 2
i ≥

4c2α2
0r

d i]
| Fi)

P→ 0 (n→∞)

since E(W 2
i 1[W 2

i ≥r̃i] | Fi) is converging to zero a.s.
To get (7.4) for the sequence (Vn,1), we check that

sup
n
E
(
‖Vn,1‖2 | Fn

)
≤ 1

4c2 sup
n
‖∆−1

n ‖2 sup
n
E
(
W 2
n | Fn

)
< ∞ a.s.,

which holds in view of the assumptions.
Likewise, we treat the case j = 2. Note that Vn,2 is Gn+1-measurable, and E(Vn,2 |

Gn) = 0 a.s. Condition (H) implies

‖E (Vn,2 ⊗ Vn,2 | Gn) ‖ ≤ d
4c2α2

0
E
(
|f(Xn + cn∆n)− f(Xn − cn∆n)|2 1Ω(n) | Gn

)
≤ (dLα1/α0)2n−2γ → 0 (n→∞) a.s.



1824 J. DIPPON AND J. RENZ

This implies supnE(‖Vn,2‖2 | Gn) <∞ a.s., and thus validity of (7.4) for the sequence
(Vn,2). Additionally

E
(
‖Vn,2‖21[‖Vn,2‖2≥rn] | Gn

)
→ 0 (n→∞) a.s.

Once more, the invariance principle in Berger [1] can be applied to prove the desired
result.

Since Xn → ϑ a.s., we obtain An → A and Tn → T = c2b a.s. The latter is
sufficient for (7.5) and (7.9). Furthermore, the sequence (Vn) fulfills (7.10) and (7.11)
with respect to (Gn+1). Now Lemma 7.1(b) asserts Un = O(n(1/6)−(α/2)) almost in
L2. To obtain An − A = o(n(α−1)/2) almost in L2, one has to choose α > 2/3. This
completes the proof.

Proof of relations (5.2)–(5.4). Since spec(2aA− β) ⊂ (0,∞) we obtain

a‖(2aA− β)−1b‖ = 1
2

∥∥∥∥( 2a
β A− I

)−1 (
2a
β A− I

)
A−1b+

(
2a
β A− I

)−1
A−1b

∥∥∥∥
= 1

2

∥∥∥∥(I +
(

2a
β A− I

)−1
)
A−1b

∥∥∥∥
≥ 1

2 min
{
λ ∈ spec

(
I +

(
2a
β A− I

)−1
)}
‖A−1b‖

≥ 1
2 ‖A

−1b‖

and, by Theorem 1 in Wei [26],

tr
(
a2(2aA− β)−1S

)
≥ tr

(
βA−1SA−1) .(6.13)

Noticing that 4β/(2− β) > 1 and (2− β)/2 > 1/2, this yields

E(a, c) ≥ c2p−2‖A−1b‖2 + β
c2 tr(A−1SA−1) >

(
2−β

2

)2
Ẽ(0, c) > 1

4 Ẽ(0, c).

The last relation of (5.2) is obvious.
The first two relations of (5.3) follow from (5.2). To prove the last one, we find

for a given admissible a that

c0(a) =
(

tr((2aA− β)−1S)
4(p− 1)‖(2aA− β)−1b‖2

) 1
2p

minimizes E(a, c). Now observe that E(a, c0(a))→∞ as a→∞ or a↘ β/(2λ0).
The first relation of (5.4) follows from (6.13), and the third one is as shown

above.

7. Appendix: A weak invariance principle for weighted means in sto-
chastic approximation. For the following lemma, which is a consequence of The-
orems 3.1 and 4.1 in Dippon and Renz [4], let (an) be a sequence decreasing to 0
with

nan ↗∞ (n→∞)(7.1)

and satisfying the relation an − an+1 = ona
2
n with

∞∑
n=1

|on − on+1| <∞.
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Note that under (7.1) on ≤ 1/(nan) → 0 as n → ∞. Examples for sequences having
all these properties are (a/nα) and (a logn/n) with α ∈ (0, 1), a > 0.

LEMMA 7.1. Let γ ∈ [0, 1/2) and δ > −1/2− γ. For Rd-valued random variables
Un, Vn, Tn and L(Rd)-valued random variables An, assume the following recursion:

Un+1 = (I − anAn)Un + ann
γ
(
Vn + n−

1
2Tn

)
.(7.2)

Suppose that A ∈ L(Rd) satisfies

min{reλ : λ ∈ specA} > 0.

(a) Let Bn(t) := n−1/2
{∑bntc

i=1 Vi + (nt− bntc)Vbntc+1

}
, t ∈ [0, 1], n ∈ N. As-

sume the existence of a centered Brownian motion B with covariance matrix S of
B(1) and with

Bn
D→ B in C([0, 1],Rd) (n→∞),(7.3)

Bn(1) = O(1) almost in L1.(7.4)

If there exists T ∈ Rd such that

Tn − T = o(1) almost in L1,(7.5)
Un = O (nγ

√
an) almost in L2,(7.6)

An −A = o (1/
√
nan) almost in L2,(7.7)

then

n1/2−γ t−min{1,γ+δ} 1+δ
n1+δ

 bntc∑
k=1

kδUk + (nt− bntc)(bntc+ 1)δUbntc+1


D→ G(t) := (1 + δ) tmax{0,γ+δ−1}A−1

(∫
(0,1]

uγ+δ dB(tu) + t1/2

1/2+γ+δT

)
in C([0, 1],Rd) for n→∞, where G(1) is a Gaussian distributed random variable in
Rd with expectation 2(1+δ)/(1+2γ+2δ)A−1T and covariance matrix (1+δ)2/(1+2γ+2δ)
A−1SA−1∗.

(b) Assume

An → A a.s. (n→∞),(7.8)
Tn = O(1) almost in L2,(7.9)

and

E(Vn | Fn−1) = 0 a.s.,(7.10)
sup
n
E(‖Vn‖2 | Fn−1) <∞ a.s. or E‖Vn‖2 = O(1),(7.11)

where (Fn) is a filtration and (Vn) is adapted to (Fn), or, instead of (7.10) and (7.11),
alternatively:

∀
n≥m

‖EVm ⊗ Vn‖ ≤ %n−m(E‖Vm‖2E‖Vn‖2)
1
2(7.12)

with
∞∑
l=0

%l <∞ and E‖Vn‖2 = O(1).

Then condition (7.6) holds.
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REMARK 7.2. (a) For conditions implying (7.3) in case of a martingale difference
sequence (Vn), see Theorem 5.1 in Berger [1].

(b) Condition (7.4) is implied by (7.10) and (7.11), or by (7.12).
(c) In applications, (7.6) can often be used to show (7.7). Usually, (7.8) follows

from the consistency of the stochastic approximation procedure.
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Abstract. Necessary conditions of optimality, in the form of a maximum principle, are derived
for a class of optimal control problems, certain of whose controls are represented by measures and
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1. Introduction. In this paper, optimal control problems in which certain con-
trol variables are represented by measures (“impulsive” control variables) and the
state trajectories are functions of bounded variation are studied. Necessary condi-
tions of optimality in the form of a maximum principle are derived for these problems.
Specifically, we consider the following problem:

(P)


Minimize h (x(0), x(1))
subject to dx(t) = f (t, x(t), u(t)) dt+ g(t, x(t))µ(dt), t ∈ [ 0, 1],
(x(0), x(1)) ∈ C,
u(t) ∈ Ut, L − a.e. t ∈ [ 0, 1], and µ ≥ 0.

Here h : <n × <n −→ <, f : [0, 1] × <n × <m −→ <n, and g : [ 0, 1] × <n −→ <n
are given functions. U is a Borel subset of [ 0, 1] × <m (Ut denotes the “section”
{x : (t, x) ∈ U}), and C is a closed subset of <n ×<n.

A control policy is taken to be a pair of elements (u : [ 0, 1] −→ <, µ), in which
the “conventional control” component u is a Lebesgue measurable function satisfying
u(t) ∈ Ut a.e. with respect to Lebesgue measure and the “impulsive” control µ is a
regular, Borel, nonnegative valued measure. A process is a triple (x, u, µ), comprising
a control policy (u, µ) and a corresponding state trajectory x; that is, x is a function of
bounded variation which is a solution (appropriately defined) of the dynamical equa-
tion of problem (P). The control problem is to minimize the cost function h(x(0), x(1))
over processes (x, u, µ) for which (x(0), x(1)) ∈ C.

We particularly stress that, in our formulation, the coefficient g(t, x) associated
with the impulsive control is allowed to be x-dependent. This raises at the outset
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questions of how we should interpret state trajectories to take account of the inter-
action between the evolving state trajectory and the impulsive control at times when
jumps occur.

It is natural to regard the state equation as shorthand for the integral equation

x(t) = x(0) +
∫ t

0
f(τ, x(τ), u(τ))dτ +

∫
[0,t]

g(τ, x(τ))µ(dτ) ∀ t ∈ (0, 1].(1.1)

The second term on the right is affected by the value of the integral at an atom τ
of the impulsive control µ. But here an ambiguity arises, because x can be expected
to jump at τ and it is not obvious how we should interpret g(t, x(t)): a left limit,
g(t, x(t−)) as in [23], some averaged value, or what?

Our approach to defining state trajectories is in the spirit of recent work by
Bressan, Dal Maso, and Rampazzo [1], [2], [6] and Miller [13], which in turn has
its origins in the reparameterization techniques of Rishel [16] and refinements due to
Warga [22]. The control problem studied here arises in the calculation of optimal flight
trajectories, “midcourse guidance problems” [8], [10], in which context an impulsive
control µ is the idealization of a “conventional” control which, at the “atoms” of µ,
takes large values over a small interval of time. To be consistent with this view of
an impulsive control, we need to be sure that the state trajectory corresponding to
the idealized µ approximates the conventional control with which it is associated. We
might require, say,

xi(t)→ x(t) ∀ t ∈ Cµ ∪ {0, 1},

where Cµ denotes the points in [ 0, 1] which are not atoms of µ (the “continuity points”
of µ). In this relationship, {xi(t)} is a sequence of state trajectories, with initial value
x(0), corresponding to a sequence of conventional controls {mi(t)} ⊂ L1 (think of mi

as defining a Borel measure mi(t)dt), with mi(t) ≥ 0 a.e. for each i, for which

mi(t)dt
∗→ µ(dt) weak*.

As shown by Dal Maso and Rampazzo [6] there is a concept of solutions with this
continuous dependence property; we call them robust solutions to the state equation.
A robust solution x is a solution of the integral equation

x(t) = x(0) +
∫ t

0
f(τ, x(τ), u(τ))dτ +

∫
[0,t]

g̃(τ, x(τ−);µ({t}))µ(dτ)(1.2)

for t ∈ ( 0, 1],

(in which x(τ−) denotes limit from the left). Here one takes account of interaction be-
tween the state trajectory and the measure by choosing the integrand g̃(τ, x(τ−);µ({t}))
of the impulsive term on the right to depend, at time τ , on µ({τ}). g̃(τ, x(τ−);µ({t}))
is determined by motion along integral curves of the impulsive dynamics, from the
initial state x(τ−). The magnitude of µ({τ}) governs how far we move along an inte-
gral curve. If τ is not an atom of µ, then µ({τ}) = 0 and there is no motion. In this
case g̃(τ, x(τ−);µ({t})) = g(τ, x(τ)).

The central result in this paper is a necessary condition, in the form of a maximum
principle, governing minimizers for (P) over control policies and corresponding state
trajectories, when the latter are interpreted as robust solutions of the dynamic equa-
tions. Our derivation of the condition covers problems involving a general, time-
dependent control constraint set Ut associated with the conventional control and
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having dynamics which are nonsmooth in the state variable and measurably time
dependent.

There is a substantial literature on necessary conditions of optimality for prob-
lem (P), relating to robust solutions of the dynamical equations. (See [11] and the
survey article, with extensive bibliography, provided by Miller [12].) Earlier nec-
essary conditions have been proven under the assumptions that the control con-
straint set is time independent and that the dynamics are at least Lipschitz con-
tinuous in the time variable. Indeed these conditions do not even make sense when
the data are merely measurably dependent on the time variable, because they in-
volve time derivatives of the data. Earlier approaches have been to reparameter-
ize the independent variable in such a manner that the measure-driven dynamic
equation reduces to a conventional equation, and (P) is transformed into a stan-
dard optimal control problem. Necessary conditions for (P) follow directly from the
maximum principle (as conventionally understood) applied to the transformed prob-
lem. The transformation renders the original time variable a state variable: the
extra restrictions arise then, because the conventional maximum principle does not
allow for a state dependent control constraint set or data measurable in the state
variable.

The proof given here follows a different route, in which we approximate (P) by a
conventional problem with the help of Ekeland’s theorem and pass to the limit. No
reparameterization of the independent variable is involved in this approximation itself
(this would appear to be crucial for problems with data measurably dependent on the
time variable and with a time-dependent control set), although a delicate considera-
tion of the dynamical equations in both their original and their reparameterized forms
is involved in the convergence analysis. A similar, simpler approximation procedure
was followed in [21], which does not allow state dependence of g.

The optimality conditions assert the existence of a costate function p which satis-
fies, among other things, a measure-driven Hamiltonian system involving state deriva-
tives of the data. Because the data are nonsmooth, and the derivatives are set valued,
the Hamiltonian system is a measure-driven inclusion. The formulation and deriva-
tion of the optimality conditions make use of the concept of “robust solutions” to
measure driven differential inclusions, and associated closure properties, provided in
a recent paper [18].

The impulse controls considered here are scalar valued. For problems involving
vector-valued controls the picture is complicated by the possibility that different se-
quences of approximating measures (absolutely continuous with respect to Lebesgue
measure) of the same measure µ can give different “state trajectories” (for a fixed
initial state and conventional control); see, e.g., [2], [3], [4], [19]. The optimal control
problem posed over processes (x, u, µ) still makes sense even though a unique “state
trajectory” x no longer is associated with a fixed control policy and initial state. In the
case that the data are smooth with respect to the time variable and the conventional
control constraint set is constant, necessary conditions can once again be derived by
applying the conventional maximum principle to a standard optimal control problem
obtained by transforming the time variable (see Motta and Rampazzo [15] and Miller
[12]). It would appear that necessary conditions for problems involving vector-valued
impulse controls, when the data are assumed merely measurable in time, can be de-
rived by reformulating the problem as one with scalar impulsive controls but one
whose dynamics involve a measure differential inclusion, and adapting the techniques
of this paper to allow for these more general dynamics.

We list notation and conventions adhered to below.
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B denotes the open unit ball in Euclidean space. C([0, 1];<n) denotes the vec-
tor space of continuous <n-valued functions on [ 0, 1] with supremum norm, and
C∗([0, 1];<n) its topological dual.

C+([0, 1];<n) ⊂ C∗([0, 1];<n) is the cone of functionals taking nonnegative values
on nonnegative functions.

AC ([ 0, 1] ;<n) is the space of absolutely continuous <n-valued functions on [ 0, 1].
BV +([0, 1];<n) denotes the vector space of <n-valued functions on [ 0, 1], of

bounded variation, which are continuous from the right on (0, 1). The Borel mea-
sure associated with some x ∈ BV + ([0, 1];<n) is denoted dx.

For brevity we often do not distinguish between elements in C∗([0, 1];<n) and
the Borel measures which represent them.

The weak∗ topology on BV + ([0, 1];<n) refers to the weak∗ topology on (<n×
C([0, 1];<n))∗ under the isomorphism

x→ (x(0), dx).

Thus “xi → x (weakly∗)” indicates that xi(0) → x(0) and dxi → dx (weakly∗ in
C∗([0, 1];<n)). For simplicity we write C(0, 1) in place of C([0, 1];<1), C∗(0, 1) in
place of C∗([0, 1];<1), and so on.
L denotes the Lebesgue subsets of [ 0, 1], B the Borel sets in <k, and L × B the

product σ-field.
The following concepts from nonsmooth analysis are required. Consider a closed

set A ∈ <k and points x ∈ A, p ∈ <k. We say that p is a limiting normal to A at x if
and only if there exist pi → p and xi

A→ x such that for each i we have

pi · (z − xi) ≤ o(|z − xi|) ∀ z ∈ A
(i.e., limiting normals are limits of vectors which support A at points near x, to first
order). The limiting normal cone to A at x, written NA(x), comprises the limiting
normals to A at x.

Given a lower semicontinuous function f : <k → < ∪ {+∞} and a point x ∈ <k
such that f(x) < ∞, we define the limiting subdifferential of f at x, written ∂f(x),
to be

∂f(x) := {ξ : (−1, ξ) ∈ Nepi{f}(f(x), x)},
in which epi{f} denotes the epigraph set {(η, x) : η ≥ f(x)}. In the event f is Lipschitz
continuous on a neighborhood of x, co∂{f(x)} coincides with the (Clarke) generalized
gradient of f at x, which may be defined directly [5].

The properties of limiting normal cones, limiting subdifferentials, and generalized
gradients are developed in [9], [14] and [5].

2. Change of variables. We outline a change of variables technique, previously
used in Rishel [16], Warga [22], Dal Maso and Rampazzo [6], and elsewhere, whose
role will be to reduce measure-driven differential equations and inclusions to ordinary
differential equations and inclusions.

Fix a measure µ ∈ C+(0, 1). Let F be its distribution function

F (t) :=
{ ∫

[0,t] µ(ds), t ∈ (0, 1],
0 if t = 0.

Define the reparameterization function η corresponding to µ to be

η(t) :=
{

(t+
∫

[0,t] µ(dτ))/(1 + µ([ 0, 1])), t ∈ (0, 1],
0 if t = 0.
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Evidently, η is a BV +(0, 1) function which is strictly increasing. Define also the
continuous, nondecreasing function θ : [ 0, 1]→ [ 0, 1] to be

θ(s) := sup {t ∈ [ 0, 1] : η(t) ≤ s} ∀ s ∈ [ 0, 1] .

Let {ti} be an enumeration of the atoms of µ, and let Si(= [σ
′

i, σ
′′

i ]) be the subintervals
Si := θ-1({ti}) for i = 1, 2, . . . . Now define the function γ : [ 0, 1]→ <+ to be

γ(s) :=

{
F (θ(s)) if s ∈ [ 0, 1] \

⋃∞
i=1 Si,

F (t−i ) + (s−σ
′
i)

(σ′′i −σ
′
i)

(F (ti)− F (t−i )) for s ∈ Si, i = 1, 2, . . . .

(In this formula F (t−i ) and F (ti) are interpreted as F (0) and F (0+) if ti = 0.)
The function (θ, γ) : [ 0, 1]→ (<+)2 is called the graph completion of the measure

µ. It is so called because it corresponds to filling in with straight line segments the
graph of F and reparameterizing the resulting curve in <2.

Basic properties of the graph completion are as follows.
PROPOSITION 2.1. Let (θ, γ) be the graph completion of µ ∈ C+(0, 1). Then
(i) θ and γ are Lipschitz continuous, nonnegative, nondecreasing functions and

θ̇(s) + γ̇(s) = 1 + µ([ 0, 1]) L − a.e.

(ii) For any Borel measurable function h which is µ integrable and any Borel set
T ⊂ [ 0, 1] we have ∫

θ-1(T )
h(θ(s))γ̇(s)ds =

∫
T

h(τ)µ(dτ).

(iii) For any L-integrable function g and Borel set S ⊂ [ 0, 1] , θ(S) is also a Borel
set and ∫

S

g(θ(s))θ̇(s)ds =
∫
θ(S)

g(τ)dτ.

(iv) Let {µi} be a sequence of elements in C+(0, 1), and let {(θi, γi)} be the
corresponding graph completions. Suppose that µi → µ (weakly∗). Then
(θi, γi)→ (θ, γ) uniformly and (θ̇i, γ̇i)→ (θ̇, γ̇) weakly in L1.

Parts (i) and (iv) are proven by Dal Maso and Rampazzo [6]. We comment
briefly on the other assertions. (ii) will be recognized as an example of the “change of
variables” lemma [7, Theorem 6.9], since µ can be interpreted as the measure induced
by the measure γ̇(s)ds under the mapping θ, i.e.,

µ(A) =
∫
θ-1(A)

γ̇(s)ds ∀ A ∈ B.

As for (iii), θ(S) is a Borel set since θ is monotone. The identity is another consequence
of the change-of-variables lemma in view of the fact that∫

θ-1◦θ(S)
hθ̇ds =

∫
S

hθ̇ds.

This last relationship comes about because θ̇(s) = 0 almost everywhere on the set
where θ is not one-to-one.
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3. Measure-driven differential inclusions. In this section we give precise
meaning to robust solutions of measure-driven differential inclusions (MDIs) of the
form {

dx(t) ∈ F1(t, x(t))dt+ F2(t, x(t))µ(dt), t ∈ [ 0, 1] ,
x(0) = x0

(3.1)

for which the data are multifunctions F1 : [ 0, 1]×<n 7−→ <n and F2 : [ 0, 1]×<n 7−→
<n. In the equation, µ ∈ C+(0, 1) is a given measure, and x0 ∈ <n a given initial
state.

The definition of robust solution involves the multifunction F̃2 : [ 0, 1] × <n ×
[0,∞) 7−→ <n:

F̃2(t, v;α) :=
{
α−1[ξ(1)− ξ(0)] : ξ∈AC([0, 1];<n), ξ̇(σ)∈αF2(t, ξ(σ)) a.e.,

and ξ(0) = v
}

if α > 0 and F̃2(t, v; 0) := F2(t, v).
DEFINITION 3.1. We say that a function x ∈ BV +([0, 1];<n) is a robust solution

to (3.1) if there exist an L-integrable function φ1 and µ-integrable function φ2 such
that

φ1(t) ∈ F1(t, x(t)), L-a.e.,
φ2(t) ∈ F̃2(t, x(t−);µ({t})), µ-a.e.,

and

x(t) = x(0) +
∫ t

0
φ1(τ)dτ +

∫
[0,t]

φ2(τ)µ(dτ) ∀ t ∈ (0, 1].

Reparameterization by means of the graph completion of µ results in a (con-
ventional) differential inclusion as described in the following proposition. Here η is
the reparameterization function of µ, and (θ(·), γ(·)) is the graph completion of this
measure (see section 2).

PROPOSITION 3.1. Suppose that the data for MDI (3.1) satisfies the following:
• F1 has values-closed sets and is L × B measurable

and
• F2 has values-closed sets and is Borel measurable.

Fix a measure µ ∈ C+(0, 1) and an initial state x0. We have the following:
(i) Suppose that x(·) ∈ BV + ([0, 1];<n) is a robust solution to MDI (3.1). Then

there exists a solution y(·) ∈ AC([ 0, 1] ;<n) to{
ẏ(s) = F1(θ(s), y(s))θ̇(s) + F2(θ(s), y(s))γ̇(s), s ∈ [0, 1],
y(0) = x0

(3.2)

for which

x(t) = y(η(t)) ∀ t ∈ [ 0, 1] .(3.3)

Conversely,
(ii) suppose that y(·) ∈ AC([ 0, 1];<n) is a solution to (3.2). Then there exists a

robust solution x(·) ∈ BV + ([0, 1];<n) to MDI (3.1) for which (3.3) is satisfied.
Proof. See [18, Theorem 4.1].
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Solutions to the MDI (3.1) (as defined above) are “robust” in the sense that the
set of solutions has desirable “closure” properties with respect to perturbations of
the driving measure µ and the initial state. A result of this kind, suitable for future
applications, is conveniently described in terms of a sequence of MDIs approximating
(3.1), namely,{

dxi(t) ∈ F
(i)
1 (t, xi(t))dt+ F2(t, xi(t))µi(dt) on [ 0, 1] ,

xi(0) = xi0,
(3.4)

i = 1, 2, . . . .
Here F (i)

1 : [0, 1] × <n ⇒ <n, i = 1, 2, . . . ; F1 : [0, 1] × <n ⇒ <n; and F2 :
[0, 1] × <n 7−→ <n are given multifunctions. µi, i = 1, 2, . . . , and µ are elements in
C+(0, 1), and xi0, i = 1, 2, . . . , and x0 are n-vectors.

The associated reparameterized equations are{
ẏi(s) ∈ F

(i)
1 (θi(s), yi(s))θ̇i(s) + F2(θi(s), yi(s))γ̇i(s), s ∈ [0, 1],

yi(0) = xi0,
(3.5)

in which (θi, γi) is the graph completion of µi, i = 1, 2, . . . , and (θ, γ) is the graph
completion of µ. Denote by η : [ 0, 1] → [ 0, 1] the reparameterization function for µ.
We refer also to the reparameterization function ηi : [0, 1]→ [0, 1] of µi, i = 1, 2, . . . .
Reparameterization of the nominal MDI (3.1) results in the differential inclusion{

ẏ(s) ∈ F1(θ(s), y(s))θ̇(s) + F2(θ(s), y(s))γ̇(s), s ∈ [0, 1],
y(0) = x0.

(3.6)

We have the following proposition.
PROPOSITION 3.2. Consider multifunctions F1, F

(i)
1 , i = 1, 2, . . . , and F2 with

domain [ 0, 1]×<n and taking values-compact subsets of <n. Assume that
• F (i)

1 (t, ·), i = 1, 2, . . . , and F1(t, ·) have closed graph and F
(i)
1 (·, ·), i =

1, 2, . . . , and F1(·, ·) are L × B measurable.
• F1(t, x) is convex for all (t, x).
• F2(·, ·) has closed graph and takes values convex sets.

Assume further that
• L-measure {t : F (i)

1 (t, x) = F1(t, x) ∀ x ∈ <n} → 1 as t→∞ .
Take a sequence {xi0} in <n, a sequence {µi} in C+(0, 1), and elements x0 ∈ <n

and µ ∈ C+(0, 1). Take also a sequence {xi} ∈ BV +([0, 1];<n) such that xi is a robust
solution to (3.4) for each i and

x
(i)
0 → x0 and µi → µ (weakly*) as i→∞.

Assume that there exists β(t) ∈ L1 and c > 0 such that F (i)
1 (t, xi(t)) ⊂ β(t)B a.e.

and F2(t, xi(t)) ⊂ cB for all t.
Then there exists a sequence {yi} ⊂ AC ([ 0, 1] ;<n) such that yi is a solution to

(3.5) for each i, a solution y to (3.6), and a robust solution x to (3.1) such that

xi(t) = yi(ηi(t)) ∀ t ∈ [0, 1]

and

x(t) = y(η(t)) ∀ t ∈ [0, 1].
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Along a subsequence we have

xi −→ x (weakly*),

xi(t) −→ x(t) ∀ t ∈
(

[0, 1] \Mµ

)
∪ {0, 1}

(where Mµ denotes the set of atoms of µ), and

yi −→ y strongly in C([0, 1];<n).

Proof. See [18, Theorem 5.1].
Consider now the dynamic equation of the problem (P) (the optimal control

problem introduced in section 1){
dx(t) = f(t, x(t), u(t))dt+ g(t, x(t))µ(dt),
x(0) = x0.

(3.7)

For a fixed control policy (u, µ) this is just an example of MDI (3.1) (set F1(t, x)
= {f(t, x, u(t))} and f2 = {g}). We may therefore speak of robust solutions of the
dynamic equation (3.4) (corresponding to a control policy (u, µ)). Henceforth, a
process is taken to be a triple of elements (x, u, µ), in which (u, µ) is a control policy
(see section 1) and x is a robust solution of the dynamical equation (3.7). Notice that,
under the hypotheses imposed below there will be a unique robust solution to (3.7)
for given (u, µ). This follows from the characterization of robust solutions provided
by Proposition (3.1) since, for the MDI associated with (3.7), the differential inclusion
(3.2) reduces to a differential equation which is known to have a unique solution.

4. A maximum principle. Our aim is to obtain optimality conditions for prob-
lem (P) in the form of a maximum principle. These will follow from conditions on
processes (as defined is section 3) which generate boundary points of some “reachable
set” of the control system with dynamic equations:

dx(t) = f(t, x(t), u(t))dt+ g(t, x(t))µ(dt), t ∈ [0, 1],
u(t) ∈ Ut a.e. t ∈ [ 0, 1] .

Take a locally Lipschitz continuous function ψ : <n → <k and a closed set D ⊂ <n.
We define the (ψ,D)-reachable set Rψ,D to be

Rψ,D := {ψ(x(1)) : (x, u, µ) is a process and x(0) ∈ D}.

The following hypotheses will be invoked:
(H1) There exists a constant Kf (·) ∈ L1 such that

|f(t, x, u)− f(t, y, u)| ≤ Kf (t) |x− y| for (x, u) ∈ <n ×<m and t ∈ [ 0, 1].

(H2) f(·, x, ·) is L × B -measurable.
(H3) g(·, ·) is continuous and there exists a constant Kg such that

|g(t, x)− g(t, y)| ≤ Kg |x− y| ∀ x, y ∈ <n, t ∈ [ 0, 1] .

(H4) U ∈ <1+m is a Borel set.
THEOREM 4.1. Let {x̄(·), ū(·), µ̄(·)} be a process for which x(0) ∈ D and ψ(x̄(1))

is a boundary point of Rψ,D. Assume that hypotheses (H1)–(H4) are satisfied. Then
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there exist a function p ∈ BV +([0, 1];<n) and a unit vector d ∈ <k such that
(x̄(·), p(·)) is a robust solution of the MDI

d

[
x̄(t)
p(t)

]
∈
[

f(t, x̄(t), ū(t))
−p(t) · co∂xf(t, x̄(t), ū(t))

]
dt+

[
g(t, x̄(t))

−p(t) · ∂xg(t, x̄(t))

]̄
µ(dt).(4.1)

Furthermore,

− p(1) ∈ d · ∂ψ(x̄(1)),(4.2)
p(0) ∈ ND(x̄(0)),(4.3)

p(t) · f(t, x̄(t), ū(t)) = max
u∈Ut

{p(t) · f(t, x̄(t), u)} a.e. t ∈ [ 0, 1] ,(4.4)

p(t) · g(t, x̄(t)) ≤ 0 ∀ t ∈ (0, 1),(4.5)
p(t) · g(t, x̄(t)) ≥ 0, µ̄− a.e. t ∈ [0, 1],

and corresponding to every atom t of µ̄, there exists a solution (ξt, αt) to[
ξ̇t(s)
α̇t(s)

]
∈ µ̄({t})

[
g(t, ξt(s))

−αt(s) · ∂xg(t, ξt(s))

]
, t ∈ [ 0, 1] ,

(ξt(0), αt(0)) = (x̄(t−), p(t−)), (ξt(1), αt(1)) = (x̄(t), p(t))(4.6)

that satisfies

αt(s) · g(t, ξt(s)) ≥ 0 ∀ s ∈ [ 0, 1] .(4.7)

Here (4.6) is interpreted as

(ξt(0), αt(0)) := (x̄(0), p(0)), (ξt(1), αt(1)) := (x̄(0+), p(0+))

if t = 0. Also ∂xg(t, x) denotes the set

∂xg(t, x) :=
{

lim
i
ai : ai ∈ co∂xg(ti, xi) for some ti → t, xi → x

}
.

A proof is given in section 5.
The transition from Theorem 4.1 to a maximum principle for problem (P) follows

the standard lines. Indeed, suppose that h : <n × <n → < is a locally Lipschitz con-
tinuous function and C is a closed subset of <n×<n, and let (x̄, ū, µ̄) be a minimizing
process for problem (P).

Consider the control system in which state trajectories are triples (x, y, z):

d
(
x(t), y(t), z(t)

)
=
(
f(t, x(t), u(t)), 0, 0

)
dt+

(
g (t, x(t)) , 0, 0

)
µ(dt),

(x(0), y(0), z(0)) ∈ D.

Here

D := {(x, y, z) : (x, y) ∈ C and z ≥ h(x, y)}.

It is easy to deduce from the optimality of (x̄, ū, µ̄) that (0, h(x̄(0), x̄(1)) is a boundary
point of Rψ,D, ψ(x, y, z) := (y − x, z).

Applying the earlier theorem to this boundary process we arrive at the following
maximum principle for (P).
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THEOREM 4.2. Let (x̄(·), ū(·), µ̄(·)) be a minimizing process for (P). Assume that
h is locally Lipschitz continuous, that C is a closed subset, and that hypotheses (H1)–
(H4) are satisfied.

Then there exist λ ≥ 0 and p ∈ BV + ([0, 1];<n) such that ‖p(·)‖L∞+ λ > 0 and
(x̄(·), p(·)) is a robust solution of the MDI

d

[
x̄(t)
p(t)

]
∈
[

f(t, x̄(t), ū(t))
−p(t) · co∂xf(t, x̄(t), ū(t))

]
dt+

[
g(t, x̄(t))

−p(t) · ∂xg(t, x̄(t))

]̄
µ(dt).

Furthermore,

(p(0),−p(1)) ∈ NC (x̄(0), x̄(1)) + λ∂h (x̄(0), x̄(1)) ,
p(t) · f(t, x̄(t), ū(t)) = max

u∈Ut
{p(t) · f(t, x̄(t), u)} a.e. t ∈ [ 0, 1] ,

p(t) · g(t, x̄(t)) ≤ 0 ∀ t ∈ [ 0, 1] ,
p(t) · g(t, x̄(t)) = 0, µ̄− a.e. on [ 0, 1] .

Corresponding to every atom t of µ̄, there exists a solution
[
ξt(·)
αt(·)

]
to[

ξ̇t(s)
α̇t(s)

]
∈ µ̄({t})

[
g(t, ξt(s))

−αt(s) · ∂xg(t, ξt(s))

]
on [ 0, 1]

which satisfies

(ξt(0), αt(0)) = (x̄(t−), p(t−)), (ξt(1), αt(1)) = (x̄(t), p(t)),
αt(s) · g(t, ξt(s)) ≥ 0 ∀ s ∈ [ 0, 1] .

5. Proof of Theorem 4.1. Take a process (x̄, ū, µ̄) with the stated “boundary”
property. The assertions of the theorem are proven first in the special case when an
interim hypothesis,

(H̄) There exists α ∈ L1 such that supu∈U(t) |f(t, x̄(t), u)| ≤ α(t) a.e.
is added to (H1)–(H4). We show how to remove (H̄) in the final stage of the proof.
(H̄) has the role of ensuring suitable “linear growth properties” of the data, namely,
the following lemma.

LEMMA 5.1. There exist α1, α2 ∈ L1 and β1 ≥ 0, β2 ≥ 0 such that

|f(t, x, u)| ≤ α1(t)|x|+ α2(t) ∀ x ∈ <n and u ∈ Ut, L−a.e.

and

|g(t, x)| ≤ β1|x|+ β2 ∀ x ∈ <n and t ∈ [0, 1].

Proof. An appeal to (H1), (H3), and (H) and repeated applications of the triangle
inequality validate the inequalities with

α1(t) :=Kf (t), α2(t) :=α(t) +Kf (t) ‖x̄(·)‖L∞ ,
β1 := Kg, β2 := sup

s∈[0,1]
|g(s, x̄(s))|+Kg ‖x̄(·)‖L∞ .

Next, we have a lemma describing the continuity properties of state trajectories
with respect to control policies and initial states.
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LEMMA 5.2. Given any control policy (u, µ) and initial state x0 there is a unique
robust solution x of the dynamical equation[

dx(t) = f (t, x(t), u(t)) dt+ g (t, x(t))µ(dt), t ∈ [ 0, 1] ,
x(0) = x0

(5.1)

and a unique solution y of the reparameterized equation[
ẏ(s) = f (θ(s), y(s), u(θ(s))) θ̇(s) + g (θ(s), y(s)) γ̇(s), s ∈ [0, 1],
y(0) = x0.

(5.2)

(Here (θ(s), γ(s)) is the graph completion of the measure µ.) If {(ui(·), µi)} and {xi0}
are sequences of control policies and initial states, respectively, such that

L-meas{t : ui(t) 6= u(t)} → 0,
µi → µ weakly∗,

and

xi0 → x0,

then xi(t)→ x(t) ∀ t ∈ Cµ ∪ {0, 1}, dxi → dx (weakly*), and yi(t)→ y(t) uniformly,
where {xi(·)} and {yi(·)} are the corresponding sequences of state trajectories and
reparameterized state trajectories and Cµ is the set of continuity points of µ.

Proof. Notice that the right-hand side

φ(s, y) := f(θ(s), y, u(θ(s)))
.

θ (s) + g(θ(s), y)
.
γ (s)

of the reparameterized equation (5.2) satisfies the growth condition,

|φ(s, y)| ≤ α′1(s)|y|+ α
′

2(s) a.e. s ∈ [0, 1](5.3)

∀ y ∈ <n, where α
′

1 and α
′

2 are the integrable functions

α
′

1(s) := α1(θ(s))
.

θ (s) + β1(1 + µ([0, 1])),
α
′

2(s) := α2(θ(s))
.

θ (s) + β2(1 + µ([0, 1])),
(5.4)

and also the Lipschitz condition,

|φ(s, y)− φ(s, z)| ≤ k′(s)|y − z|

for all y, z ∈ <n, where k
′
(s) is the integrable function

k
′
(s) := Kf (θ(s))

.

θ (s) +Kg(1 + µ([0, 1])).

These are known conditions under which the reparameterized equation (5.2) has a
unique solution y ∈ AC([0, 1];<n). But then by Proposition 3.1 there is a unique
robust solution to (5.1).

An important observation is that, if c > 0 is a constant such that µ([0, 1]) < c,
then the coefficients in the linear growth inequality (5.3) have L1 norm bounded
above by a number which depends only on c. (This is clear from (5.4) and the fact
that

∫
α
′

1(θ(s))
.

θ(s)ds =
∫
α
′

1(t)dt.) Since {µi} is a weak* convergent sequence, the
µi’s and µ are uniformly bounded in total variation, and the xi0’s too are uniformly
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bounded, it follows from an application of Gronwall’s lemma that the solutions yi to
the reparameterized equations, resulting from replacing (u, µ) by (ui, µi) and x0 by
x

(i)
o , i = 1, 2, . . . , are uniformly bounded in the supremum norm. Since ‖xi‖L∞ ≤
‖yi‖L∞ , i = 1, 2, . . . , the xi’s are likewise bounded. The yi’s are, in addition, equicon-
tinuous. To show this, we choose constants r > 0 such that ‖yi‖L∞ ≤ r, i = 1, 2, . . . ,
and ρ > 0 such that |g(t, y)| ≤ ρ for all (t, y) ∈ [0, 1] × rB̄. Fix ε > 0. Choose δ > 0
and let [σ1, σ2] ⊂ [0, 1] be an arbitrarily interval such that |σ2 − σ1| < δ and i an
arbitrary index value. We have

|yi(σ2)− yi(σ1)| ≤
∣∣∣∣∫ σ2

σ1

f(θi(s), yi(s), ui(θi(s)))θ̇(s)ds
∣∣∣∣

+
∣∣∣∣∫ σ2

σ1

g(θi(s), yi(s))γ̇(s)ds
∣∣∣∣

≤
∣∣∣∣∫ t2

t1

f(t, xi(t), ui(t))dt
∣∣∣∣+ ρ(1 + µ([0, 1]))|σ2 − σ1|

≤ r
∫ t2

t1

α1(t)dt+
∫ t2

t1

α2(t)dt+ ρ(1 + µ([0, 1]))|σ2 − σ1|.

Here t1 = θi(σ1) and t2 = θi(σ2). Since |t2 − t1| ≤ (1 + µi([0, 1]))|σ2 − σ1| and
the |µi([0, 1])|’s are uniformly bounded, this last inequality implies that, by choosing
δ > 0 sufficiently small, we can arrange that |yi(σ2) − yi(σ1)| < ε independently of
our choice of interval [σ1, σ2] and index value i. This confirms the equicontinuity of
the yi’s.

The hypotheses are satisfied under which Proposition 3.2 may be applied when
F i1(t, x) := {f(t, x, ui(t))}, i = 1, 2, . . . , and F2(t, x) := {g(t, x)}. For arbitrary sub-
sequences, further subsequences may be chosen such that {yi} and {xi} converge as
described. Since, however, the limits are unique, the original sequences must con-
verge.

Since ψ(x̄(1)) ∈ ∂Rψ,D there exists a sequence of vectors {ξj} such that ξj /∈ Rψ,D
for j = 1, 2, . . . and

ξj → ψ(x̄(1)) as j →∞.

We may construct, using standard procedures (see, e.g., [20]), a sequence of
nonnegative-valued L∞ functions {m̄j(·)} such that

m̄j(t)dt→ µ̄(dt) weakly*.

Let x̄j(·) be the state trajectory corresponding to the conventional and measure con-
trols, ū(·) and mj(t)dt, and initial state x̄0. According to Lemma 5.2,

x̄j → x̄(t) ∀ t ∈ Cµ̄ ∪ {0, 1}

and

dx̄j(t)→ dx̄(t) weakly*.

Now define εj := |ξj − ψ(x̄(t))|1/2. Note that, by the properties of {ξj}, εj → 0 as
i→∞.
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For each j, set rj := j + ‖m̄j(·)‖L∞ and consider the optimal control problem

(Pj)


Minimize |ξj − ψ(x̄(t))|
subject to ẋ(t) = f (t, x(t), u(t)) + g(t, x(t))m(t), t ∈ [ 0, 1],
(u(t), m(t)) ∈ Ut × [0, rj ] L-a.e.,
x0 ∈ D.

Since the dynamic constraint defines a unique state trajectory xa,u,m(·) corre-
sponding to a given control function (u(·),m(·)) and initial state a, we may regard
this as a minimization problem over triples (a, u(·),m(·)) such that a ∈ D; u(·) and
m(·) are measurable functions; and (u(t),m(t)) ∈ Ut × [0, rj ] a.e. Denote this collec-
tion of triples by Wj . We provide Wj with the metric

ρ((a, u,m); (a′, u′,m′)) := |a− a′| + L-meas{t ∈ [0, 1] : u(t) 6= u′(t)}

+
∫ 1

0
|m(t)−m′(t)|dt.

The newly reformulated problem can be expressed as

minimize{Ψj(a, u,m) : (a, u,m) ∈Wj},

in which

Ψj(a, u,m) := |ξj − ψ(xa,u,m(1))|.

By Lemma 5.2, Wj is a complete space and Ψj is continuous with respect to the above
metric. According to Ekeland’s theorem [5] then there exists a triple (aj , uj ,mj) ∈Wj

such that

Ψj(aj , uj ,mj) ≤ Ψj(a, u,m) + εjρ((a, u,m), (aj , uj ,mj))(5.5)

for all (a, u,m) ∈Wj and

ρ(x̄(0), ū, m̄j), (aj , uj ,mj)) ≤ εj(5.6)

for each j. Let xj be the trajectory corresponding to (aj , uj ,mj). Since εj → 0 we
deduce from (5.6) that

xj(0)→ x(0),
L −meas{t ∈ [0, 1] : uj(t) 6= u(t)} → 0,

and

mj(t)dt→ µ(dt) weakly*.

For each j, (5.5) implies that (xj(·), uj(·),mj(·)) is a minimizer for the problem

Minimize |ξj − ψ(x(1))|+ εj

{
|x(0)− xj(0)|

+
∫ 1

0
|mj(t)−m(t)|dt+

∫ 1

0
χj(t, u(t))dt

}
subject to ẋ(t) = f(t, x(t), u(t)) + g(t, x(t))m(t) L-a.e.,

(u(t),m(t)) ∈ Ut × [0, rj ] L-a.e.,
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in which

χj(t, u) :=
{

0 if u = uj(t),
1 if u 6= uj(t).

Now apply the maximum principle to this last problem (see, e.g., [17]). Since ξj /∈
Ψ(xj(1)), this tells us that there exists an absolutely continuous function pj and a
vector dj ∈ <k of unit length such that

− ṗj(t) ∈ pj · co∂xf(t, xj(t), uj(t)) + pj · co∂xg(t, xj(t))mj , t ∈ [0, 1],
pj(0) ∈ ND(xj(0)) + εj∂x|x− x0|x=xj(0),(5.7)

− pj(1) ∈ dj · ∂ψ(xj(1)),(5.8)

and

Hj(t, uj(t),mj(t)) = max{Hj(t, u,m) : u ∈ Ut, m ∈ [0, rj ]} a.e.(5.9)

Here

Hj(t, u,m) := pj(t) · f(t, xj(t), u) + pj(t) · g(t, xj(t))m−εj(|m−mj(t)|+ χj(t, u)).

Notice that the maximization of the Hamiltonian condition (5.9) implies that
mj(t) = rj a.e. on the set {t : pj(t) · g(t, xj(t) > εj}. Since mj(t)dt→ µ̄(dt) weakly*,
the sequence {mj} is bounded in L1 norm. Observing that rj →∞, we deduce

L-meas{t : pj(t) · g(t, xj(t) ≤ εj} → 1 as j →∞.(5.10)

It follows also from (5.9) that pj(t) · g(t, xj(t)) ≥ −εj a.e. (with respect to Lebesgue
measure) on {t : mj(t) > 0}. This property can be expressed as∫ 1

0
max{−pj(t) · g(t, xj(t))− εj , 0}mj(t)dt = 0, j = 1, 2, . . . .(5.11)

We can regard xj and pj as solutions to the following MDI, corresponding to
controls (u, µ) = (uj , mj(t)dt) and initial values (xj(0), pj(0)):

d(x(t), p(t)) ∈ F1(t, x(t), p(t), u(t))dt+ F2(t, x(t), p(t))µ(dt),(5.12)

in which

F1(t, x, p, u) := {f(t, x, u)} × {−p · co∂xf(t, x, u)}

and

F2(t, x, p) := {g(t, x)} × {−p · ∂xg(t, x)}.

Incorporation of the hybrid gradient ∂xg in these relationships ensures that F2 has the
requisite upper semicontinuity properties for application of the convergence results of
section 5.

Bearing in mind the sequences {xj} and {pj} are uniformly bounded (in the case
of pj this follows from the uniform bound on the right endpoints, and an application
of Gronwall’s lemma), we deduce from Proposition 4.2 that (following an extraction



OPTIMAL IMPULSIVE CONTROL 1843

of subsequences) there exist x ∈ BV +([0, 1],<n), p ∈ BV +([0, 1],<n), and absolutely
continuous functions y(·) and q(·) with the following properties:

xj(t)→ x(t) and pj(t)→ p(t) ∀ t ∈ Cµ ∪ {0, 1},(5.13)
xj(θj(s))→ y(s) and pj(θj(s))→ q(t) uniformly,

and

x̄(t) = y(η(t)) and p (t) = q(η(t)) ∀ t ∈ [0, 1].(5.14)

Here η is the reparameterization function of µ, (θ, γ) is the graph completion of µ,
and (θj , γj) is the graph completion of µj for j = 1, 2, . . .. Furthermore (x(·), p(·)) is
a robust solution of the MDI (5.12), and y and q satisfy the differential inclusion

(ẏ(s), q̇(s)) ∈ {f(θ(s), y(s), u(θ(s)))} × {−q(s) · co∂xf(θ(s), y(s), u(θ(s)))}θ̇(s)
+ {g(θ(s), y(s))} × {−q(s) · ∂xg(θ(s), y(s))}γ̇(s), s ∈ [0, 1].(5.15)

Notice that we are justified in taking the cluster point of the sequence {xj(·)} to be
the “boundary” state trajectory x(·) because the original sequence is known to have
converged to x(·) on Cµ∪{0, 1}, and two functions in BV + ([0, 1];<n) coincide if they
have the same values on a dense set including {0, 1}.

We now arrange, by further subsequence extraction, that the sequence of vectors
{dj} in (5.8) has a limit:

dj → d as j →∞

for some vector d of unit length.
We have seen that (x, p) can be interpreted as a robust solution of the combined

state and costate equations (5.12). Our goal now is to show that the p(·) and d we
have constructed satisfy the remaining conditions in the theorem statement.

For each j let Sj be the set of points t ∈ [0, 1] such that

pk(t) · g(t, xk(t)) ≤ εk ∀ k ≥ j,

uk(t) = u(t) ∀ k ≥ j,

Hk(t, uk(t),mk(t)) = max{Hk(t, u,m) : u ∈ Ut,m ∈ [0, rk]} ∀ k ≥ j,

and

xk → x(t), pk(t)→ p(t).

In view of (5.6), (5.9), (5.10), and (5.13), we can arrange by a further subsequence
extraction that L-meas {Sj} → 1.

Take any t ∈ ∪jSj and any u ∈ Ut. The above relationships imply that, in the
limit,

p(t) · f(t, x(t), u(t)) = max{p(t) · f(t, x(t), u) : u ∈ Ut}

and

p(t) · g(t, x(t)) ≤ 0.
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We have shown (4.5) on ∪jSj . But then (4.5) holds on (0, 1) because ∪jSj is dense
and t→ p(t) · g(t, x(t)) is right continuous on (0, 1). The boundary conditions on the
costate function p(·) are verified by passage to the limit in (5.7) and (5.8).

Next we examine the consequences of (5.11). Since {mj(·)} is bounded in L1

norm, we know that

lim
j→∞

∫ 1

0
max{−pj(t) · g(t, xj(t)), 0}mj(t)dt = 0.

Applying the change-of-variables lemma and using the facts that

pj(θj(s)) · g(θj(s), xj(θj(s)))→ q(s) · g(θ(s), y(s))

uniformly and

γ̇j(·)→ γ̇(·) weakly in L1

(see Proposition 2.1), we conclude that∫ 1

0
max{−q(s) · g(θ(s), y(s)), 0}γ̇(s)ds

= lim
j

∫ 1

0
max{−pj(θj(s)) · g(θj(s), xj(θj(s))), 0}γ̇j(s)ds = 0.

Since the integrand of the expression on the left is nonnegative, it follows that∫
[0,1]\(∪iIi)

max{−p(θ(s)) · g(θ(s), x(θ(s)), 0}γ̇(s)ds = 0(5.16)

(we have noted that x(θ(s)) = y(s), p(θ(s)) = q(s) on [0, 1] \ (∪iIi)) and, for each i,∫
[s′i,s

′′
i ]

max{−q(s) · g(ti, y(s)), 0)}ds = 0(5.17)

(in view of the fact that γ̇ ≡ 1 + µ([0, 1]) on [s
′

i, s
′′

i ]). Here {ti} is an enumeration of
the atoms of µ and

[s
′

i, s
′′

i ] = Ii = θ−1({ti}), i = 1, 2, . . . .

The change-of-variables lemma applied to (5.16) gives∫
[0,1]\∪{ti}

max{−p(t) · g(t, x(t)), 0}µ(dt) = 0.(5.18)

Since the integrand in (5.17) is continuous, we conclude from this equation that

q(s) · g(ti, y(s)) ≥ 0 ∀ s ∈ [s
′

i, s
′′

i ], i = 1, 2, . . . .(5.19)

We note, however, that, by (5.14), the continuity of y and q, and the continuity of x̄
from the right,

x̄(ti) = y(s
′′

i ) and p(ti) = q(s
′′

i ),(5.20)
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and

x(t−i ) = y(s
′

i) and p(t−i ) = q(s
′

i).(5.21)

Equations (5.19) and (5.20) now give

p(ti) · g(t, x(ti)) = q(s
′′

i ) · g(ti, y(s
′′

i )) ≥ 0

for all i. Combining this relationship with (5.18) we conclude that

p(t) · g(t, x(t) ≥ 0 µ-a.e.

Next, for each i, define ξi : [0, 1]→ <n, πi : [0, 1]→ <n to be

ξi(σ) = y(s
′

i + σ(s
′′

i − s
′

i)), πi(σ) = q(s
′

i + σ(s
′′

i − s
′

i)).

By (5.20) and (5.21)

(ξi(0), πi(0)) = (x(t−i ), p(t−i )), (ξi(1), πi(1)) = (x(ti), p(ti))

for each i. Furthermore, since θ̇(s) ≡ 0 and γ̇(s) · |s′′i − s
′

i| ≡ µ({ti}) on [s
′

i, s
′′

i ], we
deduce from (5.2) that

(ξ̇i(s), π̇i(s)) ∈ g(ti, ξi(s))× (−ξi(s) · ∂xg(ti, ξi(s))µ({ti}) a.e.

This concludes the proof of the theorem in the case that (H̄) is added to the
hypotheses. It remains to deal with the case when (H̄) is not valid. For each index
value k replace U(t) with Ũk(t):

Ũk(t) = U(t)
⋂
{u ∈ <m : |f(t, x(t), u)| ≤ |f(t, x(t), u(t))|+ k} .

We see that (x, u, µ) remains a minimizer. Furthermore, (H̄) is now satisfied. By
our earlier analysis there exist (pk(·), dk) with the properties described in the above
theorem (except that now Ũk(t) replaces U(t)). Passage to the limit as k → ∞
(the convergence analysis is along the lines of the first half of the proof) yields the
assertions of Theorem 4.1 in this case also.
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Abstract. We study the dynamics of a piecewise (in time) distributed optimal control problem
for the Navier–Stokes equations which models velocity tracking over time. We also study the dy-
namics of semidiscrete and fully discrete approximations of this velocity tracking problem. We prove
that the rates of velocity tracking are exponential. Some computational results are presented, which
reinforces the theoretical results derived.
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1. Introduction.

1.1. Motivation. This work is motivated by the desire to steer over time a
candidate viscous, incompressible velocity field u to a target velocity field U by ap-
propriately controlling (adjusting) the body force. The control of body force can be
affected by appropriately adjusting the external magnetic field in the case of electro-
magneto fluids such as liquid metal. Thus the study of body force control problems is
important in its own right. Boundary velocity control is far more common in practical
applications than body force control, but there has been a lack of adequate mathemat-
ical theories for both the (uncontrolled) boundary value problems and the boundary
control problems for viscous, incompressible flows (see [FGH] for some recent progress
in this direction). For this reason, the study of body force control problems is also
important in that it provides some insight into boundary velocity control problems.

In [HY], a velocity tracking problem on the infinite time interval was formulated
as an optimal control problem: find a triplet (u, p, f) such that the functional

J(0,∞)(u, f) =
α

2

∫ ∞
0

∫
Ω
|u−U|2 dx dt+

β

2

∫ ∞
0

∫
Ω
|f − F|2 dx dt

is minimized subject to the two-dimensional Navier–Stokes equations with an initial
condition u0 and the zero boundary condition. Here, Ω is a two-dimensional bounded
domain which is convex or of class C2, and ∂Ω denotes its boundary; u and p denote
the velocity field and the pressure field, respectively; f is the body force—the control
field; u0 is the initial velocity field; and F is a prescribed body force. α and β are two
positive parameters that adjust the relative weight of the two terms in the functional.
Also, the viscosity ν > 0 appears in the Navier–Stokes equations. This optimal control
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problem on the infinite time interval is of both physical and mathematical interest.
The dynamics of the solutions for this problem were studied and an optimality system
of equations was derived in [HY]. In particular, it was shown that ‖u(t)−U(t)‖L2(Ω) →
0 and ‖∇u(t) − ∇U(t)‖L2(Ω) → 0 as t → ∞. However, the computation of the
controlled flows based on solving the derived optimality system is difficult due to the
fact that the system needs to be resolved on the infinite time interval (0,∞) and
more importantly that it involves a coupled system of the state variables (u, p) and
the adjoint state variables (µµµ, π) with forward and backward “initial” conditions—in
other words, this system has to be solved on the entire time-space cylinder and it
cannot be solved by marching in time. Also, although the L2(Ω) norm and H1(Ω)
norm of the difference between the controlled flow u and the desired flow U both
decay to zero in time, the decay rates can be slow. Therefore, there are practical
interests and needs to develop other approaches for velocity tracking on the infinite
interval that are devoid of these aforementioned difficulties.

The purpose of this paper is to design an appropriate optimal control mechanism—
piecewise (in time) distributed controls—which possesses the following features: the
physical objective of tracking the velocity field over time is achieved; u(t) − U(t)
and ∇u(t) − ∇U(t) decay to zero exponentially as t → ∞; and the optimal control
problem can be solved numerically by marching in time. Precisely, we will study the
following piecewise (in time) optimal control problem:

• First, choose a sufficiently small δ > 0, choose a sequence {tn}∞n=0 defined by
tn = nδ, and define û(0)(0) = u0.
• Then, inductively, for each n ≥ 0, find a solution (û(n+1), p̂(n+1), f̂ (n+1)) on

the interval (tn, tn+1) which minimizes the (localized) functional

(1.1)
J(tn,tn+1)(u, f)

def α

2

∫ tn+1

tn

∫
Ω
|u−U|2 dx dt+

β

2

∫ tn+1

tn

∫
Ω
|f − F|2 dx dt

subject to the (localized) two-dimensional Navier–Stokes equations:

(1.2) ∂tu− ν∆u + (u · ∇)u +∇p = f in Ω× (tn, tn+1) ,

(1.3) div u = 0 in Ω× (tn, tn+1) ,

(1.4) u = 0 on ∂Ω× (tn, tn+1),

and

(1.5) u(·, tn) = û(n)(tn) in Ω .

We define a global (in time) solution (û, p̂, f̂) by patching together all the local
optimal control solutions (û(n), p̂(n), f̂ (n)), i.e., û|(tn,tn+1)

def û(n+1), p̂|(tn,tn+1)
def

p̂(n+1) and f̂ |(tn,tn+1)
def f̂ (n+1) for all n. Note that this global solution is determined

by marching in time with a sequence of local optimal control problems; therefore, a
velocity tracking problem on a finite time interval (0, T ) with T <∞ can be studied
in the same manner by patching together only a finite number of the local optimal
control solutions. In the finite time interval case, we terminate the marching in time
after a finite number of time steps.
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In this paper, we will analyze the long-time behavior of global solutions for the
piecewise optimal control problem; define and analyze the dynamics of semidiscrete
approximations; and define and analyze the dynamics of fully discrete approximations.
The main results of this paper are that the L2(Ω) and H1(Ω) norms of the difference
between U(t) and û(t) decay to zero exponentially in time, with the rates independent
of the interval length δ; the same is true of the L2(Ω) and H1(Ω) norms of the
difference between U(tn) and ûn (ûn denotes the solution of the semidiscrete piecewise
optimal control problem), modular the error due to the approximation of the time
derivative; the same is also true of the L2(Ω) norm of the difference between U(tn) and
ûnh (ûnh denotes the solution of the fully discrete piecewise optimal control problem),
modular the error due to the approximation of the time derivative and the error due
to spatial discretizations. In short, the piecewise optimal control approach achieves
the physical objective of steering u to U over time. This analytical result is also
supported by the error analysis and by the computational results presented at the
end of the paper.

We mention that in [HRY], further computational results of the fully discrete
schemes were presented and some implementation issues were discussed. It should
also be noted that the fully discrete approximation schemes bear similarities to those
used in some other situations, e.g., [CTMK] for the Burgers equation and [Ra] for an
electrically conducting fluid, wherein fully discrete schemes were introduced from a
viewpoint different from that taken in this paper and wherein no error analysis were
given.

1.2. Preliminaries. Throughout this paper, C denotes a generic constant de-
pending only on the physical domain Ω and the viscosity constant ν. We will use the
standard notations for the function spaces Lr(Ω) with the norm denoted by ‖ · ‖Lr(Ω)
and the Sobolev spaces Hm(Ω) with the norm denoted by ‖ · ‖m. H0(Ω) = L2(Ω).
Also, Hm

0 (Ω) is the closure of C∞0 (Ω) under the ‖·‖m norm. The dual space of Hr
0 (Ω)

is denoted by H−r(Ω), r > 0. The vector-valued (R2-valued) counterparts of these
spaces are denoted by Lr(Ω), Hm(Ω), Hm

0 (Ω), and H−m(Ω). For details, see [Ad]
and [GR]. We introduce the solenoidal spaces

W = {u ∈ L2(Ω) : ∇ · u = 0, (u · n)|Γ = 0} equipped with the ‖ · ‖0 norm

and

V = {u ∈ H1
0(Ω) : ∇ · u = 0} equipped with the ‖ · ‖1 norm,

i.e., the closure of div-free, C∞0 (Ω)-functions under the ‖ · ‖0 and ‖ · ‖1 norms, re-
spectively; see [GR] or [Te] for a discussion of this functional spaces. We identify the
dual space of W with W itself under the L2(Ω) inner product. We will also need the
following subspace of L2(Ω):

L2
0(Ω) def

{
r ∈ L2(Ω) :

∫
Ω
r dx = 0

}
.

We next introduce the temporal-spatial function spaces, defined on Ω× (T1, T2) with
(T1, T2) ⊂ (0,∞), r ∈ [1,∞], and s ∈ (−∞,∞):

Lr (T1, T2; Hs(Ω)) r ∈ [1,∞] , s ∈ (−∞,∞) ,

equipped with the norm

‖u‖Lr(T1,T2;Hs(Ω)) =

(∫ T2

T1

‖u(t)‖rs dt
)1/r
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and with s ≥ 1:

H(s) (Ω× (T1, T2)) =
{
v ∈ L2 (T1, T2; Hs(Ω) ∩H1

0(Ω)
)

: ∂tv ∈ L2 (T1, T2; Hs−2(Ω)
)}

equipped with the norm

‖v‖2H(s)(Ω×(T1,T2)) = ‖v‖2L2(T1,T2;Hs(Ω)) + ‖∂tv‖2L2(T1,T2;Hs−2(Ω)) .

For a function u in a temporal-spatial space, we often use the notation

u(t) def u(·, t)

to stand for the restriction of u at time t as a function defined over the spatial domain
Ω.

We introduce the simplified norm notations

(1.6) ‖ · ‖ def ‖ · ‖L2(Ω) or ‖ · ‖ def ‖ · ‖L2(Ω) ,

(1.7) |‖·‖| def ‖ · ‖L∞(0,∞;L2(Ω)),

and

(1.8) |‖·‖|∞
def ‖ · ‖L∞(Ω×(0,∞)) .

Also, (·, ·) denotes the inner product on L2(Ω) or L2(Ω) and 〈·, ·〉 denotes the duality
pairing between H1

0(Ω) and H−1(Ω).
To define the solution for the Navier–Stokes equations (in a weak sense), we

introduce some standard continuous bilinear or trilinear forms:

a(u,v) = ν

∫
Ω
∇u : ∇v dx ∀u,v ∈ H1(Ω) ,

b(u, p) = −
∫

Ω
p div u dx ∀u ∈ H1(Ω) ;∀ p ∈ L2(Ω),

and

c(u,v,w) =
∫

Ω
(u · ∇)v ·w dx ∀u,v,w ∈ H1(Ω) ,

where the colon notation: denotes the inner product on R2×2. We have the following
useful properties for the trilinear form c(·, ·, ·):

(1.9) c(u,v,w) = −c(u,w,v) ∀u ∈ V, ∀v,w ∈ H1(Ω)

and

(1.10) c(u,v,v) = 0 ∀u ∈ V, ∀v ∈ H1(Ω).

We denote by C0 the continuity constant for the trilinear form c(·, ·, ·), i.e.,

(1.11) |c(u,v,w)| ≤ C0‖∇u‖ ‖∇v‖ ‖w‖L4(Ω) ∀u ∈ V, ∀v,w ∈ H1(Ω) .

We now give the following definitions of a solution for the Navier–Stokes equations
on a finite time interval and on the infinite time interval, respectively.
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DEFINITION 1.1. Given (T1, T2) ⊂ (0,∞) with T2 < ∞, f ∈ L2(T1, T2; H−1(Ω))
and ξξξ ∈W, (u, p) is said to be a solution of the Navier–Stokes equations on (T1, T2)
iff u ∈ H(1)(Ω× (T1, T2)), p ∈ L2(T1, T2;L2

0(Ω)), and (u, p) satisfies

(1.12)
〈∂tu(t),w〉+ a (u(t),w) + c (u(t),u(t),w) + b (w, p(t))

= 〈f(t),w〉 ∀w ∈ H1
0(Ω), a.e. t ∈ (T1, T2) ,

(1.13) b (u(t), r) = 0 ∀ r ∈ L2
0(Ω), a.e. t ∈ (T1, T2)

and

(1.14) lim
t→T+

1

u(t) = ξξξ in W .

We point out that u ∈ H(1) (Ω× (T1, T2)) implies u ∈ C ([T1, T2]; W) so that
(1.14) makes sense. It is well known that if (T1, T2) is a finite subinterval of (0,∞)
and if f ∈ L2

(
T1, T2; L2(Ω)

)
, then there is indeed a strong solution u for the Navier–

Stokes equations satisfying the regularity result u ∈ L2(T1, T2; H1
0(Ω)) ∩ L2(T1 +

ε, T2; H2(Ω)) and ut ∈ L2(T1 + ε, T2; W) for all ε > 0. Furthermore, if ξξξ ∈ V, then
u ∈ C([T1, T2]; V) ∩ L2(T1, T2; H2(Ω)) (see [CF] and [Te]).

For T =∞, we define a solution for the Navier–Stokes equations as follows.
DEFINITION 1.2. Given ξξξ ∈ W and f ∈ L2(0, T ′; H−1(Ω)) for all T ′ > 0, (u, p)

is said to be a solution of the Navier–Stokes equations on (0,∞) iff u ∈ L∞(0,∞; W)
and (u, p) is a solution of the Navier–Stokes equations on (0, T ′) for all T ′ > 0.

We now turn to the definition of the piecewise optimal control problem. We
introduce the (local) functional

(1.15) J(T1,T2)(u, f) =
α

2

∫ T2

T1

∫
Ω
|u−U|2 dx dt+

β

2

∫ T2

T1

∫
Ω
|f − F|2 dx dt .

We choose the fixed body force F as

(1.16) F = N(U) def
∂tU− ν∆U + (U · ∇)U .

We make the following regularity assumptions on the prescribed data U and F:

(A1)

U = U(x, t) ∈ C
(
[0,∞); H2(Ω) ∩H1

0(Ω)
)
∩ L∞

(
0,∞; H2(Ω)

)
,

div U = 0,
F = N(U) ∈ L∞

(
0,∞; L2(Ω)

)
.

We define the (local) admissible elements as follows.
DEFINITION 1.3. Let (T1, T2) ⊂ (0,∞) with T2 <∞ and ξξξ ∈W be given. A triplet

(u, p, f) is said to be an admissible element on (T1, T2) if u ∈ H(1) (Ω× (T1, T2)),
p ∈ L2

(
T1, T2;L2

0(Ω)
)
, f ∈ L2

(
T1, T2; L2(Ω)

)
, and (u, p, f) satisfies (1.12)–(1.14).

The set of all admissible elements on (T1, T2) is denoted by Vad(T1, T2, ξξξ).
We are now prepared to state precisely the piecewise optimal control problem to

be studied in this paper.
• Choose δ > 0 sufficiently small, and set tn = nδ for n = 0, 1, 2, . . . .
• Set û(0)(0) def u0.
• For n = 0, 1, 2, . . ., find (û(n+1), p̂(n+1), f̂ (n+1)) ∈ Vad(tn, tn+1, û(n)(·, tn)) such

that

J(tn,tn+1)(û(n+1), f̂ (n+1)) ≤ J(tn,tn+1)(u, f)

for all admissible elements (u, p, f) ∈ Vad(tn, tn+1, û(n)(·, tn)).
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The global optimal solution (û, p̂, f̂) is defined as in section 1.1 by patching together
local optimal solutions (û(n+1), p̂(n+1), f̂ (n+1)).

We terminate this section with some useful inequalities. The first inequality is
the Poincaré inequality

(1.17) ‖∇w‖2 ≥ λ1‖w‖2 ∀w ∈ H1
0(Ω),

where λ1 > 0 is the greatest real number such that (1.17) holds. The second inequality
is connected with the Leray operator

(1.18) Π : L2(Ω)→W

(i.e., the orthogonal projection with respect to the L2(Ω) norm). It is well known (see
[CF]) that there is a constant CΠ > 0 depending only on Ω such that

(1.19) CΠ‖w‖2 ≤ ‖Π∆w‖ ≤ ‖w‖2 ∀w ∈ H2(Ω) ∩V .

In other words, ‖Π∆ · ‖ is equivalent to the H2(Ω) norm on H2(Ω) ∩V.

2. Dynamics of the piecewise optimal control problem. We now study
the dynamics of the piecewise optimal control problem stated in the last section. We
point out that for each n, the existence of an optimal solution was established in [Fu1],
[Fu2], [Fu3], and [Li] (see also [AT]) for finite time interval and in [HY] for infinite
time interval. Recall from our physical objective that we wish the optimal solution
û to match U over time; i.e., we wish ‖û(t)−U(t)‖ → 0 and ‖∇û(t)−∇U(t)‖ → 0
as t → ∞. Such decay properties are established in [HY] for the solutions of the
infinite-time optimal control problem. We will prove in this paper that these decay
properties are true for the solutions of the piecewise optimal control problem, and,
more importantly, the decay rates are exponential.

For technical reasons, we will need the following assumption:

(A2) ‖U‖L∞(0,∞;L4(Ω)) ≤
ν

2C0
,

where C0 is the constant in (1.11).
PROPOSITION 2.1. Assume that (A1) and (A2) hold. Then for any T1 and T2

with 0 ≤ T1 < T2 and any ξξξ ∈W,

(2.1)
inf

(u,p,f)∈Vad(T1,T2,ξξξ)
J(T1,T2)(u, f) ≤ α‖ξξξ −U(T1)‖2

νλ1

(
1− e−νλ1(T2−T1)/2

)
≤ α(T2 − T1)

2
‖ξξξ −U(T1)‖2,

where λ1 > 0 is the Poincaré constant defined by (1.17).
Proof. Let (ũ, p̃) ∈ H(1)((T1, T2)× Ω)× L2(T1, T2;L2

0(Ω)) be the solution of

〈∂tũ(t),w〉+ a(ũ(t),w) + c(ũ(t), ũ(t),w) + b(w, p̃(t))

= (F(t),w) ∀w ∈ H1
0(Ω), a.e. t ∈ (T1, T2) ,

b(ũ(t), r) = 0 ∀ r ∈ L2
0(Ω), a.e. t ∈ (T1, T2),

and

lim
t→T+

1

ũ(t) = ξξξ in W .
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Let f̃ def F. Then (ũ, p̃, f̃) ∈ Vad(T1, T2, ξξξ). Setting ṽ = ũ−U, we obtain

(2.2)
〈∂tṽ(t),w〉+ a (ṽ(t),w) + c (ṽ(t), ṽ(t),w) + c (U(t), ṽ(t),w)

+ c (ṽ(t),U(t),w) + b (w, q̃(t)) = 0 ∀w ∈ H1
0(Ω), a.e. t ∈ (T1, T2) ,

(2.3) b (ṽ(t), r) = 0 ∀ r ∈ L2
0(Ω), a.e. t ∈ (T1, T2),

and

(2.4) lim
t→T+

1

ṽ(t) = ξξξ −U(·, T1) in W .

By setting w = ṽ in (2.2), we have that

(2.5)
1
2
d

dt
‖ṽ(t)‖2 + ν ‖∇ṽ(t)‖2 + c (ṽ(t),U(t), ṽ(t)) = 0.

By (1.9) and (1.11),

(2.6) |c (ṽ(t),U(t), ṽ(t))| ≤ C0‖U(t)‖L4(Ω) · ‖∇ṽ(t)‖2 .

Then, from (2.5) and (2.6), we have that

1
2
d

dt
‖ṽ(t)‖2 +

(
ν − C0‖U(t)‖L∞(0,∞;L4(Ω))

)
‖∇ṽ(t)‖2 ≤ 0.

Since (A2) implies ν − C0‖U(t)‖L∞(0,∞;L4(Ω)) ≥ ν
2 , we see that

d

dt
‖ṽ(t)‖2 +

ν

2
‖∇ṽ(t)‖2 ≤ 0.

Applying the Poincaré inequality and then Gronwall’s inequality, we obtain

(2.7) ‖ṽ(t)‖2 ≤ ‖ṽ(T1)‖2 · e−νλ1(t−T1)/2 = ‖ξξξ −U(T1)‖2 · e−νλ1(t−T1)/2.

Hence,

J(T1,T2)(ũ, f̃) =
α

2

∫ T2

T1

‖ṽ(t)‖2 dt ≤ α

2
‖ξξξ −U(T1)‖2

∫ T2

T1

e−νλ1(t−T1)/2 dt

=
α‖ξξξ −U(T1)‖2

νλ1

(
1− e−νλ1(T2−T1)/2

)
≤ α

2
(T2 − T1)‖ξξξ −U(T1)‖2,

where we have used the fact that 1 − e−y ≤ y for all y ∈ [0,∞). This completes the
proof.

LEMMA 2.2. Let η, σ, and γ be positive numbers satisfying γ < 1 and σ ≤ η.
Then there is a constant δ0 > 0 such that

0 < ϕ(s) def
e−ηs + γ

(
1− e−σs

)
< 1 for s ∈ (0, δ0).

Proof. Note that ϕ(0) = 1 and ϕ′(0) = −η + γσ < 0. Thus the lemma follows by
elementary calculus.

We are now prepared to show that ‖u(tn)−U(tn)‖ is monotonically decreasing.
THEOREM 2.3. Assume that (A1) and (A2) hold. Assume further that

(A3)
α

β
<

(
νλ1

2

)2

.
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Then there are constants

δ0 = δ0(ν,Ω) > 0,

µ = µ(ν,Ω) ∈ (0, 1),

and

M1 = M1(ν,Ω) > 0

such that if T2 − T1 ≤ δ0 and (u, p, f) ∈ Vad(T1, T2, ξξξ) satisfies

J(T1,T2)(u, f) ≤ J(T1,T2)(w,k) ∀ (w, r,k) ∈ Vad(T1, T2; ξξξ)

(i.e., (u, p, f) is an optimal solution on (T1, T2)), then the terminal state u(T2) satisfies

‖u(T2)−U(T2)‖2 ≤ µ ‖u(T1)−U(T1)‖2

and the intermediate state u(t) satisfies

‖u(t)−U(t)‖2 ≤M1 ‖u(T1)−U(T1)‖2 ∀ t ∈ [T1, T2].

Proof. As usual we set v = u−U and g = f − F; then (v, p,g) satisfies

(2.2a)
〈∂tv,w〉+ c(v,v,w) + c(U,v,w) + c(v,U,w)

+ a(v,w) + b(w, p) = (g,w) ∀w ∈ H1
0(Ω), a.e. t ∈ (T1, T2)

and (2.3), (2.4). Setting w = v in (2.2a) and using (A2), (1.11), and Young’s inequal-
ity, we have

1
2
d

dt
‖v(t)‖2 + ν ‖∇v(t)‖2 ≤ C0‖U(t)‖L4(Ω) · ‖∇v(t)‖2 + ‖v(t)‖ · ‖g(t)‖

≤ ν

2
‖∇v(t)‖2 +

1

2
√
αβ

(
α ‖v(t)‖2 + β ‖g(t)‖2

)
,

so that by applying the Poincaré inequality,

(2.8)

d

dt
‖v(t)‖2 + νλ1 ‖v(t)‖2 ≤ d

dt
‖v(t)‖2 + ν ‖∇v(t)‖2

≤ 1√
αβ

(
α ‖v(t)‖2 + β ‖g(t)‖2

)
.

Multiplying both sides of the last equation by eνλ1(t−T1) and integrating over (T1, t),

‖v(t)‖2eνλ1t − ‖v(T1)‖2eνλ1T1 ≤ 1√
αβ

∫ t

T1

(
α ‖v(s)‖2 + β ‖g(s)‖2

)
eνλ1sds

or

(2.9)

‖v(t)‖2 − ‖v(T1)‖2e−νλ1(t−T1)

≤ 1√
αβ

∫ t

T1

(
α ‖v(s)‖2 + β ‖g(s)‖2

)
e−νλ1(t−s)ds

≤ 1√
αβ

∫ t

T1

(
α ‖v(s)‖2 + β ‖g(s)‖2

)
ds ≤ 2√

αβ
J(T1,T2)(u, f).
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We obtain, upon applying Proposition 2.1,

(2.10)

‖v(t)‖2 ≤ ‖v(T1)‖2 e−νλ1(t−T1) +
2√
αβ
· J(T1,T2)(u, f)

≤ ‖v(T1)‖2
(
e−νλ1(t−T1) +

2
νλ1

√
α

β
·
(

1− e−νλ1(T2−T1)/2
))

.

Set

η
def

νλ1, σ
def

νλ1/2, γ
def 2

νλ1

√
α

β
,

δ
def

T2 − T1 and ϕ(r) def
e−ηr + γ(1− e−σδ) ∀r ∈ [0, δ].

Then (2.10) can be rewritten as

‖v(t)‖2 ≤ ‖v(T1)‖2 ϕ(t− T1) ∀ t ∈ [T1, T2] .

Clearly, ϕ(r) ≤ 1 + γ for all r ∈ [0, δ] so that by setting M1 = 1 + γ, ‖v(t)‖2 ≤
M1‖v(T1)‖2 for all t ∈ [T1, T2]. Moreover, by (A2) and (A3), the conditions of Lemma
2.2 are satisfied. Thus it follows from Lemma 2.2 that there exists a δ0 > 0 such that
0 < ϕ(δ) < 1 if δ ∈ (0, δ0] and, in particular,

µ
def

ϕ(T2 − T1) < 1.

Hence ‖v(T2)‖2 ≤ µ‖v(T1)‖2 .
Set û(0)(0) = u0 and fix δ ∈ (0, δ0], where δ0 is as in Theorem 2.3. For n =

0, 1, 2, . . . , let tn = nδ and (û(n+1), p̂(n+1), f̂ (n+1)) ∈ Vad(tn, tn+1, û(n)(tn)) be the
optimizer minimizing J(tn,tn+1)(u, f) over Vad(tn, tn+1, û(n)(tn)). Define (û, p̂, f̂) by

(2.11)
û(x, t) = û(n+1)(x, t), p̂(x, t) = p̂(n+1)(x, t),

and f̂(x, t) = f̂ (n+1)(x, t) for t ∈ [tn, tn+1) ∀n .

We can easily verify that (û, p̂) gives a solution of the Navier–Stokes equations (with
a forcing term f̂) on the infinite time interval (0,∞) in the sense of Definition 1.2.

PROPOSITION 2.4. Assume that the hypotheses of Theorem 2.3 hold. Let η, σ,
γ, δ0, and µ = e−ηδ + γ(1 − e−σδ) be as in Theorem 2.3 with δ ≤ δ0. Then (û, p̂, f̂)
constructed in (2.11) satisfies

(2.12) û ∈ C([0,∞); W)

and

(2.13) J(tn,∞)(û, f̂) ≤ αδ

2(1− µ)
· ‖u0 −U0‖2 · µn, n = 0, 1, 2, . . . .

In particular,

J(0,∞)(û, f̂) ≤ αδ

2(1− µ)
· ‖u0 −U0‖2

and

û−U ∈ L2(0,∞; W) and f̂ − F ∈ L2(0,∞; W).
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Proof. By the classical results for the Navier–Stokes equations (see [Te]) we have
that û|(tn,tn+1) = û(n+1) ∈ C([tn, tn+1]; W) for each n ≥ 0. The initial conditions
û(n+1)(tn) = û(n)(tn) guarantee the continuity of û at each tn in W. Hence, (2.12)
is proven.

Applying Proposition 2.1 and Theorem 2.3, we obtain

J(tn,tn+1)(û, f̂) ≤ J(tn,tn+1)(ũ(n+1), f̃ (n+1))

≤ α

νλ1

(
1− e−νλ1δ/2

)
·
∥∥∥û(n)(tn)−U(tn)

∥∥∥2

≤ α

νλ1

(
1− e−νλ1δ/2

)
· µn ‖u0 −U0‖2 .

Hence

J(tn,∞)(û, f̂) =
∞∑
m=n

J(tm,tm+1)(û, f̂) ≤
α
(

1− e−νλ1δ/2
)

νλ1(1− µ)
· ‖u0 −U0‖2 · µn.

When n = 0, this reduces to

J(0,∞)(û, f̂) ≤ αδ

2(1− µ)
· ‖u0 −U0‖2,

which in turn implies (from the definition of J(0,∞)) that

û−U ∈ L2(0,∞; W) and f̂ − F ∈ L2(0,∞; W).

Remark 2.5. As a consequence of Lemma 2.2 and Theorem 2.3 we note that when
0 < δ � 1, µ = ϕ(δ) = e−ηδ + γ

(
1− e−σδ

)
= 1− (η − γσ)δ +O

(
δ2
)

so that

J(0,∞)(û, f̂) ≤ α‖u0 −U0‖2
2(η − γσ)

+O(δ).

Hence J(0,∞)(û, f̂) remains bounded as δ → 0+.
LEMMA 2.6. Suppose that a function ψ(t) defined on [0,∞) is nonnegative and

that there exist constants µ ∈ (0, 1), M1 > 0 and δ ∈ (0,∞) such that

ψ(nδ) ≤ µψ ((n− 1)δ) , n = 1, 2, . . .

and

ψ(s) ≤M1ψ(nδ) ∀ s ∈ [nδ, (n+ 1)δ), n = 0, 1, 2, . . . .

Then

ψ(t) ≤M2 e
−κt ∀ t ∈ [0,∞),

where

M2
def M1

µ
ψ(0) ≥ 0 and κ

def − lnµ
δ

> 0.

Proof. We can verify by induction that ψ(nδ) ≤ µnψ(0). Then for each t ∈ [0,∞),
there is a unique integer n such that nδ ≤ t ≤ (n+ 1)δ, which yields

ψ(t) ≤M1ψ(nδ) ≤M1µ
nψ(0) = M1ψ(0)en lnµ

= M1ψ(0)e(nδ−t)(lnµ)/δ · et(lnµ)/δ ≤
[
M1ψ(0)e− lnµ] · et(lnµ)/δ = M2e

−κt.



DYNAMICS OF VELOCITY TRACKING VIA PIECEWISE CONTROLS 1857

THEOREM 2.7. Assume that the conditions of Theorem 2.3 hold and let δ0 and µ
be as defined in Theorem 2.3 and δ ≤ δ0. Then ‖û(t)−U(t)‖ decays exponentially:

(2.14) ‖û(t)−U(t)‖2 ≤M3‖u0 −U0‖2e−κt,

where

M3 = M3(ν,Ω) def M1

µ
and κ = M3(ν,Ω) def − lnµ

δ
.

Proof. (2.14) is a direct consequence of Theorem 2.3 and Lemma 2.6.
Remark 2.8. By Theorems 2.3 and 2.7 together with (A2), we see that when

0 < δ � 1,

M3 =
1 + γ

1 +O(δ)
= 1 +

2
νλ1

√
α

β
+O(δ) ≤ 2 +O(δ)

and

κ =
− lnµ
δ

=
− ln

[
1− (η − γσ)δ +O

(
δ2)]

δ
= (1− γ/2)νλ1 +O(δ);

both remain bounded as δ → 0+.
To prove the exponential decay property of ‖∇u(t)−∇U(t)‖, we study the local

behavior of the optimizer (û(n+1), p̂(n+1), f̂ (n+1)) defined by (2.11). We need to assume
the following global regularity on the desired flow U:

(A4) sup
t∈(0,∞)

‖∇U(t)‖L∞(Ω) <∞.

Also, it follows from (A1) and the continuous embedding H2(Ω) ↪→ L∞(Ω) that

sup
t∈(0,∞)

‖U(t)‖L∞(Ω) <∞ .

LEMMA 2.9. Suppose that the conditions of Theorem 2.7 and (A4) hold. Denote
by v̂ = û−U and ĝ = f̂ − F. Then

(2.15) ν

∫ ∞
tn

‖∇v̂(t)‖2dt ≤ ‖v̂(n)(tn)‖2 +
1√
αβ
J(tn,∞)(û, f̂) .

Also, there exist constants C1, C2 > 0 such that for δ as in Theorem 2.7,

(2.16)

‖∇v̂(T2)‖2 exp

{
−C2‖v̂(tn0)‖2

∫ T2

tn0

‖∇v̂(s)‖2ds
}

− ‖∇v̂(T1)‖2 exp

{
−C2‖v̂(tn0)‖2

∫ T1

tn0

‖∇v̂(s)‖2ds
}

≤ C1

∫ T2

T1

(
‖∇v̂(s)‖2 + ‖ĝ(s)‖2

)
exp

{
−C2‖v̂(tn0)‖2

∫ s

tn0

‖∇v̂(σ)‖2dσ
}
ds

for all [T1, T2] ⊂ [tn, tn+1] if n ≥ 1 or [T1, T2] ⊂ (t0, t1]. Here, in (2.16), tn0 ≤ T1 is
arbitrarily fixed.
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Proof. Note that for t ∈ (tn, tn+1), (û(t), f̂(t)) = (û(n+1)(t), f̂ (n+1)(t)) and
(v̂(n+1)(t), f̂ (n+1)(t)) = (û(n+1)(t)−U(t), f̂ (n+1)(t)−F(t)). For each j ≥ n, integrating
the second inequality of (2.8), we obtain

‖v(tj+1)‖2 − ‖v(tj)‖2 ≤
1√
αβ

∫ tj+1

tj

(
α‖v(s)‖2 + β‖g(s)‖2

)
ds ∀j ≥ n.

Summing over j ≥ n, we obtain (2.15).
By classical arguments (see [Te] and [CF]), the weak form (2.2a) implies that

(v, p,g) satisfies the strong form

(2.17) ∂tv −∆v + (v · ∇)v + (U · ∇)v + (v · ∇)U +∇p = g a.e. t ∈ (T1, T2).

Taking the inner product of (2.17) with −Π∆v̂, where Π is the Leray projector defined
in (1.18), and applying the Schwarz inequality, we obtain, for t ∈ (tn, tn+1),

(2.18)

1
2
d

dt
‖∇v̂(t)‖2 + ν‖Π∆v̂(t)‖2

≤ ((v̂(t) · ∇)v̂(t),Π∆v̂(t)) + ((U(t) · ∇)v̂(t),Π∆v̂(t))
+ ((v̂(t) · ∇)U(t),Π∆v̂(t))− (g(t),Π∆v̂(t))
≤ C‖v̂(t)‖L4(Ω) ‖∇v̂(t)‖L4(Ω) ‖Π∆v̂(t)‖

+
(
‖U(t)‖L∞(Ω) ‖∇v̂(t)‖+ ‖∇U(t)‖L∞(Ω) ‖v̂(t)‖+ ‖g(t)‖

)
· ‖Π∆v̂(t)‖.

But ‖w‖L4 ≤ C‖w‖1/2‖∇w‖1/2 for all w ∈ H1
0(Ω), so together with (1.19), we

have that ‖v̂‖L4‖∇v̂‖L4‖Π∆v̂‖ ≤ C‖v̂‖1/2‖∇v̂‖ · ‖Π∆v̂‖3/2. By applying Young’s
inequality, (2.18) yields

(2.19)
d

dt
‖∇v̂(t)‖2 + ν‖Π∆v̂(t)‖2 ≤ C‖v̂(t)‖2 ‖∇v̂(t)‖4

+ C(‖U(t)‖2L∞(Ω) + ‖∇U(t)‖2L∞(Ω) + 1) · (‖∇v̂(t)‖2 + ‖ĝ(t)‖2),

where, and from now on, C is a generic constant depending only on Ω and ν. By
(A4),

(2.20) C1 = C1(ν,Ω,U) def
C sup
s∈(0,∞)

{
‖U(s)‖2L∞(Ω) + ‖∇U(s)‖2L∞(Ω) + 1

}
<∞ .

Theorem 2.3 and the fact that t ≥ T1 ≥ tn ≥ tn0 imply that

C‖v̂(t)‖2 ≤ CM1µ
n−n0‖v̂(tn0)‖2 ≤ CM1‖v̂(tn0)‖2 ∀ t ∈ [T1, T2].

Setting C2 = C2(ν,Ω) = CM1, we obtain from (2.19) that

d

dt
‖∇v̂(t)‖2 − C2‖v̂(tn0)‖2‖∇v̂(t)‖4 ≤ C1(‖∇v̂(t)‖2 + ‖ĝ(t)‖2).

Multiplying this inequality by exp{−C2‖v̂(tn0)‖2
∫ t
tn0
‖∇v̂(s)‖2ds} and integrating

over t ∈ (T1, T2), we obtain (2.16).
Now we can prove the exponential decay of ‖∇v̂(t)‖ = ‖∇û(t)−∇U(t)‖. We will

keep the above notations.
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THEOREM 2.10. Assume that the conditions of Theorem 2.7 and (A4) hold. Then,
for each fixed τ ∈ (0, 1),

‖∇v̂(t)‖2 ≤ C3‖u0 −U0‖2e−κt exp
{
C4‖u0 −U0‖4e−2κt} ∀ t ≥ τ,

where

C3 = C3(ν,Ω,U)

def
((

1
τ

+ C1

) (
M3 +

δ

2(1− µ)

√
α

β

)
eκδ

ν
+

αC1δ

β(1− µ)

)
eκ(τ+δ)

and

C4 = C4(ν,Ω,U) def
C2M3

(
M3 +

δ

2(1− µ)

√
α

β

)
eκ(2τ+3δ)

with κ, µ, and δ defined in Theorem 2.7 and C1 and C2 defined in Lemma 2.9.
Proof. Let τ ∈ (0, 1) and t > τ be given. Denote by [s] the maximum integer not

greater than s. Then n1
def [(t−τ)/δ] ≥ 0 and tn1 ≤ t−τ . For any s1 ∈ [t−τ, t], by re-

peatedly applying (2.16) for (T1, T2) = (s1, t[s1/δ]+1), (t[s1/δ]+1, t[s1/δ]+2), . . . , (t[t/δ], t)
and taking the summation, we obtain

‖∇v̂(t)‖2 exp

{
−C2‖v̂(tn1)‖2

∫ t

tn1

‖∇v̂(s)‖2ds
}

− ‖∇v̂(s1)‖2 exp

{
−C2‖v̂(tn1)‖2

∫ s1

tn1

‖∇v̂(s)‖2ds
}

≤ C1

∫ t

s1

(
‖∇v̂(s)‖2 + ‖ĝ(s)‖2

)
exp

{
−C2‖v̂(tn1)‖2

∫ s

tn1

‖∇v̂(σ)‖2dσ
}
ds

or

‖∇v̂(t)‖2 ≤ ‖∇v̂(s1)‖2 exp
{
C2‖v̂(tn1)‖2

∫ t

s1

‖∇v̂(s)‖2ds
}

+ C1

∫ t

s1

(
‖∇v̂(s)‖2 + ‖ĝ(s)‖2

)
exp

{
C2‖v̂(tn1)‖2

∫ t

s

‖∇v̂(σ)‖2dσ
}
ds

≤
(
‖∇v̂(s1)‖2 + C1

∫ t

t−τ

(
‖∇v̂(s)‖2 + ‖ĝ(s)‖2

)
ds

)
· exp

{
C2‖v̂(tn1)‖2

∫ t

t−τ
‖∇v̂(s)‖2ds

}
.

Integrating this inequality over s1 ∈ (t− τ, t), we obtain

(2.21)
‖∇v̂(t)‖2 ≤

((
1
τ

+ C1

)∫ t

t−τ
‖∇v̂(s)‖2 ds+ C1

∫ t

t−τ
‖ĝ(s)‖2 ds

)
· exp

{
C2‖v̂(tn1)‖2

∫ t

t−τ
‖∇v̂(s)‖2 ds

}
.

Now we apply Lemma 2.9 and Theorem 2.3 to obtain

ν

∫ t

t−τ
‖∇v̂(s)‖2ds ≤ ν

∫ ∞
tn1

‖∇v̂(s)‖2ds ≤ ‖v̂(tn1)‖2 +
1√
αβ
J(tn1 ,∞)(û, f̂) .
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By Theorem 2.7 and Proposition 2.4,∫ t

t−τ
‖∇v̂(s)‖2ds ≤

(
M3 +

δ

2(1− µ)

√
α

β

)
eκδ

ν
‖u0 −U0‖2µ[t−τ ]e−κ(t−τ),∫ t

t−τ
‖ĝ(s)‖2ds ≤ 2

β
J(tn1 ,tn2 )(û(n), f̂ (n)) ≤ αδeκδ

β(1− µ)
‖u0 −U0‖2e−κ(t−τ),

and

‖v̂(tn1)‖2 ≤M3‖u0 −U0‖2e−κ(t−τ).

The theorem is therefore proven when one combines the last three estimates and
(2.21).

Remark 2.11. By virtue of Remarks 2.5 and 2.8, C3 and C4 in Theorem 2.10
remain bounded as δ → 0+.

COROLLARY 2.12. Assume that the conditions of Theorem 2.10 hold. Then there
exists a function θ(δ) = θ(δ; u0,U0, ν,Ω) which is continuous in δ ∈ (0, δ0] such that
limδ→0+ θ(δ) <∞ and

‖∇v̂(t)‖ ≤ θ(δ)t−1/2 ∀t ≤ 1.

Namely,

‖∇v̂(t)‖ = O(t−1/2) as t→ 0+

holds uniformly for δ > 0 small enough.
Proof. Set t = 2τ in Theorem 2.10; then the corollary is evident.

3. Semidiscrete approximations of the piecewise optimal control prob-
lem. In order to compute the optimal solutions of the piecewise optimal control prob-
lem analyzed in section 2, we need to discretize this problem in both time and space.
In this section we will discuss only semidiscretizations (i.e., time discretizations).

3.1. Definition of the semidiscrete piecewise optimal control problem.
We semidiscretize the functional J(tn,tn+1)(u, f) by the right-endpoint rectangle rule∫ tn+1

tn
ϕ(t) dt ≈ δϕ(tn+1) so that the semidiscretized functional becomes

J n+1(u, f) =
δα

2
‖u−Un+1‖2 +

δβ

2
‖f − Fn+1‖2 ∀u ∈ H1

0(Ω),∀ f ∈ L2(Ω) ,

where Un+1 = Un+1(x) = U(x, tn+1) and Fn+1 = Fn+1(x) = F(x, tn+1) with tn =
nδ for n = 0, 1, 2, . . .. Since δ is fixed, the minimization of J n+1(u, f) is equivalent to
the minimization of Ln+1(u, f) def

δ−1J n+1(u, f). Thus, instead of the functional
J n+1(u, f), we will use the functional

Ln+1(u, f) =
α

2
‖u−Un+1‖2 +

β

2
‖f − Fn+1‖2 ∀u ∈ H1

0(Ω),∀ f ∈ L2(Ω) .

To semidiscretize the Navier–Stokes equations on (tn, tn+1), we in principle may
choose a time step ∆t independent of δ (of course ∆t ≤ δ). From the analysis in
the last section, the exponential decay rates remain bounded as δ → 0+. In other
words, the piecewise controlled dynamics eventually remain unchanged for arbitrarily
small δ. Therefore it is reasonable to choose ∆t = δ, i.e., the functional and the
Navier–Stokes equations are semidiscretized by the same time stepping. We state the
semidiscrete approximation of the piecewise optimal control problem as follows.
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• Set ∆t = δ.
• Define û0 = U0.
• The (n+ 1)th semidiscrete optimal control problem:

for n = 0, 1, 2, . . ., find (ûn+1, p̂n+1, f̂n+1) ∈ H1
0(Ω) × L2

0(Ω) × L2(Ω) such
that the functional Ln+1(un+1, fn+1) is minimized subject to the semidiscrete
Navier–Stokes equations

(3.1)

1
∆t

(un+1,w) + a(un+1,w) + c(un+1,un+1,w) + b(w, pn+1)

=
1

∆t
(ûn,w) + (fn+1,w) ∀w ∈ H1

0(Ω)

and

(3.2) b(un+1, r) = 0 ∀ r ∈ L2
0(Ω) .

Note that for each n = 0, 1, 2, . . . , the (n + 1)th optimal control problem is a
steady-state problem for the state variable pair (un+1, pn+1) and the control vari-
able fn+1. Using the techniques of [GHS] concerning optimal control problems for
the steady-state Navier–Stokes equations, we can show the existence of a solution
(ûn+1, p̂n+1, f̂n+1) for the (n + 1)th optimal control problem. The remainder of this
section will be devoted to the study of ûn as n→∞.

3.2. Dynamics of the semidiscrete solutions of the piecewise optimal
control problem. We now study the behavior of the semidiscrete solution ûn as
n→∞.

By the finite difference approximation formula

∂tU(x, t) =
U(x, t+ ∆t)−U(x, t)

∆t
+ ∂2

ttU(x, t+ θ∆t)∆t,

where θ = θ(x, t) and |θ| < 1, we have that

(3.3)

1
∆t

(Un+1,w) + a(Un+1,w) + c(Un+1,Un+1,w)

=
1

∆t
(Un,w) + (Fn+1 − τττn+1,w) ∀w ∈ H1

0(Ω)

and

(3.4) b(Un+1, r) = 0 ∀ r ∈ L2
0(Ω) ,

where

(3.5) τττn+1 = ∆t ∂ttU (x, tn + θ(x, tn)∆t) .

LEMMA 3.1. Assume that (A1)–(A2) and

(A5) ∂tU ∈ C
(
[0,∞); H1(Ω)

)
, ∂ttU ∈ L∞ (Ω× (0,∞)) ∩ C

(
[0,∞); L2(Ω)

)
hold. Assume further that (ûn+1, p̂n+1, f̂n+1) is a solution of the (n+1)th semidiscrete
optimal control problem for n = 1, 2, . . .. Then

Ln+1(ûn+1, f̂n+1) ≤ α

2

(
‖ûn −Un‖2

1 + C5∆t
+

C6(∆t)3

1 + C5∆t

)
,
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where

(3.6) C5 = C5(ν,Ω) def νλ1

2
and C6 = C6(ν,Ω,U) def 2 |‖∂ttU‖|2

νλ1

with the norm |‖·‖| defined by (1.7).
Proof. Let (ũn+1, p̃n+1) be a solution of the equations

(3.7)

1
∆t

(ũn+1,w) + a(ũn+1,w) + c(ũn+1, ũn+1,w) + b(w, p̃n+1)

=
1

∆t
(ûn,w) + (Fn+1,w) ∀w ∈ H1

0(Ω)

and

(3.8) b(ũn+1, r) = 0 ∀ r ∈ L2
0(Ω) .

(The existence of such a (ũn+1, p̃n+1) can be proved by using the techniques for
proving the existence of a solution for the steady-state Navier–Stokes equations.) Set
f̃n+1 = Fn+1; then we see that (ũn+1, p̃n+1, f̃n+1) satisfies the semidiscrete Navier–
Stokes equations (3.7), (3.8). Let ṽn+1 = ũn+1 −Un+1 and q̃n+1 = p̃n+1. Then by
subtracting (3.3), (3.4) from (3.7), (3.8), we obtain

(3.9)

1
∆t

(ṽn+1,w) + a(ṽn+1,w) + c(ṽn+1, ṽn+1,w) + c(Un+1, ṽn+1,w)

+ c(ṽn+1,Un+1,w) + b(w, q̃n+1) =
1

∆t
(v̂n,w) + (τττn+1,w) ∀w ∈ H1

0(Ω)

and

(3.10) b(ṽn+1, r) = 0 ∀ r ∈ L2
0(Ω) .

Setting w = ṽn+1 in (3.9), integrating by parts, and using (1.11), we obtain

1
2∆t

(
‖ṽn+1‖2 − ‖v̂n‖2 + ‖ṽn+1 − v̂n‖2

)
+ ν‖∇ṽn+1‖2

= −c(ṽn+1,Un+1, ṽn+1) + (τττn+1, ṽn+1)

= c(ṽn+1, ṽn+1,Un+1) + (τττn+1, ṽn+1)

≤ C0‖Un+1‖L4(Ω)‖∇ṽn+1‖2 + ‖τττn+1‖ ‖ṽn+1‖,

so that by (A2) and Young’s inequality

(3.11)

1
2∆t

(
‖ṽn+1‖2 − ‖v̂n‖2 + ‖ṽn+1 − v̂n‖2

)
+ ν‖∇ṽn+1‖2

≤ ν

2
‖∇ṽn+1‖2 +

1
νλ1
‖τττn+1‖2 +

νλ1

4
‖ṽn+1‖2.

Dropping the term ‖ṽn+1 − v̂n‖2 and rearranging, we have

(3.12)
1

2∆t
(
‖ṽn+1‖2 − ‖v̂n‖2

)
+
ν

4
‖∇ṽn+1‖2 ≤ 1

νλ1
‖τττn+1‖2

so that using the estimate ‖τττn+1‖ ≤ ∆t |‖∂ttU‖| and the Poincaré inequality, we are
led to

(1 + C5∆t) ‖ṽn+1‖2 ≤ ‖v̂n‖2 + C6(∆t)3,
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where C5 and C6 are defined by (3.6). Hence, we arrive at

Ln+1(ũn+1, f̃n+1) =
α

2
‖ṽn+1‖2 ≤ α

2

[
‖v̂n‖2

1 + C5∆t
+

C6(∆t)3

1 + C5∆t

]
.

(ûn+1, p̂n+1, f̂n+1) being a solution for the (n + 1)th optimal control problem, the
desired estimate follows trivially from this last inequality.

THEOREM 3.2. Assume that (A1)–(A3) and (A5) hold and 0 < ∆t ≤ 1. Then
there are positive constants C7, C8, κ1, and ρ1 such that

‖ûn+1 −Un+1‖2 ≤ (1− C7∆t)‖ûn −Un‖2 + C8(∆t)3

with 1− C7∆t > 0 and

(3.13) ‖ûn −Un‖2 ≤ ‖u0 −U0‖2 e−κ1tn + ρ1∆t2.

Proof. The optimizer (ûn+1, p̂n+1, f̂n+1) satisfies (3.1), (3.2). By setting v̂n+1 =
ûn+1 −Un+1, q̂n+1 = p̂n+1, ĝn+1 = f̂n+1 − Fn+1, and subtracting (3.3), (3.4) from
(3.1), (3.2), we see that

(3.14)

1
∆t

(v̂n+1,w) + a(v̂n+1,w) + c(v̂n+1, v̂n+1,w)

+ c(Un+1, v̂n+1,w) + c(v̂n+1,Un+1,w) + b(w, q̂n+1)

=
1

∆t
(v̂n,w) + (ĝn+1 + τττn+1,w) ∀w ∈ H1

0(Ω)

and

b(v̂n+1, r) = 0 ∀ r ∈ L2
0(Ω) .

Setting w = v̂n+1 in (3.14) and using the same techniques as in the proof of (3.11)
and (3.12), we obtain

(3.15)

1
2∆t

(
‖v̂n+1‖2 − ‖v̂n‖2

)
+
ν

4
‖∇v̂n+1‖2

≤
(
ĝn+1, v̂n+1)+

1
νλ1
‖τττn+1‖2

≤ 1√
αβ

(
α

2
‖v̂n+1‖2 +

β

2
‖ĝn+1‖2

)
+
C6(∆t)2

2
.

It thus follows from Lemma 3.1 and the Poincaré inequality that(
1 +

νλ1

2
∆t
)
‖v̂n+1‖2

≤
(

1 +
∆t

1 + C5∆t

√
α

β

)
‖v̂n‖2 + C6(∆t)3

(
1 +

∆t
1 + C5∆t

√
α

β

)
.

By (A3) and the fact that ∆t ≤ 1, we can find constants

C7 = C7(ν,Ω) def
(√

α

β
− νλ1

2

)
/
(

1 +
√
α

β

)
> 0
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and C8 = C8(ν,Ω,U) def
C6(ν,Ω,U) > 0 such that

‖v̂n+1‖2 ≤ (1− C7∆t)‖v̂n‖2 + C8(∆t)3 ∀n ≥ 0.

It is straightforward to verify by induction that

‖v̂n‖2 ≤ (1− C7∆t)n‖v̂0‖2 + C8(∆t)3
n−1∑
j=0

(1− C7∆t)j

= (1− C7∆t)n‖v̂0‖2 + [1− (1− C7∆t)n]
C8

C7
(∆t)2

≤
[
(1− C7∆t)

1
C7∆t

]C7 n∆t
‖v̂0‖2 +

C8

C7
(∆t)2 .

Applying the inequality 1− y ≤ e−y for all y ≥ 0, we are led to

‖v̂n‖2 ≤ ‖v̂0‖2e−C7 tn +
C8

C7
(∆t)2.

Setting κ1 = κ1(ν,Ω) = C7 and ρ1 = ρ1(ν,Ω,U) = C8/C7 completes the proof.
As an easy consequence of Theorem 3.2, we obtain the following estimate for the

difference between the continuous and semidiscrete solutions of the piecewise optimal
control problem.

COROLLARY 3.3. Assume the hypotheses of Theorem 3.2 hold. Let û(t) denote the
global solution of the piecewise optimal control problem as defined in section 2. Let ûn

denote the semidiscrete solution of the piecewise optimal control problem as defined
section 3.1. Then there exist positive constants K1 = K1(ν,Ω), K2 = K2(ν,Ω), and
K3 = K3(ν,Ω,U) such that

‖û(tn)− ûn‖ ≤ K1‖û0 −U0‖ e−K2tn +K3∆t, n = 0, 1, 2, . . . .

Remark 3.4. In the semidiscretization of the Navier–Stokes equations we used the
first-order backward Euler scheme. Therefore, the appearance of the term O(∆t) in
the last estimate is expected. If we use higher-order approximation schemes (see, e.g.,
[HR]), we expect to obtain improved estimates. However, the analysis in the context
of semidiscrete piecewise optimal control with more sophisticated schemes becomes
complicated.

The proof of Theorem 3.2 gives a rough estimate of ‖∇ûn −∇Un‖ = ‖∇v̂n‖.
PROPOSITION 3.5. Assume that the conditions of Theorem 3.2 hold. Then

(3.16)
∆t ‖∇ûn −∇Un‖2 ≤ 2

ν

(
1 +

√
α

β

)
eκ1δ‖u0 −U0‖2e−κ1tn

+
2
ν

(
1 +

√
α

β

)
(ρ1 + C6) (∆t)2.

Proof. By (3.15), we have that

(3.17) ∆t ‖∇v̂n‖2 ≤ 2
ν
‖v̂n−1‖2 +

4∆t

ν
√
αβ
Ln(ûn, f̂n) +

4C6

ν
(∆t)3.

But from Lemma 3.1 and Theorem 3.2, we obtain

Ln(ûn, f̂n) ≤ α

2
(
‖v̂n−1‖2 + C6(∆t)3)
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and

‖v̂n−1‖2 ≤ ‖u0 −U0‖2e−κtn−1 + ρ1(∆t)2.

By substituting these inequalities into (3.17) and noting that e−κ1tn−1 = eκ1δ e−κ1tn ,
the proposition is proven.

Remark 3.6. Because the left-hand side of (3.16) involves ∆t, a bound of the
eventual error in ‖ · ‖1 is

lim sup
t→∞

‖∇ûn −∇Un‖ = O
(

(∆t)1/2
)

as ∆t→ 0+,

which is of only half the order of the truncation error for the implicit Euler’s scheme.
On the other hand, however, the bound of the finite time error is singular:

sup
t∈[0,T ]

‖∇ûn −∇Un‖ = O((∆t)−1/2) as ∆t→ 0+.

We next derive an improved bound for the eventual error in H1(Ω) norm. Such
an improvement is not always possible for the full discretization. We first observe the
following direct consequence of (3.16).

COROLLARY 3.7. Assume that the conditions of Theorem 3.2 hold. Then for
any constant σ > 0, there exist constants ε0 = ε0(Ω, ν;σ) > 0 and t̃ = t̃(Ω, ν, ‖u0 −
U0‖;σ) > 0 such that

(3.18) ∆t‖∇v̂n‖2 ≤ σ ∀ tn ≥ t̃, ∀∆t ∈ (0, ε0).

We also need a stronger version of Proposition 3.5.
PROPOSITION 3.8. Assume the conditions of Theorem 3.2 hold. Then for each

n ≥ 1,
(3.19)
Ln+1(ûn+1, f̂n+1) ≤ α

2
(
‖u0 −U0‖2e−κ1tn + ρ1(∆t)3 + C6(∆t)3) /(1 + C5∆t).

Moreover, for all n2 ≥ n1 ≥ 1,

(3.20) ∆t
n2∑

n=n1+1

‖∇v̂n‖2 ≤ ‖v̂n1‖2 + C9(tn2 − tn1)
(
‖u0 −U0‖2e−κ1tn1 + (∆t)2) ,

where

C9 = C9(ν,Ω,U) = (1 + ρ1 + C6)
√
α

β
.

Proof. (3.19) follows from Lemma 3.1 and (3.13). By using (3.15) together with
(3.19) and (3.13), we obtain that

(3.21)
‖v̂n+1‖2 − ‖v̂n‖2 +

ν∆t
2
‖∇v̂n+1‖2

≤
√
α

β
‖u0 −U0‖2 e−κ1tn+1∆t+ (ρ1 + C6)

√
α

β
(∆t)3.

Summing up (3.21), (3.20) is proven.
We are ready to derive the improved estimates of the H1(Ω) error ‖∇ûn−∇Un‖

in (3.16).
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THEOREM 3.9. Suppose that (A1)–(A5) hold. Then there exist constants ε ∈ (0, 1)
depending only on Ω and ν and t̃ depending only on Ω, ν, and U such that

(3.22)
‖∇ûn −∇Un‖2 ≤ C10

(
1
τ

+ 1 + τ

)(
‖u0 −U0‖2e−κ1(tn−τ) + (∆t)2

)
· exp

{
C11(1 + τ)

(
‖u0 −U0‖4e−2κ1(tn−τ) + (∆t)4

)}
∀∆t ∈ (0, ε) and ∀ tn ≥ t̃, where κ1 is as in Theorem 3.2 and C10 and C11 are
constants depending only on Ω, ν, and U.

Proof. By the standard theory for the Navier–Stokes equations, v̂n+1 satisfying
the strong form of (3.14),

(3.23)
1

∆t
(v̂n+1 − v̂n)− ν∆v̂n+1 + (v̂n+1 · ∇)v̂n+1

+ (Un+1 · ∇)v̂n+1 + (v̂n+1 · ∇)Un+1 −∇q̂n+1 = ĝn+1 + τττn+1

with div v̂n+1 = 0. Taking the L2(Ω) inner product of (3.23) with −Π∆v̂n+1, noting
that

1
∆t
(
v̂n+1 − v̂n , −Π∆v̂n+1) =

1
∆t
(
∇v̂n+1 −∇v̂n , ∇v̂n+1)

=
1

2∆t
(
‖∇v̂n+1‖2 − ‖∇v̂n‖2 + ‖∇v̂n+1 −∇v̂n‖2

)
and (

−ν∆v̂n+1 , −Π∆v̂n+1) = ν ‖Π∆v̂n+1‖2 ≥ νCΠ ‖∇v̂n+1‖2

with CΠ > 0 defined by (1.19) depending only on Ω, and using the similar treatment
in (2.18) and (2.19), we arrive at

(3.24)

1
∆t
(
‖∇v̂n+1‖2 − ‖∇v̂n‖2 + ‖∇v̂n+1 −∇v̂n‖2

)
+ ν‖Π∆v̂n+1‖2

≤ C‖v̂n+1‖2‖∇v̂n+1‖4 + C
(
‖Un+1‖2L∞ + ‖∇Un+1‖2L∞ + 1

)
·
(
‖∇v̂n+1‖2 + ‖ĝn+1‖2 + ‖τττn+1‖2

)
,

where C is a constant depending only on Ω and ν.
Denote K4 = C(‖U‖2L∞(0,∞;L2(Ω)) + ‖∇U‖2L∞(0,∞;L2(Ω)) + 1) and σn = C‖v̂n‖2.

Then, by Theorem 3.2, for n = 0, 1, 2, . . .

(3.25) σn ≤ C
(
‖u0 −U0‖2e−κ1tn + ρ1(∆t)2) .

Hence σn is uniformly bounded in n. Now we apply Corollary 3.7 to choose ε > 0
and t̃ > 0 such that

σn ·∆t‖∇v̂n‖2 ≤ y0 ∀∆t ∈ (0, ε), ∀ tn ≥ t̃,

where the constant y0 > 0 is chosen such that 1− y ≥ e−2y for each y ∈ [0, y0]. Hence
(3.24) gives rise to, for all tn ≥ t̃,

(3.26)

exp
{
−2σn+1∆t ‖∇v̂n+1‖2

}
‖∇v̂n+1‖2

≤
(
1− σn+1∆t ‖∇v̂n+1‖2

)
‖∇v̂n+1‖2

≤ ‖∇v̂n‖2 + (∆t)K4
(
‖∇v̂n+1‖2 + ‖ĝn+1‖2 + ‖τττn+1‖2

)
.
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Let us fix τ > 2∆t and n0 > 0 such that tn0 ≥ t̃. Let n2 be the largest integer such
that tn2 ≤ tn0 + τ . Then for each n1 satisfying n0 ≤ n1 ≤ n2, we have that, by (3.26)
and induction,

exp

−2∆t
n2∑

j=n1+1

σj‖∇v̂j‖2
 ‖∇v̂n2‖2

≤ exp

−2∆t
n2−1∑
j=n1+1

σj‖∇v̂j‖2


·
(
‖∇v̂n2−1‖2 + (∆t)K4

(
‖∇v̂n2‖2 + ‖ĝn2‖2 + ‖τττn2‖2

))
≤ exp

−2∆t
n2−1∑
j=n1+1

σj‖∇v̂j‖2
 ‖∇v̂n2−1‖2 + (∆t)K4

(
‖∇v̂n2‖2 + ‖ĝn2‖2 + ‖τττn2‖2

)
≤ · · ·

≤ ‖∇v̂n1‖2 + (∆t)K4

n2∑
j=n1+1

(
‖∇v̂j‖2 + ‖ĝj‖2 + ‖τττ j‖2

)
.

Multiplying the above inequality by ∆t and summing up n1 over n0 ≤ n1 ≤ n2 − 1,
we obtain

(tn2 − tn0) exp

−2∆t
n2∑
j=n0

σj‖∇v̂j‖2
 ‖∇v̂n2‖2

≤ ∆t
n2∑
j=n0

‖∇v̂j‖2 +K4(tn2 − tn0)∆t
n2∑
j=n0

(
‖∇v̂j‖2 + ‖ĝj‖2 + ‖τττ j‖2

)
.

Hence

(3.27)

‖∇v̂n2‖2 ≤ exp

2∆t
n2∑
j=n0

σj‖∇v̂j‖2
 ·

 ∆t
tn2 − tn0

n2∑
j=n0

‖∇v̂j‖2

+K4(∆t)
n2∑
j=n0

(
‖∇v̂j‖2 + ‖ĝj‖2 + ‖τττ j‖2

).
But τ > 2∆t implies

1
tn2 − tn0

≤ 1
τ −∆t

≤ 2
τ
.

Moreover, by (3.5),

∆t
n2∑
j=n0

‖τττ j‖2 ≤ (∆t)3|‖∂ttU‖|2∞
n2∑
j=n0

1 ≤ τ |‖∂ttU‖|2∞ · (∆t)2,

and by Proposition 3.8 and Theorem 3.2, there exists a constant C̃ depending only
on Ω and ν such that

∆t
n2∑
j=n0

‖ĝj‖2 ≤ 2∆t
β

n2∑
j=n0

Lj(ûj , f̂ j) ≤ C̃(1 + τ)
(
‖u0 −U0‖2e−κ1tn0 + (∆t)3)
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and

∆t
n2∑
j=n0

‖∇v̂j‖2 ≤ C̃(1 + τ)
(
‖u0 −U0‖2 eκ1tn0 + (∆t)2) .

Therefore, by (3.27) and (3.25), we conclude that there exist constants C10 and C11
depending only on Ω, ν, and U such that

‖v̂n2‖2 ≤ C10

(
1
τ

+ 1 + τ

)(
‖u0 −U0‖2e−κ1tn0 + (∆t)2)

· exp
{
C11(1 + τ)

(
‖u0 −U0‖4e−2κ1tn0 + (∆t)4)} .

Remark 3.10. According to Theorem 3.9 together with its proof, the exponential
decay rate for ‖∇ûn−∇Un‖ starts to be effective when tn ≥ t̃, where t̃ is independent
of ∆t. In other words, for each fixed, sufficiently small ∆t,

lim sup
n→∞

‖∇ûn −∇Un‖ = O(∆t),

with the bound uniform in ∆t ∈ (0, ε). The error in the H1(Ω) norm is reduced in
tn = n∆t exponentially with the exponential rate independent of ∆t. We emphasize
that ‖∇ûn − ∇Un‖ remains finite for tn ∈ (0, t̃). But unless u0 −U0 ∈ H1

0(Ω), we
expect the singular behavior of ‖∇ûn−∇Un‖ for small tn as in Remark 3.6. This type
of singular behavior is true even when computing the solutions of the uncontrolled
continuous Navier–Stokes equations.

Remark 3.11. We defined the solution for the (n+1)th semidiscrete piecewise opti-
mal control problem and analyzed the dynamics of the solutions as n→∞. However,
we said nothing about how to solve the (n+ 1)th optimal control problem. We point
out that by introducing a Lagrange multiplier (µ̂µµn+1

, π̂n+1) ∈ H1
0(Ω)×L2

0(Ω), we can
convert the problem of solving the (n+1)th optimal control problem into the problem
of solving the optimality system of equations for (ûn+1, p̂n+1, f̂n+1, µ̂µµ

n+1
, π̂n+1) which

consists of (3.1), (3.2),

1
∆t

(µµµn+1, ωωω) + a(µµµn+1, ωωω) + c(ωωω,un+1, µµµn+1) + c(un+1, ωωω,µµµn+1)

+ b(ωωω, πn+1) = α(un+1 −Un+1, ωωω) ∀ωωω ∈ H1
0(Ω) ,

b(µµµn+1, τ) = 0 ∀ τ ∈ L2
0(Ω),

and

(βfn+1 − βFn+1 + µµµn+1, z) = 0 ∀ z ∈ L2(Ω) .

Using the techniques of [GHS] for the study of optimal control problems for the
steady-state Navier–Stokes equations, we can show that the above optimality system
of equations indeed has a solution.

4. Fully discrete approximations of the piecewise optimal control prob-
lem. Based on the semidiscrete approximations of the piecewise control problem, we
now turn to the study of fully discrete approximations. We will discretize the spatial
variables by finite element methods.
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4.1. Definition of the fully discrete piecewise optimal control problem.
We choose families of finite dimensional subspaces Xh ⊂ H1

0(Ω) and Sh ⊂ L2
0(Ω).

These families are parameterized by the parameter h that tends to zero; commonly,
this parameter is chosen to be some measure of the grid size in a subdivision of Ω
into finite elements. One may choose any pair of subspaces Xh and Sh that can be
used for finding finite element solutions of the steady-state Navier–Stokes equations.
Thus, concerning these subspaces, we make the following standard assumptions. First,
we have the approximation properties: there exist an integer k ≥ 1 and a constant
C ′ > 0, independent of h, v, and q such that

(4.1) inf
vh∈Xh

‖v − vh‖1 ≤ C ′hm‖v‖m+1 ∀v ∈ Hm+1(Ω) ∩H1
0(Ω) , 1 ≤ m ≤ k,

and

(4.2) inf
qh∈Sh

‖q − qh‖0 ≤ C ′hm‖q‖m ∀ q ∈ Hm(Ω) ∩ L2
0(Ω) , 1 ≤ m ≤ k .

Next, we assume the inf-sup condition, or Ladyzhenskaya–Babuska–Brezzi condition:
there exists a constant C ′′, independent of h, such that

(4.3) inf
06=qh∈Sh

sup
06=vh∈Vh

∫
Ω qhdiv vh dx
‖vh‖1 ‖qh‖0

≥ C ′′ .

This condition assures the stability of finite element discretizations of the Navier–
Stokes equations. For thorough discussions of the approximation properties (4.1),
(4.2), see, e.g., [Ci] or [GR], and for like discussions of the stability condition (4.3),
see, e.g., [GR]. The reference [GR] may also be consulted for a catalogue of finite
element subspaces that meet the requirements of (4.1), (4.2).

For each n ≥ 0, we define the affine space Yn+1
h

def {fh = yh+Fn+1
h : yh ∈ Xh}

for the approximate distributed controls, where Fn+1
h is the L2 projection of Fn+1

onto Xh. Note that Yn+1
h ⊂ Xh. To preserve the antisymmetry of the trilinear

form c(·, ·, ·) on the finite element spaces which are in general not divergent-free, we
introduce the modified trilinear form (see [Te])

c(u,v,w) def 1
2
{c(u,v,w)− c(u,w,v)} ∀u,v,w ∈ H1

0(Ω) .

It can be easily verified that

(4.4) c(u,v,w) = c(u,v,w) ∀u ∈ V, ∀v,w ∈ H1
0(Ω) ,

(4.5) c(u,v,w) = −c(u,w,v) ∀u,v,w ∈ H1
0(Ω) ,

(4.6) c(u,v,v) = 0 ∀u,v ∈ H1
0(Ω) ,

(4.7) |c(u,v,w)| ≤ C0‖∇u‖ ‖v‖L4(Ω) ‖∇w‖ ∀u,v,w ∈ H1
0(Ω) ,

(4.8) |c(u,v,w)| ≤ C1‖∇u‖ ‖∇v‖ ‖∇w‖ ∀u,v,w ∈ H1
0(Ω)

and

(4.9) |c(u,v,w)| ≤ C2‖u‖2 ‖v‖ ‖∇w‖
|c(v,u,w)| ≤ C2‖u‖2 ‖v‖ ‖∇w‖

}
∀u ∈ H2(Ω)∩H1

0(Ω),∀v,w ∈ H1
0(Ω) .

Once the finite element spaces Xh and Sh have been chosen, we define the fully
discrete approximations of the piecewise optimal control problem as follows (the time
discretization is the same as that for the semidiscrete approximations).
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• Set ∆t = δ.
• Define û0

h = u0,h where u0,h is the L2(Ω)-projection (or interpolation) of u0
onto Xh.

• The (n+ 1)th fully discrete optimal control problem:
For n = 0, 1, 2, . . ., find a (ûn+1

h , p̂n+1
h , f̂n+1

h ) ∈ Xh×Sh×Yn+1
h such that the

functional

Ln+1
h (un+1

h , fn+1
h ) def α

2
‖un+1

h −Un+1‖2

+
β

2
‖fn+1
h − Fn+1‖2 ∀un+1

h ∈ Xh, ∀ fn+1
h ∈ Yn+1

h

is minimized subject to the fully discrete Navier–Stokes equations

(4.10)

1
∆t

(un+1
h ,wh) + a(un+1

h ,wh) + c(un+1
h ,un+1

h ,wh) + b(wh, p
n+1
h )

= (fn+1
h ,wh) +

1
∆t

(ûnh,wh) ∀wh ∈ Xh

and

(4.11) b(un+1
h , rh) = 0 ∀ rh ∈ Sh .

Using the techniques of [GHS] concerning the finite element approximations of
optimal control problems for the steady-state Navier–Stokes equations, we can show
that for each integer n ≥ 0, there is a solution (ûn+1

h , f̂n+1
h ) for the (n + 1)th fully

discrete optimal control problem.

4.2. Dynamics of the fully discrete solutions of the piecewise optimal
control problem. We now study the behavior of the fully discrete solutions ûnh as
n→∞.

For every t, we introduce an auxiliary element (Uh(t), Ph(t)) ∈ Xh × Sh deter-
mined by

(4.12) a (Uh(t),wh) + b (wh, Ph(t)) = a (U(t),wh) ∀wh ∈ Xh

and

(4.13) b (Uh(t), rh) = 0 ∀ rh ∈ Sh .

The existence of such a (Uh(t), Ph(t)) follows from the well-known results for the finite
element approximations of the steady-state Stokes equations. Furthermore, under the
assumption that there is a k ≥ 1 such that

(A6) U ∈ L∞
(
0,∞; Hk+1(Ω)

)
∩ C

(
[0,∞); Hk+1(Ω)

)
,

the following error estimates hold:

(4.14)
‖Uh(t)−U(t)‖1 + ‖Ph(t)‖

≤ C3h
k‖U(t)‖k+1 ≤ C3h

k‖U‖L∞(0,∞;Hk+1(Ω))

and

(4.15) ‖Uh(t)−U(t)‖ ≤ C4h
k+1‖U(t)‖k+1 ≤ C4h

k+1‖U‖L∞(0,∞;Hk+1(Ω)),
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where C3 and C4 are constants depending on Ω only; see, e.g., [GR] and [GH]. By
differentiating (4.12), (4.13) with respect t, we see that (∂tUh(t), ∂tPh(t)) satisfies a
system of equations similar to (4.12), (4.13) so that under the assumption

(A7) ∂tU ∈ L∞
(
0,∞; Hk+1(Ω)

)
∩ C

(
[0,∞); Hk+1(Ω)

)
we have the error estimates

(4.16)
‖∂tUh(t)− ∂tU(t)‖1 + ‖∂tPh(t)‖

≤ C3h
k‖∂tU(t)‖k+1 ≤ C3h

k‖∂tU‖L∞(0,∞;Hk+1(Ω))

and

(4.17)
‖∂tUh(t)− ∂tU(t)‖

≤ C4h
k+1‖∂tU(t)‖k+1 ≤ C4h

k+1‖∂tU‖L∞(0,∞;Hk+1(Ω)) ∀ s ∈ [0, 2] .

By differentiating (4.12), (4.13) twice with respect t, we see that (∂ttUh(t), ∂ttPh(t))
also satisfies a system of equations similar to (4.12), (4.13) so that under the assump-
tion

(A8) ∂ttU ∈ L∞
(
0,∞; H1(Ω)

)
∩ C

(
[0,∞); H1(Ω)

)
,

we have the error estimates for (∂ttUh(t), ∂ttPh(t)):

‖∂ttUh(t)− ∂ttU(t)‖1 + ‖∂ttPh(t)‖ ≤ C3‖∂ttU(t)‖1 ≤ C3‖∂ttU‖L∞(0,∞;H1(Ω))

and

‖∂ttUh(t)− ∂ttU(t)‖ ≤ C4h
s‖∂ttU(t)‖s ≤ C4h

s‖∂ttU‖L∞(0,∞;Hs(Ω)) ∀ s ∈ [0, 1] ;

in particular,

(4.18) ‖∂ttUh(t)− ∂ttU(t)‖ ≤ C4‖∂ttU(t)‖ ≤ C4‖∂ttU‖L∞(0,∞;H1(Ω)) .

Note that the regularity assumption (A8) for ∂ttU is weaker than the assumptions
(A6) for U or (A7) for ∂tU. As a result, the error estimate (4.18) is weaker than
(4.15) or (4.17).

LEMMA 4.1. Assume that hypotheses (A1), (A2), (A5), (A6), (A7), and (A8)
hold. Assume further

(A9) ‖U‖L∞(0,∞;L4(Ω)) <
ν

C0
.

For each integer n ≥ 0, let (ûn+1
h , p̂n+1

h , f̂n+1
h ) be a solution of the (n + 1)th fully

discrete optimal control problem. Then there exists an h0 > 0 and constants K1, K2,
and K3 such that for all h ≤ h0 and all n,

Ln+1
h (ûn+1

h , f̂n+1
h )

≤ α
(
‖ûnh −Un

h‖2

1 + λ1K1∆t
+
K2h

2k+2∆t
1 + λ1K1∆t

+
K3(∆t)3

1 + λ1K1∆t

)
+ αC

2
4h

2k+2 ‖U‖2L∞(0,∞;Hk+1(Ω)) ,

where

(4.19) h0 = h0 (ν,Ω,U) def min


{

ν − C0‖U‖L∞(0,∞;L4(Ω))

2C1C3‖U‖L∞(0,∞;Hk+1(Ω))

}1/k

, 1

 ,
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(4.20)
K1 = K1(ν,Ω,U)

def 1
2
(
ν − C0‖U‖L∞(0,∞;L4(Ω)) − C1C3h

k
0‖U‖L∞(0,∞;Hk+1(Ω)))

)
,

(4.21)
K2 = K2(ν,Ω,U) def 4

K1

([
C

2
1C

4
3 + 4C

2
2C

2
4

]
‖U‖4L∞(0,∞;Hk+1(Ω))

+
1
λ1
C

2
4 ‖∂tU‖2L∞(0,∞;Hk+1(Ω))

)
,

and

(4.22) K3 = K3(ν,Ω,U) def 8(C
2
4 + 1)

λ1K1
‖∂ttU‖2L∞(0,∞;H1(Ω))

with the constants C0, C1, C2, C3, and C4 defined by (4.7), (4.8), (4.9), (4.14), and
(4.15), respectively.

Proof. Let (ũn+1
h , p̃n+1

h ) ∈ Xh × Sh be a solution of the equations

(4.23)

1
∆t

(ũn+1
h ,wh) + a(ũn+1

h ,wh) + c(ũn+1
h , ũn+1

h ,wh) + b(w, q̃n+1
h )

= (Fn+1
h ,wh) +

1
∆t

(ûnh,wh) ∀wh ∈ Xh

and

(4.24) b(ũn+1
h , rh) = 0 ∀ rh ∈ Sh .

(The existence of such a (ũn+1, p̃n+1) can be proved by using the techniques for
proving the existence of finite element solutions for the steady-state Navier–Stokes
equations; see, e.g., [GR].) Set f̃n+1

h = Fn+1
h ∈ Yh.

From (1.16), (A1), and (4.4), we obtain

(∂tU(tn+1),wh) + a (U(tn+1),wh) + c (U(tn+1),U(tn+1),wh)
= (F(tn+1),wh) ∀wh ∈ Xh

and

b (U(tn+1), rh) = 0 ∀ rh ∈ Sh .

Let (Uh(t), Ph(t)) be defined by (4.12), (4.13). Setting Vh(t) = Uh(t) − U(t) and
using (4.12), (4.13) and the fact that (Fn+1

h ,wh) = (Fn+1,wh) for all wh ∈ Xh, we
are led to

(4.25)
(∂tUh(tn+1),wh)− (∂tVh(tn+1),wh) + a (Uh(tn+1),wh) + b (wh, Ph(tn+1))

+ c (U(tn+1),U(tn+1),wh) = (F(tn+1),wh) ∀wh ∈ Xh

and

(4.26) b (Uh(tn+1), rh) = 0 ∀ rh ∈ Sh .

We introduce the notations Un+1
h = Uh(tn+1), Pn+1

h = Ph(tn+1), Vn+1
h = Vh(tn+1),

and (∂tVh)n+1 = ∂tVh(tn+1) (also recall Fn+1 = F(tn+1)). By plugging into (4.25)
the finite difference approximation formula

∂tUh(x, tn+1) =
Un+1
h (x)−Un

h(x)
∆t

+ τττn+1
h (x) ,
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we obtain
(4.27)

1
∆t
(
Un+1
h −Un

h,wh

)
+ a

(
Un+1
h ,wh

)
+ c

(
Un+1,Un+1,wh

)
+ b

(
wh, P

n+1
h

)
=
(
Fn+1,wh

)
− (τττn+1

h ,wh) +
(
(∂tVh)n+1,wh

)
∀wh ∈ Xh

and

(4.28) b
(
Un+1
h , rh

)
= 0 ∀ rh ∈ Sh .

We now examine the error term τττn+1
h (x) in the previous finite difference formula.

Since

τττn+1
h (x) = ∂tU(x, tn+1)− Uh(x, tn+1)−Uh(x, tn)

∆t

=
1

∆t

∫ tn+1

tn

∫ tn+1

s

∂ttUh(x, σ) dσ ds,

we see that

‖τττn+1
h ‖2 = (τττn+1

h , τττn+1
h ) =

1
∆t

∫ tn+1

tn

∫ tn+1

s

∫
Ω
∂ttUh(x, σ) · τττn+1

h (x) dx dσ ds

≤ 1
∆t

∫ tn+1

tn

∫ tn+1

s

‖∂ttUh(σ)‖ ‖τττn+1
h ‖ dσ ds .

Hence

‖τττn+1
h ‖ ≤ ‖∂ttUh‖L∞(0,∞;L2(Ω)) ·

1
∆t

∫ tn+1

tn

∫ tn+1

s

dσ ds

≤ ∆t ‖∂ttUh‖L∞(0,∞;L2(Ω)).

We note that by (4.18),

(4.29)
‖τττn+1
h ‖2 ≤ 2(∆t)2

(
‖∂ttVh‖2L∞(0,∞;L2(Ω)) + ‖∂ttU‖2L∞(0,∞;L2(Ω))

)
≤ 2(∆t)2

(
C

2
4 + 1

)
‖∂ttU‖2L∞(0,∞;H1(Ω)) .

Now, let ṽn+1
h = ũn+1

h − Un+1
h , q̃n+1

h = p̃n+1
h − Pn+1

h , and v̂nh = ûnh − Un
h. Then

by subtracting (4.27), (4.28) from (4.23), (4.24) and again by using (Fn+1
h ,wh) =

(Fn+1,wh) for all wh ∈ Xh, we obtain

1
∆t

(ṽn+1
h ,wh)− 1

∆t
(v̂nh ,wh) + a(ṽn+1

h ,wh) + c(ṽn+1
h , ṽn+1

h ,wh) + c(ṽn+1
h ,Vn+1

h ,wh)

+ c(Vn+1
h , ṽn+1

h ,wh) + c(ṽn+1
h ,Un+1,wh) + c(Un+1, ṽn+1

h ,wh)

+ c(Vn+1
h ,Vn+1

h ,wh) + c(Vn+1
h ,Un+1,wh) + c(Un+1,Vn+1

h ,wh)

+ b(wh, q̃
n+1
h ) = (τττn+1

h ,wh)−
(
(∂tVh)n+1,wh

)
∀wh ∈ Xh

and

b(ṽn+1
h , rh) = 0 ∀ rh ∈ Sh .
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Setting wh = ṽn+1
h in the first of the last two equations and using (4.5)–(4.9), we

have

1
2∆t

(
‖ṽn+1

h ‖2 − ‖v̂nh‖2 + ‖ṽn+1
h − v̂nh‖2

)
+ ν‖∇ṽn+1

h ‖2

= −c(ṽn+1
h ,Vn+1

h , ṽn+1
h )− c(ṽn+1

h ,Un+1, ṽn+1
h )− c(Vn+1

h ,Vn+1
h , ṽn+1

h )

− c(Vn+1
h ,Un+1, ṽn+1

h )− c(Un+1,Vn+1
h , ṽn+1

h )

+ (τττn+1
h , ṽn+1

h )−
(
(∂tVh)n+1, ṽn+1

h

)
≤ C1‖∇ṽn+1

h ‖2 ‖∇Vn+1
h ‖+ C0‖∇ṽn+1

h ‖2 ‖Un+1‖L4(Ω) + C1‖∇Vn+1
h ‖2 ‖∇ṽn+1

h ‖

+ 2C2 ‖Vn+1
h ‖ ‖Un+1‖2 ‖∇ṽn+1

h ‖+ ‖τττn+1
h ‖ ‖ṽn+1

h ‖+ ‖(∂tVh)n+1‖ ‖ṽn+1
h ‖ .

By choosing h0 as in (4.19) and using (4.14) we see that for all h ≤ h0,

‖∇Vn+1
h ‖ ≤ C3h

k‖U‖L∞(0,∞;Hk+1(Ω)) ≤ C3h
k
0‖U‖L∞(0,∞;Hk+1(Ω)) .

We define the constant K1 = K1(ν,Ω,U) by (4.20) and continue the last inequality
involving ṽn+1

h to obtain (by using (4.14) and the inequality ab ≤ εa2 + ε−1b2/4)

1
2∆t

(
‖ṽn+1

h ‖2 − ‖v̂nh‖2
)

+ ν‖∇ṽn+1
h ‖2

≤ C1C3h
k
0‖U‖L∞(0,∞;Hk+1(Ω)) ‖∇ṽn+1

h ‖2 + C0‖∇ṽn+1
h ‖2 ‖U‖L∞(0,∞;L4(Ω))

+
2C

2
1

K1
‖∇Vn+1

h ‖4 +
K1

8
‖∇ṽn+1

h ‖2 +
8C

2
2

K1
‖Vn+1

h ‖2 ‖Un+1‖22 +
K1

8
‖∇ṽn+1

h ‖2

+
2

λ1K1
‖τττn+1
h ‖2 +

λ1K1

8
‖ṽn+1

h ‖2 +
2

K1λ1
‖(∂tVh)n+1‖2 +

K1λ1

8
‖ṽn+1

h ‖2 .

Using Poincaré inequality for the terms involving λ1‖ṽn+1
h ‖2 and simplifying, we

obtain

1
2∆t

(
‖ṽn+1

h ‖2 − ‖v̂nh‖2
)

+
K1

2
‖∇ṽn+1

h ‖2

≤ 2
K1

(
C

2
1 ‖∇Vn+1

h ‖4 + 4C
2
2 ‖Vn+1

h ‖2 ‖Un+1‖22 +
1
λ1
‖(∂tVh)n+1‖2 +

1
λ1
‖τττn+1
h ‖2

)
,

so that using (4.14)–(4.18) and (4.29), we are led to

‖ṽn+1
h ‖2 +K1∆t ‖∇ṽn+1

h ‖2

≤ ‖v̂nh‖2 +
4∆t
K1

(
C

2
1C

4
3 h

4k ‖U‖4L∞(0,∞;Hk+1(Ω)) + 4C
2
2C

2
4 h

2k+2 ‖U‖4L∞(0,∞;Hk+1(Ω))

+
1
λ1
C

2
4 h

2k+2 ‖∂tU‖2L∞(0,∞;Hk+1(Ω))

+
2(∆t)2(C

2
4 + 1)

λ1
‖∂ttU‖2L∞(0,∞;H1(Ω))

)
.
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Hence, using Poincaré inequality again for the second term on the left-hand side of
the last inequality, we obtain

‖ṽn+1
h ‖2 ≤ ‖v̂nh‖2

1 + λ1K1∆t
+
K2h

2k+2(∆t)
1 + λ1K1∆t

+
K3(∆t)3

1 + λ1K1∆t
,

where K2 and K3 are defined by (4.21), (4.22). Using the definition of the functional
Ln+1
h and (4.15), we obtain

Ln+1
h (ũn+1

h , f̃n+1
h ) =

α

2
‖ṽn+1

h + Un+1
h −Un+1‖2 ≤ α ‖ṽn+1

h ‖2 + α ‖Un+1
h −Un+1‖2

≤ α
[
‖v̂nh‖2

1 + λ1K1∆t
+
K2h

2k+2∆t
1 + λ1K1∆t

+
K3(∆t)3

1 + λ1K1∆t

]
+ αC

2
4h

2k+2 ‖U‖2L∞(0,∞;Hk+1(Ω)).

(ûn+1
h , p̂n+1

h , f̂n+1
h ) being a solution for the (n + 1)th fully discrete optimal control

problem, the desired estimate follows trivially from the last inequality.
THEOREM 4.2. Assume that the hypotheses of Lemma 4.1 hold. Assume further

that u0 ∈ Hk+1(Ω) and

(A10)
α

β
<

(λ1K1)2

16
,

where K1 is defined by (4.20). Let h0 be defined by (4.19). Then there are positive
constants δ0 = δ0(ν,Ω,U), K4 = K4(ν,Ω,U), K5 = K5(ν,Ω,U), K6 = K6(ν,Ω,U),
γ = γ(ν,Ω,U), and κ = κ(ν,Ω,U) such that for all h ≤ h0 and all ∆t ≤ δ0,

‖ûn+1
h −Un+1

h ‖2 ≤ (1−K4∆t)‖ûnh −Un
h‖2 +K5∆t3 +K6h

2k+2(∆t)

and

‖ûnh −Un‖2 ≤ 3e−γtn‖û0 −U0‖2 + κ
[
(∆t)2 + h2k+2] .

Proof. The optimizer (ûn+1
h , p̂n+1

h , f̂n+1
h ) satisfies (4.10), (4.11). Let Un+1

h , Pn+1
h ,

Vn+1
h , and (∂tVh)n+1 be defined as in the proof of Lemma 4.1 and satisfy (4.25),

(4.26). By setting v̂n+1
h = ûn+1

h − Un+1
h , q̂n+1

h = p̂n+1
h − P̂n+1, ĝn+1

h = f̂n+1
h −

Fn+1
h and subtracting (4.25), (4.26) from (4.10), (4.11) with (un+1

h , pn+1
h , fn+1

h ) =
(ûn+1
h , p̂n+1

h , f̂n+1
h ), we see that

(4.30)
1

∆t
(v̂n+1
h ,wh) + a(v̂n+1

h ,wh) + c(v̂n+1
h , v̂n+1

h ,wh) + c(v̂n+1
h ,Vn+1

h ,wh)

+ c(Vn+1
h , v̂n+1

h ,wh) + c(v̂n+1
h ,Un+1,wh) + c(Un+1, v̂n+1

h ,wh)

+ c(Vn+1
h ,Vn+1

h ,wh) + c(Vn+1
h ,Un+1,wh) + c(Un+1,Vn+1

h ,wh) + b(wh, q̂
n+1
h )

= (ĝn+1
h + τττn+1

h ,wh) +
1

∆t
(v̂nh ,wh)−

(
(∂tVh)n+1,wh

)
∀wh ∈ Xh

and

(4.31) b(v̂n+1
h , rh) = 0 ∀ rh ∈ Sh .

Setting wh = v̂n+1
h in the first of the last two equations and using the same tricks

as in the proof of Lemma 4.1 (with ûn+1
h replacing ũn+1

h and ĝn+1
h + τττn+1

h replacing
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τττn+1
h ), we obtain

1
2∆t

(
‖v̂n+1

h ‖2 − ‖v̂nh‖2
)

+
K1

2
‖∇v̂n+1

h ‖2

≤ 2
K1

(
C

2
1 ‖∇Vn+1

h ‖4 + 4C
2
2 ‖Vn+1

h ‖2 ‖Un+1‖22

+
1
λ1
‖(∂tVh)n+1‖2 +

1
λ1
‖ĝn+1

h + τττn+1
h ‖2

)
≤ 4‖ĝn+1

h ‖2

λ1K1
+

2
K1

(
C

2
1C

4
3 h

4k ‖U‖4L∞(0,∞;Hk+1(Ω))

+ 4C
2
2C

2
4 h

2k+2 ‖U‖4L∞(0,∞;Hk+1(Ω))

+
1
λ1
C

2
4 h

2k+2 ‖∂tU‖2L∞(0,∞;Hk+1(Ω))

+
4(∆t)2(C

2
4 + 1)

λ1
‖∂ttU‖2L∞(0,∞;H1(Ω))

)
so that

‖v̂n+1
h ‖2 +K1∆t ‖∇v̂n+1

h ‖2 ≤ ‖v̂nh‖2 +K2h
2k+2(∆t) + 2K3(∆t)3 +

8∆t
λ1K1

‖ĝn+1‖2 ,

where K1, K2, and K3 are defined by (4.20), (4.21), and (4.22), respectively. Using
Lemma 4.1 we see that

(β/2)‖ĝn+1
h ‖2 ≤ Ln+1

h (ûn+1
h , f̂n+1

h )

≤ α
(
‖v̂nh‖2 +K2h

2k+2∆t+K3(∆t)3)+ αC
2
4h

2k+2 ‖U‖2L∞(0,∞;Hk+1(Ω)) .

By combining the last two inequalities we are led to

(4.32)

‖v̂n+1
h ‖2 +K1∆t ‖∇v̂n+1

h ‖2

≤ ‖v̂nh‖2 +K2h
2k+2(∆t) + 2K3(∆t)3

+
16α∆t
βλ1K1

(
‖v̂nh‖2 +K2h

2k+2(∆t) +K3(∆t)3)
+

16αC
2
4(∆t)h2k+2

βλ1K1
‖U‖2L∞(0,∞;Hk+1(Ω))

≤
[
1 + 16α(βλ1K1)−1∆t

]
‖v̂nh‖2 +

(
2K3 +

16αK3∆t
βλ1K1

)
(∆t)3

+

(
K2 +

16αK2∆t
βλ1K1

+
16αC

2
4

βλ1K1
‖U‖2L∞(0,∞;Hk+1(Ω))

)
h2k+2(∆t) .

Using (A10), we can find a sufficiently small positive constant δ0 = δ0(ν,Ω,U) and a
positive constant K4 = K4(ν,Ω,U) such that

0 <

[
1 + 16α(βλ1K1)−1∆t

]
1 + λ1K1∆t

≤ (1−K4∆t)
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for all ∆t ≤ δ0. Defining

K5
def

K5(ν,Ω,U)

= K2 +
16αK2δ0

βλ1K1
+

16αC
2
4

βλ1K1
‖U‖2L∞(0,∞;Hk+1(Ω))

and

K6
def

K6(ν,Ω,U) = 2K3 +
16αK3δ0

βλ1K1
,

we obtain from (4.32) that

(4.33) ‖v̂n+1
h ‖2 +K1∆t ‖∇v̂n+1

h ‖2 ≤ ‖v̂nh‖2 +K5h
2k+2(∆t) +K6(∆t)3 ,

so by noting

‖v̂n+1
h ‖2 +K1∆t ‖∇v̂n+1

h ‖2 ≥ (1 + λ1K1∆t) ‖v̂n+1
h ‖2 ,

we are led to

‖v̂n+1
h ‖2 ≤ (1−K4∆t)‖v̂nh‖2 +K5h

2k+2(∆t) +K6(∆t)3 .

By induction, we may prove

‖v̂nh‖2 ≤ (1−K4∆t)n‖v̂0
h‖2 +

(
K5h

2k+2(∆t) +K6(∆t)3) n−1∑
j=0

(1−K4∆t)j

= (1−K4∆t)n‖û0,h −U0
h‖2 +

(
K5

K4
h2k+2 +

K6

K4
(∆t)2

)[
1− (1−K4∆t)n

]
≤
[
(1−K4∆t)

1
K4∆t

]K4n∆t
‖u0,h −U0

h‖2 +
K5

K4
h2k+2 +

K6

K4
(∆t)2 .

Applying the inequality 1− y ≤ e−y for all y ≥ 0, we are led to

‖v̂nh‖2 ≤ e−K4tn‖u0,h −U0
h‖2 +

K5

K4
h2k+2 +

K6

K4
(∆t)2 .

Using the triangle inequality we obtain

‖ûnh −Un‖2 ≤ 2‖ûnh −Un
h‖2 + 2‖Un

h −Un‖2

≤ e−K4tn‖û0,h −U0
h‖2 +

K5

K4
h2k+2 +

K6

K4
(∆t)2 + 2C

2
4 h

2k+2 ‖U‖2L∞(0,∞;H2(Ω)) .

Using the triangle inequality again we also have

‖u0,h −U0
h‖2 ≤ 3‖u0,h − u0‖2 + 3‖u0 −U0‖2 + 3‖U0 −U0

h‖2

≤ 3Ch2k+2‖u0‖2Hk+1(Ω)) + 3‖û0 −U0‖2 + 3C
2
4h

2k+2‖U‖2L∞(0,∞;Hk+1(Ω)) .

By combining the last two inequalities we arrive at

‖ûnh −Un‖2 ≤ 3e−γtn‖û0 −U0‖2 + κ
[
(∆t)2 + h2k+2] ,
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where γ = K4 and

κ = max
{
K6/K4 , 5C

2
4‖U‖2L∞(0,∞;Hk+1(Ω)) + 3C‖u0‖2Hk+1(Ω)) +K5/K4

}
.

As an easy consequence of Theorem 4.2, Theorem 2.7, and the inequality

‖û(tn)− ûnh‖2 ≤ 2‖û(tn)−Un‖2 + 2‖Un − ûnh‖2,

we obtain the following estimate for the difference between the continuous and fully
discrete solutions of the piecewise optimal control problem.

COROLLARY 4.3. Assume that the hypotheses of Theorems 4.2 and 2.7 hold. Let
û denote the global solution of the piecewise optimal control problem and ûnh denote
the fully discrete solutions of the piecewise optimal control problem. Then there are
positive constants M = M(ν,Ω,U), K7 = K7(ν,Ω,U), and K8 = K8(ν,Ω,U) such
that

‖û(tn)− ûnh‖2 ≤M e−K7 tn‖û0 −U0‖2 +K8
[
(∆t)2 + h2k+2] .

We now estimate the dynamics in H1(Ω) norm between the fully discrete solution
unh and the desired flow Un as n→∞.

THEOREM 4.4. Assume that the hypotheses of Lemma 4.1 and Theorem 4.2 hold.
Then there are positive constants K9 = K9(ν,Ω,U) and κ′ = κ′(ν,Ω,U) such that
for all h ≤ h0 and ∆t ≤ δ0,

(4.34) ‖∇ûnh −∇Un‖2 ≤ K9

∆t
e−γtn‖u0 −U0‖2 + κ′

(
(∆t) +

h2k+2

∆t

)
,

where the constants h0, δ0, and γ are as defined in the proof of Theorem 4.2.
Proof. We use the same notations (ûn+1

h , p̂n+1
h , f̂n+1

h ), Ûn+1
h , P̂n+1

h , (∂tV̂h)n+1,
V̂n+1
h , v̂n+1

h , q̂n+1
h , and ĝn+1

h as in the proof of Theorem 4.2. From the proof of
Theorem 4.2, in particular from (4.33), we have

‖v̂n+1
h ‖2 +K1∆t ‖∇v̂n+1

h ‖2 ≤ ‖v̂nh‖2 +K5h
2k+2(∆t) +K6(∆t)3,

where the various constants are as defined in the proof of Lemma 4.1 and Theorem
4.2. By dropping the term ‖v̂n+1

h ‖2 and using Theorem 4.2 we obtain

‖∇v̂n+1
h ‖2

≤ 1
K1∆t

‖v̂nh‖2 +K5h
2k+2 +K6(∆t)2

≤ 1
K1∆t

(
3e−γtn‖û0 −U0‖2 + κ

[
(∆t)2 + h2k+2])+K5h

2k+2 +K6(∆t)2

≤ K9

∆t
e−γtn‖û0 −U0‖2 + κ′

(
(∆t) +

h2k+2

∆t

)
,

where K9
def 3/K1 and κ′

def max{κ,K5,K6}.
Remark 4.5. We note that whenever ∆t is fixed, the first term on the right-hand

side of (4.34) decays to zero exponentially as n→∞. If h = ∆ts with s > 0, then the
second term on the right-hand side of (4.34) is of order O((∆t) + (∆t)2ks+2s−1), i.e.,

lim sup
t→∞

‖∇ûnh −∇Un‖ = O((∆t)1/2 + (∆t)ks+s−1/2),

which is optimal when h = (∆t)1/(k+1).
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Remark 4.6. Naturally one wishes to improve the estimate (4.34) to

(4.35) ‖∇ûnh −∇Un‖2 ≤ K10e
−γtn‖u0 −U0‖2 +K11

(
(∆t) + h2k+2) .

It does not appear that one can do so without major modifications in the statement of
the problem. We mention one such modification that allows us to obtain the improved
estimate (4.35); namely, if we consider the penalized functional

Pn+1
h (un+1

h , fn+1
h ) def α

2
‖un+1

h −Un+1‖2 +
β

2
‖fn+1
h − Fn+1‖2

+
γ

2

∥∥∥∥ fn+1
h − fnh

∆t
− Fn+1 − Fn

∆t

∥∥∥∥2

in place of Ln+1
h (un+1

h , fn+1
h ) and the hypothesis ∂ttU ∈ L∞(0,∞; Hk+1(Ω))∩C([0,∞);

Hk+1(Ω)) holds (in addition to the hypotheses of Theorem 4.4, of course), then the
estimate (4.35) holds. An outline of a proof for this result is as follows. By virtue of
the penalty term in the new functional Pn+1

h (un+1
h , fn+1

h ), one can estimate the decay
property of the discrete time derivative (v̂n+1

h − v̂nh)/∆t by taking the difference of
the equations for v̂n+1

h and v̂nh and setting wh = (v̂n+1
h − v̂nh)/∆t. Then, (4.35) is

proven by estimating ν‖∇v̂n+1
h ‖2 in (4.30) with wh = v̂n+1

h . We omit the details of
the proof because it is very lengthy and, more importantly, by introducing the penal-
ized functional Pn+1

h (un+1
h , fn+1

h ), we are too far removed from the original control
objectives.

Remark 4.7. In order to solve the (n+1)th fully discrete optimal control problem
for each n, we need to introduce a Lagrange multiplier (µ̂µµn+1

h , π̂n+1
h ) to convert the

(n + 1)th fully discrete optimal control problem into a discrete optimality system of
equations (similar to the semidiscrete case). A solution for the (n+1)th fully discrete
optimal control problem can be found by solving the discrete optimality system of
equations which consists of (4.10), (4.11),

(4.36)
1

∆t
(µµµn+1
h , ωωωh) + a(µµµn+1

h , ωωωh) + c(ωωωh,un+1
h , µµµn+1

h ) + c(un+1
h , ωωωh, µµµ

n+1
h )

+ b(ωωωh, πn+1
h ) = α(un+1

h −Un+1, ωωωh) ∀ωωωh ∈ Xh,

(4.37) b(µµµn+1
h , τh) = 0 ∀ τh ∈ Sh,

and

(4.38) (µµµn+1
h + βfn+1

h − βFn+1, zh) = 0 ∀ zh ∈ Xh .

Using the techniques of [GHS], we can show that the above discrete optimality sys-
tem of equations indeed has a solution (ûn+1

h , p̂n+1
h , f̂n+1

h , µ̂µµ
n+1
h , π̂n+1

h ). By eliminat-
ing fn+1

h , we arrive at the slightly simplified optimality system of equations for the
(n+ 1)th fully discrete optimal control problem, which consists of

(4.39)

1
∆t

(un+1
h ,wh) + a(un+1

h ,wh) + c(un+1
h ,un+1

h ,wh) + b(wh, p
n+1
h )

= (Fn+1
h − β−1µµµn+1

h ,wh) +
1

∆t
(unh,wh) ∀wh ∈ Xh ,

(4.11), (4.36), and (4.37).
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5. An algorithm and a computational example. From the definition of the
fully discrete piecewise optimal control problem and Remark 4.6, we summarize an
algorithm for solving the fully discrete piecewise optimal control problem.

ALGORITHM 5.1.
• Choose a (sufficiently small) δ > 0 and set ∆t = δ. Choose a (sufficiently

small) h.
• Define u0

h = U0
h, where U0

h is the L2(Ω)-projection (or interpolation) of U0

onto Xh.
• (Solving the (n+ 1)th fully discrete optimal control problem)

For n = 0, 1, 2, . . . , find a (un+1
h , pn+1

h , µµµn+1
h , πn+1

h ) ∈ Xh×Sh×Xh×Sh such
that

1
∆t

(un+1
h ,wh) + a(un+1

h ,wh) + c(un+1
h ,un+1

h ,wh) + b(wh, p
n+1
h )

= (Fn+1
h − β−1µµµn+1

h ,wh) +
1

∆t
(unh,wh) ∀wh ∈ Xh ,

b(un+1
h , rh) = 0 ∀ rh ∈ Sh ,

1
∆t

(µµµn+1
h , ωωωh) + a(µµµn+1

h , ωωωh) + c(ωωωh,un+1
h , µµµn+1

h ) + c(un+1
h , ωωωh, µµµ

n+1
h )

+ b(ωωωh, πn+1
h ) = α(un+1

h −Un+1, ωωωh) ∀ωωωh ∈ Xh,

and b(µµµn+1
h , τh) = 0 ∀ τh ∈ Sh .

• Set fn+1
h = Fn+1

h − β−1µµµn+1
h .

We now report some computational results for solving the piecewise optimal con-
trol problem by implementing Algorithm 5.1. This example demonstrates that the
piecewise optimal control mechanism does a very good job of tracking the velocity
field. Also, in the solution process an optimal body force distribution can be obtained.
The computational example also reinforces the theoretical results.

Here are some detailed data of the example. We choose the domain Ω = (0, 1)×
(0, 1) (i.e., the unit square). The desired velocity field

U(x, t) =
(

ϕy(x1, x2, t)
−ϕx(x1, x2, t)

)
is constructed from the stream function

ϕ(x1, x2, t) = θ(x1, t)θ(x2, t)

with

θ(y, t) = (1− y)2 (1− cos(2kπyt)) , y ∈ [0, 1].

The integer parameter k (k = 2 for the current computation) involved in U adjusts
the number of eddies of circulation presented in the desired flow, thus determines
the complexity of the desired flow. Note that U defined in such a way satisfies the
divergence-free condition and the zero boundary conditions. The desired body force
is computed by (1.16), namely,

F = ut − ν∆U + (U · ∇)U.
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FIG. 2.

The uncontrolled initial state is

u0(x) = e

(
(cos(2πx1)− 1) sin(2πx2)
sin(2πx1)(1− cos(2πx2))

)
.

We choose the viscosity constant ν = 0.1 and the time step ∆t = δ = 0.1 for the
computation. The finite elements are chosen to be the Taylor–Hood elements; i.e.,
the finite element space Xh is chosen to be piecewise quadratic elements (for uh
and µµµh) and Sh is chosen to be piecewise linear elements (ph and πh). Thus we
have k = 2 in (4.1), (4.2). The finite-dimensional nonlinear optimality system of
equations in Algorithm 5.1 needs to be solved by a nonlinear solver. Newton’s method
is used to solve the finite-dimensional nonlinear system of equations. Note that our
finite element spaces are nonconforming in the sense that the discrete divergence-free
condition b(unh, rh) = 0 does not imply the continuous divergence-free condition, i.e.,
∇ · unh 6= 0.

The computational results obtained by implementing Algorithm 5.1 with the
above data are presented in graphical form with Figures 1–10.

For better graphics purposes, we plot

σ(1 + 100(x2
1 + x2

2))u(x, t),

instead of u, where σ > 0 is a scaling factor. The purpose of the scaling is to magnify
the small structure of the desired flow U(x, t) close to the upper right corner of the
physical domain Ω.
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FIG. 5.

Figure 1 shows the initial states U0 and u0 of the desired and controlled flows
with σ = 0.0005. Note that u0 is far away from the zero vector field U0.

When t > 0 becomes larger, the magnitude of the desired flow U(t) increases but
that of the controlled flow u(t) decreases significantly at the first few steps.

Figures 2–9 are plotted with σ = 0.002.
During 0 ≤ t ≤ 0.7, the control is in the transient stage. At t = 0.3 (Figure 2),

neither the position of the eddy nor the magnitude of the velocity field u matches
well with U. At t = 0.5, the large eddy of the controlled flow u splits into two
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FIG. 8.

eddies, with one at the right position and the other fading as t increases. Starting
from t = 0.8, the controlled flow matches the desired flow so well that we can hardly
distinguish one from the other with naked eyes (Figures 4–6 for t = 0.8, 0.9, 1.0). Of
course, u is not identical to U at this stage, but the difference is at a very small
scale. The controlled flow fine-tunes itself to match the desired flow quantitatively.
As the distributed control continues to be applied, “perfect matching” (to our naked
eyes) is preserved. Some pictures for long time control are included in Figures 7–9 for
t = 1.5, 3.8, 14.7.
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In summary, in very short time (starting from t ∼ 0.8), the controlled velocity
field is in nice agreement with the target field. These results reinforce the theoretical
exponential decay estimate of ‖unh −Un‖ (see Corollary 4.3).

On the other hand, in Figure 10, we see that the error ‖unh − Un‖ is quickly
reduced initially and then oscillates between 0 and 0.11 rather than being further
reduced. This is due to the discretization error O(h3 + ∆t) in Corollary 4.3. By
choosing smaller h and ∆t, we can reduce the eventual error in the velocity tracking.
For more computational details, see [HRY].
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Abstract. Annealing of general iterative stochastic schemes is studied by using Wentzell’s large
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form of the critical constant is specified in terms of its potential function of the mean model.
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1. Introduction. Adaptive algorithms with stochastics appear frequently in
various applications, such as learning algorithms [17], optimization (simulated an-
nealing [16], genetic algorithms [9], evolution computation [15]), neural networks [12],
system identification, adaptive controls, signal modeling, filtering, and transmission
[12], [21]. The function of these algorithms is to adjust a state vector (or monitored
parameter vector) Xn for specifying the system considered, where n refers to the time
of observation of the system. In most cases of applications mentioned above, the rule
used to update X. will typically be of the form

Xn+1 = Xn + rnb (Xn, ξn) ,(1.1)

where {rn} is a sequence of small gains and ξn is the input of the system at time n,
either deterministic or stochastic. These algorithms have been studied (see [1] and
references therein). It is shown that they do not always converge to the desired result.
For instance, when a cost (or, say, potential) function U(x) is given, the algorithm
will be constructed by the method in [1]; however, it isn’t always successful in finding
an element in the set S = {z ∈ Rd, U(z) = minx∈Rd U(x)}. To avoid getting trapped
in local minima, stochastic perturbation is added as follows:

Xn+1 = Xn + rnb (Xn, ξn) + hnζn,(1.2)

where ζn is a sequence of independently and identically distributed (i.i.d.) random
variables. Borrowing the idea of annealing process in statistical mechanics, it is called
the simulated annealing algorithm [16].

In various special cases, the asymptotic behavior of (1.2) as n → ∞ has been
studied in [18], [6], [7], [19], [20]. In [18], the global optimization result is achieved
for the case of b (Xn, ξn) = −∇U (Xn), hn = rn and ζn = Wn being i.i.d. Gaussian
random variables. In [19], using the result of Dubrushin for inhomogeneous Markov
chains, the convergence result is achieved, in which the appropriate choice of {rn}
depends on the distribution of ξn. One of the cases which can be represented explicitly
is that ξn is also Gaussian; in this case, {rn} is the solution of the equation crn/ ln rn =
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1/ lnn and hn = −1/ ln rn with a large constant c. The model with ζn = Wn,
b (Xn, ξn) = −∇U (x) + ξn and rn = A/n, hn =

√
B/ (n ln lnn) is studied in [6],

[7], and based on the result of [3], the following result is obtained: If U(x), {ξn} are
suitably behaved and B/A > Λ (a constant depending only on U(x)), then Xn → S
in probability as n→ +∞.

Similar to (1.2), the stochastic differential equation in continuous time

dXt = −∇U (Xt) dt+ ctdWt(1.3)

is studied, which is a rather familiar model in probability theory called a Langevin-
type Markov diffusion. Especially, [14] gives a comprehensive observation of the large
time behavior of (1.3), where Hwang and Sheu’s main result can be roughly stated
as follows: Under some mild conditions on U(x) and ct =

√
c/ ln t for large t, there

exist Λ, d∗ > 0 such that, when c > Λ, for f ∈ Cb
(
Rd
)
,

E0,y (f (Xt))→
∫
f (x)µ (dx) as t→ +∞

uniformly for y in a compact set, where µ(dx) is the weak limit of the measures
1
Zε

exp{−U(x)
ε }dx as ε→ 0(Zε =

∫
exp{−U(x)

ε }dx); and when c > d∗,

P0,y {Xt ∈ B (S, l)} → 1 as t→ +∞(1.4)

uniformly for y in any compact set, where B (S, l) is the l-neighborhood of S, while
for c < d∗, (1.4) fails. The proof of these results is based on the large deviation
estimates of small Gaussian perturbations of the dynamical system [5].

The model of (1.2) in such a general form studied in the present article provides
more flexibility for application. In fact, in many cases, the mechanism of systems is
not as simple as those in [18], [19], where the increments of X at time n are only sums
of ξn and a function of Xn. It often appears as a complicated multivariable function
of ξn and Xn, e.g., in Kohonen’s algorithm and many other algorithms. Hence a
consideration for model (1.2) is not only of theoretical generality but also of practical
significance. The work of [6], [7] is based on this general form, while {rn} and {hn}
therein are too restricted and there is a lack of information on the convergence rate of
the algorithm. To obtain the corresponding results of asymptotic behavior in [14] for
the model (1.2), the methods used in [6], [7], [19], [14], etc., seem not to be enough.
Based on the idea of using large deviations theory to study simulated annealing for
a finite number of states in [24], we borrow the generalized large deviation theory
of Wentzell [25] and then give a uniform treatment and convergence theorem which
includes results in [6], [7], [19].

In [14], the critical constants Λ, d∗(c∗, d∗ in [14]) are specified by a sequence of
definitions connected with cycles, which become rather complicated to reveal their
meaning through U(x). In [13], Λ is identified by

Λ = 2 sup
x,y∈Rd

inf
ϕ

sup
0≤t≤1

(U (ϕ (t))− U (x)− U (y) + U0) ,

where ϕ belongs to the set of continuous routes which link x to y.
In the present article, under the conditions

(1) b(x, y) is a bounded measurable function such that b̄ (x) = Eb (x, ξn) is
uniformly continuous,

(2) ζn is an i.i.d. random sequence and Eζn = 0,
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(3) {rn} and {hn} satisfy assumptions (A1)–(A3) in section 2 and (A4)
(or (A4′), (A4′′)) in section 3 (we will show that these assumptions do
include a fairly wide class of {rn} and {hn}),

the large deviation principle for the family of {Xn} as n→ +∞ is observed in section
3, which is used mainly as a tool to reach our goal.

The main result of this article is exploited in section 5: If b̄ (x) has a potential
function U(x), then under some restrictions on the behavior of b̄ (x) and b (x, ξn) at
infinity ((B1)–(B3)), for {rn} in a wide class, one can always choose {hn} such that

P0,y {Xn ∈ B (S, l)} → 1 as n→ +∞(1.5)

uniformly for y in an arbitrary compact set F . Moreover, for the convergence of Xn

in the sense of (1.5), hn has to be chosen decreasing slowly enough. How slow this
is depends on the order of rn. For instance, when rn = 1/nγ + o (1/nγ)(γ < 1), the
critical rate of hn is c/

(
(1− γ)nγ/2 lnn

)
for c large enough. Furthermore, we identify

the closed form of the lower bound d∗ of c for convergence:

d∗ = 2 sup
x∈S\S

inf
y∈S

inf
ϕ

sup
0≤t≤1

(U (ϕ (t))− U (x)) ∨ 0,

which is analogous to that obtained for finite state processes in [11], where S ={
x ∈ Rd, ∇U (x) = 0

}
and ϕ ∈ C

(
[0, 1] , Rd

)
, ϕ (0) = x, ϕ (1) = y. We also show

that the convergence rate of the algorithm is not the same for different {rn} and {hn}.
Moreover, changing {rn}, {hn} given in [6], [7] will accelerate the convergence speed
of the algorithm.

The materials in the appendix are devoted to exploiting the complicated definition
of cycles.

2. Preliminaries. We consider the following stochastic approximation model:

Xn+1 = Xn + rnb (Xn, ξn) +
√
rnhnζn,(2.1)

where {rn} is a sequence of small gains monotonically decreasing to zero, satisfying∑
n rn = +∞, and {hn} also tends to zero monotonically. We also assume that

{ξn} and {ζn} are i.i.d. random vectors respectively, and {ξn} and {ζn} are mutually
independent.

Let us make some assumptions on {rn} and {hn}. Define tn and m (t) by

tn =
n∑
i=1

ri,

m (t) = inf {n > 0, tn > t} .

Assume that there are continuous functions k(s) and t(s) such that

(A1)
rm(tN+s)

rN
→ k (s) as N → +∞,

(A2)
hm(tN+s)

hN
→ 1 as N → +∞,

(A3) k
(
t[s/rN+N ] − tN

)
→ q (s) as N → +∞,

where [·] is the function of taking the integer part.
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(A1)–(A3) are too abstract for application. The following propositions and corol-
lary show that in most cases we encounter, these assumptions are satisfied.

PROPOSITION 2.1. If {rn} satisfies following conditions
(1) there exists ε> 0, such that χ · r[χn] ≥ rn for large enough n and any χ ∈

(1, 1 + ε),
(2) lim infn→+∞ rn

n
(lnn)α > 0 for some α> 0,

then the assumption (A1) holds and k(s) = 1, which implies assumption (A3) auto-
matically.

Proof. For the case of rn = (lnn)α /n, we have tn ∼ (lnn)1+α. Consider

(ln (n+ n/ ln lnn))1+α − (lnn)1+α
,

which is equal to(
lnn+ ln

(
1 +

1
ln lnn

))1+α

− (lnn)1+α

= (lnn)1+α
(

1 +
1 + α

lnn ln lnn
+ o

(
1

lnn ln lnn

))
− (lnn)1+α →∞, n→∞.(2.2)

For any s > 0, there exists N such that rm(tn+s) ≥ rn+n/ ln lnn for n > N . Hence

1 ≥ lim sup
n→+∞

rm(tn+s)

rn
≥ lim inf

n→+∞

rm(tn+s)

rn
≥ lim inf

n→+∞

(
ln
(
n+ n

ln lnn

))α
n+ n

ln lnn

n

(lnn)α
= 1,(2.3)

i.e.,

k (s) = lim
n→+∞

rm(tn+s)

rn
= 1.

For general {rn} satisfying (1) and (2), there exist N and c′ > 0 such that for n > N ,

t[n+n/ ln lnn] − tn ≥ c′
((

ln
(
n+

n

ln lnn

))1+α
− (lnn)1+α

)
→ +∞, n→ +∞,

holds. Similarly to (2.3), we obtain

1 ≥ lim sup
n→+∞

rm(tn+s)

rn
≥ lim inf

n→+∞

rm(tn+s)

rn
≥ lim inf

n→+∞

r[n+ n
ln lnn ]
rn

,

which implies k(s) = 1, since by (1) we have

r[n+ n
ln lnn ]
rn

≥ rn(
1 + 1

ln lnn

)
rn
→ 1, n→ +∞.

The proof is complete.
Remark. rn = c/(ln lnn)α(α > 0), rn = c/ (lnn)α(α > 0), rn = c (lnn)β /nα(0 <

α < 1, β ∈ (−∞,+∞)), and rn = c (lnn)α /n(α > 0) are typical examples satisfying
the conditions of Proposition 2.1.

COROLLARY 2.2. If rn = r̂n + o (r̂n), where {r̂n} satisfies the conditions of
Proposition 2.1, then the results of Proposition 2.1 hold.

Proof. The proof is immediate.
PROPOSITION 2.3. If rn = c/n + o (1/n), then assumptions (A1) and (A3) are

satisfied with k (s) = e−s/c and q (s) = c/ (s+ c).
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Proof. For any ε > 0, there exists N such that for n > N ,

(c− ε) ln
n+ 1
N + 1

≤ tn − tN ≤ (c+ ε) ln
n

N
.(2.4)

Thus [
es/(c+ε)N

]
≤ m (tN + s) ≤

[
es/(c−ε)N + 1

]
.

It follows that

lim inf
n→+∞

rm(tN+s)

rN
≥ e−s/(c−ε) and lim sup

n→+∞

rm(tN+s)

rN
≤ e−s/(c+ε)

for any ε and

rm(tN+s)

rN
→ e−s/c, N → +∞.

Then we have(
N

[sN/ (c+ o (1)) +N ]

)c/(c+ε)
≤ k

(
t[sN/(c+o(1))+N ] − tN

)
≤
(

N + 1
[sN/ (c+ o (1)) +N ] + 1

)c/(c−ε)
by (2.4), which shows

k
(
t[s/rN+N ] − tN

)
→ c

s+ c
as N → +∞ and ε→ 0,(2.5)

i.e., q (s) = c/ (s+ c). The proposition is proven.
Remark. If rn is given as Corollary 2.2, then assumption (A2) on {hn} can be

also specialized as conditions of Corollary 2.2, and if rn = c/n+o (1/n), then for (A2)
hn can be taken as c/(ln lnn)α(α > 0), or c/ (lnn)α(α > 0).

3. Large deviation principle. In order to obtain the convergence properties of
the model (2.1) under different choices of {rn} and {hn}, we investigate the Freidlin–
Wentzell-type large deviation law of the following model:

XN
n+1 =

{
XN
n + rN+nb(XN

n , ξN+n) +
√
rN+nhN+nζN+n if n < G (N) ,

XN
n + rNq(n · rN )b(XN

n , ξN+n) +
√
rNhNq(n · rN )ζN+n otherwise,

(3.1)
where we take G(N) such that G (N) · rN → +∞ and let it make

r̃N[s/rN ]

rN
→ q (s) uniformly in s as N → +∞(3.2)

and

h̃Nn
hN
→ 1 uniformly in n as N → +∞,(3.3)

where

r̃Nn :=
{
rn+N if n < G (N) ,
rNq (n · rN ) otherwise(3.4)
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and

h̃Nn :=
{
hn+N if n < G (N) ,
hN otherwise.(3.5)

In the cases of {rn} and {hn} satisfying the conditions of Corollary 2.2, we can take
G (N) = N/ ln lnN . When rn = c/n+ o (1/n) and hn ≈ d/ ln lnn, G(N) may be Nk

for any k > 1.
Remark. The important role of G (N) is clear if one realizes that for n < G (N),

we have Xn+N = XN
n , which is crucial for our argument in order to make use of

Wentzell’s powerful estimation of the large deviation principle [25].
Let µ (du) be the probability measure of ζ1 and ν(dv) be the probability measure

of ξ1. We denote

Aij =
∫
Rn

uiujµ (du) ,(3.6)

H0 (s, x, y) =
1
2

n∑
i,j=1

(q (s))−1
Aij

(
yi − q (s) b̄i (x)

)
·
(
yj − q (s) b̄j (x)

)
,(3.7)

S0,T (φ) =
∫ T

0
H0

(
s, φ (s) ; φ̇ (s)

)
ds,(3.8)

where
(
Aij
)

is the inverse of the matrix (Aij) and b̄ (x) =
∫
Rn

b (x, v) ν (dv).
For later use, we cite the following result.
LEMMA 3.1 (see [25, Theorem 3.3.2′]). Let the following conditions be satisfied:
(1)

lim
N→+∞

hN ln

(
r−1
N sup

t∈{krN}, x∈Rd
PNt,x

{(
x,XN

k+1
)
/∈ V

})
= −∞,

where V =
{

(x, y) ∈ Rd ×Rd, |x− y| < 1
}

.
(2) For all t ∈ [0, T ], x ∈ Rd, and |z| ≤ z0,

r−1
N hNG

N
V

(
t, x;h−1

N z
)
−G0 (t, x; z)→ 0 uniformly as N → +∞,

where

GNV (z, x; z) = ln
[
1 +

∫∫
Ṽ

(
exp

{
QNt,x (z, u, v)

}
− 1
)
µ (du) ν (dv)

]
,(3.9)

QNt,x (z, u, v) = r̃N[t/rN ]z · b (x, v) +
√
r̃N[t/rN ]h̃

N
[t/rN ]z · u,(3.10)

Ṽ =
{

(u, v) ∈ Rd ×Rd,
∣∣∣r̃N[t/rN ]b (x, v) +

√
r̃N[t/rN ]h̃

N
[t/rN ]u

∣∣∣ < 1
}

(3.11)

G0 (t, x; z) = q (t) b̄ (x) · z +
q (t)

2

d∑
i,j=1

Aijz
izj .(3.12)

(3) For all t ∈ [0, T ], x ∈ Rd, and |z| < z0,

∇z
(
r−1
N hNG

N
V

(
t, x;h−1

N z
)
−G0 (t, x; z)

)
→ 0 uniformly as N → +∞.
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(4) For |z| ≤ z0 < +∞, sufficiently large N , and all t, x,∣∣∣∣ ∂2

∂zi∂zj

(
r−1
N hNG

N
V

(
t, x;h−1

N z
))∣∣∣∣ ≤ c < +∞.

Then
{
XN
n

}
possesses the large deviation principle as N → +∞ and S0,T {φ} is

the action functional uniformly with respect to the initial point.
In the following theorem, the time scale krN is used, which means that for any

φ (t), the large deviation of
{
XN
k − φ (krN )

}
k

is under consideration.
THEOREM 3.2. Let

∫
Rd
uµ (du) = 0, µ {u : |u| ≥ y} ≤ exp

{
−lyβ

}
for large

enough y with 0 < β < 1, l > 0. For bounded b (x, v), uniformly continuous b̄ (x), and
continuous q(s), if {rn} and {hn} satisfy assumptions (A1)–(A3) and

(A4) rβNh
β−2
N → 0 as N → +∞,

then
{
XN
n

}
possesses the large deviation principle as N → +∞ and S0,T {φ} is the

action functional uniformly with respect to the initial point.
Proof. We need only to prove that conditions (1)–(4) of Lemma 3.1 are satisfied.
For any k > 0,

PNkrN ,x
{(
x,XN

k+1
)
/∈ V

}
=
∫∫
Rn×Rn

1{∣∣∣r̃Nk b(x,v)+
√
r̃Nk h̃

N
k u

∣∣∣>1
}ν (dv)µ (du) .

When N is large enough, it is less than∫
Rd

1{∣∣∣4√r̃Nk h̃Nk u∣∣∣> 1
2

}µ (du) ≤ exp
{
−l
(

4r̃Nk h̃
N
k

)−β/2}
≤ exp

{
−l (4rNhN )−β/2

}
,

since µ {u : |u| ≥ y} ≤ exp
{
−lyβ

}
, b (x, v) is bounded, and r̃Nk ≤ rN and h̃Nk ≤ hN

for any k > 0. Then condition (1) follows.
To prove condition (2), we need to consider the limit of the term

r−1
N hN

∫∫
Ṽ

(
exp

{
QNt,x

(
h−1
N z, u; v

)}
− 1
)
µ (du) ν (dv) ,

which is equal to

r−1
N hN

∫∫
Ṽ

(
exp

{
QNt,x

(
h−1
N z, u; v

)}
− 1−QNt,x

(
h−1
N z, u; v

))
µ (du) ν (dv)

+r−1
N hN

∫∫
Ṽ

QNt,x
(
h−1
N z, u; v

)
µ (du) ν (dv) .(3.13)

The second term can be separated into the following two parts:

r−1
N

∫∫
Ṽ

r̃N[t/rN ]zb (x, v)µ (du) ν (dv) + r−1
N

∫∫
Ṽ

√
r̃N[t/rN ]h̃

N
[t/rN ]z · uµ (du) ν (dv) .(3.14)

By the Hölder inequality and
∫
Rn

uµ (du) = 0, the second term of (3.14) tends to zero
uniformly in t, x and |z| < z0 as N → +∞, and the first part of (3.14) is

r̃N[t/rN ]

rN

∫∫
Rn×Rn

z · b (x, v)µ (du) ν (dv)−
r̃N[t/rN ]

rN

∫∫
Ṽ c
z · b (x, v)µ (du) ν (dv) ,
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of which the first part approaches q (t) b̄ (x) · z uniformly in t, x and |z| < z0 as
N → +∞, and the second one is bounded by

r̃N[t/rN ]

rN
z0Mµ

{
u :
∣∣∣√r̃N[t/rN ]h̃

N
[t/rN ]u

∣∣∣ > 1
2

}
;

the latter also goes to zero uniformly in t, x and |z| < z0 as N → +∞. Now we
consider the first term of (3.13). Since

1
2
r−1
N hN

∫∫
Ṽ

{
QNt,x

(
h−1
N z, u; v

)}2
µ (du) ν (dv)

=
1
2

∫∫
Ṽ

[
r̃N[t/rN ]

rN
(z · b (x, v))2 +

(
r̃N[t/rN ]

)1 1
2
(
h̃N[t/rN ]

) 1
2

rNhN
(z · b (x, v)) (z · u)

+
r̃N[t/rN ]h̃

N
[t/rN ]

rNhN
|z · u|2

]
dµdν,

it is not difficult to see that the first two terms tend to zero uniformly in t, x, and
|z| < z0 as N →∞, and by (3.1) and (3.2), the limit of the third term is

1
2
q (t)

d∑
i,j=1

(∫
Rn

uiujµ (du)
)
zizj

uniformly in t, x, |z| < z0 by a method similar to that above.
Now, we verify

r−1
N hN

∫∫
Ṽ

{
exp

{
QNt,x

}
− 1−QNt,x −

1
2
{
QNt,x

}2
}
µ (du) ν (dv)→ 0(3.15)

uniformly in t, x, |z| < z0. Separating Ṽ into two parts,

Ṽ1 =
{

(u, v) ∈ Rn ×Rd,
∣∣∣r̃N[t/rN ]b (x, v) +

√
r̃N[t/rN ]h̃

N
[t/rN ]u

∣∣∣ < hN
z0

}
,

Ṽ2 = Ṽ \Ṽ1,

(3.15) is written as

r−1
N hN

∫∫
Ṽ1

{
exp

{
QNt,x

}
− 1−QNt,x −

1
2
{
QNt,x

}2
}
µ (du) ν (dv)

+r−1
N hN

∫∫
Ṽ2

{
exp

{
QNt,x

}
− 1−QNt,x −

1
2
{
QNt,x

}2
}
µ (du) ν (dv) .(3.16)

The first term of (3.16) is less than

r−1
N hN

∫∫
Ṽ1

{{
QNt,x

(
h−1
N z, u; v

)}2
}
µ (du) ν (dv) ,
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which converges to zero uniformly in t, x, |z| < z0. Let us consider the second term
of (3.16). It is less than∣∣∣∣∣∣r−1

N hN

∫ 2

hN
2z0

exp
{

2h−1
N z0y

}
dµ

u : |u| ≥ y√
r̃N[t/rN ]h̃

N
[t/rN ]


∣∣∣∣∣∣

≤ r−1
N hN exp

{
4h−1

N z0
}

exp

{
−l
(

2
rNhN

)β/2}
+ 3r−1

N hN exp

{
−l
(

hN
4z2

0rN

)β/2}

+2r−1
N z0

∫ 2

hN
2z0

exp
{

2h−1
N z0y

}
exp

{
−l
(

y2

rNhN

)β/2}
dy,

since
∣∣QNt,x (h−1

N z, u; v
)∣∣ ≤ h−1

N z0

∣∣∣√r̃N[t/rN ]h̃
N
[t/rN ]u

∣∣∣ for large enough N , and ex − 1−

x − 1
2x

2 ≤ e|x|. In terms of r−β/2N h
1−β/2
N → ∞, it converges to zero. Therefore,

condition (2) is checked.
We can verify conditions (3) and (4) similarly. The theorem is then com-

plete.
Remark. If Eeλζn < +∞ for some λ > 0, (A4) may be weakened to

(A4′) rNh
−1
N → 0 as N → +∞.

If µ {u : |u| ≥ y} ≤ cy−β , β > 4, c > 0, (A4) should be more restricted by assuming

(A4′′) h−1
N = o (− ln (rN )) .

But according to the time scale krN , the action functional isn’t invariant under
time shift. To achieve a better form of the action functional, we consider another time
scale. Let s (t) =

∫ t
0 q (u) du; then we have∫ T

0

1
2

d∑
i,j=1

(q (u))−1
Aij

(
φ̇i (u)− q (u) b̄i (φ (u))

)
·
(
φ̇j (u)− q (u) b̄j (φ (u))

)
du

=
∫ s(T )

0

1
2

d∑
i,j=1

Aij
(
dφis
du

(u)− b̄i (φs (u))
)
·
(
dφjs
du

(u)− b̄j (φs (u))
)
du,

where φs = φ ◦ s−1. Denote

S̃0,T (φ) =
1
2

∫ T

0

d∑
i,j=1

Aij
(
φi (υ)− b̄i (φ (υ))

)
·
(
φj (υ)− b̄j (φ (υ))

)
dυ.(3.17)

Mapping φ (υ) 7−→
(
φ ◦ s−1

)
(υ) is bijective in B(R,Rd), the set of Borel mappings

from R to Rd; then we have the following.
COROLLARY 3.3. Denote by Φx,T (γ) the set of all functions φ (t), 0 ≤ t ≤ T ,

such that φ (0) = x and S̃0,T (φ) ≤ γ. Then
(1) the functional S̃0,T (φ) is lower semicontinuous, and Φx,T (γ) is compact;
(2) for any δ> 0, l > 0, φ ∈ Φx,T (γ), and sufficiently large N ,

PN0,x

{
sup

0≤s(nrN )−T1≤T

∣∣XN
n − φ (s(nrN )− T1)

∣∣ < δ

}
≥ exp

{
−h−1

N

(
S̃0,T (φ) + l

)}
;
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(3) for any δ > 0, l > 0, and sufficiently large N ,

PN0,x

{
inf

φ∈Φx,T (γ)
sup

0≤s(nrN )−T1≤T
|XN

n − φ(s(nrN )− T1)| ≥ δ
}
≤ exp{−h−1

N (γ − l)}.

Define

V (x, y) := inf
{
S̃0,T (φ) : φ0 = x, φT = y, φ ∈ C ([0, T ]) , T ≥ 0

}
for later use.

4. Lemmas. As in [5], we will give some lemmas to show the relations between
the stochastic process

{
XN
n

}
and the trajectory X0 (·) of the dynamical system

dX0 (t)
dt

= b̄
(
X0 (t)

)
.(4.1)

We have the following lemma.
LEMMA 4.1. Let K be a compact set not entirely containing any ω-limit sets of the

dynamical system (4.1) and τ = inf
{
n > 0, XN

n /∈ K
}

. Assume that the assumptions
(A1)–(A3) and (A4) (or (A4′), (A4′′)) hold. Then there exist c, T0, and N0 such that

Px {s (τ · rN ) > T} ≤ exp
{
−c (T − T0)h−1

N

}
(4.2)

for N ≤ N0, T > T0.
Proof. The lemma can be proven by using a method similar to that of [5].
LEMMA 4.2. Let F be a compact set and the assumptions (A1)–(A3) and (A4)

(or (A4′), (A4′′)) hold. Then for any c > 0, δ > 0 there is R > 0 such that

Px
{
s (θ · rN ) ≤ exp

(
ch−1
N

)}
≤ exp

{
−δh−1

N

}
(4.3)

for all x ∈ F , where θ = inf
{
n > 0,

∣∣XN
n

∣∣ ≥ R}.
Proof. Choose R1 > 0, R2 > 0, and R1 > R2 such that {x, |x| ≤ R1} contains F

and all ω-limit sets of (4.1). Assume inf {V (x, y) , |x| ≤ R1, |y| ≥ R2} = d1 > 0, and
for any R > R2,

d2 (R) = inf {V (x, y) , |x| ≤ R2, |y| > R} > 0.

Suppose that {θn}, {ρn} are two sequences of stopping times which satisfy

θ1 = inf
{
n ≥ 0,

∣∣XN
n

∣∣ ≥ R2
}
,

ρ1 = inf
{
n ≥ θ1,

∣∣XN
n

∣∣ ≤ R1
}
,

...
θn = inf

{
n ≥ ρn−1,

∣∣XN
n

∣∣ ≥ R2
}
,

ρn = inf
{
n ≥ θn,

∣∣XN
n

∣∣ ≤ R1
}
,

...
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Then for any M ,

Px
{
s (θ · rN ) < exp

{
ch−1
N

}}
≤ Px {s (θM · rN ) ≥ s (θ · rN )}+ Px

{
s (θM · rN ) < exp

{
ch−1
N

}}
.

To estimate the first term, for sufficiently small ε, and x ∈ {R2 ≤ |x| ≤ R2 + ε}, we
have

Px {s (θM · rN ) < s (θ · rN )}
≥ Px

{
s (θM · rN ) < s (θ · rN ) , R2 ≤

∣∣XN
θM

∣∣ ≤ R2 + ε
}

≥ Ex1{
τ>θM−1,R2≤|XNθM−1

|≤R2+ε,P
XN
θM−1

{θ1<θ,R2≤|XNθ1 |≤R2+ε}
}

≥
(

inf
R2≤|y|≤R2+ε

Py
{
θ1 < θ,R2 ≤

∣∣XN
θ1

∣∣ ≤ R2 + ε
})M

.(4.4)

Notice that

Px {θ ≤ θ1} ≤ exp
{
−d2 (R)

2
h−1
N

}
,(4.5)

and for N large enough, by Theorem 3.2, there is β > d2 (R) such that

Px
{
θ ≥ θ1,

∣∣XN
θ1

∣∣ > R2 + ε
}
≤ sup
t∈(krN ),x∈Rd

PNt,x
{(
x,XN

k+1
)
/∈ V ε

}
≤ exp

{
−β

2
h−1
N

}
,

(4.6)
where V ε =

{
(x, y) ∈ Rd ×Rd, |x− y| < ε

}
. Choosing M = exp{d2(R)

3 h−1
N }, by (4.5),

(4.6), and

Px
{
θ ≤ θ1 or

∣∣XN
θ1

∣∣ > R2 + ε
}
≤ Px {θ ≤ θ1}+ Px

{
θ ≥ θ1,

∣∣XN
θ1

∣∣ > R2 + ε
}
,(4.7)

we conclude that (4.4) is bigger than(
1− exp

{
−d2 (R)

2
h−1
N

}
− exp

{
−β

2
h−1
N

})M
= 1− exp

{
−d2 (R)

6
h−1
N

}
+ o

(
exp

{
−d2 (R)

6
h−1
N

})
.

The remainder of the proof is similar to [5, p. 128].
Now we consider the following conditions:

(B1) lim sup
|y|→+∞

∣∣b̄ (y)
∣∣

|y| ≤M1 < +∞,

(B2) lim sup
|y|→+∞

〈
b̄ (y) , y

〉
|y|2

≤ −c < 0,

(B3) lim sup
|y|→+∞

E
(
b (y, ξn)− b̄ (y)

)2
|y|2

≤M2 < +∞.
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LEMMA 4.3. Suppose that the stochastic approximation model (2.1) satisfies con-
ditions (B1), (B2), and (B3). Then for any compact set F ⊂ Rd and fixed N , the
family of probability measures

{PN,y {Xn ∈ ·} ;N < n, y ∈ F}

is tight, where PN,y is the probability starting at y at time N .
Proof. To prove this lemma, we need only to check EN,y |Xn|2 ≤ M for any

n > N and y ∈ F .
Denote

VN := |y|2 and Vn := exp

{
l
n−1∑
i=N

ri

}∫
Rd
|x|2 PNn,z (dx) ,

where PNn,z (dx) is the transition probability of {Xn} from N to n. Picking l ≤ c/4,
we have

Vn+1 − Vn

= exp

{
l
n∑

i=N

ri

}∫
R2d+n

∣∣∣y + rnb (y, v) +
√
rnhnu

∣∣∣2 ν (dv)µ (du)PNn,z (dy)

− exp

{
l
n−1∑
i=N

ri

}∫
Rd
|y|2 PNn,z (dy)

= exp

{
l
n−1∑
i=N

ri

}[∫
Rd

[
(elrn − 1)|y|2 + elrn

(
r2
n|b̄(y)|2 + 2rn〈y, b̄(y)〉

)]
PNn,z(dy)

+ elrn
(∫

Rn+d
r2
n

∣∣b(y, v)− b̄(y)
∣∣2 ν(dv)PNn,z (dy) +

∫
R2d

rnhn |u|2 µ(du)PNn,z(dy)
)]

.

By (B1)–(B3), there exists R such that
∣∣b̄ (y)

∣∣ ≤ (M1 + 1) |y| ,
〈
b̄ (y) , y

〉
≤ −2c

3 |y|
2,

and E
(
b (y, ξn)− b̄ (y)

)2 ≤ (M2 + 1) |y|2 for all |y| ≥ R. Then∫
{|y|>R}

[
(elrn − 1)|y|2 + elrnrn

[
2〈y, b̄(y)〉+ rnE

∣∣b(y, ξn)− b̄(y)
∣∣2 + hnEζ

2
n

]]
PNn,z(dy)

≤
∫

{|y|>R}

[
−5c

6
rn |y|2 + 2 (M2 + 2) r2

n |y|
2 + 2rnhnEζ2

n

]
PNn,z (dy) ≤ 0

for large enough n, and the integral taking over |y| ≤ R is less than

rn

∫
{|y|≤R}

[ c
2
|y|2 + 4

∣∣〈y, b̄ (y)
〉∣∣+ 2rnE |b (y, ξn)|2 + hnE |ζn|2

]
PNn,z (dy)

≤ Arn

with a constant A. Thus, we obtain

Vn+1 − Vn ≤ Arn exp

{
l
n−1∑
i=N

ri

}
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and then

Vn ≤
n−1∑

i=N+1

Arn exp

{
l
i−1∑
i=N

ri

}
+ VN ≤ A

∫ ∑n−1
j=N rj

0
elxdx+ |y|2 ,

which implies

EN,y |Xn|2 ≤
A

l

(
1− exp

{
−l

n−1∑
i=N

ri

})
+ |y|2 exp

{
−l

n−1∑
i=N

ri

}
.

This shows that EN,y |Xn|2 are bounded for all n > N and y ∈ F . The lemma is
proven.

Suppose that there exists a continuous function U (x) such that b̄ (x) = −∇U (x),
Aij = δij , and S :=

{
x ∈ Rd,∇U (x) = 0

}
. If lim inf |x|→+∞ |∇U (x)| = +∞, then S

is compact. We assume that S consists of a finite number of connected compact sets
{K1,K2, . . . ,KL}.

LEMMA 4.4. Let F be a compact set, and suppose that the assumptions (A1)–
(A3), (A4) (or (A4′), (A4′′)) hold. Then for given l > 0 and M0 > 0, there exists
T ∗ > 0 such that for sufficiently large N and x ∈ F ,

Px {s (ρ · rN ) > T ∗} ≤ exp
{
−M0h

−1
N

}
,(4.8)

with ρ = inf
{
n ≥ 0, XN

n ∈ B (S, l)
}

, where B (·, l) stands for the l-neighborhood of a
set.

Proof. If x ∈ F ∩B (S, l), the lemma is obvious. Then we assume F ∩B (S, l) = ∅.
By Lemma 4.1, there is T ∗ such that

Px {s (τ · rN ) < T ∗} ≤ 1
2

exp
{
−M0h

−1
N

}
.

Choose sufficiently large R such that

Px {s (θ · rN ) ≤ T ∗} ≤ exp
{
−M0h

−1
N

}
,

where θ and τ are stopping times defined in Lemmas 4.1 and 4.2, and

K :=
{
x ∈ Rd, |x| ≤ R

}
\B (S, l) .

Now we have

Px {s (τ · rN ) > T ∗} ≥ Px {s (ρ · rN ) > T ∗, s (θ · rN ) > T ∗}
≥ Px {s (ρ · rN ) > T ∗} − Px {s (θ · rN ) < T ∗} ,

since τ = ρ ∧ θ. Thus the lemma holds.
For x, y ∈ Rd, suppose that Bx,y is the set of paths linking x and y, i.e., the set

of continuous maps ϕ : [0, 1] → Rd such that ϕ (0) = x and ϕ (1) = y. For any path
ϕ ∈ Bx,y, define

e (ϕ) = 2
(

max
0≤t≤1

U (ϕ (t))− U (x)
)

and I (x, y) = inf
ϕ∈Bx,y

e (ϕ) .

By the definition of S, I(x, y) is a constant for fixed y and any x ∈ K1 (⊂ S). Similarly,
I(x, y) is a constant for fixed x and any y ∈ K2 (⊂ S) , I(x, y) is the same for any x ∈
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K1 (⊂ S) and y ∈ K2 (⊂ S). We denote them by I(K1, y), I(x,K2), and I(K1,K2)
correspondingly.

For any c ≥ 0 and K ∈ S, we define

πcK := {x ∈ S, I (y, x) ≤ c, y ∈ K} , I (πcK) := max
y∈πcK

min
x∈S\πcK

I (y, x) ,

and

S =
{
x ∈ Rd, U (x) = min

y∈Rd
U (y)

}
,

Sc =
{
x ∈ S, inf

y∈S
I (y, x) ≤ c

}
.

LEMMA 4.5. For any πcK , α0 > 0 and δ < α0, under the assumptions (A1)–(A3)
and (A4) (or (A4′), (A4′′)) there exist N0, l0 such that

Px
{
s
(
τπck · rN

)
< exp

{
(I (πcK)− α)h−1

N

}}
≤ exp

{
−δh−1

N

}
,

Px
{
s
(
τπck · rN

)
> exp

{
(I (πcK) + α)h−1

N

}}
≤ exp

{
−δh−1

N

}
for l ≤ l0, N > N0, and α > α0, where τπcK = inf

{
n > 0, XN

n ∈ B (S\πcK , l)
}

,
x ∈ B (πcK , l).

Proof. By Lemma A.4 and Lemma 4.2 of [14], it is obvious.
LEMMA 4.6. For any α0> 0, c < c′, under assumptions (A1)–(A3) and (A4) (or

(A4′), (A4′′)), there is l0 such that for l ≤ l0, Ki ⊂ Sc′\Sc, and x ∈ B (Ki, l), we
have

Ex
{
s
(
τSc · rN

) ∣∣τSc′ ≤ ρSc′ } ≤ exp
{
−(d̄cc′ + α0)h−1

N

}
,

where

τSc = inf
{
n > 0, XN

n ∈ B (Sc, l)
}
,

ρSc′ = inf
{
n > 0, XN

n /∈ B (Sc′ , l)
}
,

d̄cc′ = max
y∈Sc′\Sc

min
x∈Sc

I (y, x) .

Proof. It is equivalent to the statement that the Markov chain is contained in Sl.
By Lemma 1.6 of [14] and Lemma A.5, the result is obvious.

LEMMA 4.7. Under the same assumptions as in Lemma 4.6, we have

Px
{
s
(
τSc · rN

)
≥ exp

{(
d̄cc′ + ᾱ

)
h−1
N

} ∣∣τSc ≤ ρSc′ } ≤ exp
{
−δh−1

N

}
for any ᾱ > α0 + δ.

Proof. It can be obtained directly by using Lemma 4.6 and the Chebyshev in-
equality.

5. Main results. Recall S = {x ∈ Rd, U (x) = miny∈Rd U (y)}, and define
d∗ := maxx∈S\S miny∈S I (x, y). Then we have the following lemma.

LEMMA 5.1. For any compact set F0 ∈ Rd and α > 0, under assumptions (B1)–
(B3), if {rn} and {hn} satisfy assumptions (A1)–(A3), (A4) ((A4′) or (A4′′)), and

r−1
N s−1 (exp

{
(d∗ + α∗)h−1

N

})
< G (N) (defined in (3.1))
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for large enough N , then there are δ> 0 and N0 > 0 such that

PN,y

{
XN+r−1

N s−1(exp{(d∗+α)h−1
N }) ∈ B (S, l)

}
≥ 1− exp

{
−δh−1

N

}
(5.1)

for all N > N0, α
∗/2 ≤ α ≤ α∗ and y ∈ F0.

Proof. For all n ≤ r−1
N s−1

(
exp

{
(d∗ + α)h−1

N

})
< G (N), XN+n = XN

n ; therefore
we can use all results valid for XN

n .
For simplicity, we denote

T (N, c) = r−1
N s−1 (exp

{
ch−1
N

})
.

Let σ = inf {n > N,Xn ∈ B (S, l)}. By Lemma 4.4, there is T ∗ > 0 such that for
y ∈ F0 and sufficiently large N ,

PN,y
{
σ > N + r−1

N s−1 (T ∗)
}
≤ exp

{
−M0h

−1
N

}
for some M0 > 0.

Now for fixed y ∈ F0,

PN,y
{
XN+T (N,d∗+α) ∈ B (S, l)

}
≥ EN,y

{
σ < N + r−1

N s−1 (T ∗) , Pσ,Xσ
{
XN+T (N,d∗+α) ∈ B (S, l)

}}
≥ inf

N ≤ N1 ≤ N + r−1
N s−1(T∗)

y1 ∈ B(S, l)

PN1,y1

{
XN+T (N,d∗+α) ∈ B(S, l)

}
×
(
1− exp{−M0h

−1
N }
)
.

(5.2)
Recall Sd∗ = {x ∈ S, infy∈S I (y, x) ≤ d∗}. Clearly, we have S\Sd∗ 6= ∅. Fix N1

with N ≤ N1 ≤ N + r−1
N s−1 (T ∗) and y1 ∈ B (S, l), and define the stopping time θ by

θ = inf {n ≥ N,Xn ∈ B (Sd∗ , l)} .

Then

PN1,y1

{
XN+T (N,d∗+α) ∈ B (S, l)

}
≥ EN1,y1

{
θ < N + T

(
N, d∗ +

α

2

)
, Pθ,Xθ

{
XN+T (N,d∗+α) ∈ B (S, l)

}}
≥ PN1,y1

{
θ < N + T

(
N, d∗ +

α

2

)}
× inf

N ≤ N2 ≤ N + T
(
N, d∗ + α

2

)
y2 ∈ B (Sd∗ , l)

PN2,y2

{
XN+T (N,d∗+α) ∈ B (S, l)

}
.(5.3)

Now let us estimate

PN1,y1

{
θ < N + T

(
N, d∗ +

α

2

)}
and PN2,y2

{
XN+T (N,d∗+α) ∈ B (S, l)

}
.

For the first estimate, for y1 ∈ B (S\Sd∗ , l), there is minx∈Sd∗ I (y1, x) ≤ d∗, since
S ⊂ Sd∗ . And by Lemma 4.7, we have

PN1,y1

{
θ ≥ N + T

(
N, d∗ +

α

2

)}
≤ exp

{
−δh−1

N

}
;(5.4)

otherwise, y1 ∈ B (Sd∗ , l). In this case,

PN1,y1

{
θ < N + T

(
N, d∗ +

α

2

)}
= 1.(5.5)
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For PN2,y2

{
XN+T (N,d∗+α) ∈ B (S, l)

}
, we assume y2 ∈ B

(
πd
∗

K , l
)
, where N ≤ N2 ≤

N + T
(
N, d∗ + α

2

)
and K ⊂ S, and define

d
(
πd
∗

K

)
:= max

x∈πd∗K \S
min

y∈πd∗K ∩S
I (x, y) .

Fix y2 ∈ B
(
πd
∗

K , l
)
, and define

N̄0 = N + T (N, d∗ + α)− T
(
N, d

(
πd
∗

K

)
+ α

)
,

N̄1 = N + T (N, d∗ + α)− T
(
N, d

(
πd
∗

K

)
+
α

2

)
,

ρ = inf
{
n ≥ N̄0, Xn ∈ B

(
πd
∗

K , l
)}

.

Then

PN2,y2

{
XN+T (N,d∗+α) ∈ B (S, l)

}
≥ PN2,y2

{
Pρ,Xρ

{
XN+T (N,d∗+α) ∈ B (S, l)

}
, ρ ≤ N̄1

}
≥ inf

N̄ ∈
[
N̄0, N̄1

]
y ∈ B

(
πd
∗
K , l

)
PN̄,y

{
XN+T (N,d∗+α) ∈ B (S, l)

}
· PN2,y2

{
ρ ≤ N̄1

}
.(5.6)

Notice

PN2,y2

{
ρ > N̄1

}
= PN2,y2

{
Xn /∈ B

(
πd
∗

K , l
)

for all n ∈
[
N̄0, N̄1

]}
≤ PN2,y2

{
Xn /∈ B (S, l) for all n ∈

[
N̄0, N̄1

]}
+ PN2,y2

{
τ1 ≤ N̄1

}
,

where τ1 = inf
{
n > N2, Xn ∈ B

(
S\πd∗K , l

)}
. Clearly, I

(
πd
∗

K

)
> d∗. Therefore,

Lemma 4.5 implies that there is δ1 > 0 such that for large N and α small enough,

PN2,y2

{
τ1 ≤ N̄1

}
≤ exp

{
−δ1h−1

N

}
.

On the other hand, for large N , by Lemma 4.1 and 4.2, we obtain

PN2,y2

{
Xn /∈ S for all n ∈

[
N̄0, N̄1

]}
≤ exp

{
−M1h

−1
N

}
.

Thus there is δ2 > 0 such that

PN2,y2

{
ρ ≤ N̄1

}
≥ 1− 2 exp

{
−δ2h−1

N

}
.(5.7)

Combining (5.3), (5.4), (5.5), (5.6), (5.7), for N ≤ N1 ≤ N + r−1
N s−1 (T ∗), y1 ∈

B (S, l), any M > 0, and large N , we have

PN1,y1

{
XN+T (N,d∗+α) ∈ B (S, l)

}
≥
(
1− exp

{
−M1h

−1
N

}) (
1− 2 exp

{
−δ1h−1

N

})
× inf

N2 ≥ N
y2 ∈ B

(
πd
∗
K , l

)
πd
∗
K ⊂ Sd∗

PN2,y2

{
XN2+T(N2,d(πd∗K )+α) ∈ B (S, l)

}
.
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Analogously, we also have

inf
N ≤ N1 ≤ N + rNs

−1 (T∗)

y1 ∈ B (S, l)

PN1,y1

{
XN+T (N,d∗+α) ∈ B (S, l)

}
≥
(
1− exp

{
−δh−1

N

})L+1
.

Together with (5.2), we have proved the lemma.
THEOREM 5.2. Suppose that b̄, the gradient of the potential function −U (x), and

b (x, ξ) satisfy (B1)–(B3). If {rn} and {hn} meet assumptions (A1)–(A3) and (A4)
((A4′) or (A4′′)) and

r−1
n s−1 (exp

{
(d∗ + α)h−1

n

})
< G (n) (defined in (3.1))

for n large enough and some α> 0, then

P0,y {Xn ∈ B (S, l)} → 1 as n→ +∞

uniformly for y in an arbitrary compact set F .
Proof. For any ε > 0, by Lemma 4.3, there is a compact set F0 such that

P0,y {Xn ∈ F0} ≥ 1− ε

2
(5.8)

for all y ∈ F and n > 0. Note that T (N, c) := N + r−1
N s−1

(
exp

{
ch−1
N

})
is mono-

tonically increasing to infinity as N → +∞. For any n, there is a unique Nn such
that

T

(
Nn, d

∗ +
α∗

2

)
≤ n < T

(
Nn + 1, d∗ +

α∗

2

)
,

where Nn → +∞, as n → +∞. By hN+1/hN → 1 and rN+1/rN → 1, as N → +∞,
we have α∗/2 ≤ α ≤ α∗ such that n = T (Nn, d∗ + α) for n large enough. In terms of
Lemma 5.1, it implies

PNn,z {Xn ∈ B (S, l)} ≥ 1− exp
{
−δh−1

Nn

}
> 1− ε

2
(5.9)

for all z ∈ F0 and n large enough. Then the result follows immediately.
Remarks. (1) If {rn} satisfies the condition of Corollary 2.2, we can chooseG (n) =

n/ ln lnn. By s(t) = 1, we see that r−1
n s−1

(
exp

{
(d∗ + α)h−1

n

})
< n/ ln lnn is equal

to

h−1
n <

1
d∗ + α

(lnn+ ln rn − ln lnn) .

When rn ≤ 1/ ln αn, α> 1, assumptions (A1)–(A3) and (A4′) are satisfied. To require
(A4) or (A4′′), we need more restricted conditions on {rn}, {hn} such as rn ≥ 1/nγ ,
γ < 1 to meet (A4), etc.

(2) If rn = c/n+ o (1/n),

G (n) = nl for any l > 1,
s (t) = ln t,

then the theorem is valid when hn ≥ (d+ α) / ln lnn.
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(3) For given ε > 0, in the case of rn = 1/nγ , γ< 1, and hn = (d∗+α)/(1−γ) lnn,
we have P0,x {XN ∈ S} ≥ 1− ε, if N > exp

{
− d∗+α
δ(1−γ) ln(2ε)

}
. When rn = c/n, hn =

(d∗+α)/ ln lnn, to obtain the same result above, we needN > exp
{

exp
{
−d∗+αδ ln(2ε)

}}
,

where δ is a constant given in Lemma 5.1.
Here we point out that the {hn} given above is the best possibility for annealing

in many cases. In this direction, we consider only when rn = c/nγ + o (1/nγ), γ < 1,
and rn = c/n+ o (1/n). As in [11], we have the following propositions.

PROPOSITION 5.3. If rn = c/nγ + o (1/nγ) and hn ≤ (d∗ − β) /((1− γ) lnn) for
some β > 0, then there exists a compact set K ∈ S\S satisfying πd

∗−β
K ∩ S = ∅, and

for any l > 0, there is c1 > 0 such that for large N and y ∈ B (K, l),

PN,y {τ < +∞} ≤ c1N−β(1−γ)/(2(d∗−β)),

where τ = inf{n > N,Xn ∈ B(S\πd
∗−β
K , l)}.

Proof. Since d∗ = maxx∈S\S miny∈S I (x, y), we can find a K ∈ S\S, which
satisfies miny∈S I (K, y). At this time, πd

∗−β
K ∩S = ∅. Now we will prove the remaining

part of the proposition. For simplicity, we assume that there is a d̂ > 0 such that

hn >
d̂

(1− γ) lnn
.

Define

N0 = N1/(1−α), Nn = (n+N)1/(1−α)
, α < 1, and N∗n =

(
n+N − 1

2

)1/(1−α)

.

Then

Nn+1 −Nn = cNα
n + o (Nα

n ) .

Fixing R0 large enough and considering

τ0 = inf {n > N, |Xn| > R0} ∧ τ,

we have

PN0,y {τ0 < Nn} =
n∑
i=1

PN0,y {Ni−1 ≤ τ0 ≤ Ni} .

Let ρ be the stopping time defined by

ρ = inf
{
n > N∗i−1, Xn ∈ B (S, l)

}
.

Then

PN0,y {Ni−1 ≤ τ0 ≤ Ni} = PN0,y

{
Ni−1 ≤ τ0 ≤ Ni, ρ ≤ N∗i−1 + r−1

N∗i−1
T ∗
}

+PN0,y

{
Ni−1 ≤ τ0 < Ni, ρ > N∗i−1 + r−1

N∗i−1
T ∗
}
.

Thus for fixed large T ∗ and by Lemma 4.5, we achieve the upper bound for the second
term on the right,

PN0,y

{∣∣∣XN∗i−1

∣∣∣ ≤ R0, ρ > N∗i−1 + r−1
N∗i−1

T ∗
}
≤ exp

{
−Mh−1

N∗i−1

}
≤
(
N∗i−1

)− 1−γ
d∗−βM ,
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where M can be chosen as large as we want if T ∗ is large enough. The first term is
less than

PN0,y

{
0 ≤ τ0 −Ni−1 < Nα

i−1 exp
{(

α− γ
1− γ (d∗ − β)h−1

Ni−1

)}
, ρ ≤ N∗i−1 + r−1

N∗i−1
T ∗
}

≤ exp
{
−δh−1

Ni−1

}
≤ (Ni−1)−

δ(1−α)
d∗−β ,

where we choose γ < α < d̂
d∗−β (1 − γ) + γ. By Lemma 4.5, there exists δ such that

0 < δ < 1−α
1−γ (d∗ − β) + β and satisfying the above inequality. Hence we may take

δ = 1−α
1−γ (d∗ − β) + β/2 and come to

PN0,y {τ0 < Nn} ≤
n∑
i=1

(i− 1 +N)−
1

1−α (1−α+ β(1−γ)
2(d∗−β) )

=
n∑
i=1

(i− 1 +N)−1− β(1−γ)
2(1−α)(d∗−β)

≤ c1 (N − 1)−
β(1−γ)

2(1−α)(d∗−β) .

Let n→ +∞, we complete the proof of the proposition.
PROPOSITION 5.4. When rn = c/n + o (1/n), if there is β > 0 such that hn ≤

(d∗ − β) / ln lnn, then there exists a set K ∈ S\S(πd
∗−β
K ∩S = ∅), for any l> 0, there

is c1 > 0 such that for large N and y ∈ B (K, l),

PN,y {τ < +∞} ≤ c1 (lnN)−β/2(d∗−β)
,

where τ = inf{n > N,Xn ∈ B(S\πd
∗−β
K , l)}.

Proof. The proof is similar to that of Proposition 5.3.

Appendix A. In this section, some properties of I(x, y) are studied. Lemma
A.1 shows the connection of I(x, y) and U(·); other lemmas are devoted to show the
connection between I(x, y) and the cycle given in [14] and reveal the information
including the complex definition of cycle.

For any x ∈ K ⊂ S, U (x) is a constant, which we also denote by U(K).
LEMMA A.1. If x and y belong to the same domain of attraction, then I (x, y) =

2 (U (y)− U (x)) ∨ 0. Otherwise, if I (x, y) 6= 2 (U (y)− U (x)) ∨ 0, then there exists
K ∈ S such that for any ε > 0, we have ϕ ∈ Bx,y satisfying e (ϕ) < I (x, y) + ε, which
passes through one point of K, and I(x,K) = I(x, y) = 2(U(K)− U(x)).

Proof. The first part is obvious. To prove the second part of the lemma, we define

An :=
{
z ∈ Rd, U (z) ≤ U (x) +

I (x, y)
2

+
1
n

}
.

By the continuity of U(x) and the assumption of S consisting of a finite number of
components, so has An. We also use An to denote the component containing x. By
the definition of I(x, y), y belongs to An, too. Thus,

A := ∩∞n=1An ⊆
{
z ∈ Rd, U (z) ≤ U (x) + I (x, y) /2

}
is closed and connected. Denote

Ã := A ∩
{
z ∈ Rd, U (z) = U (x) +

I (x, y)
2

}
.
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We claim that there exists z ∈ Ã, ∇U (x) = 0. In fact, if on the contrary, for all z ∈ Ã,
∇U (x) 6= 0, then by the continuity of ∇U (x) and Ã being a level set, for any z0 ∈ Ã,
there exists l > 0 such that for any z ∈ B (z0, l) ∩ Ã and δ less than some δ0, it holds
that U (z + δ · ∇U (z)) > U (x) + I (x, y) and U (z − δ · ∇U (z)) < U (x) + I (x, y).
These imply that there exists an δ̃ > 0 such that B(z0, δ̃) ∩ A is homeomorphic to
Rd−1×[0,+∞), which is path connected. Moreover, A is locally path connected, since
A\Ã is open. Consequently, A is path connected. Therefore, there is a ϕ (⊂ A) ∈ Bx,y.
Denote

B :=
{
z ∈ Rd, U (z) < U (x) +

I (x, y)
2

}
.

Then B consists of finite number of connected open domains and x and y are in
different ones. Let Bx be the component containing x and By be that containing y.
Assume that if ϕ(t), 0 ≤ t ≤ 1, is the path satisfying I (x, y) = 2(max0≤t≤1 U(ϕ(t))−
U(x)). Let t1 = inf

{
t > 0, ϕ (t) /∈ B̄x

}
. Obviously, ϕ (t1) = z0 ∈ ∂Bx. We assert

∇U (z0) = 0 (which leads to contradiction). If ∇U (z0) 6= 0, as we show above,
there is a δ> 0 such that U (z) > U (x) + I (x, y) for z ∈ B (z0, δ) \B̄x. By ϕ (t) ≤
U (x) + I (y, x) there exists t0 for any t < t1 + t0, ϕ (t) ∈ B̄x. This contradicts to the
assumption of t1. Hence ∇U (z0) = 0.

For any ε > 0, let Aε be one of the components of{
z ∈ Rd, U (z) < U (x) + I (x, y) /2 + ε

}
containing x and y. Then Aε is path connected. By the assertion above, there are
z0 ∈ K ⊂ S, z0 ∈ Ã, and a path ϕ ∈ Aε with ϕ (0) = x, ϕ

( 1
2

)
= z0, ϕ (1) = y.

Hence I (x,K) ≤ I (x, y). Because of K ⊂ Ã, we have I (x,K) ≥ I (x, y), i.e.,
I (x,K) = I (x, y). The proof is complete.

Here we will recall the definition of the hierarchy of cycles and some related
notations which are given in [14], and show their connection with I (x, y).

To go back to V (x, y), we define

V (Ki,Kj) := inf
{
S̃0,T (φ) ;φ (0) ∈ Ki, φ (T ) ∈ Kj , φ (t) /∈ Kl, l 6= i, j, 0 < t < T

}
.

In the same way, we define V (x,Kj), V (Ki, y). Let V (Ki) := minj 6=i V (Ki,Kj)
and denote V (Ki,Kj) = V (Ki) by Ki =⇒ Kj . All of these Ki’s with relation “=⇒”
define a graph which is still denoted by S. We say Ki is connected to Kj if there are
i1, . . . , in such that i = i1, j = in, and Ki1 =⇒ Ki2 =⇒ · · · =⇒ Kin .

DEFINITION A.2. A cycle π in S is a subgraph of S satisfying
(1) K ∈ π and K =⇒ K ′ imply K ′ ∈ π;
(2) for any K 6= K ′ in π, K is connected to K ′ in π.
DEFINITION A.3. Let

S1 = {π : π is a cycle in S} ∪ {K : K ∈ S and K is not in any cycle} .

An element of S1 is called a 1-cycle(in S). We use π1 to denote a 1-cycle.
For each π ∈ S1, let V̂ (π) = max {V (K) ;K ∈ π}. For π1, π2 ∈ S1, and π1 6= π2,

define

V (π1, π2) = V̂ (π1) + min {V (K1,K2)− V (K1) ;K1 ∈ π1,K2 ∈ π2} ,
V (π1) = min {V (π1, π2) ;π1 6= π2} ,

and π1 =⇒ π2 if V (π1, π2) = V (π1).
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To use S1 instead of S, we can define S2 and 2-cycles and use the notation π2 for
a specified one. Inductively, if we have defined up to m-cycles πm in Sm, we will give
the following for m+ 1:

V̂ (πm) = max
{
V
(
πm−1) ;πm−1 ∈ πm

}
,

V (πm1 , π
m
2 ) = V̂ (πm1 ) + min

{
V (πm−1

1 , πm−1
2 )− V (πm−1

1 );πm−1
1 ∈ πm1 , πm−1

2 ∈ πm2
}
,

V (πm) = min {V (πm, π̂m) ;πm 6= π̂m, π̂m ∈ Sm} ,

and πm =⇒ π̂m if V (πm) = V (πm, π̂m). Then the (m + 1)-cycle is constructed in
the same way as in the 1-cycle case.

For convenience, πk stands for

∪πk−1∈πkπ
k−1 or ∪πk−1∈πk

(
∪πk−2 ∈ πk−1

(
· · ·
(
∪π1∈π2π1) · · ·)) .

Set I
(
πk1 , π

k
1
)

= supx∈πk1 infy∈πk2 I (x, y) and I
(
πk1
)

= supx∈πk1 infy∈S\πk1 I (x, y).
Recalling the definition of πcK and I (πcK) in section 4, we have the following lemma,
which can be verified by using Lemma A.1 and the cycle decomposition of [23].

LEMMA A.4. For any K ∈ S, c > 0. there exist k and j such that πcK = πjk and
V (πjk) = I (πcK).

Let GSl (Sc), c < l, denote the set of all Sc-graphs in Sl (cf. [5], [14]) and

V (g) =
∑

(m→n)∈g
V (Km,Kn) , g ∈ GSl (Sc) ,

where m→ n denotes a directed edge of g. (If Sl\Sc = ∅, V (g) := 0.)
The following lemma is used to prove Lemma 4.6. To prove it, we need Lemmas

A.6 and A.7. However, the detail is omitted; readers are also referred to [23].
LEMMA A.5. For any Ki ∈ Sl\Sc,

min
{
V (g) ; g ∈ GSl (Sc)

}
−min

{
V (g) ; g ∈ GSl (Sc ∪ {Ki})

or g ∈ GSl{KiKj} (Sc ∪ {Kj}) ,Ki 6= Kj ,Kj ∈ Sl\Sc}
≤ max
x∈Sl\Sc

min
y∈Sc

I (x, y) ,

where GSl{KiKj} (Sc ∪ {Kj}) denotes the set of Sc ∪ {Kj}-graphs in Sl, in which the
sequence of arrows leading from Ki into Sc ∪ {Kj} ends at Kj.

LEMMA A.6. For any g0 ∈ GSl (Sc), there is g ∈ GSl (Sc) such that V (g) ≤
V (g0), and for any π1 ∈ Sl\Sc, we can find K0 ∈ π1 such that there is a graph h
satisfying h ∈ Gπ1 (K0) , h ⊂ g.

For A ∈ Sk∩Sl, denote by GASl (Sl) a new Sc-graph in Sl, in which A is considered
globally as a node in Sl; then we have the following lemma.

LEMMA A.7. For any Ki ∈ Sl\Sc, if Ki ∈ A, then

min
{
V (g) ; g ∈ GSl (Sc)

}
−min

{
V (g) ; g ∈ GSl (Sc ∪ {Ki})

or g ∈ GSl{KiKj} (Sc ∪ {Kj}) ,Ki 6= Kj ,Kj ∈ Sl\Sc}

= min
{
V (g) ; g ∈ GASl (Sc)

}
−min

{
V (g) ; g ∈ GASl (Sc ∪ {A})

or g ∈ GASl{AKj} (Sc ∪ {Kj}) ,Kj /∈ A,Kj ∈ Sl\Sc
}

;(A.1)
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otherwise,

left-hand side = min
{
V (g) ; g ∈ GASl (Sc)

}
−min

{
V (g) ; g ∈ GASl (Sc ∪ {Ki}) or

g ∈ GASl{KiKj} (Sc ∪ {Kj}) ,Kj /∈ Sc ∪A ∪ {Ki} or g ∈ GASl{KiA} (Sc ∪A)
}
.(A.2)
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Abstract. In this paper, we derive a new class of finite-dimensional filters for integrals and
stochastic integrals of moments of the state for continuous-time linear Gaussian systems. Apart
from being of significant mathematical interest, these new filters can be used with the expectation
maximization (EM) algorithm to yield maximum likelihood estimates of the model parameters.
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1. Introduction. The Kalman filter is widely used in engineering, economics,
and other fields. It considers linear Gaussian dynamics for the state x and observation
y processes of the form

dxt = At xt dt+Bt dwt, x0 ∈ Rm,(1.1)
dyt = Ct xt dt+Dt dvt, y0 = 0 ∈ Rn.(1.2)

The Kalman filter determines the conditional density of the unobserved signal xt given
the observations to time t, Yt = σ{ys : s ≤ t}, as a Gaussian random variable with
mean mt and variance Σt. Here mt is the conditional mean of xt given Yt, and Σt
is the conditional variance of xt, although Σt turns out to be deterministic and given
by the Riccati equation.

To apply the Kalman filter, however, the parameters of the model, that is, the
entries in the matrices A, B, C, and D, need to be known. Maximum likelihood
estimation of these parameters via the expectation maximization (EM) algorithm has
been studied in discrete time in [1], [2], [3] and in continuous time in [9]. In continuous
time, the EM algorithm requires computation of the filtered estimates of quantities
such as

∫ t
0 xs dx

′
s,
∫ t

0 xs dy
′
s,
∫ t

0 xs x
′
s ds.

In all the existing literature on parameter estimation of linear Gaussian models
via the EM algorithm, filtered estimates of the above quantities are computed via
Kalman smoothing, which requires large memory in any numerical implementation.
The main result of this paper, Theorem 3.10, provides finite-dimensional filters for
(the components of) such integral processes. In fact, as pointed out in section 4, finite-
dimensional filters exist for integrals and stochastic integrals of moments of all orders
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of the state process. In [18] and [19], finite-dimensional filters are described using
Lie algebra methods, for time integrals of powers of the state variable. However, our
techniques are quite different; we also obtain results for stochastic integrals of powers
of the process, and we apply our results to maximum likelihood parameter estimation.
Few finite-dimensional filters are known, so our results were certainly a surprise.

The analogous results in discrete time are derived in a companion paper [17].
The continuous-time methods and results in this paper are different from, and not
just adaptations of, the discrete-time results in [17]. As described in [17], estimation
of the state-space parameters arises in several areas of signal processing and control,
including multisensor signal enhancement and speech coding, and also in econometrics.

Parameter estimation for diffusion processes is nicely discussed in [9]; this work
also includes a discussion of the EM algorithm. Section 5 describes this application of
the results of section 4. The techniques of this paper extend those for Markov chains
presented in [5] and the recent book, [6].

The paper is organized as follows: in section 2 we present a standard measure
change that simplifies the derivation of our filters. In section 3 the new finite-
dimensional filters are derived. Section 4 derives a finite-dimensional filter for higher
order moments of the state. In section 5, the filters in section 3 are used to implement
a filter-based EM algorithm for maximum likelihood parameter estimation.

2. Dynamics. Consider the classical linear Gaussian model for the signal model
and observation processes. That is, the signal {xt}, t ≥ 0, is described by the equation

dxt = At xt dt+Bt dwt, x0 ∈ Rm,(2.1)

and the observation process {yt}, t ≥ 0, is described as

dyt = Ct xt dt+Dt dvt, y0 = 0 ∈ Rn.(2.2)

Here w and v are independent r-dimensional and n-dimensional Brownian motions,
respectively, defined on a probability space (Ω,F , P ). Further, w and v are indepen-
dent of x0. We assume that x0 is a random variable with normal density π0(x), which
is N(x̂0, P0).

The matrix functions At ∈ Rm×m, Bt ∈ Rm×r, Ct ∈ Rn×m, and Dt ∈ Rn×n are
measurable functions of t. We assume Dt is a positive definite matrix.

We model the above dynamics by supposing that initially we have a probability
space (Ω,F , P̄ ) such that under P̄

1. w is r-dimensional Brownian motion and {xt} is defined by (2.1).
2. {yt} is n-dimensional Brownian motion, independent of w and x0, and having

quadratic variation 〈y〉t = Dt > 0; i.e., Dt is a positive definite matrix.
Notation. Consider the complete right continuous filtrations

Gt = σ{xs, ys : s ≤ t},
Yt = σ{ys : s ≤ t}.

Vectors x, y will be considered as column vectors. Write

∇ =
(

∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn

)′
.(2.3)



1910 ROBERT ELLIOTT AND VIKRAM KRISHNAMURTHY

For any function g : Rm → R, write

∇2g =


∂2g
∂x2

1
· · · ∂2g

∂x1∂xm
...

...
...

∂2g
∂xm∂x1

· · · ∂2g
∂x2
m

 .
For a vector field g(x) = [g1(x) g2(x) · · · gm(x)]′ defined on Rm, define

div (g) =
∂g1

∂x1
+
∂g2

∂x2
+ · · ·+ ∂gm

∂xm
.

Consider the exponential

Λt = exp
(∫ t

0
(Cs xs)′

(
D−1
s

)′
D−1
s dys −

1
2

∫ t

0
x′s C

′
s

(
D−1
s

)′
D−1
s Cs xs ds

)
.(2.4)

Then

dΛt = Λt x′t C
′
t

(
D−1
s

)′
D−1
s dyt(2.5)

and Ē{Λt} = 1, where Ē denotes expectation under P̄ .
If we define a measure P in terms of P̄ by setting

dP

dP̄

∣∣∣∣
Gt

= Λt,

then Girsanov’s theorem implies that under P , vt is a standard n-dimensional Brow-
nian motion if we define

dvt = D−1
t (dyt − Ct xt dt), v0 = 0.

That is, under P ,

dyt = Ct xt dt+Dt dvt.

Note that under P , the process {xt} still satisfies (2.1). Consequently, under P the
processes {xt} and {yt} satisfy the real world dynamics (2.1) and (2.2). However, P̄
is a more convenient measure with which to work.

Below, we assume that g : Rm → R is an arbitrary “test” function, which is in
C2 and has compact support.

Filtering is concerned with estimates of the form E{g(xt)|Yt}. Using a version of
Bayes’s theorem [6], we have

E{g(xt)|Yt} =
Ē{Λt g(xt)|Yt}

Ē{Λt|Yt}
.(2.6)

Write σ(g)t = Ē{Λt g(xt)|Yt} so that

E{g(xt)|Yt} =
σ(g)t
σ(1)t

.

Consequently, σ(g)t is a measure-valued process; it is an unnormalized conditional
expectation of g(xt) given Yt.
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Suppose that σ(·)t has a density αt(x); then

σ(g)t = Ē{Λt g(xt)|Yt} =
∫
Rm

g(x)αt(x) dx.

We now give a proof of the well-known Zakai equation for α.
THEOREM 2.1.

αt(x) = α0(x)−
∫ t

0
div (As xαs(x)) ds+

1
2

∫ t

0
Tr
(
∇2αs(x)BsB′s

)
ds

+
∫ t

0
αs(x)x′ C ′s

(
D−1
s

)′
D−1
s dys,

(2.7)

where α0(x) = πo(x), the density of x0.
Proof. From Ito’s rule

g(xt) = g(x0) +
∫ t

0
(∇g(xs))

′
As xs ds+

∫ t

0
(∇g(xs))

′
Bs dws

+
1
2

∫ t

0
Tr
(
∇2g(xs)BsB′s

)
ds.

(2.8)

From (2.5) and (2.8)

Λt g(xt) = g(x0) +
∫ t

0
Λs (∇g(xs))

′
As xs ds+

∫ t

0
Λs (∇g(xs))

′
Bs dws

+
1
2

∫ t

0
Λs Tr

(
∇2g(xs)BsB′s

)
ds+

∫ t

0
Λs g(xs)x′s C

′
s

(
D−1
s

)′
D−1
s dys.(2.9)

Conditioning each side of (2.9) on Yt (see Lemma 3.2, p. 261, of [13]) we have

σ(g)t = σ(g)0 +
∫ t

0
σ ((∇g)′Ax)s ds+

1
2

∫ t

0
σ
(
Tr(∇2g)BsB′s

)
ds

+
∫ t

0
σ(g x′)s C ′s

(
D−1
s

)′
D−1
s dys.

(2.10)

Integrating each term by parts as on p. 277 of [7] gives (2.7).
Remarks. The Zakai equation (2.7) is a stochastic partial differential equation for

the unnormalized conditional density of xt given Yt. In general, the solution of this
equation is a conditional density function, evolving stochastically in time. For the
linear, Gaussian dynamics (2.1) and (2.2), however, αt(x) has a simple form. In fact
(see [10] or [11]),

αt(x) =
νt

(2π)m/2 |Σt|1/2
exp

(
−1

2
(x−mt)′ Σ−1

t (x−mt)
)
.(2.11)

Here mt = E{xt|Yt}, m0 = x̂0, Σt = E{(xt −mt)(xt −mt)′|Yt}, Σ0 = P0, and νt is a
normalizing factor.

It is well known that mt and Σt are given by the Kalman filter equations

dmt = Atmt dt+ Σt C ′t
(
D−1
t

)′
D−1
t (dyt − Ctmt dt) ,(2.12)

Σ̇t = ΣtA′t +At Σt +BtB
′
t − Σt C ′t

(
D−1
t

)′
D−1
t Ct Σt.(2.13)
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Note that Σt is deterministic and can be computed off-line. Also,

νt = (2π)m/2 exp
(∫ t

0
m′s C

′
s

(
D−1
s

)′
D−1
s dys −

1
2

∫ t

0
m′s C

′
s

(
D−1
s

)′
D−1
s Csms ds

)
.

(2.14)

3. Finite-dimensional filters. Let ei, ej ∈ Rm denote unit vectors with 1 in
the ith and jth positions, respectively. Write

Hij
t =

∫ t

0
〈xs, ei〉 〈ej , xs〉 ds =

∫ t

0
x′s (ei e′j)xs ds,(3.1)

Lijt =
∫ t

0
〈xs, ei〉 〈ej , dxs〉 =

∫ t

0
x′s (ei e′j) dxs;(3.2)

here 〈·, ·〉 denotes the scalar product.
Also let fj ∈ Rn denote the unit vector with 1 in the jth position. Write

J ijt =
∫ t

0
〈xs, ei〉 〈fj , dys〉 =

∫ t

0
x′s (ei f ′j) dys.(3.3)

The parameters of our model are the entries in the matrices At, Bt, Ct, and Dt.
To estimate these parameters using the EM algorithm (see section 5), it is necessary
to obtain filtered estimates of these processes. That is, we wish to obtain expressions
for

E{Hij
t |Yt}, E{Lijt |Yt}, E{J ijt |Yt}.

Previously, these estimates have been obtained by smoothing procedures. For exam-
ple,

E{Hij
t |Yt} =

∫ t

0
E{x′s (ei ej)xs|Yt} ds.

However, this involves a considerable memory requirement. In this section we prove
the remarkable result that the filtered estimates for Hij

t , Lijt , and J ijt can be described
in terms of a finite number of statistics.

Motivated by the techniques in [6], we define a measure associated with Hij
t as

follows.
DEFINITION 3.1. For any test function g : Rm → R, define a measure-valued

process Ē{ΛtHij
t g(xt)|Yt}. This has a density βijt (x) so that

Ē{ΛtHij
t g(xt)|Yt} =

∫
Rm

βijt (x) g(x) dx.

The existence of the density βijt (x) follows from the existence and uniqueness of
solutions of stochastic partial differential equations such as (3.9). This is established
in section 4.2 of [10] and on page 140 of [12].

The following theorem shows the surprising result that we can describe the mea-
sure βijt (x) exactly as a quadratic in x multiplying the αt(x) of (2.7).

THEOREM 3.2. At time t, the density βijt (x) is completely described by the five
statistics aijt , bijt , cijt , Σt, and mt as follows:

βijt (x) =
(
aijt + x′ bijt + x′ cijt x

)
αt(x).(3.4)
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Here aijt ∈ R, bijt ∈ Rm, and cijt ∈ Ls(Rm,R), the space of symmetric m×m matrices.
Further,

daijt
dt

= Tr
(
cijt BtB

′
t

)
+ bij′t BtB

′
t Σ−1

t mt, aij0 = 0 ∈ R,(3.5)

dbijt
dt

= −
(
A′t + Σ−1

t BtB
′
t

)
bijt + 2 cijt BtB

′
t Σ−1

t mt, bij0 = 0 ∈ Rm,(3.6)

dcijt
dt

= −
(
A′t + Σ−1

t BtB
′
t

)
cijt − c

ij
t

(
At +BtB

′
t Σ−1

t

)
+

1
2

(ej e′i + ei e
′
j),

cij0 = 0 ∈ Ls(Rm,R).(3.7)

Proof. First note that for any test function g, applying Ito’s rule to (2.1) and
(2.5),

ΛtH
ij
t g(xt) =

∫ t

0
ΛsHij

s (∇g(xs))
′
As xs ds+

∫ t

0
ΛsHij

s (∇g(xs))
′
Bs dws

+
1
2

∫ t

0
ΛsHij

s Tr
(
∇2g(xs)BsB′s

)
ds

+
∫ t

0
ΛsHij

s g(xs)x′s C
′
s

(
D−1
s

)′
D−1
s dys

+
∫ t

0
Λs g(xs)x′s (ei e′j)xs ds.(3.8)

Conditioning on Yt under P̄ (see Lemma 3.2, p. 261, of [13]) we have

Ē{ΛtHij
t g(xt)|Yt} =

∫ t

0
Ē{ΛsHij

s (∇g(xs)′As xs) |Ys} ds

+
1
2

∫ t

0
Ē{ΛsHij

s Tr
(
∇2g(xs)BsB′s

)
|Ys} ds

+
∫ t

0
Ē{ΛsHij

s g(xs)x′s C
′
s

(
D−1
s

)′
D−1
s |Ys} dys

+
∫ t

0
Ē{Λs g(xs)x′s (ei e′j)xs|Ys} ds.

That is, in terms of the densities βijt (x) and αt(x),∫
Rm

βijt (x) g(x) dx =
∫ t

0

∫
Rm

βijs (x) (∇g(x))′ As x dx ds

+
1
2

∫ t

0

∫
Rm

βijs (x) Tr
(
∇2g(x)BsB′s

)
dx ds

+
∫ t

0

∫
Rm

βijs (x) g(x)x′ C ′s
(
D−1
s

)′
D−1
s dx dys

+
∫ t

0

∫
Rm

αs(x) g(x)x′ (ei e′j)x dx ds.

Integrating by parts in x, because this equation holds for all test functions g, we see
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that βijt (x) must satisfy the stochastic partial differential equation:

βijt (x) = −
∫ t

0
div
(
βijs (x)As x

)
ds+

1
2

∫ t

0
Tr
(
∇2βijs (x)BsB′s

)
ds

+
∫ t

0
βijs (x)x′ C ′s

(
D−1
s

)′
D−1
s dys +

∫ t

0
αs(x)x′ (ei e′j)x ds.(3.9)

We look for a solution of (3.9) of the form

β̄s(x) =
(
aijs + x′bijs + x′ cijs x

)
αs(x).(3.10)

As noted just after Definition 3.1, if such a solution exists, it is unique.
To simplify notation we drop the superscripts i, j on a, b, and c. Then

div
(
β̄s(x)As x

)
= div ((as + b′s x+ x′ cs x)αs(x)As x)
= (bs + 2 cs x)′As xαs(x) + (as + b′s x+ x′ cs x) div (αs(x)As x) ,

∇β̄s(x) = ∇ ((as + b′s x+ x′ cs x)αs(x))
= (bs + 2 cs x)αs(x) + (as + b′s x+ x′ cs x)∇αs(x),

∇2β̄s(x) = 2 cs αs(x) + 2 (bs + 2 cs x)(∇αs(x))′

+ (as + b′s x+ x′ cs x)∇2αs(x),
Tr
(
∇2β̄s(x)BsB′s

)
= 2αs(x) Tr (csBsB′s) + 2 (bs + 2 cs x)′BsB′s∇αs(x)

+ (as + b′s x+ x′ cs x) Tr
(
∇2αs(x)BsB′s

)
.

Now from (2.11)

∇αs(x) = −Σ−1
s (x−ms)αs(x).

Consequently, if we substitute β̄t(x), given by (3.10) in the differential form of the
right-hand side of (3.9), we obtain

−(bs + 2 cs x)′As xαs(x) ds− (as + b′s x+ x′ cs x) div (αs(x)As x) ds

+αs(x) Tr (csBsB′s) ds− (bs + 2 cs x)′BsB′s Σ−1
s (x−ms)αs(x) ds

+
1
2

(as + b′s x+ x′ cs x)Tr
(
∇2αs(x)B′sBs

)
ds

+(as + b′s x+ x′ cs x)αs(x)x′ C ′s
(
D−1
s

)′
D−1
s dys

+αs(x)x′ (ei e′j)x ds.

(3.11)

Also,

dβ̄s(x) = (das + db′s x+ x′ dcs x)αs(x) + (as + b′s x+ x′ cs x) dαs(x).(3.12)

Consequently, β̄s(x), given by (3.10), is a solution of (3.9) if (3.11) equals (3.12).
However, αs(x) solves the Zakai equation (2.7), so

dαs(x) = −div (αs(x)As x) ds+
1
2

Tr
(
∇2αs(x)BsB′s

)
ds+αs(x)x′ C ′s

(
D−1
s

)′
D−1
s dys.

Therefore, substituting the above expression for dαs(x) into (3.12) yields

dβ̄s(x) = (das + db′s x+ x′ dcs x)αs(x)
− (as + b′s x+ x′ cs x) div (αs(x)As x) ds

+
1
2

(as + b′s + x′ cs x) Tr
(
∇2αs(x)BsB′s

)
ds

+(as + b′s x+ x′ cs x)x′ C ′s
(
D−1
s

)′
D−1
s αs(x) dys.(3.13)
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Finally equating the coefficients of x, x′, x and the constants in (3.11) and (3.13), we
see that the result holds if (3.5), (3.6), and (3.7) hold.

We now explicitly solve the ordinary differential equations (3.6) and (3.7).
Write Gt for the matrix solution of

dGt
dt

= −(A′t + Σ−1
t BtB

′
t)Gt, G0 = Im×m.(3.14)

Note that Gt is deterministic and can be calculated off-line. Also, as an exponential
matrix, Gt has an inverse G−1

t .
LEMMA 3.3. The explicit solutions of (3.6) and (3.7) are

bijt = 2Gt

(∫ t

0
G−1
s cijs BsB

′
s Σ−1

s ms ds

)
,(3.15)

cijt =
1
2
Gt

(∫ t

0
G−1
s (ej e′i + ei e

′
j) (G′s)

−1
ds

)
G′t.(3.16)

Proof. The above equations follow using variation of constants.
Remark. We proceed similarly with the process J ijt and Lijt , omitting details.
DEFINITION 3.4. For any test function g ∈ C2

0(Rm) define the measure-valued
process Ē{Λt J ijt g(xt)|Yt}. From the results of [10] and [12], this has a density γijt (x)
so that

Ē{Λt J ijt g(xt)|Yt} =
∫
Rm

γijt (x) g(x) dx.

THEOREM 3.5. At time t, the density γijt (x) is completely described by the five
statistics āijt , b̄ijt c̄ijt , Σt, and mt as follows:

γijt (x) =
(
āijt + x′ b̄ijt + x′ c̄ijt x

)
αt(x).(3.17)

Here, āijt ∈ R, b̄ijt ∈ Rm, and c̄ijt ∈ Ls(Rm,Rm). Further,

dāijt
dt

= Tr
(
c̄ijt BtB

′
t

)
+ b̄ij′t BtB

′
t Σ−1

t mt, āij0 = 0 ∈ R,

(3.18)

db̄ijt =
[
−(A′t + Σ−1

t BtB
′
t)b̄

ij
t + 2c̄ijt BtB

′
t Σ−1

t mt

]
dt+ dy′t fj ei, bij0 = 0 ∈ Rm,

(3.19)

dc̄ijt
dt

= −
(
A′t + Σ−1

t BtB
′
t

)
c̄ijt − c̄

ij
t

(
At +BtB

′
t Σ−1

t

)
+

1
2
(
ei f
′
j Ct + C ′t fj e

′
i

)
,

c̄ij0 = 0 ∈ Ls(Rm,Rm).(3.20)

Proof. The product Λt J
ij
t g(xt) is calculated and each side conditioned on Yt.

After integration by parts, the following stochastic partial differential equation is
obtained for γijt (x):

dγijt (x) = −div
(
γijt (x)At x

)
dt+

1
2

Tr
(
∇2γijt (x)BtB′t

)
dt+ γijt x

′ C ′t (D′t)
−1

D−1
t dyt

+ αt(x)x′ ei f ′j dyt + αt(x) (x′ C ′t fj e
′
i x) dt

(3.21)
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Recalling that αt(x) satisfies the Zakai equation (2.7), we see that(
āijt + x′ b̄ijt x+ x′ c̄ijt x

)
αt(x)

is a solution of (3.21) if āijt , b̄ijt , and c̄ijt satisfy (3.18), (3.19), and (3.20), re-
spectively.

We now obtain explicit solutions to the above equations. Note that f ′j dyt =
dy′t fj = dyjt , where yjt denotes the jth component of yt.

LEMMA 3.6. The explicit solutions of (3.19) and (3.20) are

b̄ijt = 2Gt

(∫ t

0
G−1
s c̄ijs BsB

′
s Σ−1

s ms ds+
∫ t

0
G−1
s ei dy

j
s

)
(3.22)

and

c̄ijt =
1
2
Gt

(∫ t

0
G−1
s (ei f ′j Cs + C ′s fj e

′
i)
(
G−1
s

)′
ds

)
G′t.(3.23)

DEFINITION 3.7. For any test function g ∈ C2
0(Rm) define the measure-valued

process Ē{Λt Lijt g(xt)|Yt}. From the results of [10] and [12], this has a density λijt (x)
so that

Ē{Λt Lijt g(xt)|Yt} =
∫
Rm

λijt (x) g(x) dx.

THEOREM 3.8. At time t, the density λijt (x) is completely characterized by the
five statistics rijt , sijt , and uijt as follows:

λijt (x) =
(
rijt + x′ sijt x+ x′ uijt x

)
αt(x).(3.24)

Here, rijt ∈ R, sijt ∈ Rm, and uijt ∈ Ls(Rn,Rm). Further,

drijt
dt

= Tr
(
uijt BtB

′
t

)
+ sij′t BtB

′
t Σ−1

t mt − Tr
(
BtB

′
t ei e

′
j

)
, rij0 = 0 ∈ R,

(3.25)

dsijt
dt

= −
(
A′t + Σ−1

t BtB
′
t

)
sijt + 2uijt BtB

′
t Σ−1

t mt

− (ej e′i) BtB
′
t Σ−1

t mt, sij0 = 0 ∈ Rm,
(3.26)

duij

dt
= −

(
A′t + Σ−1

t BtB
′
t

)
uijt − u

ij
t

(
At +BtB

′
t Σ−1

t

)
+

1
2
(
ei e
′
j

(
At +BtB

′
t Σ−1

t

)
+
(
A′t + Σ−1

t BtB
′
t

)
ej e
′
i

)
,

uij0 = 0 ∈ Ls(Rm,Rm).

(3.27)

Proof. The product Λt L
ij
t g(xt) is calculated and each side conditioned on Yt.

After integration by parts, the following stochastic partial differential equation is
obtained for λijt (x):

dλijt (x) = −div
(
λijt (x)At x

)
dt

+
1
2

Tr
(
∇2λijt (x)BtB′t

)
dt+ λijt (x)x′ C ′t

(
D−1
t

)′
D−1
t dyt

+ αt(x)x′ ei e′j At x dt− div
(
x′ ei e

′
j BtB

′
t αt(x)

)
dt.(3.28)
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We see that (
rijt + x′ sijt x+ x′ uijt x

)
αt(x)

solves (3.28) if rijt , sijt , and uijt satisfy (3.25), (3.26), and (3.27) .
Again, (3.26) and (3.27) can be solved by variation of constants. We summarize

this in the following lemma.
LEMMA 3.9. The explicit solutions of (3.26) and (3.27) are

sijt = Gt

(∫ t

0
G−1
s (2uijs − ej e′i) Σ−1

s BsB
′
sms ds

)
,(3.29)

uijt =
1
2
Gt

(∫ t

0

[
G−1
s (ei e′j

(
As +BsB

′
s Σ−1

s )

+(A′s + Σ−1
s BsB

′
s)ej e

′
i

) (
G−1
s

)′]
ds

)
Gt.(3.30)

Remark. We observe from the definition of Gt, (3.14), that the integrand in (3.30)
includes only half of the four terms in the derivative of G−1

t (ei e′j + ej e
′
i)
(
G−1
t

)′
, and

so the integral cannot be evaluated in closed form.
THEOREM 3.10. Finite-dimensional filters for Hij

t , J ijt , and Lijt defined in (3.1),
(3.3), and (3.2) are given by

E{Hij
t |Yt} = aijt +m′t b

ij
t +

m∑
p=1

m∑
q=1

cijt (p, q) Σt(p, q) +m′t c
ij
t mt,(3.31)

E{J ijt |Yt} = āijt +m′t b
ij
t +

m∑
p=1

m∑
q=1

c̄ijt (p, q) Σt(p, q) +m′t c̄
ij
t mt,(3.32)

E{Lijt |Yt} = rijt +m′ts
ij
t +

m∑
p=1

m∑
q=1

uijt (p, q) Σt(p, q) +m′t u
ij
t mt.(3.33)

Proof. Recall from (2.11) that αt is an unnormalized Gaussian density with mean
mt and variance Σt. Therefore, ∫

Rm
αt(x) dx = νt.

Note that for any k ∈ Rm ∫
Rm

k′ xαt(x) dx = (k′mt)νt.

Also for any matrix M ∈ L(Rm,Rm) with entries M(p, q), 1 ≤ p, q ≤ m,∫
Rm

x′M xαt(x) dx =
∫
Rm

(x−mt)′M (x−mt)αt(x) dx+m′tMmt

∫
Rm

αt(x) dx

=

(
M∑
p=1

M∑
q=1

M(p, q) Σt(p, q) +m′tMmt

)
νt.
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Now from Bayes’s theorem (2.6), we have

E{Hij
t |Yt} =

Ē{ΛtHij
t |Yt}

Ē{Λt|Yt}

=

∫
Rm β

ij
t (x) dx∫

Rm αt(x) dx

= aijt +m′t b
ij
t +

m∑
p=1

m∑
q=1

cijt (p, q) Σt(p, q) +m′t c
ij
t mt

by (3.4) and because the factors νt cancel. The proofs of equations (3.32) and (3.33)
are similar.

4. Finite-dimensional filter for higher order moments. The techniques of
the previous section can be generalized to show that integrals and stochastic integrals
of higher moments of the state variables have filtered estimates which can be expressed
in terms of a finite number of statistics. The results also hold for other functions of
the state and will be investigated in a subsequent paper.

Assumption 4.1. For notational simplicity, in this section we assume that the
state and observation processes are scalar valued, i.e., that m = n = 1 in (2.1) and
(2.2).

Let Γt be the process defined as

Γt =
∫ t

0
xps ds, p ∈ Z+.

Suppose g : R → R is any test function and suppose for a density-valued process
µt(x),

Ē{Λt Γt g(xt)|Yt} =
∫
R
µt(x) g(x) dx.

We now show that E{Γt|Yt} can be computed via a finite-dimensional filter.
THEOREM 4.2. At time t, the density µt is completely characterized by the p+ 3

statistics, at(0), at(1), . . . , at(p), Σt, and mt as follows:

µt(x) =

[
p∑
i=0

at(i)xp
]
αt(x),(4.1)

where a0(i) = 0, i = 1, . . . , p, and

dat(p)
dt

= −p
(
At + Σ−1

t B2
t

)
at(p) + 1,

dat(p− 1)
dt

= −(p− 1)
(
At + Σ−1

t B2
t

)
at(p− 1) + p at(p) Σ−1

t B2
t mt,

dat(i)
dt

= −i
(
At + Σ−1

t B2
t

)
at(i) +

1
2

(i+ 1) (i+ 2) at(i+ 2)

+ (i+ 1) at(i+ 1) Σ−1
t B2

t ,

i = 1, . . . , p− 2,
dat(0)
dt

= B2
t at(2) + Σ−1

t B2
t at(1)mt.(4.2)
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Proof.

Λt Γt g(xt) =
∫ t

0
Λs Γs∇g(xs)As xs ds+

∫ t

0
Λs Γs∇g(xs)Bs dws

+
1
2

∫ t

0
Λs Γs∇2g(xs)B2

s ds

+
∫ t

0
Λs Γs g(xs)xs CsD−2

s dys +
∫ t

0
Λs g(xs)xps ds.

Conditioning on Yt, as in [13],∫
R
µt(x) g(x) dx =

∫ t

0

∫
R
µs(x)∇g(x)As x dx ds+

1
2

∫ t

0

∫
R
µs(x)∇2g(x)B2

s dx ds

+
∫ t

0

∫
R
µs(x) g(x)xCsD−2

s dx dys +
∫ t

0

∫
R
xp g(x)αs(x) dx ds.

Integrating by parts in x, we see that µt(·) satisfies the stochastic partial differential
equation

µt(x) = −
∫ t

0

d

dx
(µs(x)As x) ds+

1
2

∫ t

0

d2

dx2µs(x)B2
s ds+

∫ t

0
µs(x)xCsD−2

s dys

+
∫ t

0
xp αs(x) ds.

It can then be verified that (4.1) is a solution to the above equation if the time-varying
coefficients at(0), . . . , at(p) satisfy the ordinary differential equations (4.2).

Remark. The ordinary differential equations (4.2) can be solved explicitly by
variation of constants.

Finally, we note that a similar derivation to that given in this section yields
finite-dimensional filters for

∫ t
0 x

p
s dxs and

∫ t
0 x

p
s dys, p = 1, 2, 3, . . . .

5. Filtered EM algorithm for Gaussian state-space models. The aim
of this section is to derive a filter-based EM algorithm for computing maximum-
likelihood (ML) parameter estimates of a linear Gaussian state-space system. The
finite-dimensional filters of section 3 are used in implementing the E-step of the EM
algorithm, resulting in a filter-based EM algorithm.

Consider the time-invariant version of the state-space model (2.1), (2.2):

dxt = Axt dt+B dwt,(5.1)
dyt = C xt dt+Ddvt.(5.2)

Our aim is to compute ML estimates of the parameters θ = (A,C) given the obser-
vations Yt = σ{ys : s ≤ t} and assuming B, D are known. We do this via the EM
algorithm.

Remark. Unlike the discrete-time case, in continuous time, it is not possible to
obtain ML estimates of the variance terms B and D because measures corresponding
to Wiener processes with different variances are not absolutely continuous (see Chap-
ter 6.1 in [13]). At the end of this section, we give estimates for B and D in terms of
the quadratic variations of the state and observation processes.
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EM ALGORITHM. Suppose that we have observation history Yt available. Let
{Pθ , θ ∈ Θ} be a family of probability measures on (Ω,F), all absolutely continu-
ous with respect to a fixed probability measure P0. The log likelihood function for
computing an estimate of the parameter θ based on the information available in Yt is

L(θ) = E0

{
log

dPθ
dP0

| Yt
}
,

and the maximum likelihood estimate (MLE) is defined by

θ̂ ∈ argmax
θ∈Θ

L(θ).

The EM algorithm is an iterative numerical method for computing the MLE. Let θ̂0 be
the initial parameter estimate. The EM algorithm generates a sequence of parameter
estimates as follows.

Each iteration of the EM algorithm consists of two steps:
Step 1 (E-step). Set θ̃ = θ̂j and compute Q(·, θ̃), where

Q(θ, θ̃) = Eθ̃

{
log

dPθ
dPθ̃

| Yt
}
.

Step 2 (M-step). Find θ̂j+1 ∈ argmax
θ∈Θ

Q(θ, θj).

The sequence-generated {θ̂j , j ≥ 0} gives nondecreasing values of L(θ̂j) with equality
if and only if θ̂j+1 = θ̂j .

It is shown in the appendix that

Q(θ, θ̃) = E
{∫ t

0
x′sA

′ [BB′]# dxs −
1
2

∫ t

0
x′sA

′ [BB′]#Axs ds|Yt
}

+ E
{∫ t

0
x′s C

′ (DD′)−1 dys −
1
2

∫ t

0
x′s C

′(DD′)−1 C xs ds|Yt
}

+ E{R(θ̃|Yt},

(5.3)

where # denotes the pseudoinverse and R(θ̃) does not involve θ.
To implement the M-step we set the derivatives ∂Q/∂θ = 0. This yields

A = E
{∫ t

0
dxs x

′
s|Yt

} (
E
{∫ t

0
xs x

′
s ds|Yt

})−1

= L̂′t Ĥ
−1
t ,(5.4)

C = E
{∫ t

0
dys x

′
s|Yt

}(
E
{∫ t

0
xs x

′
s ds|Yt

})−1

= Ĵ ′t Ĥ
−1
t ,(5.5)

where Ĥt and L̂t ∈ Rm×m denote matrices with elements Ĥij
t
4
= E{Hij

t |Yt} and

L̂ijt
4
= E{Lijt |Yt}, i, j ∈ {1, . . . ,m}. Also, Ĵt ∈ Rm×n denotes the matrix with

elements Ĵ ijt
4
= E{J ijt |Yt}, i = 1, . . . ,m, j = 1, . . . , n. The terms Ĥij

t , L̂ij , and Ĵ ijt
are computed using Theorems 3.2, 3.8, and 3.5 together with the filters in Theorem
3.10. Thus we have a filter-based EM algorithm.

Remark. We have presented the EM algorithm for updating the parameters of
a general state-space model. However, we have not addressed identifiability issues of
our state-space model.
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Indeed, identifiability and consistency of the ML estimator have been studied
in special cases of our model (where our filter-based algorithm also applies). For
example, in [9], A is of a known structure but parametrized by an unknown vector θ.
Consistency of the ML estimators is proved in [16].

Estimation of B and D. First consider the tensor product of xt with itself:

xt x
′
t = x0 x

′
0 +

∫ t

0
xs dx

′
s +

∫ t

0
dxs x

′
s +

∫ t

0
BB′ ds.(5.6)

Conditioning both sides of (5.6) on Yt, we have

Σt = E{x0 x
′
0|Yt}+ E

{∫ t

0
xs dx

′
s +

∫ t

0
dxs x

′
s

∣∣∣∣Yt}+BB′ t.(5.7)

E{x0 x
′
0|Yt} in (5.7) is the smoothed second moment and is given in terms of finite-

dimensional statistics; see Theorem 12.11, section 12.4 in [8]. The components of
the conditioned stochastic integrals in (5.7) are given by the filtered estimates of Lijt .
Consequently, we have a procedure for estimating the matrix BB′.

Similarly, consider the tensor product of yt with itself:

yt y
′
t =

∫ t

0
ys dy

′
s +

∫ t

0
dys y

′
s +DD′ t.(5.8)

This expression simply amounts to evaluating DD′ in terms of the quadratic variation
of y.

6. Conclusion and extensions. For linear Gaussian dynamics, new finite-
dimensional filters have been derived which estimate integrals and stochastic integrals
of the moments of the state variable. Used in the EM algorithm, these quantities pro-
vide maximum likelihood estimates of the parameters in the dynamics of the Kalman
filter.

We mention two extensions of the results. First, similar filters can be derived
for nonlinear systems with Benes-type nonlinearity. Details are presented in [21].
Second, techniques similar to those developed in this paper can be applied in the
reconstruction of doubly stochastic autoregressive (AR) processes, as we now outline.

Assuming the scalar version (m = n = 1) of the state-space model (2.1), (2.2),
consider the continuous-time doubly stochastic AR process zt ∈ R defined as

dzt = f(xt) zt dt+ dut, z0 = 1.(6.1)

Here u is a scalar Brownian process independent of v and w, and f : R → R is a
polynomial function. Suppose our aim is to derive a filter for computing E{zt|Yt}.

In (6.1), zt can be viewed as a continuous-time AR process with random coefficient
f(xt), where xt itself evolves according to another AR process. In [4] we derived
finite-dimensional filters for such problems in discrete time. The above model can be
viewed as a continuous-time version of [4]. The problem of reconstructing zt when xt
is a finite state Markov chain (instead of a continuous-valued Gaussian process) has
recently been studied in the context of maneuvering target tracking [20]. Therefore,
(6.1) can be viewed as the continuous-valued analogue of the model in [20].

Let us compute E{zt|Yt}. Note that we can solve (6.1) explicitly for zt; this yields

zt = exp
(∫ t

0
f(xs) ds

) [
1 +

∫ t

0
exp

(
−
∫ s

0
f(xr)dr

)
dus

]
.
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Since u is independent of x and y, our aim can be re-expressed as follows: compute
the filtered estimate

E{zt|Yt} = E
{

exp
(∫ t

0
f(xs) ds

)
|Yt
}
.

Using techniques similar to those presented in this paper, it is possible to derive a
finite-dimensional filter for E{zt|Yt}. Details are presented in [22].

Appendix A. Derivation of Q(θ, θ̃). To update the estimate from Ã to A,
we employ Girsanov’s theorem and introduce the density

dP (A)
dP (Ã)

∣∣∣∣
Gt

= exp
(∫ t

0
x′s(A

′ − Ã′)(BB′)# dxs

−1
2

∫ t

0
x′s(A

′ − Ã′)(BB′)#(A+ Ã)xs ds
)
,

where # denotes the pseudoinverse. Then

E

{
log

dP (A)
dP (Ã)

∣∣∣∣
Gt
|Yt

}
= E

{∫ t

0
x′sA

′ (BB′)#
dxs −

1
2

∫ t

0
x′sA

′ (BB′)#
Axs ds|Yt

}
+R(Ã),

(A.1)

where R(Ã) does not involve A.
Similarly, to update the estimate from C̃ to C, we again apply Girsanov’s theorem

and introduce the density

dP (C)
dP (C̃)

∣∣∣∣
Gt

= exp
(∫ t

0
x′s(C

′ − C̃ ′)(DD′)−1 dys

−1
2

∫ t

0
x′s(C

′ − C̃ ′)(DD′)−1(C + C̃)xs ds
)
.

Consequently,

E

{
log

dP (C)
dP (C̃)

∣∣∣∣
Gt
|Yt

}
= E

{∫ t

0
x′sC

′ (DD′)−1
dys

−1
2

∫ t

0
x′s C

′ (DD′)−1
Cxs ds|Yt

}
+ S(C̃),

(A.2)

where S(C̃) does not involve C.
Adding (A.1) and (A.2) yields (5.3).
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Abstract. This paper concerns the modeling of stochastic processes by means of dynamic factor
models. In such models the observed process is decomposed into a structured part called the latent
process and a remainder that is called noise. The observed variables are treated in a symmetric
way so that no distinction between inputs and outputs is required. This motivates the additional
condition that the prior assumptions on the noise are symmetric in nature. One of the central
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1. Introduction. In this paper we are concerned with the identification of linear
systems. The most commonly used models in system identification are ARMA and
ARMAX models; we refer to [17], [4], and [13]. An ARMA model is symmetric and
nonopen in the sense that all observed variables are treated in a symmetric way and
they are completely described by the model. On the other hand, ARMAX models are
nonsymmetric and open, as a distinction is made between inputs and outputs and the
noise is added to the outputs, and the inputs are not modeled.

We will consider linear factor models where the noise model is symmetric and
where we have a deterministic, symmetric, and open system model. In a sense, these
models combine the symmetry which is inherent in, for example, ARMA models,
with the flexibility of models that leave certain process aspects unexplained, as, for
example, in input-output models.

Of course, the classical ARMA and ARMAX models are appropriate in a great
number of cases. For instance, if we are interested in predicting the outputs from
the inputs, then the ARMAX setting is appropriate. On the other hand, there are
also situations where this approach can not be justified and may lead to prejudiced
results.

• A prediction-based error model is not appropriate, for example, if we are
interested in the “true” underlying system and there is noise on the inputs
and the outputs.
• There may be uncertainty about the number of system equations or about

the classification of the system variables into inputs and outputs. In this case
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we have to perform a more symmetric way of system modeling, which in turn
demands a symmetric noise model.
• In multivariate time series analysis one is confronted with the so-called curse

of dimensionality. One method of reducing the dimension of the parameter
space for the system model is dynamic factor analysis, which is an essential
aspect of the approach described here.

Factor models have been used in statistics, psychometrics, and econometrics for a
long time; see [9], [1], [10]. The theory is most well developed for the case of static
models. Most applications are also reported within this framework, although there
are also contributions on the identification of dynamic factor models; see [11], [8], [5].
Within the area of systems and control there has recently been increasing interest in
symmetric modeling. We mention the introduction of the behavioral approach in sys-
tems theory in [24], [26], the attention paid to the Frisch problem (see [18], [23], [2]),
and low-noise modeling, as proposed in [15]. Most contributions on factor models in
this area deal either with the mathematical structure of dynamic models or with data
modeling by means of static models. In a certain sense, nonparametric-framework,
results on the identification of dynamic factor models within a stochastic setting have
been presented in [6], [7]. Procedures for symmetric time series modeling within a
deterministic behavioral framework have been proposed in [25], [14], and [21].

In this paper we try to integrate the above two frameworks, i.e., stochastic factor
models and deterministic behavioral modeling. The model class consists of stochas-
tic dynamic factor models where the latent process satisfies deterministic behavioral
laws. This means that stochastic structure is added to the deterministic behavioral
framework, which provides additional tools of analysis. On the other hand, our ap-
proach allows for an analysis of dynamic factor models in terms of finite-dimensional
systems, as opposed to the nonparametric results that were previously obtained.

We consider a situation that is idealized insofar as we commence from the popu-
lation second moments of the data. In other words, we analyze the relation between
the spectral density of the observed process and the corresponding factor models.
Nevertheless, this is done from the point of view of requirements connected with the
identification from observed data, and we will indicate how the results of this paper
can be used for this purpose. A detailed analysis of procedures for the identification of
dynamic factor models from observed time series falls beyond the scope of this paper
and will be investigated elsewhere.

One of the issues studied in this paper is the nonuniqueness of the behaviour for
given second-order moments. This means that uncertainty about the precise noise
structure leads to a corresponding nonuniqueness of the possible factor models that
are compatible with the observed process. As is well known, in the mainstream ap-
proach of modeling with exogenous inputs, the population second moments of the
observations determine, under very general conditions, the transfer function of the
underlying system uniquely. This is due to the assumption that the noise is uncor-
related with the inputs. Uniqueness in general does not hold true in cases when all
the variables may be corrupted by noise. This means that the set of observationally
equivalent models, that is, the set of all models compatible with the population second
moments, will in general not be a singleton. Of course, by imposing sufficiently strong
conditions, uniqueness can be achieved, but in many cases it may be hard to justify
such assumptions. The question then becomes how the lack of knowledge about the
error structure translates into nonuniqueness of the resulting model. This is a kind of
uncertainty about the underlying system that can not be removed, even in an infinite
sample.
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We now give an outline of the topics treated in this paper. A dynamic factor
model is of the form

w = ŵ+ w̃,(1)

where w is the observed process, ŵ is a (in general unobserved) latent process satisfy-
ing exact linear dynamic equations, and w̃ is the noise process. The restrictions on ŵ
can be expressed in terms of deterministic system behaviors as introduced in [24], [26].
The processes (w, ŵ, w̃) are assumed to be jointly stationary, and in this case the la-
tent process has a singular spectrum. The noise process represents the error resulting
from the approximation of the observations w by the latent process ŵ.

The central question considered in this paper is how to obtain the restrictions
satisfied by the latent process from the observations. Without imposing further con-
ditions, no solutions can be excluded from the knowledge of the observed process
alone. This means that we have to impose additional assumptions on the noise struc-
ture in order to make meaningful statements about the underlying system. The main
topics of this paper can be summarized as follows.

(i) The formulation of noise assumptions and an analysis of their effect on the
class of observationally equivalent models. We consider in particular the
assumptions of orthogonality (the latent process and the noise process are
mutually uncorrelated), observability (the latent process can be expressed
as a linear function of the observed process), and bounded noise (the noise
process satisfies an a priori specified bound).

(ii) An analysis of the structural properties of identification procedures corre-
sponding to different noise assumptions. This involves an analysis of the
mapping relating an observed process to the class of observationally equiva-
lent system models. Continuity of this mapping is related to consistency in
case of modeling from observed time series.

(iii) An analysis of the complexity and goodness of fit of factor models, with
special attention for optimal models of restricted complexity.

This paper has the following structure. In section 2 we define the dynamic factor
model. For this purpose we review the behavioral approach in linear system theory.
Factor models are characterized on the behavioral level and also in terms of spectral
properties, and we define the complexity and goodness of fit of factor models. The
general framework is illustrated by the special case of a white noise process and non-
dynamic system equations, and it is shown that in this case our set-up coincides with
the classical formulation of static factor models. Section 3 is concerned with optimal
models, in the sense of minimizing the noise under restrictions on the complexity of
the latent process. Section 4 investigates structural properties of the corresponding
identification problem, with special attention paid to continuity and consistency. Sec-
tion 5 contains concluding remarks. Some technical proofs are collected in section 6,
the appendix.

2. Dynamic factor models.

2.1. Linear systems. For the formulation of dynamic factor models it is con-
venient to use the behavioral approach as developed by Willems in [24], [26]. Since
this approach may not be well known to the reader, we discuss in this section those
aspects that are relevant for our purposes. Readers with an interest in further details
and proofs are referred to [24], [26].

In this subsection ŵ : Z→ Rq denotes a trajectory rather than a process; that is,
it is a q-variate time series observed in discrete time. The behaviour of a deterministic
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system is defined as the set of all trajectories ŵ that may arise within the restrictions
imposed by the system. So a behavior is a subset B of (Rq)Z. Of special interest are
behaviors that are linear, time invariant, and complete. This means that B ⊂ (Rq)Z

is a linear subspace that is invariant under the shift operator σ, defined by (σ ŵ)(t) :=
ŵ(t + 1), and that the behaviour is in addition closed in the topology of pointwise
convergence. The last condition means that for a sequence ŵn ∈ B which converges
pointwise (in Rq) to ŵ0 ∈ (Rq)Z, it holds that also ŵ0 ∈ B. These conditions imply
that the behavior corresponds to a linear, time invariant, finite-dimensional system.
Below, we will simply use the term linear system to refer to a linear, time invariant,
complete behaviour B ⊂ (Rq)Z.

Linear systems can be represented in several ways. Here we discuss representa-
tions in terms of polynomial equations, state space models with driving variables, and
corresponding transfer functions.

Every linear system can be represented in polynomial form as the solution set of
the polynomial equations

R(σ, σ−1) ŵ = 0(2)

Here R is a polynomial matrix in the forward and backward shifts. The representation
of a given system by a polynomial matrix is highly nonunique. Without loss of
generality we could have restricted ourselves to polynomials in either σ or σ−1 alone,
but (2) is in accordance with [24], [26]. The set of behavioral laws of a linear system
B is defined as the set of all polynomial equations satisfied by the system; that is, it
is the module of 1 × q polynomials L = {r; r(σ, σ−1) ŵ = 0 for all ŵ ∈ B}. Every
polynomial representation of a given system has the same (polynomial) rank p, which
is equal to the dimension of the module L. Full row rank representations are unique
up to left multiplication by a unimodular matrix, i.e., a polynomial matrix which has
a polynomial inverse. These representations can also be interpreted as input-output
systems in polynomial form, where p is the number of outputs and m := q − p is the
number of inputs. We denote by n the minimal number of initial conditions required
to express future outputs in terms of future inputs, which is equal to the sum of the
Kronecker observability indices of the system.

An alternative representation is in terms of state models with driving variables.
Every linear system can be represented as

σx = Ax+Bv, ŵ = Cx+Dv.(3)

Here v is an auxiliary vector of unrestricted driving variables and x is a vector of
state variables. In contrast with the usual input-state-output model, here all the
external variables are described as outputs of a system driven by forces which need
not have any external meaning. For a given system this kind of representation is
highly nonunique. Minimal representations have n states and m driving variables,
and the class of all minimal representations is described by the feedback group (S(A+
BF )S−1, SBR, (C +DF )S−1, DR).

Until now no assumptions were made concerning the controllability of systems.
For example, if A is a q × q invertible matrix then the set {ŵ : Z → Rq; ŵ(t + 1) =
Aŵ(t), t ∈ Z} defines a linear system with autonomous evolution which is clearly
not controllable. A system B is called controllable if every future in B is attainable
from every past in B, that is, if for every ŵ1, ŵ2 ∈ B there exist ŵ ∈ B and h ≥ 0
such that ŵ(t) = ŵ1(t) for t < 0 and ŵ(t) = ŵ2(t) for t ≥ h. In terms of the kernel
representations (2) this means that R(z, z−1) has constant rank over z ∈ C \ {0}. In
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this case the system can also be represented as the image of a polynomial operator,
that is, ŵ ∈ B is represented as

ŵ = M(σ, σ−1)f,(4)

where f has the interpretation of the underlying generating factors. There is a close
connection between the notion of controllability as defined before and the usual notion
in terms of state space models, because minimal state models (3) of controllable
systems B are characterized by the property that (A,B) is a controllable pair and
(A,C) an observable pair. In this case we can obtain isometric state models (see [21]),
that is, representations with the property that(

A B
C D

)′(
A B
C D

)
=
(
In O
O Im

)
,(5)

where Id denotes the d-dimensional identity matrix and Q′ denotes the transposed of a
matrix Q. If (A,B,C,D) is a minimal isometric state representation of a controllable
system, then all such representations are given by (UAU ′, UBV , CU ′, DV ) with U
and V orthogonal matrices.

The model (4) gives a finite impulse response representation of controllable sys-
tems. This gives a clear description how to generate all time series belonging to a
given system. Alternative descriptions are in terms of transfer functions. For control-
lable systems we can always choose A to be asymptotically stable, and in this case
the square summable time series in the system can be generated as ŵ = G(σ−1)v,
where v is square summable and G is the causal transfer function defined by G(z) =
D +

∑∞
k=1 CA

k−1Bzk. The rank of the transfer function G is m, and its McMillan
degree is n. For an isometric state model this transfer function becomes an isometry,
sometimes also called an all-pass transfer function. The driving variables needed to
generate a given square summable time series are then obtained by v = G∗(σ−1) ŵ,
where G∗ is the adjoint defined by G∗(σ−1) := G′(σ).

In our analysis we will often make use of isometric representations of linear sys-
tems. A state space method for obtaining these models is described in [21]. They can
also be obtained from polynomial representations, as follows. Let B be a controllable
linear system with kernel representation B = ker(R) = {ŵ;R(σ, σ−1) ŵ = 0} and
image representation B = im(M) = {ŵ; ŵ = M(σ, σ−1)f}. If m is the number of
inputs of the system, then R can be chosen with q−m rows and M with m columns.
Controllability implies that R(z, z−1) has constant rank over C \{0}, and M can also
be chosen of constant rank. In this case the projections P = M(M∗M)−1M∗ and
Q = R∗(RR∗)−1R are well-defined rational functions with constant rank over the
domain C \{0}. So there exist causal, miniphase spectral factorizations P = Ĝ Ĝ

∗

and Q = G̃ G̃
∗
; see [22, Theorem I.10.1]. These spectral factors are isometric; that

is, Ĝ
∗
Ĝ = Im and G̃

∗
G̃ = Iq−m. Then the spectral factor Ĝ is an isometric transfer

function for B, and all square summable time series in B are obtained as the image
of Ĝ. Therefore we call this an isometric image representation. Further, all square
summable time series in B are annihilated by G̃

∗
, and therefore we call G̃ an isometric

kernel representation. As R and M describe the same system, it follows that RM = 0
so that G̃

∗
Ĝ = 0. This shows that the q× q rational matrix [Ĝ, G̃] is inner, that is, it

is stable and unitary. Conversely, every rational inner matrix [Ĝ, G̃] describes a linear
system with isometric image representation Ĝ and isometric kernel representation G̃.

2.2. Factor models and spectra. Let (Ω,A,P) denote an underlying probabil-
ity space and let L2 be the corresponding Hilbert space of square integrable real-valued
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random variables. We assume that the observed process w is a q-dimensional, weakly
stationary process, so that w ∈ (Lq2)Z. A dynamic factor model is a process decom-
position of the form w = ŵ+ w̃, where w̃ ∈ (Lq2)Z is the noise process and ŵ ∈ (Lq2)Z

is the latent process that is essentially restricted to a linear system. The behaviour B
of ŵ is defined as the smallest linear, time invariant, complete system which contains
almost all process realizations, that is, P{ŵ(ω) ∈ B} = 1. The following result states
that this definition makes sense.

PROPOSITION 2.1. For every stochastic process the behavior is well defined.
Proof. We call a behavior B compatible with a process ŵ if B contains almost all

process realizations. Of course, (Rq)Z is always compatible, and countable intersec-
tions of compatible behaviors are compatible.

Now let B be a compatible behavior. If it contains a strictly smaller compatible
behavior B′ ⊂ B, B′ 6= B, then we proceed with B′. This system has either fewer
inputs than B or equal number of inputs and fewer states. Continuing in this way, we
end up after a finite number of steps with a compatible behavior B∗ that contains no
strictly smaller compatible behavior. This implies that for every compatible B there
holds B∩B∗ = B∗, and thus B∗ ⊆ B. This proves that B∗ is the smallest compatible
behavior.

We call a behavior nontrivial if B 6= (Rq)Z. Dynamic factor models are defined
as follows.

DEFINITION 2.2. A dynamic factor model of a process w is a decomposition
w = ŵ+ w̃, where the latent process ŵ has nontrivial behavior B, which is called the
behavior of the factor model.

In this paper we will be mainly concerned with the behavior of factor models, as
in many cases this is the main point of interest in system identification. In order to
simplify our analysis of dynamic factor models we make some additional assumptions
on the processes. Some of these assumptions could be relaxed, but they are imposed
to prevent technical complications that could obscure the underlying modeling ideas.
To formulate the assumptions we use the following terminology. Let St denote the
subspace of L2 spanned by the zero mean random variables {wi(t); i = 1, . . . , q}. Let
the Hilbert spaces H(w) and Ht(w) be generated by, respectively, {St; t ∈ Z} and
{Ss; s ≤ t}, so that H(w) is generated by the process and Ht(w) by the past of
this process. The process is said to have full rank if the space Ht(w) ∩ {Ht−1(w)}⊥
has dimension q, that is, if no nontrivial linear combination of the variables w(t)
can be predicted without error from the past. It is called purely nondeterministic if⋂∞
−∞Ht(w) = {0}, that is, if the prediction of w(t+h) from Ht(w) converges to zero

for h→∞. As is well known, every purely nondeterministic process can be written as

w = T (σ−1)ε,(6)

that is, w(t) =
∑∞
k=0 Tkε(t−k), where ε is a white noise process with E{ε(t)ε′(t)} = Iq

and ε(t) ∈ Ht(w), and where
∑∞
k=0 ‖Tk‖22 < ∞ with ‖ · ‖2 the Frobenius norm of

a matrix. This is called a Wold representation of the process; see, e.g., [19]. If∑∞
k=0 ‖Tk‖2 < ∞, then this representation is called absolutely summable. In this

paper we will always make the following assumptions.
Assumptions.
• A1. The processes w, ŵ, and w̃ are jointly weakly stationary, with zero mean.
• A2. The observed process w is purely nondeterministic and has full rank.
• A3. The latent process ŵ and the noise process w̃ are purely nondeterministic.
• A4. The Wold representations of w, ŵ, and w̃ are absolutely summable.
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The assumption A1 is imposed for convenience, as this means that the usual
tools of time series analysis and linear systems theory can be applied. The full rank
assumption in A2 implies that the behavior of the observed process is unrestricted, so
that it can not be modeled by a factor model without noise. Concerning assumption
A3, note that a latent process with nontrivial behavior can not be of full rank. We
assume that it is purely nondeterministic, and that the same holds true for the noise.
This seems a reasonable requirement in view of assumption A2. Finally, assumption
A4 is imposed for technical reasons. It implies that the spectral densities of the
processes are continuous functions on the unit circle.

Stated in terms of behaviors, assumption A3 for the latent process means the
following.

PROPOSITION 2.3. The behavior of a purely nondeterministic process is control-
lable.

Proof. Let ŵ be a purely nondeterministic process. Further let B be a noncon-
trollable system with full row rank polynomial representation R, with the property
that R(σ, σ−1) ŵ = 0 almost surely. Let R = UDV be the Smith form, with U
and V unimodular matrices and with D = (∆, 0) where ∆ is a diagonal matrix with
one-dimensional polynomials unequal to zero on the diagonal.

Define w∗ = V ŵ and let w∗ = (w∗1 , w
∗
2) be a partitioning corresponding to that

of D = (∆, 0). Then there holds ∆w∗1 = 0 almost surely. So this process evolves
according to an autonomous difference equation and can be predicted without error;
that is, w∗1 belongs to Ht(ŵ) for all t, the space spanned by the past of ŵ. As ŵ is
purely nondeterministic, this means that w∗1 = 0. This shows that also R∗(σ, σ−1) ŵ =
0 almost surely, where R∗ = (I, 0)V . As R∗(z, z−1) has constant rank it follows that
this defines a controllable system, and of course it defines a system that is strictly
smaller than B. So the behavior of ŵ is also controllable.

We mention that the converse of this result does not hold true; that is, a latent
process with controllable behavior need not be purely nondeterministic. In terms of
the representations of controllable systems discussed in section 2.1, the above result
means that a factor model can be described as follows:

w = M(σ, σ−1)f + w̃,(7)

w = Cx+Dv + w̃, σx = Ax+Bv.(8)

Here M is a polynomial matrix and (A,B,C,D) are real-valued matrices. The first
representation is a generalization of the static model of classical factor analysis and
explains the observed variables in terms of a number of unobserved underlying factors.
The second representation gives a more explicit description of the dynamical evolution
of the latent process ŵ = Cx + Dv in terms of unrestricted factors v and additional
factors x that exhibit the memory structure.

Factor models can also be described by means of spectra. In terms of the Wold
representation (6), where ε is white noise with unit covariance and where T is an (in
general nonrational) causal transfer function with causal inverse, the spectrum of w
is given by Σ = TT ∗. The spectra of ŵ and w̃ are denoted, respectively, by Σ̂ and
Σ̃, and the cross spectrum between ŵ and w̃ is denoted by Σc. Under assumptions
A1–A4, all these spectra are bounded functions on the unit circle. A factor model
corresponds to a decomposition

Σ = Σ̂ + Σ̃ + Σc + Σc′ .(9)
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By assumption, the behavior of the latent process is nontrivial so that Σ̂ is singular.
The rank of this spectrum corresponds to the number of unrestricted factor compo-
nents. This is made precise in the following result. Here we denote by ker(Σ̂) the set
of 1 × q polynomials r(s, s−1) for which r(z, z−1) Σ̂(z) = 0 on the unit circle. The
polynomial rank of Σ̂ is defined as q − p, where p is the dimension of the module
ker(Σ̂). Further, by im(Σ̂) we denote the smallest linear system that contains all time
series of the form Σ̂(σ)v, where v is a q × 1 time series with finite support.

THEOREM 2.4.
(i) A latent process ŵ with spectrum Σ̂ has behavior B = im(Σ̂), and the behav-

ioral laws are given by L = ker(Σ̂).
(ii) The number of inputs of the behavior is equal to the polynomial rank of Σ̂.
(iii) A latent process has behavior B if and only if it can be generated as ŵ =

Ĝ v, where Ĝ is an isometric image representation of B and v is a weakly
stationary process with zero mean and finite second-order moments that has
trivial behavior.

Proof. (i) Let B be the behavior of ŵ and L the corresponding set of laws. Then
a 1× q polynomial belongs to L if and only if r ŵ = 0 holds almost surely, and this is
equivalent to the condition r Σ̂ = 0, that is, L = ker(Σ̂).

Now let B∗ = im(Σ̂) be the smallest linear system that contains all time series
of the form Σ̂(σ)v, where v is a q × 1 time series with finite support. Let L∗ denote
the set of laws of the system B∗. The system B∗ consists of pointwise limits of time
series Σ̂(σ)vn, n = 1, 2, . . . , where vn are time series with finite support. If r ∈ L,
then r Σ̂ = 0 implies r(σ) Σ̂(σ)vn = 0, and the same holds true for the pointwise limit
of Σ̂(σ)vn. This shows that L ⊆ L∗. Now let r be a 1 × q polynomial with r Σ̂ 6= 0,
and let w ∈ B∗ be defined by w = Σ̂(σ)v where v has Z-transform r′. As r Σ̂ r′ 6= 0,
it follows that r(σ) Σ̂(σ)v 6= 0, so that r does not belong to L∗. This implies that
L∗ ⊆ L, so that L∗ = L. As B and B∗ satisfy the same relations, it follows that
B = B∗.

(ii) The number of inputs of B is given by m = q− p, where p is the dimension of
the module L = ker(Σ̂). This was also defined as the polynomial rank of Σ̂.

(iii) First assume that ŵ has behavior B with m inputs. Let R be a (q −m)× q
polynomial matrix with full rank so that B = ker(R), and let Ĝ be an isometric image
representation of B as defined in section 3.1, so that R Ĝ = 0. As Ĝ is rational it can
be written as p−1Q, with p a scalar polynomial and Q a q × m matrix polynomial
with full column rank. As Ĝ is stable, so that it has no poles on the unit circle, it
follows that v̂ = Ĝ

∗
ŵ is a well-defined stationary process with zero mean and finite

second-order moments. As Ĝ Ĝ
∗

is the projection onto B and realizations of the factor
process belong almost surely to B, it follows that Ĝ v̂ = Ĝ Ĝ

∗
ŵ = ŵ. It remains to

show that v̂ has trivial behavior (Rm)Z. Suppose that this was not the case; then
there is a 1×m polynomial r 6= 0 such that r v̂ = 0. As Q has rank m there exists a
1× q polynomial π so that πQ = r and π ŵ = p−1πQ v̂ = 0, so that π is a law of the
process ŵ. It then follows that (R′, π′)′ Ĝ = (0, r′)′, where r 6= 0. This implies that
(R′, π′)′ is a polynomial matrix of rank q−m+1 with the property that (R′, π′)′ ŵ = 0.
This means that the behavior of ŵ has fewer than m inputs, but this contradicts (ii).

Second, suppose that ŵ = Ĝ v̂. As v̂ has trivial behavior it follows that r is a
behavioral law of ŵ if and only if r Ĝ = 0, or equivalently r Ĝ Ĝ

∗
= rP = 0 with

P the projection operator onto B. This shows that the behavior of ŵ is given by
B.

Concerning (ii), note that the polynomial rank of Σ̂ is q − p, where p is the
number of independent polynomial relations satisfied by the latent process ŵ. In
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general, the polynomial rank may be larger than the dimension of the innovation
space Ht(ŵ)∩ {Ht−1(ŵ)}⊥. This dimension is the usual definition of the rank of the
process ŵ, and this is equal to the maximum of rank(Σ̂(z)) on the unit circle. This
implies that for all |z| = 1 the rank of Σ̂(z) is smaller than or equal to the polynomial
rank of Σ̂, and if ŵ satisfies additional linear relations that are not polynomial, then
the rank of Σ̂(z) is strictly smaller than the polynomial rank of Σ̂. As nonpolynomial
relations correspond to infinite-dimensional systems, they fall outside the behavioral
setting discussed in section 2.1.

2.3. Factor schemes. The basic question considered in this paper concerns the
relationship between the spectrum of the observed process and the class of observa-
tionally equivalent factor models. Under assumption A2 there exists for every linear
system B a factor model with behavior B, because we can simply define the noise
as w̃ = w − ŵ for every latent process ŵ. In the words of Kalman [15], within this
setting we can obtain no models without prejudice. So we have to impose additional
restrictions on the noise process in order to make meaningful statements about the
underlying system. These restrictions should be motivated in each practical situation.
Here we consider the following possible specifications, which we call factor schemes.

• The factor model is called orthogonal if the latent process and the noise
process are mutually uncorrelated, that is, if E{ŵ(t) w̃(s)′} = 0 for all t, s.
Stated otherwise, there holds H(ŵ) ⊥ H(w̃) and Σc = 0.

• The factor model is called observable if ŵ is a linear function of w, that is, if
H(ŵ) ⊆ H(w). Stated otherwise, there holds Σ̂ = F ΣF ∗, Σ̃ = (I−F ) Σ(I−
F )∗, and Σc = F Σ(I − F )∗ for some, possibly noncausal, transfer function
F .

• The factor model is said to have bounded noise if it satisfies an a priori
specified bound in terms of the noise spectrum Σ̃.

The quality of factor models is expressed in terms of the complexity and the goodness
of fit of the model.

DEFINITION 2.5. The complexity of a dynamic factor model is defined as the pair
(m,n), where m is the number of driving variables and n the number of states of the
behavior of the factor model.

The complexity measures the dimension of the latent process, in the sense that
the set of possible realizations {ŵ(ω);ω ∈ Ω} on a time interval of length L ≥ n is
(almost surely) contained in an (mL+n)-dimensional subspace of RqL. In parametric
terms, the complexity can also be expressed as follows.

PROPOSITION 2.6.
(i) In terms of a kernel representation R(σ, σ−1) ŵ = 0, the complexity is given by

m = q− rank(R) and n =
∑q−m
k=1 νk, where {ν1, . . . , νq−m} are the Kronecker

observability indices.
(ii) In terms of an isometric image representation Ĝ of the factor behavior, the

complexity is given by the rank m and McMillan degree n of Ĝ.
Proof. (i) This follows from Theorem 6 in [24].
(ii) This follows from Theorem 4.9 and Lemma 4.10 in Chapter 4 of [14].
Below, we will sometimes consider another measure of complexity in case the

factor model is observable and the spectrum Σ is rational, that is, w = T (σ−1)ε
in (6), where T is now a rational transfer function. Then a special class of latent
processes is obtained by prefiltering the noise, that is, ŵ = T (σ−1)F (σ−1)ε, where
F is a rational, rank deficient transfer function. We define the effective noise space
by N =im(F ), that is, the behavior of the filtered noise process F (σ−1)ε. In this
case the behavior of the latent process is given by B =im(TF ). As TF is rational
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and rank deficient, it follows that B is a nontrivial linear system. An alternative
characterization of complexity is the pair (m′, n′), the number of inputs and states
of the effective noise behavior N . This measures the complexity of the noise process
underlying the latent process.

DEFINITION 2.7. Let a process with rational Wold representation w = T (σ−1)ε
and a latent process ŵ = (TF )(σ−1)ε be given. Then the noise complexity of the
corresponding factor model is defined as (m′, n′), the number of inputs and states of
the effective noise space N = im(F ).

The two foregoing notions of complexity are not equivalent. If N is the effective
noise space of a factor model with behavior B and if (m,n) and (m′, n′) are the
complexities of B and N , respectively, then m = m′, but in general n 6= n′.

The goodness of fit of factor models is measured in terms of the second moments
of the noise process w̃. As is well known, the choice of norms may have an essential
effect on the obtained models. Here we will restrict the attention to the mean squares
norm and the uniform norm. In the following we use the notation Σ̃1/2 for a spectral
factor of the noise spectrum Σ̃ so that Σ̃ = Σ̃1/2(Σ̃1/2)∗. We define the norm of a
1 × q polynomial r(σ, σ−1) =

∑
rkσ

k by ‖r‖22 :=
∑
‖r′k‖2, where ‖ · ‖ denotes the

Euclidean norm on Rq. Further, we define the following norms for spectral factors,
where λmax(Q) denotes the spectral radius, that is, the maximum of the absolute
values of the eigenvalues of a matrix Q.

‖ Σ̃1/2 ‖22 =
1

2π

∫ π

−π
trace{Σ̃(e−iλ)}dλ,(10)

‖ Σ̃1/2 ‖2∞ = sup
λ∈[−π,π]

λmax{Σ̃(e−iλ)}.(11)

DEFINITION 2.8. For a factor model with noise process w̃ with spectrum Σ̃, the
mean squares and uniform fit are, respectively, defined by

‖ w̃ ‖2 := [E{w̃(t)′ w̃(t)}]1/2 = ‖ Σ̃1/2 ‖2,(12)

‖ w̃ ‖∞ := sup{[E{(r(σ, σ−1) w̃)(t)}2]1/2; ‖r‖2 = 1} = ‖ Σ̃1/2 ‖∞.(13)

Because of assumption A3, the noise process is purely nondeterministic, so that
the coefficients of Σ̃1/2 are square summable and ‖ · ‖2 is well defined, and because
of assumption A4, the spectrum is bounded on the unit circle so that ‖ · ‖∞ is also
well defined. The mean squares and uniform norms are monotonic, since they become
larger if the spectrum becomes larger in the sense of positive semidefinite matrix
functions on the unit circle. Sometimes, when results hold true for both norms, we
make no distinction in notation and write ‖ w̃ ‖ and ‖ Σ̃1/2 ‖.

2.4. Illustrations.

2.4.1. Static factor models. As a simple illustration we show that the frame-
work as introduced before is an extension to the dynamic case of the well-known class
of static factor models that have been analyzed in [18] and [23], among others. In
later sections we will use the static case for further illustration.

Suppose that the observations are uncorrelated over time, so that w is a white
noise process. In this subsection we restrict our attention to factor models w = ŵ+ w̃,
where ŵ and w̃ are also white noise processes. We further impose the condition that
the behavior of the factor model is static in the sense that the state dimension is n = 0.
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The corresponding linear systems are described by linear nondynamic equations of the
form R ŵ = 0, where R is a full row rank p × q real matrix. Let M be a q × (q − p)
matrix with im(M) = ker(R); then the factor model can be written as

w(t) = Mf(t) + w̃(t).

This corresponds to the classical static factor model with factors f . If the covariance
matrix of f has full rank, then the complexity of this factor model is (m, 0), where
m = q − p is the number of factors.

In the literature several possible factor schemes have been proposed. For example,
in the principal component analysis of multivariate statistics the aim is to keep the
noise process w̃ as small as possible, under a restriction on the number of independent
factors m. In the so-called Frisch scheme the aim is to minimize the complexity of
the model under the restrictions that the processes ŵ and w̃ are orthogonal and that,
in addition, the q components of the noise process w̃ are mutually orthogonal.

Our approach resembles principal component analysis. In the next section we
will consider minimization of the noise under a restriction of the complexity of the
behavior of the latent process.

2.4.2. Dynamic system example. Here we give a simple example of a dynamic
factor model. Suppose that the data generating process consists of a single input,
single output system where both the input u and the output y are observed under
additive noise. That is, we assume that the data w = (u, y) are generated as w =
ŵ+ w̃, with w̃ the noise and (û, ŷ) the latent process with ŷ = g û, where g denotes
the underlying rational transfer function. For simplicity we assume that the latent
input û is white noise and that the noise process w̃ is also white noise, all uncorrelated
and with unit variance. In this case the spectrum of the data generating process is
given by

Σ =
(

2 g∗

g gg∗ + 1

)
.

An obvious factor model for this process is the above decomposition in the latent
process ŵ and the white noise process w̃. If g(σ, σ−1) = r1(σ, σ−1)/r2(σ, σ−1), then
this factor model has a behavior described by the equation R(σ, σ−1) ŵ = 0 where
R = (−r1, r2). The complexity is (m,n) = (1, d), where d is the maximum of the
degrees of the polynomials r1 and r2. The mean squares fit is ‖ w̃ ‖2 =

√
2, and the

uniform fit is ‖ w̃ ‖∞ = 1. Because of our assumptions, this factor model is orthogonal
but not observable.

Of course, the real question is whether we can identify the underlying transfer
function g from the spectrum Σ. This will be investigated in section 3.3.2.

3. Pareto optimal models. The quality of a factor model for an observed
process w is measured by its complexity and goodness of fit. In general, the fit can
become better if the model is allowed to be more complex. We use a lexicographic
ordering of complexities, so that (m1, n1) is less complex than (m2, n2) if m1 < m2 or
m1 = m2, n1 < n2. A factor model is called Pareto optimal if it satisfies the following
two conditions: every less complex model has a strictly worse fit, and no equally
complex model has strictly better fit. This means that the fit can not be improved
without increasing the complexity and that the complexity can not be reduced without
deteriorating the fit.

We characterize Pareto optimal models by optimizing the fit for a given bound on
the complexity. This problem is analyzed in three steps. In section 4.1 we investigate
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two cases: modeling with a specified behavior and modeling with a restricted number
of inputs where the number of states is left free. In section 4.2 we derive Pareto optimal
models of restricted complexity, where both the number of inputs and the number
of states is limited. The optimality of models depends of course on the specification
of the factor scheme, that is, on the choice of norms for the noise and on possible
conditions of orthogonality and observability.

3.1. Optimal models of restricted rank. First assume that the behavior of
the factor model has been specified a priori, so that the factor equations are given. The
aim is to find a model with minimal error that satisfies these equations. Let B denote
the given controllable linear system with polynomial representation R(σ, σ−1) ŵ = 0.
The isometric image and kernel representations of the system are denoted, respec-
tively, by Ĝ and G̃, so that PB := Ĝ Ĝ

∗
= I−R∗(RR∗)−1R is the projection operator

onto the system and G̃ G̃
∗

= I −PB is the projection onto the set of behavioral equa-
tions. The following results hold true both for the mean squares and for the uniform
norm.

THEOREM 3.1. Let w be a process with spectrum Σ and let B be the required
behavior of a factor model.

(i) A latent process with optimal fit is given by ŵ0 := PBw, with noise spectrum
Σ̃0 = (I − PB) Σ(I − PB) = G̃ G̃

∗
Σ G̃ G̃

∗
. The corresponding factor model is

observable but, in general, not orthogonal.
(ii) Among orthogonal models, a latent process with optimal fit is given by

ŵ0 := [I − ΣR∗(RΣR∗)−1R]w, with corresponding noise spectrum Σ̃0 =
ΣR∗(RΣR∗)−1RΣ = Σ G̃(G̃

∗
Σ G̃)−1 G̃

∗
Σ.

Proof.
(i) The relation G̃

∗
ŵ = 0 implies for the mean squares norm

‖ Σ̃1/2 ‖22 =
∮
|z|=1 trace(Ĝ

∗
Σ̃ Ĝ)(z)dz +

∮
|z|=1 trace(G̃

∗
Σ̃ G̃)(z)dz

≥
∮
|z|=1 trace(G̃

∗
Σ G̃)(z)dz.

Therefore the misfit is minimal if and only if Ĝ
∗
w̃ = 0 holds, so that ŵ = (Ĝ Ĝ

∗
+

G̃ G̃
∗
) ŵ = Ĝ Ĝ

∗
(w − w̃) = PBw. This model is also optimal for the uniform norm,

since

λmax(Σ̃(z)) ≥ λmax((G̃ G̃
∗

Σ̃ G̃ G̃
∗
)(z)) = λmax((G̃ G̃

∗
Σ G̃ G̃

∗
)(z))

holds for all points z of the unit circle. This optimal model is, in general, not orthog-
onal since PB Σ(I − PB) is not zero in general.

(ii) We show that Σ̃(z) ≥ Σ̃0(z) holds for all points z of the unit circle. For
simplicity of notation we omit the argument z in the following. Let G = [Ĝ, G̃]; then,
because of G̃

∗
Σ̂ = 0, it follows that G̃

∗
Σ = G̃

∗
Σ̃ and hence

G∗ Σ̃G =

(
Ĝ
∗

Σ̃ Ĝ Ĝ
∗

Σ G̃

G̃
∗

Σ Ĝ G̃
∗

Σ G̃

)

≥
(

(Ĝ
∗

Σ G̃)(G̃
∗

Σ G̃)−1(G̃
∗

Σ Ĝ) Ĝ
∗

Σ G̃

G̃
∗

Σ Ĝ G̃
∗

Σ G̃

)
= G∗ Σ G̃(G̃

∗
Σ G̃)−1 G̃

∗
ΣG.

The above inequality is a consequence of the fact that G∗ Σ̃G ≥ 0. So all orthogonal
factor models with behavior B must satisfy Σ̃ ≥ Σ G̃(G̃

∗
Σ G̃)−1 G̃

∗
Σ = Σ̃0. This



1936 C. HEIJ, W. SCHERRER, AND M. DEISTLER

shows the second expression for Σ̃0. The first expression follows from the fact that
G̃ = R∗Q where Q is a spectral factor of (RR∗)−1, that is, QQ∗ = (RR∗)−1.

The optimal factor model is unique in the case of the mean squares norm, but
not generally in case of the uniform norm. If we are interested in factor behaviors
only, then the above results show that we may restrict our attention to observable
models. This leaves four factor schemes of interest: those for the mean squares and
the uniform norm, and according to whether orthogonality is imposed or not. We
define the distance between a behavior and a spectral density as the fit of the optimal
factor model with this behavior. That is, the misfit function is given by

d(Σ,B) = ‖ Σ̃1/2
0 ‖,(14)

where Σ̃0 is the noise spectrum of the optimal factor models for B given in Theorem 3.1
and where Σ̃1/2

0 denotes a spectral factor of Σ̃0. We use the same notation for the
four different factor schemes.

Next we describe optimal models of restricted rank, so that only the number of
inputs of the latent process is restricted, but not the number of state variables. Under
the assumptions A1–A4 of section 2.2, the observed spectrum Σ is a well-defined
matrix function on the unit circle that can be pointwise decomposed in terms of its
eigenvalues and eigenvectors as Σ = UΛU∗. Here U is a q× q unitary matrix function
(i.e., UU∗ = U∗U = Iq), and Λ is a diagonal matrix of ordered eigenfunctions. For
simplicity we assume that the eigenvalues are distinct everywhere on the unit circle,
so that Λ = diag(λ1, . . . , λq) with λ1(z) > λ2(z) > · · · > λq(z) > 0 on the unit
circle. Let U = [U1, U2], where U1 consists of the first m columns of U and U2 of the
remaining columns, and let Λ = diag(Λ1,Λ2) be a corresponding partitioning. The
principal component model of rank m is defined by the factor ŵ = U1U

∗
1w and noise

w̃ = U2U
∗
2w. In terms of the spectra, this gives

Σ̂m = U1Λ1U
∗
1 , Σ̃m = U2Λ2U

∗
2 , Σc = 0.(15)

Under the above assumptions, this model is well defined and unique (See [3, Theorems
9.3.1, 9.3.2, and 9.3.3]), and it is clearly observable and orthogonal. The latent process
spectrum has rank m, but the factor behavior will in general be trivial; that is, it will
be (Rq)Z. This is because, in general, there exist no nontrivial polynomial equations
such that R(z, z−1) Σ̂m(z) = 0.

The following result states that the principal component model has optimal fit,
and that it can be approximated arbitrarily closely by factor models with complexity
(m,n) if the number of state variables n is chosen sufficiently large. The results hold
true for all factor schemes, that is, for mean squares and uniform fit and irrespective
of whether orthogonality and observability are imposed or not.

THEOREM 3.2.
(i) No factor model of complexity (m,n) has better fit than the fit ‖ Σ̃1/2

m ‖ of the
principal component model of rank m.

(ii) For every ε > 0 there is a factor model of complexity (m,n), for some finite
n, with better fit than ‖ Σ̃1/2

m ‖+ ε.
Proof. Under the assumption λ1(z) > λ2(z) > · · · > λq(z) > 0 for all |z| = 1,

the eigenvector matrix U(z) has an absolutely summable Laurent series expansion;
see [3, Theorems 9.3.1, 9.3.2, and 9.3.3]. This implies that w̃m = U2U

∗
2w and ŵm =

w − w̃m = U1U
∗
1w are well-defined processes.

(i) As Σ(z) is continuous on the unit circle it follows also that the eigenvalues
λi(z) are continuous functions (See Lemma 6.1 in the appendix), and thus ‖ Σ̃1/2

m ‖22 =
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|z|=1{λm+1(z) + · · · + λq(z)}dz and ‖ Σ̃1/2

m ‖2∞ = sup|z|=1 λm+1(z) are well defined.

If G̃ is the isometric kernel representation of a behavior B, then the optimal noise
covariance corresponding to B is, according to Theorem 3.1 given by Σ̃ = G̃ G̃

∗
Σ G̃ G̃

∗
.

As G̃
∗
(z) G̃(z) = I, Lemma 6.1 implies the optimality of the principal component

model.
(ii) Since U2(σ) is an absolutely summable filter, we can find a positive inte-

ger N and a finite filter G̃N (σ) =
∑
|k|≤N G̃k σ

k such that ‖U2 − G̃N ‖∞ is arbi-

trarily small. Thus we can choose N such that ‖I − G̃∗N G̃N ‖∞ and also ‖U2U
∗
2 −

G̃N (G̃
∗
N G̃N )−1 G̃

∗
N ‖∞ become arbitrarily small. The transfer function PN =

G̃N (G̃
∗
N G̃N )−1 G̃

∗
N is a rational projection matrix of rank m, so that (I − PN ) is

the isometric image representation of a behavior BN with m inputs and a finite
number of states. Then, analogous to the proof of Proposition 6.3 in the appendix,
it follows that ‖ Σ̃N − Σ̃m ‖∞ → 0, and thus ‖ Σ̃1/2

N ‖ → ‖ Σ̃1/2
m ‖ by Lemma 6.2.

Here U2 corresponds to G̃0 in the proof of Proposition 6.3, and this proof can easily
be extended to the case where G̃0 = U2 is not rational but only absolutely sum-
mable.

So the principal component model gives an optimal reduced rank approximation of
the spectrum. Further, this gives a first idea of achievable combinations of complexity
and fit. A sufficient condition for the existence of a factor model with fit δ and
complexity (m,n), for some finite n, is that ‖ Σ̃1/2

m ‖ < δ, and a necessary condition is
that ‖ Σ̃1/2

m ‖ ≤ δ.
We conclude this section by considering the effect of using weighted norms or,

stated otherwise, the effect of prefiltering the observed process. Let Q be a q × q
positive definite matrix function which is bounded on the unit circle. Then the Q-
weighted norm is defined as ‖ w̃ ‖Q = ‖T ∗ w̃ ‖ for a spectral factorization Q = TT ∗.
This norm is well defined, as it does not depend on the choice of the spectral factor.

PROPOSITION 3.3. Let B be a controllable linear system of complexity (m,n).
Then there is a choice of Q-weights such that B is the behavior of a factor model that
minimizes the Q-weighted norm over the set of all factor models with m inputs.

Proof. Let R(σ, σ−1) be a full row rank polynomial matrix with rows that form
a basis for the set of laws of the behavior B. As ‖ w̃ ‖Q = ‖T ∗ w̃ ‖ we can use the
result of Theorem 3.2 on the transformed data w̄ := T ∗w, with spectrum T ∗ ΣT . The
transformed latent process ˆ̄w = T ∗ ŵ satisfies the relation R(T ∗)−1 ˆ̄w = 0. Thus, by
Theorem 3.2, B is optimal with respect to the weighted norm ‖ w̃ ‖Q if R(T ∗)−1 is a
basis of the left eigenspace of T ∗ ΣT corresponding to the q−m smallest eigenvalues,
pointwise on the unit circle. In this case w̄ = ˆ̄w+ ˜̄w is the principal component model
for the transformed data.

Now let S̄(σ, σ−1) be a full column rank polynomial matrix with columns that
form a basis of the right kernel of R (i.e., RS̄ = 0), and let S = Σ−1 S̄ and
Q = Σ−1 +SS∗. If Q̄ = Σ∗/2QΣ1/2, then it follows that RΣ1/2 Q̄ = RΣ1/2 and
S∗ Σ1/2 Q̄ = (I + S∗ ΣS)S∗ Σ1/2. Thus the q − m smallest eigenvalues of Q̄(z) are
equal to 1, and R(z, z−1) Σ1/2(z) is a basis of the corresponding left eigenspace. Let
Q = TT ∗ and Σ̄ = T ∗ ΣT ; then there holds xΣ1/2 Q̄ = λxΣ1/2 if and only if
x(T ∗)−1Σ̄ = λx(T ∗)−1. So the q−m smallest eigenvalues of Σ̄ = T ∗ ΣT are equal to
one and U2 = R(T ∗)−1 is a basis of the corresponding eigenspace. This shows that T
is the appropriate transformation and Q the appropriate norm.

This shows that the choice of norms is decisive for the obtained behaviors. So,
in practical applications, it is imperative to take care of appropriate weighting of the
data. In our opinion the norms should not be chosen on mathematical grounds alone,
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but must be related to the information and objectives of each specific application.
Here we will further restrict attention to the unweighted norms, which may be relevant
in applications if the observed variables have been transformed appropriately.

3.2. Optimal models of restricted complexity. A straightforward method
for determining Pareto optimal models is to fix the complexity and to optimize the fit
under this constraint. A model of optimal fit is then Pareto optimal if there are no less
complex models of at least equal fit. For complexity (m,n), this can be checked by
comparing, first, with the optimal fit of models of complexity (m,n− 1) and, second,
with the fit achievable by models having less than m inputs. The second comparison
is simplified by the result of Theorem 3.2 for the principal component model of rank
m−1. Because of these considerations, we restrict our attention to the determination
of optimally fitting models of given complexity.

The main complication of the corresponding optimization problem is that the set
of systems of given complexity (m,n) is not convex and also not compact. We restrict
the attention to the mean squares norm and consider both the factor schemes with
and without orthogonality. We will not investigate several other questions that are of
interest in this context, such as the existence and unicity of optimal models and the
case of the uniform norm.

The solution for the mean squares norm is given in terms of the so-called global
total least squares algorithm presented in [21]. Let W = (W1, . . . ,Wr) be a square
summable q×r matrix sequence, that is, with ‖W‖22 :=

∑∞
t=−∞ ‖W (t)‖22 <∞, where

‖W (t)‖2 denotes the Frobenius norm of the matrix W (t). Further, let the l2-distance
between this sequence and a linear system B be defined as d(W,B) := min{‖W −
V ‖2;V = (V1, . . . , Vr) with Vi ∈ B, i = 1, . . . , r}. The objective in global total least
squares is to determine an optimal model of restricted complexity, that is, one which
minimizes the l2-distance over the set of controllable systems with m inputs and n
states. In general the optimal model exists and is unique, but existence and uniqueness
may fail to hold true in exceptional cases. For algorithmic details we refer to [21]
and [20], where a Gauss–Newton algorithm for the involved projections is described.
If B is the optimal system, then PBW is called the optimal l2-approximation of W .

THEOREM 3.4. Let w = Tε be a given process with spectrum Σ = TT ∗. For
given complexity (m,n), a factor model with optimal mean squares fit is given by
w = ŵ+ w̃, where ŵ = T̂ ε and w̃ = (T − T̂ )ε. Here T̂ is the optimal l2-approximation
of complexity (m,n) for the spectral factor T . This model is observable but in general
not orthogonal.

Proof. According to Theorem 3.1, it is no restriction of generality if we consider
only observable models. So let ŵ(t) = [Gt(σ, σ−1)ε](t); then assumption A1 of joint
stationarity of w and ŵ implies that Gt is time invariant, say Gt = G. This means
that we can write ŵ = F (σ)w = G(σ)ε for some transfer function G(σ) = F (σ)T (σ).
As ε has full rank, it follows that the latent process has complexity (m,n), that is,
R ŵ = 0 for a polynomial matrix R representing a system B with complexity (m,n)
if and only if RG = 0; that is, all columns of G should belong to the system B. The
noise w̃ = (T −G)ε has spectrum (T −G)(T −G)∗ and mean squares norm ‖ w̃ ‖22 =
1

2π

∫ π
−π trace{(T −G)(T −G)∗(e−iλ)}dλ. But this is precisely equal to ‖T −G‖22, the

l2-distance between T and G. So this minimization problem is the l2- approximation
problem for T where each of the q columns of G should belong to the same system of
complexity (m,n). The optimal choice over this class is by definition given by T̂ .

It can be shown that the factor filter T̂ and the noise filter T̃ := T − T̂ satisfy
T̂
∗
T̃ = 0, but in general Σc = T̂ T̃

∗ 6= 0 so that the processes ŵ and w̃ are not
orthogonal.
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Next we characterize optimal models under the condition of orthogonality. In
order to simplify the analysis, we restrict our attention to observed processes with
rational spectrum Σ and use the alternative definition of complexity in terms of the
effective noise space; see Definition 2.7.

THEOREM 3.5. Let w = Tε be a given process with spectrum Σ = TT ∗. For
given noise complexity (m,n), an orthogonal factor model with optimal mean squares
fit is given by w = ŵ+ w̃, where ŵ = Sε and w̃ = (T − S)ε. Here S∗ is the optimal
l2-approximation of complexity (m,n) for the adjoint T ∗ of the spectral factor T .

Proof. Within this setting a latent process is given by ŵ = TFε where the
factor noise space N = im(F ) has complexity (m,n). The noise is then given by
w̃ = T (I − F )ε, and the orthogonality condition is equivalent to requiring TF (I −
F )∗T ∗ = 0. As T has full rank everywhere, it follows that F = F ∗ = F 2 is a
projection, namely the orthogonal projection onto the system N . The noise has
norm ‖ w̃ ‖22 = 1

2π

∫ π
−π trace{T (I − F )T ∗(e−iλ)}dλ. This is equal to ‖(I − F )T ∗‖22 =

‖T ∗ − S∗‖22, where each column of S∗ is the optimal l2-approximation within the
system N of the corresponding column of T ∗, as F is the projection onto this system.
The optimal choice of the model, that is, of F or equivalently of N of complexity
(m,n), is precisely the optimal l2-approximation problem of T ∗.

3.3. Illustrations.

3.3.1. The static case. The foregoing results can easily be applied to the case
of static factor models. Let w be a white noise process, so that the spectrum Σ is
a constant function, the covariance matrix of the process. The principal component
model is then obtained by the eigenvalue decomposition of the matrix Σ. The optimal
latent process with m factors is given by the projection of the observations onto the
space spanned by the eigenvectors corresponding to the m leading eigenvalues of Σ.
Therefore, in the optimal factor model, both the latent process and the noise are
white noise processes. It follows from Theorem 3.2(i) that the principal component
model is Pareto optimal among all models of complexity (m,n) for all n ≥ 0. That
is, no gain of fit is possible by allowing for dynamic equations.

For the static case, the result in Proposition 3.3 has also been pointed out in [15]
and [16]. In the ordinary least squares scheme the indeterminateness of optimal
models is resolved by the assumption that certain variables are noise free, i.e., that
a principal submatrix of the noise covariance Σ̃ is zero. In terms of the weighting
matrix Q this means that certain noise directions are assigned an infinite weight. In
our approach, however, we treat all variables in a symmetric way.

3.3.2. Dynamic system example. Next we consider the dynamic errors-in-
variables system described in section 2.4.2, and we use the notation introduced there.
So let the spectrum Σ be given, and assume that the complexity (m,n) has been
specified with m = 1 and n ≥ d. The principal component decomposition for fixed
frequency is easily obtained, with eigenvalues λ1 = 2 + gg∗ and λ2 = 1 and the
eigenvector corresponding to λ2 given by (−g, 1)∗. We denote the corresponding
latent process by ŵ∗ = (û∗, ŷ∗) and the noise process by w̃∗. This shows that the
principal component model has a behavior that is finite dimensional, and this model
is Pareto optimal among all models of complexity (1, n) with n ≥ d. The underlying
transfer function g has been identified, because ŷ∗ = g û∗.

Although the underlying behavior has been identified, this is not the case for the
true latent process and noise process. This can be seen from the spectral properties of
the noise processes. The noise that affects the data has spectrum I2 of rank 2, whereas
the noise w̃∗ has a spectrum of only rank 1. Further, the factor model w = ŵ+ w̃ has
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a mean squares error ‖ w̃ ‖2 =
√

2, whereas the principal component model has error
‖ w̃∗ ‖2 = 1. We remark that both models are in fact optimal for the uniform norm.

This shows that in this case the Pareto optimal model indeed identifies the latent
transfer function g from the observed spectrum Σ, at least when the complexity is not
chosen too small. We should remark that this result depends in a crucial way on our
assumptions about the way the data are generated. For example, if the observation
noise w̃ would not be white, then Pareto optimal models will in general not have
transfer function g. In terms of Proposition 3.3 this would require an appropriate
prefiltering of the data. In our example, the required filter Q is the identity, that
is, our data generating process is such that the unweighted norm is appropriate to
identify the underlying transfer function. For practical applications this means that,
in order to find good approximations of the underlying system, one should incorporate
available information on the noise properties.

4. Consistency.

4.1. System topology. We introduce the topologies on linear systems and spec-
tra that we will use in our analysis of continuity properties of factor models. For linear
systems the gap metric is defined in terms of the projections described at the end of
section 2.1.

DEFINITION 4.1. Let B1,B2 be linear systems with isometric image representa-
tions Ĝ1 and Ĝ2, respectively; then the gap between these systems is defined by

d(B1,B2) = ‖ Ĝ1 Ĝ
∗
1− Ĝ2 Ĝ

∗
2 ‖∞.(16)

This is analogous to the usual definition of the gap between two closed linear
subspaces of a Hilbert space as ‖P1 − P2‖, where P1 and P2 are the orthogonal
projection operators onto the two spaces. Here Ĝi Ĝ

∗
i is the orthogonal projection

onto the set of square summable time series in the behavior Bi, i = 1, 2.
PROPOSITION 4.2.
(i) The gap d is a metric on the class of controllable linear systems.

(ii) In terms of system restrictions, if G̃i denotes an isometric kernel representa-
tion of Bi, i = 1, 2, then d(B1,B2) = ‖ G̃1 G̃

∗
1− G̃2 G̃

∗
2 ‖∞.

(iii) If two systems have a different number of inputs, then their gap equals one.
Proof. (i) This holds true for so-called l2 systems, and this implies the same result

for controllable systems since these are in one-to-one correspondence with l2 systems.
See Corollaries 3-4 and 5-3 of Chapter 4 in [14].

(ii) This follows from the fact that [Ĝ, G̃] is inner, so that Ĝ Ĝ
∗

+ G̃ G̃
∗

= I.
(iii) See Proposition 5-5 of Chapter 4 in [14].
In the following, we denote by B(m,n) the set of all controllable linear systems

with m inputs and n states, by B(m,n) :=
⋃n
k=1 B(m, k) the set of all controllable

linear systems with m inputs and at most n states, and by B :=
⋃q
m=0

⋃∞
n=0 B(m,n)

the set of all controllable linear systems.
PROPOSITION 4.3.
(i) For n > 0 the set B(m,n) is neither open nor closed in B.
(ii) The set B(m,n) is the closure of B(m,n) in B.
(iii) The sets B and B(m,n), for n > 0, are not compact.
Proof. (i) For n = 0 the only controllable systems are described by the isometric

state parameters (A,B,C,D) = (−,−,−, D) with corresponding static projection
operator DD′. It follows that B(m, 0) is a compact set, and this will be described in
more detail in section 4.4. We will now consider the case n > 0.
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In order to show that B(m,n) is not open it suffices to construct a sequence of sys-
tems Bk ∈ B(m,n+ 1) with d(Bk,B0)→ 0 where B0 ∈ B(m,n). Let (A0, B0, C0, D0)
be a minimal isometric state representation of B0 and let a ∈ R, b ∈ R1×m, and
c ∈ Rq×1 be such that A = ( A0 0

0 a ), B = ( B0
b ), Ck = (C0, εkc) is an ob-

servable and controllable quadruple for all εk > 0. The system B0 has transfer
function Ĝ0 = D0 + C0(zI − A0)−1B0, and let the system Bk be defined by the
transfer function Ĝk = D0 + Ck(zI − A)−1B = Ĝ0 +εk(z − a)−1cb with εk → 0 for
k → ∞. Then Bk ∈ B(m,n + 1) and clearly ‖Gk − G0‖∞ → 0 and d(Bk,B0) =
‖ Ĝk(Ĝ

∗
k Ĝk)−1 Ĝ

∗
k − Ĝ0 Ĝ

∗
0 ‖∞ → 0 for k →∞.

That B(m,n) is not closed follows in a similar way, by constructing a sequence
in B(m,n) that converges to a system in B(m,n− 1).

(ii) Let cl B(m,n) denote the closure of B(m,n). Systems with m′ 6= m do not
belong to this closure, since such systems have gap one with respect to all systems in
B(m,n); see Proposition 4.2(iii). Systems with m inputs and less than n states can
be obtained as the limit of sequences of systems in B(m,n), by similar constructions
as in the proof of (i). It remains to prove that systems in B(m,n′) with n′ > n
do not belong to cl B(m,n). Let B ∈ B(m,n′) with n′ > n have isometric image
representation Ĝ; then the projection operator P = Ĝ Ĝ

∗
is a rational function with

rank m and McMillan degree 2n′. As projection operators corresponding to systems
in B(m,n) have rank m and McMillan degree 2n, it follows that such operators can
not converge to P , so that B does not belong to cl B(m,n).

(iii) As B is a metric space, it suffices to prove that there exists a sequence
of systems Bk ∈ B(m,n) which has no convergent subsequence in the set B of all
controllable linear systems. Consider the case q = 2,m = 1, n = 1 and the systems
described by the isometric state parameters ( a βδC′D

γC δD ), where 0 < a < 1 is a real
number, C and D are 2×1 vectors of unit length, and β, γ, δ are real numbers to obtain
an isometric matrix; that is, γ =

√
1− a2, β = −γ/a, and δ = {1 + β2(C ′D)2}−1/2.

To guarantee minimality it is further assumed that C ′D 6= 0. The corresponding
isometric image representations are given by Ĝ(z) = δD+ βγδ(C ′D)C(z − a)−1, and
the projection operators by P = Ĝ Ĝ

∗
. If a ↑ 1 then γ → 0, β → 0, and δ → 1, so that

the pointwise limit of Ĝ(z) is D for z 6= 1 and Ĝ(1) converges to D−2(C′D)C. If the
corresponding sequence of systems would have a limiting point, say with projection
operator P0, then it should hold that ‖P0−P‖∞ → 0 for a ↑ 1. As P0(z) is continuous
on the unit circle the only candidate for P0 is given by DD′, but as P (z) is also
continuous and P (1) 6→ DD′ for a ↑ 1, it follows that no subsequence can converge to
a system in B.

In our analysis, not only the distance between two systems but also the distance
between two sets of systems is of relevance. If B1 and B2 are two compact subsets of
B, then the Hausdorff distance between these sets is defined as

dH(B1,B2) := max{ρ(B1,B2), ρ(B2,B1)},(17)

where ρ(B1,B2) := supB1∈B1
infB2∈B2

d(B1,B2).
In order to investigate continuity properties we also need a topology on the set of

spectral densities. We use the metric defined by

d(Σ1,Σ2) = ‖Σ1−Σ2 ‖∞ := sup
λ∈[−π,π]

λmax{Σ1(e−iλ)− Σ2(e−iλ)}.(18)

Under assumption A4 the spectra are bounded on the unit circle, so that this is a
well-defined metric.



1942 C. HEIJ, W. SCHERRER, AND M. DEISTLER

4.2. Continuity. We consider the relation between observed spectra and identi-
fied factor behaviors. For given spectrum Σ, complexity (m,n), and noise bound δ, we
denote by B(Σ; δ,m, n) ⊆ B(m,n) the set of all behaviors of factor models w = ŵ+ w̃
satisfying the conditions that the factor behavior has m inputs and n states and that
the noise process has norm ‖ w̃ ‖ ≤ δ. So this corresponds to the factor scheme with
bounded noise. The set B(Σ; δ,m, n) depends of course on the measure of fit and on
the possible condition of orthogonality. As the results in this section hold true for all
the four corresponding factor schemes, we will make no explicit distinction between
them. Systems in B(Σ; δ,m, n) are called feasible for the data Σ and the specified
complexity and fit. The feasibility of a given behavior can be checked by means of
the results in Theorem 3.1.

PROPOSITION 4.4.
(i) The set of feasible systems B(Σ; δ,m, n) depends on whether orthogonality is

imposed or not, but it does not depend on whether observability is imposed or
not.

(ii) The set B(Σ; δ,m, n) is closed in B(m,n) but in general not in B.
(iii) If B ∈ B(Σ; δ,m, n) has fit strictly better than δ, then it is an inner point of

B(Σ; δ,m, n).
Proof. (i) This follows from Theorem 3.1.
(ii) The set B(Σ; δ,m, n) is closed in B(m,n) by Proposition 6.3 in the appendix,

but not in B, as follows from Proposition 4.3(i).
(iii) This is immediate from Proposition 6.3.
In order to use the Hausdorff metric (17) we next formulate a sufficient condition

for compactness. We call a state dimension n minimal for given (Σ, δ,m) if there
exists a feasible model of complexity (m,n) but not one of complexity (m,n′) with
n′ < n, that is, if B(Σ; δ,m, n) 6= ∅ and B(Σ; δ,m, n′) = ∅ for all n′ < n. If we
are only interested in Pareto optimal models, then this minimality condition can be
imposed without loss of generality.

PROPOSITION 4.5. If n is minimal for (Σ, δ,m), then the set of feasible systems
B(Σ; δ,m, n) is compact.

Proof. We prove this in terms of isometric state space representations. For this
purpose we first describe this parametrization in some more detail. By definition,
systems in B(m,n) are controllable and so can be represented by an isometric state
model that satisfies (5). Let Π(m,n) ⊂ R(n+q)×(n+m) be the set of all such minimal
isometric system matrices and let Π =

⋃q
m=0

⋃∞
n=1 Π(m,n). On this set we define the

metric d(π1, π2) = ‖π1 − π2‖∞ if (m1, n1) = (m2, n2) and d(π1, π2) = 3 otherwise.
It is easily verified that this is a metric on Π and that Π(m,n) is open in Π. That
the parametrization of B by Π is continuous can be seen as follows. Let πk → π0;
then for k sufficiently large there holds (mk, nk) = (m0, n0). As π0 is a minimal
isometric representation, it follows that A0A

′
0 + C0C

′
0 = I with (A0, C0) observable,

so that A0 has all its eigenvalues strictly within the unit circle. Then the mapping
from (A,B,C,D) to the isometric image representation Ĝ = D + C(zI − A)−1B is
continuous in π0, and so d(Bk,B0) = ‖ Ĝk Ĝ

∗
k − Ĝ0 Ĝ

∗
0 ‖ → 0 for k →∞.

Because the parametrization is continuous, in order to prove that B(Σ; δ,m, n) is
a compact subset of B it suffices to prove that the corresponding set of parameters
denoted by Π0 ⊂ Π is compact. As Π(m,n) ⊂ Π is open, it suffices to prove that Π0
is a compact subset of Π(m,n), or also that it is a closed and bounded subset of the
Euclidean space R(n+q)×(n+m). Because of the isometry condition, boundedness is
evident, so it remains to prove the closedness of Π0. We prove this by contradiction.
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Suppose that there is a sequence of systems Bk ∈ B(Σ; δ,m, n) with minimal
isometric representations (Ak, Bk, Ck, Dk) → (A0, B0, C0, D0) so that the system B0
corresponding to these limit parameters does not belong to B(Σ; δ,m, n). Then A0 has
eigenvalues on the unit circle. Indeed, if this were not the case, then the parametriza-
tion would be continuous in (A0, B0, C0, D0) and hence, by Proposition 6.3, it would
follow that d(Σ,B0) = lim d(Σ,Bk) ≤ δ. As B0 has m inputs and n is assumed to
be minimal for (Σ, δ,m), it would follow that B0 ∈ B(Σ; δ,m, n), contradicting our
assumption. Now, state directions corresponding to eigenvectors of unit eigenval-
ues of A0 are not observable because of the isometry condition A′0A0 + C ′0C0 = I.
So the state space for B0 can be reduced by deleting such unobservable directions.
Let (A,B,C,D0) be the restriction of (A0, B0, C0, D0) to the observable subspace,
so that A has all its eigenvalues strictly within the unit circle. Because the two
representations describe the same system B0 with the same driving variables, it fol-
lows that G0(z) := D0 + C(zI − A)−1B = D0 + C0(zI − A0)−1B0 pointwise on the
unit circle, with the exception of the eigenvalues {e−iλj ; j = 1, . . . , r} of A0. More-
over, as G0 is the pointwise limit of Gk = Dk + Ck(zI − Ak)−1Bk it follows that
G0 is an isometric image representation of B0, with m inputs and at most n − r
states.

We consider first the factor scheme without orthogonality and with the uniform
norm. Using the notation (14), we obtain from Theorem 3.1(i) that the fit of the
system in this case is given by d(Σ,B0) = ‖ Σ̃1/2

0 ‖∞, where Σ̃0 = (I − G0G
∗
0) Σ(I −

G0G
∗
0). As n is minimal for (Σ, δ,m) and B0 has less than n states, it follows that

supλ∈[−π,π] λmax{Σ̃0(e−iλ)} > δ2. Because of the continuity of G0(z) and Σ(z) on
the unit circle, there exists an ε > 0 so that also supλ∈Λ λmax{Σ̃0(e−iλ)} > δ2 where
Λ = {λ ∈ [−π, π]; |λ − λj | ≥ ε for all j = 1, . . . , r}. As Gk converges pointwise
to G0 on the compact set Λ this implies that for k sufficiently large {d(Σ,Bk)}2 ≥
supλ∈Λ λmax{(I−GkG∗k) Σ(I−GkG∗k)(e−iλ)} > δ2, but this contradicts the statement
that Bk ∈ B(Σ; δ,m, n). This proves compactness for the factor scheme without
orthogonality and with the uniform norm.

The result for the orthogonal factor scheme with uniform norm follows in a sim-
ilar way by using Theorem 3.1(ii). For the mean squares norm the reasoning is
similar. Under the previous assumptions, there would exist an ε > 0 such that
1

2π

∫
Λ trace{Σ̃0(e−iλ)}dλ > δ2, and as Gk converges uniformly to G0 on the compact

set Λ, this gives a contradiction as before.
The set of feasible systems does not in general depend in a fully continuous

way on the observed spectrum. Therefore, we use the weaker concept of upper
semicontinuity. We call the set of feasible systems B(Σ; δ,m, n) upper semicon-
tinuous in (Σ, δ) if for all (Σk, δk) → (Σ, δ) and for Bk ∈ B(Σk; δk,m, n) with
Bk → B0 it holds that B0 ∈ B(Σ; δ,m, n). As the sets of feasible systems are in
general not compact, upper semicontinuity is not equivalent to the condition that
ρ(Bk,B0) = supBk∈Bk infB0∈B0

d(Bk,B0) → 0, where Bk := B(Σk; δk,m, n) and
B0 := B(Σ; δ,m, n). The following continuity results for feasible systems are valid
for all factor schemes, that is, for the mean squares and uniform fit and for the cases
with and without orthogonality constraint. We use the notation B(Σ; δ,m, n) for the
set of all feasible systems for (Σ, δ) with m inputs and at most n states.

PROPOSITION 4.6.
(i) The set B(Σ; δ,m, n) is upper semicontinuous in (Σ, δ).
(ii) If n is minimal for (Σ, δ,m), then B(Σ; δ,m, n) is upper semicontinuous in

(Σ, δ).
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(iii) Let n be minimal for (Σ; δ+η,m, n) for some η > 0 and let B(Σ; δ,m, n) be
nonempty; then ρ(B(Σk; δk,m, n),B(Σ; δ,m, n))→ 0 if (Σk, δk)→ (Σ, δ).

(iv) Under the conditions in (iii), B(Σ; δ,m, n) is continuous from the right in δ.
Proof. (i) Let (Σk, δk)→ (Σ, δ) and Bk ∈ B(Σk; δk,m, n) with Bk → B; then we

have to prove that B ∈ B(Σ; δ,m, n). That B hasm inputs and at most n states follows
from the fact that B(m,n) is closed; see Proposition 4.3(ii). Further, Proposition 6.3
in the appendix implies that d(Σk,Bk) → d(Σ,B), and this implies that d(Σ,B) ≤ δ
so that B ∈ B(Σ; δ,m, n).

(ii) This corresponds to the situation in (i), where now Bk all have complexity
(m,n). If Bk → B then B ∈ B(m,n) and d(Σ,B) ≤ δ. As n is minimal for (Σ, δ,m),
it follows that B ∈ B(m,n), so that B ∈ B(Σ; δ,m, n).

(iii) In a first step we prove that n is minimal for (Σk, δ+η,m) for all k large
enough. If this is not true, then there exist n′ < n and infinitely many indices k,
so that B(Σk; δ+η,m, n′) is not empty. For such indices let Bk ∈ B(Σk; δ+η,m, n′)
have minimal isometric representation (Ak, Bk, Ck, Dk); then the isometry condition
implies that this sequence has a limit point, denoted by (A0, B0, C0, D0). Let B0 be
the behavior corresponding to these parameters; then B0 ∈ B(m,n′′) with n′′ ≤ n′.
As in the proof of Proposition 4.5, the isometric kernel representations G̃k converge
pointwise on the unit circle to the kernel representation G̃0 of B0, except for a fi-
nite number of points. This implies that d(Σ0,B0) ≤ δ+η, which contradicts the
minimality of n for (Σ, δ+η,m). So n is minimal for (Σk, δ+η,m) and therefore
B(Σk; δk,m, n) is compact for k sufficiently large.

Now suppose that there exists an ε > 0 and a sequence of systems Bk ∈ B(Σk; δk,
m,n) so that d(Bk,B) ≥ ε for all B ∈ B(Σ; δ,m, n). As d(Σk,Bk) ≤ δk and (Σk, δk)→
(Σ, δ), it follows from Proposition 6.3 in the appendix that for k sufficiently large, Bk ∈
B(Σ; δ+η,m, n). As n is minimal for (Σ, δ+η,m), this is according to Proposition 4.5
a compact set, so the sequence Bk contains a limit point, that we denote by B0 ∈
B(Σ; δ+η,m, n). It follows from Proposition 6.3 that d(Σ,B0) ≤ δ and thus B0 ∈
B(Σ; δ,m, n). From the assumption that d(Bk,B) ≥ ε for all B ∈ B(Σ; δ,m, n) this
implies that d(Bk,B0) ≥ ε, but this contradicts the fact that B0 is a limit point of
the sequence Bk.

(iv) Let δk ↓ δ; then, according to Proposition 4.5, the sets B(Σ; δk,m, n) are
compact for k sufficiently large. It follows from the result in (iii) that there holds
ρ(B(Σ; δk,m, n),B(Σ; δ,m, n))→ 0, and as B(Σ; δ,m, n) ⊆ B(Σ; δk,m, n) it is trivial
that ρ(B(Σ; δ,m, n),B(Σ; δk,m, n)) = 0. This proves convergence in the Hausdorff
metric.

It is also of interest to consider the continuity of Pareto optimal models. Continu-
ity in this respect is connected with robustness in the sense that small perturbations
in the data should lead to a small perturbation of optimal models. We analyze this
for models that optimize the fit under a complexity constraint. For given spectrum Σ
we denote by B∗(Σ;m,n) the set of behaviors of optimally fitting factor models with
m inputs and n states, and by B

∗
(Σ;m,n) the set of optimally fitting behaviors with

m inputs and at most n states.
PROPOSITION 4.7.
(i) The set B

∗
(Σ;m,n) is upper semicontinuous in the spectrum Σ.

(ii) Let δ∗ be the optimal fit in B(m,n) and let n be minimal for (Σ, δ∗+η,m)
for some η > 0; then ρ(B∗(Σk;m,n),B∗(Σ;m,n))→ 0 for Σk → Σ.

Proof. (i) Let Σk → Σ and let Bk be an optimal behavior in B(m,n) for Σk with
Bk → B for k → ∞; then we have to prove that B is optimal for Σ. As B(m,n)
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is closed, it follows that B ∈ B(m,n), and if this limit system is not optimal, then
there exists a system B0 ∈ B(m,n) so that d(Σ,B0) < d(Σ,B). It then follows from
Proposition 6.3 in the appendix that for k sufficiently large, d(Σk,B0) < d(Σk,Bk),
but this contradicts the optimality of Bk.

(ii) If this is not true, then there exists an ε > 0 and a sequence of systems
Bk ∈ B∗(Σk;m,n) so that for all B ∈ B∗(Σ;m,n) there holds d(Bk,B) ≥ ε. Now let
B ∈ B∗(Σ;m,n), so that d(Σ,B) = δ∗ and d(Σk,B) ≤ δ∗+ηk with ηk ↓ 0 for k →∞.
It then follows that d(Σk,Bk) ≤ δ∗+ηk and hence d(Σ,Bk) ≤ δ∗+η for k sufficiently
large. Because n is minimal for (Σ, δ∗+η,m) it follows that B(Σ; δ∗+η,m, n) is
compact, so that the sequence Bk has a limit point, say B0 ∈ B(m,n). As d(Bk,B) ≥ ε
for all B ∈ B∗(Σ;m,n), the same holds true for B0, but this contradicts the fact that
d(Σ,B0) = lim d(Σk,Bk) = δ∗, so that B0 ∈ B∗(Σ;m,n).

4.3. Consistency. Next we investigate the consistency of dynamic factor mod-
els when the spectrum is estimated from observed data. In applications the spectrum
of the observed process will in general be unknown. Suppose that, apart from assump-
tions A1–A4, the available information on the process consists of an observed time
series of length T . Let ΣT denote an estimator of the process spectrum Σ that is based
on this time series. In order to simplify the analysis we assume that the estimator is
strongly consistent, so that d(Σ,ΣT )→ 0 almost surely for T →∞. A strongly consis-
tent estimator can be obtained, for example, as follows. Let the observed process have
spectrum Σ(z) =

∑∞
k=−∞R(k)z−k, where R(k) := E{w(t)w′(t − k)} are the process

covariances, and let R̂T (k) = 1
T

∑T
t=k+1 w(t)w′(t− k) be the sample covariances.

PROPOSITION 4.8. Under weak conditions on the data generating process, a
strongly consistent estimator of Σ is given by ΣT (z) =

∑
|k|≤kT R̂T (k)z−k, where

kT = log(T ).
Proof. The estimation error is bounded by

‖Σ(z)− ΣT (z)‖∞ ≤ (2kT + 1) sup
|k|≤kT

‖R(k)− R̂T (k)‖+
∑
|k|>kT

‖R(k)‖.

The second term converges to zero by assumption A4, and the first term converges to
zero almost surely under weak conditions. A sufficient condition is that the spectrum
Σ is rational, but the result also holds true for a broad class of nonrational spectra.
For these results we refer to [13, Theorems 5.3.2 and 7.4.3].

In the following, let B0 := B(Σ; δ,m, n) be the class of feasible models and B∗0 ⊂
B(m,n) be the set of optimal models of complexity (m,n), that is, with optimal
fit in this class. By B0 and B

∗
0 we denote the sets of feasible and optimal models,

respectively, with m inputs and at most n states. Further, let BT := B(ΣT ; δ,m, n)
be the set of feasible models and B∗T the set of optimal models of complexity (m,n)
for the estimated spectrum ΣT , and let BT and B

∗
T be the sets of feasible and optimal

models, respectively, with m inputs and at most n states. These are random sets, since
they depend on the observed time series. The next two theorems state consistency
properties for feasible and optimal models, where it is assumed that the estimator ΣT
is strongly consistent.

THEOREM 4.9.
(i) Behaviors with better fit than the noise bound are estimated consistently; that

is, if a factor model has behavior B of complexity (m,n) and fit δ, then for
δ′ > δ, it holds almost surely that B ∈ B(ΣT ; δ′,m, n) for T →∞.

(ii) The sample estimator of the set of feasible behaviors in B(m,n) is upper semi-
consistent, in the sense that {BT ∈ BT ,BT → B0} ⇒ {B0 ∈ B0} holds almost
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surely; that is, the set of data with this convergence property has probability
one.

(iii) If n is minimal for (Σ, δ+η,m) for some η > 0, then the set of feasible sample
behaviors in B(m,n) converges to a subset of the feasible behaviors for the
process, in the sense that ρ(BT ,B0)→ 0 almost surely for T →∞.

Proof. (i) This is evident as ΣT → Σ almost surely and d(Σ,B) is continuous; see
Proposition 6.3 in the appendix.

(ii) This follows from Proposition 4.6(i).
(iii) This follows from Proposition 4.6(iii).
THEOREM 4.10.
(i) The sample estimator of the set of optimal behaviors in B(m,n) is upper

semiconsistent in the sense that {BT ∈ B
∗
T ,BT → B0} ⇒ {B0 ∈ B

∗
0} almost

surely.
(ii) If the process spectrum has a unique optimal factor behavior B∗0 of complexity

(m,n) and if the infimum of the fits of models in B(m,n−1) is strictly larger
than the fit of B∗0, then this behavior is estimated consistently in the sense
that dH(B∗T , {B∗0})→ 0 almost surely for T →∞.

Proof. (i) This follows from Proposition 4.7(i).
(ii) As it is given that B∗0 = {B∗0} is a singleton, it follows that ρ({B∗0},B∗T ) =

infB∈B∗T
d(B∗0,B) ≤ supB∈B∗T

d(B∗0,B) = ρ(B∗T , {B∗0}), so it suffices to prove that
the last expression converges to zero. Let the optimal fit for ΣT among models
of complexity (m,n) be given by δ∗T and let δ∗0 = d(Σ,B∗0); then it follows from
d(ΣT ,B∗0) → δ∗0 that δ∗T → δ∗0 almost surely. Further, because of the assump-
tion that inf{d(Σ,B);B ∈ B(m,n − 1)} > δ∗0, it follows that n is minimal for all
(Σ, δ∗0 +η,m) with η ≥ 0 sufficiently small, and the same then holds true almost
surely for (ΣT , δ∗T +η,m) if T → ∞. Then, for T sufficiently large, B∗T is a closed
subset of the compact set B(ΣT ; δ∗T +η,m, n), so that B∗T is compact. This means
that the Hausdorff distance is well defined. Further, as (ΣT , δ∗T ) → (Σ, δ∗0) almost
surely, it follows from Proposition 4.6(iii) that

ρ(B∗T , {B∗0}) = ρ(B(ΣT ; δ∗T ,m, n),B(Σ; δ∗0,m, n))→ 0 almost surely.

This means that, under the above conditions, the feasible and optimal finite sample
systems are in the limit also feasible and optimal for the data generating process.
However, it is possible that not all feasible and optimal systems are identified in this
way.

4.4. Low noise consistency. We conclude our analysis by considering another
kind of consistency, inspired by the concept of low noise as defined in [15]. This is
based on the idea that an identification method which aspires to deal with noisy data
must, as a minimal requirement, function well when dealing with data having low noise
content. Let the observed process be given by w = ŵ0 + w̃0, where the latent process
ŵ0 is fixed and has behavior B0 of complexity (m0, n0) and where the noise process
w̃0 has norm δ0. Low noise consistency corresponds to the condition that the factor
behavior B0 is identified uniquely if the noise vanishes in the limit. The following result
shows that this holds true, provided that the factor scheme is specified correctly.

PROPOSITION 4.11.
(i) If the factor scheme, noise bound, and complexity have been specified correctly,

then the factor behavior is identified; that is, if δ ≥ δ0, m = m0, and n = n0,
then B0 ∈ B(Σ; δ,m, n). If orthogonality is imposed but the data generating
process does not satisfy this property, then the system need not be identified.
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(ii) Correctly specified factor schemes are low noise consistent; that is, if δ0 ≤ δ ↓
0, then the set of feasible behaviors B(Σ; δ,m, n)→ {B0} (in the sense of the
Hausdorff metric) for (m,n) = (m0, n0), and B(Σ; δ,m, n) → ∅ if m < m0
or m = m0, n < n0. Consistency is generally lost if orthogonality is imposed
but the data generating process does not satisfy this property.

Proof. (i) This is evident from the definition of B(Σ; δ,m, n).
(ii) The process decomposition w = ŵ0 + w̃0 induces a corresponding spectral

decomposition Σ = Σ̂0 + Σ̃0 + Σc + Σc′, where Σ̂0 is the spectrum of the latent process
ŵ0, Σ̃0 is the spectrum of the noise w̃0, and Σc is the cross spectrum between ŵ0 and
w̃0. As the latent process ŵ0 is fixed and the noise converges to zero, it follows that
‖Σ− Σ̂0 ‖∞ = ‖ Σ̃0 + Σc + Σc′ ‖∞ → 0.

First we consider the factor scheme without orthogonality constraint. Then the
misfit function d(Σ̂0,B) is also well defined for the singular spectral density Σ̂0; i.e.,
if P is the projection onto B and Σ̃ = (I−P ) Σ̂0(I−P ), then d(Σ̂0,B) = ‖ Σ̃1/2 ‖ and
B(Σ̂0; δ,m, n) = {B ∈ B(m,n); d(Σ̂0,B) ≤ δ}. It can easily be shown, along the lines
of the proof of Proposition 6.3 in the appendix, that d(Σ,B)→ d(Σ̂0,B∗) if Σ→ Σ̂0
and B → B∗. In addition, it holds that∣∣d2(Σ,B)− d2(Σ̂0,B)

∣∣ ≤ c‖Σ− Σ̂0 ‖∞,

where c = 2 for the uniform norm and c = 2πq for the mean squares norm. The
above result follows from the proof of Lemma 6.2 in the appendix and the inequality
‖(I − P )(Σ− Σ̂0)(I − P )‖∞ ≤ ‖Σ− Σ̂0 ‖∞.

We now first show that for m < m0 or m = m0, n < n0, the infimum of the misfits
d(Σ̂0,B) over the set of behaviors B(m,n) is strictly larger than zero. If this were not
true, then there would exist a sequence of behaviors Bk ∈ B(m,n) with corresponding
projections Pk, such that d(Σ̂0,Bk)→ 0. As in the proof of Proposition 4.5, it follows
that there exists a subsequence k(l) and a behavior B∗ ∈ B(m,n′), n′ ≤ n, with a
corresponding projection P∗, such that Pk(l)(z)→ P∗(z) for l→∞, pointwise on the
unit circle except for a finite number of points. Then d(Σ̂0,Bk) → 0 implies that
d(Σ̂0,B∗) = 0, and this means that B0 ⊆ B∗. This contradicts the assumption that
the complexity (m,n) is smaller than the complexity (m0, n0) of B0. We conclude that
the infimum of misfits of models of complexity m < m0 or m = m0, n < n0 is given
by a strictly positive number δ∗. Since ‖Σ− Σ̂0 ‖∞ converges to zero for δ ↓ 0, there
exists a δ+ > 0 such that c‖Σ− Σ̂0 ‖∞ < δ2

∗ for δ ≤ δ+. By the above considerations
and inequalities, it holds for δ ≤ δ+ that

d2(Σ,B) ≥ d2(Σ̂0,B)− c‖Σ− Σ̂0 ‖∞ > δ2
∗− δ2

∗ = 0.

This shows that B(Σ; δ,m, n) is empty for m < m0 and for m = m0, n < n0 if δ ≤ δ+.
Now suppose that the complexity has been specified correctly. In this case B0 ∈

B(Σ; δ,m0, n0) so that ρ({B0},B(Σ; δ,m0, n0)) = 0. Further, from the foregoing, it
follows that n0 is minimal for (Σ̂0; δ+,m0), as B(Σ̂0; δ+,m0, n) = ∅ for n < n0 and
B(Σ̂0; δ+,m0, n0) is not empty, and also B(Σ̂0; 0,m0, n0) = {B0}. It follows from
Proposition 4.6(iii) that ρ(B(Σ; δ,m0, n0), {B0})→ 0.

Next we consider the factor scheme with orthogonality. By imposing the or-
thogonality constraint the sets B(Σ; δ,m, n) generally become smaller. Since B0 ∈
B(Σ; δ,m0, n0) for δ0 ≤ δ, the above results imply that B(Σ; δ,m, n) → ∅ if the
complexity (m,n) is smaller than (m0, n0) and that B(Σ; δ,m0, n0)→ {B0}.

That consistency is lost if orthogonality is imposed but the data generating process
is not orthogonal is evident from Theorem 3.1(i), because this shows that in this
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case the misfit δ0 can in general not be obtained in the class of orthogonal models
in B(m,n).

4.5. Illustration. We will illustrate the foregoing results for static factor mod-
els, as in this case more explicit characterizations can be obtained. We will not further
discuss the dynamic system example of sections 2.4 and 3.3, as the consistency analysis
for dynamic factor models will be the topic of another paper.

So assume that the observed process w is white noise, and let Σ denote the
covariance matrix of w. As we have seen in section 3.3.1, we can without loss of fit
restrict ourselves to static relations. The set of all static systems B(m, 0) is isomorphic
to the set of all m-dimensional linear subspaces of Rq. Isometric kernel representations
of static systems are isometric matrices G̃ ∈ Rq×m.

It can easily be seen that B ∈ B(Σ; δ,m, 0) if and only if the isometry G̃ satisfies
the following inequalities: for the nonorthogonal factor scheme, trace(G̃

′
Σ G̃) ≤ δ2

for the mean squares norm and G̃
′
(Σ−δ2I) G̃ ≤ 0 for the uniform norm, and for the

orthogonal factor scheme, trace(Σ G̃(G̃
′
Σ G̃)−1 G̃

′
Σ) ≤ δ2 and G̃

′
(Σ2−δ2 Σ) G̃ ≤ 0,

respectively. From this characterization it follows that the sets B(Σ; δ,m, 0) of static
systems are always compact.

Let λ1 > λ2 > · · · > λq > 0 denote the eigenvalues of Σ, and let Σ = Σ̂m + Σ̃m
be the principal component decomposition of Σ with m factors as in (15). The set
B(Σ; δ,m, 0) is nonempty if and only if ‖ Σ̃m ‖ ≤ δ, that is, λ1/2

m+1 ≤ δ for the uniform
norm and (λm+1 + · · ·+λq)1/2 ≤ δ for the mean squares norm. Furthermore, one can
show that the sets B(Σ; δ,m, 0) depend continuously on (Σ, δ) with the exception of
points where ‖ Σ̃m ‖ = δ.

Let ΣT denote a strongly consistent estimator of Σ. If ‖ Σ̃m ‖ < δ then B(ΣT ; δ,m, 0)
is a strongly consistent estimator of B(Σ; δ,m, 0). The principal component model of
ΣT is a strongly consistent estimator of the principal component model of Σ, so that
the Pareto optimal models are estimated consistently.

5. Conclusion. Dynamic factor models decompose an observed process in terms
of an underlying latent component and additional noise. The variables are treated in
a completely symmetric way, and no assumptions on inputs and outputs are required.
The latent process has a singular spectrum as it satisfies deterministic dynamic rela-
tionships. This means that the factor behavior consists of a linear dynamical system.
In particular, the latent process has fewer free variables than the observed process.
Depending on the chosen factor scheme, several interpretations of the noise process
are possible. If the noise can be assumed to be uncorrelated with the latent process,
this is called the orthogonal factor scheme. This is the usual assumption in the clas-
sical models of factor analysis. In other situations it is more natural to consider the
latent process as an approximation of the observed process and to assume that the
factor components are constructed from the observations. This is called the observable
factor scheme.

Within this framework we investigated the representation of dynamic factor mod-
els and defined notions of complexity and goodness of fit. Concerning the identification
of factor models we presented characterizations of Pareto optimal models and we de-
rived results on consistency, both in the case of observed data and in the case of low
noise.

An advantage of our approach is that it deals explicitly with the symmetric mod-
eling of observed data by means of dynamic stochastic models. Other contributions
in symmetric system modeling have been developed in the behavioral identification



SYSTEM IDENTIFICATION BY DYNAMIC FACTOR MODELS 1949

of systems and in the structural analysis of factor models. In a sense, our approach
can be seen as an extension of these two frameworks. It enriches the determinis-
tic behavioral framework with a stochastic analysis, and it extends the traditionally
structure-oriented analysis of factor models to a more empirical modeling setting.

Several questions deserve further investigation. Of special interest is the analysis
of identification procedures within this framework. Another issue is the incorporation
of prior knowledge, for example, concerning the input-output structure of the model.
A further analysis of the probabilistic structure of factor models is needed in order to
develop statistical test procedures, for example, to estimate the complexity of factor
models from observed data.

6. Appendix.
LEMMA 6.1. Let A,B ∈ Cq×q be two positive semidefinite matrices, and let

λ1(A) ≥ · · · ≥ λq(A) ≥ 0 and λ1(B) ≥ · · · ≥ λq(B) ≥ 0 be the eigenvalues of A and
B, respectively. Then

(i) |λi(A)− λi(B)| ≤ ‖A−B‖∞.
(ii) For every unitary matrix U ∈ Cq×m, U∗U = I, there holds

trace(UU∗AUU∗) = trace(UAU∗) ≥ λm+1(A) + · · ·+ λq(A),
λmax(UU∗AUU∗) = λmax(UAU∗) ≥ λm+1(A).

The lower bound is reached if the columns of U form a basis for the eigenspace
of A corresponding to the q −m smallest eigenvalues.

Proof. See [12, Corollary 8.1.3 and Theorem 8.1.2].
LEMMA 6.2. Let Σk be a sequence of spectral densities that converges to Σ0 in the

sense that ‖Σk −Σ0 ‖∞ → 0. Then
(i) ‖Σ1/2

k ‖ → ‖Σ1/2
0 ‖.

(ii) if Σ0 is positive definite, then Σk is positive definite for all k sufficiently large
and ‖Σ−1

k −Σ−1
0 ‖∞ → 0.

Proof. (i) By Lemma 6.1 |λi(Σk(z)) − λi(Σ0(z))| ≤ ‖Σk −Σ0 ‖∞ pointwise on
the unit circle, so that

|‖Σ1/2
k ‖22 − ‖Σ1/2

0 ‖22| = |
∮
|z|=1 trace(Σk(z)− Σ0(z))dz|

≤ 2πq‖Σk −Σ0 ‖∞,
|‖Σ1/2

k ‖2∞ − ‖Σ1/2
0 ‖2∞| = | sup|z|=1 λmax(Σk(z))− sup|z|=1 λmax(Σ0(z))|

≤ 2‖Σk −Σ0 ‖∞.

(ii) By the assumption Σ0 > 0 and the result in Lemma 6.1 for the eigenvalues of
Σk, it follows that ‖Σ−1

0 ‖∞ = 1/{inf |z|=1 λmin(Σ0(z))} and ‖Σ−1
k ‖∞ are bounded.

The result then follows from

‖Σ−1
k −Σ−1

0 ‖∞ = ‖Σ−1
k (Σ0−Σk) Σ−1

0 ‖∞ ≤ ‖Σ−1
k ‖∞‖(Σ0−Σk)‖∞‖Σ−1

0 ‖∞.

PROPOSITION 6.3. The misfit function d(Σ,B) is continuous in (Σ,B) for all
positive definite spectral densities Σ.

Proof. Let Σk → Σ0 > 0 and Bk → B0 be convergent sequences of spectral densi-
ties and behaviors, respectively. The corresponding isometric kernel representations
of Bk, B0 are denoted by G̃k and G̃0, respectively. The optimal noise spectra, given
in Theorem 3.1, corresponding to the spectral densities Σk, Σ0 and the behaviors Bk,
B0 are denoted by Σ̃k and Σ̃0, respectively. By Lemma 6.2 it suffices to show that
‖ Σ̃k − Σ̃0 ‖∞ → 0.
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For the case without orthogonality the noise spectra are given by

Σ̃k = G̃k G̃
∗
k Σk G̃k G̃

∗
k and Σ̃0 = G̃0 G̃

∗
0 Σ0 G̃0 G̃0,

in which case ‖ Σ̃k − Σ̃0 ‖∞ → 0 is evident.
For the case with orthogonality, let Ḡk = G̃k G̃

∗
k G̃0; then ‖Ḡk − G̃0 ‖∞ ≤

‖ G̃k G̃
∗
k − G̃0 G̃

∗
0 ‖∞‖ G̃0 ‖∞ → 0. The noise spectra for this factor scheme are given

by

Σ̃0 = Σ0 G̃0(G̃
∗
0 Σ0 G̃0)−1 G̃

∗
0 Σ0,

Σ̃k = Σk G̃k(G̃
∗
k Σk G̃k)−1 G̃

∗
k Σk = Σk Ḡk(Ḡ∗k Σk Ḡk)−1Ḡ∗k Σk,

where the last equality follows from the fact that G̃
∗
k G̃0 → I, so that this is invertible

for k sufficiently large. The result now follows from Lemma 6.2.
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Abstract. We study the ergodic control problem of switching diffusions representing a typical
hybrid system that arises in numerous applications such as fault-tolerant control systems, flexible
manufacturing systems, etc. Under fairly general conditions, we establish the existence of a stable,
nonrandomized Markov policy which almost surely minimizes the pathwise long-run average cost. We
then study the corresponding Hamilton–Jacobi–Bellman (HJB) equation and establish the existence
of a unique solution in a certain class. Using this, we characterize the optimal policy as a minimizing
selector of the Hamiltonian associated with the HJB equations. As an example we apply the results
to a failure-prone manufacturing system and obtain closed form solutions for the optimal policy.

Key words. switching diffusions, Markov policy, ergodicity, pathwise average cost, Hamilton–
Jacobi–Bellman equations
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1. Introduction. We address the problem of controlling switching diffusions by
continually monitoring the continuous and discrete component of the state. The ob-
jective is to minimize, almost surely (a.s.), the pathwise long-run average (ergodic)
cost over all admissible policies. A controlled switching diffusion is a typical example
of a hybrid system which arises in numerous applications of systems with multiple
modes or failure modes, such as fault-tolerant control systems, multiple target track-
ing, flexible manufacturing systems, etc. [13], [14], [23]. The state of the system at
time t is given by a pair

(
X(t), S(t)

)
∈ Rd × S, S = {1, 2, . . . , N}. The continuous

component X(t) is governed by a “controlled diffusion process” with a drift vector
which depends on the discrete component S(t). Thus, X(t) switches from one diffu-
sion path to another as the discrete component S(t) jumps from one state to another.
On the other hand, the discrete component S(t) is a “controlled Markov chain” with
a transition matrix depending on the continuous component. The evolution of the
process

(
X(t), S(t)

)
is governed by the following equations:

dX(t) = b
(
X(t), S(t), u(t)

)
dt+ σ

(
X(t), S(t)

)
dW (t),(1.1)

P
(
S(t+ δt) = j

∣∣ S(t) = i,X(s), S(s), s ≤ t
)

= λij
(
X(t), u(t)

)
δt+ o(δt), i 6= j,

(1.2)

for t ≥ 0, X(0) = X0, S(0) = S0, where b, σ, λ are suitable functions, λij ≥ 0 for i 6= j,∑N
j=1 λij = 0, W (·) is a standard Brownian motion, and u(·) is a nonanticipative
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control process (admissible policy). The latter is called a Markov policy if u(t) =
v
(
X(t), S(t)

)
for a suitable function v. Our goal is to minimize a.s. over all admissible

policies the functional

lim sup
T→∞

1
T

∫ T

0
c
(
X(t), S(t), u(t)

)
dt ,(1.3)

where c is the running-cost function. Note that in (1.3) there is no expectation; we
are minimizing the limiting pathwise average cost. Such a criterion is very important
in practical applications since we often deal with a single realization. Under certain
conditions, we show that there exists a Markov policy v∗ and constant ρ∗ such that

lim
T→∞

1
T

∫ T

0
c
(
X(t), S(t), v∗(X(t), S(t))

)
dt = ρ∗ a.s.,

and for any other admissible policy v(·)

lim inf
T→∞

1
T

∫ T

0
c
(
X(t), S(t), v(t)

)
dt ≥ ρ∗ a.s.

This establishes that v∗ is optimal in a much stronger sense; viz., the most “pes-
simistic” average cost under v∗ is no worse than the most “optimistic” average cost
under any other admissible policy. Also, under the conditions assumed in this paper,
the optimal pathwise average cost coincides with the optimal expected average cost.
So we do not distinguish between these two criteria.

Our paper is organized as follows. In section 2 we present and analyze a moti-
vating example, while in section 3 we introduce a concise mathematical model of the
switching diffusion. Section 4 is devoted to the study of recurrence and ergodicity of
switching diffusions. The existence of an optimal policy is established in section 5.
The HJB equations are studied in section 6. Conclusions are in section 7.

2. A motivating example. The failure-prone manufacturing system presented
in [1], [5], [14] is a very good example of the class of systems studied in this paper.
This section is devoted to the analysis of this manufacturing model. Results from
subsequent sections will be used in this example and thus the reader will have the
opportunity to glimpse some of the key developments of the paper.

Suppose that there is one machine producing a single commodity. We assume
that the demand rate is a constant d > 0. Let the machine state S(t) take values in
{0, 1}, S(t) = 0 or 1, according as the machine is down or functional. We model S(t)
as a continuous time Markov chain with generator[

−λ0 λ0
λ1 −λ1

]
,

where λ0 and λ1 are positive constants corresponding to the infinitesimal rates of
repair and failure, respectively. The inventory X(t) is governed by the Ito equation

dX(t) =
(
u(t)− d

)
dt+ σdW (t) ,(2.1)

where σ > 0, u(t) is the production rate, and W (t) is a one-dimensional Wiener
process independent of S(t). The last term in (2.1) can be interpreted as “sales
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return,” “inventory spoilage,” “sudden demand fluctuations,” etc. A negative value
of X(t) represents backlogged demand. The production rate is constrained by

u(t) ∈
{
{0} if S(t) = 0,
[0, r] if S(t) = 1.

Let c : R → R+ be the cost function which is assumed to be convex and Lipschitz.
Also, c(x) ≥ g(|x|) for some increasing function g : R+ → R+. Thus, c satisfies (5.3),
a required condition for the validity of our results. We show later in this section that
a certain hedging-point policy is stable. Therefore, by the results of section 5, there
exists an a.s. optimal nonrandomized Markov policy with respect to the cost criterion

lim sup
T→∞

1
T

∫ T

0
c(X(t))dt .

The HJB equations in this case are

(2.2)

 σ2

2 V
′′(x, 0)− dV ′(x, 0)

σ2

2 V
′′(x, 1) + min

u∈[0,r]

{
(u− d)V ′(x, 1)

} +
[
−λ0 λ0
λ1 −λ1

](
V (x, 0)
V (x, 1)

)

+
(

1
1

)
c(x) =

(
1
1

)
ρ .

The results of section 6 ensure existence of a C2 solution (V, ρ∗) of (2.2), where ρ∗ is
the optimal cost. Using the convexity of c(·), it can be shown that V (·, i) is convex
for each i. Hence, there exists an x∗ such that

V ′(x, 1) ≤ 0 for x ≤ x∗,
V ′(x, 1) ≥ 0 for x ≥ x∗.(2.3)

It follows from (2.3) that the value of u which minimizes (u− d)V ′(x, 1) is

u =

{
r if x < x∗,

0 if x > x∗.

Since V ′(x∗, 1) = 0, any u ∈ [0, r] minimizes (u − d)V ′(x∗, 1). Therefore, in view of
Theorem 6.2, the action u ∈ [0, r] can be chosen arbitrarily at x = x∗. To be specific,
we let u(x∗) = d, i.e., we produce at the level that meets the demand exactly. Thus,
the following stable, nonrandomized Markov policy is optimal:

v∗(x, 0) = 0, v∗(x, 1) =


r if x < x∗,

d if x = x∗,

0 if x > x∗.

(2.4)

Note that the stability of the policy (2.4) follows from Theorem 6.3 provided that the
set of stable, nonrandomized Markov policies is nonempty. We show next that the
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zero-inventory policy v given by

v(x, 0) = 0, v(x, 1) =

{
r if x ≤ 0,
0 if x > 0

(2.5)

is stable if and only if

(r − d)
λ1

>
d

λ0
.(2.6)

The condition (2.6) is in accord with intuition. Note that λ−1
0 and λ−1

1 are the
mean sojourn times of the chain in states 0 and 1, respectively. In state 0 the mean
inventory depletes at a rate d while in state 1 it builds up at a rate (r−d). Thus, if (2.6)
is satisfied, one would expect the zero-inventory policy to stabilize the system. Our
analysis confirms this intuition. We first show that under v the process

(
X(·), S(·)

)
has an invariant probability measure ηv with a strictly positive density. In view of
Lemma 4.1, it then follows from the ergodic theory of Markov processes [25, Chap. 1]
that

(
X(·), S(·)

)
is positive recurrent, or equivalently that v is stable.

By Lemma 5.2, the density ϕ of the invariant probability measure ηv can be
obtained by solving the adjoint system

(Lv)∗ϕ(x, i) = 0 ,(2.7)

subject to

ϕ(x, i) > 0,
∑

i∈{0,1}

∫
R
ϕ(x, i) dx = 1 ,(2.8)

where Lv is the differential generator defined in (3.6)–(3.8). Define

λ̃0 :=
2λ0

σ2 , λ̃1 :=
2λ1

σ2 , d̃ :=
2d
σ2 , and r̃ :=

2r
σ2 .

Then (2.7) is equivalent to

ϕ′′(x, 0) + d̃ϕ′(x, 0)− λ̃0ϕ(x, 0) + λ̃1ϕ(x, 1) = 0
for x > 0,(2.9a)

ϕ′′(x, 1) + d̃ϕ′(x, 1)− λ̃1ϕ(x, 1) + λ̃0ϕ(x, 0) = 0

ϕ′′(x, 0) + d̃ϕ′(x, 0)− λ̃0ϕ(x, 0) + λ̃1ϕ(x, 1) = 0
for x < 0.(2.9b)

ϕ′′(x, 1)− (r̃ − d̃)ϕ′(x, 1)− λ̃1ϕ(x, 1) + λ̃0ϕ(x, 0) = 0

A solution of (2.9), subject to the constraint (2.8), exists if and only if (2.6) holds
and takes the form

ϕ(x) =
(
ϕ(x, 0)
ϕ(x, 1)

)
=

a1

(
λ̃1

λ̃0

)
e−s1x + a2

(
−λ̃1

λ̃1

)
e−s2x for x ≥ 0,

a3

(
λ̃1

−ψ(s3)

)
es3x + a4

(
−λ̃1
ψ(s4)

)
es4x for x < 0,

(2.10)
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where ψ(s) = s2 + d̃s− λ̃0, s1 = d̃, s2 = d̃
2 + 1

2

[
d̃2 + 4(λ̃0 + λ̃1)

]1/2, and s3, s4 are the
positive roots of the polynomial

s3 − (r̃ − 2d̃)s2 −
[
(r̃ − d̃)d̃+ λ̃0 + λ̃1

]
s+

[
(r̃ − d̃)λ̃0 − d̃λ̃1)

]
,

ordered by 0 < s3 < s4. Also, the coefficients {a1, a2, a3, a4} are given by

a1 =
1
∆

{ (s4 − s3)s2

λ̃0 + λ̃1
+
s4 + s2

s3 + d̃
− s3 + s2

s4 + d̃

}
,

a2 =
1
∆

(s4 − s3)s2

λ̃0 + λ̃1
,

a3 =
1
∆
s4 + s2

s3 + d̃
,

a4 =
1
∆
s3 + s2

s4 + d̃
,

∆ =
(s4 − s3)(s2 − d̃)

d̃
+
λ̃0 + λ̃1

d̃

{s4 + s2

s3
− s3 + s2

s4

}
.

(2.11)

Note that if ϕx∗(·) denotes the density of the invariant measure corresponding to a
hedging-point policy as in (2.4), then

ϕx∗(x) = ϕ(x− x∗) .

Given a convex cost function, the average cost ρ(x∗) corresponding to such a policy
can be readily computed and is a convex function of the threshold value x∗.

In [5], Bielecki and Kumar have studied the mean square stability of the piecewise
deterministic system, i.e., (2.1) with σ = 0. They have shown that under (2.6) the
policy (2.5) is mean square stable, and have computed the optimal threshold value x∗

in (2.4). These results can be easily reproduced here by computing the limiting value
of the invariant distribution as σ → 0, which we do next. The roots s2, s3, and s4
have the following asymptotic dependence on σ:

s2 =
2d
σ2 +O(1), s3 =

(r − d)λ0 − dλ1

d(r − d)
+O(σ2), s4 =

2(r − d)
σ2 +O(1) .(2.12)

Thus, using (2.11), we obtain

a1, a2 =
d
[
(r − d)λ0 − dλ1

]
r(λ0 + λ1)2 +O(σ2),

a3 =
σ2

2

[
(r − d)λ0 − dλ1

]
d(r − d)(λ0 + λ1)

+O(σ4),

a4 =
σ2

2
d
[
(r − d)λ0 − dλ1

]
r2(r − d)(λ0 + λ1)

+O(σ4) .

(2.13)

Let

α0 :=
(r − d)λ0 − dλ1

d(r − d)
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and δz(x) denote the Dirac measure centered at z. Using (2.12) and (2.13), we can
show that as σ → 0, ϕx∗(·) converges weakly to a distribution with “density” ϕx∗(·),
given by

ϕx∗(x, i) =


λ1α0
λ0+λ1

eα0(x−x∗) for x ≤ x∗, i = 0,
dα0
λ0+λ1

δx∗(x) + dλ1α0
(r−d)(λ0+λ1)e

α0(x−x∗) for x ≤ x∗, i = 1,

0 for x > x∗.

Using, as in [5], a cost of the form

c(x) =
c+ + c−

2
|x|+ c+ − c−

2
x ,(2.14)

with c+ and c− positive constants, the average cost corresponding to the policy in
(2.4) takes the form

ρ(x∗) =
∑
i=0,1

∫ x∗

−∞
c(x)ϕx∗(x, i) dx

= c+x∗ − c+rλ1

(r − d)(λ0 + λ1)α0
+

rλ1(c+ + c−)
(r − d)(λ0 + λ1)α0

e−α0x
∗
.

In this manner, the results in [5] are reproduced exactly. One advantage of our
approach is that the class of admissible policies does not have to be restricted as is done
in [5], in order to guarantee the existence of solutions. With our method, optimality
is obtained with respect to the class of all nonanticipative policies. Furthermore, our
analysis shows that the stability of the zero-inventory policy is retained under additive
noise in (2.1). Let us also note that conditions for the optimality of the zero-inventory
policy under additive noise can be readily obtained for the cost in (2.14) using the
density in (2.10).

3. The mathematical model. We first show that the switching diffusion (1.1),
(1.2) can be constructed on a given probability space. Our presentation follows [13],
[14]; we repeat it here for the sake of clarity and completeness. Let U be a compact
metric space, S := {1, 2, . . . , N}, and

b =
[
b1, . . . , bd

]′ : Rd × S × U → Rd,
σ =

[
σij(·, ·)

]
: Rd × S → Rd×d,

λij : Rd × U → R, i, j ∈ S ,

λij ≥ 0 for i 6= j,
∑
j∈S

λij = 0 for any i ∈ S.

We also define the matrix Λ̃ : Rd × U → RN×N by

[
Λ̃(x, u)

]
ij

=

{
λij(x, u) , i 6= j,

0 , i = j .

We make the following assumptions which will be in effect throughout the paper.
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Assumption 3.1.
(i) The functions b(x, k, u), σij(x, k), and λij(x, u) are continuous and Lipschitz

in x, uniformly with respect to u, with a Lipschitz constant γ0. Let m0 denote the
least upper bound of ‖b(0, k, ·)‖∞, |σij(0, k)|, and ‖λij(0, ·)‖∞.

(ii) σij(·, ·) is uniformly elliptic; i.e., there exists a constant m > 0 such that
σ(·, k)σ′(·, k) ≥ mI.

(iii) The matrix Λ̃(x, u) is irreducible for all (x, u) ∈ Rd × U .
For a Polish space Y , B(Y ) denotes its Borel σ-field and P(Y ) the space of

probability measures endowed with the Prohorov topology, i.e., the topology of weak
convergence. Let M(Y ) be the set of all nonnegative, integer-valued, σ-finite measures
on B(Y ). Let Mσ(Y ) be the smallest σ-field on M(Y ) with respect to which all the
maps from M(Y ) to N

⋃
{∞} of the form µ 7→ µ(B) with B ∈ B(Y ) are measurable.

M(Y ) is assumed to be endowed with this measurability structure. Let V = P(U)
and b =

[
b1, . . . , bd

]′ : Rd × S × V → Rd be defined by

bi(·, ·, v) =
∫
U

bi(·, ·, u)v(du) .(3.1)

Similarly, for i, j ∈ S and v ∈ V, λij is defined as

λij(·, v) =
∫
U

λij(·, u)v(du) .(3.2)

For i, j ∈ S, x ∈ Rd, and v ∈ V, let ∆ij(x, v) be consecutive (with respect to the
lexicographic ordering on S ×S), left closed, right open intervals of the real line, each
having length λij(x, v). Define a function h : Rd × S × V × R −→ R by

h(x, i, v, z) =

{
j − i if z ∈ ∆ij(x, v),
0 otherwise.

(3.3)

Let
(
X(t), S(t)

)
be the (Rd ×S)-valued, controlled, switching diffusion process given

by the following stochastic differential equations:

dX(t) = b
(
X(t), S(t), v(t)

)
dt+ σ

(
X(t), S(t)

)
dW (t),

dS(t) =
∫
R
h
(
X(t), S(t−), v(t), z

)
p(dt, dz)

(3.4)

for t ≥ 0 with X(0) = X0, S(0) = S0, where
(i) X0 is a prescribed Rd-valued random variable.
(ii) S0 is a prescribed S-valued random variable.
(iii) W (·) =

[
W1(·), . . . ,Wd(·)

]′ is a d-dimensional standard Wiener process.
(iv) p(dt, dz) is an M(R+ × R)-valued Poisson random measure with intensity

dt×m(dz), where m is the Lebesgue measure on R.
(v) p(·, ·), W (·), X0, and S0 are independent.

(vi) v(·) is a V-valued process with measurable sample paths satisfying the
nonanticipativity property that the σ-fields Fvt and F

W,p
[t,∞) given by

F
v
t = σ{v(s), s ≤ t},

F
W,p
[t,∞) = σ

{
W (s)−W (t), p(A,B) : A ∈ B

(
[s,∞)

)
, B ∈ B(R), s ≥ t

}
are independent for each t ∈ R.



ERGODIC CONTROL OF SWITCHING DIFFUSIONS 1959

A process v(·) satisfying (vi) is called an admissible (control) policy . If v(·) is a
Dirac measure, i.e., v(·) = δu(·), where u(·) is U -valued, then it is called an admissible
nonrandomized policy. An admissible policy is called feedback if v(·) is progressively
measurable with respect to the natural filtration Ft = {X(s), S(s), s ≤ t}.

A particular subclass of feedback policies is of special interest. A feedback policy
v(·) is called a (homogeneous) Markov policy if v(t) = ṽ

(
X(t), S(t)

)
for a measur-

able map ṽ : Rd × S → V. With an abuse in notation the map ṽ itself is called a
Markov policy. Let Π, ΠM , and ΠMD denote the sets of all admissible, Markov, and
nonrandomized Markov policies, respectively.

If
(
W (·), p(·, ·), X0, S0, v(·)

)
satisfying (i)–(vi) above are given on a prescribed

probability space (Ω,G, P ), then under Assumption 3.1, equation (3.4) admits an
almost sure unique strong solution [17, Chap. 3], and X(·) ∈ C(R+;Rd), S(·) ∈
D(R+;S), where D(R+;S) is the space of right continuous functions on R+ with left
limits taking values in S. However, if v(·) is a feedback policy, then there exists a
measurable map

f : R+ × C(R+;Rd)×D(R+;S) −→ V

such that for each t ≥ 0, v(t) = f
(
t,X(·), S(·)

)
and is progressively measurable with

respect to {Ft}. Thus, v(·) cannot be specified a priori in (3.4). Instead, one has to
replace v(t) by f

(
t,X(·), S(·)

)
, and (3.4) takes the form

dX(t) = b
(
X(t), S(t), f(t,X(·), S(·))

)
dt+ σ

(
X(t), S(t)

)
dW (t),

dS(t) =
∫
R
h
(
X(t), S(t−), f(t,X(·), S(·)), z

)
p(dt, dz) ,

(3.5)

for t ≥ 0 with X(0) = X0, S(0) = S0. In general, (3.5) does not even admit a weak
solution. However, if the feedback policy is Markov, then the existence of a unique
strong solution can be established.

IfK(Rd) is a vector space of real functions over Rd, we adopt the notationK(Rd×
S) to indicate the space

(
K(Rd)

)N , endowed with the product topology. For example,

Lp(Rd × S) :=
{
f : Rd × S → R : f(·, i) ∈ Lp(Rd) for all i ∈ S

}
,

and similarly, we define Ck(Rd × S), W k,p(Rd × S), etc. For f ∈ W 2,p
`oc (Rd × S) and

u ∈ U , we write

Luf(x, k) = Lukf(x, k) +
∑
j∈S

λkj(x, u)f(x, j) ,(3.6)

where

Luk =
1
2

d∑
i,j,`=1

σi`(x, k)σj`(x, k)
∂2

∂xi∂xj
+

d∑
j=1

bj(x, k, u)
∂

∂xj
(3.7)

and, more generally, for v ∈ V,

Lvf(x, k) =
∫
U

Luf(x, k)v(du) .(3.8)

The following result is proved in [14].
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THEOREM 3.1. Under a Markov policy v, (3.4) admits an almost sure unique
strong solution such that

(
X(·), S(·)

)
is a strong Feller process with differential gen-

erator Lv.
A Markov policy v is called stable if the corresponding process

(
X(·), S(·)

)
is

positive recurrent. In this case, the process has a unique invariant probability measure,
denoted by ηv ∈ P(Rd × S). The uniqueness of ηv is guaranteed by Assumption 3.1.
We assume that the set of stable Markov policies is nonempty.

The optimization problem. Let c : Rd × S × U → R+ be the cost function.
The following assumption on the cost, c, will be in effect throughout the paper.

Assumption 3.2. For each i ∈ S, c(·, i, ·) is continuous.
We define c : Rd × S × V → R+ by

c(x, i, v) =
∫
U

c(x, i, u)v(du) .(3.9)

Let v(·) be an admissible policy and
(
X(·), S(·)

)
the corresponding process. The

pathwise (long-run) average cost incurred under v(·) is

lim sup
T→∞

1
T

∫ T

0
c
(
X(t), S(t), v(t)

)
dt .(3.10)

We wish to a.s. minimize (3.10) over all admissible policies. Our goal is to establish
the existence of a stable Markov policy which is a.s. optimal. In general, this is not
the case, as the following simple counterexample shows [6]. Let c(x, i) = exp(−‖x‖2).
Then for every stable Markov policy the average cost is positive a.s., while we can find
an unstable Markov policy for which the average cost is a.s. zero, making it an optimal
policy. We want to rule out this possibility, as stability is a very desirable property.
We carry out our study under two alternate sets of hypotheses: (a) a condition on
the cost which penalizes unstable behavior, (b) a blanket stability condition which
implies that all Markov policies are stable. We describe these conditions in sec-
tion 6.

4. Recurrence, ergodicity, and harmonic functions of switching diffu-
sions. Due to the interaction between the continuous and discrete components, the
study of recurrence and ergodicity of switching diffusions is quite involved. Let v be
a Markov policy which will be fixed throughout this section unless explicitly stated
otherwise. Let P v : R+ × Rd × S → P(Rd × S) denote the transition function of the
corresponding process

(
X(·), S(·)

)
. Also P vx,i and Evx,i denote the probability mea-

sure and the expectation operator, respectively, on the canonical space of the process(
X(·), S(·)

)
starting at (x, i) ∈ Rd × S. The following result plays a crucial role in

recurrence.
LEMMA 4.1. For any (t, x, i) ∈ R+×Rd×S, the support of P v(t, x, i; ·) is Rd×S.
Proof. For each i ∈ S, let τi denote the sojourn time of S(t) in state i. Then

P vx,i
(
τi > t

)
= Evx,i

[
exp
(∫ t

0
λii
(
X(s), v(X(s), S(s))

)
ds
)]
.

Let λvij(s) := λij
(
X(s), v(X(s), S(s))

)
, IA,j(s) := I{X(s) ∈ A,S(s) = j}, and P vi be

the transition function of the diffusion corresponding to Lvi , i.e., the diffusion with no
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switching and S(t) ≡ i. For A ∈ B(Rd), i, j ∈ S, and t > 0,

P v
(
t, x, i, A× {j}

)
= Evx,i

[
IA,j(t)

∣∣ τi > t
]
P vx,i

(
τi > t

)
+ Evx,i

[
IA,j(t)I{τi < t}

]
= Evx,i

[
exp
(∫ t

0
λvii(s) ds

)]
P vi (t, x, A)δij

+ Evx,i

[∫ t

0
−λvii(s) exp

(∫ s

0
λvii(s

′)ds′
)
ds∫

Rd
P vi (s, x, dy)

∑
k 6=i

λvik(s)P v
(
t− s, y, k, A× {j}

)]

= Evx,i

[
exp
(∫ t

0
λvii(s) ds

)]
P vi (t, x, A)δij

+
∑
k 6=i

∫ t

0
Evx,i

[
−λvii(s)λvik(s) exp

(∫ s

0
λvii(s

′)ds′
)]

∫
Rd
P vi (s, x, dy)P v

(
t− s, y, k, A× {j}

)
ds .

(4.1)

Define the transition matrix Π̃v by

[Π̃v(t, x, A)]ij = P v
(
t, x, i, A× {j}

)
.

Then we can suitably define the matrix measures

Γv1,Γ
v
2 : R× Rd →

(
P(Rd)

)N×N
with Γv1(t, x, A) positive, diagonal and Γv2(t, x, A) nonnegative, irreducible (by As-
sumption 3.1 (iii)), for all (t, x, A) ∈ R+ × Rd × B(Rd), provided A has positive
Lebesgue measure, so as to write (4.1) in the form

Π̃v(t, x, A) = Γv1(t, x, A) +
∫ t

0

∫
Rd

Γv2(s, x, dy)Π̃v(t− s, y, A)ds .(4.2)

The desired result follows from (4.2), using the irreducibility of Γv2(t, x, A).
Let τii, τj be the stopping times defined as follows:

τii = inf
{
t > 0 : S(t) = i and S(t′) 6= i, for some 0 < t′ < t

}
,(4.3)

τj = inf
{
t > 0 : S(t) = j

}
.(4.4)

Let D ⊂ Rd be a bounded open set and J a subset of S. Define

τD,J = inf
{
t ≥ 0 :

(
X(t), S(t)

)
/∈ D × J

}
,(4.5)

τD = inf
{
t ≥ 0 : X(t) /∈ D

}
.(4.6)

Using (4.2) and well-known arguments in Markov processes [12, Vol. I, p. 111] the
following results can be proved.

LEMMA 4.2. If τ is a stopping time of the form τii, τj, τD,J , or τD, as defined in
(4.3)–(4.6), then, for each compact set K ⊂ Rd,

sup
v∈ΠM , x∈K

Evx,i[τ ] <∞ .
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It is well known that harmonic functions play an important role in the study
of recurrence and ergodicity of Markov processes [3]. Therefore, we now turn to the
analysis of some properties of the harmonic functions of the process

(
X(·), S(·)

)
under

the Markov policy v. The function f is called Lv-harmonic in D if it is bounded on
compact subsets of D, and for all x ∈ D, i ∈ S,

f(x, i) = Evx,if
(
X(τV,J), S(τV,J)

)
(4.7)

for every neighborhood V of x having compact closure V in D and every subset J ⊂ S
containing i. It is clear that if f is Lv-harmonic then

f(x, i) = Evx,if
(
X(τV ), S(τV )

)
.(4.8)

On the other hand, if (4.8) holds, then by conditioning on FτV,J we obtain

f(x, i) = Evx,i

[
Ev
[
f
(
X(τV ), S(τV )

) ∣∣ FτV,J ]]
= Evx,i

[
EvXτV,J ,SτV,J

[
f
(
X(τV − τV,J), S(τV − τV,J)

)]]
= Evx,i

[
f
(
X(τV,J), S(τV,J)

)]
,

concluding that (4.7) and (4.8) are actually equivalent.
LEMMA 4.3. Let D ⊂ Rd be open. Then we have the following:

(i) Every Lv-harmonic function in D is continuous in D.
(ii) If Lvf = 0 in D and f ∈W 2,p(D×S), then f is Lv-harmonic. Conversely,

if f is Lv-harmonic and f ∈W 2,p
`oc (D × S), then Lvf = 0 in D.

(iii) (Maximum principle) Let D be connected and f ≥ 0 and Lv-harmonic in
D. Then f is either strictly positive in D × S or identically zero.

Proof. The proof of (i) is standard [3], [12, Vol. II, Chap. 13], and (ii) can easily
be proved using the generalized Ito formula [18]. Let x0 ∈ D, i0 ∈ S, and r > 0 be
such that f(x0, i0) = 0 and B(x0, r) ⊂ D, where B(x0, r) =

{
x ∈ Rd : ‖x−x0‖ ≤ r

}
.

Then

0 = f(x0, i0) =
∑
j∈S

∫
∂B(x0,r)

f(y, j)P vx0,i0

(
X(τB(x0,r)) ∈ dy, S(τB(x0,r)) = j

)
.

Then, by Lemma 4.1, we can show using standard arguments [16, Chap. 6] that the
support of the measure P vx0,i0

(
X(τB(x0,r)) ∈ dy, S(τB(x0,r)) = j

)
is ∂B(x0, r) × S.

Hence,

f(y, j) = 0, for all y ∈ ∂B(x0, r), j ∈ S .

It follows that the set
{
y : f(y, j) = 0, j ∈ S

}
is open in D, and since D is connected,

the result follows.
We next state Harnack’s inequality for Lv-harmonic functions, which extends a

very important result in partial differential equations. This inequality plays a crucial
role in proving the existence of a solution to the HJB equation via the vanishing
discount method, as is done in section 6. As far as we know, this result is not known
in the literature on partial differential equations. The detailed proof of Harnack’s
inequality is quite elaborate and can be found in the appendix. The proof follows the
method introduced for diffusions by Krylov and Safonov [19] for deriving estimates
for the oscillation of a harmonic function. For the system of coupled elliptic operators
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characterizing switching diffusions, considerable complications arise in trying to follow
the same methodology due to the vector-valued nature of the Lv-harmonic functions.
A crucial step in the proof is “coupling” together the oscillations of the distinct
components of the harmonic function. The irreducibility of the matrix Λ̃ is essential
in accomplishing this task.

THEOREM 4.1 (Harnack’s inequality). Let Ω ⊂ Rd be a bounded domain and
K ⊂ Ω a closed set. There exists a constant C > 0, depending only on Ω, K,
the dimension d, N , the bounds m,m0, and the Lipschitz constant γ0 introduced in
Assumption 3.1, such that for any nonnegative function f ∈W 2,p

`oc (Ω×S), p ∈ [1,∞),
satisfying Lvf = 0 in Ω × S, for some Markov policy v,

f(x, i) ≤ Cf(y, j) ∀ x, y ∈ K ∀ i, j ∈ S .

We now discuss the recurrence properties of switching diffusions. Our treatment
closely follows [3], so we skip the details in several places. A point (x, i) ∈ Rd × S is
said to be recurrent if, given any ε > 0,

P vx,i
(
X(tn) ∈ B(x, ε), S(tn) = i, for a sequence tn ↑ ∞

)
= 1.(4.9)

A point (x, i) is transient if

P vx,i
(
‖X(t)‖ → ∞, as t→∞

)
= 1.(4.10)

If all points of the switching diffusion are recurrent, then it is called recurrent. A
transient switching diffusion is similarly defined. Note that the discrete component of
the process has been ignored in the definition (4.10). The reason for doing so is that,
in view of Assumption 3.1 (iii), we can show that, provided the continuous component
visits a bounded set infinitely often with probability 1, then the discrete component
is recurrent. More generally, a switching diffusion exhibits a dichotomy in that it is
either recurrent or transient, as we will later show.

LEMMA 4.4. The following statements are equivalent.
(i) The switching diffusion is recurrent;
(ii) P vx,i

(
X(t) ∈ D, S(t) = j, for some t ≥ 0

)
= 1, for any open set D ⊂ Rd

and any j ∈ S.
Proof. We prove (i) → (ii) (the converse is easier). We distinguish two cases.
Case 1. Let x ∈ D, i 6= j. Let B = B(x, ε) and B1 be bounded open sets such

that B ⊂ B1 and B1 ⊂ D. Let

η1 = inf
{
t ≥ 0 : X(t) ∈ ∂B1

}
,

and inductively, for n = 1, 2, . . . ,

η2n = inf
{
t > η2n−1 : X(t) ∈ ∂B

}
,

η2n+1 = inf
{
t > η2n : X(t) ∈ ∂B1

}
.

Then, by recurrence, ηn <∞, P vx,i a.s. Note that

y, ` 7→ P vy,`
(
τ(B×{j})c < τB1

)
is Lv-harmonic in B1 × S and not identically zero. Therefore, by Lemma 4.3,

inf
(y,`)∈B×S

P vy,`
(
τ(B×{j})c < τB1

)
> δ1 > 0(4.11)
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for some δ1 > 0. Next we define

A0 =
{
S(t) = j for some t ∈ [0, η1)

}
,

An =
{
S(t) = j for some t ∈ [η2n, η2n+1)

}
.

By (4.11) and the strong Markov property,

P vx,i
(
Ac0
)
≤ (1− δ1), P vx,i

( n⋂
k=0

Ack

)
≤ (1− δ1)n+1.

Now,

P vx,i
(
X(t) ∈ D, S(t) = j for no t ≥ 0

)
≤ P vx,i

(
X(t) ∈ B1, S(t) = j for no t ≥ 0

)
≤ lim
n→∞

P vx,i

( n⋂
k=0

Ack

)
= 0.

Case 2. Suppose x /∈ D and let B = B(x, ε), B1, and D1 be bounded open sets
such that B

⋂
D = ∅, B1 ⊂ D, and B

⋃
B1 ⊂ D1. Let

η′1 = τD1 ,

η′2n =
{
t > η′2n−1 : X(t) ∈ ∂B

}
,

η′2n+1 =
{
t > η′2n : X(t) ∈ ∂D1

}
.

Let δ2 > 0 be such that

inf
(y,`)∈∂D1×S

P vy,`
(
τ(B1×{j})c < τ(B×{i})c

)
> δ2 > 0.

Define

A′n =
{
X(t) ∈ B1, S(t) = j for some t ∈ [η2n−1, η2n)

}
.

Then, as in the previous case,

P vx,i
(
X(t) ∈ D, S(t) = j for no t ≥ 0

)
= 0.

In view of Lemma 4.4, the following results can be proved the same way as in [3],
[4].

LEMMA 4.5. The following statements are equivalent.
(i) The switching diffusion is recurrent.
(ii) P vx,i

(
X(t) ∈ D for some t ≥ 0

)
= 1 for all x ∈ Rd, i ∈ S, and any nonempty

open set D.
(iii) There exists a compact set K ⊂ Rd such that P vx,i

(
X(t) ∈ K for some t ≥

0
)

= 1 for all (x, i) ∈ Rd × S.
(iv) P vx,i

(
X(tn) ∈ D, for a sequence tn ↑ ∞

)
= 1 for all x ∈ Rd, i ∈ S, and any

nonempty open set D.
(v) There exists a point z ∈ Rd, a pair of numbers r0, r1, 0 < r0 < r1, and a

point y ∈ ∂B(z, r1) such that P vy,i
(
τB(z,r0)c <∞

)
= 1 for any i ∈ S.
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THEOREM 4.2. For any Markov policy, the switching diffusion is either recurrent
or transient.

A recurrent switching diffusion admits a unique (up to a constant multiple) σ-
finite invariant measure. The switching diffusion is called positive recurrent if it is
recurrent and admits a finite invariant measure.

A Markov policy v is called stable if the corresponding process is positive recur-
rent; the corresponding invariant probability measure is denoted by ηv.

As is well known from the general theory of dynamical systems, even if Lvi gener-
ates a positive recurrent diffusion, for each i ∈ S, and the parametric Markov chain
is ergodic, there is no reason to expect that the policy v is stable; i.e., the switching
diffusion is positive recurrent. Indeed, as the following example shows, the hybrid
process can be anything from transient to positive recurrent.

Example 4.1. We first consider a piecewise deterministic system with state de-
pendent Markovian switching. Let E+, E− ⊂ R2 be defined as follows:

E+ =
{

(x1, x2) : x1 > 0
}⋃{

x2 ≤ 0, x1 = 0
}
,

E− =
{

(x1, x2) : x1 < 0
}⋃{

x2 ≥ 0, x1 = 0
}
.

Let

A0 =
[

2 1
−1 2

]
, A1 =

[
−3 1
−1 −3

]
.

Consider two stable dynamical systems D0 and D1 defined by

D0 : ẋ =

{
A0x, x ∈ E+,

A1x, x ∈ E−,

and

D1 : ẋ =

{
A1x, x ∈ E+,

A0x, x ∈ E−.

For δ > 0, let Z be a (parameterized) Markov chain taking values in {0, 1} with rate
matrix [

−δ δ
1
δ − 1

δ

]
on E+ and

[
−1
δ

1
δ

δ −δ

]
on E−

and consider the dynamical system

D := DZ .

If we define η by

η =

{
Z, x ∈ E+,

1− Z, x ∈ E− ,

then η is Markovian with rate matrix[
−δ δ
1
δ − 1

δ

]
,
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and D can represented as

ẋ = Aηx.

Define

T0(t) = {τ ≤ t : η(τ) = 0},
T1(t) = {τ ≤ t : η(τ) = 1},

and λ0(t) = m(T0(t)), λ1(t) = m(T1(t)), where m is the Lebesgue measure on R+.
Then, the solution to D can be expressed as

x(t) = exp
(
2λ0(t)− 3λ1(t)

) [cos t − sin t
sin t cos t

]
x(0).

By the ergodic theory of Markov processes [25, Chap. 1], as t→∞,

λ1(t) ∼ δ2t

1 + δ2 , λ0(t) ∼ t

1 + δ2 .

Thus,

2λ0(t)− 3λ1(t) ∼ 2− 3δ2

1 + δ2 t .

Therefore, D is stable for δ <
√

2
3 and unstable for δ ≥

√
2
3 . The matrices A0, A1

can be suitably altered to exhibit various other possibilities.
Now let X(t) be defined as dX(t) = Aη(t)X(t)dt + σdW (t), where W (·) is a

standard two-dimensional Wiener process and σσ′ is a 2× 2 positive definite matrix
with constant entries. Then it is easily shown that the stability (instability) of D
implies the positive recurrence (transience) of X(t). Note that in this example the
drift is unbounded. However, in the study of recurrence, boundedness of the drift can
be replaced by local boundedness.

Remark 4.1. In view of the above example, it is clear that two positive recurrent
processes with suitable switching may result in a transient process. Similarly, the
random combination of two transient processes may give rise to a positive recurrent
process. This phenomenon can be exploited in many practical situations such as fault-
tolerant control systems, flexible manufacturing systems, etc. In a control system with
multiple modes, we can trade off the stability of some (or all) nodes to gain a desired
degree of flexibility. Addition of a few redundant nodes and/or the incorporation of a
suitable switching mechanism among the nodes could result in global stability of the
system, thereby gaining flexibility without sacrificing reliability.

A general criterion for positive recurrence of a switching diffusion is provided by
the following theorem.

THEOREM 4.3. Let z, r0, r1 be as in Lemma 4.5(v). Then the switching diffusion
is positive recurrent if

sup
y∈∂B(z,r1),i∈S

Evy,i
[
τB(z,r0)c

]
<∞ .(4.12)

The proof is standard [3]. Note that it may be very difficult to verify (4.12) for
general b, σ, λ. One usually verifies (4.12) by constructing a Lyapunov function [3].
For switching diffusions such a construction seems difficult, since it involves solving
a system of ordinary differential equations in closed form. However, we present some
criteria for positive recurrence and discuss some implications.
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(C1) There exists a w ∈ C2(Rd × S), w ≥ 0, such that
(i) w(x, i)→∞, as ‖x‖ → ∞.
(ii) For each v ∈ ΠM , Evx,i

[
w
(
X(t), S(t)

)]
and Evx,i

∣∣Lvw(X(t), S(t)
)∣∣

are locally bounded.
(iii) There exists p > 0, q > 0 such that Luw(x, i) ≤ p − qw(x, i), for

each u ∈ U .
(C2) There exists a C2 function w : Rd × S → R+ such that

(i) lim‖x‖→∞ w(x, i) = +∞.
(ii) There exists a > 0 and ε > 0 such that for ‖x‖ > a, Luw(x, i) < −ε,

for all u ∈ U , i ∈ S, and ‖∇w(x, i)‖2 ≥ m−1, where m is the constant in
Assumption 3.1 (ii).

(iii) w(x, i) and ‖∇w(x, i)‖ have polynomial growth.
THEOREM 4.4. Under either (C1) or (C2), the process

(
X(·), S(·)

)
under any

Markov policy v is positive recurrent. Thus, all Markov policies are stable.
Proof. Under (C1), the result follows from [25, Theorem 25, p. 70]. Under (C2),

the technique of the proof of [6, Lemma 6.2.2, p. 150] can be closely paralleled to
draw the desired conclusion.

Remark 4.2. If σ ≡ I and b is such that 〈b(x, i, u), x〉 < −(d + 1)/2 for all i ∈ S
and ‖x‖ sufficiently large, then w(x) = ‖x‖2 is a Lyapunov function for the system.
We can construct several examples using this idea. Note that in this case all the
diffusion generators Lui give rise to positive recurrent diffusions and have a common
Lyapunov function (i.e., one which is independent of i). If all Lui have a common
Lyapunov function, then switching does not destabilize the hybrid system. Of course,
this is a very strong condition and is rarely met.

5. Existence of an optimal policy. In this section we establish the existence
of a stable, nonrandomized Markov optimal policy under certain conditions. We follow
the methodology developed in [6], [8], [9], [10] for controlled diffusions. For switching
diffusions, similar techniques carry through with some extra effort. Therefore, we
present the main ideas, skipping some of the technical details.

Let ΠSM and ΠSMD denote the set of stable Markov and stable nonrandomized
Markov policies, respectively. Since we are searching for an optimal policy in ΠSMD,
it is natural to assume that ΠSM is nonempty. Let v ∈ ΠSM . Then

ρv :=
∑
i∈S

∫
Rd
c
(
x, i, v(x, i)

)
ηv(dx, i)(5.1)

= lim
T→∞

1
T

∫ T

0
c
(
X(s), S(s), v(X(s), S(s))

)
ds a.s.

Let

ρ∗ := inf
v∈ΠSM

{
ρv
}
.(5.2)

We assume that ρ∗ < ∞. We now state a condition on the cost function which
penalizes unstable behavior.

(C3) Assume that for each i ∈ S,

lim inf
‖x‖→∞

{
inf
u∈U

c(x, i, u)
}
> ρ∗.(5.3)

Intuitively, (5.3) penalizes trajectories lying outside the set infu∈U
{
c(x, i, u)

}
≤

ρ∗, forcing an optimal process to spend a nonvanishing fraction of time in a bounded
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neighborhood of this compact set. This behavior results in the stability of every
optimal policy. If c(x, i, u) = K(‖x‖) for some increasing function K : R+ → R+ then
it can be easily seen that (5.3) holds. Such cost functions arise quite often in practice.
Condition (C3) is referred to as the near-monotonicity condition [6, Chap. 6].

For v ∈ ΠSM (or ΠSMD), we define the ergodic occupation measure µ[v] ∈ P(Rd×
S × U) as

µ[v](dx, i, du) = ηv(dx, i)v(x, i)(du).(5.4)

Let

I1 =
{
µ[v] : v ∈ ΠSM

}
,

I2 =
{
µ[v] : v ∈ ΠSMD

}
.

The following results can be proved as in [10], [14].
LEMMA 5.1. The sets I1, I2 are closed, I1 is convex, and the set of extreme points

of I1 lies in I2.
Let v(·) be an arbitrary admissible policy. Define the P(Rd × S × U)-valued

empirical process µt(v) for t > 0 by

µt(v)
(
A× {i} ×B

)
=

1
t

∫ t

0
I
{
X(s) ∈ A,S(s) = i

}
v(s)(B) ds ,(5.5)

with A ∈ B(Rd), B ∈ B(U), and i ∈ S. Let Rd = Rd
⋃
{∞} be the one-point

compactification of Rd. We identify µt(v) with an element of P(Rd × S × U) by
assigning zero mass at {∞} × S × U . Since P(Rd × S × U) is compact, {µt(v)},
viewed as a P(Rd × S × U)-valued process, converges to a sample path-dependent
compact limit set in P(Rd × S × U). Note that any element µ ∈ P(Rd × S × U) can
be decomposed as

µ(C) = δµ µ
′(C⋂ (Rd × S × U)

)
+ (1− δµ)µ′′

(
C
⋂

({∞} × S × U)
)
,(5.6)

for C ∈ B
(
Rd × S × U

)
. In this decomposition δµ ∈ [0, 1] is always uniquely defined,

and µ′ ∈ P(Rd×S ×U) (respectively, µ′′ ∈ P({∞}×S ×U)) is also unique if δµ > 0
(respectively, δµ < 1). We may render µ′, µ′′ unique at all times by imposing an
arbitrary fixed choice thereof when δµ = 0, respectively, 1.

Combining the results in [20] with the technique in [6, Lemma 6.1.1, p. 144], we
establish the following lemma.

LEMMA 5.2. If µ ∈ P(Rd × S) satisfies∑
i∈S

∫
Rd
Lvf(x, i)µ(dx, i) = 0 ∀ f ∈ H(5.7)

for some Markov policy v, where H is a dense subset of C2
0 (Rd × S), then µ = ηv.

Proof. Using the usual approximation procedure we can show that (5.7) is true
for all f ∈ C2

b (Rd × S). Let
(
X(·), S(·)

)
be the process corresponding to the policy

v with initial law µ. The law µt of this process, for t > 0, satisfies the Kolmogorov
forward equation∑
i∈S

∫
Rd
f(x, i)µt(dx, i) =

∑
i∈S

∫
Rd
f(x, i)µ(dx, i) +

∑
i∈S

∫ t

0

∫
Rd
Lvf(x, i)µs(dx, i) ds
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for all f ∈ C2
b (Rd × S). The uniqueness of the solution to the above equation is

established in [26]. Since µt ≡ µ is a solution to (5.7), it follows that µ = ηv.
We disintegrate µ′ ∈ P(Rd × S × U) as

µ′(dx, i, du) = µ∗(dx, i)vµ(x, i)(du) ,(5.8)

where µ∗ is the marginal of µ′ on Rd×S and vµ is a version of the regular conditional
law defined as µ∗ a.s. We select an arbitrary version and keep it fixed henceforth.
Using the martingale stability theorem, the following characterization of the limit
points of {µt(·)} can be established as in [6, Lemma 6.1.2].

LEMMA 5.3. Outside a set of zero probability, each limit point µ of {µt(·)} for
which δµ > 0 satisfies µ∗ = ηvµ .

We now establish the existence of an optimal policy under (C3). Since the proof
closely follows the steps in [6, Theorem 6.1.1], we only present a brief sketch.

THEOREM 5.1. Under (C3), there exists a stable Markov policy which is a.s.
optimal.

Proof. Let vn ∈ ΠSM be such that∫
c dµ[vn] ↓ ρ∗.

We extend µ[vn] to P(Rd × S × U) in the usual manner and denote it also by µ[vn].
Let µ∞ be a limit point of {µ[vn]} and denote v∞ = vµ∞ , where vµ∞ is obtained from
µ∞ by the decomposition in (5.6) and (5.8). Then, for f ∈ C2

0 (Rd × S),∑
i∈S

∫
Rd
Lvnf(x, i)ηvn(dx, i) =

∑
i∈S

∫
Rd×U

Luf(x, i)µ[vn](dx, i, du) = 0 .

Hence, ∑
i∈S

∫
Rd×U

Luf(x, i)µ∞(dx, i, du) = 0 .

Thus, by Lemmas 5.2 and 5.3, µ∗∞ = ηv∞ , if δµ∞ > 0. Using (C3), we can demonstrate
as in [6, Lemma 6.1.3] that this is indeed the case. Therefore,

min
v∈ΠSM

∫
c dµ[v] =

∫
c dµ[v∞] = ρ∗.

Finally, following the technique in [6, Lemma 6.1.3], we can now show that for an
arbitrary policy u,

lim inf
T→∞

1
T

∫ T

0
c
(
X(s), S(s), u(s)

)
ds ≥ ρ∗ a.s.,

which establishes the optimality of v∞ in a much stronger sense.
THEOREM 5.2. Under (C3) there exists a v∗ ∈ ΠSMD which is a.s. optimal.
Proof. We have already established the existence of v∞ ∈ ΠSM which is a.s.

optimal. We argue as in [7, p. 58]. Embed I1 in P(Rd × S × U) by assigning zero
mass at {∞} × S × U . Let I1 denote the closure of I1 in P(Rd × S × U). Then
I1 is a compact convex set. By Choquet’s theorem [24], each element µ of I1 is the
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barycenter of a probability measure m supported on the set of extreme points of I1.
Now, each extreme point of I1 must be an extreme point of I1, since otherwise it
would be assigning a strictly positive mass to {∞} × S × U . If m assigns a strictly
positive mass to extreme points of I1, which are not extreme points of I1, then µ must
assign a strictly positive probability to {∞}×S×U , which is not true. Thus, m must
be supported on the set Ie1 consisting of the extreme points of I1. In particular,∫

c dµ[v∞] =
∫
Ie1

(∫
c dν

)
m(dν) .

It follows that there exists a v∗ ∈ ΠSMD such that∫
c dµ[v∞] =

∫
c dµ[v∗],

and since v∞ ∈ ΠSM is optimal, the optimality of v∗ ∈ ΠSMD follows.
We now investigate the existence of an optimal Markov policy under the blanket

stability conditions in (C1)–(C2).
LEMMA 5.4. Under either (C1) or (C2), for any admissible policy v ∈ Π, the

empirical process {µt(v)} defined in (5.5) is tight.
The proof of Lemma 5.4 closely follows the arguments in the proof of [6, Theorem

6.2.2]. Topologize the space ΠM as in [6], [14]. We now state another result, the proof
of which closely follows [14, Theorem 3.3, Lemma 4.4].

LEMMA 5.5. Under either (C1) or (C2), the sets I1, I2 are compact in total
variation and the map v 7→ µ[v] (as defined in (5.4)) is continuous.

THEOREM 5.3. Under either (C1) or (C2), there exists a v∗ ∈ ΠSMD which is
a.s. optimal.

Proof. First note that under (C1) or (C2), ΠSM = ΠM and ΠSMD = ΠSD. By
Lemma 5.5, there exists a v ∈ ΠSM such that

min
v∈ΠSM

∫
c dµ[v] =

∫
c dµ[v].

In view of Lemma 5.4 and the decomposition and disintegration of the measure as
defined in (5.6), (5.8), it suffices to confine our attention to ΠSM for optimality. Thus,
the existence of an a.s. optimal v∗ ∈ ΠSMD then follows via Choquet’s theorem as in
Theorem 5.2.

6. HJB Equations. In this section, we study the HJB equations and char-
acterize the optimal policy in terms of their solution. We introduce the following
condition:

(C4) The cost function c is bounded, continuous, and Lipschitz in its first argument
uniformly with respect to the third.

We follow the vanishing discount approach; i.e., we derive the HJB equations
for the ergodic criterion by taking the limit of the HJB equations for the discounted
criterion as the discount factor approaches zero. The results and the broad outline of
these proofs follow those of [9]. However, they differ in important technical details.

Let Vα(x, i) denote the discounted value function with discount factor α > 0; i.e.,

Vα(x, i) = inf
v∈Π

Evx,i

[∫ ∞
0

e−αtc
(
X(t), S(t), u(t)

)
dt

]
, x ∈ Rd, i ∈ S .(6.1)

The following result is proved in [14].
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THEOREM 6.1. Under (C4), Vα is the unique solution in C2
(
Rd×S

)⋂
Cb
(
Rd×S

)
of

inf
u∈U

{
LuVα(x, i) + c(x, i, u)

}
= αVα(x, i).(6.2)

For i ∈ S, define

Gi :=
{
x ∈ Rd : inf

u∈U
c(x, i, u) ≤ ρ∗

}
,

G :=
⋃
i∈S

Gi .(6.3)

Observe that by (C3), G is compact.
The following result plays a very crucial role.
LEMMA 6.1. Under (C3) and (C4), there exists α0 ∈ (0, 1) such that if α ∈ (0, α0],

inf(x,i)∈Rd×S Vα(x, i) is attained on the set G as defined in (6.3).
Proof. Let vα ∈ ΠMD be an optimal policy for the discount factor α. By the

results of [14], for i ∈ S,
(6.4)

d∑
k=1

bk(x, i, vα(x, i))
∂Vα(x, i)
∂xk

+
∑
j∈S

λij(x, vα(x, i))Vα(x, j) + c(x, i, vα(x, i))

= inf
u∈U


d∑
k=1

bk(x, i, u)
∂Vα(x, i)
∂xk

+
∑
j∈S

λij(x, u)Vα(x, j) + c(x, i, u)

 a.e.

We let ‖xn‖ → ∞ in Rd and fix i ∈ S. For given α, let
(
Xn(·), Sn(·)

)
be the process

under the policy vα with Xn(0) = xn and Sn(0) = i. We can show as in [21] that
{Xn(·) − xn} are tight as C

(
[0,∞);Rd

)
-valued random variables. Dropping to a

subsequence and using Skorohod’s theorem [16, p. 9] we may assume that they are
defined on a common probability space and converge a.s. in C

(
[0,∞);Rd

)
to some

process Y (·). Hence, ‖Xn(t)‖ → ∞ uniformly in t ∈ [0, T ] for each T < ∞, a.s. By
(C3), there exist ε > 0 and M > 0, such that

inf
u∈U

{
c(x, i, u)

}
> ρ∗ + 2ε if ‖x‖ > M , ∀ i ∈ S .

We select a constant Tα such that

(ρ∗ + 2ε)
(
1− e−αTα

)
> ρ∗ + ε;

i.e., e−αTα < ε
(ρ∗+2ε) . Since

Vα(xn, i) ≥ Evαxn,i
[∫ Tα

0
e−αtc

(
Xn(t), Sn(t), vα(Xn(t), Sn(t))

)
dt

]
,

it follows that

Vα(xn, i) >
ρ∗ + ε

α
(6.5)

for n sufficiently large. On the other hand, by a standard Tauberian theorem,

lim sup
α→0

{
αVα(x, i)

}
≤ ρ∗ ∀ (x, i) ∈ Rd × S .(6.6)
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Fix x0 ∈ Rd. By (6.6), there exists α0 = α0(x0) such that Vα(x0, ·) ≤ (ρ∗ + ε
2 )/α,

for all α ≤ α0. Hence, it follows from (6.5) that if α ≤ α0, then infx∈Rd Vα(x, i) is
attained in a set

{
x ∈ Rd : ‖x‖ ≤ R(α)

}
for all i ∈ S. Let

xα,i := →
x∈Rd

arg min
{
Vα(x, i)

}
, (xα, iα) :=→

i∈S
arg min

{
Vα(xα,i, i)

}
.

Using (6.2) and the fact that, at a minimum, the gradient of Vα(·, i) vanishes and its
Hessian is positive semidefinite, we have, for α ≤ α0,

inf
u∈U

{
c
(
xα,i, i, u

)
+
∑
j∈S

λij
(
xα,i, u

)
Vα
(
xα,i, j

)}
≤ αVα(xα,i, i).(6.7)

In turn, from (6.7),

inf
u∈U

{
c(xα, iα, u)

}
≤ αVα(xα, iα) ∀ α ≤ α0 .(6.8)

We claim that αVα(xα, iα) ≤ ρ∗ for all α > 0. Indeed, for any v ∈ ΠSM ,

Vα(x, i) ≤ Evx,i
[∫ ∞

0
e−αtc

(
X(t), S(t), v(X(t), S(t))

)
dt

]
∀ (x, i) ∈ Rd × S .(6.9)

Integrating both sides of (6.9) with respect to ηv(dx, i) and using Fubini’s theorem,
we obtain ∑

i∈S

∫
Rd
Vα(x, i)ηv(dx, i) ≤

ρv
α
.

Hence,

Vα(xα, iα) ≤ ρ∗

α
.(6.10)

From (6.8),

inf
u∈U

{
c(xα, iα, u)

}
≤ ρ∗,

concluding that (xα, iα) ∈ G× S.
LEMMA 6.2. Under (C3) and (C4), the map (x, y, i, j) 7→ |Vα(x, i) − Vα(y, j)| is

bounded on compact subsets, uniformly in α ∈ (0, α0].
Proof. Let V α(·, ·) := Vα(·, ·) − Vα(xα, iα). In view of Lemma 6.1, it suffices to

prove that V α is uniformly bounded on compacta. By (6.2) and (6.4),

LvαVα(x, i) = αVα(x, i)− c
(
x, i, vα(x, i)

)
a.e.

Let R > 0 be large enough so that G ⊂ B(0, R). Let
(
X(·), S(·)

)
be the process under

the policy vα and define τ = inf
{
t ≥ 0 : X(t) /∈ B(0, 2R)

}
. Then for x ∈ B(0, R),

using the strong Markov property,

Vα(x, i) = Evαx,i

[∫ ∞
0

e−αtc
(
X(t), S(t), vα(X(t), S(t))

)
dt

]
= Evαx,i

[∫ τ

0
e−αt

{
c
(
X(t), S(t), vα(X(t), S(t))

)
− αVα

(
X(τ), S(τ)

)}
dt

]
+ Evαx,i

[
Vα
(
X(τ), S(τ)

)]
.
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Thus,∣∣Vα(x, i)− Evαx,iVα
(
X(τ), S(τ)

)∣∣
=
∣∣∣∣Evαx,i ∫ τ

0
e−αt

{
c
(
X(t), S(t), vα(X(t), S(t))

)
− αVα

(
X(τ), S(τ)

)}
dt

∣∣∣∣.
Using (C4) and Lemma 4.2, we deduce that there exists a constant C1 (independent
of α) such that∣∣Vα(x, i)− Evαx,iVα

(
X(τ), S(τ)

)∣∣ ≤ C1 ∀ (x, i) ∈ B(0, R)× S .(6.11)

We write

(6.12) Vα(x, i)− Vα(xα, iα) =
(
Vα(x, i)− Evαx,iVα

(
X(τ), S(τ)

))
+
(
Evαx,iVα

(
X(τ), S(τ)

)
− Vα(xα, iα)

)
.

Let

f(x, i) = Evαx,iVα
(
X(τ), S(τ)

)
− Vα(xα, iα).

We observe that f ≥ 0 and Lvαf = 0 in W 2,p
(
B(0, 2R) × S

)
, 2 ≤ p < ∞. Then,

by Theorem 4.1, there exists a constant C2 (independent of α) such that, in view of
(6.11),

f(x, i) ≤ C2f(xα, iα) ≤ C1C2 ∀ (x, i) ∈ B(0, R)× S .

Hence,

Vα(x, i)− Vα(xα, iα) ≤ C1(1 + C2) ∀ (x, i) ∈ B(0, R)× S .

COROLLARY 6.1. For any ε > 0 and any compact K ⊂ Rd, there exists αε ∈
(0, α0] such that for all x ∈ K, i ∈ S, and α ∈ (0, αε),

αVα(x, i) < ρ∗ + ε.(6.13)

Proof. The proof follows directly from Lemma 6.2 and (6.10).
THEOREM 6.2. Under (C3) and (C4), there exists a function V ∈ C2(Rd × S)

and a scalar ρ ∈ R such that for some fixed i0 ∈ S,

ρ ≤ ρ∗, V (0, i0) = 0, inf
(x,i)∈Rd×S

V (x, i) > −∞(6.14)

and the pair (V, ρ) satisfies the HJB equations given by

inf
u∈U

{
LuV (x, i) + c(x, i, u)

}
= ρ.(6.15)

Moreover, among all pairs (ϕ, ρ) ∈ W 2,p
`oc (Rd × S)× R, 2 ≤ p < ∞, satisfying (6.15),

(V, ρ∗) is the unique one satisfying (6.14).
Proof. Set V α(x, i) = Vα(x, i)− Vα(0, i0). Then V (0, i0) = 0, and by (6.2), (6.4),

LvαV α(x, i) = αVα(x, i)− c(x, i, vα(x, i)).
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By Corollary 6.1, Lemma 6.2, and the interior estimates for solutions of uniformly
elliptic systems [22, pp. 398–402], we can show using a standard bootstrap argument
that for any R > 0, 2 ≤ p <∞,

sup
α∈(0,αε)

∥∥∥V α(·, ·)
∥∥∥
W 2,p(B(0,R)×S)

≤ C

for some constant C. Since W 2,p
`oc ↪→W 1,p

`oc is compact for p ≥ 1, {V α(·), α ∈ (0, αε)} is
sequentially compact in W 1,p

`oc . Let αn → 0 in (0, αε). By dropping to a subsequence,
if necessary, let V αn → V in W 1,p

`oc for some V . By the Sobolev imbedding theorem,
this convergence is also uniform on compact subsets of Rd. Let ρ be a limit point of
αnVαn(0, i0) and hence of αnVαn(x, i) for any (x, i) ∈ Rd × S, in view of Lemma 6.2.
By (6.13), ρ ≤ ρ∗. It can be shown as in [2], [22, p. 420] that

inf
u∈U


d∑
k=1

bk(x, i, u)
∂V αn(x, i)

∂xk
+
∑
j∈S

λij(x, u)V αn(x, j) + c(x, i, u)


−→
n→∞

inf
u∈U


d∑
k=1

bk(x, i, u)
∂V (x, i)
∂xk

+
∑
j∈S

λij(x, u)V (x, j) + c(x, i, u)


in Lp`oc strongly. From the above discussion, it follows that V ∈ W 1,p

`oc , for any 2 ≤
p < ∞, and V satisfies (6.15) in D′ (i.e., in the sense of distributions). By elliptic
regularity, V ∈ W 2,p

`oc , 2 ≤ p < ∞. In turn, by the Sobolev imbedding theorem,
V ∈ C1,γ(Rd ×S) for 0 < γ < 1, γ arbitrarily close to 1. Hence by (C4), it is easy to
see that

inf
u∈U


d∑
k=1

bk(x, i, u)
∂V (x, i)
∂xk

+
∑
j∈S

λij(x, u)V (x, j) + c(x, i, u)


is in C0,γ(Rd × S). By elliptic regularity [15, p. 287] applied to (6.15), we conclude
that V ∈ C2,γ(Rd × S). Clearly, V (0, i0) = 0. It suffices to show that V is bounded
below. For any x ∈ Rd, i ∈ S,
(6.16)
V (x, i) = lim

n→∞

[
Vαn(x, i)− Vαn(0, i0)

]
≥ lim
n→∞

[
Vαn(xαn , i)− Vαn(0, i0)

]
+ lim
n→∞

[
Vαn(xαn , iαn)− Vαn(xαn , i)

]
.

Using Lemmas 6.1 and 6.2, it follows from (6.16) that for each i ∈ S,

inf
(x,i)∈Rd×S

V (x, i) > −∞,

and the proof of the first part of the theorem is complete. The second assertion can
be shown by following the methodology in [9].

Further, based on Lemmas 6.1 and 6.2 and Theorem 4.1, the following theorem
can be proved using the techniques presented in [9]. We therefore skip the proof.
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THEOREM 6.3. Assume (C3) and (C4). Let v∗ ∈ ΠMD be such that for each i
(6.17)

inf
u∈U


d∑
k=1

bk(x, i, u)
∂V (x, i)
∂xk

+
∑
j∈S

λij(x, u)V (x, j) + c(x, i, u)


=

d∑
k=1

bk
(
x, i, v∗(x, i)

)∂V (x, i)
∂xk

+
∑
j∈S

λij
(
x, v∗(x, i)

)
V (x, j) + c

(
x, i, v∗(x, i)

)
a.e.

Then v∗ ∈ ΠSMD. The scalar ρ in (6.15) equals ρ∗, and v∗ is a.s. optimal. Moreover,
v ∈ ΠSMD is a.s. optimal if and only if it satisfies (6.17).

Remark 6.1. The boundedness condition on the cost function c may be relaxed.
For unbounded c we can use a suitable truncation procedure to approximate c by a
sequence of bounded functions. Then the arguments in [9, p. 202] can be paralleled
to establish the results in Theorems 6.2–6.3.

We now study the HJB equation under (C1) and (C4). Recall that under (C1),
ΠM = ΠSM .

LEMMA 6.3. Let w satisfy (C1). Then for any v ∈ ΠSM ,
(i)
∑
i∈S
∫
Rd w(x, i)ηv(dx, i) <∞,

(ii) limt→∞
1
tE

v
x,i

[
w
(
X(t), S(t)

)]
= 0.

Proof. Let R > 0 and τR be the exit time of X(t) from B(0, R). Then by Ito’s
formula

Evx,i

[
w
(
X(t ∧ τR), S(t ∧ τR)

)]
− w(x, i) = Evx,i

[∫ t∧τR

0
Lvw

(
X(s), S(s)

)
ds

]
.

Letting R→∞, we have

Evx,i
[
w
(
X(t), S(t)

)]
− w(x, i) = Evx,i

[∫ t

0
Lvw

(
X(s), S(s)

)
ds

]
.

Therefore, by using (C1), we have

d

dt
Evx,i

[
w
(
X(t), S(t)

)]
≤ p− qEvx,i

[
w
(
X(t), S(t)

)]
.

Then by Gronwall’s inequality,

Evx,i
[
w
(
X(t), S(t)

)]
≤ p

q
+ w(x, i)e−qt.(6.18)

Both (i) and (ii) follow directly from (6.18).
LEMMA 6.4. Assume (C1) holds. Let a > 0 be such that

Luw(x, i) ≤ −1 for all ‖x‖ > a , u ∈ U , i ∈ S .

If

τa := inf
{
t ≥ 0 : ‖X(t)‖ ≤ a

}
,(6.19)

then, for all v ∈ ΠM , ‖x‖ > a, and i ∈ S,

Evx,i
[
τa
]
≤ w(x, i) .(6.20)
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Proof. Let v ∈ ΠM . Choose R > 0 such that a < ‖x‖ < R. Let

τ ′R = inf
{
t ≥ 0 : X(t) /∈ B(0, R) \B(0, a)

}
.

Then by Ito’s formula

Evx,i

[
w
(
X(t ∧ τ ′R), S(t ∧ τ ′R)

)]
= w(x, i) + Evx,i

[∫ t∧τ ′R

0
Lvw

(
X(s), S(s)

)
ds

]
.

Therefore,

Evx,i

[
w
(
X(t ∧ τ ′R), S(t ∧ τ ′R)

)]
≤ w(x, i)− Evx,i

[
t ∧ τ ′R

]
.

Thus,

Evx,i
[
t ∧ τ ′R

]
≤ w(x, i).(6.21)

Letting first t→∞ and then R→∞, invoking Fatou’s lemma at each step, we obtain
(6.20).

THEOREM 6.4. Under (C1) and (C4), the HJB equation (6.15) admits a unique
solution (V, ρ) in the class C2(Rd ×S)

⋂
O(w), satisfying V (0, i0) = 0 for some fixed

i0 ∈ S.
Proof. Let v∗ ∈ ΠSMD be a.s. optimal. The existence of such a v∗ is guaranteed

by Theorem 5.3. Let

K1 = sup
x,i,u

{
c(x, i, u)

}
,

K2 = sup
v∈ΠSMD

∫
c dµ[v].

We select an arbitrary sequence of smooth functions ψn : Rd → [0,K1 + 4K2], n ≥ 1,
that are zero on B(0, n) and equal to K1 + 4K2 on the complement of B(0, n + 1),
and define

c1n(x, i, u) =
1
2
[
c(x, i, u) + ψn(x)

]
,

c2n(x, i, u) =
1
2
[
ψn(x)− c(x, i, u)

]
.

Then, for a sufficiently large n, c1n and c2n both satisfy the penalizing condition
(C3). We select one such term of the sequence from now on and drop the subscript n
for notational convenience. Let

(
X(·), S(·)

)
be the process under the policy v∗. For

α > 0, we define

Vα,1(x, i) = Ev
∗

x,i

[∫ ∞
0

e−αtc1
(
X(t), S(t), v∗(X(t), S(t))

)
dt

]
,

Vα,2(x, i) = Ev
∗

x,i

[∫ ∞
0

e−αtc2
(
X(t), S(t), v∗(X(t), S(t))

)
dt

]
,

Vα(x, i) = Ev
∗

x,i

[∫ ∞
0

e−αtc
(
X(t), S(t), v∗(X(t), S(t))

)
dt

]
.
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Then we can modify the arguments in the proof of Lemma 6.2 to conclude that for
a fixed i0 ∈ S,

(
Vα,1(x, i) − Vα,1(0, i0)

)
and

(
Vα,2(x, i) − Vα,2(0, i0)

)
are bounded on

compacta uniformly in α ∈ (0, α0], for some α0 > 0. Hence,

V α(x, i) :=Vα(x, i)− Vα(0, i0)

=
[
Vα,1(x, i)− Vα,1(0, i0)

]
−
[
Vα,2(x, i)− Vα,2(0, i0)

]
is bounded on compact sets, uniformly in α ∈ (0, α0]. Arguing as in the proof of
Theorem 6.2 we conclude that V α(x, i)→ V (x, i), as α→ 0, uniformly on compacta
and in W 2,p

`oc (Rd × S) for any p ∈ [2,∞), and that the limit V satisfies

Lv
∗
V (x, i) + c(x, i, v∗(x, i)) = ρ∗,

with V (0, i0) = 0. Using the strong Markov property, relative to the stopping time τa
in (6.19), we obtain

V α(x, i) = Ev
∗

x,i

[∫ τa

0
e−αt

{
c
(
X(t), S(t), v∗(X(t), S(t))

)
− αVα(0, i0)

}
dt

]
+ Ev

∗

x,i

[
e−ατaV α

(
X(τa), S(τa)

)]
.

Hence, by Lemma 6.4, for α ∈ (0, α0] and ‖x‖ > a,∣∣V α(x, i)
∣∣ ≤ C1 + C2E

v∗

x,i

[
τa
]

≤ C1 + C2w(x, i),

where C1, C2 are positive constants independent of α. Passing to the limit as α→ 0,
it follows that V is in the class O(w). Next we let v ∈ ΠSMD be such that for each
i ∈ S,

d∑
k=1

bk(x, i, v(x, i))
∂V (x, i)
∂xk

+
∑
j∈S

λij(x, v(x, i))V (x, j) + c(x, i, v(x, i))

= inf
u∈U


d∑
k=1

bk(x, i, u)
∂V (x, i)
∂xk

+
∑
j∈S

λij(x, u)V (x, j) + c(x, i, u)

 a.e.

Suppose that for some i′ ∈ S, there exist δ > 0 such that the set

D =
{
x ∈ Rd : LvV (x, i′) ≤ ρ∗ − c

(
x, i′, v(x, i′)

)
− δ
}

has positive Lebesgue measure. By Ito’s formula

Evx,i
[
V
(
X(t), S(t)

)]
− V (x, i) = Evx,i

[∫ t

0
LvV

(
X(s), S(s)

)
ds

]
.

This is justified because V is O(w). Therefore,

Evx,i
[
V
(
X(t), S(t)

)]
− V (x, i) ≤ Evx,i

[∫ t

0

[
ρ∗ − c

(
X(s), S(s), v(X(s), S(s))

)]
ds

]
− δEvx,i

[∫ t

0
I
{
X(s) ∈ D,S(s) = i′

}
ds

]
.
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Dividing by t, letting t→∞, and using Lemma 6.3, we have

ρv ≤ ρ∗ − δηv
(
D × {i′}

)
.

Lemma 4.1 implies that ηv is mutually absolutely continuous with respect to the
Lebesgue measure. Therefore, ηv

(
D × {i′}

)
> 0. Hence, ρv < ρ∗, which contradicts

the optimality of v∗. Thus, for each i ∈ S,

inf
u∈U

{
LuV (x, i) + c(x, i, u)

}
= ρ∗ a.e.(6.22)

Similar arguments as in the proof of Theorem 6.2 establish that V ∈ C2,γ(Rd × S),
where 0 < γ < 1, γ arbitrarily close to 1. We now proceed to show uniqueness.
Let (V ′, ρ′) be another solution of (6.15) in the desired class satisfying V ′(0, i0) = 0.
Using Ito’s formula and Lemma 6.3, it again follows that ρ′ = ρ∗. Therefore,

Lv
∗(
V ′(x, i)− V (x, i)

)
≥ 0.

Let
(
X(t), S(t)

)
be the process governed by v∗ and with initial law ηv∗ . Then,

M(t) := V ′
(
X(t), S(t)

)
− V

(
X(t), S(t)

)
is a submartingale satisfying

sup
t≥0

Ev
∗ |M(t)| ≤ C ′1 + C ′2

∑
i∈S

∫
Rd
w(x, i)ηv∗(dx, i) <∞,

by Lemma 6.3, where C ′1, C ′2 are suitable constants. Here we are using the fact
that both V and V ′ are of O(w). By the submartingale convergence theorem, M(t)
converges a.s. Since

(
X(t), S(t)

)
is ergodic and irreducible under v∗, it follows that

V ′(x, i)− V (x, i) must be constant a.s. This constant must be zero, since V ′(0, i0)−
V (0, i0) = 0.

Remark 6.2. For the stable case we have carried out our analysis under the
Lyapunov condition (C1). Analogous results can be derived under the condition
(C2).

7. Conclusions. We have analyzed the optimal control of switching diffusions
with a pathwise average cost criterion. Under certain conditions we have established
the existence of a stable, nonrandomized Markov policy which is a.s. optimal in the
class of all admissible policies. Also, we demonstrate the existence of a unique solution
to the associated HJB equations in C2, under varying conditions, and the optimal
policy is characterized as a minimizing selector of the Hamiltonian. We have applied
our results to a manufacturing model of Bielecki and Kumar and have shown that
our methodology affords both greater generality and ease of solution. By studying
the recurrence and ergodic properties of switching diffusions we have also obtained
two new results in partial differential equations, viz. a strong maximum principle and
Harnack’s inequality for a weakly coupled elliptic system.

Appendix. This appendix is devoted to the proof of Theorem 4.1.
Given a domain Ω ⊂ Rd, a real function u defined on Ω×S is viewed as a vector-

valued function u = (u1, . . . , uN ), with each component ui being a real function on
Ω.
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Consider a second order operator L defined by (note that Lk is different from the
operator in (3.7))

(Lu)k(x) := Lkuk(x) +
∑
j∈S
j 6=k

ckj(x)uj(x) , k ∈ S,

Lk :=
d∑

i,j=1

akij(x)
∂2

∂xi∂xj
+

d∑
i=1

bki (x)
∂

∂xi
+ ckk(x) .(A.1)

Let m,m, γ, and εΩ be given positive constants, the last depending on the choice of a
bounded domain Ω. We denote by L = L(m,m, γ, εΩ) the class of all such operators
L, with coefficients akij(·) ∈ C0,1(Rd) and bki (·), ckj(·) ∈ L∞(Rd), satisfying

(A.2) m‖ζ‖2 ≤
d∑

i,j=1

akij(x)ζiζj ≤ m‖ζ‖2 for all x, ζ ∈ Rd, k ∈ S.

(A.3) ‖bki ‖∞ ≤ m, ‖ck`‖∞ ≤ m and ‖akij(x)− akij(y)‖∞ ≤ γ‖x− y‖ for all
x, y ∈ Rd, i, j ∈

{
1, . . . , d

}
, k, ` ∈ S.

(A.4)
∑
i∈S

cki(·) = 0 and ckj ≥ 0, for j 6= k.

(A.5) The matrix C (x; εΩ) :=
[
cij(x) : cij(x) ≥ εΩ , i 6= j

]
is irreducible at each

x ∈ Ω.
We denote by UΩ the class of all nonnegative functions u ∈W 2,d

`oc (Ω×S)
⋂
C0(Ω×

S), satisfying Lu = 0 in Ω, for some L ∈ L. If ξ ∈ R, then u ≥ ξ is to be interpreted
as ui ≥ ξ for all i ∈ S, and if ξ = (ξ1, . . . , ξN ) ∈ RN , then u ≥ ξ ⇐⇒ ui ≥ ξi for all
i ∈ S. For better clarity, we denote all RN -valued quantities by a bold letter. Also,
operations such as “inf” on RN -valued functions are meant to be componentwise. If
Γ is a closed subset of Ω, we define, for x ∈ Ω and ξ ∈ RN+ ,

Ψx
(
UΩ , Γ ; ξ

)
:= inf

u∈UΩ

{
u(x) : u ≥ ξ on Γ

}
.

Deviating from the usual vector space notation, if D is a cube in Rd and δ > 0,
δD denotes the cube which is concentric to D and whose edges are δ times as long.
For a measurable set A ⊂ Rd, |A| denotes the Lebesgue measure of A, while B(A)
and Ld(A) denote the sets of real-valued, measurable functions on A such that

‖f‖B(A) := ess sup
x∈A

|f(x)| <∞ ∀ f ∈ B(A)

and

‖f‖d;A :=
(∫

A

|f(x)|ddx
)1/d

<∞ ∀ f ∈ Ld(A) .

We use quite frequently the following comparison principle, which can be viewed
as a weaker version of the maximum principle in that it holds even without condition
(A.5): If ϕ,ψ ∈W 2,d

`oc (Ω×S)
⋂
C0(Ω×S) satisfy Lϕ ≤ Lψ in Ω and ϕ ≥ ψ on ∂Ω,

then ϕ ≥ ψ in Ω. The same comparison principle holds for ϕ,ψ ∈W 2,d
`oc (Ω)

⋂
C0(Ω)

relative to the set of operators {Lk}k∈S as defined in (A.1).
We start with a measure-theoretic result, announced in [19].



1980 M. GHOSH, A. ARAPOSTATHIS, AND S. MARCUS

LEMMA A.1. Let K ⊂ Rd be a cube, Γ ⊂ K be a closed subset, and 0 < α < 1.
Define

Q :=
{
Q : Q is a subcube of K and |Q

⋂
Γ | ≥ α|Q|

}
,

Γ̃ :=
⋃
Q∈Q

(
3Q
⋂
K) .

Then either Γ̃ = K or |Γ̃ | ≥ 1
α |Γ |.

Proof. If |Γ | ≥ α|K|, then K ∈ Q and Γ̃ = K. So we assume |Γ | < α|K|
or, equivalently, K /∈ Q. We subdivide K into 2d congruent subcubes with disjoint
interiors. We select the ones in Q, while the remaining ones are similarly subdivided
and the process is repeated indefinitely. Let Q0 be the collection thus obtained, and
with Q̂ denoting the ancestor of Q, we define

Γ̂ :=
⋃

Q∈Q0

Q̂.

Clearly, Q̂ ⊂ 3Q
⋂
K; hence, Γ̃ ⊃ Γ̂ . Note that, discarding repetitions, Γ̂ can be

represented as a disjoint union of cubes Q̂ which are not in Q. Therefore, each
member Q̂ of this union satisfies |Q̂

⋂
Γ | < α|Q̂|, and by σ-additivity, we obtain

|Γ̂
⋂
Γ | < α|Γ̂ | ≤ α|Γ̃ | .

By the regularity properties of the Lebesgue measure, |Γ̂
⋂
Γ | = |Γ | and the proof is

complete.
Next we state without proof a ramification of the weak maximum principle of

A. D. Aleksandroff.
LEMMA A.2. There exist constants C1 > 0 and κ0 ∈ (0, 1] such that if D ⊂ Rd is

any cube of volume |D| ≤ κ0 and ϕ ∈W 2,d
`oc (D)

⋂
C0(D), f ∈ Ld(D) satisfy Lkϕ ≥ f

in D, and ϕ = 0 on ∂D for some L ∈ L, then

sup
x∈D

{
ϕ(x)

}
≤ C1|D|1/d‖f‖d;D .

For the remainder of this appendix, D will denote an open cube in Rd of volume
not exceeding the constant κ0 in Lemma A.2.

LEMMA A.3. There exist constants β0 > 0 and α0 < 1 such that, if Γ is a closed
subset of some cube D ⊂ Rd, satisfying |Γ | ≥ α0|D|, then

inf
x∈ 1

3D
Ψx
(
UD, Γ ; ξ

)
≥ β0ξ ∀ ξ ∈ RN+ .

Proof. Observe that if u ∈ UD, then each component uk satisfies Lkuk ≤ 0 in D.
Define ϕ′, ϕ′′ ∈W 2,d

`oc (D)
⋂
C0(D) by

Lkϕ
′(x) = −IΓ (x), Lkϕ

′′(x) = −IΓ c(x) in D

and ϕ′(x) = ϕ′′(x) = 0 on ∂D .

Then ϕ := ϕ′ + ϕ′′ satisfies Lkϕ = −1 in D and ϕ = 0 on ∂D. Without loss of
generality, suppose that D is centered at the origin and consider the function

ψ(x) :=
d∏
i=1

(
|D|2/d − 4x2

i

)
.
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Note that ψ = 0 on ∂D and ψ > 0 in D. In addition, there exists a positive constant
C2 such that

inf
x∈ 1

3D

{
ψ(x)

}
≥ C2|D|2/d‖Lkψ‖B(D) ∀ L ∈ L .

Therefore, by the comparison principle,

ϕ(x) ≥ ψ(x)
‖Lkψ‖B(D)

≥ C2|D|2/d ∀ x ∈ 1
3D .(A.6)

Using Lemma A.2, we obtain

ϕ′ ≤ C1|D|1/d|Γ |1/d = C1|D|2/d
(
|Γ |
|D|

)1/d
,

ϕ′′ ≤ C1|D|1/d|Γ c|1/d = C1|D|2/d
(

1− |Γ ||D|
)1/d

.

(A.7)

By (A.6) and (A.7),

ϕ′(x) ≥ C2|D|2/d − C1|D|2/d
(

1− |Γ ||D|
)1/d

∀ x ∈ 1
3D .

On the other hand, since Lkϕ′ = 0 in D \ Γ and ϕ′ = 0 on ∂D, the comparison
principle yields

inf
x∈ 1

3D

{
uk(x)

}
≥ ξk

C2 − C1

(
1− |Γ ||D|

)1/d

C1

(
|Γ |
|D|

)1/d .(A.8)

Selecting α0 to satisfy

α0 ≥ 1−
( C2

2C1

)d
,

(A.8) yields

inf
x∈ 1

3D

{
uk(x)

}
≥ C2ξk

2C1
.

Hence, the claim follows with β0 = C2
2C1

.
LEMMA A.4. For each δ > 0, there exists a constant k′δ > 0 such that if Q ⊂

(1− δ)D is a subcube of an open cube D ⊂ Rd, then

Ψx
(
UD,

1
3Q; ξ

)
≥ k′δξ ∀ x ∈ 3Q

⋂
(1− δ)D ∀ ξ ∈ RN+ .

Proof. Let B(r) ⊂ Rd denote the ball of radius r centered at the origin. We claim
that there exists a constant m0 > 0 such that if r ≤ 1, then

inf
x∈B( 3r

4 )
Ψx
(
UB(r), B

(
r
4

)
; ξ
)
≥ m0 ξ ∀ ξ ∈ RN+ .(A.9)

In order to establish (A.9) we use the function

ϕ(x) := exp
{
a
(

1− ‖x‖
2

r2

)}
− 1 , a := m

m (16d+ 2) , x ∈ B(r) ,
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which satisfies Lkϕ(x) ≥ 0 for all L ∈ L, provided ‖x‖ ≥ r
4 and r ≤ 1. By the

comparison principle, (A.9) holds with

m0 =
e

7a
16 − 1

e
15a
16 − 1

.

It follows that if B(r, y) is a ball of radius r centered at y, and x is an arbitrary point
in D such that the distance between ∂D and the line segment joining x and y is at
least r, then

Ψx
(
UD, B

(
r
4 , y
)
; ξ
)
≥ (m0)` ξ , with ` =

⌈
4‖x−y‖−r

2r

⌉
∀ ξ ∈ RN+ .(A.10)

Choosing r = min
{ 2

3 ,
δ
2

}
|Q|1/d and applying (A.10), an easy calculation shows that

the result holds with

k′δ := m
`(δ)
0 , `(δ) :=

⌈ 6
√
d

min{1, δ}

⌉
.

LEMMA A.5. Suppose that there exist constants ε and θ such that if Γ ⊂ (1− δ)D
is a closed subset of some cube D and ξ ∈ RN+ , then

inf
x∈ 1

3D
Ψx
(
UD, Γ ; ξ

)
≥ εξ whenever |Γ | ≥ θ|D| .

Then there exists a constant kδ > 0 such that

inf
x∈ 1

3D
Ψx
(
UD, Γ ; ξ

)
≥ εkδξ whenever |Γ | ≥ α0θ|D| ,

where α0 is the constant in Lemma A.3.
Proof. Suppose |Γ | ≥ α0θ|D| and let y ∈ Γ̃ , with Γ̃ as defined in Lemma A.1

corresponding to α = α0 and K = (1 − δ)D. Then there exists a subcube Q ⊂ K
such that |Γ

⋂
Q| ≥ α0|Q| and y ∈ 3Q

⋂
K. We use the identities

Ψx
(
UD, Γ ; ξ

)
≥ Ψx

(
UD, Γ̃ ; inf

y∈Γ̃
Ψy
(
UD, Γ ; ξ

))
(A.11)

and

Ψy
(
UD, Γ ; ξ

)
≥ Ψy

(
UD,

1
3Q; inf

z∈ 1
3Q
Ψ z
(
UD, Γ ; ξ

))
(A.12)

≥ Ψy
(
UD,

1
3Q; inf

z∈ 1
3Q
Ψ z
(
UQ, Γ

⋂
Q; ξ

))
.

From Lemma A.3, we have

inf
z∈ 1

3Q
Ψ z
(
UQ, Γ

⋂
Q; ξ

)
≥ β0ξ .(A.13)

From Lemma A.4, we obtain Ψy
(
UD,

1
3Q;β0ξ

)
≥ β0k

′
δξ, for all y ∈ 3Q

⋂
K. Hence,

combining (A.12) and (A.13) yields

inf
y∈Γ̃

Ψy
(
UD, Γ ; ξ

)
≥ kδξ , with kδ := β0k

′
δ .(A.14)
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From Lemma A.1, |Γ̃ | ≥ 1
α0
|Γ | ≥ θ|D|. Therefore, by hypothesis,

inf
x∈ 1

3D
Ψx
(
UD, Γ̃ ; kδξ

)
≥ εkδξ ,

which along with (A.11) and (A.14) yield the desired result.
THEOREM A.1. The following estimates hold.

(i) Let D be a cube and Γ ⊂ (1− δ)D a closed subset. Then for all ξ ∈ RN+ ,

inf
x∈ 1

3D
Ψx
(
UD, Γ ; ξ

)
≥ β0

(
|Γ |
|D|

)ρ(δ)
ξ , ρ(δ) :=

log kδ
logα0

,(A.15)

where the constants α0, β0, and kδ are as in Lemmas A.3 and A.5.
(ii) There exists a real function F defined in [0, 1], with F (θ) > 0 if θ > 0, such

that if Γ ⊂ D is a closed subset of a cube D, then

inf
x∈ 1

3D
Ψx
(
UD, Γ ; ξ

)
≥ F

(
|Γ |
|D|

)
ξ ∀ ξ ∈ RN+ .(A.16)

Proof. Part (i) is a direct consequence of Lemmas A.3 and A.5. For part (ii),
choose δ = |Γ |

4d|D| . Then,

|Γ
⋂

(1− δ)D|
|D| ≥ |Γ ||D| −

(
1− (1− δ)d

)
≥ |Γ ||D| − dδ ≥

3|Γ |
4|D| .(A.17)

Since

Ψx
(
UD, Γ ; ξ

)
≥ Ψx

(
UD, Γ

⋂
(1− δ)D; ξ

)
,

the bound in (A.16) follows from (A.15) and (A.17), with

F (θ) := β0
( 3θ

4

)ρ( θ4d )
.

Definition A.1. If A ⊂ Ω we define the oscillation of a function u ∈ C0(Ω × S)
over A by

osc(u ;A) = max
k∈S

sup
x∈A

{
uk(x)

}
−min

k∈S
inf
x∈A

{
uk(x)

}
.

The oscillation of a function in C0(Ω) is defined in the usual manner.
THEOREM A.2. If D is a cube, u ∈ UD and q = F

( 1
2

)
, with F (·) as defined in

Theorem A.1 (ii), then

osc(uk; 1
3D) ≤

(
1− q

2

)
osc(u ;D) ∀ k ∈ S .

Proof. Let

Ma
k := sup

x∈ 1
3D

{
uk(x)

}
, Ma := max

k∈S
Ma
k ,

ma
k := inf

x∈ 1
3D

{
uk(x)

}
, ma := min

k∈S
ma
k,
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and M b, mb be the corresponding quantities relative to D. Consider the sets

Γ
(k)
1 :=

{
x ∈ D : uk(x) ≤ Mb+mb

2

}
,

Γ
(k)
2 :=

{
x ∈ D : uk(x) ≥ Mb+mb

2

}
.

Suppose |Γ (k)
2 | ≥ 1

2 |D|. Since u −mb is nonnegative and uk −mb ≥ Mb−mb
2 in Γ

(k)
2 ,

applying Theorem A.1 (ii) yields

uk(x)−mb ≥ qMb−mb
2 ∀ x ∈ 1

3D .

Consequently, ma
k ≥ mb + qM

b−mb
2 , and since Ma ≤M b, we obtain

Ma −ma
k ≤M b −mb − qMb−mb

2 ≤
(
1− q

2

)
(M b −mb) .(A.18)

On the other hand, if |Γ (k)
1 | ≥ 1

2 |D|, then using the nonnegative function M b−u , we
similarly obtain

Ma
k −ma ≤

(
1− q

2

)
(M b −mb) ,(A.19)

and the result follows by (A.18)–(A.19).
THEOREM A.3. There exists a constant M1 > 0 such that, for any u ∈ UD,

sup
x∈ 1

9D

{
ui(x)

}
≤M1 max

k∈S
inf
x∈ 1

9D

{
uk(x)

}
∀ i ∈ S .

Proof. Let β0 be as given in Lemma A.3, and with ρ(·) and q as in (A.15) and
Theorem A.2, respectively, define

ρ :=
1

dρ(2
3 )

and q0 :=
(1− q

4 )
(1− q

2 )
.(A.20)

We claim that the value of the constant M1 may be chosen as

M1 :=
4q0

qβ0

[
27N1/d

2
(
qρ0 − 1

)]1/ρ

.(A.21)

We argue by contradiction. Suppose u ∈ UD violates this bound. Let
{
x(1), . . . , x(N)

}
denote the points in 1

9D where the minima of u are attained; i.e.,

inf
x∈ 1

9D

{
uk(x)

}
= uk(x(k)) , k ∈ S .

Without loss of generality, suppose that maxk∈S
{
uk(x(k))

}
= 1 (u can always be

scaled to satisfy this) and that for some y0 ∈ 1
9D and k0 ∈ S, uk0(y0) = M > aM1

with a > 1. Using the estimate for the growth of the oscillation of u in Theorem A.2,
we will show that u has to be unbounded in 1

3D. By hypothesis, M
a exceeds M1 in

(A.21), and in order to facilitate the construction that follows, we choose to express
this as

1
9 + 3N1/d( 4a

qβ0M
)ρ
∞∑
n=0

( 1
q0

)nρ < 1
3 .(A.22)
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For ξ > 0, define

D(ξ)
k :=

{
z ∈ 1

3D : uk(z) ≥ ξ
}
, D(ξ) :=

⋃
k∈S
D(ξ)
k .

If 1k ∈ RN+ stands for the vector whose kth component is equal to 1 and the others
0, then

u(x(k)) ≥ Ψx(k)

(
UD,D(ξ)

k ; ξ1k
)

∀ k ∈ S ,(A.23)

while, on the other hand, Theorem A.1 yields,

Ψx(k)

(
UD,D(ξ)

k ; ξ1k
)
≥ β0

(
|D(ξ)
k |
|D|

)ρ( 2
3 )

ξ1k ∀ k ∈ S .(A.24)

By (A.23)–(A.24) and using (A.20), we obtain the estimate

|D(ξ)| ≤
∑
k∈S
|D(ξ)
k | ≤

∑
k∈S

(
uk(x(k))
ξβ0

)ρd
|D| ≤ N

(
1
ξβ0

)ρd
|D| ∀ ξ > 0 .(A.25)

Choosing ξ = qM
4 , we have by (A.25)∣∣∣∣{x ∈ 1

3D : max
k∈S

{
uk(x)

}
≥ qM

4

}∣∣∣∣ ≤ N( 4
qβ0M

)ρd|D| .

Hence, if Q0 is a cube of volume |Q0| = N
( 4a
qβ0M

)ρd|D| centered at y0, then

osc(uk0 ;Q0) ≥
(
1− q

4

)
M .(A.26)

By Theorem A.2, we obtain from (A.26)

osc(u ; 3Q0) ≥
(1− q

4 )
(1− q

2 )
M = q0M .(A.27)

Since u is nonnegative, (A.27) implies that there exists y(1) ∈ 3Q0 and k1 ∈ S such
that

uk1(y(1)) ≥ q0M .

Note that (A.22) implies that 3Q0 ⊂ 1
3D. Therefore, we can repeat the argument,

now choosing ξ = q0
qM
4 in (A.25) and a cube Q1 of volume N

( 4a
q0qβ0M

)ρd|D| centered
at y(1), to conclude that there exists y(2) ∈ 3Q1 and k2 ∈ S such that uk2(y(2)) ≥
q2
0M . Inductively, we can construct a sequence

{
y(n), kn, Qn

}∞
n=0 satisfying, for all

n = 0, 1, . . . ,

y(0) = y0 ∈ 1
9D
⋂
Q0 , y(n) ∈ Qn

⋂
3Qn−1 ,

|Qn|1/d = N
1/d( 1

q0

)nρ( 4a
qβ0M

)ρ|D|1/d ,
ukn(y(n)) ≥ qn0M .(A.28)

The inequality in (A.22) guarantees that y(n) ∈ 1
3D for all n. But (A.28) implies that

u is unbounded in 1
3D, which is a contradiction.
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Remark A.1. By the comparison principle, Lemmas A.3–A.5 and Theorem A.1
clearly hold unmodified for the class of Lk-superharmonic, nonnegative functions, i.e.,
functions u ∈W 2,d

`oc (D)
⋂
C0(D), satisfying Lku ≤ 0 in D, for some k ∈ S and L ∈ L.

This fact will be used in the next result.
LEMMA A.6. Let L ∈ L, k ∈ S and suppose ϕ is a solution to the Dirichlet

problem Lkϕ = −f in a cube D ⊂ Rd, with ϕ = 0 on ∂D, with f satisfying

0 ≤ f(x) ≤M ∀ x ∈ D and ‖f‖d;D ≥ ε > 0

for some constants M and ε. Then there exists a constant C ′ = C ′(M, ε,m,m, γ)
such that

inf
x∈ 1

3D

{
ϕ(x)

}
≥ C ′.

Proof. First note that the Dirichlet problem as defined has a unique strong solu-
tion ϕ ∈ W 2,p

`oc (D)
⋂
C0(D) for all p ∈ [d,∞). We argue by contradiction. Suppose

there exists a sequence of operators
{
L(n)

}∞
n=1 ⊂ L and a sequence of functions{

f (n)
}∞
n=1, in accord with the hypotheses of the lemma, such that the corresponding

solutions
{
ϕ(n)

}∞
n=1 of L(n)

k ϕ(n) = −f (n) satisfy

inf
x∈ 1

3D

{
ϕ(n)(x)

}
<

1
n2 , n = 1, 2, . . . .

Thus, by Theorem A.1,∣∣∣{x ∈ D : ϕ(n)(x) ≥ 1
n

}∣∣∣ ≤ ( 1
β0n

)ρd
|D| ,

with ρ as defined in (A.20). Since the sequence ϕ(n) is bounded in L∞(D) (by Lemma
A.2), it follows that ϕ(n) → 0 in Lp(D), as n → ∞, for all p ∈ [1,∞). Let D′ = δD,
with δ < 1, be a subcube of D, and let ‖·‖2,p;D′ denote the standard norm of W 2,p(D′).
We use the well-known estimate

‖ϕ(n)‖2,p;D′ ≤ C ′′
(
‖ϕ(n)‖p;D + ‖f (n)‖p;D

)
,

for some constant C ′′ = C ′′(|D|, p, δ, d,m,m, γ), to conclude that the first and second
derivatives of ϕ(n) converge weakly to 0 in Lp(D′), for all p ∈ [1,∞). In turn,
since W 2,p

0 (D′) ↪→W 1,p
0 (D′) is compact for p > d, using the standard approximation

argument we deduce that ∂ϕ(n)

∂xi
converges in Lp(D′) strongly for all i = 1, . . . , d. Also,

since the second order coefficients of L(n)
k are uniformly Lipschitz, we can extract

a subsequence, along which they converge uniformly. Combining all the previous
arguments, we deduce that the sequence

{
L

(n)
k ϕ(n)

}
converges weakly to 0 in Lp(D′),

p ∈ [1,∞). On the other hand, if we choose δ ≥ (1 − ε
2M |D| )

1/d, an easy calculation
yields ∫

D′
f (n)(x) dx ≥ ε

2
, n = 1, 2, . . . ,

resulting in a contradiction.
We pause to note that (A.5) has not been utilized in any of the results obtained

thus far. It will be used in the next result to provide the necessary “coupling” between
distinct components of the harmonic function.
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LEMMA A.7. For each cube D ⊂ Rd there exists a constant M2 > 0 such that, for
any u ∈ UD,

inf
x∈ 1

9D

{
ui(x)

}
≤M2 inf

x∈ 1
9D

{
uj(x)

}
∀ i, j ∈ S .

Proof. Let εD be the constant in hypothesis (A.5). Define a collection of functions
{ϕij(x), i, j ∈ S} ⊂W 2,d

`oc ( 1
3D)

⋂
C0( 1

3D), relative to some L ∈ L, by

Liϕij(x) = −cij(x) in 1
3D and ϕij(x) = 0 on ∂

( 1
3D
)

if i 6= j,

ϕij(x) = 0 if i = j ,(A.29)

and let Φ(x), C (x) denote the matrices with elements
{
ϕij(x)

}
and

{
cij(x)

}
i6=j ,

respectively. By (A.4), there exists a constant irreducible matrix CD ⊂ RN×N , with
elements equal to 0 or 1 such that∣∣∣{x ∈ 1

3D : C (x) ≥ εDCD

}∣∣∣ ≥ 1
N23d |D| .(A.30)

It follows by (A.29), (A.30), and Lemma A.6 that there exists a constant ε′D > 0 such
that

Φ(x) ≥ ε′DCD ∀ x ∈ 1
9D ,(A.31)

and (A.31) holds relative to any L ∈ L used to generate ϕij . Therefore, if u ∈ UD

and we define u := inf
x∈ 1

9D
u(x) and u ′ := inf

x∈ 1
3D

u(x), it is a direct consequence of the

comparison principle that

u(x) ≥ Φ(x)u ′ ∀ x ∈ 1
3D .(A.32)

On the other hand, by Theorem A.1,

u ′ ≥ F
( 1

9d
)
u .(A.33)

By (A.31)–(A.33),

u(x) ≥ ε′DF
( 1

9d
)
CDu ∀ x ∈ 1

9D ,

which yields u ≥ ε′DF
( 1

9d
)
CDu . In turn, the irreducibility of CD implies that

u i ≥
(
ε′DF

( 1
9d
))N−1

uj ∀ i, j ∈ S .

Combining Theorem A.3 and Lemma A.7 and letting M := M1M2, we have the
following theorem.

THEOREM A.4. For each cube D ⊂ Rd, |D| ≤ κ0, there exists a constant M > 0
such that, for any u ∈ UD,

ui(y) ≤Muj(x) ∀ x, y ∈ 1
9D ∀ i, j ∈ S .

Theorem 4.1 easily follows from Theorem A.4 by covering the domain Ω with
a collection of congruent cubes D of suitable size. For an elegant exposition of this
technique, see [11, p. 153]. The existence of a constant εΩ > 0 satisfying (A.5) is
guaranteed by the continuity and irreducibility conditions in Assumption 3.1 (i) and
(iii), along with the compactness of U . Concerning (A.3), (A.4), and the upper bound
in (A.2), observe that for each bounded domain Ω, Assumption 3.1 (i) implies the
existence of constants m and γ satisfying all these conditions in Ω. This suffices for
our purposes.
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Abstract. Using averaging techniques and developing proper algebraic formalisms, we study
the limiting process of ordinary differential equations with highly oscillatory right-hand sides. We
give sufficient conditions, generalizing earlier work by Kurzweil and Jarnik, for a sequence {uj =
(uj1, . . . , u

j
m)} ⊆ L1([0, T ],Rm) to be such that, for every choice of smooth vector fields fk, k =

1, . . . ,m, on a smooth manifold, the trajectories of ẋ =
∑m
k=1 u

j
k(t)fk(x) converge to the trajectories

of an “extended system” ẋ =
∑r
k=1 vk(t)fk(x), where the new directions fm+1, . . . , fr are Lie

brackets of f1, . . . , fm.

Key words. control affine systems, extended inputs, averaging, Lie brackets, continuous depen-
dence

AMS subject classifications. 34E10, 34C29, 34A12, 93B29, 93C15

PII. S0363012994268667

1. Introduction. Consider control-affine systems of the form

ẋ =
m∑
k=1

uk(t)fk(x),(1)

where f1, . . . , fm are smooth vector fields on a smooth manifold M and the inputs u =
(u1, . . . , um) are functions belonging to L1([0, T ],Rm). It is well known in the control
theory literature that trajectories of (1) generated by a sequence of highly oscillatory
inputs may converge to a function that is no longer a trajectory of (1). In many cases it
happens that the limiting function is a solution of a differential equation whose right-
hand side involves not only the vector fields f1, . . . , fm but also various Lie brackets of
them; cf. the example below. The purpose of this paper is to give a systematic study
of the Lie brackets that can occur in the limit and to clarify the underlying algebraic
structures. By developing proper algebraic formalisms, we can study the limiting
processes of (1) corresponding to sequences {uj} ⊆ L1([0, T ],Rm) in pure algebraic
levels, and it turns out that the limiting processes are closely related to the limiting
behavior of the Chen–Fliess series determined by the uj . (The Chen–Fliess series
techniques have been widely used in control theory, e.g., by Fliess, Sussmann, etc.; cf.
[4], [9], [11].) We then show that under very general conditions the trajectories of (1)
generated by a sequence {uj} ⊆ L1([0, T ],Rm) converge to trajectories of a system of
the form

ẋ =
r∑

k=1

vk(t)fk(x),(2)

where the first m vector fields f1, . . . , fm are the same as in (1), and fm+1, . . . , fr are
Lie brackets of the fk, k ∈ {1, . . . ,m}, so the limiting equation involves resonance
terms of Lie brackets of f1, . . . , fm.

∗Received by the editors June 1, 1994; accepted for publication (in revised form) August 21, 1996.
http://www.siam.org/journals/sicon/35-6/26866.html
†Department of Mathematics, Rutgers University, New Brunswick, NJ 08903 (wliu@hilbert.

rutgers.edu).
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For a simple illustration of the phenomenon that Lie brackets can occur in limiting
equations, consider the system

ẋ1 = u1,

ẋ2 = u2,

ẋ3 = u2x1,

with initial condition (0, 0, 0). If uj(t) = j
1
2 (cos jt, sin jt), then the uj “converge to 0”

in the sense that their indefinite integrals U j(t) =
∫ t

0 u
j(s) ds converge to 0 uniformly.

So, if we let u∞ = (0, 0), we might think that the solutions xj converge uniformly to
(0, 0, 0). However, a simple calculation shows that this is not so, and in fact the xj

converge uniformly to x∞ = (0, 0, t2 ). On the other hand, the vector fields f1, f2 have
components (1, 0, 0) and (0, 1, x1), respectively. So the Lie bracket f3 = [f1, f2] has
components (0, 0, 1), and the limiting function x∞ turns out to satisfy ẋ = 1

2f3(x).
Using integration by parts, it is easy to show that the sequence {uj} in the

above example has the stronger convergence property that for every initial condition
x(0) = p ∈ Rn, every choice of C2 vector fields f1, f2 on Rn, the solutions of ẋ =
uj1(t)f1(x) +uj2(t)f2(x), x(0) = p are defined on [0, T ] for j large enough and converge
uniformly to the solution x∞ of ẋ = 1

2 [f1, f2](x), x(0) = p, provided only that the
latter exists on [0, T ]. In this paper we will explore these “universal convergence”
properties for sequences {uj} ⊆ L1([0, T ],Rm). We will give general convergence
results which in particular include the above example as a special case.

The main technical difficulty of studying the limiting process of (1) corresponding
to sequences {uj} is not to prove the convergence of trajectories but to show that the
limiting equations are of the form (2) and to have simple formulas to compute the vk.
In fact, it is fairly easy to establish the convergence of trajectories and to show that
the right-hand sides of the limiting equations are equal to finite linear combinations
of functions that involve Jacobian matrices of f1, . . . , fm, but it is not obvious a priori
that these linear combinations give rise to (time-varying) vector fields. In [5], [6], [7],
Kurzweil and Jarnik have studied the problem of finding the proper forms of limiting
equations for some special input sequences. For those special cases, using lengthy
combinatorial proofs, they have shown that the limiting equations are of the form
(2). Here we provide a different approach. Using proper algebraic formalisms, that
the limiting equations are of the form (2) follows naturally, and we can give simple
algebraic formulas to compute the vk.

The key point for our algebraic formalism is to reformulate the problem of con-
vergence of trajectories in terms of convergence of inputs. For instance, we can refor-
mulate the universal convergence property of the sequence {uj} in the above example
in the language of “input convergence” as follows. First we introduce formal non-
commuting indeterminates X1, X2, . . . , Xm and define an extended input value (EIV)
to be a linear combination of X1, . . . , Xm and various Lie brackets such as [X1, X2],
[X1, [X1, X2]], etc. Define an extended input to be a Lebesgue integrable function on
an interval [0, T ] whose values are EIVs. So, for example (if m = 2), an expression
such as

v(t) = v1(t)X1+v2(t)X2+v3(t)[X1, X2]+v4(t)[X1, [X1, X2]]+v5(t)[X2, [X1, X2]],(3)

with integrable coefficient functions vk on [0, T ], is an extended input. It is clear
that an ordinary input can then be regarded in a natural way as a special kind of
extended input, namely, one that contains only terms with X1, . . . , Xm but no higher-
order Lie brackets. For any m-tuple of vector fields (f1, . . . , fm) on M , extended
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inputs can be plugged into a control system such as (1) exactly as ordinary inputs
can, by substituting the vector fields fk for the indeterminates Xk. The results are
(nonautonomous) ordinary differential equations. For example, the extended input
above gives rise to the following differential equation:

ẋ = v1(t)f1(x)+v2(t)f2(x)+v3(t)[f1, f2](x)+v4(t)[f1, [f1, f2]](x)+v5(t)[f2, [f1, f2]](x).

Therefore we can talk about trajectories corresponding to an extended input once
the vector fields f1, . . . , fm are known. (This requires only that the fk be smooth
enough for the appropriate Lie brackets to exist.) We can then say that a sequence
{uj} of ordinary inputs converges to an extended input u∞ if for every initial con-
dition x(0) = p, every choice of sufficiently smooth vector fields fk, the solutions xj

generated by the uj converge uniformly to the solution x∞ generated by u∞.1 With
this terminology, our example above simply says that the ordinary inputs uj(t) =
j

1
2 cos(jt)X1 + j

1
2 sin(jt)X2 converge to the extended input u∞(t) = 1

2 [X1, X2]. In
this paper, we will give various sufficient conditions for a sequence of ordinary inputs
to converge to an extended input.

The convergence theorems in this paper are high-order generalizations of the con-
vergence results for control affine systems discussed in [13]. In there it is given a con-
vergence result that roughly says the following. A sequence {uj = uj1X1+· · ·+ujmXm}
of ordinary inputs converges to an ordinary input u∞ = u∞1 X1 + · · ·+ u∞mXm if and
only if

(c1) the indefinite integrals U j(t) =
∫ t

0 u
j(s) ds converge uniformly on [0, T ] to

U∞(t) =
∫ t

0 u
∞(s) ds; i.e., u∞ is the averaged limit of the uj .

(c2) the functions uj are uniformly bounded in L1; i.e., there exists a finite con-
stant C such that

∫ T
0 ‖u

j(t)‖dt ≤ C for all j.
This is a first-order convergence result since the limiting extended input u∞ does not
contain any high-order Lie brackets. The fact that u∞ is still an ordinary input is due
to the boundedness assumption (c2). The above example shows that if this condition
fails, it is indeed possible for the uj to converge to an extended input that is not an
ordinary input.

Our generalization of this first-order convergence result to high-order extended
inputs is as follows. Instead of (c1) we will assume that all the iterated integrals

U jI (t) def=
∫ t

0

∫ tk

0

∫ tk−1

0
. . .

∫ t2

0
ujik(tk)ujik−1

(tk−1) . . . uji1(t1)dt1 . . . dtk(4)

converge uniformly, as j →∞, to the indefinite integrals HI of certain L1 functions hI ,
for all multiindices I = (i1, . . . , ik) ∈ {1, . . . ,m}k, k = 1, 2, . . ., such that |I| def= k ≤ r.
(In that case, we will say that the uj converge to H = {HI}|I|≤r in the rth-order
iterated integral sense or, for short, that they ii(r)-converge toH.) As will be explained
in section 2, the ii(r)-convergence is equivalent to the convergence of the trajectories
for one special system, the “rth-order truncated formal system.”

Instead of (c2), we will assume an rth-order boundedness condition (c2(r)), which
states that certain sequences {ũvjI} of functions associated with the multiindices I
such that |I| = r are bounded in L1 norm. The conclusion is that the ordinary inputs

1This is not made precise yet, since the solutions may have explosions. The precise definition is
given in section 3.
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uj converge as j →∞ to an extended input u∞ given by

u∞(t) =
∑
|I|≤r

u∞I (t)[XI ],

where, for any index I = (i1, . . . , ik), we define [XI ] by

[XI ]
def= [Xi1 , [Xi2 , [. . . , [Xik−1 , Xik ] · · ·],

and the u∞I are certain integrable real-valued functions on [0, T ]. Unfortunately,
the statement of the convergence result is somewhat less transparent than might be
desired, because the limiting extended input involves the u∞I rather than the hI ,
and the boundedness condition (c2(r)) involves another family {ũvjI} of sequences of
functions. (For more applicability, the ũvjI are allowed to depend on another collection
{vjI} of sequences of functions; cf. section 2.) It turns out, however, that the u∞I and
the ũvjI can be computed from the hI , uj , and vjI by very simple algebraic formulas,
provided that everything is reformulated in an appropriate algebraic context; cf. (9)
and (18). See also (46) and (47).

One particular situation where the definition of the u∞I is extremely simple is the
case when the only terms that occur in the limit are the rth-order ones, i.e., when the
hI for |I| < r vanish. In that case the u∞I vanish for |I| < r and are equal to hI

r for
|I| = r. (This special case was studied, under stronger assumptions, in [5], [6], [7].)

In the formulation of the convergence theorems, it is convenient to let Uk(t) =∫ t
0 uk(s) ds and to rewrite equation (1) in the following form:

dx =
m∑
k=1

fk(x) dUk.(5)

However, this is not simply a rewriting of (1) since for this system we can use more
general inputs, e.g., continuous inputs with bounded variations, or Hölder continuous
inputs with Hölder exponents > 1

2 . Moreover, one can consider stochastic differential
equations, where U = (U1, . . . , Um) is a standard m-dimensional Brownian motion.
When the Uk are absolutely continuous, system (5) has no difference from (1).

In this paper we will restrict ourselves to study the limiting process of (5) corre-
sponding to a sequence {U j} of functions in BV C([0, T ],Rm). (Here BV C([0, T ],Rm)
denotes the set of Rm-valued functions on [0, T ] that are continuous and of bounded
variations.) It turns out that the limiting theorems presented in this paper are also
true if we use Hölder continuous inputs, and can be generalized to stochastic differ-
ential equations too. These will be given in forthcoming papers.

The organization of the paper is as follows. In section 2 we develop the needed
algebraic formalisms. We begin by reviewing some basic terminologies on free asso-
ciative algebras and free Lie algebras. We then introduce the concepts of extended
inputs, formal trajectories, generalized differences, etc., and study systematically the
relations between them in pure algebraic level. Using the algebraic formalisms, in
section 3, we present the main convergence theorems. In section 4 we discuss briefly
the necessity of the conditions of our main convergence theorems. We conclude the
paper with an appendix that contains the proof of a lemma and an approximation
result.

2. Algebraic preliminaries and formalisms. In this section we develop the
necessary algebraic formalisms for our convergence theorems. We follow the notation
and definitions of [11].
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2.1. Review of basic terminology on free associative algebras and free
Lie algebras. As in [11], let X = {X1, . . . , Xm} be a finite sequence of objects, which
will be called indeterminates. We let A(X) denote the free associative algebra gener-
ated over R by X. For any multiindex I = (i1, . . . , ik) with i1, . . . , ik ∈ {1, . . . ,m},
we let XI = Xi1 · · ·Xik . (There is a special multiindex I = ∅. It is understood that
X∅ = 1.) Then A(X) is the set of all sums

∑
I aIXI , where the coefficients aI are

real numbers, the summation runs over all possible multiindices I, and all but finitely
many aI vanish. Therefore the monomials XI form a basis of A(X) and every element
of A(X) is a finite linear combination of the XI .

We also consider the algebra Â(X) of all formal power series in X. The elements
of Â(X) are the formal sums

∑
I aIXI , where I ranges over all multiindices. This is

the sum as above except that the aI are no longer required to vanish for all but finitely
many I. In both A(X) and Â(X), addition is done componentwise, and multiplication
is carried out using the formula XIXJ = XIJ , where IJ is the concatenation of I
and J , namely, the multiindex obtained by writing, in order, first the components of
I and then those of J .

For any integer r ≥ 0, let us use Ar(X) to denote the free nilpotent associative
algebra of step r + 1 in the indeterminates X. Therefore Ar(X) is defined like Â(X),
except that now all the monomials XI with |I| > r are set equal to zero. (Here |I| is
the length of I; i.e., |I| = k if I = (i1, . . . , ik).) Then Ar(X) can be thought of as the
quotient of A(X) or Â(X) modulo the two-side ideal of all sums of monomials of degree
strictly larger than r. (The degree of a monomial XI is |I|.) The canonical projection
Tr(r) from Â(X) to Ar(X) is the operator that assigns to each series S ∈ Â(X)
the finite series Tr(r)(S) obtained from S by deleting all the terms of degree > r.
(The symbol Tr comes from the word “truncation.” It is used to indicate that the
map Tr(r) : Â(X) → Ar(X) is in essence a truncation map; i.e., for any S ∈ Â(X),
Tr(r)(S) is the truncation of S “up to order r.”) The kernel of Tr(r) is denoted by
Âr(X). In particular, Â0(X) is the set of all formal power series

∑
I aIXI for which

a∅ = 0. The exponential map is a well-defined bijection

exp : Â0(X)→ 1 + Â0(X),

whose inverse is a map from 1 + Â0(X) to Â0(X) denoted by “log.” (Here 1 + Â0(X)
is the subset of Â(X) that contains all the elements S such that S − 1 ∈ Â0(X).) If
S ∈ Â0(X), then exp(S) and log(1 + S) are given by the usual series

exp(S) =
∞∑
n=0

Sn

n!
,

log(1 + S) =
∞∑
n=1

(−1)(n−1)Sn

n
.

One can also define Arτ (X) to be the set of all elements of Ar(X) that are linear
combinations of monomials of degree > τ . Then Arτ (X) = Tr(r)(Âτ (X)). The
exponential map

expr : Ar0(X)→ 1 +Ar0(X)

and its inverse logr are given in the case by power series that are actually finite sums
due to the nilpotency of Ar(X).

The algebras A(X), Â(X), Ar(X) are Lie algebras in the usual way. (If A with a
product (a, b)→ ab is an associative algebra, then with the bracket product [a, b] def=



1994 WENSHENG LIU

ab−ba, A is a Lie algebra.) We let L(X) denote the Lie subalgebra of A(X) generated
by the indeterminates X1, . . . , Xm. An element S of A(X) will be said to be a Lie
element if S ∈ L(X). It is clear that an S ∈ A(X) is a Lie element iff all the
homogeneous components of S are Lie elements. (An S ∈ Â(X) is homogeneous if it
is a linear combination of monomials with equal degree.)

We can also define L̂(X) to be the set of all those elements of Â(X) whose com-
ponents are Lie brackets in X1, . . . , Xm. Therefore L̂(X) contains those S ∈ Â(X)
whose homogeneous components are Lie elements. The elements of L̂(X) are called
Lie series in X1, . . . , Xm. For each multiple index I = (i1, . . . , ik), let [XI ]

def=
[Xi1 , [Xi2 , [. . . , [Xik−1 , Xik ] · · ·]. Then L(X) and L̂(X) are spanned by the [XI ]. Nat-
urally the [XI ] are not linearly independent. There are several systematic procedures
of figuring out a basis of L(X). But we will not need this here.

Let Ĝ(X) = {exp(Z), Z ∈ L̂(X)}, the set of exponentials of the elements of L̂(X).
The Campbell–Hausdorff formula implies (cf., e.g., [3]) that Ĝ(X) is in fact a group
under the operation of multiplication in Â(X). The elements of Ĝ(X) are called
exponential Lie series. We let Lr(X) be the Lie subalgebra of Ar(X) generated by
X and define Gr(X) to be the subset of Ar(X) consisting of all the exponentials of
elements of Lr(X). Now Lr(X) is a finite-dimensional Lie algebra and Gr(X) is its
corresponding simply connected Lie group.

2.2. Polynomial inputs and formal trajectories. Let BV C[0, T ] be the set
of real-valued functions U on [0, T ] which are continuous and of bounded variations.
We will say that a function is B-continuous if it is in BV C[0, T ]. If f ∈ BV C[0, T ],
we will use TV [f ; 0, T ] to denote the total variation of f on [0, T ].

Let V be a function on [0, T ] with values in Â(X). We say that V is B-continuous
if we write V (t) =

∑
I VI(t)XI ; then all the functions VI are in BV C[0, T ].

We define two bilinear products on BV C([0, T ], A),

(F,G)→ F
⇀∗ G,

(F,G)→ F
↼∗ G,

where

(F
⇀∗ G)(t) def=

∫ t

0
F (s) dG(s),

(F
↼∗ G)(t) def=

∫ t

0
dF (s)G(s),

and A could be A(X), Â(X), or Ar(X) for some integer r ≥ 0. (Here BV C([0, T ], A)
denotes the set of B-continuous A-valued functions.) If F =

∑
I aIXI and G =∑

I bIXI , then by definition

(F
⇀∗ G)(t) =

∑
I

( ∑
J1J2=I

(aJ1

⇀∗ bJ2)(t)

)
XI =

∑
I

( ∑
J1J2=I

∫ t

0
aJ1(s)dbJ2(s)

)
XI ,

(F
↼∗ G)(t) =

∑
I

( ∑
J1J2=I

(aJ1

↼∗ bJ2)(t)

)
XI =

∑
I

( ∑
J1J2=I

∫ t

0
bJ2(s)daJ1(s)

)
XI ,

where the inner summation above runs over all ways of expressing the multiindex I
as a concatenation J1J2 of 2 indices, and the integral is the usual Riemann–Stieltjes
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integral. If F1, . . . , Fk ∈ BV C([0, T ], A), we use the conventions

(F1
⇀∗ F2

⇀∗ · · · ⇀∗ Fk)(t) = (· · · (F1
⇀∗ F2)

⇀∗ F3)
⇀∗ · · ·) ⇀∗ Fk)(t),

(F1
↼∗ F2

↼∗ · · · ↼∗ Fk)(t) = (F1
↼∗ (F2

↼∗ (· · · ↼∗ (Fk−1
↼∗ Fk) · · ·)(t).

Note that when r = 0, Ar(X) = A0(X) can be identified with R, so by definition
BV C([0, T ], A0(X)) = BV C[0, T ]. In this case

⇀∗ ,↼∗ reduce to maps from BV C[0, T ]×
BV C[0, T ] → BV C[0, T ]. Let f and g be two functions in BV C[0, T ]; then by
definition

(f
⇀∗ g)(t) =

∫ t

0
f(s) dg(s),

(f
↼∗ g)(t) =

∫ t

0
g(s) df(s).

The functions f
⇀∗ g, f ↼∗ g are clearly in BV C[0, T ].

Let us say that two B-continuous Â0(X)-valued functions V1, V2 on [0, T ] are
equivalent if V1−V2 is an element of Â0(X); i.e., V1−V2 does not depend on t. Then
the set of all B-continuous Â0(X)-valued functions is divided into equivalence classes.
Let us use P to denote the set of all equivalence classes. For each B-continuous
Â0(X)-valued function V we use V to denote the equivalence class determined by V ,
and V will be called a representative of V.

DEFINITION 1. Any element V of P will be called a polynomial input.
Therefore a polynomial input is an equivalence class V, whose representatives V

are B-continuous functions on [0, T ] with values in Â0(X). In general we will use V
to denote a polynomial input and V to denote a representative of V. But, if there is
no confusion, we sometimes write V = V to denote the equivalence class determined
by V .

DEFINITION 2. A polynomial input V is an extended input if V has a represen-
tative that is L̂(X)-valued.

An ordinary input U = (U1, . . . , Um) ∈ BV C([0, T ],Rm) can be regarded as a
polynomial input by identifying it with the equivalence class U determined by U =
U1X1 + · · ·+ UmXm. It is an extended input in fact by the above definition. In most
cases we will make no difference between U = (U1, . . . , Um) and U = U1X1 + · · · +
UmXm. We will call the equivalence class U = U an ordinary input too. Therefore
an ordinary input U is an equivalence class that has a representative U whose values
are linear combinations of the Xk, k = 1, . . . ,m.

Let V =
∑
I VIXI be an Â(X)-valued function on [0, T ]. We say that V is

B-continuous, absolutely continuous, differentiable, etc., on [0, T ] if all the VI are B-
continuous, absolutely continuous, differentiable, etc. We say that a sequence {V j =∑
I V

j
I XI}, j ∈ {1, 2, . . . , } ∪ {∞}, of Â(X)-valued functions on [0, T ] converges to

V∞ uniformly if, for each I, the V jI converge to V∞I uniformly on [0, T ] as j → ∞.
We say that a polynomial input V is absolutely continuous or differentiable if there
is a representative of V which is absolutely continuous or differentiable. Therefore if
V is absolutely continuous (differentiable) all the representatives of V are absolutely
continuous (differentiable). And if V is an absolutely continuous polynomial input,
then v = V̇ is well defined. The result is an Â0(X)-valued integrable function on
[0, T ].

DEFINITION 3. Let V be a polynomial input. The Chen–Fliess series determined
by V is the Â(X)-valued function SV on [0, T ] that satisfies the initial value problem

dS = SdV, S(t) ∈ Â(X),(6)
S(0) = 1,(7)

where V is any representative of V.
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A solution of (6) and (7) is an Â(X)-valued function S on [0, T ], which is B-
continuous, satisfying

S = 1 + S
⇀∗ V.

Such a solution clearly exists, is unique, and depends only on V. Moreover, if SV is
the solution of (6) and (7), it is clear that

SV = 1 +
∞∑
k=1

1
⇀∗

k︷ ︸︸ ︷
V

⇀∗ V ⇀∗ · · · ⇀∗ V .

Equation (6) will be called the formal equation determined by V. The Chen–Fliess
series SV will be called the formal trajectory of V.

By definition, the function t→ SV(t) is B-continuous as an Â(X)-valued function.
It is in fact 1 + Â0(X)-valued. Conversely, define a formal trajectory to be a B-
continuous 1 + Â0(X)-valued function S on [0, T ]. Then every formal trajectory S is
the formal trajectory of a polynomial input V given by V = (S−1 ⇀∗ S). Therefore
the map V→ SV is a one-to-one correspondence between the set of polynomial inputs
and that of formal trajectories, whose inverse is given by V = (S−1

V
⇀∗ SV). (Note

that if S =
∑
I aIXI is an element of Â(X) with a∅ 6= 0, then S−1 exists and is given

by (for simplicity assume a∅ = 1)

S−1 =

1 +
∑
|I|>0

aIXI

−1

=
∞∑
k=0

(−1)k

∑
|I|>0

aIXI

k

= 1 +
∑
|I|>0

( ∞∑
k=1

(−1)k
∑

J1...Jk=I

aJ1 . . . aJk

)
XI ,(8)

where the inner summation in the last equality above is over all ways of expressing
the multiindex I as a concatenation J1 · · ·Jk of k indices.)

Remark 1. It follows from the results of [10] that SV is Ĝ(X)-valued if V is an
extended input. The converse of this is also true; i.e., if S is a Ĝ(X)-valued formal
trajectory, then V = (S−1 ⇀∗ S) is an extended input. To see this, it is enough to
prove that in this case the function (S−1 ⇀∗ S) is L̂(X)-valued. This is true when
S is C∞, since in that case (S−1 ⇀∗ S)(t) =

∫ t
0 S
−1(τ)Ṡ(τ) dτ , and S−1(t)Ṡ(t) =

limh→0
1
hS
−1(t)(S(t+h)−S(t)) = limh→0

1
h (S−1(t)S(t+h)−1). Using the Campbell–

Hausdorff formula we conclude that S−1(t)S(t + h) = exp(Λ(t, h)), where Λ(t, h)
is a Lie series that goes to zero as h → 0. So S−1(t)Ṡ(t) = limh→0

1
h (Λ(t, h) +

1
2Λ(t, h)2 + · · ·) = limh→0

Λ(t,h)
h . So S−1Ṡ is Lie series valued, which implies that

V = (S−1 ⇀∗ S) is an extended input. In the general case, let S(t) = exp(Z(t)),
where Z(t) =

∑
|I|>0 ZI(t)[XI ], ZI ∈ BV C[0, T ], Z(0) = 0. From Proposition 4

in the appendix, for each I, we can take a sequence {ZjI} ⊆ C∞[0, T ], ZjI (0) = 0,
such that the ZjI converge to ZI uniformly as j → ∞ and the ‖ŻjI‖L1 are uniformly
bounded in j. Let Zj =

∑
|I|>0 Z

j
I [XI ]. Then we know that the Zj converge to Z

uniformly in Â0(X). Let Sj(t) = exp(Zj(t)). We have Sj → exp(Z) = S uniformly.
Since (Sj)−1 = exp(−Zj), the (Sj)−1 converge to exp(−Z) = S−1 uniformly as
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j → ∞. Since the ŻjI are uniformly bounded in L1[0, T ] for each I, if we write
Sj = 1 +

∑
|I|>0H

j
IXI , then the L1 norms of the Ḣj

I are also uniformly bounded in j

for each I. The following lemma implies that the ((Sj)−1 ⇀∗ Sj) converge to (S−1 ⇀∗ S)
uniformly. Since the ((Sj)−1 ⇀∗ Sj) are Lie series valued functions, (S−1 ⇀∗ S) is a
Lie series. Therefore V = (S−1 ⇀∗ S) is an extended input.

LEMMA 1. Let {f j} be a sequence of continuous functions on [0, T ] that converges
to f uniformly on [0, T ] as j → ∞. Let {gj} be a sequence of functions belonging to
BV C[0, T ]. Assume that the functions gj converge to g uniformly on [0, T ] as j →∞
and the total variations TV [gj ; 0, T ] of the gj on [0, T ] are uniformly bounded in j.
Then the integrals

∫ t
0 f

j(s) dgj(s) converge to
∫ t

0 f(s) dg(s) uniformly as j →∞.
The proof of this lemma is given in the appendix.
The polynomial input V can be computed from SV using standard algebraic tools.

If SV = 1 +
∑
|I|>0HIXI , from (8) we know that

S−1
V = 1 +

∑
|I|>0

( ∞∑
k=1

(−1)k
∑

J1...Jk=I

HJ1 . . . HJk

)
XI .

We have

(S−1
V

⇀∗ SV)(t) =

1 +
∑
|I|>0

( ∞∑
k=1

(−1)k
∑

J1...Jk=I

HJ1 . . . HJk

)
XI


⇀∗

1 +
∑
|I|>0

HIXI

 (t)

=
∑
|I|>0

HI +
∞∑
k=1

(−1)k
∑

J1...JkJk+1=I

(HJ1 . . . HJk)
⇀∗ HJk+1

XI ,

where the inner summation above runs over all ways of expressing the multiindex I as
a concatenation J1 · · ·JkJk+1 of k + 1 indices. So, if we let V (t) = (S−1

V
⇀∗ SV)(t) =∑

|I|>0 VI(t)XI , then the VI are given by

VI = HI +
∞∑
k=1

(−1)k
∑

J1...JkJk+1=I

(HJ1 . . . HJk)
⇀∗ HJk+1 .(9)

Let π be the linear map of A(X) onto L(X) defined by π(XI) = 1
|I| [XI ]. It is well

known (cf., e.g., [3]) that the restriction of π to L(X) is the identity map; i.e., π is
a projector of A(X) onto L(X). Let π̂ be the linear projection map from Â(X) to
L̂(X) that extends π. From Remark 1 we know that if S = 1 +

∑
|I|>0HIXI is a

Ĝ(X)-valued formal trajectory, V = (S−1 ⇀∗ S) is a Lie series valued function. In
that case we have π̂(V ) = V , so

V (t) =
∑
|I|>0

1
|I|VI(t)[XI ],(10)

where the VI are given by (9).
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In the particular case when V is an ordinary input U = U1X1 + · · ·+UmXm, the
Chen–Fliess series SU is given by the formula

SU(t) = 1 +
∑
|I|>0

ÛI(t)XI ,

where, if I = (i1, . . . , ik), then ÛI is the iterated integral defined by

ÛI
def= 1

⇀∗ Ui1
⇀∗ Ui2

⇀∗ · · · ⇀∗ Uik .(11)

DEFINITION 4. A sequence {Vj} of polynomial inputs FT-converges (converges
in the formal trajectory sense) to a polynomial input V∞ if the corresponding formal
trajectories SVj converge uniformly to SV∞ as j →∞.

Hence, if {Uj} is a sequence of ordinary inputs and V is a polynomial input such
that

SV(t) = 1 +
∑
|I|>0

HI(t)XI ,(12)

then {Uj} FT-converges to V if and only if the sequence {Û jI } of functions converges
uniformly to HI for each I. Using formula (9), we can explicitly compute the limiting
polynomial input V in terms of the limits HI of the iterated integrals Û jI .

DEFINITION 5. Given two polynomial inputs V1 = V1 and V2 = V2, we define a
generalized difference (GD for short) of V1 and V2 to be a B-continuous Â0(X)-valued
function W that satisfies

dW = −dV1W + dV2 − dV1, W (t) ∈ Â0(X).(13)

Clearly a solution W of (13) is uniquely determined by its initial condition W (0).
We will use GD{V1,V2} to denote the set of all generalized differences of V1 and
V2.

Remark 2. If W (0) = 0, then it is clear that W has some of the properties of a
“difference of V1 and V2.” (For instance, W ≡ 0 iff V1 = V2.) In general, if W (0) is
“small” in some sense, then it is reasonable to expect that W (t) is “small” for all t if
and only if V1 and V2 are “close.” The convergence theorems will make this precise.
Let W be a solution of (13) with initial condition W (0) = W0 ∈ Â0(X). Then W
satisfies the integral equation

W = W0 − V2(0) + V1(0)− V1
↼∗ W + V2 − V1

and can be calculated by the formula

W =
∞∑
k=0

(−1)k

k︷ ︸︸ ︷
V1

↼∗ V1
↼∗ · · · ↼∗ V1

↼∗ (V2 − V1 + W̃ ),(14)

where W̃ = W0 − V2(0) + V1(0). Let U be an ordinary input and V be a polynomial
input. Let U = U1X1 + · · ·+ UmXm and V =

∑
|I|>0 VIXI be a representative of U

and V, respectively. Let

(U
g.d.
− V)(t) =

∑
|I|>0

ŨV I(t)XI
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be a generalized difference of U and V with initial value (U
g.d.
− V)(0) =

∑
|I|>0 ŴIXI .

Let W̃ =
∑
|I|>0 W̃IXI =

∑
|I|>0 ŴIXI − V (0) + U(0). From (14) we have

ŨV i1,...,ik =
k∑
`=0

(−1)`Ui1
↼∗ Ui2

↼∗ · · · ↼∗ Ui`
↼∗ (Vi`+1,...,ik + W̃i`+1,...,ik).(15)

Formula (15) implies the recursive formula (this also follows directly from (13))

ŨV i = Vi + W̃i − Ui,

ŨV i1,...,ik = Vi1,...,ik+W̃i1,...,ik−Ui1
↼∗ ŨV i2,...,ik = Vi1,...,ik+W̃i1,...,ik−ŨV i2,...,ik

⇀∗ Ui1 .

Remark 3. If W̃ =
∑
|I|>0 W̃IXI =

∑
|I|>0 ŴIXI − V (0) + U(0) = 0, then the

above recursive formula becomes

ŨV i1,...,ik = Vi1,...,ik − Ui1
↼∗ ŨV i2,...,ik .(16)

For example, if we take a representative V of V with V (0) = Ŵ +U(0), then W̃ = 0.

Remark 4. If V1 and V2 are two polynomial inputs, we use (V1
g.d.
− V2)(t) to

denote a generalized difference of V1 and V2. If U is an ordinary input and V is a

polynomial input, we will use ŨV I to denote the coefficients of XI in (U
g.d.
− V)(t)

with the understanding that the ŨV I are given by (15). The notations (V1
g.d.
− V2)(t),

(U
g.d.
− V)(t), and ŨV I(t) are slightly ambiguous because they depend also on the

initial values (V1
g.d.
− V2)(0), (U

g.d.
− V)(0), and ŨV I(0), but we will use them

anyhow.
DEFINITION 6. Let {Vj

1} and {Vj
2} be two sequences of polynomial inputs. We

say that {Vj
1,V

j
2} GD-converges to zero if there exist generalized differences (Vj

1

g.d.
−

Vj
2)(t) of Vj

1 and Vj
2 that converge to zero uniformly as j → ∞. We say that a

sequence {Vj} of polynomial inputs GD-converges to a polynomial input V if {Vj ,V}
GD-converges to 0.

Remark 5. As the following simple examples shows, the positions of Vj
1 and Vj

2 are
not symmetric in the definition of GD-convergence. Namely, the fact that {Vj

1,V
j
2}

GD-converges to 0 does not imply that {Vj
2,V

j
1} GD-converges to 0. Similarly the

condition that a sequence {Vj} GD-converges to V is not equivalent to the condition
that {Vj −V} GD-converges to 0.

Example. Let m = 2, Uj
1 = j−

1
3 sin jtX1 + j−

1
3 (1− cos jt)X2, and Uj

2 ≡ 0 be two
sequences of ordinary inputs. Then it is easy to see that {Uj

2,U
j
1} GD-converges to 0.

Indeed the differential equation (13) corresponding to Uj
2,U

j
1 is given by dW = dUj

1.
On the other hand, the differential equation (13) corresponding to Uj

1,U
j
2 is given by

dW = −dUj
1W − dU

j
1.(17)

The solution W j(t) =
∑
|I|>0W

j
I (t)XI of (17) with initial condition W j(0) = Ŵ j =∑

|I|>0 Ŵ
j
IXI can be computed explicitly and

W j
2,1(t) = Ŵ j

2,1 + j−
1
3 Ŵ j

1 (cos jt− 1) +
t

2
j

1
3 +

1
4
j−

1
3 sin 2jt,

which does not converge to 0 no matter what Ŵ is.



2000 WENSHENG LIU

Remark 6. If {Uj} is a sequence of ordinary inputs and {Vj} a sequence of

polynomial inputs, we will use the abused notation ŨV
j

I to denote the coefficients of

a generalized difference of Uj and Vj . (For simplicity we will use ŨV
j

I rather than

Ũ jV jI .) Therefore if U j = U j1X1 + · · · + U jmXm and V j =
∑
|I|>0 V

j
I XI are repre-

sentatives of Uj and Vj , respectively, and (Uj
g.d.
− Vj)(t) is a generalized difference

of Uj and Vj with (Uj
g.d.
− Vj)(0) =

∑
|I|>0 Ŵ

j
IXI , then the ŨV

j

I are given by

ŨV
j

i1,...,ik
=

k∑
`=0

(−1)`U ji1
↼∗ U ji2

↼∗ · · · ↼∗ U ji`
↼∗ (V ji`+1,...,ik

+ W̃ j
i`+1,...,ik

).(18)

So it is clear that {Uj ,Vj} GD-converges to 0 if and only if there exist sequences

of constants Ŵ j
I such that the functions ŨV

j

I determined by the Ŵ j
I converge to 0

uniformly for all multiindices |I| > 0.
DEFINITION 7. Let V =

∑
I VIXI ∈ BV C([0, T ], Â(X)) be a B-continuous Â(X)-

valued function and {V j =
∑
I V

j
I XI} be a sequence in BV C([0, T ], Â(X)). We say

that {V j} converges to V strongly if the functions V jI converge to VI uniformly for all
I and the total variations TV [V jI ; 0, T ] of the V jI are uniformly bounded in j for each
I.

DEFINITION 8. Let V be a polynomial input and {Vj} be a sequence of polynomial
inputs. Then we say that {Vj} converges to V strongly if there are representatives
V j and V of Vj and V, respectively, such that the V j converge to V strongly.

We will use STCON(V) to denote the set of all sequences of polynomial inputs
that converge to V strongly, so

STCON(V) =
{
{Vj}

∣∣∣ {Vj} → V strongly as j →∞
}
.

Let {Vj} be an element of STCON(V). Let us take a representative V =
∑
|I|>0 VIXI

and V j =
∑
|I|>0 V

j
I XI of V and Vj , respectively, such that the V j converge to V

strongly. Let SVj = 1 +
∑
|I|>0H

j
IXI and SV = 1 +

∑
|I|>0HIXI be the formal

trajectories determined by Vj and V, respectively. Then it is easy to see that the
total variations TV [Hj

I ; 0, T ] of the functions Hj
I are uniformly bounded in j for each

I. From

SVj (t)− SV(t) = (SVj

⇀∗ V j)(t)− (SV
⇀∗ V )(t)

= ((SVj − SV)
⇀∗ V j)(t) + (SV

⇀∗ (V j − V ))(t)

we see that

Hj
` (t)−H`(t) = V j` (t)− V j` (0)− V`(t) + V`(0),

Hj
I (t)−HI(t) =

∑
J1J2=I

(
(Hj

J1
−HJ1)

⇀∗ V jJ2

)
(t) +

∑
J1J2=I

(
HJ1

⇀∗ (V jJ2
− VJ2)

)
(t)

+V jI (t)− VI(t)− V jI (0) + VI(0).

Using this and induction we can show easily that the Hj
I converge to HI for each I;

cf. Lemma 1. Therefore {Vj} ∈ STCON(V) implies that {Vj} FT-converges to V.
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Let U = U1X1 + · · · + UmXm be an ordinary input and V =
∑
|I|>0 VIXI be a

polynomial input. Assume that U(0) = V (0) = 0. Let (U
g.d.
− V) =

∑
|I|>0 ŨV IXI

be a generalized difference of U and V. Let SU be the formal trajectory of U. Now

we establish a formula that relates SU, V and (U
g.d.
− V). We know that the functions

U`, VI and ŨV I are related by (15). Therefore we have

SU(t) = 1 +
m∑
i1=1

∫ t

0
SU(τ) dUi1(τ)Xi1

= 1 +
m∑
i1=1

∫ t

0
SU(τ) dVi1(τ)Xi1 −

m∑
i1=1

∫ t

0
SU(τ)dŨV i1(τ)Xi1 .

Applying integration by parts and noticing that ŨV i1,i2(t) = ŨV i1,i2(0) + Vi1,i2(t)−
(Ui1

↼∗ ŨV i2)(t), we get

SU(t) = 1 +
m∑
i1=1

∫ t

0
SU(τ) dVi1(τ)Xi1 +

m∑
i1,i2=1

∫ t

0
SU(τ) dVi1,i2(τ)Xi1Xi2

−
m∑
i1=1

SU(t)ŨV i1(t)Xi1 +
m∑
i1=1

ŨV i1(0)Xi1 −
m∑

i1,i2=1

∫ t

0
SU(τ)dŨV i1,i2(τ)Xi1Xi2 .

Continuing the integration by parts in this way up to order k, we get

SU(t) = 1 +

SU
⇀∗

 ∑
0<|I|≤k

VI XI

 (t)−

SU
⇀∗

∑
|I|=k

ŨV IXI

 (t)

− SU(t)

 ∑
0<|I|<k

ŨV I(t)XI

+
∑

0<|I|<k
ŨV I(0)XI .(19)

PROPOSITION 1. Let {Uj} be a sequence of ordinary inputs and V be a polynomial
input. Then

(a) the following conditions are equivalent:
(i) the Uj FT-converge to V;

(ii) the Uj GD-converge to V;
(iii) there is one element {Vj} of STCON(V) such that {Uj ,Vj} GD-

converges to 0;

(iv) for any element {Vj} of STCON(V) and any (Uj
g.d.
− Vj) ∈ GD{Uj,

Vj}, if the initial values (Uj
g.d.
− Vj)(0)→ 0, then the sequence {(Uj

g.d.
−

Vj)} converges to 0 uniformly as j →∞.
(b) if the Uj FT-converge to V, then V is an extended input.
Proof. First notice that conclusion (b) follows from Remark 1. (We know that the

SUj are Ĝ(X) valued, so SUj = exp(Zj) for some Zj ∈ BV C([0, T ], L̂(X)). Now the
fact that {SUj} converges to SV uniformly implies that {Zj} converges to log(SV)
uniformly. Therefore log(SV) is L̂(X)-valued, which implies that SV is a Ĝ(X)-valued
formal trajectory.)

Now we prove (a). It is clear that (iv) ⇒ (ii) ⇒ (iii). Therefore we need only to
show that (i) implies (iv) and (iii) implies (i).
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First we show that (i) implies (iv). Assume that {Uj} FT-converges to V.

Take any element {Vj} of STCON(V) and generalized differences (Uj
g.d.
− Vj) =∑

|I|>0 ŨV
j

IXI of Uj and Vj with (Uj
g.d.
− Vj)(0)→ 0. Let U j = U j1X1+· · ·+U jmXm

and V =
∑
|I|>0 VIXI be representatives of Uj and V. Let V j =

∑
|I|>0 V

j
I XI be

representatives of Vj that converge to V strongly. Without loss of generality we may
assume that U j(0) = V j(0) = V (0) = 0. We use induction to show that the ŨV

j

I

converge to 0 uniformly. Since the Uj FT-converge to V, we know that U j` → V`
uniformly. (Notice that U j` and V` are the coefficients of X` in SUj and SV, respec-

tively.) It then follows that the ŨV
j

` = V j` − U
j
` + ŨV

j

`(0) converge to 0 uniformly

for ` = 1, . . . ,m. Assume that ŨV
j

I → 0 uniformly for all I with 0 < |I| < k. Now
from (19) we get

SUj (t) = 1 +

SUj

⇀∗

 ∑
0<|I|≤k

V jI XI

 (t)−

SUj

⇀∗

∑
|I|=k

ŨV
j

IXI

 (t)

− SUj (t)

 ∑
0<|I|<k

ŨV
j

I(t)XI

+
∑

0<|I|<k
ŨV

j

I(0)XI .(20)

Since V j(0) = 0, we know that V j(t) = (S−1
Vj

⇀∗ SVj )(t). Therefore∑
0<|I|≤k

V jI (t)XI = (S−1
Vj

⇀∗ SVj )(t)−
∑
|I|>k

V jI (t)XI .

Notice that {SVj} → SV uniformly implies that {S−1
Vj} converges S−1

V uniformly.
Then we have

SUjS−1
Vj → SVS

−1
V = 1(21)

uniformly as j → ∞. Let SVj = 1 +
∑
|I|>0H

j
IXI be the formal trajectories deter-

mined by Vj . Then from the uniform boundedness of the TV [V jI ; 0, T ] for each I we
know that the TV [Hj

I ; 0, T ] are also uniformly bounded in j for each I. Combining
this with (21) we get that the Â(X)-valued functions

SUj (t)− 1− (SUj

⇀∗ (S−1
Vj

⇀∗ SVj ))(t) = SUj (t)− 1− (SUjS−1
Vj

⇀∗ SVj )(t)

converge to zero uniformly. By induction, the SUj (
∑

0<|I|<k ŨV
j

I XI) converge to 0
uniformly. Therefore we have

SUj

⇀∗

∑
|I|=k

ŨV
j

I XI

+ SUj

⇀∗

∑
|I|>k

V jI XI

→ 0

uniformly. If we just take the degree k parts we get that the ŨV
j

I − ŨV
j

I(0) converge

to 0 uniformly for |I| = k, which implies that the ŨV
j

I converge to zero uniformly.
(iii) =⇒ (i). Let {Vj} be an element of STCON(V) such that {Uj ,Vj} GD-

converges to 0. Let (Uj
g.d.
− Vj) =

∑
|I|>0 ŨV

j

IXI be generalized differences of Uj
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and Vj that converge to 0 uniformly. Let U j , V , V j be representatives of Uj ,V,
and Vj as above with U j(0) = V j(0) = V (0) = 0. Let SUj = 1 +

∑
|I|>0 Û

j
IXI ,

SV = 1 +
∑
|I|>0HIXI , and SVj = 1 +

∑
|I|>0H

j
IXI be the formal trajectories

determined by Uj , V, and Vj , respectively. We use induction to show that the Û jI
converge to HI uniformly as j →∞ for each I. We know that {Hj

I} → HI uniformly

as j → ∞. From (18) we have Û j` = V j` − ŨV
j

` + ŨV
j

`(0) → H` uniformly for
` = 1, . . . ,m. Assume that the Û jI converge to HI for all |I| < k with k ≥ 2. Let I be
such that |I| = k. Then from (20) we have

Û jI (t) =
∑

J1J2=I

(Û jJ1

⇀∗ V jJ2
)(t) + V jI (t)− ŨV

j

I(t) + ŨV
j

I(0)−
∑

J1J2=I

Û jJ1
(t)ŨV

j

J2
(t).

From this we see easily that the Û jI converge to VI +
∑
J1J2=I HJ1

⇀∗ VJ2 uniformly.

But since SV = 1 +SV
⇀∗ V , we know that HI = VI +

∑
J1J2=I HJ1

⇀∗ VJ2 . Therefore
we get that the Û jI converge to HI uniformly.

2.3. Polynomial inputs of finite order and truncated formal trajecto-
ries. The concepts of polynomial inputs, extended inputs, formal trajectories, gen-
eralized differences, etc., have truncated analogues. Let us say that a polynomial
input V has order ≤ r if there exists a representative of V whose values are linear
combinations of monomials of degree ≤ r. The smallest such an r is called the order
of V. We say that V is of finite order if it has order r for some integer r > 0.

If V is a polynomial input of order ≤ r, we can regard V as an equivalence class
of Ar0(X)-valued rather than Â0(X)-valued functions. The rth-order truncated formal
trajectory determined by V is the solution of the initial value problem

dS = SdV, S(t) ∈ Ar(X),(22)
S(0) = 1,(23)

where V is any representative of V. We will use SrV to denote the rth-order truncated
formal trajectory determined by V in Ar(X). Equation (22) is the rth-order truncated
formal equation determined by V.

We will say that a sequence {Uj = U j1X1 + · · · + U jmXm} of ordinary inputs
FT(r)-converges to a polynomial input V of order ≤ r, with Chen–Fliess series SV =
1 +

∑
|I|>0HIXI , if the iterated integrals Û jI converge uniformly to the functions HI

for all multiindices I such that 0 < |I| ≤ r. Equivalently, {Uj} FT(r)-converges to V
if the rth-order truncated formal trajectories SrUj converge uniformly to SrV. In that
case, the components VI of a representative V of V are still given by (9). (In (9), we
can use either the HI of the series SV or those of the truncated version, in which case
we would set HI to be 0 for |I| > r. Both yield the same result, because V is of order
≤ r.)

If V1 and V2 are polynomial inputs of order ≤ r, we can also define an rth-order
truncated generalized difference of V1 and V2, which is a B-continuous Ar0(X)-valued
function that satisfies

dW = −dV1W + dV2 − dV1, W (t) ∈ Ar0(X),(24)

where V1 and V2 are representatives of V1 and V2, respectively. We will use the abused

notation (V1
g.d.(r)
− V2) to denote an rth-order truncated generalized difference of V1
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and V2. It is uniquely determined by (V1
g.d.(r)
− V2)(0). Let U = U1X1 + · · ·+UmXm

be an ordinary input and V =
∑

0<|I|≤r VIXI be a polynomial input of order ≤ r.

Let (U
g.d.(r)
− V)(t) =

∑
0<|I|≤r ŨV I(t)XI be an rth-order truncated generalized

difference of U and V. Then the ŨV I , 0 < |I| ≤ r, can still be calculated by (15) once
the initial values ŨV I(0) are known. Similarly if {Vj

1} and {Vj
2} are two sequences

of polynomial inputs of order ≤ r, then {Vj
1,V

j
2} GD(r)-converges to 0 if there exist

(Vj
1

g.d.(r)
− Vj

2) of Vj
1 and Vj

2 that converge to 0 uniformly as j →∞. Let {Vj} be a
sequence of polynomial inputs of order ≤ r and V be a polynomial input of order ≤ r.
We say that Vj GD(r)-converges to V if {Vj ,V} GD(r)-converges to 0. If V is a
polynomial input of order ≤ r, the set STCONr(V) contains those sequences {Vj} of
polynomial inputs of order ≤ r that there exist representatives V j =

∑
0<|I|≤r V

j
I XI

and V =
∑

0<|I|≤r VI XI of Vj and V, respectively, such that the V j converge to
V strongly. It is still true that a sequence {Uj} of ordinary inputs FT(r)-converges
to a polynomial input V of order ≤ r iff {Uj ,Vj} GD(r)-converge to zero for all
elements {Vj} of STCONr(V). In particular {Uj} FT(r)-converges to V iff {Uj}
GD(r)-converges to V.

We conclude this section with a remark.
Remark 7. If we restrict ourselves to absolutely continuous polynomial inputs

instead of considering B-continuous inputs, using the derivatives v of V, everything
can be reformulated in terms of v. For example, we can define a polynomial input
to be an Â0(X)-valued integrable function v =

∑
|I|>0 vIXI on [0, T ]. An ordinary

input u = (u1, . . . , um) ∈ L1([0, T ],Rm) can be identified with a polynomial input
u = u1X1 + · · · + umXm. In this case all the differential equations such as (6) and
(13) become ordinary equations. We need not consider equivalence classes any more.
Almost every concept can be defined in terms of u and v. For example, the formal
trajectory Sv determined by a polynomial input v is the solution of the following
initial value problem:

Ṡ = Sv, S(t) ∈ Â(X),(25)
S(0) = 1.(26)

Let v =
∑
|I|>0 vIXI be a polynomial input and {vj =

∑
|I|>0 v

j
IXI} be a sequence

of polynomial inputs. Then {vj} converges to v strongly if the indefinite integrals∫ t
0 v

j
I(s)ds converge to

∫ t
0 vI(s)ds uniformly and the L1 norms of the vjI are uniformly

bounded in j for each I. The STCON(v) is the set that contains all the sequences
{vj} of polynomial inputs that converge to v strongly. If v1 and v2 are two polynomial
inputs. A generalized difference of v1 and v2 is an absolutely continuous Â0(X)-valued
function W that satisfies

Ẇ = −v1W + v2 − v1.

Again if u = u1X1 + · · · + umXm is an ordinary input and v =
∑
|I|>0 vIXI is a

polynomial input, if we let (u
g.d.
− v) =

∑
|I|>0 ŨV IXI be a generalized difference of

u and v, then the functions Uk(t) =
∫ t

0 uk(s)ds, VI(t) =
∫ t

0 vI(s)ds, and ŨV I(t) are
related by (15). The coefficients ŨV I in this case are absolutely continuous functions.
Similarly we can consider polynomial inputs of finite order. If r is a positive integer,
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we can define rth-order truncated formal trajectories, rth-order truncated generalized
differences, the set of STCONr(v), etc.

3. The convergence theorems. In this section we study the limiting behavior
of trajectories of systems

dx =
m∑
k=1

fk(x)dUk(27)

generated by a sequence {U j = (U j1 , . . . , U
j
m)} ⊆ BV C([0, T ],Rm) of inputs. Let U be

a function in BV C([0, T ],Rm) and x̄ be a point in Rn. First we review some existence
and uniqueness results of solutions of the following initial value problem:

dx =
m∑
k=1

fk(x) dUk,(28)

x(0) = x̄,(29)

where fk, k = 1, . . . ,m, are continuous vector fields on Rn. If the functions Uk in (28)
are absolutely continuous, letting u ∈ L1([0, T ],Rm) be the derivative of U , then (28)
and (29) becomes an ordinary initial value problem

ẋ =
m∑
k=1

uk(t)fk(x),(30)

x(0) = x̄.(31)

For this initial value problem, the well-known Carathéodory theorem on existence and
uniqueness of solutions says that

(1) if the vector fields fk are continuous on Rn, uk are in L1[0, T ], then the initial
value problem (30), (31) has solutions;2

(2) if, moreover, the fk are locally Lipschitz continuous, then uniqueness of solu-
tions is guaranteed.

Let fk, k = 1, . . . ,m, be continuous vector fields on Rn. Let U be a function in
BV C([0, T ],Rm). By a solution of (28) and (29) we mean a continuous function x,
defined on some subinterval J ⊆ [0, T ] that contains 0 and has positive length, that
satisfies

x(t) = x̄+
m∑
k=1

∫ t

0
fk(x(s)) dUk(s).

(Here the integral is the usual Riemann–Stieltjes integral.) The interval J is called
the domain of the solution x. Clearly if x is a solution with domain J , then x is B-
continuous on J . (We recall that a function x defined on an interval J (not necessarily
closed) is of bounded variation if for any a < b ∈ J , x is of bounded variation on [a, b]
and supa<b∈J{TV [x; a, b]} < ∞. A function x is B-continuous on an interval J if it
is both continuous and of bounded variation on J .) Every solution x of (28) and (29)
can be extended to a maximal solution.3 We say that the initial value problem (28)

2Recall that a solution of (30) and (31) is an absolutely continuous function x on a subinterval
J ⊆ [0, T ] that contains 0 and has positive length such that x(0) = x̄ and (30) holds almost everywhere
on J .

3A solution x of (28) and (29) with domain J is called a maximal solution if whenever x̂ is another
solution with domain Ĵ , then J ⊆ Ĵ , x = x̂ on J imply that J = Ĵ .
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and (29) has a unique solution if it has one and only one maximal solution. For the
initial value problem (28), (29), the Carathéodory kind of conditions on existence and
uniqueness of solutions as 1 and 2 above for (30) and (31) is still true. More precisely
we have the following proposition.

PROPOSITION 2. Let U be a function in BV C([0, T ],Rm) and x̄ be a point in
Rn. Then the initial value problem (28), (29) has solutions if the vector fields fk are
continuous on Rn. It has a unique solution if the fk are locally Lipschitz continuous.

The proof of this proposition is similar to the usual case when all the Uk are
absolutely continuous.

As we said in the introduction, an extended input V of finite order can be thought
of as an object that contains “slots” (the indeterminates Xk) where vector fields can
be plugged in, giving rise to a differential equation. (The only requirement for this is
that the vector fields should be smooth enough such that the various brackets in V
exist.) For example, the extended input V = V1(t)X1 +V2(t)X2 +V3(t)[X1, X2] gives
rise, for each choice of C1 vector fields f1, . . . , fm on Rn, to the differential equation

dx = f1(x)dV1(t) + f2(x)dV2(t) + [f1, f2](x)dV3(t).

More precisely, let f = (f1, . . . , fm) be an m-tuple of vector fields on Rn. We say
that f is of class Cκ if all the f` are of class Cκ. Let V =

∑
0<|I|≤r VI [XI ] be an

extended input of order r on [0, T ]. Let f = (f1, . . . , fm) be a system of vector fields
of class Cr−1 on Rn and x̄ be a point in Rn. Then we can consider the following
initial value problem:

dx =
∑

0<|I|≤r
[fI ](x)dVI(t),(32)

x(0) = x̄.(33)

(Here we write

[fI ]
def= [fi1 , [fi2 , [· · · , [fik−1 , fik ] · · ·]

for I = (i1, . . . , ik).) We will call (32), (33) the initial value problem determined by
the triple (f ,V, x̄) and use IVP(f ,V, x̄) to denote it. We say that an IVP(f ,V, x̄)
has the uniqueness property (UP for short), if it has a unique solution.

DEFINITION 9. Let ξ be an Rn-valued function whose domain is a subinterval I
of R. Let {ξj} be a sequence of Rn-valued functions. Let Ij be the domain of ξj,
and assume that each Ij is a subinterval of R. We say that {ξj} converges to ξ on
compact sets if for every compact subset Ĩ ⊆ I there exists a J such that Ĩ ⊆ Ij for
j ≥ J and {ξj} converges to ξ uniformly on Ĩ.

DEFINITION 10. Let V be an extended input of order ≤ r. A sequence {Uj} of
ordinary inputs EI(r)-converges to V if for every integer n > 0, every point x̄ ∈ Rn,
every sequence {x̄j} ⊆ Rn that converges to x̄, and every f = (f1, . . . , fm) of class
Cr−1 on Rn, the following holds. For each j let xj be a maximal solution of the
IVP(f ,Uj , x̄j). For every subsequence {xj(k)} of {xj}, there exist a maximal solution
x of the IVP(f ,V, x̄) and a further subsequence {xj(k(`))} of {xj(k)} such that the
xj(k(`)) converge to x on compact sets.

The following proposition gives a stronger convergence result for the case when
an IVP(f ,V, x̄) has UP.

PROPOSITION 3. Assume that a sequence {Uj} of ordinary inputs EI(r)-converges
to an extended input V of order ≤ r. Let x̄ ∈ Rn be a point and f be a system of
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class Cr−1 on Rn such that the IVP(f ,V, x̄) has the UP. Let x be the unique maximal
solution of the IVP(f ,V, x̄). Let {x̄j} be a sequence of points in Rn that converges to
x̄. Let xj be a maximal solution of the IVP(f ,Uj , x̄j). Then the xj converge to x on
compact sets.

The proof of the proposition follows directly from the definition of EI(r)-
convergence.

With these preliminaries, we are ready to state the main convergence theorem of
this section.

THEOREM 1. Let {Uj = U j1X1 + · · ·+ U jmXm} be a sequence of ordinary inputs.
Let r be a positive integer, and V =

∑
0<|I|≤r VI XI be a polynomial input of order

≤ r. Let {Vj} be a sequence of polynomial inputs of order ≤ r that converges to V

strongly. Assume that there exist rth-order truncated generalized differences (Uj
g.d.(r)
−

Vj) =
∑

0<|I|≤r ŨV
j

IXI of Uj and Vj such that

(c1(r)) the (Uj
g.d.(r)
− Vj) converge to 0 uniformly as j →∞;

(c2(r)) the total variations TV [ŨV
j

I ; 0, T ] of the ŨV
j

I are uniformly bounded for
|I| = r.
Then

(C1) V is an extended input of order ≤ r, i.e.,

V =
∑

0<|I|≤r

VI
|I| [XI ];

(C2) the Uj EI(r)-converge to V.
Remark 8. Condition (c1(r)) says that {Uj ,Vj} GD(r)-converges to 0, which is

equivalent to the FT(r)-convergence of {Uj} to V, i.e., the convergence of the trajec-
tories of Uj to that of V for one particular initial value problem U(r), namely, the
rth-order truncated formal equation (22) with initial condition (23). Therefore this
initial value problem plays the “universal” role for the rth-order convergence. Theo-
rem 1 simply says that, if the trajectories of Uj converge to that of V for the initial
value problem U(r), then they converge for every problem with sufficiently smooth
vector fields fk, provided that a boundedness condition (c2(r)) holds to prevent the
occurrence of brackets of higher order.

Proof of Theorem 1. From Proposition 1 we know that, under condition (c1(r)),
V is an extended input of order ≤ r. We show (C2). Let n > 0 be an integer. Let
x̄ be a point in Rn and {x̄j} ⊆ Rn be a sequence of points that converges to x̄ as
j → ∞. Let f = (f1, . . . , fm) be a system of vector fields of class Cr−1 on Rn. For
each j, let xj be a maximal solution of the IVP(f ,Uj , x̄j) with domain Ij .

Let {K`}∞`=1 be a sequence of compact subsets of Rn such that (1) x̄ ∈ Int(K1),
(2) Kj ⊆ Int(Kj+1), and (3) ∪jKj = Rn. (Here Int(K) denotes the interior of K.)
Since the x̄j → x̄, we may assume that all the x̄j are contained in the interior of
K1. Now for each integer ` > 0, let aj` = sup{a : xj(t) ∈ K` for t ∈ [0, a]}. Then
for each j, `, either aj` = T or xj(aj`) ∈ ∂K`, the boundary of K`. Let xj` denote
the restriction xj |[0,aj` ] of xj to [0, aj` ]. Our next step is to show that for each ` > 0,

the sequence {xj`}∞j=1 of functions is equicontinuous. Let’s fix an ` > 0. Let θ be
a smooth real-valued function on Rn with compact support such that θ(x) = 1 on
K`. Let f̃ = (θf1, . . . , θfm). Then xj` is a solution of the IVP(f̃ ,Uj , x̄j). Let x̃j

be a maximal solution of the IVP(f̃ ,Uj , x̄j) that extends xj` . Then x̃j is defined on
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[0, T ]. If we can show that {x̃j}∞j=1 is equicontinuous, then the {xj`}∞j=1 would be
also equicontinuous. So in order to show that the {xj`}∞j=1 is equicontinuous, we may
without loss of generality assume that the fi are compactly supported and the xj are
defined on [0, T ], and show that {xj} is equicontinuous.

By definition, each xj satisfies

dx =
m∑
k=1

fk(x) dU jk ,(34)

x(0) = x̄j .(35)

Let V j =
∑

0<|I|≤r V
j
I XI be representatives of Vj that converge to V =

∑
0<|I|≤r VIXI

uniformly and the TV [V jI ; 0, T ] are uniformly bounded. Then the functions U j` , V
j
I

and ŨV
j

I are related by (18). Let ϕ be a smooth function from Rn to R. From (34)
and (35), by repeated integration by parts (cf. the proof of Proposition 1), we have

ϕ(xj(t)) = ϕ(x̄j) +
∑

0<|I|≤r

∫ t

0
(fIϕ)(xj(s)) dV jI (s)−

∑
|I|=r

∫ t

0
(fIϕ)(xj(s)) dŨV

j

I(s)

−
∑

0<|I|<r

{
ŨV

j

I(t) (fIϕ)(xj(t))− ŨV
j

I(0)(fIϕ)(x̄j)
}
,(36)

where (fIϕ) denotes the function (fi1 · · · fikϕ) for I = (i1, . . . , ik). (Each f` can be
viewed as a differential operator on smooth real-valued functions on Rn, so here (f`ϕ)
is the derivative of ϕ in the direction of f`.) By our assumption we know that the

ŨV
j

I converge to 0 uniformly for all 0 < |I| ≤ r as j goes to ∞. Therefore we have

ϕ(xj(t)) = ϕ(x̄j) +
∑

0<|I|≤r

∫ t

0
(fIϕ)(xj(s)) dV jI (s)

−
∑
|I|=r

∫ t

0
(fIϕ)(xj(s)) dŨV

j

I(s) + o(1),(37)

where o(1) denotes the term −
∑

0<|I|<r{ŨV
j

I(t)(fIϕ)(xj(t)) − ŨV
j

I(0)(fIϕ)(x̄j)},
which converges to 0 uniformly. Equality (37) clearly holds for vector functions too.
So we can apply it to the identity map from Rn to Rn. Now let us still use ϕ to denote
the identity map from Rn to Rn. We get

(38)

xj(t) = x̄j+
∑

0<|I|≤r

∫ t

0
(fIϕ)(xj(s)) dV jI (s)−

∑
|I|=r

∫ t

0
(fIϕ)(xj(s)) dŨV

j

I(s) +o(1).

To show that {xj} is equicontinuous, we need a lemma.
LEMMA 2. Let gα : Rn → Rn be continuous and bounded functions, where α ∈ A

and A is some finite index set. Let {V jα} be sequences of functions in BV C[0, T ]
with the TV [V jα ; 0, T ] being uniformly bounded in j for all α ∈ A. Assume that {V jα}
converges to Hα ∈ BV C[0, T ] uniformly for each α ∈ A. Let {ξj} : [0, T ] → Rn be
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a sequence of vector-valued functions which is equicontinuous and uniformly bounded.
Let xj be continuous functions on [0, T ] that satisfy

xj(t) =
∑
α∈A

∫ t

0
gα(xj(s)) dV jα (s) + ξj(t).

Then {xj} is uniformly bounded and equicontinuous.
Proof. The sequence {xj} is clearly uniformly bounded. Without loss of generality

we may assume that the gα are compactly supported in Rn. (Otherwise, let K be a
compact set in Rn that contains all the xj and ξj in its interior. Then multiply each
gα by a smooth compactly supported function on Rn which is equal to 1 on K.) In
order to show that {xj} is equicontinuous, we need only show that every subsequence
of {xj} is equicontinuous. Therefore we may further assume that {ξj} converges to
some continuous function ξ uniformly.

Let K = supj{
∑
α∈A TV [V jα ; 0, T ]}. For any given ε > 0, since the gα are uni-

formly continuous on Rn, there exists a δ > 0 such that, for all α ∈ A, ‖gα(x2) −
gα(x1)‖ < ε

4K if ‖x2−x1‖ < δ. We may assume δ < ε. Choose a smooth vector-valued
function η on [0, T ] such that ‖η(t)− ξ(t)‖ < δ/8 for all t ∈ [0, T ]. Let

yj(t) =
∑
α∈A

∫ t

0
gα(xj(s)) dV jα (s) + η(t).

Then

‖yj(t)− xj(t)‖ ≤ ‖ξj(t)− ξ(t)‖+
δ

8
.

Since the ξj converge to ξ uniformly, take J large enough such that ‖ξj − ξ‖ < δ
8 if

j ≥ J . So, when j ≥ J , ‖xj(t) − yj(t)‖ < δ
4 < ε

4 . In order to show that {xj} is
equicontinuous, we need only show that the sequence {yj} is equicontinuous. Let

ζj(t) =
∑
α∈A

∫ t

0
gα(yj(s)) dV jα (s) + η(t).

Then

‖ζj(t)− yj(t)‖ ≤
∑
α∈A

∥∥∥∫ t

0
(gα(yj(s))− gα(xj(s)))dV jα (s)

∥∥∥ < ε

4

for j ≥ J . Therefore we need only to show that {ζj} is equicontinuous.
For each α ∈ A, let Gα : Rn → Rn, which is of class C1 and has compact

support, be such that

‖Gα − gα‖
def= sup

x∈Rn
‖Gα(x)− gα(x)‖ < ε

8K
.

Then

ζj(t) =
∑
α∈A

∫ t

0
Gα(yj(s))dV jα (s) +

∑
α∈A

∫ t

0
(gα(yj(s))−Gα(yj(s)))dV jα (s) + η(t).

The second summation in the right-hand side above is clearly less than ε
8 , so∑

α∈A

∥∥∥∫ t2

t1

(gα(yj(s))−Gα(yj(s)))dV jα (s)
∥∥∥ < ε

4
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for any t1, t2 ∈ [0, T ]. Now η is a fixed continuous function. So, in order to show that
{ζj} is equicontinuous, all we need is to show that the sequence {

∫ t
0 Gα(yj(s))dV jα (s)}

is equicontinuous for each α ∈ A. We can write∫ t

0
Gα(yj(s))dV jα (s) =

∫ t

0
Gα(yj(s))d(V jα (s)− Vα(s)) +

∫ t

0
Gα(yj(s))dVα(s).

Since {Gα(yj(t))} is uniformly bounded and Vα is a fixed function in BV C[0, T ], the
sequence {

∫ t
0 Gα(yj(s))dVα(s)} is equicontinuous. By integration by parts we can

rewrite the first integral
∫ t

0 Gα(yj(s))d(V jα (s)− Vα(s)) as∫ t

0
Gα(yj(s)) d (V jα (s)− Vα(s)) = Gα(yj(t))(V jα (t)− Vα(t))−Gα(yj(0))(V jα (0)− Vα(0))

−
∑
β∈A

∫ t

0
(V jα (s)− Vα(s))DGα(yj(s))gβ(xj(s))dV jβ (s)

−
∫ t

0
(V jα (s)− Vα(s))DGα(yj(s))η̇(s)ds.

(Here DGα denotes the Jacobian matrix of Gα.) Since the V jα − Vα converge to 0
uniformly, the ‖gβ‖sup, ‖Gα‖sup, ‖DGα‖sup, and ‖η̇‖sup are fixed constants and the
total variations TV [V jβ ; 0, T ] are uniformly bounded, we see that all the four terms

above go to zero uniformly as j → ∞. Therefore {
∫ t

0 Gα(yj(s))d(V jα (s) − Vα(s))} →
0 uniformly, which implies that {

∫ t
0 Gα(yj(s))dV jα (s)} is equicontinuous. We then

conclude that the sequence {ζj} is equicontinuous. This completes the proof of the
lemma.

Now we go back to the proof of Theorem 1. Lemma 2 implies that for each `, the
{xj`}∞j=1 is equicontinuous.

Now let ` = 1. Since the sequence {xj1}∞j=1 is equicontinuous, there exists a sub-

sequence {xj1(k)
1 } of {xj1}∞j=1 that converges to a function x∞1 on some interval [0, a∞1 ]

uniformly. (We say that a sequence {ξj}∞j=1 of Rn-valued functions with domains
[aj , bj ] converges to a function ξ with domain [a, b] uniformly if {aj}∞j=1 converges
to a, {bj}∞j=1 converges to b, and, for any tj ∈ [aj , bj ] such that the tj converge to
t, ξj(tj) → ξ(t).) So {xj1(k)} is a subsequence of {xj}. Now let ` = 2. Since the
{xj1(k)

2 } is also equicontinuous, there exists a further subsequence {xj2(k)} of {xj1(k)}
such that the xj2(k)

2 converge to a function x∞2 with domain [0, a∞2 ] uniformly. Con-
tinuing this way we can construct a sequence {x∞` }∞`=1 of functions and a collection
{xj`(k)}, ` = 1, 2, . . . , of subsequences of {xj} such that

(1) the domain of x∞` is [0, a∞` ], a∞` ≤ a∞`+1, and x∞`+1|[0,a∞` ] = x∞` ;
(2) each {xj`(k)} is a subsequence of {xj`−1(k)}, and {xj1(k)} is a subsequence of
{xj};

(3) for each fixed `, the xj`(k)
` converge to x∞` uniformly.

Let I = ∪`[0, a∞` ]. Then there is a well-defined function x∞ on I given by x∞(t) =
x∞` (t) if t ∈ [0, a∞` ]. Moreover, for each fixed `, the sequence {xj`(k)

` } converges
to x∞|[0,a∞` ] uniformly. A standard diagonal argument implies that there exists a
subsequence {xj(k)} of {xj} such that {xj(k)} is a subsequence of {xj`(k)} for every `.
This implies that the xj(k) converge to x∞ on compact sets. Now we show that x∞

on I is a solution of the IVP(f ,V, x̄).
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For any t ∈ I, then there exists a J large enough such that t is in the domain of
xj(k) if j(k) ≥ J . From (38) we have

xj(k)(t) = x̄j(k) +
∑

0<|I|≤r

∫ t

0
(fIϕ)(xj(k)(s)) dV j(k)

I (s)

−
∑
|I|=r

∫ t

0
(fIϕ)(xj(k))(s)) dŨV

j(k)
I (s) + o(1).(39)

From Lemma 1, by letting j(k)→∞ in (39), we get

x∞(t) = x̄+
∑

0<|I|≤r

∫ t

0
(fIϕ)(x∞(s)) dVI(s);

i.e., x∞ satisfies

dx =
∑

0<|I|≤r
(fIϕ)(x) dVI ,

x(0) = x̄.

Now we need to establish that for any continuous function ξ : [0, T ]→ Rn,

∑
0<|I|≤r

∫ t

0
(fIϕ)(ξ(s)) dVI(s) =

∑
0<|I|≤r

∫ t

0

1
|I| [fI ](ξ(s)) dVI(s).(40)

From (C1) we know that V =
∑

0<|I|≤r VI XI is an extended input. Therefore

∑
0<|I|≤r

VI XI =
∑

0<|I|≤r

1
|I|VI [XI ].(41)

Let Cκ(Rn), κ ∈ {0, 1, 2, . . . , } ∪ {∞}, be the set of real-valued Cκ functions on Rn.
Now each member fk of f = (f1, . . . , fm) can be viewed as a differential operator from
C∞(Rn) to Cr−1(Rn). For each I = (i1, . . . , ik), k ≤ r, the

fI
def= fi1fi2 · · · fik

can be viewed as a high-order differential operator that maps each θ ∈ C∞(Rn)
to the function (fIθ) ∈ Cr−k(Rn). Let Ar0(f) be the vector space of differential
operators that map C∞(Rn) to C0(Rn) spanned by {fI , 0 < |I| ≤ r} over R, i.e.,
Ar0(f) = {

∑
0<|I|≤r aIfI : aI ∈ R}. Let Lr(f) be the vector space of vector fields on

Rn spanned by {[fI ], 0 < |I| ≤ r} over R, so Lr(f) = {
∑

0<|I|≤r aI [fI ] : aI ∈ R}.
Then each element of Lr(f) also gives rise to a differential operator from C∞(Rn)
to C0(Rn) and Lr(f) can be viewed as a subset of Ar0(f). There is a well-defined
evaluation map

Ev(f) : Ar0(X)→ Ar0(f)

obtained by “plugging in the fk for the Xk” so that

Ev(f)(
∑
I aIXI) =

∑
I aIfI .



2012 WENSHENG LIU

The evaluation map Ev(f) can be restricted to Lr(X). Let us still denote by Ev(f)
the restriction of Ev(f) to Lr(X). It is obvious that Ev(f) maps Lr(X) onto Lr(f).
Letting Ev(f) act on (41) we get∑

0<|I|≤r
fI VI(t) =

∑
0<|I|≤r

1
|I| [fI ]VI(t),

i.e., for any function θ ∈ C∞(Rn), x ∈ Rn,∑
0<|I|≤r

(fIθ)(x)VI(t) =
∑

0<|I|≤r

1
|I| ([fI ]θ)(x)VI(t).(42)

Equality (42) also holds for vector functions too. So we can apply it to the identity
map ϕ from Rn to Rn. It is clear that [fI ](x) = ([fI ]ϕ)(x). We then get∑

0<|I|≤r
(fIϕ)(x)VI(t) =

∑
0<|I|≤r

1
|I| [fI ](x)VI(t)(43)

for any x ∈ Rn and t ∈ [0, T ]. Take a sequence of partitions Γρ = {0 = t0 < t1 <
· · · < tρ = t} of [0, t] with |Γρ| = maxi{ti+1 − ti} → 0 as ρ → ∞. It follows by the
definition of Riemann–Stieltjes integrals that

∑
0<|I|≤r

∫ t

0
(fIϕ)(ξ(s))dVI(s) =

∑
0<|I|≤r

lim
ρ→∞

ρ−1∑
i=0

(fIϕ)(ξ(ti))(VI(ti+1)− VI(ti))

=
∑

0<|I|≤r
lim
ρ→∞

ρ−1∑
i=0

[fI ](ξ(ti))
|I| (VI(ti+1)− VI(ti))

=
∑

0<|I|≤r

∫ t

0

[fI ](ξ(s))
|I| dVI(s),

which establishes (40). Therefore x∞ satisfies

dx =
∑

0<|I|≤r

1
|I| [fI ](x) dVI ,(44)

x(0) = x̄;(45)

i.e., x∞ is a solution of the IVP(f ,V, x̄).
It remains to show that x∞ is a maximal solution. Assume that there was an

extension x̃∞ : Ĩ → Rn of x∞ to a strictly large interval Ĩ ⊆ [0, T ]. Let τ be a point
in Ĩ that is not contained in I. Then τ > a∞` for all `. The set {x̃(t) : t ∈ [0, τ ]} is a
compact subset of Rn, so it is contained in some Ki. This implies that x∞(a∞` ) ∈ Ki

for all `. Now for every `, we know that {xj(k)} is a subsequence of {xj`(k)}. So the
a
j(k)
` converges to a∞` as j(k) → ∞ for every `. In particular aj(k)

i+1 < τ ≤ T for j(k)
large enough. By the definition of the aj` , this implies that xj(k)(aj(k)

i+1 ) ∈ ∂Ki+1 for
j(k) large enough. On the other hand, the xj(k)(aj(k)

i+1 ) converge to x∞(a∞i+1) ∈ Ki,
so we have reached a contradiction since Ki is contained in the interior of Ki+1. The
contradiction shows that x∞ is a maximal solution of the IVP(f ,V, x̄) and the proof
of Theorem 1 is therefore complete.
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Remark 9. In applications, the typical situation is that we just have the sequence
{Uj}. We do not know a priori if it is convergent or what its limit V is even if it

converges. We have to find an r, sequences {Vj} and (Uj
g.d.(r)
− Vj) so that the

conditions of Theorem 1 are satisfied. If we can find an integer r and B-continuous
functions V jI for 0 < |I| ≤ r such that

(c1′(r)) the V jI converge to B-continuous functions VI uniformly for all 0 < |I| ≤ r,
(c2′(r)) the ŨV

j

I determined recursively by

ŨV
j

i (t) = V ji (t)− U ji (t),(46)

ŨV
j

i1,...,ik
(t) = V ji1,...,ik(t)− (U ji1

↼∗ ŨV
j

i2,...,ik
)(t)(47)

converge to 0 uniformly for 0 < |I| ≤ r, and

(c3′(r)) the TV [ŨV
j

I ; 0, T ] for |I| = r and the TV [V jI ; 0, T ] for 0 < |I| ≤ r are
uniformly bounded, then the conclusions (C1) and (C2) of Theorem 1 hold, and the
EI(r)-limit of the Uj is equal to V =

∑
0<|I|≤r VI(t)XI . To show how Theorem 1

can be applied, we consider the following example. We consider the case when there
are two inputs, the Uj = U j1X1 + U j2X2 are absolutely continuous, and uj = U̇j =
uj1X1 + uj2X2 are given (which is typical in applications).

Example. Consider the ordinary input sequence uj = uj1X1 + uj2X2 with

uj1(t) = η1(t) + j
2
3 cos jt,

uj2(t) = η2(t) + j
2
3 η3(t) cos 2jt,

where the ηi are functions of class C1 on [0, T ]. Using Theorem 1 we can show that
{uj} converges to some V, and we can find V explicitly.

As the first step, we let

U j1 (t) =
∫ t

0
uj1(s)ds =

∫ t

0
η1(s) ds+ j−

1
3 sin jt,

U j2 (t) =
∫ t

0
uj2(s)ds =

∫ t

0
η2(s) ds+

j−
1
3

2
η3(t) sin 2jt− j−

1
3

2

∫ t

0
η′3(s) sin 2js ds.

Letting

V j1 (t) =
∫ t

0
η1(s) ds,

V j2 (t) =
∫ t

0
η2(s) ds− j−

1
3

2

∫ t

0
η′3(s) sin 2js ds

and using (46) and (47) we have

ŨV
j

1(t) = −j− 1
3 sin jt, ŨV

j

2(t) = −j
− 1

3

2
η3(t) sin 2jt.

Now it is easily computed that∫ t

0
uj1(s)ŨV

j

1(s) ds =
∫ t

0
η1(s)ŨV

j

1(s)ds+
j−

2
3

4
[cos 2jt− 1],
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0
uj1(s)ŨV

j

2(s) ds =
∫ t

0
η1(s)ŨV

j

2(s)ds+
j−

2
3 η3(t)
4

[
1
3

cos 3jt+ cos jt
]

−1
3
j−

2
3 η3(0)− j−

2
3

4

∫ t

0
η′3(s)

[1
3

cos 3js+ cos js
]
ds,∫ t

0
uj2(s)ŨV

j

1(s) ds =
∫ t

0
η2(s)ŨV

j

1(s)ds+
j−

2
3 η3(t)
2

[1
3

cos 3jt− cos jt
]

+
1
3
j−

2
3 η3(0)− j−

2
3

2

∫ t

0
η′3(s)

[1
3

cos 3js− cos js
]
ds,

∫ t

0
uj2(s)ŨV

j

2(s) ds =
∫ t

0
η2(s)ŨV

j

2(s)ds+
j−

2
3

16

[
η2

3(t) cos 4jt− η2
3(0)

]
−j
− 2

3

8

∫ t

0
η3(s)η′3(s) cos 4js ds.

So if we let

V j1,1(t) =
∫ t

0
η1(s)ŨV

j

1(s)ds− j−
2
3

4
,

V j1,2(t) =
∫ t

0
η1(s)ŨV

j

2(s)ds− 1
3
j−

2
3 η3(0)− j−

2
3

4

∫ t

0
η′3(s)

[1
3

cos 3js+ cos js
]
ds,

V j2,1(t) =
∫ t

0
η2(s)ŨV

j

1(s)ds+
1
3
j−

2
3 η3(0)− j−

2
3

2

∫ t

0
η′3(s)

[1
3

cos 3js− cos js
]
ds,

V j2,2(t) =
∫ t

0
η2(s)ŨV

j

2(s)ds− j−
2
3 η2

3(0)
16

− j−
2
3

8

∫ t

0
η3(s)η′3(s) cos 4js ds,

then we get

ŨV
j

1,1(t) = −j
− 2

3

4
cos 2jt,

ŨV
j

1,2(t) = −j
− 2

3 η3(t)
4

[1
3

cos 3jt+ cos jt
]
,

ŨV
j

2,1(t) = −j
− 2

3 η3(t)
2

[1
3

cos 3jt− cos jt
]
,

ŨV
j

2,2(t) = −j
− 2

3 η2
3(t)

16
cos 4jt.

There are eight indices of degree 3, namely, (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1),

(2, 1, 2), (2, 2, 1), and (2, 2, 2). We simply let V ji1,i2,i3(t) =
∫ t

0 u
j
i1

(s)ŨV
j

i2,i3(s)ds so

that ŨV
j

i1,i2,i3(t) ≡ 0. The V ji1,i2,i3 can be computed explicitly. We just compute
V j1,1,2. By definition we have

V j1,1,2(t) =
∫ t

0
uj1(s)ŨV

j

1,2(s)

=
∫ t

0
η1(s)ŨV

j

1,2(s) ds− 1
4

∫ t

0
η3(s)

[1
3

cos js cos 3js+ cos2 js
]
ds

= −1
8

∫ t

0
η3(s) ds+ o(1),
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where o(1) denotes the terms that converge to 0 uniformly as j → ∞. Similarly one
can compute all the other V ji1,i2,i3 .

From the definition of the V jI we can get that

lim
j→∞

V j1 (t) =
∫ t

0
η1(s) ds, lim

j→∞
V j2 (t) =

∫ t

0
η2(s) ds, lim

j→∞
V j1,1,2(t) = −1

8

∫ t

0
η3(s)ds,

lim
j→∞

V j1,2,1(t) =
1
4

∫ t

0
η3(s)ds, lim

j→∞
V j2,1,1(t) = −1

8

∫ t

0
η3(s)ds,

and all the other V jI for 0 < |I| ≤ 3 converge to 0 uniformly. It is also clear that the

ŨV
j

I and V jI satisfy conditions (c2′(r)) and (c3′(r)). Therefore if we let

V =
∫ t

0
η1(s)dsX1 +

∫ t

0
η2(s)dsX2 −

1
8

∫ t

0
η3(s)ds [X1X1X2 − 2X1X2X1 +X2X1X1]

=
∫ t

0
η1(s)dsX1 +

∫ t

0
η2(s)dsX2 −

1
8

∫ t

0
η3(s) ds [X1, [X1, X2]],

from Theorem 1 we can conclude that the uj EI(3)-converge to V.
In control theory, one often considers systems with a drift term, i.e., systems of

the form

ẋ = f0(x) +
m∑
k=1

uk(t)fk(x).

Since such systems arise frequently in applications, we state explicitly the result gen-
eralizing Theorem 1 to systems with a drift. First we give a definition similar to
EI(r)-convergence.

DEFINITION 11. We say that a sequence {Uj =
∑m
i=1 U

j
iXi} of ordinary inputs

EI ′(r)-converges to an extended input V =
∑

0<|I|≤r VI [XI ] of order ≤ r if the fol-
lowing holds. For every integer n > 0, any vector field f0 of class C0, and vector
fields fk, k = 1, . . . ,m, of class Cr−1 on Rn, if

(1) {Uj(k)} is a subsequence of {Uj},
(2) {x̄j(k)} is a sequence of points in Rn that converges to a limit x̄ ∈ Rn,
(3) xj(k) is a maximal solution of

dx = f0(x)dt+
m∑
i=1

fi(x)dU j(k)
i (t),

x(0) = x̄j(k),

then there exist a maximal solution x∞ of

dx = f0(x)dt+
∑

0<|I|≤r
[fI ](x)dVI(t),(48)

x(0) = x̄,(49)

and a subsequence {xj(k(`))} of {xj(k)} that converges to x∞ on compact sets.
Then similar to Theorem 1, we have the following theorem.
THEOREM 2. Let {Uj}, r, and V be as in Theorem 1. Then under the same

conditions of Theorem 1 the {Uj} EI ′(r)-converge to V.
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One can also consider time-varying systems

dx = f0(x, t)dt+
m∑
k=1

fk(x, t) dUk(50)

with a drift, where fk : Rn × [0, T ] → Rn, k = 0, 1, . . .m, are time-varying vector
fields. Let f = (f1, . . . , fm) be an m-tuple of time-varying vector fields on Rn. We
say that f ∈ Cr−1

t (Rn) if for any smooth function ψ from Rn to R, and for any
I = (i1, . . . , ik) with |I| < r, (fi1 · · · fikψ)(x, t) is of class C1 on Rn× [0, T ]. Then one
can similarly prove the following.

THEOREM 3. Let {Uj}, r, and V be as in Theorem 1. Let fk : Rn × [0, T ] →
Rn, k = 0, 1, . . . ,m, be time-varying vector fields on Rn and let f = (f1, . . . , fm).
Assume that f ∈ Cr−1

t (Rn) and f0 is continuous. Let x̄ ∈ Rn be a point and {x̄j}
be a sequence of points in Rn converging to x̄. Then under the same conditions of
Theorem 1 the following holds. Let xj be a maximal solution of (50) corresponding to
inputs Uj with initial values x(0) = x̄j. Then for any subsequence {xj(k)} of {xj},
there exist a maximal solution x∞ of

dx = f0(x, t) dt+
∑

0<|I|≤r

1
|I| [fI ](x, t) dVI ,(51)

x(0) = x̄,

and a further subsequence {xj(k(`))} of {xj(k)} such that the xj(k(`)) converge to x∞

on compact sets.
It is easy to see that the main theorems of [5], [7] are consequences of Theorem 3.
Remark 10. We point out that one can weaken the regularity assumptions on the

vector fields f1, . . . , fm in the definition of EI(r)-convergence in many ways. To see
how this can be done, cf. [16].

4. The necessity of the conditions of Theorem 2. When r = 1, Theorem
2 reduces to the following theorem discussed in [13].

THEOREM 4. Let {Uj}, j ∈ {1, 2, . . .} ∪ {∞}, be a sequence of ordinary inputs.
Assume that there exist representatives U j = U j1X1 + . . .+U jmXm of the Uj such that

(c1) the U j converge to U∞ uniformly on [0, T ],
(c2) the total variations TV [U ji ; 0, T ] are uniformly bounded; i.e., there exists a

finite constant C such that TV [U ji ; 0, T ] ≤ C for i = 1, . . . ,m and all j.
Then {Uj} EI ′(1)-converges to U∞.

As point out in [13], conditions (c1), (c2) are also necessary for {Uj} to EI′(1)-
converge to U∞; namely, the following theorem holds.

THEOREM 5. Let {Uj}, j ∈ {1, 2, . . .} ∪ {∞}, be a sequence of ordinary inputs.
Then the Uj EI ′(1)-converge to U∞ iff there are representatives U j = U j1X1 + · · ·+
U jmXm of the Uj that satisfy conditions (c1) and (c2) in Theorem 4.

This theorem is proven in [13] for the case when all the U ji , U
∞
i are absolutely

continuous. For completeness we include the proof here since it is very simple anyhow.
Proof of Theorem 5. Assume that the Uj EI′(1)-converge to U∞. For each j let

U j = U j1X1 + · · ·+U jmXm be a representative of Uj with U ji (0) = 0 for i = 1, . . . ,m.
Condition (c1) follows from applying the EI′(1)-convergence of the Uj to U∞ with n =
m, x̄j = x̄ = (0, . . . , 0), f0(x) = (0, . . . , 0), f1 = (1, 0, . . . , 0), . . . , fm = (0, . . . , 0, 1).

To show (c2), let ϕ be a function in C[0, T ], the set of all real-valued continuous
functions on [0, T ]. Let n = 2, and fix 1 ≤ ` ≤ m. For any x = (x1, x2) ∈ R2, let
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f0(x) = (1, 0), fi(x) = (0, 0) except for i = `, and f`(x) = (0, ϕ(x1)). For 1 ≤ j ≤ ∞,
let xj be the unique maximal solution of

dx = f0(x)dt+
m∑
i=1

fi(x)dU ji (t), x(0) = (0, 0).

Then we have xj1(t) = t, and xj2(t) =
∫ t

0 ϕ(s)dU j` (s). Since the Uj EI′(1)-converge
to U∞, we know that the functions xj2(t) =

∫ t
0 ϕ(s)dU j` (s) converge to x∞2 (t) =∫ t

0 ϕ(s)dU∞` (s) uniformly. In particular the integrals
∫ T

0 ϕ(s)dU j` (s) converge to∫ T
0 ϕ(s)dU j` (s). Now each U j` can be viewed as a linear functional on the Banach

space C[0, T ] given by 〈U j` , ϕ〉 =
∫ T

0 ϕ(s)dU j` (s). It is well known that if U is any
function in BV C([0, T ],R), the norm of the linear functional ϕ −→

∫ T
0 ϕ(s)dU(s) is

equal to the total variation of U on [0, T ], i.e., TV [U ; 0, T ]. Now the above implies
that for each ϕ, the set {〈U j` , ϕ〉 : j = 1, 2, . . .} is bounded. By the Banach–Steinhaus
theorem we know that the set {TV [U j` ; 0, T ] : j = 1, 2, . . .} is also bounded. Since `
is arbitrary between 1 and m, we know that (c2) holds.

It is easy to see that condition (c1(r)) is still necessary for a sequence {Uj} to
EI′(r)-converge to an extended input V of order r; namely, if a sequence {Uj} of
ordinary inputs EI′(r)-converges to an extended V of order r, then {Uj} FT(r)-
converges to V (cf. Remark 8). To see this, let F rk , k = 0, . . . ,m, be the linear vector
fields on Ar(X) given by F r0 (S) = 0, F rk (S) = SXk for k = 1, . . . ,m. Since the Uj

EI′(r)-converge to V, in particular the solutions of the initial value problems

dS = F r0 (S)dt+
m∑
k=1

F rk (S)dU jk ,

S(0) = 1

converge to the function S that satisfies dS = SdV, S(0) = 1 on [0, T ] in Ar(X), which
is equivalent to the FT(r)-convergence of the Uj to V. However, condition (c2(r))
may not be necessary anymore. An interesting problem is of course to get simple char-
acterizations for sequences of ordinary inputs to EI′(r)-converge to extended inputs
of order r for r ≥ 2.

Appendix: Proof of Lemma 1 and an auxiliary result. We now complete
the proof of Lemma 1 and give an approximation result of B-continuous functions by
smooth functions (in the weak convergence sense), which was used in section 2. This
result is well known, but we provide a proof for completeness.

Proof of Lemma 1. Let g̃j = gj−g and K = supj{TV [gj ; 0, T ]}. Our assumptions
imply that f is continuous and g is B-continuous with TV [g; 0, T ] ≤ K. We have∣∣∣ ∫ t

0
f j(s) dgj(s)

∣∣∣ ≤ ∣∣∣ ∫ t

0
(f j(s)− f(s)) dgj(s)

∣∣∣+
∣∣∣ ∫ t

0
f(s) dgj(s)

∣∣∣
≤ K|f j − f |∞ +

∣∣∣ ∫ t

0
f(s) dgj(s)

∣∣∣.
(Here |f j − f |∞ denotes the sup-norm of the function f j − f on [0, T ].) Since the f j

converge to f uniformly, the K|f j − f |∞ converge to 0. The integrals
∫ t

0 f(s) dgj(s)
can be rewritten as

∫ t
0 f(s)dg̃j(s) +

∫ t
0 f(s)dg(s). So all we need is to show that the∫ t

0 f(s)dg̃j(s) converge to 0 uniformly as j → ∞. For any given ε > 0, let f̃ be a
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smooth function on [0, T ] such that |f − f̃ |∞ < ε
4K . Then∣∣∣ ∫ t

0
f(s)dg̃j(s)

∣∣∣ ≤ ∣∣∣ ∫ t

0
(f(s)− f̃(s))dg̃j(s)

∣∣∣+
∣∣∣ ∫ t

0
f̃(s)dg̃j(s)

∣∣∣.
The first term in the right-hand side is less than ε

2 . The second integral can be
rewritten via integration by parts as∫ t

0
f̃(s)dg̃j(s) = f̃(t)g̃j(t)− f̃(0)g̃j(0)−

∫ t

0

˙̃
f(s)g̃j(s)ds.

Since the g̃j converge to 0 uniformly, we see that the
∫ t

0 f̃(s)dg̃j(s) converge to 0
uniformly as j →∞. This completes the proof of the lemma.

PROPOSITION 4. Let V be a function in BV C[0, T ]. Then there exists a sequence
{vn} of smooth functions on [0, T ] with the ‖vn‖L1 being uniformly bounded such that,
for any g ∈ C[0, T ],

lim
n→∞

∫ t

0
g(s)vn(s) ds =

∫ t

0
g(s) dV (s)

uniformly in t.
Proof. Without lost of generality we may assume that V ∈ BV C[0, T ] is increasing

and V (0) = 0. Divide [0, T ] into 2n equal parts. Let Γn = {0 = tn0 < tn1 < · · · <
tn2n = T} be the partition. Let ṽn be functions on [0, T ] defined ṽn(t) = V (tnl )−V (tnl−1)

tnl −tnl−1

on [tnl−1, t
n
l ) and ṽn(T ) = V (T ). Clearly

∫ T
0 |ṽn(s)| ds = V (T ). Let g ∈ C[0, T ] and

M = max0≤t≤T |g(t)|. We first show that

lim
n→∞

∫ t

0
g(s)ṽn(s) ds =

∫ t

0
g(s) dV (s)

uniformly. Given any ε > 0, since V is continuous, there exists a δ > 0 such that
|V (t2)−V (t1)| < ε

3M if |t2− t1| < δ. Let mn
l ,M

n
l be the minimum and the maximum

values of g on [tnl−1, t
n
l ], respectively. Let

sΓn =
2n∑
l=1

mn
l (V (tnl )− V (tnl−1)),

SΓn =
2n∑
l=1

Mn
l (V (tnl )− V (tnl−1)).

Then we know that

0 ≤ SΓn − sΓn → 0 as n→∞.

For the given ε > 0, take N1 large enough such that 0 ≤ SΓn −sΓn <
ε
3 when n > N1.

Let N be such that T
2N < δ and N > N1. For any t ∈ [0, T ], let t(n) be the integer

such that t ∈ [tnt(n), t
n
t(n)+1). Then, via the mean value theorem, we have∫ t

0
g(s)ṽn(s) ds =

t(n)∑
l=1

∫ tnl

tnl−1

g(s)ṽn(s) ds+
∫ t

tn
t(n)

g(s)ṽn(s) ds

=
t(n)∑
l=1

g(ξnl )(V (tnl )− V (tnl−1)) +
V (tnt(n)+1)− V (tnt(n))

tnt(n)+1 − tnt(n)
g(ξnt(n)+1)(t− tnt(n)),
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where ξnl ∈ [tnl−1, t
n
l ]. We know that when n > N∣∣∣∣∣V (tnt(n)+1)− V (tnt(n))

tnt(n)+1 − tnt(n)
g(ξnt(n)+1)(t− tnt(n))

∣∣∣∣∣ < ε

3
.

So we have

−ε
3

+
t(n)∑
l=1

mn
l (V (tnl )− V (tnl−1)) ≤

∫ t

0
g(s)ṽn(s) ds ≤ ε

3
+
t(n)∑
l=1

Mn
l (V (tnl )− V (tnl−1)).

We also have

t(n)∑
l=1

mn
l (V (tnl )− V (tnl−1)) +mn

t(n)+1(V (t)− V (tnt(n))) ≤
∫ t

0
g(s) dV (s)

≤
t(n)∑
l=1

Mn
l (V (tnl )− V (tnl−1)) +Mn

t(n)+1(V (t)− V (tnt(n))).

So when n > N , we have∫ t

0
g(s) dV (s)−

∫ t

0
g(s)ṽn(s) ds ≤

t(n)∑
l=1

(Mn
l −mn

l )(V (tnl )− V (tnl−1))

+ Mn
t(n)+1(V (t)− V (tnt(n))) +

ε

3

≤ SΓn − sΓn +
ε

3
+Mn

t(n)+1(V (t)− V (tnt(n))) ≤ ε

and ∫ t

0
g(s) dV (s)−

∫ t

0
g(s)ṽn(s) ds ≥

t(n)∑
l=1

(mn
l −Mn

l )(V (tnl )− V (tnl−1))

+ mn
t(n)+1(V (t)− V (tnt(n)))−

ε

3

≥ sΓn − SΓn −
ε

3
+mn

t(n)+1(V (t)− V (tnt(n))) ≥ −ε,

i.e., ∣∣∣ ∫ t

0
g(s) dV (s)−

∫ t

0
g(s)ṽn(s) ds

∣∣∣ ≤ ε.
Now taking {vn} ∈ C∞[0, T ] such that ‖ṽn − vn‖L1 → 0 as n→∞, we get

lim
n→∞

∣∣∣ ∫ t

0
g(s) dV (s)−

∫ t

0
g(s)vn(s) ds

∣∣∣ ≤ lim
n→∞

{∣∣∣ ∫ t

0
g(s) dV (s)−

∫ t

0
g(s)ṽn(s) ds

∣∣∣
+
∫ t

0
|g(s)| |ṽn(s)− vn(s)| ds

}
= 0

uniformly on t. Clearly the ‖vn‖L1 are uniformly bounded.
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Abstract. The problem of controlling a noisy process so as to prevent it from leaving a prescribed
set has a number of interesting applications. In this paper, new approaches to this problem are
considered. First, a risk-sensitive criterion for a stochastic diffusion process model is examined, and
it is shown that the value is a classical solution of a related PDE. The qualitative properties of this
criterion are favorably contrasted with those of existing criteria in the risk-averse limit. It is proved
that in the risk-averse limit the value of the risk-sensitive criterion converges to a viscosity solution
of a first-order PDE. It is then demonstrated that the value function of a deterministic differential
game is also a viscosity solution to the PDE. This game gives a robust control formulation of the
escape time problem and is analogous to H∞ control. In particular, the opposing player attempts
to push the process out of the prescribed set and suffers an L2 cost for his efforts. Lower bounds on
the escape time as a function of this cost are obtained.

Key words. exit time control, risk-sensitive control, large deviations, robust control
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1. Introduction. In problems that cover a range of interesting applications,
there is a stochastic process model for a system, and the goal is to keep the process in
a given fixed open set G. In this paper we will consider such problems in the context of
optimization and control. Here, as with many other problems to which control theory
is applied, the selection of a cost is subjective. Typically, one chooses a cost with
the purpose of inducing desirable qualitative behavior. For example, in many control
problems the goal is to keep the controlled process near a certain operating point. In
this case one would choose a criterion so that the corresponding optimal controls will
“stabilize” the process about this operating point. For our problem the situation is
different, in that the goal is not so much to keep the process near a particular point
as it is to keep it away from the “bad” set Gc, where the c denotes complement.
For a problem to fit well into such a framework, it must be the case that entry into
the set Gc is in a certain sense catastrophic, and avoiding such an event must be a
high priority. Examples are the failure of a machine, loss of data in a communication
network, loss of “lock” in an adaptive tracking device, and entry of bistable adaptive
control algorithms, such as those using ALOHA-type protocols, into the “bad” region.

There are two criteria that are often associated with the problem described above.
The first criterion is the probability of escape over some interval [0, T ]:

Px {Xt 6∈ G for some t ∈ [0, T ]} ,

where Px denotes probability conditioned on X0 = x. If the process is controlled,
then obviously one would like to choose the control to minimize this probability. The
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second criterion is the mean escape time, Exτ , where τ is the first time the process
Xt escapes from G. Here we maximize when a control is available. As we discuss in
detail in section 3, both these cost criteria have some theoretical and computational
shortcomings. One of the contributions of the present paper is the introduction of new
cost criteria for this problem. To have a concrete model for the purposes of discussion,
consider the case of a Markov process described by the stochastic differential equation

dXε
t = f(Xε

t )dt+ ε1/2σ(Xε
t )dBt, Xε

0 = x,

where the dimensions of the Wiener process Bt, f , and σ are compatible. The quantity
ε > 0 is a parameter whose role will be explained shortly.

One of the criteria we consider takes the form

Ex exp [−θτ ε/ε] ,(1.1)

where θ is a positive design parameter and τ ε is the first time the process Xε
t exits G.

If the process is controlled, we choose the control to minimize this quantity. We will
consider the qualitative properties of this cost from two different perspectives. The
first perspective is that of control of “small noise” systems. In this setting, the term
small noise essentially means that escape from G is a relatively rare event. For the
particular model under consideration, and under appropriate conditions on f and σ,
this corresponds to ε > 0 being small. Many problems of interest, such as the control
of communication devices, fall into this “small noise” category, since design tolerances
are quite strict and a system in which escape was common would not even be worth
considering. As we discuss in section 3, the quantity (1.1) has desirable properties
when compared to standard criteria for problems of this type.

One can also view (1.1) as a “risk-sensitive” analogue of a more standard criterion.
We consider the same limit as in the small noise perspective. Based on the now well-
known connection between limits of risk-sensitive control problems and nonlinear
robust control, one might expect the limit ε→ 0 to lead to a robust control problem
for escape time problems that is analogous to H∞ control. The second cost criterion
we study is the one associated with this robust control problem. In this setting, we
do not assume that the true system is “small noise.”

Hence in both cases we are interested in the limit problem obtained when ε→ 0
in the cost (1.1). In order to obtain a well-defined limit, it is necessary to work with
the scaled quantity

−ε logEx exp [−θτ ε/ε] .(1.2)

Because of the additional minus sign, the objective is to maximize this quantity. De-
pending on the means by which the designer may influence the system, we distinguish
three classes of progressively more difficult optimization problems. The first case is
that of “performance analysis.” Here the designer cannot really influence the system
at all. Instead, the designer would be interested in approximating (1.2) or its limit as
ε → 0 so that it could be used to compare two or more system designs. The second
case is one we call “parametric optimization.” Here the designer has control over a
collection of parameters that determine the dynamics of the system. In this case the
designer could use the limit of (1.2) as a convenient criterion when optimizing with
respect to these parameters. In both of these cases, the limit of (1.2) as ε→ 0 can be
characterized as the solution to a minimal cost deterministic optimal control problem.
The last case is that in which the designer can choose an active, state-dependent con-
trol. In this case the limit as ε→ 0 of the supremum of (1.2) over admissible controls
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can be characterized as the solution to a deterministic differential game. The control
that seeks to maximize the limit of (1.2) will be opposed by a minimizing control.
In order to distinguish the prelimit control problem for this case from the limit con-
trol problem obtained in the previous two, we refer to it as the case of “maximizing
control.” To simplify the exposition, in several places the case without maximizing
control is treated separately and before the more general case.

A summary of the paper is as follows. In order to illustrate some of the main issues
and suggest some of the applications, we describe several motivational examples in
section 2. In section 3 we turn our attention to possible design criteria. We describe
shortcomings of the standard criteria from the small noise perspective, and show
how these shortcomings are avoided by considering the limit of (1.2) as the design
criterion. The “risk-sensitive” interpretation of (1.2) is given in this section, and we
also discuss generalizations of (1.1). Since the qualitative comparisons do not rely
heavily on the use of a specific model, the discussion in sections 2 and 3 is in a general
setting. However, for the asymptotic analysis and interpretation of the limit problem
it is convenient to fix a model, and accordingly a diffusion model and the associated
model for the robust control problem are assumed throughout sections 4–6. In section
4 we characterize the limit of (1.2) for the various cases when ε → 0, and state the
convergence theorem. As noted previously, the established connections between risk-
sensitive control, risk-averse limits, and robust control suggest that the limit problem
for the case of maximizing control would define a control that has an interpretation as
a robust control. This is the case, and the precise interpretation is stated in section
5. To ease the presentation, a number of proofs are postponed to section 6.

2. Examples. In this section we describe examples that fit into the framework
of the last section. The examples are intended only to be illustrative. They provide
the basis for the qualitative comparisons of the next section and motivate the criteria
that will be considered later. Some of the examples fall outside the class of diffusion
processes, and hence indicate interesting extensions that are not covered by the theory
developed in this paper. However, since the qualitative properties discussed in section
3 require only a certain type of large deviation behavior, the remarks of this section
apply to all the examples.

Problems for which escape time criteria are appropriate fit into one of two cat-
egories. In the first category, exit from the region of desired operation essentially
causes the system to shut down, and the system is more or less “off-line” until the
state of the system can be steered back into the good operating region. For example,
when an ALOHA-type system exits its stable operating region the entire system is
shut down and then restarted. In Example 1 below, exit from the operating region
means that the pair of communicating satellites must suspend data transmission and
initiate the procedure to regain “lock.” In the second category exit from the domain
is not fatal, but still an event to be avoided because of a drastic decline in perfor-
mance when outside the good region. An example in this category is the queueing
example given below, in which escape from G corresponds to a nonnegligible fraction
of incoming customers being turned away. For additional examples the reader can
consult the references in [28].

Example 1 (satellite laser communication problem). In space-based laser com-
munication an essential role is played by the tracking and pointing subsystems of
the satellites that are involved. In particular, data may be transmitted between two
satellites by a laser communication crosslink. In order that the communication links
not be broken, the pointing system of each satellite must keep the laser focused on the
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detector of the other. Since the communication beams are very narrow, the pointing
requirements are rather stringent [26]. In this example the set G is defined in terms of
an angular cone of allowable orientations of the gimbal-mounted optics used to control
the beam direction. At any given time one of the satellites is allowed to transmit data
at a high rate while the other transmits a “beacon” signal at a low rate, the purpose of
which is to help maintain the “lock.” Owing to “noises” (such as internal vibrations)
the operating state of the system can be driven from G, at which time there will be a
communication interruption, and lock between the transmitter and receiver will have
to be re-established via a separate acquisition algorithm. It is desirable to have the
time between losses of lock be quite large (e.g., several months).

For such a system linear methods automatically make little sense, since the ef-
fective state space in which the system can operate is not itself a linear space. This
is true even if the system dynamics are linear. The criterion described in the intro-
duction and the robust criterion we will define in section 5 are more natural for this
problem, since they focus on the event that is actually of interest. In this problem
one may be interested in parametric optimization or feedback control.

Example 2 (tracking problem). Many synchronization systems in advanced com-
munication systems are digital. One might model such a system as

Xn
i+1 = Xn

i +
1
n
b(Xn

i , ξi).

In this equation ξi is a random sequence composed of noise and the inputs to the
system. The discrete time parameter i is used because time is “slotted,” and data
are communicated only at discrete times. The factor 1/n reflects the fact that the
state Xn

i of the system changes slowly as a function of each new piece of data ξi,
although the data rates are very high. In order that the system operate properly, it is
crucial that the transmitter and receiver both be on the same “clock,” so that it is clear
when a discrete time interval begins and ends. In a synchronization system, one of the
components of Xn

i (say (Xn
i )1) will be the difference between an estimate of a phase

timing indicator and the true value. For accurate communication or tracking, one
needs a very good estimate. Here the set G will be of the form {x : −a1 ≤ x1 ≤ a2}.
As part of the design procedure “stabilizing” dynamics are always built into the system
in order to keep Xn

i in the acceptable region G. However, owing to the presence
of noise, the difference between the estimate of the phase timing indicator and the
true value is eventually driven from G. A risk-sensitive escape criterion is natural
in this context. For these problems, one is typically interested only in performance
analysis (for purposes of comparing competing designs), or at most in parametric
optimization.

This example is illustrative of a large class of similar problems from statistics
and adaptive stochastic algorithms [4]. The large deviation analysis, numerical com-
putations, and simulations for a related analog device known as a phase-locked loop
appear in [7, 9].

Example 3 (queueing problems). Numerous problems involving the design and
optimization of queues can be cast in terms of the risk-sensitive criterion. Escape
criteria will be suitable whenever the main purpose of the design is to reduce the
possibility of very large buffers. A number of examples and references to additional
examples are given in the book [30]. Although there is at the present time no theory
of robust control for queueing systems, one would expect by analogy with the case for
diffusions that controls designed on the basis of a risk-sensitive criterion would enjoy
the features one would desire of such a robust control.
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Escape criteria are suitable whenever buffer overflow constitutes a critical event.
This is often true for problems associated with the analysis and design of high-speed
data networks. These networks carry many types of data in digitized form, e.g.,
voice, computer, and video data. Each of these classes has its own requirements
and characteristics. In addition, for some classes of data there may be contractually
agreed upon requirements regarding network performance. These requirements will
be stringent (e.g., probabilities of data loss in the 10−9 range). Data loss occurs
when buffer capacities are exceeded, and thus corresponds to an “escape.” There are
numerous difficult and interesting design and control problems that are associated
with such networks.

Example 4 (power system stability). In this example a diffusion model is believed
to be appropriate for describing the time evolution of the system (cf. [6] and the
references therein). The state of the system is a vector whose components consist of
various generator frequencies, voltage phase angles, and voltage magnitudes. The set
G is defined to be a region in which the “security” of the system is acceptable. Exit
from the region may require substantial intervention to return the state of the system
to the stable region, and hence is an event to be avoided. Coefficient matrices in
the system of equations that describe operation provide the system parameters over
which optimization can be performed. In addition, feedback control in various forms
can also be possible.

3. Comparison and interpretation of the cost criterion. In this section
we study the optimization criterion

Ex exp [−θτ ε/ε](3.1)

from a qualitative point of view. In section 3.1 a comparison is made between this
cost and more standard cost criteria in the small noise setting. In section 3.2, (3.1)
is interpreted from the risk-sensitive point of view. Generalizations of the cost are
briefly discussed in section 3.3.

3.1. The small noise setting. In many of the problems for which a criterion
based on escape times is appropriate, it is useful to assume that the stochastic process
model is in some sense a “small noise” model. Indeed, if this were not the case, then
(essentially regardless of system design) escapes from the acceptable operating region
would be common, and for many problems the models might not be worth considering.

As remarked in the introduction, there are two criteria that are often associated
with such problems, namely, the probability of escape over some interval [0, T ],

Px {Xε
t 6∈ G for some t ∈ [0, T ]}

and the mean escape time

Exτ
ε, where τε = inf{t : Xε

t 6∈ G}.

The parameter ε > 0 indicates the “strength” of the noise, with zero noise in the limit
ε→ 0.

Unfortunately, both of these criteria have shortcomings. We first consider the
escape probability. While this criterion might be acceptable for problems for which
the duration T is fixed and known, it is probably not appropriate otherwise. In many
problems one has a rough idea of the interval of interest, but not much more than
that. The escape probability criterion can be inconvenient to work with even when
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the interval of interest is known. For example, in the control setting it typically results
in controls that are not stationary. A second difficulty is of a computational nature.
In cases where the control space is large, there can be numerical difficulties due to
the fact that the controls become somewhat singular near the final time T . A final
problem is greater sensitivity (relative to more well-behaved functionals) with regard
to the parameter that measures the strength of the noise. Hence escape probabilities
can be more difficult to approximate than smoother functionals of a process (such as
an expectation of a smooth function of the process). Because of this, the behavior
of systems designed on such a criterion is less reliably predicted by the asymptotic
theory.

While the mean escape time criterion has the advantage of yielding time-indepen-
dent feedback controls, it too can be problematic, especially in the desired situation
where the probability of escape over O(1) time intervals is rare. In this setting,
computation and approximation of the mean escape time, even for the case of a fixed
control, can be difficult. In order to make this statement precise, we return to the
small noise diffusion model

dXε
t = f(Xε

t )dt+ ε1/2σ(Xε
t )dBt, Xε

0 = x.(3.2)

It is well known (under some assumptions) that W ε(x) .= Exτ
ε satisfies a second-order

PDE

LεW ε(x) = −1, x ∈ G0, W ε(x) = 0, x ∈ ∂G,(3.3)

where

Lεg(x) .=
ε

2
tr [gxx(x)a(x)] + 〈f(x), gx(x)〉, a(x) = σ(x)σT (x),

and trB denotes the trace of the square matrix B. The case with control involves
obvious modifications of this equation. The smallness of the noise translates into the
small ε coefficient in front of the second derivative term. This produces a solution that
is essentially flat over much of G0 but with steep gradients close to ∂G. Because of
these properties, it is very difficult to accurately approximate the solution numerically.
This is rather unsatisfactory, since the very conditions that are required for escapes
to be a rare event lead to difficult computational problems.

A problem that may be even more important than the one just discussed is that
in the small noise setting the mean escape time (and by extension any controls that
are designed using it as the performance criterion) may focus on events that are not
of any practical interest, since the dominant contribution to this criterion comes from
paths that take a very long time to escape. Under certain technical conditions on f ,
σ, and their relation to ∂G, one can show [20] there exists a constant C∗ > 0 such
that the limit

lim
ε→0

ε logExτε = C∗

holds uniformly for x in compact subsets of G. For any δ ∈ (0, C∗), the scaling in ε of
this quantity implies that when ε > 0 is sufficiently small the dominant contribution
to Exτ

ε is due to sample paths that take at least exp ([C∗ − δ]/ε) units of time to
escape. While this may be a moot point if one is absolutely certain that the mean
escape time is the criterion of interest, it is an important point when this is not
the case. Consider, for example, a telecommunication problem involving routing of
data through a network. For obvious reasons, the true process representing loading
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of the network is nonstationary, with cyclical variations (e.g., periods of one day).
For this problem the mean escape criterion, even if it were computable, would be an
inappropriate basis on which to design controls if the dominant contribution is due to
sample paths that take longer than one day to escape. Such a criterion is clearly not
desirable, since controls designed on it may allow a large number of escapes over a short
time interval, as long as this is balanced by relatively few sample paths which take
the very long time exp([C∗ − δ]/ε) to escape. Moreover, these paths would not even
contribute to the overall performance of the true system, owing to its nonstationarity.

As we will see, the escape time criterion (3.1) and controls based on its asymptotic
behavior avoid these difficulties. The controls will automatically be independent of
time, and by appropriately choosing the design parameter θ, one can to some degree
“tune” the system to focus on escapes over different O(1) time intervals. By work-
ing with the logarithmic transform of (3.1), we obtain a Hamilton–Jacobi equation
that is much more well behaved than (3.3), especially with regard to computational
approximations. We also note that in comparison with the escape probability, the
relative smoothness of the functional mapping Xε → τε under the distribution of
Xε suggests that (3.1) (or rather the logarithmic transform of (3.1)) should be more
reliably predicted by the asymptotic theory when ε→ 0.

3.2. The risk-sensitive interpretation. The theory of risk-sensitive control
investigates the manner in which modifications of cost structures affect the associated
optimal policies. For example, one might be interested in the effect of so-called “risk-
sensitizing transformations.” At an intuitive level, the goal of such a transformation
is to amplify the effect that certain outcomes have in determining the overall cost, and
thereby force the optimal control (or any nearly optimal control) to “pay more atten-
tion” to these more heavily weighted outcomes. In particular, in the risk-averse case,
“bad” events are weighed more heavily, and the control becomes more conservative
with regard to allowing these events to occur.

From this perspective, for each fixed ε > 0, one may view the criterion (3.1) as
a risk-sensitive version of the mean escape time criterion Exτ

ε. The effect of the
nonlinear mapping τ → exp−θτ/ε is to shift the attention toward paths that escape
in a relatively short time, at the expense of optimizing the mean escape time. As noted
in the previous section, this makes sense for many problems, especially those that may
involve some type of nonstationarity. The design parameter θ > 0 controls the degree
to which these short time escapes are emphasized, with larger values of θ focusing
attention more heavily on such escapes. On the other hand, if we fix ε > 0 and take
the limit θ → 0, one can show (under suitable uniform integrability conditions) that
the design criterion (3.1) becomes equivalent in this limit to the mean escape time.

For various reasons, including computational simplicity, model simplification, and
because of the connection with robust control design, one may also be interested in
taking limits with respect to a family of risk-sensitizing transformations. This is
in fact the second motivation for the asymptotic analysis to be carried out in the
next few sections. The interpretation of the limit in terms of robust control will be
discussed further in section 5. As the reader can easily check, unless the dynamics of
the process model are modified in an ε-dependent way such as that of (3.2), then it
will be difficult to normalize the quantity (3.1) so as to obtain a well-defined limit as
ε→ 0. The limit problem will be interpreted as a robust control problem in section 5.
The link between the two allows one to connect these two rather different modeling
perspectives. It is important to observe that the robust interpretation of the limit
control problem is independent of the asymptotic analysis.
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The relationship between risk-sensitive control and robust control in the linear
setting was discussed at length in [33]. Connections between the two have also been
examined in several nonlinear contexts. It was shown in [14, 15, 23] that the values
of certain risk-sensitive infinite time horizon control problems converge to the values
of H∞ disturbance attenuation problems. In [16, 27] the connection between finite
time horizon risk-sensitive control and robust finite time horizon control was made.
Finally, in [29] and [12] the connection was examined in the Markov chain and hidden
Markov cases, respectively.

3.3. Generalizations of the cost. Depending on the problem, one might con-
sider various generalizations of the cost criterion

Ex exp [−θτ ε/ε] .

For example, one can measure “time until escape” in a state-dependent way by con-
sidering a cost of the form

Ex exp

[
−
∫ τε

0
θ(Xε

s )ds/ε

]
,

where θ(·) is a continuous function on Ḡ. As long as infx∈Ḡ θ(x) > 0, the analysis for
this case is essentially the same as for the case θ(·) .= θ that is considered in sections
4–6.

For maximizing control problems where the control space is potentially unbounded,
one might consider a cost of the form

Ex exp

[
−
∫ τε

0
[θ − 〈us, Aus〉] ds/ε

]
,

where A is a positive definite matrix of appropriate dimensions. Because of the lack
of compactness in the control variable, the analysis in this case is more complicated
than that given in sections 4–6.

4. Asymptotic analysis. For the remainder of this paper attention is restricted
to controlled and uncontrolled diffusion processes, and it is further assumed that the
control only affects the drift. Hence the dynamics of the controlled process are given
by

dXε
t = f(Xε

t , ut) dt+ ε1/2 σ(Xε
t ) dBt,(4.1)

with the obvious modification for the uncontrolled case. B is a Brownian motion with
sample space Ω, filtration Ft, and measure P . The control process u is Ft-progressively
measurable (see [18]) and takes values in a compact set U .

In this section, the results for the small noise/risk-sensitive escape problem are
developed. Since the proofs for the case with a maximizing control are not significantly
more complex than those for the case without control, all the results in this section will
be stated only for the case with control. For the case without control, the modifications
are obvious.

The following conditions will be assumed for the remainder of the paper; no
additional assumptions will appear. Recall that G ⊆ <n denotes the set one wishes
to keep the process in, with G open and G compact. Let ∂G denote the boundary



RISK-SENSITIVE AND ROBUST ESCAPE CRITERIA 2029

of G and for y ∈ <n let Ba(y) .= {x : |x − y| ≤ a}, where | · | denotes the Euclidean
norm.

CONDITION 4.1. G satisfies a uniform exterior sphere condition. Thus there
exists r > 0 such that for any x ∈ ∂G there is y ∈ (G)c with |x− y| = r and

Br(y) ∩G = {x}.

CONDITION 4.2. f ∈ C(G,U), and furthermore f is uniformly Lipschitz in x in
the sense that there exists Kf <∞ such that

|f(x, u)− f(y, u)| ≤ Kf |x− y| for all (x, y, u) ∈ G×G× U.

CONDITION 4.3. σ ∈ C1(G), and there exists µ > 0 such that

ξTσ(x)σT (x)ξ ≥ µ|ξ|2 for all (x, ξ) ∈ G×<n.

Note that the last assumption implies that σ is Lipschitz on G with some constant
Kσ <∞.

Let Uν be the set of Ft-progressively measurable control processes with values
in U with respect to the reference probability system ν = (Ω, {Ft}, P,B) (see [18]).
Although Xε and τε depend on u ∈ Uν , we omit this dependence from the notation.
Define

Φε(x) .= inf
u∈Uν

Ex exp [−θτ ε/ε] ,

where θ is a positive constant, τ ε .= inf{t : Xε
t 6∈ G}, and Ex indicates expectation

conditioned on an initial state x. As is well known (and easy to prove using a large
deviation calculation), for each fixed control the quantity

Ex exp [−θτ ε/ε]

scales exponentially in ε as ε → 0, in the sense that for each x ∈ G there exists
c(x) ∈ R such that

−ε logEx exp [−θτ ε/ε]→ c(x)

as ε→ 0.
Thus it is natural to apply a logarithmic transform (see, e.g., [13, 18]) and consider

a criterion of the form

V ε(x) .= −ε log Φε(x) = sup
u∈Uν

−ε logEx exp [−θτ ε/ε] .(4.2)

(As noted in section 3, the cost in (4.2) is similar to Ex{θτ} but with the insertion
of a risk-sensitizing transformation.) Starting with the quasi-linear PDE satisfied by
Φε and taking the log transform, one formally obtains the PDE

θ +
ε

2
tr [a(x)Vxx(x)] +H(x, Vx(x)) = 0, x ∈ G,

V (x) = 0, x ∈ ∂G,
(4.3)

with

H(x, p) .= max
v∈U
〈f(x, v), p〉 − 1

2
〈p, a(x)p〉,(4.4)

and a(x) .= σ(x)σT (x).



2030 PAUL DUPUIS AND WILLIAM MCENEANEY

Criterion (4.2) is analogous to the risk-sensitive criteria applied in many stochastic
control problems (see [14, 15, 16, 23, 27, 29], among others). The following results
support this interpretation. The first lemma is standard (see, e.g., [18, Theorem
15.18]).

LEMMA 4.1. There exists a solution Ṽ ε ∈ C2(G) ∩ C0(G) to (4.3).
Define the cost for a fixed control u ∈ Uν by

Jε(x, u) .= −ε logEx exp [−θτ ε/ε] .

THEOREM 4.2. Given any x ∈ G and u ∈ Uν Ṽ ε(x) ≥ Jε(x, u). Let ū be a Borel
measurable function such that

ū(x) ∈ argmaxv∈U 〈f(x, v), Ṽ εx (x)〉,

and let X̄ε be a solution of (4.1) with ut
.= ū(X̄ε

t ) [32]. Then u is in Uν , and Ṽ ε(x) =
Jε(x, u). Consequently, V ε(x) = Ṽ ε(x) for all x ∈ G.

Although the proof of this assertion is delayed until section 6, we note here that
Theorem 4.2 follows from Girsanov’s Theorem and an application of Ito’s rule.

For reasons discussed in section 3, we would like to determine the limit as ε ↓ 0
for this problem. Two common techniques for proving convergence are based on
large deviations ideas (see [8], among others) and viscosity solutions (see [19], among
others). The first is a probabilistic method, while the second is a PDE approach. The
viscosity solution approach is used here. Since it is assumed that the prelimit (ε > 0)
problem is uniformly nondegenerate, the viscosity solution approach is relatively easy
to apply. Before applying it we must obtain bounds on the behavior of V ε which are
uniform in ε > 0. These are supplied by the following two lemmas. Their proofs,
which are given in section 6, are standard.

LEMMA 4.3. There exists M1 < ∞ such that 0 ≤ V ε(x) ≤ M1 for all x ∈ G and
all ε > 0.

LEMMA 4.4. Given any ε0 <∞, there exists M2 <∞ such that |V ε(x)−V ε(y)| ≤
M2|x− y| for all x ∈ ∂G, all y ∈ G, and all ε ∈ (0, ε0).

As ε ↓ 0, one formally obtains from (4.3) the limit PDE problem

−θ −H(x, Vx(x)) = 0, x ∈ G,
V (x) = 0, x ∈ ∂G,

(4.5)

where H is given by (4.4). (The minus sign in (4.5) is a consequence of the definition
of viscosity solutions used in section 5.) In section 5 we will prove the existence of a
unique continuous viscosity solution to (4.5) which satisfies the boundary condition
pointwise. Let this solution be denoted by W . In that section we will also apply the
method of Barles and Perthame [2, 18] to show that

lim
ε↓0

V ε(x) = W (x) ∀x ∈ G.(4.6)

The cited method does not require gradient bounds which are uniform in ε > 0 and
x ∈ G, and in fact such bounds are only needed on the boundary (Lemma 4.4). Define

V ∗(x) .= lim sup{V ε(y) : y → x, ε ↓ 0, y ∈ G},

V∗(x) .= lim inf{V ε(y) : y → x, ε ↓ 0, y ∈ G}.
(4.7)
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It follows from Lemma 4.4 that

V ∗(x) = 0 = V∗(x) ∀x ∈ ∂G.

Because W (x) = 0 for all x ∈ ∂G, one also has

V ∗(x) = V∗(x) = W (x) ∀x ∈ ∂G.(4.8)

Since a consequence of the definitions given in (4.7) is

V ∗(x) ≥ V∗(x) ∀x ∈ G,

to prove (4.6) it suffices to show

V ∗(x) ≤W (x) ≤ V∗(x) ∀x ∈ G.

The proof of this last statement is delayed until section 6. However, it immediately
implies the following.

THEOREM 4.5. V ε(x)→W (x) uniformly on G.
Thus one has the characterization of the limit of the value function as a continuous

viscosity solution to (4.5). Furthermore, the comparison result at the heart of the
proof of Theorem 4.5 also implies uniqueness of the solution of (4.5) among the class
of continuous viscosity solutions. In section 5 it will be shown that W is the value
of the deterministic game that corresponds to the associated robust control problem.
(In the case where there is no control in the risk-sensitive problem, W is simply the
value of a deterministic minimizing control problem rather than a game.) This game
serves two roles. In the small noise problem it provides a convenient starting point for
the analysis and construction of controls for the prelimit problem. It will also serve
as the starting point for the interpretation of the maximizing control in the game as
a robust control. In this paper we will only use W in the latter role. For an example
of how it can be used in the first role, we refer to [8].

5. The robust limit problem. In this section we consider the robust problem
corresponding to the limit ε → 0. The term robust is used here to denote a system
where the effect on the system output due to a given disturbance is bounded by
a function of the power of that disturbance. This notion takes different forms in
different contexts. The most well-known example is H∞ control. In the state-space
formulation, a system is said to satisfy an H∞ bound if there exists a bound on the L2

norm of an output in the form of a product of disturbance attenuation constant and
the L2 norm of the disturbance. This H∞ disturbance attenuation control problem
may be formulated as a deterministic differential game. The robust (maximizing)
control escape time problem will also be formulated as a game. In particular, the
maximizing player in the game will correspond to the original maximizing control,
and an opposing player will be introduced who will try to minimize the same payoff.
In the robust problem, the “noise” is a process chosen by this new minimizing player,
rather than a stochastic process. The player will select the noise so as to drive the
process from the set G, but must pay a quadratic cost. Since there is only one player
for the case without maximizing control (i.e., the performance evaluation or parameter
optimization problems discussed in section 1), the robust formulation in this case is
a control problem rather than a game.

In the analysis of the limit problem the case with no control is significantly easier
than the case with a maximizing controller. To simplify the presentation, we consider
these two cases separately.
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5.1. The case without control. Consider the deterministic dynamics

dYt
dt

= f(Yt) + σ(Yt)wt, Y0 = x(5.1)

for t ∈ [0, τ ], where τ .= inf{t : Yt 6∈ G}. The functions f and σ are those introduced
in section 4. Note that the disturbance w is now a deterministic process. The function
w is assumed to be in

W0 .=

{
w : [0,∞)→ <m : w is measurable and

∫ T

0
|wt|2dt <∞ for all T <∞

}
.

The cost criterion takes the form

J(x,w) .=
∫ τ

0

[
θ +

1
2
|wt|2

]
dt,(5.2)

where again θ > 0 is a constant. The control problem which will yield the robust
value, W̃ , is

W̃ (x) .= inf
w∈W0

J(x,w).(5.3)

The Hamilton–Jacobi–Bellman (HJB) equation corresponding to control problem
(5.1)–(5.3) is

−θ −Hnc(x,Wx(x)) = 0, x ∈ G, W (x) = 0, x ∈ ∂G ,(5.4)

where

Hnc(x, p) .= 〈f(x), p〉+ min
w∈<m

[
〈σ(x)w, p〉+

1
2
|w|2

]
.

Evaluation of the minimum yields

Hnc(x, p) = 〈f(x), p〉 − 1
2
〈p, a(x)p〉.

Hence (5.4) is the same as (4.5) for the case with no (maximizing) control. For easy
reference, we recall the definition of viscosity solution that is appropriate for our
problem. W ∈ C(G) is a continuous viscosity subsolution of (5.4) if

−θ −Hnc(x0, gx(x0)) ≤ 0

whenever g ∈ C1(G) and W − g attains a maximum at x0 ∈ G. W ∈ C(G) is a
continuous viscosity supersolution of (5.4) if

−θ −Hnc(x0, gx(x0)) ≥ 0

whenever g ∈ C1(G) and W−g attains a minimum at x0 ∈ G. If W is both a subsolu-
tion and a supersolution, then it is a solution. Due to the nondegeneracy (Condition
4.3), it is not necessary to formulate the boundary conditions in the viscosity frame-
work; only solutions satisfying the boundary conditions pointwise will be considered.
In particular, all assertions of uniqueness are within the class of continuous viscosity
solutions satisfying the boundary conditions pointwise. (For modifications relevant
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to extending the proof of Theorem 4.5 to viscosity solutions satisfying the weaker
viscosity form of the boundary conditions, see [18, section 7.8].)

THEOREM 5.1. W̃ is the unique continuous viscosity solution of (5.4).
Proof. Theorem 5.1 is just a variant of what are by now standard results. With

this in mind, only an outline of the proof is provided.
First note that there exists M3 <∞ such that

0 ≤ inf
w∈W0

J(x,w) ≤M3

for all x ∈ G. This follows from the fact that one can choose a constant control w
which guarantees exit prior to some fixed time T , where T is independent of x. The
nonnegativity of θ then implies the existence of C <∞ such that

∫ τ
0 |ws|

2ds ≤ C for
all x ∈ G and all w such that J(x,w) ≤ W̃ (x) + 1. Thus,

W̃ (x) = inf
w∈W0

b

J(x,w)

where

W0
b
.=
{
w ∈ W0 : ‖w‖L2(0,∞) ≤ C

}
.

The bounds on f and σ imply that given δ > 0 there is an η > 0 such that

|Yt − x| ≤ δ ∀ t ∈ [0, η], ∀w ∈ W0
b(5.5)

and also such that for all w ∈ W0
b , τ = τ(x,w) is bounded from below by a function

h(x) that is strictly positive on G.
Dynamic programming principles for W̃ are easily obtained, and in fact are con-

tained as special cases of the corresponding results in the next subsection. In partic-
ular, one has

W̃ (x) = inf
w∈W0

b

[∫ T∧τ

0

(
θ +

1
2
|wt|2

)
dt+ W̃ (YT∧τ )

]

for all x ∈ G and T ∈ [0,∞), and

W̃ (x) ≤ inf
w∈Ŵ0

m

[∫ T∧τ

0

(
θ +

1
2
|wt|2

)
dt+ W̃ (YT∧τ )

]

for all x ∈ G, T ∈ [0,∞), and m ∈ (0,∞), where

Ŵ0
m
.=
{
w ∈ W0 : |wt| ≤ m ∀ t

}
.

The last two paragraphs provide all that is needed for the proof of Theorem 5.1.
The continuity of W̃ follows from the nondegeneracy of σ and the boundedness of f . In
particular, these properties imply that given δ > 0 there exists ε > 0 such that for any
point y within ε of x, one can construct a control that moves Yt from x to y with cost
less than δ and in time less than δ. This in turn implies the continuity. Uniqueness
(among the class of continuous viscosity solutions satisfying the boundary conditions
pointwise) follows from the comparison principle used in the proof of Theorem 4.5 (cf.



2034 PAUL DUPUIS AND WILLIAM MCENEANEY

section 6.1.4). The proof of the present theorem is completed by showing that W̃ is
both a viscosity subsolution and supersolution of (5.4).

We first prove that W̃ is a viscosity supersolution to (5.4). Suppose that g ∈
C1(G) and that W̃ −g has a local minimum at x0 ∈ G. To prove that W̃ is a viscosity
supersolution, it must be shown that

−θ −Hnc(x0, gx(x0)) ≥ 0.

If this inequality is not valid, then there exists α > 0 such that

θ +Hnc(x0, gx(x0)) > α.

By using (5.5), the definition of Hnc, and the uniform lower bound τ = τ(x,w) ≥
h(x) > 0, it follows that there is η0 ∈ (0, τ) such that for all η ∈ (0, η0) and w ∈ W0

b∫ η

0

{
θ +

1
2
|wt|2 + 〈f(Yt) + σ(Yt)wt, gx(Yt)〉

}
dt ≥ ηα

2
> 0,(5.6)

where Yt is given by (5.1) with initial condition x0. However, because W̃ − g has a
local minimum at x0, for sufficiently small η ∈ (0, η0),

W̃ (x0)− g(x0) ≤ W̃ (Yt)− g(Yt) ∀ t ∈ [0, η].

By the first dynamic programming principle above, this implies

inf
w∈W0

b

{∫ η

0

[
θ +

1
2
|wt|2

]
dt+ g(Yη)− g(x0)

}
≤ 0.(5.7)

But (5.6) and (5.7) form a contradiction, and consequently W̃ is a viscosity super-
solution. The proof that W̃ is a viscosity subsolution is analogous and employs the
second dynamic programming principle above. Therefore W̃ is a continuous viscosity
solution.

5.2. Case with control. In this subsection we consider the following determin-
istic differential game. For t ∈ [0, τ ] the dynamics are given by

dYt
dt

= f(Yt, ut) + σ(Yt)wt, Y0 = x,(5.8)

where τ is the time of first escape from G. The function u is the (deterministic)
measurable control for the maximizing player, which takes values in U . Let this set
of controls be denoted by U0. The function w is the deterministic control for the
minimizing player, and we assume

w ∈ W0 .=

{
w : [0,∞)→ <m : w is measurable and

∫ T

0
|wt|2dt <∞ for all T <∞

}
.

The Elliott–Kalton [10] definition of the game will be used, and consequently the
set of strategies for each player must be defined. A strategy for the maximizing player
is a mapping φ : W0 → U0 which is nonanticipating in the following sense. Let any
t ∈ [0,∞) be given. If w, w̃ ∈ W0 satisfy wr = w̃r for a.e. r ∈ [0, t], then we require
φ[w]r = φ[w̃]r for a.e. r ∈ [0, t]. We use Φ to denote the set of strategies for the
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maximizing player. A strategy for the minimizing player is a mapping λ : U0 → W0

which is nonanticipating in the analogous sense. Let Λ denote the set of strategies for
the minimizing player. The payoff for the game is

J(x, u, w) .=
∫ τ

0

[
θ +

1
2
|wt|2

]
dt.

The upper and lower values in the Elliott–Kalton sense are given by

W̃ (x) .= sup
φ∈Φ

inf
w∈W0

J(x, φ[w], w) and Ŵ (x) .= inf
λ∈Λ

sup
u∈U0

J(x, u, λ[u]).

If W̃ = Ŵ , then the game is said to have value.
The Isaacs equation corresponding to this game is given by

−θ −H(x,Wx(x)) = 0, x ∈ G, W (x) = 0, x ∈ ∂G,(5.9)

where

H(x, p) .= max
v∈U
〈f(x, v), p〉+ min

w∈<m

[
〈σ(x)w, p〉+

1
2
|w|2

]
.

Evaluation of the minimum gives

H(x, p) = max
v∈U
〈f(x, v), p〉 − 1

2
〈p, a(x)p〉.

We next show that the upper value, W̃ , is a continuous viscosity solution of
(5.9). The same result holds for the lower value. For a fixed finite time horizon
problem under stronger assumptions, Evans–Souganidis [11] showed that a class of
deterministic differential games had value and that this common value function was a
viscosity solution of the corresponding Isaacs equation. The method of proof was to
first obtain the dynamic programming principle and then combine this relation with
some arguments regarding the continuity of the state trajectories to prove that the
value was the viscosity solution. In adapting this approach, some technical difficulties
arise due to the unbounded controls for the minimizing player, the weaker assumptions
on the dynamics and payoff, and the fact that this is not a fixed finite time horizon
problem. Thus, some preliminary lemmas are necessary, as are some variations on
the method of proof. In the statement and proofs of these lemmas, Yt will denote the
solution to (5.6) for the given controls and τ will be inf{t : Yt 6∈ G}.

LEMMA 5.2. There exists M3 <∞ such that

0 ≤ inf
w∈W0

J(x, φ[w], w) ≤M3 ∀φ ∈ Φ, ∀x ∈ G.

The proof of Lemma 5.2 will be delayed until section 6. The method is standard
and involves the construction of a piecewise constant control w· which guarantees
exit prior to some fixed time T that is independent of x and φ. Since the control
so constructed will also be bounded, the result will follow. We note that a similar
approach is used in [5]. The following result is an immediate consequence of Lemma
5.2 and the form of the cost.

LEMMA 5.3. Let ε0 > 0 be fixed, and let M3 satisfy the conclusion of Lemma 5.2.
Then for all x ∈ G, φ ∈ Φ, and any w̃ that satisfies

J(x, φ[w̃], w̃) ≤ inf
w∈W0

J(x, φ[w], w) + ε0,
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we have the bound ∫ τ

0
|w̃t|2 dt ≤ 2(M3 + ε0).

Now let

W0
b
.=
{
w ∈ W0 : ‖w‖L2(0,∞) ≤ 2(M3 + ε0)

}
,

and note that

W̃ (x) = sup
φ∈Φ

inf
w∈W0

b

J(x, φ[w], w).

LEMMA 5.4. Let w ∈ W0
b and u ∈ U0 be given. Then there exist B1, B2 <∞ such

that

|Yt − x| ≤ B1t+B2
√
t ∀ t ∈ [0, τ ].

Proof. By (5.8)

|Yt − x| ≤
∫ t

0
|f(Yr, ur)| dr +

∫ t

0
|σ(Yr)||wr| dr.

Under Conditions 4.1 and 4.2, there exist Cf , Cσ < ∞ such that the right-hand side
of this inequality is less than or equal to

Cf t+ Cσ

∫ t

0
|wr| dr.

According to Lemma 5.3 this can be bounded above by

Cf t+ Cσ[2(M3 + ε0)]1/2
√
t.

From Lemma 5.4, one immediately obtains the following result.
LEMMA 5.5. Let x ∈ G, w ∈ W0

b , and u ∈ U0 be given. Then

B1τ +B2
√
τ ≥ d(x,Gc).

Lemmas 5.2–5.5 serve to bound the controls for the minimizing player and demon-
strate continuity of the state with respect to time. Next, dynamic programming
principles will be obtained.

THEOREM 5.6.

W̃ (x) = sup
φ∈Φ

inf
w∈W0

b

[∫ T∧τ

0

(
θ +

1
2
|wt|2

)
dt+ W̃ (YT∧τ )

]

for all x ∈ G and T ∈ [0,∞).
The proof of this theorem is standard and by now a little tedious; it will be

delayed until section 6. The proof of the following variation on this theorem involves
only simple modifications of the proof of Theorem 5.6.

THEOREM 5.7.

W̃ (x) ≤ sup
φ∈Φ

inf
w∈Ŵ0

m

[∫ T∧τ

0

(
θ +

1
2
|wt|2

)
dt+ W̃ (YT∧τ )

]
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for all x ∈ G, T ∈ [0,∞) and m > 0, where

Ŵ0
m
.=
{
w ∈ W0 : |wt| ≤ m ∀ t

}
.

Given the validity of these dynamic programming principles, one can prove that
the upper value W̃ is a continuous viscosity solution of the Isaacs equation (5.9). The
next two lemmas imply certain semicontinuity properties of W̃ (Y.) that are needed.

LEMMA 5.8. Let g ∈ C1(G) satisfy

0 > −α ≥ −θ −H(x0, gx(x0))

for some x0 ∈ G and α > 0. Then there exists φ ∈ Φ and η0 > 0 such that for all
w ∈ W0

b and all η ∈ (0, η0),∫ η∧τ

0

{
θ +

1
2
|wt|2 + 〈f(Yt, φ[w]t) + σ(Yt)wt, gx(Yt)〉

}
dt ≥ ηα

2
,

where Yt is given by (5.8) with initial condition x0.
Proof. Define

F (x, u, w) .= θ +
1
2
|w|2 + 〈f(x, u) + σ(x)w, gx(x)〉,(5.10)

and let u0 ∈ argmax F (x0, u, w). Note that

θ +H(x, gx(x)) = max
u∈U

min
w∈Rm

F (x, u, w)

and that u0 is independent of w since the Isaacs condition is satisfied. The assumption
on g and x0 implies

F (x0, u0, w) ≥ θ +H(x0, gx(x0)) ≥ α ∀w ∈ <m.

Let w ∈ W0
b and φ[w]t

.= u0. Then by Lemma 5.4 there exists η > 0 such that

F (Yt, φ[w]t, wt) ≥
α

2

for all t ∈ [0, η] and w ∈ W0
b . Integrating and using Lemma 5.5 to assert that η∧τ = η

for η sufficiently small yields the result.
LEMMA 5.9. Let g ∈ C1(G) satisfy

0 < α ≤ −θ −H(x0, gx(x0))

for some x0 ∈ G and α > 0. Then there exists η > 0 and a bounded w ∈ W0 such
that for all φ ∈ Φ∫ η∧τ

0

{
θ +

1
2
|wt|2 + 〈f(Yt, φ[w]t) + σ(Yt)wt, gx(Yt)〉

}
dt ≤ −ηα

2
,

where Yt is given by (5.8) with initial condition x0.
The proof of Lemma 5.9 is very similar to that of Lemma 5.8. In particular, here

one lets wt
.= w∗, where w∗ ∈ argmin F (x0, u, w), with F as given by (5.10) (note

that w∗ is independent of u).
The way is now clear for the main theorem of this subsection. The proof is delayed

until section 6.
THEOREM 5.10. W̃ is the unique continuous viscosity solution of (5.9).
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5.3. Robust interpretation. After reviewing the nonlinear H∞ disturbance
attenuation problem, the analogous robust interpretation for the limit problem consid-
ered here will be presented. For the nonlinear H∞ disturbance attenuation problem,
one typically considers games with payoffs of the form∫ T

0

[
L(Xt, ut)− γ2|wt|2

]
dt,

where X is the state, u is the (true) control for the minimizing player, and w is the
disturbance which becomes the control for the maximizing player. L is the running
cost, and it is often taken to be a quadratic function. Further, one assumes an initial
value for the state, X0 = x0, such that L(x0, 0) = 0. If there exists a strategy for the
minimizing player (ideally a feedback control leading to well-defined dynamics) such
that the value of the game is zero for all T , then[∫ T

0
L(Xt, ut) dt

]1/2

≤ γ‖w‖L2(0,T ) ∀T <∞.

Thus there is a bound for the cost in the form of a product of the disturbance attenu-
ation constant γ and the L2 norm of the disturbance. This bound is valid for all time
horizons and disturbances. See, for instance, [1, 3, 22, 24, 31].

For the escape time problem, large time averages do not make any sense, since it
is the transient behavior that is of primary importance. Because we cannot eliminate
escape entirely, the best one should hope for in the robust problem is a bound on the
escape time in terms of the energy of the player representing the disturbance. Clearly,
this bound will depend on the initial position of the controlled process. For the case
without maximizing control, let

W (x) .= W̃ (x) = inf
w∈W0

J(x,w) ∀x ∈ G.

(This new notation is being introduced so that both the controlled and uncontrolled
cases can be treated together.) For the case with maximizing control, choose some
(optimal or suboptimal) strategy φ0 given in a feedback form such that the dynamics
are well defined. Let W be the value of the game with this control, i.e.,

W (x) .= inf
w∈W0

J(x, φ0[w], w) ∀x ∈ G.

Then by (5.1) and (5.2) in the case without control (or by their analogues in the case
with maximizing control),

W (x) ≤
[
θ +

1
2τ

∫ τ

0
|wt|2 dt

]
τ ∀w ∈ L2, ∀x ∈ G,

or

τ ≥ W (x)
θ + 1

2τ

∫ τ
0 |wt|2 dt

∀w ∈ L2, ∀x ∈ G.(5.11)

Let

WP .=

{
w : [0,∞)→ Rm : w is measurable and

1
T

∫ T

0
|wt|2 dt ≤ P ∀T ∈ [0,∞)

}
.
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Then (5.11) has the interpretation

τ ≥ W (x)
θ + 1

2P
∀w ∈ WP , ∀x ∈ G.

This is a lower bound on the escape time as a function of the power of the input noise.
It is analogous to the attenuation bound of H∞ control.

6. Proofs. This section contains proofs for results that appeared in sections 4
and 5.

6.1. Proofs for section 4.

6.1.1. Proof of Theorem 4.2. Let u ∈ Uν and x ∈ G. By (4.1), for any
bounded, Ft-progressively measurable process w, one has

Xε
t = x+

∫ t

0
f(Xε

r , ur) dr +
√
ε

∫ t

0
σ(Xε

r ) dBr

= x+
∫ t

0
[f(Xε

r , ur) + σ(Xε
r )wr] dr +

√
ε

∫ t

0
σ(Xε

r ) dBr −
∫ t

0
σ(Xε

r )wr dr

= x+
∫ t

0
[f(Xε

r , ur) + σ(Xε
r )wr] dr +

√
ε

∫ t

0
σ(Xε

r ) dB0
r ,

(6.1)

where the last equality defines B0.
Fix any T < ∞. We would like a probability measure P 0 under which B0 is

a Brownian motion. By Girsanov’s theorem [25, p. 191], such a measure exists on
(Ω, FT ). For any set A in FT , this measure satisfies

P 0(A) =
∫
A

exp

[√
1
ε

∫ T

0
〈wr, dB0

r 〉+
1
2ε

∫ T

0
|wr|2 dr

]
P (dω).

In terms of this measure, we can write

Ex exp
[
−θ(τ

ε ∧ T )
ε

]
= E0

x exp
1
ε

[
−
∫ τε∧T

0

(
θ +

1
2
|wr|2

)
dr − ε1/2

∫ τε∧T

0
〈wr, dB0

r 〉
]
.

(6.2)
Since Ṽ ε is a solution of the PDE (4.3), an application of Ito’s rule with the new
dynamics (6.1) gives

Ṽ ε(Xε
t )− Ṽ ε(x) =

∫ t

0

[ε
2

tr
[
a(Xε

r )Ṽ εxx(Xε
r )
]

+ 〈f(Xε
r , ur), Ṽ

ε
x (Xε

r )〉

+ 〈σ(Xε
r )wr, Ṽ εx (Xε

r )〉
]
dr

+ ε1/2
∫ t

0
〈Ṽ εx (Xε

r ), σ(Xε
r )dB0

r 〉

≤
∫ t

0
[−θ +

1
2
〈Ṽ εx (Xε

r ), a(Xε
r )Ṽ εx (Xε

r )〉+ 〈σ(Xε
r )wr, Ṽ εx (Xε

r )〉] dr

+ ε1/2
∫ t

0
〈Ṽ εx (Xε

r ), σ(Xε
r )dB0

r 〉.

(6.3)
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If the disturbance process is taken to be wr = −σT (Xε
r )Ṽ εx (Xε

r ), then (6.3) implies

Ṽ ε(Xε
t )− Ṽ ε(x) ≤ −

∫ t

0

(
θ +

1
2
|wr|2

)
dr + ε1/2

∫ t

0
〈Ṽ εx (Xε

r ), σ(Xε
r )dB0

r 〉

= −
∫ t

0

(
θ +

1
2
|wr|2

)
dr − ε1/2

∫ t

0
〈wr, dB0

r 〉.
(6.4)

Combining (6.2) and (6.4), one obtains

Ex exp
[
−θ(τ

ε ∧ T )
ε

]
≥ E0

x exp
1
ε

[Ṽ ε(Xε
τε∧T )− Ṽ ε(x)]

= exp
[
−1
ε
Ṽ ε(x)

]
E0
x exp

1
ε
Ṽ ε(Xε

τε∧T ).

Note that Ṽ ε(·) is bounded on G and that Ṽ ε(Xε
τε∧T )→ 0 in distribution under E0

x

as T →∞. Sending T →∞ and applying the dominated convergence theorem to the
left side of the last display gives

Ex exp
[
−θτ

ε

ε

]
≥ exp

[
−1
ε
Ṽ ε(x)

]
,

which implies the first assertion of the theorem.
To obtain the second assertion, simply note that such a ū exists (see, for example,

[17]) and use ut = ū(X̄ε
t ) to obtain equality in the argument above.

6.1.2. Proof of Lemma 4.3. The bounds are obtained from standard applica-
tions of the comparison principle. In particular, for the lower bound, one compares
with Z(x) .= 0. For the upper bound, one compares V ε with Z(x) .= A+ q · x, where
A and q are constants independent of ε. Using the uniform ellipticity, it is easy to
show that for |q| sufficiently large there exists δ > 0 such that

0 > −δ ≥ θ +
ε

2
tr [a(x)Zxx(x)] +H(x, Zx(x)) ∀x ∈ G, ∀ ε > 0.

Further, for A sufficiently large, Z(x) ≥ 0 = V ε(x) for all x ∈ ∂G. The upper bound
then follows from the comparison principle and the compactness of G.

6.1.3. Proof of Lemma 4.4. The barrier method (see, for instance, [21]) will
be used. Fix x0 ∈ ∂G and note that by Lemma 4.3

V ε(x) ≥ 0 = V ε(x0) ∀x ∈ G.(6.5)

Recall Condition 4.1, which states that the uniform exterior sphere condition holds.
This implies there exists r independent of x0 and y ∈ Gc such that |x0 − y| = r and

Br(y) ∩G = {x0}.

Fix this value of y, and define

Z(x) .= α(|x− y| − r) ∀x ∈ G,(6.6)

where α is a positive constant that will be chosen independent of ε ∈ (0, ε0) and
x0 ∈ ∂G. By (6.5) and (6.6), it suffices to prove that

V ε(x) ≤ Z(x) ∀x ∈ G, ∀ ε ∈ (0, ε0).(6.7)
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On the boundary, of course,

V ε(x) = 0 ≤ Z(x).(6.8)

In terms of vx
.= x−y
|x−y| = 1

αZx(x),

θ +
ε

2
tr [a(x)Zxx(x)] +H(x, Zx(x))

= θ +
ε

2
α

|x− y| [tr(a(x))− 〈vx, a(x)vx〉] + αmax
v∈U
〈f(x, v), vx〉 −

α2

2
〈vx, a(x)vx〉

≤ θ + α

{
ε

2|x− y| [Ca − 〈vx, a(x)vx〉] + Cf −
α

2
〈vx, a(x)vx〉

}
,

where

Ca
.= max
x∈G
|tr(a(x))| and Cf

.= max
(x,v)∈G×U

|f(x, v)|.

Using the uniform ellipticity of a, for α sufficiently large we have

θ +
ε

2
tr [a(x)Zxx(x)] +H(x, Zx(x)) ≤ θ + α

{
Caε

2r
+ Cf −

α

2
µ

}
< 0(6.9)

for all ε ∈ (0, ε0) and x0 ∈ ∂G. From (6.8), (6.9), and the comparison principle, one
obtains (6.7).

6.1.4. Proof of Theorem 4.5. We recall the definitions of V ∗ and V∗ given in
equation (4.7). As noted in section 4, it is sufficient to prove that

V ∗(x) ≤W (x) ≤ V∗(x) ∀x ∈ G.

By a simple modification of the proof of [18, Prop. 7.6.1], one can show that V ∗

is a subsolution of (4.5) and V∗ is a supersolution. In addition, Lemma 4.4 implies
that the boundary conditions are achieved pointwise. We now show that W ≤ V∗ on
G; the proof that V ∗ ≤W is similar and is thus omitted.

Let δ > 0 and suppose

ã
.= min
x∈G

[(1 + δ)V∗(x)−W (x)] < 0.(6.10)

By (4.8) and the respective semicontinuity and continuity properties of V∗ and W̃ ,
the minimum in (6.10) occurs at some point x̃ ∈ G. Let

φη(x, y) .= (1 + δ)V∗(x)−W (y) +
1
2η
|x− y|2(6.11)

and

(xη, yη) ∈ argminφη(x, y).

It is easy to see that

|xη − yη| → 0 as η ↓ 0.(6.12)
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Further, since (xη, yη) minimizes φη,

φη(xη, yη) ≤ φη(xη, xη).

When combined with (6.11) this implies

|xη − yη|2
η

≤ 2mW (|xη − yη|),

where mW (·) is the modulus of continuity of W over G. Thus by (6.12)

|xη − yη|2
η

→ 0 as η ↓ 0.(6.13)

Since G is compact, there exists a sequence ηk ↓ 0 and an x0 ∈ G such that

xηk → x0 and yηk → x0

as k → ∞. To simplify the notation, we retain η as the index of this convergent
sequence. By the choice of (xη, yη), (6.10), and (6.11),

φη(xη, yη) ≤ ã < 0 ∀ η > 0.

Then by (6.13), the lower semicontinuity of V∗, and the continuity of W ,

(1 + δ)V∗(x0)−W (x0) < 0.(6.14)

If x0 were in ∂G, then (6.14) would contradict (4.7) and (4.8). Therefore x0 ∈ G,
which implies that for η sufficiently small (in our reindexed subsequence)

xη, yη ∈ G.

Now let

ψ(x) .=
1

1 + δ

[
W (yη)− 1

2η
|x− yη|2

]
and note that V∗ − ψ has a minimum at xη. Since V∗ is a supersolution, one has

−θ −H(xη, ψx(xη)) ≥ 0,

which implies

−(1 + δ)θ ≥ 1
η

max
v∈U
〈−f(xη, v), (xη − yη)〉 − 1

2η2(1 + δ)
〈(xη − yη), a(xη)(xη − yη)〉.

(6.15)

Also, let

ψ̃(y) .= (1 + δ)V∗(xη) +
1
2η
|xη − y|2,

which implies that W − ψ̃ has a maximum at yη. Since W is a subsolution (as well
as a supersolution), one has

−θ −H(yη, ψ̃x(yη)) ≤ 0,
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which implies

θ ≥ −1
η

max
v∈U
〈−f(yη, v), (xη − yη)〉+

1
2η2 〈(x

η − yη), a(yη)(xη − yη)〉.(6.16)

Adding (6.15) and (6.16) yields

−δθ ≥ 1
η

max
v∈U
〈−f(xη, v), (xη − yη)〉 − 1

η
max
v∈U
〈−f(yη, v), (xη − yη)〉

+
1

2η2

〈
(xη − yη),

[
a(yη)− 1

1 + δ
a(xη)

]
(xη − yη)

〉
.

(6.17)

Recall that by Conditions 4.2 and 4.3, f and a are Lipschitz continuous with constants
Kf and Ka on G, respectively. Consequently, (6.17) implies

−δθ ≥ |x
η − yη|2

2η2 [−2ηKf −Ka|xη − yη|]

+
1

2η2

〈
(xη − yη),

(
1− 1

1 + δ

)
a(xη)(xη − yη)

〉
,

and since a is uniformly elliptic with constant µ,

−δθ ≥ |x
η − yη|2

2η2

[
−2ηKf −Ka|xη − yη|+

(
1− 1

1 + δ

)
µ

]
.(6.18)

But by (6.12), for η sufficiently small,

−2ηKf −Ka|xη − yη|+
(

1− 1
1 + δ

)
µ > 0.

This implies that for η sufficiently small the right-hand side of (6.18) is nonnegative,
which is a contradiction. Therefore, (6.10) is false, and consequently

min
x∈G

(1 + δ)V∗(x)−W (x) ≥ 0.

Since this is true for all δ > 0, W ≤ V∗ for all x ∈ G.

6.2. Proofs for section 5.

6.2.1. Proof of Lemma 5.2. Since the lower bound is obvious, only the upper
bound will be considered. It is sufficient to prove that for each φ ∈ Φ there exists
w ∈ W0 such that J(x, φ[w], w) ≤M3. The control w will be constructed in a feedback
fashion; the existence of an open loop w with the same values will be clear.

Let b ∈ <n be any vector with |b| = 1. Let tn = n∆ for all nonnegative integers n
where the value of ∆ is yet to be specified. The control w will be constant over each
interval [tn, tn+1). Let Cf be a bound for f over G and fix φ ∈ Φ. Define

wt
.= w0 ∀ t ∈ [t0, t1),

where w0 = 2Cfσ−1(x)b and x is the initial state. Let the dynamics over [t0, t1) be
given by (5.8) with controls w and φ[w]. Then for t ∈ [t0, t1],

〈Yt − x, b〉 ≥ −Cf t+ 2Cf t+ 2Cf
∫ t

0
〈b,
[
σ(Yr)σ−1(x)− I

]
b〉 dr

≥ Cf t+ 2Cf
∫ t

0
〈b, [σ(Yr)− σ(x)]σ−1(x)b〉 dr.

(6.19)
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But by Condition 4.3, there exists mσ < ∞ such that ‖σ−1(x)‖ ≤ mσ for all x ∈ G.
Further, since σ ∈ C1(G), it is Lipschitz on G with constant Kσ. Employing these
bounds in (6.19) yields

〈Yt − x, b〉 ≥ Cf t− 2CfmσKσ

∫ t

0
|Yr − x| dr.

Since there exists C (depending on the bounds on f , σ, and σ−1) such that |Yt−x| ≤
Ct, one has

〈Yt − x, b〉 ≥ Cf t− CfmσKσCt
2,

which implies that there is a ∆ > 0 (independent of x) such that

〈Yt − x, b〉 ≥
Cf
2
t ∀ t ∈ [0,∆].(6.20)

This is the desired choice for ∆.
Turning now to the second segment, let

wt = w1 .= 2Cfσ−1(Yt1)b ∀ t ∈ [t1, t2).

Proceeding as for the first segment, one finds

〈Yt − Yt1 , b〉 ≥
Cf
2

(t− t1) ∀ t ∈ [t1, t2].(6.21)

Combining (6.20) and (6.21) yields

〈Yt2 − x, b〉 ≥ 2
Cf
2

∆.

Continuing this process, one has

wt = 2Cfσ−1(Ytn)b ∀ t ∈ [tn, tn+1]

and

〈Ytn+1 − x, b〉 ≥ (n+ 1)
Cf
2

∆ ∀n.

Therefore,

τ ≤ 2diam(G)
Cf

,

and consequently

M3
.=

2diam(G)
Cf

[
θ +

1
2

[2Cfmσ]2
]
≥ J(x, φ[w], w).
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6.2.2. Proof of Theorem 5.6. The proof follows the standard form. The
equality in the dynamic programming principle is obtained by proving inequalities in
both directions. Let τx indicate the time to escape given the initial state x.

Define

R(x) .= sup
φ∈Φ

inf
w∈W0

b

[∫ T∧τx

0

(
θ +

1
2
|wt|2

)
dt+ W̃ (YT∧τx)

]
,(6.22)

and let ε ∈ (0, 1]. Then there exists φ̃ ∈ Φ such that

R(x) ≤ inf
w∈W0

b

[∫ T∧τx

0

(
θ +

1
2
|wt|2

)
dt+ W̃ (YT∧τx)

]
+ ε(6.23)

when φ̃[w] is used to define Y in (5.8). For any y ∈ G,

W̃ (y) = sup
φ∈Φ

inf
w∈W0

b

[∫ τy

0

(
θ +

1
2
|wt|2

)
dt

]
,

which implies there exists φ̃′y ∈ Φ such that

W̃ (y) ≤ inf
w∈W0

b

[∫ τy

0

(
θ +

1
2
|wt|2

)
dt

]
+ ε(6.24)

when φ̃′y[w] is used in the dynamics (5.8).
Define a strategy φ̂ as follows. For each w ∈ W0

b , let

φ̂[w]t
.=

{
φ̃[w]t if t ≤ T,

φ̃′YT [w·−T ]t−T if t > T.

Note that φ̂ ∈ Φ. (6.23) and (6.24) imply

R(x) ≤ inf
w1∈W0

b

inf
w2∈W0

b

[∫ T∧τx

0

(
θ +

1
2
|w1
t |2
)
dt + I(T < τx)

∫ τ̂YT

T

(
θ +

1
2
|w2
t |2
)
dt

]
+2ε,

where

Yt = x+
∫ t

0

[
f(Yr, φ̂[ŵ]r) + σ(Yr)ŵr

]
dr,

ŵt
.=

{
w1
t if t ≤ T,

w2
t if t > T,

and where τ̂y is the first escape time of Yt after T given YT = y. This implies

R(x) ≤ inf
w∈W0

b

[∫ τx

0

(
θ +

1
2
|wt|2

)
dt

]
+ 2ε ≤ sup

φ∈Φ
inf

w∈W0
b

J(x, φ[w], w) + 2ε,

which, since ε ∈ (0, 1] was arbitrary, implies

R(x) ≤ W̃ (x).
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Now the reverse inequality is proved. Given ε > 0, there exists φ̃ ∈ Φ such that

W̃ (x) ≤ inf
w∈W0

b

[∫ τx

0

(
θ +

1
2
|wt|2

)
dt

]
+ ε(6.25)

when φ̃[w] is used in the dynamics. On the other hand, by (6.22),

R(x) ≥ inf
w∈W0

b

[∫ T∧τx

0

(
θ +

1
2
|wt|2

)
dt+ W̃ (YT∧τx)

]
,

where again φ̃[w] is being used in the dynamics. This implies there exists w̃ ∈ W0
b

such that

R(x) ≥
∫ T∧τx

0

(
θ +

1
2
|w̃t|2

)
dt+ W̃ (YT∧τx)− ε.(6.26)

If T < τx then we can continue to use the strategy φ̃ for t ≥ T . In this case, the
definition of W̃ implies the existence of ŵ′t defined on [T,∞) such that ŵ′·−T ∈ W0

b

and

W̃ (YT∧τx) ≥
∫ τ̂YT

T

(
θ +

1
2
|ŵ′t|2

)
dt− ε.(6.27)

Now let

ŵt =

{
w̃t if t ≤ T,
ŵ′t if t > T.

Then (6.26) and (6.27) imply

R(x) ≥
∫ τx

0

(
θ +

1
2
|ŵt|2

)
dt− 2ε

when the strategy φ̃ is used. Equation (6.25) then implies R(x) ≥ W̃ (x)− 3ε. Since
ε > 0 was arbitrary, the proof is complete.

6.2.3. Proof of Theorem 5.10. First note that continuity of W̃ follows from
Lemma 5.4 and constructions similar to those used in the proof of Lemma 5.2. Once
it has been proved that W̃ is a viscosity solution, the uniqueness will then follow
from the comparison principle used in the proof of Theorem 4.5. Thus, it is sufficient
to prove that W̃ is a viscosity solution. This is done by proving that it is both a
supersolution and a subsolution.

Suppose we are given g ∈ C1(G) such that W̃ −g has a local minimum at x0 ∈ G.
To prove that W̃ is a viscosity supersolution, it must be shown that

−θ −H(x0, gx(x0)) ≥ 0.

If the last inequality is not valid, then there exists α > 0 such that

−α ≥ −θ −H(x0, gx(x0)).

Then, by Lemmas 5.5 and 5.8, there exist φ ∈ Φ and η > 0 such that for all w ∈ W0
b∫ η

0

{
θ +

1
2
|wt|2 + 〈[f(Yt, φ[w]t) + σ(Yt)wt], gx(Yt)〉

}
dt ≥ ηα

2
,
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where Yt is given by (5.8) with initial condition x0 and controls w and φ[w]. This
implies

sup
φ∈Φ

inf
w∈W0

b

[∫ η

0

{
θ +

1
2
|wt|2 + 〈[f(Yt, φ[w]t) + σ(Yt)wt], gx(Yt)〉

}
dt

]
≥ ηα

2
.(6.28)

On the other hand, since W̃ − g has a local minimum at x0, Lemma 5.4 implies

W̃ (x0)− g(x0) ≤ W̃ (Yt)− g(Yt) ∀ t ≤ η, ∀φ ∈ Φ, ∀w ∈ W0
b ,(6.29)

where η > 0 may have to be reduced in size. Also, since η has been chosen so that
τ ≥ η, Theorem 5.6 implies

W̃ (x0) = sup
φ∈Φ

inf
w∈W0

b

[∫ η

0

(
θ +

1
2
|wt|2

)
dt+ W̃ (Yη)

]
.(6.30)

Substituting (6.29) into (6.30) yields

0 ≥ sup
φ∈Φ

inf
w∈W0

b

[∫ η

0

(
θ +

1
2
|wt|2

)
dt+ g(Yη)− g(x0)

]
= sup
φ∈Φ

inf
w∈W0

b

[∫ η

0

{(
θ +

1
2
|wt|2

)
+ 〈[f(Yt, φ[w]t) + σ(Yt)wt], gx(Yt)〉

}
dt

]
.

(6.31)

But (6.28) and (6.31) form a contradiction. Therefore W̃ is a supersolution.
The analogous proof that W̃ is a subsolution is as follows. Consider g ∈ C1(G)

such that W̃ − g has a local maximum at x0 ∈ G. To prove that W̃ is a subsolution,
it must be shown that

−θ −H(x0, gx(x0)) ≤ 0.

If this inequality is not true, then there exists α > 0 such that

α ≤ −θ −H(x0, gx(x0)).

Then, by Lemmas 5.5 and 5.9, there exist a bounded w ∈ W0 and η > 0 such that
for all φ ∈ Φ∫ η

0

{
θ +

1
2
|wt|2 + 〈[f(Yt, φ[w]t) + σ(Yt)wt], gx(Yt)〉

}
dt ≤ −ηα

2
,

where Yt is given by (5.8) with initial condition x0 and controls w and φ[w]. This
implies

sup
φ∈Φ

inf
w∈W0

∗

[∫ η

0

{
θ +

1
2
|wt|2 + 〈[f(Yt, φ[w]t) + σ(Yt)wt], gx(Yt)〉

}
dt

]
≤ −ηα

2
,(6.32)

where W0
∗ = {w ∈ W0 : |wt| ≤ M∗ ∀ t} and M∗ is the bound on the function w

whose existence is asserted in Lemma 5.9.
On the other hand, since W̃ − g has a local maximum at x0, Lemma 5.4 implies

W̃ (x0)− g(x0) ≥ W̃ (Yt)− g(Yt) ∀ t ≤ η, ∀φ ∈ Φ, ∀w ∈ W0
∗ ,(6.33)
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where η > 0 may have to be reduced in size. Also, from Theorem 5.7,

W̃ (x0) ≤ sup
φ∈Φ

inf
w∈W0

∗

[∫ η

0

(
θ +

1
2
|wt|2

)
dt+ W̃ (Yη)

]
.(6.34)

Combining (6.33) and (6.34) yields

0 ≤ sup
φ∈Φ

inf
w∈W0

∗

[∫ η

0

(
θ +

1
2
|wt|2

)
dt+ g(Yη)− g(x0)

]
= sup
φ∈Φ

inf
w∈W0

∗

[∫ η

0

{(
θ +

1
2
|wt|2

)
+ 〈[f(Yt, φ[w]t) + σ(Yt)wt], gx(Yt)〉

}
dt

]
.

(6.35)

But (6.32) and (6.35) form a contradiction. Therefore W̃ is a subsolution.
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Abstract. This work provides necessary conditions for optimality in problems of optimal con-
trol expressed as instances of the generalized problem of Bolza, with the added feature that the
fundamental planning interval is allowed to vary. A central product of the analysis is a generaliza-
tion of the conservation-of-Hamiltonian condition for problems on either fixed or variable intervals.
The results, which allow for unprecedented generality in the problem data, are derived from known
properties of fixed-interval problems under the hypothesis that the time-dependence of the objective
integrand has the same modest level of regularity as the state-dependence.

Key words. optimal control, calculus of variations, Bolza problem, free time, minimum-time
problem, Erdmann condition, Euler–Lagrange condition, Hamiltonian condition, transversality con-
dition, nonsmooth analysis
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1. Introduction. This paper provides necessary conditions for local optimality
in a general optimal control problem where the endpoints of the underlying time
interval are choice variables. The problem is to choose a nondegenerate interval [a, b]
and an absolutely continuous function (or arc) x: [a, b]→ Rn in such a way as to

(P) minimize l(a, x(a), b, x(b)) +
∫ b

a

L(t, x(t), ẋ(t)) dt.

The usefulness of this simple-looking model is directly correlated to the mildness of
the hypotheses under which conclusive results can be obtained. In the current work,
both the endpoint cost l and the integrand L are allowed to be nondifferentiable and
even to take the value +∞. These features allow for enormous flexibility in modeling
applied problems—in particular, a wide range of differential and endpoint constraints
can be introduced implicitly by encoding them in l and L.

The introduction of extended-real-valued functionals as practical modeling tools
in dynamic optimization can be traced to the early work of Rockafellar [17] in the
convex case. Many authors have since addressed the technical challenges raised in
this context: we mention in particular Rockafellar [18, 19] and Clarke [3, 4]. The
hypotheses in this paper are in some respects weaker than those of Clarke [4] and
moreover allow for a variable time interval. We handle this additional complication
by using the classical Erdmann transform to reduce (P) to a fixed-time problem in
which the time plays the role of an additional state variable. This forces us to assume
a degree of regularity in the problem’s time-dependence that matches what we require
on the state-dependence. Clarke, Loewen, and Vinter [7], using other methods, have
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discussed optimality conditions for related problems in which the time-dependence is
merely measurable.

Our most general assertions about minimizers in problem (P) appear in Theo-
rem 1.1 below. The remainder of section 1 is devoted to clarifying the scope and
content of this result. In section 2 we review the implications of these developments
for a special case of (P) arising frequently in practice, while in section 3 we explain
how the hypotheses of Theorem 1.1 can be weakened in the presence of additional
structure on the problem data. The technical details of most proofs are assembled in
section 4. Finally, in section 5 we sketch the modifications required when unilateral
state constraints are imposed on the basic problem.

1.1. Subgradients and normals. We will treat instances of (P) whose data lie
well beyond the scope of classical first-order approximations. Thus the terminology
and methods of nonsmooth analysis will be needed throughout. In this work, the
symbols ∂f(x) and ∂∞f(x) stand for the sets of limiting proximal subgradients and
singular limiting proximal subgradients associated with an extended-valued function
f :Rm → R∪{∞} at a point x such that f(x) is finite and the epigraph of f is locally
closed near (x, f(x)). Given a closed set S, we will write ΨS for the corresponding
indicator function, which equals 0 at points in S and +∞ elsewhere. The set of
limiting proximal normals associated with S at a point s ∈ S will be denoted by
NS (s); note NS (s) = ∂ΨS(s) = ∂∞ΨS(s). For simplicity, we refer to these limiting
objects simply as “subgradients,” “singular subgradients,” and “normals”; further
discussion of their constructions and relationships to other fundamental objects is
now widely available (e.g., [5], [10], [15]). However, we will often refer to the basic
relationships

(1.1)
∂f(x) = {ξ : (ξ,−1) ∈ Nepi f (x, f(x)) } ,

∂∞f(x) = {ξ : (ξ, 0) ∈ Nepi f (x, f(x)) } .

We will write B for the closed unit ball centered at the origin in various Euclidean
spaces distinguished by the context.

1.2. Hypotheses. An arc x is given, together with its associated interval of
definition

[
a, b
]
; one has b− a > 0. For some ρ > 0, the open set

(1.2) Ω =
{

(t, x) : |(t, x)− (r, x(r))| < ρ for some r ∈ [a, b]
}
,

with sections Ωt = {x : (t, x) ∈ Ω}, is one in which the data of problem (P) satisfy
hypotheses (H1)–(H4) below. These conditions refer to the Hamiltonian H: Ω×Rn →
R ∪ {∞}, defined by

(1.3) H(t, x, p) := sup {〈p , v〉 − L(t, x, v) : v ∈ Rn} .

In (H4) and throughout the paper, we use the shorthand L(t) := L
(
t, x(t), ẋ(t)

)
.

(H1) The endpoint cost l:R×Rn ×R×Rn → R ∪ {∞} is lower semicontinuous
on the set

{
(a, x, b, y) : |(a, x)− (a, x(a))| < ρ,

∣∣(b, y)− (b, x(b))
∣∣ < ρ

}
.

(H2) For each fixed (t, x) in Ω, the function v 7→ L(t, x, v) is convex on Rn.
(H3) The function L is lower semicontinuous on Ω×Rn and epicontinuous in (t, x):

that is, for any point (t, x, v) in Ω × Rn where L(t, x, v) is finite, and any sequence
(tk, xk)→ (t, x), there exists a sequence vk → v along which L(tk, xk, vk)→ L(t, x, v).

(H4) There are positive constants δ and κ such that the following statement is
true for almost every t in

[
a, b
]
: for every point (r, x, v) in Ω×Rn satisfying the three

conditions
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(i) |(r, x)−(t, x(t)) | < ρ,
(ii)

∣∣v − ẋ(t)
∣∣ < δ

[
1 +

∣∣ẋ(t)
∣∣],

(iii)
∣∣L(r, x, v)− L(t, x(t), ẋ(t))

∣∣ < δ
[
1 +

∣∣L(t, x(t), ẋ(t))
∣∣],

one has the subgradient inequality

|(u,w)| ≤ κ[1 + |p|+ |H(r, x, p)|] ∀(u,w, p) ∈ ∂L(r, x, v).

To understand (H2)–(H4), consider this multifunction E: Ω→→Rn × R:

E(t, x) := epiL(t, x, · ) = {(v, γ) : γ ≥ L(t, x, v)} .

Note that a scalar arc y obeys y(t) ≥ y(a) +
∫ t
a
L(r, x(r), ẋ(r)) dr if and only if

(ẋ(t), ẏ(t)) ∈ E(t, x(t)) a.e. This observation furnishes a link between the objective
values in (P) and the endpoint values of trajectories for the differential inclusion based
on E: this reformulation, detailed in [13], provides for a geometric perspective on the
hypotheses.

Hypothesis (H2), together with the lower semicontinuity part of (H3), ensures
that the set E(t, x) is closed and convex for every (t, x)—an important condition in
the existence theory for problem (P).

Hypothesis (H3) is equivalent to the requirement that the multifunction E be
continuous on Ω, in the sense that for every (t, x) in Ω

(1.4) lim inf
(t′,x′)→(t,x)

E(t′, x′) ⊇ E(t, x) ⊇ lim sup
(t′,x′)→(t,x)

E(t′, x′) .

As a consequence of Wijsman’s theorem, which asserts that the correspondence be-
tween Lagrangian and Hamiltonian under the Legendre–Fenchel transform preserves
epicontinuity, we can express (H3) in three equivalent ways (cf. [22, Prop. 2.1]):

(i) The (closed) set epiL(t, x, · ) depends continuously on (t, x) in Ω.
(ii) The (closed) set epiH(t, x, · ) depends continuously on (t, x) in Ω.
(iii) The function H is lower semicontinuous on Ω×Rn, and epicontinuous in (t, x):

that is, for any point (t, x, p) in Ω×Rn at which H is finite and for any sequence
(tk, xk) → (t, x), there is a sequence pk → p along which H(tk, xk, pk) →
H(t, x, p).

This equivalence reveals an appealing symmetry between the requirements on L and
H.

Hypothesis (H4) is a subgradient sufficient condition for the multifunction E
to display a type of Lipschitz continuity around the points

(
t, x(t), ẋ(t), L(t)

)
. The

continuity property we require was introduced for general multifunctions by Aubin [2];
in our context, we require that the graph of x have a neighborhood in which, for some
constants R and K, one has

(1.5) E(s, x) ∩
((
ẋ(t), L(t)

)
+RB

)
⊆ E(t, y) +K|(s, x)− (t, y)|B.

Mordukhovich [14] has shown that a necessary and sufficient condition for the valid-
ity of this “Aubin continuity property” near a given point

(
t, x(t), ẋ(t), L(t)

)
is that

|(u,w)| ≤ K|(p,−λ)| for all vectors (u,w, p,−λ) normal to the set gphE = epiL at
points near

(
t, x(t), ẋ(t), L(t)

)
. The subgradient inequality in (H4) arises from just

such considerations (compare (1.1)), weakened somewhat thanks to the technical ad-
vantages of the Erdmann transform.

Another helpful perspective on (H4) is available if we consider the stronger hy-
pothesis obtained by omitting the Hamiltonian term from the right side of the central



BOLZA PROBLEMS WITH GENERAL TIME CONSTRAINTS 2053

inequality. For any integrand L that satisfies the resulting condition with respect to
x, the same hypothesis holds (with a larger coefficient κ) for any integrand L + G1
involving a function G1 that is Lipschitz with respect to (t, x). This insensitivity to
Lipschitzian perturbations reveals that the real job of (H4) is to regulate the inte-
grand’s non-Lipschitz dependence on (t, x), if any, near the nominal trajectory.

It is important to note that both (H3) and (H4) can be checked easily for several
classes of integrand L. We describe some of these reductions in the discussion of
special cases below, and we treat this matter more generally in section 3.

Local minimizers. Given an arc x and an open set Ω relative to which (H1)–(H4)
hold, we will always consider problem (P) under the implicit constraint x(t) ∈ Ω for
all t in [a, b]. Thus all of our results pertain to strong local minimizers in the basic
problem. Here is the main theorem.

THEOREM 1.1. Let the arc x with interval
[
a, b
]

provide the minimum in prob-
lem (P). Assume (H1)–(H4). Then some arc (h, p) taking values in R× Rn satisfies
either the normal conditions or the singular conditions below.
Normal conditions:

(a)
(
ḣ(t), ṗ(t)

)
∈ co

{
(u,w) : (−u,w, p(t)) ∈ ∂L

(
t, x(t), ẋ(t)

) }
= co

{
(u,w) :

(
u,−w, ẋ(t)

)
∈ ∂H

(
t, x(t), p(t)

) }
a.e. t ∈

[
a, b
]
.

(b) h(t) = H(t, x(t), p(t)) a.e. t ∈
[
a, b
]

(but see Proposition 1.2);

h(t) =
〈
p(t) , ẋ(t)

〉
− L

(
t, x(t), ẋ(t)

)
a.e. t ∈

[
a, b
]
.

(c)
(
−h(a), p(a), h(b),−p(b)

)
∈ ∂l

(
a, x(a), b, x(b)

)
.

Singular conditions: One has |(h(t), p(t))| > 0 for all t in
[
a, b
]
, and

(a∞) (ḣ(t), ṗ(t)) ∈ co
{

(u,w) : (−u,w, p(t)) ∈ ∂∞L(t, x(t), ẋ(t))
}
a.e. t ∈ [a, b].

(b∞) h(t) =
〈
p(t) , ẋ(t)

〉
a.e. t ∈

[
a, b
]
.

(c∞)
(
−h(a), p(a), h(b),−p(b)

)
∈ ∂∞l

(
a, x(a), b, x(b)

)
.

In particular, if the only arc (h, p) satisfying conditions (a∞)–(c∞) is identically zero,
then the normal conditions must hold.

The proof of Theorem 1.1 is given in section 4 below. Before discussing this
technical development, we pause to emphasize some of the result’s useful implications.

1.3. General time constraints. The formulation of (P) covers the full range
of situations from the case of a fixed planning interval [a, b] = [0, 1], through the
situation where there is a required relationship between the final time and state (like
the target condition (b, x(b)) ∈ C for a given set C), to the case where the interval [a, b]
is completely unrestricted. For example, to treat a problem where the final time is
fixed at T , it suffices to include the additive term Ψ{T}(b) in the endpoint cost l. Such
extended-valued and discontinuous behavior is allowed by the hypotheses, but it will
of course be reflected in conclusions (c) and (c∞) of Theorem 1.1. In this instance, the
third components of conclusions 1.1(c)/(c∞) would give only the redundant statement
“h(T ) ∈ R” because of the elementary identity ∂Ψ{T}(T ) = ∂∞Ψ{T}(T ) = R; in
variable-endtime problems the corresponding conclusions would be richer, providing
nontrivial algebraic conditions linking the final value of h with other ingredients of
the extremal system.

1.4. Conservation of the Hamiltonian. Conclusion (b) in the normal case of
Theorem 1.1 generalizes the classical equation

(1.6) ḣ(t) = Ht(t, x(t), p(t)) , where h(t) = H(t, x(t), p(t)) .



2054 P. D. LOEWEN AND R. T. ROCKAFELLAR

In particular, if the integrand L is free of explicit t-dependence, then the Hamiltonian
must be constant along normal extremal trajectories—a conclusion that recalls the law
of conservation of energy in classical mechanics, or the second Weierstrass–Erdmann
condition in the calculus of variations. This condition is useful in fixed-time problems,
where the constant value of h is unknown, and indispensable in free-time problems,
where the constant value of h is determined through the transversality inclusion (c)
or (c∞) of Theorem 1.1, as noted above.

1.5. Maximization conditions. Eliminating h between the two equations in
Theorem 1.1(b) leads to the first of two equivalent maximization conditions:

(1.7)
〈
p(t) , ẋ(t)

〉
− L

(
t, x(t), ẋ(t)

)
= max
v∈Rn

{〈p(t) , v〉 − L(t, x(t), v) } a.e. t ∈
[
a, b
]
,

(1.8)
〈
p(t) , ẋ(t)

〉
−H(t, x(t), p(t)) = max

q∈Rn

{〈
q , ẋ(t)

〉
−H(t, x(t), q)

}
a.e. t ∈

[
a, b
]
.

(Here (1.7) simply restates p(t) ∈ ∂vL
(
t, x(t), ẋ(t)

)
, while (1.8) is a transcription of

ẋ(t) ∈ ∂pH(t, x(t), p(t)); these inclusions are equivalent by convex analysis.) Condi-
tion (1.7) is the analogue in this theory of the maximization condition in Pontryagin’s
maximum principle and can be derived directly from the adjoint inclusion (a) of The-
orem 1.1. To see this, notice that (a) implicitly asserts that for almost every t, there
are points (u,w) such that

(1.9) (−u,w, p(t)) ∈ ∂L
(
t, x(t), ẋ(t)

)
.

Under our hypotheses on L, this inclusion implies the partial-subgradient relation
p(t) ∈ ∂vL

(
t, x(t), ẋ(t)

)
. (See [22, Prop. 2.2]; the Lipschitz case is in [3, Prop. 2.5.3].)

The definition of the convex subgradient allows this inclusion to be expressed as shown
in (1.7). Thus inclusion (1.9) implies

(1.10)
〈
p(t) , ẋ(t)

〉
− L

(
t, x(t), ẋ(t)

)
= H(t, x(t), p(t)) .

This derivation of (1.10) from (1.9) proceeds equally well for any evaluation point
in Ω × Rn, and its more general form will be used repeatedly in what follows. To
illustrate, we note that the subgradient inequality in (H4) is equivalent to

(1.11) |(u,w)| ≤ κ[1 + |p|+ |〈p , v〉 − L(r, x, v)|] ∀(u,w, p) ∈ ∂L(r, x, v).

1.6. Lipschitzian minimizers. Problem (P) involves minimization over the
space of all absolutely continuous functions x. However, it often happens that the
solution lies in the subspace of Lipschitzian arcs. (Sufficient conditions guaranteeing
this desirable outcome may be found in [8, 9, 6, 1], for example.) In this situation,
our results can be simplified: the hypotheses can be weakened by dropping the term∣∣ẋ(t)

∣∣ from the right-hand side of (H4(ii)), while the conclusions can be strengthened
by demonstrating the identity in the first line of Theorem 1.1(b) for all t in

[
a, b
]

without exception. The latter assertion follows from our next result, in which m
denotes Lebesgue measure, and we write I+ =

⋃
R>0 I

+
R and I− =

⋃
R>0 I

−
R , where

I+
R =

{
t ∈
[
a, b
)

: ∀ε > 0, m{s ∈ [t, t+ ε] :
∣∣ẋ(s)

∣∣ ≤ R} > 0
}
,

I−R =
{
t ∈
(
a, b
]

: ∀ε > 0, m{s ∈ [t− ε, t] :
∣∣ẋ(s)

∣∣ ≤ R} > 0
}
.

(Note that for Lipschitzian x, I+ =
[
a, b
)

and I− =
(
a, b
]
.)

PROPOSITION 1.2. Let (h, p) be a function of bounded variation on
[
a, b
]

for which
the two statements in Theorem 1.1(b) hold. Then
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(a) h(t+) = H
(
t, x(t), p(t+)

)
∀t ∈ I+,

(b) h(t−) = H
(
t, x(t), p(t−)

)
∀t ∈ I−.

In particular, if x is Lipschitzian and (h, p) is an arc, then h(t) = H(t, x(t), p(t)) for
all t in

[
a, b
]

without exception.
Proof. (a) Fix any t in I+. Since h and p have bounded variation on

[
a, b
]
, their

right limits h(t+) and p(t+) exist finitely and can be realized along any sequence
sk → t+. Also, t ∈ I+

R for some R > 0, so each interval [t, t+ 1/k] contains a nonnull
set on which

∣∣ẋ(s)
∣∣ ≤ R. Thus we may choose a sequence sk → t+ along which ẋ(sk)

exists, the two equations in Theorem 1.1(b) hold, and supk
∣∣ẋ(sk)

∣∣ ≤ R.
Now H is lower semicontinuous on Ω× Rn by (H3), so

(∗) h(t+) = lim inf
k→∞

H(sk, x(sk), p(sk)) ≥ H
(
t, x(t), p(t+)

)
.

On the other hand, H is epicontinuous on Ω. Line (∗) shows that (t, x(t), p(t+)) is a
point whereH is finite, and we have a sequence (sk, x(sk)) converging to(t, x(t)). Thus
there must be a sequence qk → p(t+) along which H(sk, x(sk), qk)→ H(t, x(t), p(t+)).
The maximum condition (1.8) (a consequence of Theorem 1.1(b)) then supplies the
inequality

(∗∗)

h(t+) = lim
k→∞

H(sk, x(sk), p(sk))

≤ lim inf
k→∞

[
H(sk, x(sk), qk)−

〈
qk − p(sk) , ẋ(sk)

〉]
= H

(
t, x(t), p(t+)

)
− 0.

Combining (∗) and (∗∗) gives h(t+) ≤ H
(
t, x(t), p(t+)

)
≤ h(t+), as required.

(b) This proof is similar.
Now if (h, p) is continuous on

[
a, b
]
, then we have h(t) = H(t, x(t), p(t)) for all t

in I− ∪ I+. Furthermore, I− ∪ I+ =
[
a, b
]

when x is Lipschitzian, so the upgraded
form of Theorem 1.1(b) follows.

2. Problems with explicit velocity constraints. The fully intrinsic formula-
tion of (P) enjoys both a simple statement and a rich heritage of classical antecedents.
On the other hand, its practical importance comes from its applicability to problems
with velocity and endpoint constraints beyond the scope of its predecessors. Take, for
example, the problem of choosing an interval [a, b] and an arc x on [a, b] in order to

(2.1)
minimize Γ[a, b;x] := g1(a, x(a), b, x(b)) +

∫ b

a

G1(t, x(t), ẋ(t)) dt

subject to ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [a, b],
(a, x(a), b, x(b)) ∈ S.

This problem is an instance of (P) with endpoint cost l = g1 + ΨS and integrand
L = G1 + ΨgphF . Suitable hypotheses of Lipschitz continuity on g1 and G1, together
with mild conditions on the multifunction F , will not only establish (H1)–(H4) but also
allow us to derive from the conclusions of Theorem 1.1 the usual dichotomy between
the normal and abnormal forms of standard necessary conditions. To express this
concisely, let us write for any λ ≥ 0

(2.2)

lλ(a, x, b, y) := λg1(a, x, b, y) + ΨS(a, x, b, y),
Lλ(t, x, v) := λG1(t, x, v) + ΨgphF (t, x, v),
Hλ(t, x, p) := sup

v∈Rn
{〈p , v〉 − Lλ(t, x, v)}

= sup {〈p , v〉 − λG1(t, x, v) : v ∈ F (t, x)} .
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The hypotheses in question are as follows. Again we state them in terms of a given
arc x with associated interval

[
a, b
]

assumed to solve problem (2.1), and a fixed open
set Ω containing the graph of x. We also assume that x is Lipschitzian.

(h1) The target set S is closed, and the endpoint cost g1 is Lipschitzian on the set{
(a, x, b, y) : |(a, x)− (a, x(a))| < ρ,

∣∣(b, y)− (b, x(b))
∣∣ < ρ

}
.

(h2) For each fixed (t, x) in Ω, both the function v 7→ G1(t, x, v) and the set F (t, x)
are convex.

(h3) The function G1 is finite valued and continuous on Ω×Rn. The multifunction
F is continuous on Ω, in the sense that (1.4) holds for E = F , at every point
(t, x) in Ω.

(h4) There are positive constants δ and R for which almost all t in (a−ρ, b+ρ) have
this property: for every point (r, x, v) in Ω×Rn satisfying the three conditions

|(r, x)−(t, x(t)) | < ρ,
∣∣v − ẋ(t)

∣∣ < δ, v ∈ F (r, x),

both subgradient estimates below are valid:

|(u1, w1, p1)| ≤ R
|(uν , wν)| ≤ R[1 + |pν |]

∀(u1, w1, p1) ∈ ∂G1(r, x, v),
∀(uν , wν , pν) ∈ NgphF (r, x, v) .

Notice that the conditions on F imposed by (h3)–(h4) amount to nothing more
than continuity in general together with a sort of uniform Aubin property near the
minimizing arc of interest. Since the arc x is Lipschitzian, the first subgradient in-
equality in (h4) will be satisfied (for some R) by any locally Lipschitzian integrand
G1, while a sufficient condition for the second is the qualification condition

(u,w, 0) ∈ ∂L0
(
t, x(t), ẋ(t)

)
=⇒ (u,w) = (0, 0) a.e. t ∈

[
a, b
]
.

(This follows from Theorem 3.2 below and the special structure of L.) In particu-
lar, there is no requirement that F be bounded or compact valued—the next result
applies even when F ≡ Rn, so (2.1) reduces to a standard variational problem with
Lipschitzian data and a general target set.

THEOREM 2.1. Let the arc x with interval
[
a, b
]

provide the minimum in prob-
lem (2.1). Suppose that x is Lipschitzian and (h1)–(h4) hold. Then there exist a
scalar λ ∈ {0, 1} and an absolutely continuous pair (h, p):

[
a, b
]
→ R × Rn, with

λ+ |(h(t), p(t))| > 0 for all t in
[
a, b
]
, such that

(a)
(
ḣ(t), ṗ(t)

)
∈ co

{
(u,w) : (−u,w, p(t)) ∈ ∂Lλ

(
t, x(t), ẋ(t)

) }
= co

{
(u,w) : (u,−w, ẋ(t)) ∈ ∂Hλ(t, x(t), p(t))

}
a.e. t ∈

[
a, b
]
.

(b) h(t) = Hλ(t, x(t), p(t)) ∀t ∈
[
a, b
]

;

h(t) =
〈
p(t) , ẋ(t)

〉
− λG1

(
t, x(t), ẋ(t)

)
a.e. t ∈

[
a, b
]
.

(c)
(
−h(a), p(a), h(b),−p(b)

)
∈ ∂lλ

(
a, x(a), b, x(b)

)
.

Again, we note that condition (b) in the statement of Theorem 2.1 implies two
(equivalent) maximization conditions valid for almost all t:

(2.3)
ẋ(t) ∈ ∂pHλ(t, x(t), p(t)) = arg max

v∈Rn
{〈p(t) , v〉 − Lλ(t, x(t), v)} ,

p(t) ∈ ∂vLλ(t, x(t), ẋ(t)) = arg max
q∈Rn

{〈
q , ẋ(t)

〉
−Hλ(t, x(t), q)

}
.

Proof. We reduce to an application of Theorem 1.1, by choosing l = l1 and L = L1.
For i = 1, 2, 3, (Hi) follows directly from (hi); for i = 4, this statement can be justified
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as follows. Using the constant R provided by (h4), define κ = R2 +2R. Then consider
any point (r, x, v) of the sort described in (H4(i)–(iii)) and any subgradient (u,w, p) ∈
∂L(r, x, v). Conditions (H4(i)–(ii)) imply that (h4(i)–(ii)) hold for the evaluation
point (r, x, v); condition (H4(iii)) certainly requires the finiteness of L(r, x, v) so that
(h4(iii)) must follow. With the three prerequisites of (h4) in place, we observe that
the given subgradient has a decomposition as

(u,w, p) = (u1, w1, p1) + (uν , wν , pν)
for some (u1, w1, p1) ∈ ∂G1(r, x, v) and some (uν , wν , pν) ∈ NgphF (r, x, v). The two
estimates in (h4) then give the second inequality in the estimate

|(u,w)| ≤ |(u1, w1)|+ |(uν , wν)|
≤ R+R[1 + |pν |]
≤ R+R[1 + |p1 + pν |+ |−p1|]
≤ R+R[1 + |p|] +R2

≤ κ[1 + |p|] .
In the last step we have used the choice κ = R2 + 2R mentioned above. The resulting
inequality confirms (H4).

We may now apply Theorem 1.1 to x on
[
a, b
]
. If the conclusions of Theorem 1.1

hold in normal form, then conditions (a)–(c) follow immediately, with λ = 1. The
nontriviality condition is evident. Suppose, therefore, that we have only the singular
conditions of Theorem 1.1, satisfied by some nonvanishing pair (h, p). Again the
nontriviality condition is immediate, but now the special form of l and L allows
conclusions (a∞)–(c∞) to be simplified. Specifically, since the endpoint cost g1 and
integrand G1 are locally Lipschitz, we have

∂∞l
(
a, x(a), b, x(b)

)
= NS

(
a, x(a), b, x(b)

)
= ∂l0

(
a, x(a), b, x(b)

)
,

∂∞L
(
t, x(t), ẋ(t)

)
= NgphF

(
t, x(t), ẋ(t)

)
= ∂L0

(
t, x(t), ẋ(t)

)
.

Thus the transversality inclusion (c) with λ = 0 follows directly from condition (c∞)
of Theorem 1.1, while condition (a∞) of that result gives

(∗)
(
ḣ(t), ṗ(t)

)
∈ co

{
(u,w) : (−u,w, p(t)) ∈ ∂L0

(
t, x(t), ẋ(t)

) }
a.e. t ∈

[
a, b
]
.

Apply to this inclusion the results of Rockafellar [22, Thm. 1.1] as they pertain to
the function L0 = ΨgphF . Hypothesis (h3) implies that L0 is lower semicontinu-
ous and has the required epicontinuity property. Furthermore, any point (u,w, 0) ∈
∂∞L0

(
t, x(t), ẋ(t)

)
= NgphF

(
t, x(t), ẋ(t)

)
must satisfy

α(u,w, 0) ∈ NgphF
(
t, x(t), ẋ(t)

)
∀α > 0,

whereupon (h4) requires α|(u,w)| ≤ R for all α > 0, i.e., |(u,w)| = 0. Thus the
calculus qualification of [22] is in force, and we may conclude that

co
{

(u,w) : (−u,w, p(t)) ∈ ∂L0
(
t, x(t), ẋ(t)

) }
= co

{
(u,w) :

(
u,−w, ẋ(t)

)
∈ ∂H0(t, x(t), p(t))

}
a.e. t ∈

[
a, b
]
.

In conjunction with (∗) above, this equation establishes conclusion (a) with λ = 0.
Turning finally to the maximum condition, we note that inclusion (∗) implies

p(t) ∈ ∂vL0
(
t, x(t), ẋ(t)

)
= NF (t,x(t))

(
ẋ(t)

)
. In particular,

〈
p(t) , ẋ(t)

〉
≥ 〈p(t) , v〉

for all v in F (t, x(t)), which can be restated as
〈
p(t) , ẋ(t)

〉
= H0(t, x(t), p(t)). We

already have h(t) =
〈
p(t) , ẋ(t)

〉
from conclusion (b∞), so conclusion (b) holds for

almost all t. The first line can be upgraded to an equation valid for all t by applying
Proposition 1.2.
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2.1. Minimum-time problems. A further specialization of (2.1) is the prob-
lem of steering the state trajectory from the origin at time 0 to a moving target set C
in least time, subject to given differential constraints. Here the termination condition
is x(b) ∈ C(b), and the following choices put this problem into the form (2.1):

G1 ≡ 0, g1(a, x, b, y) = b, S = {(0, 0)} × gphC.

Here (h1) holds for any target multifunction C whose graph is closed, (h2) reduces
to a convexity requirement on the velocity sets F (t, x), (h3) changes only slightly,
and the first of the subgradient estimates in (h4) becomes self-evident. In addition,
one has Lλ = ΨgphF = L0, and hence Hλ = H0, for all λ ≥ 0. Thus a Lipschitzian
minimizer x with interval

[
0, b
]

must have an associated scalar λ ∈ {0, 1} and arc
(h, p):

[
0, b
]
→ R× Rn, not both zero, such that

(a)
(
ḣ(t), ṗ(t)

)
∈ co

{
(u,w) : (u,−w, ẋ(t)) ∈ ∂H0(t, x(t), p(t))

}
a.e. t ∈

[
0, b
]
.

(b) h(t) = H0(t, x(t), p(t)) ∀t ∈
[
a, b
]
, and h(t) =

〈
p(t) , ẋ(t)

〉
a.e. t ∈

[
a, b
]
.

(c)
(
− h(0), p(0), h(b),−p(b)

)
∈ λ(0, 0, 1, 0) + R× Rn ×NgphC

(
b, x(b)

)
.

The cost multiplier λ appears only in (c), which reduces to

(c′)
(
h(b)− λ,−p(b)

)
∈ NgphC

(
b, x(b)

)
.

In the case where the target set multifunction t7→7→C(t) is single valued and moves
smoothly with time, this conclusion coincides with the classical one, namely,(

h(b)− λ,−p(b)
)
∈
(
1, C ′(b)

)⊥
, i.e., h(b)−

〈
p(b) , C ′(b)

〉
= λ.

Another possibility is that the target is stationary: C(t) = C for all t > 0. Here
gphC(·) = R× C, so (c′) decouples to yield the well-known relations

h(b) = λ, −p(b) ∈ NC
(
x(b)

)
.

In the further special case where the velocity sets F (t, x) have no explicit t-dependence,
conditions (a) and (b) imply that the Hamiltonian is constant along extremal trajec-
tories, with the fixed value λ = 1 for normal problems and λ = 0 for singular ones.

3. On the continuity conditions. Both the epicontinuity condition (H3) and
the Aubin continuity hypothesis (H4) follow from more elementary assumptions when
the integrand L has suitable structure. We discuss some of these reductions in this
section, paying particular attention to simplifications available when the function
L(t, x, v) is convex in (x, v) for each fixed t.

Our first result is a sufficient condition for the Aubin continuity property (H4).
A simplified version appears as Theorem 3.2 below.

PROPOSITION 3.1. Suppose that ẋ and L are essentially bounded. Then, upon re-
ducing ρ > 0 if necessary, hypothesis (H4) holds whenever there exists a multifunction
Γ:R× Rn × Rn→→R with these three properties:

(a) The graph of Γ is a compact subset of epiL; the images of Γ are compact
convex sets.

(b) If Γ(t, x, v) 6= ∅, then L(t, x, v) ∈ Γ(t, x, v); moreover, Γ
(
t, x(t), ẋ(t)

)
6= ∅ for

almost all t in
[
a, b
]
.

(c) One has

(3.1) ∀γ ∈ Γ(t, x, v), (u,w, 0, 0) ∈ NepiL (t, x, v, γ) =⇒ (u,w) = (0, 0).

Conditions (a) and (b) require, among other things, that the graph of Γ be a com-
pact superset of the “curve”

{(
t, x(t), ẋ(t), L

(
t, x(t), ẋ(t)

))
: t ∈ [a, b]

}
. This curve
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will admit a compact superset if and only if both ẋ and L are essentially bounded,
which we have emphasized by making it an explicit hypothesis in the statement above.
In the case where both ẋ and L are continuous, the curve in question is itself compact,
and conditions (a) and (b) are satisfied by the multifunction

(3.2) Γ(t, x, v) =
{
{L(t, x, v)} if (t, x, v) =

(
t, x(t), ẋ(t)

)
, t ∈

[
a, b
]
,

∅ otherwise.

At any point where Γ(t, x, v) = {L(t, x, v)}, the key condition (3.1) can be rewrit-
ten in terms of singular subgradients using (1.1):

(3.3) (u,w, 0) ∈ ∂∞L(t, x, v) =⇒ (u,w) = (0, 0).

The discrepancy between (3.1) and (3.3) shows up only when (3.1) refers to normals
to epiL at points (r, x, v, γ) where γ > L(r, x, v).

Proof of Proposition 3.1. The essential boundedness of ẋ and L allows the right
sides in (H4(ii)–(iii)) to be replaced by δ. This is the form of (H4) that we will confirm.

First, fix any point (t, x, v, γ) in gph Γ. We claim that there exists M > 0 so large
that the following geometrical relation holds near the given point:

(∗)
|(r, x, v)− (t, x, v)| < 1/M

γ < γ + 1/M

}
=⇒ |(u,w)| ≤M [|p|+ |q|] ∀(u,w, p, q) ∈ NepiL (r, x, v, γ) .

Indeed, if this claim were false, then it would have to fail for every positive in-
teger m. Each m would give rise to a point (rm, xm, vm, γm) satisfying the an-
tecedent inequalities in (∗) but associated with a normal vector (um, wm, pm, qm)
in NepiL (rm, xm, vm, γm) for which

(†) 1
m
|(um, wm)| > [|pm|+ |qm|] , |(um, wm, pm, qm)| = 1.

Now since (rm, xm, vm)→ (t, x, v) and γm ≥ L(rm, xm, vm) as m→∞, (†) gives

γ ≥ lim sup
m→∞

γm ≥ lim sup
m→∞

L(rm, xm, vm)

≥ lim inf
m→∞

L(rm, xm, vm)

≥ L(t, x, v) (by lower semicontinuity).

Conditions (a) and (b) imply that all the limit points of the sequence γm lie in the
compact interval Γ(t, x, v); by passing to a subsequence if necessary, we may assume
that γm → γ̂, where L(t, x, v) ≤ γ̂ ≤ γ and γ̂ ∈ Γ(t, x, v). Along a further subsequence,
the given normals converge to a unit vector (u,w, p, q) with the property that

0 ≥ |p|+ |q|, (u,w, p, q) ∈ NepiL (t, x, v, γ̂) .

This contradicts (3.1), so the claim involving (∗) must hold.
Second, we use the compact-graph condition (a). Fix any point (t, x, v, γ) in

gph Γ. Let M = M(t, x, v, γ) be a constant with the properties specified in (∗); use it
to define an open set in R1+n+n+1:

Ω(t, x, v, γ) = {(r, x, v, γ) : |(r, x)− (t, x)| < 1/M, |v − v| < 1/M, γ < γ + 1/M} .
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Now as (t, x, v, γ) runs through gph Γ, the open sets Ω(t, x, v, γ) cover gph Γ. Thus
we can extract a finite list of points (ti, xi, vi, γi) in gph Γ, i = 1, . . . , N , such that

(∗∗) gph Γ ⊆
N⋃
i=1

Ω(ti, xi, vi, γi).

Since the left side is compact and the right side is open, there is a positive constant
δ such that any point (r, x, v, γ) satisfying the three conditions below for some point
(t, x, v, γ) in gph Γ will lie in the right side of (∗∗):

|(r, x)− (t, x)| < δ, |v − v| < δ, γ < γ + δ.

In particular, fix any time t in
[
a, b
]

at which the inclusion in (b) holds. Then the
point (t, x, v, γ) =

(
t, x(t), ẋ(t), L

(
t, x(t), ẋ(t)

))
lies in gph Γ, so the three hypotheses

below are enough to situate the point (r, x, v, L(r, x, v)) in the right side of (∗∗):
(i) |(r, x)− (t, x(t))| < δ,

(ii)
∣∣v − ẋ(t)

∣∣ < δ,
(iii) L(r, x, v) < L(t, x(t), ẋ(t)) + δ.

This means that there is some index i for which (r, x, v, L(r, x, v)) lies in Ω(ti, xi, vi, γi),
and hence that any vector (u,w, p, q) in NepiL (r, x, v, L(r, x, v)) obeys

|(u,w)| ≤Mi[|p|+ |q|] ≤ M̂ [|p|+ |q|] ,

where M̂ = max {M1, . . . ,MN}. In particular, if (u,w, p) ∈ ∂L(r, x, v), then |(u,w)| ≤
M̂ [1 + |p|]. This establishes (H4), with constants δ and M̂ .

THEOREM 3.2. Suppose that both ẋ and L are essentially bounded. Then, upon
reducing ρ > 0 if necessary, the following condition implies (H4): there exists δ > 0
so small that for almost all t ∈

[
a, b
]
, the three inequalities

(3.4) |(r, x)− (t, x(t))| < δ,
∣∣v − ẋ(t)

∣∣ < δ,
∣∣γ − L(t)

∣∣ < δ

imply the geometrical condition

(3.5) (u,w, 0, 0) ∈ NepiL (t, x, v, γ) =⇒ (u,w) = (0, 0).

Proof. It suffices to construct a multifunction Γ satisfying conditions (a) and (b)
of Proposition 3.1 such that any quadruple (r, x, v, γ) satisfying the three inequalities
above automatically lies in gph Γ. We do this using the “essential value” multifunc-
tions [7]

V (t) :=
{
v ∈ Rn : ∀ε > 0, 0 < m

{
s ∈ [t− ε, t+ ε] ∩

[
a, b
]

:
∣∣v − ẋ(s)

∣∣ < ε
}}
,

I(t) :=
{
γ ∈ R : ∀ε > 0, 0 < m

{
s ∈ [t− ε, t+ ε] ∩

[
a, b
]

:
∣∣γ − L(s)

∣∣ < ε
}}
.

Evidently both gphV and gph I are compact, while ẋ(t) ∈ V (t) and L(t) ∈ I(t) for
almost all t. Fix any δ0 ∈ (0, δ), and let

G := {(r, x, v, γ) : for some t in
[
a, b
]
, one has v ∈ V (t) + δ0B,

γ ∈ co I(t) + δ0B, and |(r, x)− (t, x(t))| ≤ δ0}.

This set is compact, contains almost all the points (t, x(t), ẋ(t), L(t)) for t in
[
a, b
]
,

and has convex sections in the last variable. Thus the relation gph Γ = G defines a
multifunction Γ satisfying Theorem 3.1(a) and (b). For almost all t, any quadruple
(r, x, v, γ) obeying the three inequalities in (3.4) will satisfy γ ∈ Γ(r, x, v). Thus
condition (3.5) implies (3.1), and the result follows.
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3.1. The convex case. Necessary (and sufficient) conditions for the fixed-time
case of problem (P) where the Lagrangian is jointly convex in (x, v) for each fixed t
have been known for some time: see [17, 18, 19], for example. These early results have
a role not only in the direct solution of applied problems but also as test cases for
the correctness of further generalizations. Thus we seek to confirm that our results in
this paper represent faithful generalizations of the convex theory. The key issue, of
course, is the extent to which convex problems can be expected to satisfy our stand-
ing hypotheses (H3) and (H4). Here is a precise formulation of our joint convexity
assumption.

(H2)c For each fixed t in
(
a− ρ, b+ ρ

)
, the function (x, v) 7→ L(t, x, v) is convex

on Ωt × Rn. Furthermore, one has domL(t, x, ·) 6= ∅ for each (t, x) in Ω.
We will show that for autonomous problems, both (H3) and (H4) follow from (H2)c

and more generally, that assuming (H2)c allows (H3) and (H4) to be derived from
their weakened analogues below, in which only the t-dependence is involved:

(H3)c The function L is lower semicontinuous on Ω×Rn and epicontinuous in t:
that is, for any point (t, x, v) in Ω×Rn where L(t, x, v) is finite and for any sequence
tk → t, there exists a sequence (xk, vk)→ (x, v) along which L(tk, xk, vk)→ L(t, x, v).

(H4)c Both ẋ and L are essentially bounded, and there are positive constants δ
and κ such that for almost all t in

[
a, b
]
, every point (r, x, v, γ) in Ω×Rn×R obeying

the three inequalities

|(r, x)− (t, x(t))| < ρ,
∣∣v − ẋ(t)

∣∣ < δ,
∣∣γ − L(t)

∣∣ < δ,

satisfies the geometrical condition

(u, 0, 0, 0) ∈ NepiL (r, x, v, γ) =⇒ u = 0.

Both (H3)c and (H4)c hold trivially if L has no explicit dependence on t, provided
that both ẋ and L are essentially bounded. (In the autonomous case, Lipschitz con-
tinuity of minimizers is a consequence of other modest hypotheses—see [1].) Notice
that (H4)c is a geometrical sufficient condition for the uniform Aubin continuity of
the multifunction t7→7→ epiL(t, ·, ·) near the optimal trajectory.

We deal first with the epicontinuity conditions (H3) and (H3)c, starting from a
technical lemma.

LEMMA 3.3. Let x0, . . . , xn be points of Rn such that

(3.6) 0 ∈ int co {x0, . . . , xn} .
For each j = 0, . . . , n, let

{
xkj
}
k

be a sequence converging to xj. Given any se-
quence wk → 0 in Rn, there exists for each index k sufficiently large a collection
λk0 , λ

k
1 , . . . , λ

k
n ≥ 0 such that

(i) wk =
n∑
j=0

λkjx
k
j , (ii)

n∑
j=0

λkj → 0 as k →∞.

Proof. Use (3.6) to fix σ > 0 so small that co {x0, . . . , xn} contains 2σB. Then
for all k sufficiently large, the set Sk := co

{
xk0 , . . . , x

k
n

}
contains the smaller ball σB.

In particular, σwk/|wk| lies in Sk for all such k and therefore has a representation in
terms of scalars µkj ≥ 0,

∑n
j=0 µ

k
j = 1:

σ
wk
|wk|

=
n∑
j=0

µkjx
k
j , i.e., wk =

n∑
j=0

(
µkj |wk|
σ

)
xkj .

Choosing λkj = σ−1µkj |wk| gives (i), while (ii) holds because
∑n
j=0 λ

k
j = |wk|/σ.
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Here is an abstract result concerning epicontinuity, phrased in notation that will
facilitate its application to our problem.

THEOREM 3.4. Let L:R×Rn×Rn → R∪ {∞} be lower semicontinuous at every
point in

{
(t, x)

}
×Rn, and suppose that for some η > 0, the function (x, v) 7→ L(t, x, v)

is convex for each fixed t obeying
∣∣t− t∣∣ ≤ η. Assume further that

(i) domL(t, x, ·) 6= ∅ for all x where |x− x| ≤ η;
(ii) L is epicontinuous in t at the point t = t.

Then L is epicontinuous in (t, x) at the point (t, x).
Proof. Without loss of generality, take t = 0 and x = 0. Fix unit vectors û0, . . . , ûn

such that 0 ∈ int co {û0, . . . , ûn}. Then for each j, let xj = ηûj (j = 0, . . . , n), note
that domL(0, xj , ·) 6= ∅ by (i), and pick some vj where L(0, xj , vj) <∞.

Now fix any v in domL(0, 0, ·), and let any sequence (tk, xk) → (0, 0) be given.
We must construct a sequence vk → v along which L(tk, xk, vk) → L(0, 0, v). To do
this, we apply the epicontinuity property (ii) n+2 times: once to generate a sequence

(∗) (x∗k, v
∗
k)→ (0, v) along which L(tk, x∗k, v

∗
k)→ L(0, 0, v)

and n+ 1 more times to find for each j = 0, . . . , n a sequence

(∗∗) (xkj , v
k
j )→ (xj , vj) along which L(tk, xkj , v

k
j )→ L(0, xj , vj).

Now wk = xk − x∗k is a sequence with limit 0. By Lemma 3.3, with moving simplex{
xkj − x∗k : j = 0, . . . , n

}
, there are sequences of scalars λkj ≥ 0 (j = 0, . . . , n) such

that both

xk − x∗k =
n∑
j=0

λkj
(
xkj − x∗k

)
, i.e., xk =

n∑
j=0

λkjx
k
j +

1−
n∑
j=0

λkj

x∗k

and
∑n
j=0 λ

k
j → 0 as k →∞. We use these scalars to define

vk =
n∑
j=0

λkj v
k
j +

1−
n∑
j=0

λkj

 v∗k.

For each k, the convexity of the function L(tk, ·, ·) now yields

L(tk, xk, vk) = L

tk, n∑
j=0

λkj (xkj , v
k
j ) +

1−
n∑
j=0

λkj

 (x∗k, v
∗
k)


≤

n∑
j=0

λkjL(tk, xkj , v
k
j ) +

1−
n∑
j=0

λkj

L(tk, x∗k, v
∗
k).

On the right side of this estimate, each of the sequences L(tk, xkj , v
k
j ) in the first

term is bounded, by (∗∗). The sequence L(tk, x∗k, v
∗
k) in the second term converges to

L(0, 0, v), by (∗). The construction of the coefficient sequences λkj therefore implies
that the right side above converges to L(0, 0, v). This gives the first inequality in the
estimate

L(0, 0, v) ≥ lim sup
k→∞

L(tk, xk, vk)

≥ lim inf
k→∞

L(tk, xk, vk) ≥ L(0, 0, v).



BOLZA PROBLEMS WITH GENERAL TIME CONSTRAINTS 2063

The second inequality is obvious, and the third follows from the lower semicontinuity
of L. Taken together, they show that L(tk, xk, vk)→ L(0, 0, v), as required.

COROLLARY 3.5. Together (H2)c and (H3)c imply (H3).
The autonomous case of Theorem 3.4 is of independent interest.
COROLLARY 3.6. Let g:Rm×Rn → R∪{∞} be lower semicontinuous and jointly

convex. Let (x, v) be a point where g is finite. Then the following statements are
equivalent:

(a) There exists η > 0 such that dom g(x, ·) 6= ∅ for all x with |x− x| < η.
(b) g is epicontinuous in x at the point x = x.
Now we turn from epicontinuity to the Aubin property.
THEOREM 3.7. Together (H2)c–(H4)c imply (H4).
Proof. Write ψ(t, x, v, γ) := ΨepiL(t, x, v, γ). It follows from (H3)c that the

function ψ is both lower semicontinuous and epicontinuous in t. Meanwhile, (H2)c
implies that for each fixed t, the function (x, v, γ) 7→ ψ(t, x, v, γ) is convex. Thus we
have [22, Prop. 2.2]

NepiL (t, x, v, γ) = ∂ψ(t, x, v, γ)
⊆ R× ∂x,v,γψ(t, x, v, γ) = R×NepiL(t,·,·) (x, v, γ) .

It follows that any point (u,w, 0, 0) normal to epiL at (t, x, v, γ) will have a projection
(w, 0, 0) normal to epiL(t, ·, ·) at (x, v, γ). But the latter relation concerns a closed
convex set, for which normality has a simple characterization by inequalities:

0 ≥ 〈(w, 0, 0) , (x′, v′, γ′)− (x, v, γ)〉 = 〈w , x′ − x〉 ∀(x′, v′, γ′) ∈ epiL(t, ·, ·).

Evidently any x′ for which domL(t, x′, ·) 6= ∅ must satisfy the inequality above; in
view of (H2)c, this includes all x′ in the neighborhood Ωt of x. Thus w = 0. It follows
that the key condition (3.5) of Theorem 3.2 can be rewritten as

∀γ ∈ Γ(t, x, v), (u, 0, 0, 0) ∈ NepiL (t, x, v, γ) =⇒ u = 0.

This is precisely the condition supplied by (H4)c.

3.2. Lipschitzian perturbations of convex problems. The various formu-
lations of (H3) and (H4) described above are all designed to regulate non-Lipschitz
behavior in the (t, x)-dependence of the integrand L. Perhaps the easiest way to see
this is to note that if (H3) and (H4) hold for a given integrand L, then they also hold
for the integrand L+G1, under the sole hypothesis that G1 is Lipschitzian of constant
rank on some neighborhood of gph

(
x, ẋ

)
. It follows that the simplified conditions out-

lined in Corollary 3.5 and Theorem 3.7 apply not just to convex integrands but equally
well to Lipschitzian perturbations of convex integrands. An interesting family of such
functions has the form L(t, x, v) = G1(t, x, v) + k(t, v − A(t)x), where G1 is locally
Lipschitzian on R × Rn × Rn, and k(t, ·) is a lower semicontinuous, proper convex
function for each fixed t. If we deal with a Lipschitzian arc x along which L is essen-
tially bounded, conditions (H3) and (H4) for L are consequences of (H3)c and (H4)c
for the integrand K(t, x, v) = k(t, v − A(t)x). Here Corollary 3.5 and Theorem 3.7
apply directly, under the additional assumption that the matrix-valued function A
is Lipschitzian, to show that (H3) and (H4) hold whenever k is epicontinuous in t
and one has the Aubin continuity condition below on a suitable neighborhood of the
points (t, x(t), ẋ(t), L(t)):

(u, 0, 0) ∈ Nepi k (t, v −A(t)x, γ) =⇒ u = 0.
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4. Proof of Theorem 1.1. The proof of Theorem 1.1 takes up this whole
section; in particular, hypotheses (H1)–(H4) are in force throughout. The unifying
idea is a classical one. We formulate an autonomous fixed-time problem for which a
relative of x provides the solution, and then deduce the main result from the fixed-time
theory of Loewen and Rockafellar [13].

4.1. The Erdmann transform. There is a standard method for transforming
problem (P) and its solution x on [a, b] into a fixed-time problem solved by an arc
related to x. (See, for example, Clarke [3, sect. 3.6].) We use Greek characters to
describe states and costates in the latter problem, for which the underlying time
interval is [0, 1] and the state is a vector (θ, ξ) in R × Rn. Here ξ is a transformed
version of the original state x, while θ is a new state which keeps track of the variable
time in problem (P).

Choose any constant m such that 0 < m < b− a. The transformed problem is to

(Π)
minimize l(θ(0), ξ(0), θ(1), ξ(1)) +

∫ 1

0
L̃(θ(τ), ξ(τ), θ′(τ), ξ′(τ)) dτ

subject to (θ(τ), ξ(τ)) ∈ Ω̃τ ∀τ ∈ [0, 1].

Here the integrand L̃ and domain Ω̃ are given by

(4.1)
L̃(θ, ξ, θ′, ξ′) =

{
θ′L(θ, ξ, ξ′/θ′) if θ′ ≥ m,
+∞, otherwise,

Ω̃ := [0, 1]× Ω.

Comparing the objective functional in problem (Π) with that in problem (P) provides
the key to understanding this reduction, as the following lemma reveals.

LEMMA 4.1. The arc θ(τ) = a+ τ(b− a), ξ(τ) = x
(
θ(τ)

)
solves (Π).

Proof. Consider any pair (x, [a, b]) admissible for (P), with b − a ≥ m. Define
θ(τ) := a+τ(b−a) and ξ(τ) = x(θ(τ)). Notice that (θ(τ), ξ(τ)) ∈ Ω̃τ = Ω, so this pair
satisfies the localization constraint in (Π). On some subset of [0, 1] with full Lebesgue
measure, ξ′(τ) = ẋ(θ(τ))θ′(τ), so the substitution t = θ(τ) yields

(a, x(a), b, x(b)) = (θ(0), ξ(0), θ(1), ξ(1)),(4.2) ∫ b

t=a
L(t, x(t), ẋ(t)) dt =

∫ 1

τ=0
L(θ(τ), ξ(τ), ξ′(τ)/θ′(τ)) θ′(τ) dτ.(4.3)

It follows that the cost of (x, [a, b]) in problem (P) equals the cost of (θ, ξ) in prob-
lem (Π). Applying this transformation to the pair (x, [a, b]) solving (P), we find

(4.4)
inf(Π) ≤ l(θ(0), ξ(0), θ(1), ξ(1)) +

∫ 1

0
L̃(θ(τ), ξ(τ), θ

′
(τ), ξ

′
(τ)) dτ

= l(a, x(a), b, x(b)) +
∫ b

a

L(t, x(t), ẋ(t)) dt = inf (P).

Conversely, consider any arc (θ, ξ) admissible for (Π). One has θ′(τ) ≥ m for all
τ ∈ [0, 1], so the function θ is strictly increasing, hence invertible. Define a = θ(0),
b = θ(1), and let x(t) = ξ(θ−1(t)) for t ∈ [a, b]. Evidently x(t) ∈ Ωt for all t in [a, b],
while the same substitution as before gives both (4.2) and∫ 1

τ=0
L̃(θ(τ), ξ(τ), θ′(τ), ξ′(τ)) dτ =

∫ b

t=a
L(t, x(t), ẋ(t)) dt.
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Thus the pair (x, [a, b]) is admissible for (P), where it is assigned the same objective
value as the pair (θ, ξ) receives in (Π). Consequently inf (P) ≤ inf(Π). Thus equality
holds throughout in (4.4) above, and the lemma follows.

4.2. Verification of hypotheses. The fixed-time problem (Π), with its solution
(θ, ξ), has the form to which the necessary conditions of Loewen and Rockafellar [13]
may be applied. The first step is to confirm the hypotheses. It is evident that the
endpoint cost in problem (Π) is lower semicontinuous and that the (autonomous)
integrand L̃ is lower semicontinuous, hence Borel measurable. Also, for each fixed
(θ, ξ), the mapping (θ′, ξ′) 7→ L̃(θ, ξ, θ′, ξ′) is convex on the set (0,∞)×Rn—the proof
is a standard exercise in convex analysis. Only two of the requirements of [13] remain
to check.

First, we must verify the epicontinuity of L̃. To do this, fix τ in [0, 1], and choose
any point (θ̂, ξ̂, θ̂′, ξ̂′) in Ω × R1+n where L̃ is finite and |(θ̂, ξ̂)− (θ(τ), ξ(τ))| < ρ.
Consider any sequence (θk, ξk)→ (θ̂, ξ̂). Then the finiteness of L̃ implies that θ̂′ ≥ m,
so L(θ̂, ξ̂, ξ̂′/θ̂′) is finite; also |(θ̂, ξ̂)−(t, x(t))| < ρ for t = θ(τ). Taking v̂ = ξ̂′/θ̂′,
we recognize this as a situation to which (H3) applies: that hypothesis provides a
sequence vk → v̂ along which L(θk, ξk, vk) → L(θ̂, ξ̂, v̂). Upon defining θ̂′k = θ̂′ and
ξ′k = θ̂′vk, we deduce that L̃(θk, ξk, θ′k, ξ

′
k)→ L̃(θ̂, ξ̂, θ̂′, ξ̂′), as required.

Second, we must verify the differential inequality in [13, (H5)]. This requires us
to produce nonnegative functions δ̃ and κ̃ in L1[0, 1], with κ̃/δ̃ in L∞[0, 1], such that
for almost all τ in [0, 1], the three conditions

(i)
∣∣(θ, ξ)− (θ(τ), ξ(τ))

∣∣ < ρ,

(ii)
∣∣∣(θ′, ξ′)− (θ

′
(τ), ξ

′
(τ))

∣∣∣ < δ̃(τ),

(iii)
∣∣∣L̃(θ, ξ, θ′, ξ′)− L̃(θ(τ), ξ(τ), θ

′
(τ), ξ

′
(τ))

∣∣∣ < δ̃(τ)
imply the subgradient inequality

(4.5) |(u,w)| ≤ κ̃(τ)[1 + |p|+ |q|] ∀(u,w, q, p) ∈ ∂L̃(θ, ξ, θ′, ξ′).

Upon expressing L̃(θ, ξ, θ′, ξ′) = θ′L(θ, ξ, ξ′/θ′) + Ψ[m,+∞)(θ′), we can estimate the
subgradient set appearing in (4.5) using the calculus rules of Rockafellar [21, Cor. 7.1.2]:
for evaluation points where θ′ > m, we obtain

(4.6) ∂L̃(θ, ξ, θ′, ξ′) ⊆
{
(uθ′, wθ′,−H(θ, ξ, p), p) : (u,w, p) ∈ ∂L(θ, ξ, ξ′/θ′)

}
.

(A direct application of the cited chain rule produces a third component of the form
L(θ, ξ, ξ′/θ′)−〈p , ξ′/θ′〉 on the right side. However, this expression equals −H(θ, ξ, p),
as explained in subsection 1.5.) Thus a sufficient condition for (4.5) (at least when
θ′ > m) is

(4.7) |(u,w)| ≤ κ̃(τ)
θ′

[1 + |p|+ |H(θ, ξ, p)|] ∀(u,w, p) ∈ ∂L(θ, ξ, ξ′/θ′).

Let us prove that under our assumption (H4), conditions (i)–(iii) imply both
θ′ > m and (4.7), using the constant functions

(4.8) κ̃ =
(
θ
′
(τ) +m

)
κ, δ̃ = min

{
mδ, θ

′
(τ)−m, m

}
.

Indeed, fix τ in [0, 1] and a point (θ, ξ, θ′, ξ′) obeying (i)–(iii). By (ii) and our choice
of δ̃,

(4.9) m ≤ θ′(τ)− δ̃ < θ′ < θ
′
(τ) + δ̃ < θ

′
(τ) +m,
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so we have θ′ > m as required. Next, using the triangle inequality with condition (ii),
we have

(4.10)

∣∣∣∣∣ξ′θ′ − ξ
′
(τ)

θ
′
(τ)

∣∣∣∣∣ ≤ 1
θ′

∣∣∣ξ′ − ξ′(τ)
∣∣∣+

∣∣∣∣∣ξ
′
(τ)

θ
′
(τ)

∣∣∣∣∣
∣∣∣θ′(τ)− θ′

∣∣∣
θ′

≤ 1
m

[
1 +

∣∣∣∣∣ξ
′
(τ)

θ
′
(τ)

∣∣∣∣∣
]
δ̃.

Likewise, consider condition (iii). Expanding the definition of L̃, and using the
shorthand L = L(θ, ξ, ξ′/θ′) and L = L(θ(τ), ξ(τ), ξ

′
(τ)/θ

′
(τ)), we derive

δ̃ >
∣∣∣θ′L− θ′L∣∣∣ ≥ θ′∣∣L− L∣∣− ∣∣∣(θ′(τ)− θ′

)
L
∣∣∣ ≥ m∣∣L− L∣∣− δ̃∣∣L∣∣.

This implies

(4.11)
∣∣L− L∣∣ ≤ δ̃

m

[
1 +

∣∣L∣∣] .
Now for κ̃ and δ̃ as shown in (4.8) above, we have δ̃/m ≤ δ. Thus, with the

change of variable t = θ(τ), under which

(4.12) τ = θ
−1

(t), ξ(τ) = x(t), ξ
′
(τ)/θ

′
(τ) = ẋ(t),

and the parallel change of notation r = θ, ξ = x, ξ′/θ′ = v, condition (i) states
(i′) |(r, x)− (t, x(t))| < ρ.

Meanwhile, condition (ii) implies, through (4.10), that
(ii′)

∣∣v − ẋ(t)
∣∣ ≤ δ[1 +

∣∣ẋ(t)
∣∣].

Finally, estimate (4.11)—a consequence of (iii)—becomes
(iii′)

∣∣L(r, x, v)− L(t, x(t), ẋ(t))
∣∣ ≤ δ[1 +

∣∣L(t, x(t), ẋ(t))
∣∣] .

These are precisely the conditions under which (H4) implies

|(u,w)| ≤ κ[1 + |p|+ |H(r, x, p)|] ∀(u,w, p) ∈ ∂L(r, x, v).

Our choice of κ̃ and inequality (4.9) imply that κ = κ̃/(θ
′
(τ) +m) < κ̃/θ′ for all

points of interest, so inequality (4.7) follows. This establishes [13, (H5)].

4.3. Retrieval of conclusions. Having confirmed the hypotheses of [13], we
may now use its conclusions. In the state-constraint-free case at hand, these are ex-
pressed most clearly in [13, Thm. 2.1]. They assert the existence of an absolutely
continuous function (η, π): [0, 1]→ R× Rn satisfying adjoint equations of either nor-
mal or singular type. We will rewrite these conclusions in terms of the absolutely
continuous functions h(t) = −η(θ

−1
(t)) and p(t) = π(θ

−1
(t)).

In the normal conditions, [13] provides the transversality relation

(4.13) (η(0), π(0),−η(1),−π(1)) ∈ ∂l
(
θ(0), ξ(0), θ(1), ξ(1)

)
and the Euler–Lagrange inclusion

(4.14) (η′(τ), π′(τ)) ∈ co
{
(α, β) : (α, β, η(τ), π(τ)) ∈ ∂L̃(θ(τ), ξ(τ), θ

′
(τ), ξ

′
(τ))

}
for almost all τ in [0, 1]. The subgradient estimate (4.6) reveals that the inclusion
involving ∂L̃ in the latter condition implies that for some (u,w, p) in ∂L(θ(τ), ξ(τ),
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ξ
′
(τ)/θ

′
(τ)), one has α = uθ

′
(τ), β = wθ

′
(τ), η(τ) = −H

(
θ(τ), ξ(τ), p

)
, and π(τ) = p.

Consequently the Euler–Lagrange inclusion implies

(η′(τ), π′(τ)) ∈ co
{(
uθ
′
(τ), wθ

′
(τ)
)

: (u,w, π(τ)) ∈ ∂L
(
θ(τ), ξ(τ), ξ

′
(τ)/θ

′
(τ)
)
,

η(τ) = −H
(
θ(τ), ξ(τ), π(τ)

)}
.

In particular, the arcs h and p defined above obey, for almost all t in [a, b],(
− ḣ(t), ṗ(t)

)
∈ co{(u,w) : (u,w, p(t)) ∈ ∂L(t, x(t), ẋ(t)), h(t) = H(t, x(t), p(t))}.

The second condition defining the set on the right side places no restrictions on the
points (u,w) in this set, but it does serve to make the set empty at every time t
where the condition fails. Thus the indicated inclusion can be split apart to give the
Euler–Lagrange inclusion stated in Theorem 1.1(a) and the identity

(4.15) h(t) = H(t, x(t), p(t)) a.e. t ∈
[
a, b
]
.

The Hamiltonian form of the set on the right in Theorem 1.1(a) is provided by Rock-
afellar [22]. Theorem 1.1(b) then follows from (4.15), as explained in subsection 1.5.

In the singular case, the transversality relation in [13] states

(4.16) (η(0), π(0),−η(1),−π(1)) ∈ ∂∞l
(
θ(0), ξ(0), θ(1), ξ(1)

)
and the Euler–Lagrange inclusion is replaced by

(η′(τ), π′(τ)) ∈ co
{
(α, β) : (α, β, η(τ), π(τ)) ∈ ∂∞L̃(θ(τ), ξ(τ), θ

′
(τ), ξ

′
(τ))

}
for almost all τ in [0, 1]. The analysis of this statement parallels the developments in
the normal case line by line, starting with an estimate of the singular subgradients of
L̃ again furnished by [21, Cor. 7.1.2]:

(4.17) ∂∞L̃(θ, ξ, θ′, ξ′) ⊆
{
(uθ′, wθ′,−〈p , ξ′/θ′〉 , p) : (u,w, p) ∈ ∂∞L(θ, ξ, ξ′/θ′)

}
.

As before, the subgradient estimate leads to the conclusion that the arcs h and p
defined above obey, for almost all t in [a, b],(
− ḣ(t), ṗ(t)

)
∈ co{(u,w) : (u,w, p(t)) ∈ ∂∞L(t, x(t), ẋ(t)), h(t) =

〈
p(t) , ẋ(t)

〉
}.

The latter inclusion implies both the Euler–Lagrange inclusion stated as conclu-
sion (a∞) of Theorem 1.1 and the identity h(t) =

〈
p(t) , ẋ(t)

〉
of conclusion (b∞).

4.4. Nontriviality. A direct application of [13, Thm. 2.1] yields an apparently
weaker nontriviality assertion than the one made in Theorem 1.1 in that the singular
conditions of [13] refer to an adjoint arc that is not the zero function, whereas those
in the present paper assert that it is a function that never takes the value zero. Under
our hypotheses, these two properties are actually equivalent—although the second,
being more explicit, is clearly preferable. We justify this claim in the context of our
earlier paper [13] so as to sharpen the results in that work at the same time that we
note their consequences for our current investigation. No generality is lost in working
on the fixed time interval [0, 1].

Assume [13, (H5)], which provides two positive-valued functions κ, δ ∈ L1[0, 1]
such that κ/δ ∈ L∞[0, 1] and the three inequalities

(4.18) |x− x(t)| < ρ,
∣∣v − ẋ(t)

∣∣ < δ(t),
∣∣L(t, x, v)− L

(
t, x(t), ẋ(t)

) ∣∣ < δ(t)
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imply the subgradient inequality

(4.19) |w| ≤ κ(t)[1 + |p|] ∀(w, p) ∈ ∂L(t, x, v).

(Here the subgradient is taken only with respect to the pair (x, v).) It is easy to
deduce that the same three inequalities also imply the singular subgradient estimate

(4.20) |w| ≤ κ(t)|p| ∀(w, p) ∈ ∂∞L(t, x, v).

Now if an arc p satisfies the singular Euler–Lagrange inclusion of [13, Thm. 2.1],
i.e.,

ṗ(t) ∈ co
{
w : (w, p(t)) ∈ ∂∞L

(
t, x(t), ẋ(t)

) }
a.e. t ∈ [0, 1],

then for almost all t, the representation ṗ(t) =
∑
λjwj for suitable scalars λj ≥ 0,∑

λj = 1, and pairs (wj , p(t)) ∈ ∂∞L
(
t, x(t), ẋ(t)

)
, leads via (4.20) to the inequality

(4.21) |ṗ(t)| ≤
∑

λj |wj | ≤
∑

λj [κ(t)|p(t)|] = κ(t)|p(t)|.

Under (4.21), the statements, “p(t) 6= 0 for all t ∈ [0, 1]” and “p(t) 6= 0 for some
t ∈ [0, 1]” are known to be equivalent, in consequence of Gronwall’s lemma.

5. Unilateral state constraints. The methods described above apply equally
well when the basic problem (P) is augmented by a unilateral constraint of the form

(5.1) x(t) ∈ X(t) ∀t ∈ [a, b].

Under the standing hypotheses (H1)–(H4), we can treat any such constraint for which
(H5) the multifunction X:

[
a− ρ, b+ ρ

]→→Rn has closed graph.
To state the corresponding extension of Theorem 1.1, we use the block-structured
(1 + n)× (1 + n) matrix A = [ −I 0

0 I ] and the Clarke normal cone [3] to gphX,

NgphX (t, x) = cl coNgphX (t, x) ∀(t, x) ∈ gphX.

We also rely on the terminology and conventions explained in [12] (see also [13]).
THEOREM 5.1. Let the arc x with interval

[
a, b
]

provide the minimum in prob-
lem (P) under the additional constraint (5.1). If (H1)–(H5) hold and

(CQ) the normal cone NgphX (t, x(t)) is pointed for all t in [a, b],

then there is a function (h, p): [a, b] → R × Rn of bounded variation satisfying either
the normal conditions or the singular conditions below. In either case, the singular
part of the measure (−dh, dp) is NgphX (t, x(t))-valued, so its support is a subset of{

t : NgphX (t, x(t)) 6= {0}
}

=
{
t ∈ [a, b] : (t, x(t)) ∈ bdy gphX(t)

}
.

Normal conditions: For almost every t in
[
a, b
]
,

(a) (ḣ(t), ṗ(t)) ∈ co
{

(u,w) : (−u,w, p(t)) ∈ ∂L
(
t, x(t), ẋ(t)

) }
+ANgphX (t, x(t))

= co
{

(u,w) :
(
u,−w, ẋ(t)

)
∈ ∂H

(
t, x(t), p(t)

) }
+ANgphX (t, x(t)) .

(b) h(t) = H(t, x(t), p(t)) ,

h(t) =
〈
p(t) , ẋ(t)

〉
− L

(
t, x(t), ẋ(t)

)
.

(c)
(
−h(a), p(a), h(b),−p(b)

)
∈ ∂l

(
a, x(a), b, x(b)

)
.

Singular conditions: The pair (h, p) is not identically zero, and for a.e. t in
[
a, b
]
,

(a∞) (ḣ(t), ṗ(t)) ∈ co
{

(u,w) : (−u,w, p(t)) ∈ ∂∞L(t, x(t), ẋ(t))
}

+ANgphX (t, x(t)).
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(b∞) h(t) =
〈
p(t) , ẋ(t)

〉
.

(c∞) (−h(a), p(a), h(b),−p(b)) ∈ ∂∞l(a, x(a), b, x(b)).
In particular, if the only function pair (h, p) satisfying conditions (a∞)–(c∞) is iden-
tically zero, then the normal conditions are satisfied.

Remarks. (1) If the state constraint is inactive along the optimal arc, i.e., (t, x(t))
is an interior point of gphX for all t, then the singular part of (dh, dp) must be
{(0, 0)}-valued. That is, (h, p) is actually an arc, and we recover the conclusions of
Theorem 1.1.

(2) The times when the first equation in conclusion (b) holds can be estimated
using Proposition 1.2, as explained in subsection 1.6.
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Abstract. We consider in this paper a continuous time stochastic hybrid control system with
finite time horizon. The objective is to minimize a nonlinear function of the state trajectory. The
state evolves according to a nonlinear dynamics. The parameters of the dynamics of the system
may change at discrete times lε, l = 0, 1, ..., according to a controlled Markov chain which has finite
state and action spaces. Under the assumption that ε is a small parameter, we justify an averaging
procedure allowing us to establish that our problem can be approximated by the solution of some
deterministic optimal control problem.
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1. Introduction and statement of the problem. Consider the following hy-
brid stochastic control system. The state Zt ∈ Rn evolves according to the following
dynamics:

d

dt
Zt = f(Zt, Yt), t ∈ [0, 1], Z0 = z,(1)

where Yt ∈ Rk is the “control” to be specified later and z is the initial state. f is
assumed to be linear in the second argument (for each value of the first argument),
i.e.,

f(z, y) = f1(z) + f2(z)y,(2)

where f1 is an n-dimensional vector and f2 is an n × k matrix; f2(z)y is the multi-
plication between the matrix f2(z) and the vector y. The functions f1(z) and f2(z)
are supposed to be bounded and to satisfy the Lipschitz condition∣∣∣∣f i(z)− f i(z′)∣∣∣∣1 ≤ C1 ||z − z′||1 ∀z, z′,(3) ∣∣∣∣f i(z)∣∣∣∣1 ≤ C2,(4)

where z, z′ are from a sufficiently large domain which contains all possible trajecto-
ries of (1), C1 and C2 are constants, and ||·||1 stands for the L1 norm in the finite-
dimensional space. That is, ||q||1 = maxi=1,...,k |qi| for the vector q = {qi}, i = 1, ..., k,
and ||A||1 = max||q||1=1 ||Aq||1 for the matrix A(n× k).

It is assumed in what follows that there exists a bounded domain containing all
the trajectories of (1), and, thus, (4), in fact, is implied by (3).
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Yt is not chosen directly by the controller but is obtained as a result of controlling
the following underlying stochastic discrete event system. Let ε be the basic time
unit. Time is discretized; i.e., transitions occur at times t = nε, n = 0, 1, 2, ..., bε−1c,
where bxc stands for the greatest integer which is smaller than or equal to x. There
is a finite state space X = {1, ..., N} and a finite action space A. If a state is v and
an action a is chosen, then the next state is w with the probability Pvaw. A policy
u = {u0, u1, ...} in the set of policies U is a sequence of probability measures on A; at
each time t = nε the controller chooses un based on the history of all previous states
and actions, as well as the present state. Thus, un is a function that maps histories
of the form hn = (x0, a0, x1, a1, ..., xn−1, an−1, xn) to probability measures on A.

We shall be especially interested in the following classes of policies:
• the Markov policies, denoted by M, i.e., policies for which ut depends only

on the current state and does not depend on previous states and actions.
• the stationary policies, denoted by S, i.e., policies for which ut depends only

on the current state and does not depend on previous states and actions nor
on the time.

The stochastic process {Xn, An} is known as a controlled Markov chain, or
Markov decision process (MDP); see Derman [11, pp. 2–4]. We assume through-
out the paper that under any stationary policy, the state space forms an aperiodic
Markov chain such that all states communicate (regular Markov chain). The results of
the paper hold, in fact, under weaker ergodicity assumptions; however, the restricted
assumption makes the presentation clearer.

Denote by H the set of all possible states and actions histories which can be
observed until time bε−1c:

H =
⋃
{h}, h =

{
(xn, an), n = 0, 1, ..., bε−1c

}
.

Let F be the σ-algebra of all subsets of H. Each policy u and initial state x determines
a probability measure on F , on which the stochastic state and action process H ={
Xn, An, n = 0, 1, ..., bε−1c

}
is defined. Denote by Pux and Eux the probability measure

and mathematical expectation that correspond to an initial state X0 = x and a policy
u. Sometimes we shall assume an initial distribution ξ on X0, instead of a fixed
initial state. In that case Puξ , Euξ denote the corresponding probability measure and
mathematical expectation.

Let y : X×A→ Rk, j = 1, ..., k, be some given vector-valued function. Then Yt
in (1) is given by

Yt = y(Xbt/εc, Abt/εc).(5)

The system (1) with thus-defined Yt is called hybrid, first, because Yt changes
its values via some random jumps whereas Zt is a smooth (differentiable) function of
time and, second, because, as follows from the consideration below, Yt being controlled
“statistically” through controlling the transition probabilities plays by itself the role
of a “direct” control with respect to Zt.

Let g : Rn → R be some operating cost related to the process Zt. We assume
that it is Lipschitz continuous; i.e.,

||g(z)− g(z′)||1 ≤ C1 ||z − z′||1 .

We consider the following control problem with ε and x fixed.
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Qε : find a policy u that achieves F ε(z, x) = infu∈U Euxg(Z1), where Z1 is obtained
through (1).

Our model is characterized by the fact that ε is supposed to be a small parameter
and our objective is to construct a policy (depending, in general, on ε) which is
asymptotically optimal for Qε. That is, the difference between the cost under this
policy and F ε(z, x) converges to zero as ε→ 0.

The type of model which we introduce is natural in the control of inventories
or of production, where we deal with material whose quantity may “slowly” change
in a continuous (linear) way. Breakdowns, repairs, and other control decisions yield
the underlying MDP. Our model may also be used in the control of highly loaded
queueing networks for which the fluid approximation holds (see Kleinrock [20, p. 56]).
The slow variables Zt may then represent the number of customers in the different
queues, whereas the underlying MDP may correspond to routing, or flow control of,
say, some long on/off traffic.

The fact that ε is chosen to be small means that the variables Yt along with the
MDP Xt can be considered to be fast with respect to the time scale t in which Zt
evolves. Indeed, Yt and Xt may have large jumps between t = mε and t = (m+ 1)ε,
whereas the corresponding change in Zt in that period is of order ε. The problem
is, thus, close in nature to stochastic singular perturbed control problems intensively
studied in the literature (see, for example, [1], [5], [6], [7], [9], [10], [21], [23], [24], [25]
and references therein). A common approach to this kind of problem is an application
of singular perturbations or averaging techniques to the Hamilton–Jacobi–Bellman
(HJB) equation for problems in continuous time (as in [5], [6], [21]) or to the dynamic
programming equation for singularly perturbed MDPs [1], [7], [9], [10], [24], [25]. In
contrast to this approach, we, as in [23], apply an averaging method directly to the
“slow” stochastic equation. Our model differs, however, from the ones in [23] in many
respects—mainly in the type of fast motions involved, which implies the differences
in both the technique used and the results obtained.

In our previous paper [2], we considered the problem similar to Qε for the case
of linear dynamics f and cost g and showed that an asymptotically optimal policy
can be constructed via maximization of the Hamiltonian of some linear deterministic
system. The technique we used was, however, strongly related to the linearity of the
model, and it is not applicable to the case when the dynamics and/or the cost are
nonlinear. As opposed to the linear case, the consideration for the nonlinear case is
much more involved and based on an ergodicity-type result for MDPs obtained in this
paper (see Theorem 4.1 below). Using this result we establish that the trajectories of
stochastic hybrid system (1) are approximated by the trajectories of some nonlinear
deterministic control system, and the problem Qε is approximated by the correspond-
ing deterministic optimal control problem allowing us, in particular, to construct an
asymptotically optimal policy for Qε . Notice that this result can be viewed as an
extension of the averaging technique for deterministic singularly perturbed control
systems (see, e.g., [15]) to the stochastic case under consideration. On the other
hand, it can be viewed as an extention of results on uncontrolled motions establishing
that the solution of the original stochastic system is approximated by the solution of
some deterministic system obtained via averaging over the fast random dynamics [16],
[19], [22] to the case when this random dynamics is defined by the controlled Markov
chain.

The paper consists of four sections. Section 1 is this introduction; section 2
describes the main results about the approximation of the problem of optimal control
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of the hybrid system by a deterministic optimal control problem. In section 3 we
discuss ways that the solution of the deterministic optimal control problem can be
characterized and how it can be used to obtain an asymptotically optimal policy.
Section 4 contains the above-mentioned Theorem 4.1, as well as the proofs of some
basic lemmas used in section 2.

2. Description of main results. Let

Y(m,x) def=
⋃
u∈U

{
(m+ 1)−1

m∑
t=0

EuxYt

}
,

where the union is taken over all policies. As follows from Theorem 3 in [2], the set
Y(m,x) converges in the Haussdorff metric to a set Y defined below:

lim
m→∞

Y(m,x) = Y def=
⋃
u∈S

{∑
v,a

η(u; v, a)y(v, a)

}
,(6)

where the union is taken over all stationary policies, and η(u) = {η(u; v, a)} is the vec-
tor of steady state probabilities of state-action pairs obtained when using a stationary
policy u. That is,

η(u; v, a) = lim
n→∞

Pux (Xn = v,An = a).(7)

Notice that due to the ergodicity assumption on our model, η(u; v, a) does not depend
on the initial distribution. Notice also that, since the set

W
def=

⋃
u∈S
{η(u)}(8)

is a polyhedron (see, for example, [11, pp. 93–95]), the set Y is a polyhedron as well.
Define now the averaged deterministic control system as

d

dt
zt = f(zt, yt), z0 = z,(9)

where yt is a measurable function of t taking values in Y. The set of such functions

y : [0, 1]→ Y

will be called the set of admissible controls.
Our claim is that the set of all random trajectories of (1) is approximated by

the set of solutions of (9) obtained with all admissible controls. More specifically, we
establish that there exists a function γ(ε) satisfying

lim
ε→0

γ(ε) = 0

such that the following holds.
LEMMA 2.1. Corresponding to any admissible control y = {yt, t ∈ [0, 1]}, there

exists a Markov policy uε(y) such that the random trajectory Zt of (1), obtained with
this policy uε(y), and the deterministic solution zyt of (9), obtained with y, satisfy the
inequality

max
t∈[0,1]

Euε(y)
x ||Zt − zyt ||1 ≤ γ(ε).(10)
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LEMMA 2.2. There exists a function ỹεt(h),

ỹε : [0, 1]×H→ Y,

such that (a) for each h ∈ H, ỹεt(h) is a piecewise constant function of t and (b) for
any policy u,

max
t∈[0,1]

Eux ||Zt − z̃εt (H)||1 ≤ γ(ε),(11)

where Zt is the solution of (1), z̃εt (H) is the solution of (9) obtained with yt = ỹεt(H),
and H is the random realization of the state-action trajectories.

Notice that the quantity under the expectation sign in (11) is a random variable
for any policy u since H is a finite set and F is the σ-algebra of all subsets of H.

Notice also that a construction of a policy uε(y) which allows an estimate (10)
in Lemma 2.1 is described below in section 3. This is just a stationary policy when
the deterministic control y is a constant function of time, and it consists of a finite
number of stationary policies (and thus is not stationary itself) when y is piecewise
constant.

Define the “deterministic” optimal control problem Q0 as follows.
Q0: Find an admissible control y which minimizes the cost function

F 0(z) def= inf
y
g(z1)

over the trajectories z of system (9). The following theorem about approximation of
Qε by Q0 is then easily established on the basis of Lemmas 2.1 and 2.2.

THEOREM 2.1. The values F ε(z, x) of the original problem Qε converge to the
value F 0(z) of the problem Q0, as ε→ 0. More precisely,∣∣F ε(z, x)− F 0

x (z)
∣∣ ≤ C1γ(ε).

If y∗ is an optimal control for Q0, then the Markov policy uε(y∗) allowing estimate
(10) with y = y∗ satisfies the inequality∣∣∣Euε(y∗)x g(Z1)− F ε(z, x)

∣∣∣ ≤ C1γ(ε).

That is, uε(y∗) is asymptotically optimal for Qε.
Remark 2.1. In the linear case studied in [2], γ can be chosen such that

lim
ε→0

ε−(1/2)γ(ε) = 0.

Hence, for the linear case, simple bounds on the rate of convergence are available for
Lemmas 2.1 and 2.2 as well as for Theorem 2.1.

Proof of Theorem 2.1. Let u be an arbitrary policy and ỹε(h) ∈ Y be the function
defined in Lemma 2.2. Then

|Euxg(Z1)− Euxg(z̃ε1(H))| ≤ C1E
u
x ||Z1 − z̃ε1(H)||1 ≤ C1γ(ε),(12)

where C1 is defined in (3). Being piecewise constant, the function ỹε is measurable in
t. Hence,

g(z̃ε1(h)) ≥ F 0(z) ∀h ∈ H,



ASYMPTOTIC OPTIMIZATION OF A HYBRID SYSTEM GOVERNED BY MDP 2075

which implies

Euxg(z̃ε1(H)) ≥ F 0(z)

for any policy u. From the last inequality and (12), it follows that

Euxg(Z1) ≥ F 0(z)− C1γ(ε),

so that

F ε(z, x) = inf
u
Euxg(Z1) ≥ F 0(z)− C1γ(ε).(13)

Now let y∗ be an optimal control in Q0. By (10),∣∣∣Euε(y∗)x g(Z1)− F 0(z)
∣∣∣ =

∣∣∣Euε(y∗)x g(Z1)− g(zy
∗

1 )
∣∣∣ ≤ C1E

uε(y)
x

∣∣∣∣∣∣Z1 − zy
∗

1

∣∣∣∣∣∣
1
≤ C1γ(ε).

Hence

Euε(y
∗)

x g(Z1) ≤ F 0(z) + C1γ(ε).(14)

Since Euε(y
∗)

x g(Z1) ≥ F ε(z, x), the inequalities (13) and (14) conclude the proof of
the theorem.

3. Construction of an asymptotically optimal policy. Let y be an arbi-
trary admissible control for Q0. We show below how to construct the policy uε(y)
(appearing in Lemmas 2.1 and 2.2 and in Theorem 2.1). Choose a function ∆ = ∆(ε)
in such a way that

lim
ε→0

∆(ε) = 0, lim
ε→0

∆(ε)
ε

=∞,(15)

and set τl = τ(l, ε) := l∆(ε), l = 0, 1, 2, ..., `(ε), where `(ε) := b∆(ε)−1c. Let

rεl (y) def= (∆(ε))−1
∫ τl+1

τl

ytdt, l = 0, 1, ..., `(ε)− 1.(16)

Since Y is a convex set, rεl (y) ∈ Y. Hence there exists a stationary policy sεl (y) such
that

rl(ε) =
∑
v,a

η(sεl (y); v, a)y(v, a).(17)

Now construct uε(y) as the Markov policy obtained by applying sεl (y) during n =
bτl/εc, bτl/εc + 1, ..., bτl+1/εc − 1, where l = 0, 1, ..., `(ε) − 1, and by applying an
arbitrary stationary policy during bτ`(ε)/εc, bτ`(ε)/εc + 1, ..., bε−1c. In the proof of
Lemma 2.1 it is established that the policy uε(y) thus constructed satisfies inequality
(10).

As follows from Theorem 2.1, the described procedure for obtaining the policy
uε(y∗), on the basis of a control y∗t which is optimal for the deterministic problem
Q0, yields an asymptotically optimal policy for problems Qε. The optimal control y∗t
can by itself be characterized by necessary and sufficient optimality conditions. To
formulate these, let us consider a parametrized set L = {L(z, λ)} of MDPs, (z, λ) ∈
Rn×Rn, all of which have X and A as state and action spaces, and P = {Pvaw, v, w ∈
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X, a ∈ A} as transition probabilities. They differ by the immediate cost, which is
given by

r(z, λ; v, a) = λT f(z, y(v, a)) = λT f1(z) + λT f2(z)y(v, a).

Consider the problem of minimization of the infinite horizon expected average cost
related to an initial distribution ξ over X:

(18)

Jξ(z, λ) def= inf
u
Jξ(z, λ;u), Jξ(z, λ;u) def= lim

m→∞

1
m+ 1

Euξ

m∑
j=0

r(z, λ;Xj , Aj).

It is well known (see Derman [11, section 6]) that
a) The optimal value of the above problem does not depend on the initial dis-

tribution ξ, and it is equal to the optimal value of the following linear programming
problem:

Jξ(z, λ) = J(z, λ) def= min
η

{∑
v,a

r(z, λ; v, a)η(v, a)|η = {η(v, a)} ∈W
}

(19)

= λT f1(z) + min
η

{
λT f2(z)

∑
v,a

y(v, a)η(v, a)|η = {η(v, a)} ∈W
}
.

b) There is a one-to-one correspondence between optimal stationary policies of
L(z, λ) and the optimal solutions of (19).

The following statement describes necessary optimality conditions for Q0.
THEOREM 3.1. Let y∗t be an optimal control in Q0 and let z∗t be the solution of

(9) obtained with y∗. That is,

d

dt
z∗t = f(z∗t , y

∗
t ), z0 = z.(20)

Then, for almost all t ∈ [0, 1],

y∗t =
∑
v,a

η(z∗t , λt; v, a)y(v, a),

where η(z, λ) = {η(z, λ; v, a}v,a stands for a solution of (19) and λt is the solution of
the conjugate system

d

dt
λt = −fz(z∗t , y∗t )λt, λ1 = gz(1);(21)

fz and gz are n×n and n×1 matrices of the partial derivatives of f and g, respectively,
over the components of z.

Proof. The proof follows from a direct application of the Pontryagin maximum
principle [8, 13] to problem Q0.

Notice that if the solution of (19) with z = z∗t and λ = λt is unique for all t ∈ [0, 1]
except for a finite number of switching points and, thus, for all these t ∈ [0, 1], the
corresponding stationary policy u(z∗t , λt) achieving inf in (18) with z = z∗t and λ = λt
is unique, then an asymptotically optimal policy for Qε can be defined by simply
applying u(z∗τl , λτl) during bτl/εc, bτl/εc+ 1, bτl+1/εc − 1, where l = 0, 1, ..., `(ε)− 1.
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Another way to characterize the optimal control in the problem Q0 is related to
the HJB equation written for this problem in the form

B0
t (z, t) + min

y∈Y
{(B0

z (z, t))T f(z, y)} = 0, B0(z, 1) = g(z),(22)

where B0
t (z, t), B0

z (z, t) stand for the partial derivatives of B0(z, t) over t and com-
ponents of z, respectively. By (2), (6), (8), for any z and λ,

min
y∈Y

λT f(z, y) = λT f1(z) + min
y
{λT f2(z)y|y ∈ Y} = λT f1(z)

+ min
η

{∑
v,a

λT f2(z)y(v, a)η(v, a)|η = {η(v, a)} ∈W
}

= J(z, λ),

where J(z, λ) is the optimal value of (19). Hence, HJB equation (22) can be rewritten
in the form

B0
t (z, t) + J(z,B0

z (z, t)) = 0, B0(z, 1) = g(z).(23)

This equation allows us to construct both necessary and sufficient conditions of opti-
mality for Q0 and, in particular, to verify whether a given admissible control yt and
the corresponding solution zt of (9) are optimal in Q0 (see details in [8]). On the
other hand, the viscosity solution of (23) (see, e.g., [14]) defines the optimal value of
the problem Q0 on the interval [s, 1] subject to the initial condition zs = z, which
provides an approximation for the optimal value Bε(z, x, s) of the problem Qε on the
same interval [s, 1] subject to the same initial condition zs = z and with the initial
state of the MDP being x. More precisely, since, by definition, Bε(z, x, 0) = F ε(z, x)
and B0(z, 0) = F 0(z), from Theorem 2.1 it follows that

lim
ε→0

Bε(z, x, 0) = B0(z, 0).

As in this theorem, one can also establish that

lim
ε→0

Bε(z, x, s) = B0(z, s),

with the convergence being uniform with respect to s ∈ [0, 1], x ∈ X, and z ∈ Z,
where Z is a compact subset of Rn.

Notice that the described approach has a decomposition structure. It consists of
two phases. First is the optimization of the fast motions which is achieved via the
solution of (18) with fixed “slow variables” z and λ. Second is the “slow optimization”
achieved via the solution of HJB (23). Notice also that in a general case the solution
of equation (23) can be quite complicated. If, however,

f(z, y) = Az +By, g(z) = cT z,(24)

where A(n×n), B(n×k), and c(n×1) are matrices (that is, if as in [2], Q0 is a linear
optimal control problem), then the solution of (23) is obvious:

B0(z, s) = λTs z +
∫ 1

s

J(λ(t))dt,

where J(λ) def= J(z, λ)− λTAz and λt is the solution of (21) under assumption (24).
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4. Proof of Lemmas 2.1 and 2.2.
LEMMA 4.1. Let yit(h), i = 1, 2, be functions of time t and state-action histories

h. Let zit(h) be the solution of (9) obtained with yit(h) (h is fixed), i = 1, 2. Then
there exists a constant L such that for any policy u and any initial state x,

max
t∈[0,1]

Eux
∣∣∣∣z1
t (H)− z2

t (H)
∣∣∣∣

1

≤ L
(

∆(ε) + (∆(ε))−1 max
l=0,...,`(ε)−1

Eux

∣∣∣∣∣∣∣∣∫ τl+1

τl

[y1
t (H)− y2

t (H)]dt
∣∣∣∣∣∣∣∣

1

)
,

(25)

where H is the random realization of the state-action trajectories.
Proof. For the sake of brevity, we omit H from the notation below and write ∆

and ` instead of ∆(ε) and `(ε). By definition,

ziτl+1
= ziτl +

∫ τl+1

τl

f(zit, y
i
t)dt.

Hence, denoting

δl := Eux
∣∣∣∣z1
τl
− z2

τl

∣∣∣∣
1

and taking into account (2), one can write

δl+1 ≤ δl +
∫ τl+1

τl

Eux
∣∣∣∣f(z1

t , y
1
t )− f(z1

τl
, y1
t )
∣∣∣∣

1 dt

+ Eux

∣∣∣∣∣∣∣∣∫ τl+1

τl

[
f(z1

τl
, y1
t )− f(z1

τl
, y2
t )
]
dt

∣∣∣∣∣∣∣∣
1

+
∫ τl+1

τl

Eux
∣∣∣∣f(z1

τl
, y2
t )− f(z2

τl
, y2
t )
∣∣∣∣

1 dt+
∫ τl+1

τl

Eux
∣∣∣∣f(z2

τl
, y2
t )− f(z2

t , y
2
t )
∣∣∣∣

1 dt

≤ δl + L1∆Eux

∣∣∣∣∣∣∣∣ 1
∆

∫ τl+1

τl

(y1
t − y2

t )dt
∣∣∣∣∣∣∣∣

1

+L3∆δl + L1∆2,

where Li are constants defined by C1 and C2 in (3) and (4) (and thus do not depend
on H). Applying now Proposition 5.1 of Gaitsgory [15], one obtains that for any
K = 0, 1, ..., `,

δK ≤ L̃
(

∆ + max
l=0,...,`−1

Eux

∣∣∣∣∣∣∣∣ 1
∆

∫ τl+1

τl

(y1
t − y2

t )dt
∣∣∣∣∣∣∣∣

1

)
,(26)

where L̃ is a constant. Since∣∣∣∣zit − ziτl ∣∣∣∣1 ≤ L4∆ ∀t ∈ [τl, τl+1]

for some constant L4, (26) implies (25) with L = L̃+ 2L4.
We need another general result on MDPs that establishes the uniform convergence

of the state-action frequencies to their limits. More precisely, consider arbitrary inte-
gers m and K, and define the random variables

ψKm(v, a) = ψKm(H; v, a) :=
1
K

m+K∑
n=m+1

1{Xn = v,An = a}.
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Let ψKm := {ψKm(v, a)}v,a denote the vector of state-action frequencies. Denote

d1
K = dist{ψK0 ,W} = inf

η∈W

∣∣∣∣ψK0 − η∣∣∣∣1 .
It follows from Derman [11, Chapter 8, p. 98] (see also [3, section 3]) that for any
policy u and initial distribution ξ,

lim
K→∞

d1
K = 0, Puξ a.s.(27)

This implies, by the bounded convergence theorem, that

lim
K→∞

Euξ d
1
K = 0.(28)

For any stationary policy u ∈ S the limit

ψ0 := lim
K→∞

ψK0

exists (Puξ a.s.), and it does not depend on the initial distribution ξ (in fact, ψ0(v, a) =
η(u; v, a)). Define

d2
K =

∣∣∣∣ψK0 − ψ0
∣∣∣∣

1 .

THEOREM 4.1. The following holds:

lim
K→∞

sup
ξ

sup
u∈U

Euξ d
1
K = 0,(29)

lim
K→∞

sup
ξ

sup
u∈S

Euξ d
2
K = 0.(30)

Proof. In order to prove the theorem, we define some operations on policies. A
k-shift v = Θku of a policy u is defined to be a sequence v = {vk, vk+1, ...}, where

vn+k(x0, a0, x1, a1, ..., xn+k−1, an+k−1, xn+k)

= un(xk, ak, xk+1, ak+1, ..., xn+k−1, an+k−1, xn+k).

A policy w is defined to be a concatenation of u and v from time k if

wn =
{
un, n < k,
(Θkv)n, n ≥ k.

We then denote this policy by w = [u{k}v]. We similarly define a concatenation of a
sequence of policies ui with times ti, and denote it by [u1{t1}u2{t2}...] (where policy
ui is used for a duration of ti time units).

Assume (29) does not hold. Then there exist sequences of initial distribution over
the states ξ(i) = {ξ1(i), ..., ξN (i)}, of strictly increasing times t(i) and of policies u(i),
and a constant α1 > 0 such that for all i,

E
u(i)
ξ(i) d

1
t(i) ≥ α1.(31)

It follows that there exist sequences of strictly increasing times t′(i) and of policies
u′(i), and a constant α2 > 0 such that for all i,

E
u′(i)
ξ′ d1

t′(i) ≥ α2(32)
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for any initial distribution ξ′. Indeed, fix t′(i) = t(i)+N, i = 1, 2, ... (N is the number
of states). Fix some stationary policy s and let u′(i) be the policy [s{N}ΘNu(i)],
i.e., the policy obtained by using s during the first N steps, and then using a shifted
policy ΘNu(i). Due to the unichain and aperiodicity assumption, the Markov chain
induced by the stationary policy s is regular, and it follows (see [18]) that there exists
some α3 > 0 such that P sξ′(XN = z) > α3 for any z and ξ′. (31) then implies that
(32) holds for all i sufficiently large and ξ′ with α2 = α1α3/2. Indeed, let i be such
that

t(i) ≥ 4N
α1α3

.

It then follows that

|d1
t(i) − d1

t′(i)| ≤ 2N/t(i) ≤ α1α3

2
.

This implies that

E
u′(i)
ξ′ d1

t′(i) =
∑
z

P
u′(i)
ξ′ (XN = z)

[
E
u′(i)
ξ′ d1

t′(i)

∣∣∣XN = z
]

=
∑
z

P sξ′(XN = z)
[
E
u′(i)
ξ′ d1

t′(i)

∣∣∣XN = z
]

≥
∑
z

P sξ′(XN = z)Eu(i)
z d1

t(i) −
α1α3

2
≥ α3

∑
z

Eu(i)
z d1

t(i) −
α1α3

2

≥ α3

∑
z

ξz(i)Eu(i)
z d1

t(i) −
α1α3

2
= α3E

u(i)
ξ(i) d

1
t(i) −

α1α3

2
≥ α1α3

2
.(33)

Equation (33) is due to the following. Policy u′(i) behaves like the stationary policy s
during the firstN steps. So, at time N , we reach state z with probability P sξ′(XN = z).
Then the behavior during the interval [N, t′(i)], according to policy u′(i), is that of
the policy u during the interval [0, t′(i)−N ] = [0, t(i)].

Consider now some subsequence t′(i) for which (32) holds and for which∑i
l=1 t

′(l)
t′(i+ 1)

≤ α2

4
.

Consider the concatenated policy ũ defined as ũ = [u′(1){t′(1)}u′(2){t′(2)}...]. (32)
implies that

lim
K→∞

Eũξ′d
1
K ≥

α2

2
> 0(34)

for any initial distribution ξ′. Indeed, choose any integer n and define K =
∑n
i=1 t

′(i),
K ′ =

∑n+1
i=1 t

′(i). Then

|Eūξ′ [d1
K′ |X(K) = z]− Eu′(i+1)

z d1
t′(i+1)| ≤

2
∑i
l=1 t

′(l)
t′(i+ 1)

≤ α2

2
,

which implies that

Eũξ′d
1
K′ =

∑
z

P ũξ′(X(K) = z)Eũξ′ [d
1
K′ |X(K) = z]

≥
∑
z

P ũξ′(X(K) = z)Eu
′(i+1)

z d1
t′(i+1) −

α2

2
≥ α2

2
.(35)
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This, however, contradicts (28) for u = ũ. We thus conclude that the convergence in
(28) is uniformly in ξ and u ∈ U .

Next, assume that (30) does not hold. Below, if u is stationary, we understand
u(a|x) to be the probability of choosing action a when in state x. The class of
stationary policies is compact; i.e., for any sequence u(i) ∈ S, there exists a sub-
sequence u(ij) such that the policy u∗ = limj→∞ u(ij) (i.e., the policy for which
u∗(a|x) = limj→∞ u(ij)(a|x) for all a and x) is stationary.

It follows by arguments as in the first part of the proof that there exist sequences
of times t(i) and of stationary policies s(i), and a constant α4 > 0 such that for all i,

E
s(i)
ξ d2

t(i) ≥ α4(36)

for any initial distribution ξ. Moreover, due to the compactness of S, s(i) can be
chosen to be a convergent sequence, with s∗ its limit. It then follows that

lim
i→∞

η(s(i)) = η(s∗)(37)

(see [17, p. 82]).
Consider now the Markov policy s̃ that follows policy s(1) until time t(1), then

switches to s(2) and uses that policy until t(2), then switches to s(3) and uses it until
t(3), and so on. Since for any initial distribution ξ and for any stationary policy s(i),
we have

ψ0 = η(s(i)), P
s(i)
ξ a.s.,(38)

it follows by choosing the sequence of times t(i) so that the intervals t(i + 1) − t(i)
are sufficiently large, that (36) implies that

lim
i→∞

E s̃ξ

∣∣∣∣∣∣ψt(i)0 − η(s(i))
∣∣∣∣∣∣

1
> 0(39)

for any initial distribution ξ. It then follows from (37) and (39) that

lim
t→∞

E s̃ξ
∣∣∣∣ψt0 − η(s∗)

∣∣∣∣
1 > 0(40)

for any initial distribution ξ.
Since s(i) converges to s∗, it follows that s̃ is an asymptotically stationary policy

(see (1.2) in [3]), and therefore,

lim
K→∞

ψK0 = η(s∗), P s̃ξ a.s.

(see Lemma 6.3 in [3]; also see [4]). Hence

lim
K→∞

E s̃ξ
∣∣∣∣ψK0 − η(s∗)

∣∣∣∣
1 = 0(41)

for any initial distribution ξ. This contradicts (40), and thus (30) is established.
Proof of Lemma 2.1. Let yt be an admissible control for Q0 and let uε(y) be

constructed as indicated in the beginning of section 3. Consider the policy uε(y) and
a random realization of states and actions history H ∈ H. The solution Zt of (1) is
the solution of (9) obtained with the random control

yt(H) def= y(Xbt/εc, Abt/εc).
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By Lemma 4.1, the mathematical expectation of the norm of the difference between
Zt and the solution zyt of (9) with the control yt is bounded by

Euε(y)
x ||Zt − zyt ||1 ≤ L

(
∆ + max

l=0,...,`−1
Euε(y)
x

∣∣∣∣∣∣∣∣ 1
∆

∫ τl+1

τl

ys(H)ds− 1
∆

∫ τl+1

τl

ysds

∣∣∣∣∣∣∣∣
1

)
for any t ∈ [0, 1]. Hence, taking into account (16) and (17),

max
t∈[0,1]

Euε(y)
x ||Zt − zyt ||1(42)

≤ L

∆ + max
l=0,...,`−1

Euε(y)
x

∣∣∣∣∣
∣∣∣∣∣ 1
∆

∫ τl+1

τl

ys(H)ds−
∑
v,a

η(sεl (y); v, a)y(v, a)

∣∣∣∣∣
∣∣∣∣∣
1

 .

To bound the right-hand side in (42), consider the state-action frequencies ψKm cor-
responding to the realization H. It follows from Theorem 4.1 that there exists some
µ : N→ R with

lim
K→∞

µ(K) = 0(43)

such that for any stationary policy s applied during n = m + 1, ...,m + K, and any
probability distribution ζ over Xm,

Esζ

(
max
v,a
|ψKm(v, a)− η(s; v, a)|

)
≤ µ(K).(44)

Denote

K(ε) def= min
l=0,1,...,`−1

(bτl+1/εc − bτl/εc) ,

and notice that

2 ≥ bτl+1/εc − bτl/εc −K(ε) ≥ 0,
∣∣∣∣K(ε)− ∆(ε)

ε

∣∣∣∣ ≤ 1

⇒
∣∣∣∣ 1
K(ε)

− ε

∆(ε)

∣∣∣∣ ≤ ε2

∆(ε)2

(
1

1− ε/∆(ε)

)
.

(45)

From (45) it follows that there exist constants L1 and L2 such that∣∣∣∣∣∣
∣∣∣∣∣∣ 1
∆(ε)

∫ τl+1

τl

yt(H)dt− ε

∆(ε)

bτl/εc+K(ε)∑
n=bτl/εc+1

y(Xn, An)

∣∣∣∣∣∣
∣∣∣∣∣∣
1

≤ L1
ε

∆(ε)
,(46)

∣∣∣∣∣∣
∣∣∣∣∣∣ ε

∆(ε)

bτl/εc+K(ε)∑
n=bτl/εc+1

y(Xn, An)− 1
K(ε)

bτl/εc+K(ε)∑
n=bτl/εc+1

y(Xn, An)

∣∣∣∣∣∣
∣∣∣∣∣∣
1

≤ L2
ε

∆(ε)
.(47)

Since

1
K(ε)

bτl/εc+K(ε)∑
n=bτl/εc+1

y(Xn, An) =
∑
v,a

ψ
K(ε)
bτl/εc(H; v, a)y(v, a),(48)
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one can obtain, using (44), (46), and (47),

Euε(y)
x

∣∣∣∣∣
∣∣∣∣∣ 1
∆(ε)

∫ τl+1

τl

yt(H)dt−
∑
v,a

η(sεl (y); v, a)y(v, a)

∣∣∣∣∣
∣∣∣∣∣
1

≤ (L1 + L2)
ε

∆(ε)
+ Euε(y)

x

{
E
sεl (y)
Xbτl/εc

∑
v,a

(∣∣∣ψK(ε)
bτl/εc(H; v, a)− η(sεl (y); v, a)

∣∣∣ ||y(v, a)||1
)}

≤ (L1 + L2)
ε

∆(ε)
+ L3µ(K(ε)),

where

L3 =
∑
v,a

||y(v, a)||1 .

Substituting the last inequality in (42), one obtains

max
t∈[0,1]

Euε(y)
x ||Zt − zyt ||1 ≤ L

[
∆(ε) + (L1 + L2)

ε

∆(ε)
+ L3µ(K(ε))

]
,

which, by (43), completes the proof of the lemma.
Proof of Lemma 2.2. Let h =

{
x0, a0, ..., xbε−1c, abε−1c

}
∈ H be some state-action

trajectory, and define

yt(h) def= y(xbt/εc, abt/εc).

As in (46)–(48), one obtains∣∣∣∣∣
∣∣∣∣∣ 1
∆(ε)

∫ τl+1

τl

yt(h)dt−
∑
v,a

ψ
K(ε)
bτl/εc(h; v, a)y(v, a)

∣∣∣∣∣
∣∣∣∣∣
1

≤ (L1 + L2)
ε

∆(ε)
.(49)

Denote by σl(H) the projection of ψK(ε)
bτl/εc(H) on W ; i.e., σl(H) := {σl(H; v, a)}v,a is

the solution of

min
η

{∣∣∣∣∣∣ψK(ε)
bτl/εc(H)− η

∣∣∣∣∣∣
1

∣∣∣ η ∈W} .(50)

It follows from Theorem 4.1 that there exists a function ν(K),

lim
K→∞

ν(K) = 0,

such that for any policy u,

Euxdist
{
ψKm(H),W

}
≤ ν(K)

where

dist
{
ψKm(H),W

} def= min
η

{∣∣∣∣ψKm(H)− η
∣∣∣∣

1

∣∣ η ∈W} .
Hence,

Eux

{
max
v,a

∣∣∣ψK(ε)
bτl/εc(H; v, a)− σl(H; v, a)

∣∣∣} ≤ ν(K(ε)).(51)
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Define the vectors yl : H→ R as

yl(h) =
∑
v,a

σl(h; v, a)y(v, a).(52)

Since, by definition, σl(h) ∈W , then

yl(h) ∈ Y ∀l = 0, 1, ..., `− 1.

Define now the piecewise constant function ỹεt(h) as follows: for t ∈ [0, `∆), set
ỹεt(h) := yl(h) for t ∈ [τl, τl+1), l = 0, 1, ..., `− 1. For t ∈ [`∆, 1], set ỹε(h) = y where
y is an arbitrary element of Y. Let u be an arbitrary policy. Taking into account
(49), (51), and (52), one obtains

Eux

∣∣∣∣∣∣∣∣ 1
∆(ε)

∫ τl+1

τl

yt(H)dt− 1
∆(ε)

∫ τl+1

τl

ỹεt(H)dt
∣∣∣∣∣∣∣∣

1

≤ (L1 + L2)
ε

∆(ε)
+ Eux max

v,a

∣∣∣ψK(ε)
bτl/εc(H; v, a)− σl(H; v, a)

∣∣∣∑
v,a

||y(v, a)||1

≤ (L1 + L2)
ε

∆(ε)
+ L3ν(K(ε)).

Applying (25) one obtains

max
t∈[0,1]

Eux ||Zt − z̃εt (H)||1 ≤ L
[
∆(ε) + (L1 + L2)

ε

∆(ε)
+ L3ν(K(ε))

]
,

which completes the proof.
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PERTURBATION FORMULA FOR REGULAR FREE BOUNDARIES
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Abstract. The perturbation formula for regular free boundaries with respect to various param-
eters of the obstacle problem, which has been known in the case of elliptic problems, is proved by a
new method. The method introduced here extends easily to parabolic problems as well. This enables
a study of optimal control of regular free boundaries in elliptic and parabolic obstacle problems.

Key words. obstacle problem, free boundary, perturbation formula

AMS subject classifications. 35J85, 35R35

PII. S0363012995282796

1. Introduction. In the past 20 years or so, there have been many works on
so-called optimal control theory of variational inequalities (see [18, 10, 1, 11, 12, 9]).
One could say that the problem of distributed control, i.e., the problem where the
objective is to control a solution of the variational inequality (more precisely, a solution
of the obstacle problem), is well understood. Also, various attempts were made to
handle the issue of controlling the free boundary via different types of regularizations
or relaxations (see, e.g., [1, 2] and references given there).

More appropriately, optimal control of the free boundary in the elliptic obstacle
problem was considered in [17] via a perturbation formula for free boundaries. In
such an approach no regularization or relaxation of the optimal control problem is
needed. The proof of the perturbation formula in [17] applies to the elliptic problem.
Moreover, in [17], authors assume differentiability (of the obstacle map).

In this paper we introduce a new proof of the perturbation formula, which, con-
trary to [17], naturally extends to the parabolic case, providing a unified theory for
various optimal control problems for regular free boundaries in elliptic and parabolic
obstacle problems. Furthermore, as opposed to [17], we discuss the relationship be-
tween the issue of regularity of the free boundary and the issue of differentiability of
the obstacle map and of the cost functional.

We shall state the perturbation formula for the free boundary in the case when
the perturbation of data is in the right-hand side of the obstacle problem. Many other
kinds of data perturbations can be considered by the same method.

In this paper, by optimal control, we mean only characterizing the gradient of
the cost functional. This can be used either for numerical minimization or for further
analysis, to characterize possible minimizers.1 Neither is in the scope of the present
paper.

In several crucial places2 in this paper, we shall exploit the viewpoint that the
obstacle problem is a semilinear equation. Namely, as was discussed in detail in [14]
by the present author, the obstacle problem (2.10) is equivalent to the semilinear

∗Received by the editors January 25, 1995; accepted for publication (in revised form) September
5, 1996. This research was supported in part by the Taft Memorial Foundation.

http://www.siam.org/journals/sicon/35-6/28279.html
†Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025

(srdjan@math.uc.edu).
1That appears possible, but not in full generality. One has to consider particular examples, as

in the study of regularity of the free boundary; see, e.g., [8].
2See the proofs of Lemma 1, Theorem 4, and Theorem 5.
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equation

Az + uI{zu>0} = 0, z ∈W 2,2(Ω),(1.1)

with appropriate boundary condition (for the notation, see (2.1), (2.8), and (2.49)).
In [14] the variational principle for equation (1.1) is given, as well.

Some of the results of this paper were announced in [15]. Some further develop-
ments can be found in [16].

2. Perturbation formula for regular free boundaries in elliptic obstacle
problems. Let Ω be a bounded domain in Rn such that ∂Ω is locally in C2,α for
some α > 0. Let A be an elliptic operator defined by

Az = −
n∑

i,j=1

aij
∂2z

∂xi∂xj
+

n∑
i=1

bi
∂z

∂xi
+ cz.(2.1)

We assume that

aij = aji, aij ∈ C2,α(Ω) ∩ C1,α(Ω̄),(2.2)
bi, c ∈ Cα(Ω̄),(2.3)

n∑
i,j=1

aij(x)ξiξj ≥ λ0|ξ|2 ∀x ∈ Ω, ξ ∈ Rn (λ0 > 0),(2.4)

c ≥ 0.(2.5)

Functions aij , bi, and c are going to be referred to as data. Consider also the associated
bilinear form

a(z, ζ)

=
∫

Ω


n∑

i,j=1

aij
∂z

∂xi

∂ζ

∂xj
+

n∑
i=1

bi +
n∑
j=1

∂aij
∂xj

 ∂z

∂xi
ζ + czζ

 dx,(2.6)

and assume that a is coercive, that is, that

a(z, z) ≥ β‖z‖2H1
0 (Ω) ∀z ∈ H

1
0 (Ω) (β > 0).(2.7)

Let u ∈ C0,1(Ω̄) and g ∈ C2,α(Ω̄) be given. We also assume here that

u ≥ λ1 > 0 in Ω̄,(2.8)
g > 0 in Ω̄.(2.9)

Consider the following obstacle problem: find z ∈ K, such that

a(z, ζ − z) ≥ −
∫

Ω
u(ζ − z)dx ∀ζ ∈ K,(2.10)

where K is the following closed convex set in H1(Ω):

K =
{
ζ ∈ H1(Ω); ζ − g ∈ H1

0 (Ω), ζ ≥ 0 a.e.
}
.(2.11)

Remark 1. We have taken the obstacle to be equal to 0. It is trivial to extend
everything that follows to the case when the obstacle is any C2,α(Ω̄) function ψ, such
that ψ < g on ∂Ω (see Remark 3).
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It is very well known (see, e.g., [8]; see also [14] for a new proof of W 2,p-regularity)
that under the above assumptions, the obstacle problem has a unique solution z, and

z ∈W 2,p(Ω) ∩W 2,∞
loc (Ω) ∀p <∞.(2.12)

Moreover, by the fundamental theorem of Caffarelli [3, 4, 5], (see also [13]). In some
cases, it is possible to claim smoothness of the free boundary ∂{z > 0} ∩ Ω (see also
Chapter 2 of [8]). For the convenience of the reader, we state those results here. To
this end we need some notation.

DEFINITION 1. For any bounded set D ⊂ Rn the minimum diameter of D,
m.d.(D), is the infimum of the distances between pairs Π1, Π2 of parallel planes such
that D is contained in the strip determined by Π1, Π2. Let Br(x) = {y ∈ Rn; |x−y| <
r}.

NOTATION 1.

Γu = ∂{zu > 0} ∩ Ω,(2.13)

D−ε = {x ∈ D ⊂ Rn; dist(x,Rn \D) > ε},(2.14)

ηr(D;x) =
m.d.(D ∩Br(x))

r
,(2.15)

ηr(D) = ηr(D; 0).(2.16)

THEOREM 1 (Caffarelli). There exists a positive nondecreasing function σ(r)(0 <
r < r0) with σ(0+) = 0 such that, if for some 0 < r < r0,

ηr({zu = 0}) > σ(r),(2.17)

then for some r̃ > 0, Γu ∩Br̃(0) is a C1 surface given by

xi = k(x1, ..., xi−1, xi+1, ..., xn) (k ∈ C1)(2.18)

for
√
x2

1 + · · ·+ x2
i−1 + x2

i+1 + · · ·+ x2
n < r̃, and for some i ∈ {1, ..., n}, and moreover

zu ∈ C2 (({zu > 0} ∪ Γu) ∩Br̃(0)) .(2.19)

The nonexplicit nature of function σ prevents us from applying Theorem 1 di-
rectly. Nevertheless, from the properties of σ and ηr, one can see that the following
holds.

COROLLARY 1. If

lim sup
r→0

Ln({zu > 0} ∩Br(0))
rn

> 0,(2.20)

then the assertions of Theorem 1 are valid.
COROLLARY 2. If Γu ⊂ Ω is a Lipschitz continuous surface, then it is a C1

surface, and zu is C2 in the closure of the noncoincidence set {zu > 0}.
DEFINITION 2. If the assumptions of Theorem 1 are (not) fulfilled at each free

boundary point x ∈ Γu, we shall say either that the free boundary Γu is (not) regular



PERTURBATION FORMULA FOR FREE BOUNDARIES 2089

(or that it is irregular) or that the coincidence set {zu = 0} is not too thin (is too
thin).

Example 1. Let Ω = (−1, 1), g = 1, Az = −1
2z
′′, u = v = 1. Then it is elementary

to compute

zu+λv(x) =
[
(1 + λ)x2 − 2(1 + λ−

√
1 + λ)|x|+ 2 + λ− 2

√
1 + λ

]
·
(

1− I(−1+ 1√
1+λ

,1− 1√
1+λ

) (x)
)

(2.21)

if λ ≥ 0, and

zu+λv(x) = (1 + λ)x2 − λ(2.22)

if λ ≤ 0. So there is no free boundary if λ < 0, and otherwise, if λ ≥ 0, then

ηr({zu+λv = 0}) =
m.d.({zu+λv = 0} ∩Br)

r

=
{

1, λ > 0,
0, λ = 0,(2.23)

if r is small enough. According to Definition 2, the free boundary is regular if λ > 0,
but it is not regular if λ = 0, i.e., the coincidence set is too thin.3

THEOREM 2 (Caffarelli). If

‖zu − zv‖L∞(Ω) < ε2,(2.24)

then

{zu = 0}−Cε ⊂ {zv = 0},(2.25)

where C depends on the data, on the C1,1 norm of zu and zv, and on λ1.
THEOREM 3 (Caffarelli). Let K ′,K be domains with C1 boundary such that K ′ ⊂

K, K̄ ⊂ Ω, c0 = dist(K ′, ∂K) > 0. If Γu ∩K is a C1 surface, then Γv ∩K ′ is a C1

surface provided that

‖zu − zv‖L∞(Ω) < ε0,(2.26)

where ε0 is sufficiently small, depending on the data and on the C0,1 norms of u and
v, the C1,1 norms of zu and zv, λ1, c0, and a C1 bound on Γu ∩K.

PROPOSITION 1. The obstacle map u 7→ zu is Lipschitz continuous in the follow-
ing sense:

‖zu − zv‖H1(Ω) ≤ c‖u− v‖H−1(Ω)(2.27)

and, for p > n
2 ,

‖zu − zv‖L∞(Ω) ≤ c‖u− v‖Lp(Ω).(2.28)

3Indeed, it is a single point: {zu = 0} = {0}. So, we notice that, conceptually, the statement
about regularity of the free boundary is more about the thickness of the coincidence set than about
the smoothness of the free boundary. Indeed, in dimension one, like in the above example, both
regular and irregular free boundaries are isolated points, so that the issue of smoothness of the free
boundary does not make sense, while the issue of thickness of the coincidence set does.
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Proof. Estimate (2.27) is well known. We shall prove (2.28). To this end we prove
the following lemma.

LEMMA 1. If u− v ≤ ε ∈ Lp(Ω), p > n
2 , ε ≥ 0, then

zv − zu ≤ δ ∈ L∞(Ω),(2.29)

where 0 ≤ δ ∈W 2,p(Ω) ∩H1
0 (Ω) solves

Aδ = ε.(2.30)

Proof. Recall u, v ≥ 0.4 Let

ū = uI{zu>0}, v̄ = min{ū, v}.(2.31)

Then

zū = zu, zv̄ ≥ zv.(2.32)

Notice also

(ū− v̄)I{zu>0} ≤ ε(2.33)

and

v̄I{zu=0} = 0.(2.34)

So it suffices to show that

(zv̄ − (zū + δ))+ = 0.(2.35)

We have

Azv̄ + v̄I{zv̄>0} = 0(2.36)

and

A(zū + δ) + ūI{zū>0} − ε = 0.(2.37)

Subtracting, we get

A(zv̄ − (zū + δ)) + v̄(I{zv̄>0} − I{zū>0}) = (ū− v̄)I{zū>0} − ε ≤ 0.(2.38)

Multiplying (2.38) by (zv̄ − (zū + δ))+ and using the fact that

v̄(I{zv̄>0} − I{zū>0})(zv̄ − zū) ≥ 0,(2.39)

we get

λ0

∫
Ω
|∇(zv̄ − (zū + δ))+|2

−
∫
{zv̄−(zū+δ)>0}

v̄(I{zv̄>0} − I{zū>0})δ ≤ 0.(2.40)

4This assumption can be removed.
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But, using (2.34), ∫
{zv̄−(zū+δ)>0}

v̄(I{zv̄>0} − I{zū>0})δ

=
∫
{zv̄−(zū+δ)>0}

v̄I{zv̄>0}I{zū=0}δ = 0.(2.41)

To prove the theorem, one needs only to apply the Lp-estimate and the imbedding
theorem for problem (2.30).

From Theorems 2 and 3 and from Proposition 1, it is not difficult to conclude (cf.
[9]) the following proposition.

PROPOSITION 2. If u is such that the corresponding free boundary Γu is regular,
then the obstacle map is differentiable at u in the following sense:

zu+λv − zu
λ

⇀ wu;v weakly in H1
0 (Ω) and weakly* in L∞(Ω)(2.42)

as λ→ 0, where

wu;v =
{
δu;v in {zu > 0},

0 in {zu = 0}(2.43)

and where δ = δu;v is the unique solution of the elliptic equation

Aδ = −v in {zu > 0},
δ = 0 on ∂{zu > 0}.(2.44)

Example 2. We continue Example 1. It is elementary to compute that

zu+λv − zu
λ

−→
{
x(x+ 1), x ∈ (−1, 0),
x(x− 1), x ∈ (0, 1),(2.45)

as λ ↓ 0, and

zu+λv − zu
λ

= (x− 1)(x+ 1)(2.46)

as λ ↑ 0. Comparing (2.45) and (2.46) we see that (2.42) does not hold.
So, if the coincidence set corresponding to the control u is too thin, then differ-

entiability of the obstacle map may fail at u.
NOTATION 2. Let dΓu denote the measure (cf. [6])

dΓu = Hn−1b Γu,(2.47)

the restriction of the (n − 1)-dimensional Hausdorff measure Hn−1 on the set Γu ⊂
Rn.

Remark 2. If Γu ⊂ Ω is a Lipschitz continuous surface, then by the trace theorem,

dΓu ∈ H−1(Ω).(2.48)

Let νu be the unit normal to Γu exterior to {zu > 0}. Also, let νuA be a conormal,
i.e., (νuA)i =

∑n
j=1 aij(ν

u)j .
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NOTATION 3.

ID(x) =
{

1, x ∈ D,
0, x 6∈ D.(2.49)

We have the following theorem.
THEOREM 4 (perturbation formula for regular free boundaries in elliptic obstacle

problems). Suppose that zu has a regular free boundary. Then the following perturba-
tion formula holds:

I{zu+λv>0} − I{zu>0}

λ
⇀ − 1

u

∂δu;v

∂νuA
dΓu(2.50)

weakly in H−1(Ω), as λ→ 0. Also,

− 1
u

∂δu;v

∂νuA
dΓu = −

∂δu;v

∂νu

∂2zu

(∂νu)2

dΓu.(2.51)

Proof. zu solves the semilinear equation.

Azu + uI{zu>0} = 0 a.e. in Ω,
zu = g on ∂Ω.(2.52)

So, writing (2.52) in the weak form for zu+λv and zu, subtracting and dividing
by λ, we get, for every ϕ ∈ H1

0 (Ω),

−a
(
zu+λv − zu

λ
, ϕ

)
=
∫

Ω
vI{zu+λv>0}ϕdx+

∫
Ω
u

1
λ

(
I{zu+λv>0} − I{zu>0}

)
ϕdx.(2.53)

We can pass the limit λ→ 0 in (2.53) to conclude

−a(w,ϕ)

=
∫

Ω
vI{zu>0}ϕdx+ lim

λ→0

∫
Ω
u

1
λ

(
I{zu+λv>0} − I{zu>0}

)
ϕdx.(2.54)

Now, from (2.43) and (2.54), we conclude that

lim
λ→0

∫
Ω
u

1
λ

(
I{zu+λv>0} − I{zu>0}

)
ϕdx = −

∫
Γu

∂δu;v

∂νuA
ϕdσ,(2.55)

and hence, since ϕ ∈ H1
0 (Ω) if and only if ϕ

u ∈ H1
0 (Ω),

lim
λ→0

∫
Ω

1
λ

(
I{zu+λv>0} − I{zu>0}

)
ϕdx = −

∫
Γu

1
u

∂δu;v

∂νuA
ϕdσ,(2.56)

and hence (2.50) is proved.
Notice that, since on Γu,

zu = |∇zu| = 0,(2.57)
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we have

u(x) = −Azu(x) =
n∑

i,j=1

aijzxixj (x) ∀x ∈ Γu.(2.58)

Notice that (2.58) makes sense, since Γu is regular, and hence (2.19) holds. Further-
more, fix x0 ∈ Γu and notice that, without loss of generality, we can suppose that
νu(x0) = en. Then it is easy to see, using (2.57), that

n∑
i,j=1

aijzxixj (x
0) = annzxnxn(x0)(2.59)

and, since δu;v = 0 on Γu, we deduce also

n∑
i,j=1

aij(δu;v)xi(ν
u)j = ann(δu;v)xn .(2.60)

We conclude that, in general,

n∑
i,j=1

aij(δu;v)xi(ν
u)j

n∑
i,j=1

aijzxixj

=
(δu;v)νu
(zu)νuνu

on Γu,(2.61)

and hence (2.51) follows.
Remark 3. It is easy to see that in the case of the general obstacle ψ ∈ C2,α(Ω̄),

formula (2.50) becomes

I{zu+λv>0} − I{zu>0}

λ
⇀ − 1

u+Aψ

∂δu;v

∂νuA
dΓu(2.62)

weakly in H−1(Ω), as λ→ 0.
DEFINITION 3. If there exists a function su;v on Γu, such that

I{zu+λv>0} − I{zu>0}

λ
⇀ su;vdΓu(2.63)

weakly in H−1(Ω), as λ→ 0, then su;v is called the perturbation function.
We can rephrase Theorem 4 now as follows.
PERTURBATION FORMULA 1.

su;v = − 1
u

∂δu;v

∂νuA
,(2.64)

where δu;v is defined by (2.44).

3. Optimal control of free boundaries. Again, we emphasize that, in this
paper, by optimal control we mean only characterizing the gradient of the cost func-
tional.
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3.1. Linear growth functional. Let O be a closed set such that O ⊂ Ω. The
set of controls is

C1 = {u ∈ C0,1(Ω̄);u ≥ λ1 > 0}.(3.1)

Consider a problem of finding u ∈ C1 such that the corresponding coincidence set
{zu = 0} is, in some sense, as close as possible to O. For example, one can try to
minimize the following functional:

Φ1(u) =
∫

Ω
(I{zu>0} − IOc)2dx

= Ln (({zu > 0} \ Oc) ∪ (Oc \ {zu > 0})) .(3.2)

Various regularizations of this functional have been considered (see, e.g., [1]). On the
contrary, using formula (2.50), we can consider (3.2) without any regularization.

Compute the directional derivative Φ′1(u; v):

Φ′1(u; v) = lim
λ→0

Φ1(u+ λv)− Φ1(u)
λ

= lim
λ→0

∫
Ω

1
λ

[
(I{zu+λv>0} − IOc)2 − (I{zu>0} − IOc)2] dx

= lim
λ→0

∫
Ω

1
λ

(I{zu+λv>0} − I{zu>0})(I{zu+λv>0} + I{zu>0} − 2IOc)dx

= lim
λ→0

∫
Ω

1
λ

(I{zu+λv>0} − I{zu>0})(IO − IOc)dx

= −
∫

Γu

1
u

∂δu;v

∂νuA
(IO − IOc)dσ(3.3)

provided, say,5

∂{zu > 0} ∩ ∂O consists of finitely many points.(3.4)

Define the adjoint operator A∗ by

A∗z = −
n∑

i,j=1

∂2

∂xi∂xj
(aijz)−

n∑
i=1

∂

∂xi
(biz) + cz.(3.5)

Define the (adjoint) function p = pu as a solution of

A∗p = 0 in {zu > 0},

p =
1
u

on Γu ∩ O,

p = − 1
u

on Γu ∩ Oc,
p = 0 on ∂Ω,

p = 0 in {zu = 0}.(3.6)

Then

−
∫

Γu

1
u

∂δu;v

∂νuA
(IOc − IO)dσ =

∫
Γu
pu
∂δu;v

∂νuA
dσ

=
∫
{zu>0}

(δu;vA∗pu − puAδu;v) dx =
∫

Ω
puvdx,(3.7)

and we have proved the following proposition.

5See Remark 5.



PERTURBATION FORMULA FOR FREE BOUNDARIES 2095

PROPOSITION 3. Let u ∈ C1 be such that the corresponding free boundary Γu is
regular. Also, let (3.4) hold. Then Φ1 is differentiable at u, and

Φ′1(u; v) =
∫

Ω
puvdx,(3.8)

where pu is defined in (3.6).
Remark 4. Under the above assumption, if ∇Φ1(u) is identified as an element of

L2(Ω), then

∇Φ1(u) = pu.(3.9)

This can be used for numerical calculations (e.g., steepest descent method) or for
further analysis.

Remark 5. It does not seem possible to state reasonable a priori conditions to
ensure the fulfillment of the assumption (3.4). The value of (3.3) and (3.4) is then in
numerical computations: for given u, one computes zu and checks (3.4); if (3.4) holds,
one proceeds as explained. If, on the other hand, Hn−1(∂{zu > 0} ∩ ∂O) 6= 0, then
Φ1 is not differentiable at u. In that case, formally, the best selection (for numerical
calculations) of an element of “∂Φ1(u)” would be achieved by imposing p = 0 on
∂{zu > 0} ∩ ∂O in (3.6).

Remark 6 (minimizing the noncoincidence set). Let

Φ2(u) =
∫

Ω

[
I{zu>0} +

ε

2
u2
]
dx(3.10)

for ε > 0.6 The first term in Φ2 corresponds to the case when O = ∅, i.e., Oc = Ω.
Then, if Γu is regular, Φ2 is differentiable at u, and

Φ′2(u; v) =
∫

Ω
(pu + εu)vdx,(3.11)

where p = pu is a solution of

A∗p = 0 in {zu > 0},

p = − 1
u

on Γu,

p = 0 on ∂Ω,
p = 0 in {zu = 0}.(3.12)

Remark 7 (minimizing a solution). We want to compare Φ2 from Remark 6 with
a “distributed” functional, say,

Ψ(u) =
∫

Ω

[
zu +

ε

2
u2
]
dx.(3.13)

Then, if Γu is regular, Ψ is differentiable at u, and it is not difficult to see that

Ψ′(u; v) =
∫

Ω
(qu + εu)vdx,(3.14)

6Of course, this L2-penalization is insufficient to claim existence of a minimizer, since the control
set imposes C0,1-regularity on control functions. Its purpose is only to avoid monotonicity of Φ2,
which may be viewed as trivial. Indeed, if ε = 0, then by the monotonicity of the obstacle problem,
u ≥ v ⇒ zu ≤ zv ⇒ Φ2(u) ≤ Φ2(v) and, formally, Φ2(+∞) = 0.
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where q = qu is the solution of

A∗q = −1 in {zu > 0},
q = 0 on ∂{zu > 0},
q = 0 in {zu = 0}.(3.15)

Notice that pu in (3.12) is discontinuous on Γu, so the global regularity of pu is, say,
L2(Ω), while qu in (3.15) is continuous on Γu, and then the global regularity of qu is
one derivative more, say, H1(Ω).

3.2. Quadratic functional. Without dwelling on details, now change the
boundary conditions and introduce other conditions that ensure that zu is mono-
tone, say, zuxn ≤ 0 for some class of admissible controls u. So the corresponding free
boundaries Γu are graphs: xn = γu(x1, ..., xn−1) = γu(x′). Let Ω1 be an appropriate
domain in Rn−1, and consider the functional

Φ3(u) =
1
2

∫
Ω1

(γu − γ∗)2dx′.(3.16)

Then, if Γu is regular, Φ3 is differentiable (in suitable directions) and

Φ′3(u; v)

= −
∫

Ω1

(γu(x′)− γ∗(x′))∂δ
u;v

∂νuA
(x′, γu(x′))

u(x′, γu(x′))
√

1 + |∇x′γu(x′)|2
dx′

=
∫

Ωu
puvdx,(3.17)

where p = pu is defined as a solution of

A∗p = 0 in {zu > 0},

p(x′, γu(x′)) = − (γu(x′)− γ∗(x′))
u(x′, γu(x′))(1 + |∇x′γu(x′)|2)

for x′ ∈ Ω1,

p = 0 on the rest of Γu,
p = 0 in {zu = 0},(3.18)

with appropriate conditions on ∂Ω ∩ ∂{zu > 0}.
4. Extension to parabolic problems.

4.1. Perturbation formula for regular free boundaries in parabolic ob-
stacle problems. For simplicity, we shall consider the heat operator. Results can
be extended to the case of general parabolic operator (cf. [7]).

As before, let Ω be a bounded domain in Rn such that ∂Ω is locally in C2,α for
some α > 0. Let QT = Ω× {0 < t < T}. We assume

g,Dxg,D
2
xg,Dtg ∈ Cα(Q̄T ),

u ∈ C0,1(Q̄T ).(4.1)

We also assume

u ≥ λ1 > 0, g > 0 in Q̄T .(4.2)
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Consider the following obstacle problem: find z ∈ K such that∫
Ω

[zt(ζ − z) +∇z · ∇(ζ − z)] dx

≥ −
∫

Ω
u(ζ − z)dx for a.e. t ∀ζ ∈ K,(4.3)

where K is the following closed convex set in H1(QT ):

K = {ζ ∈ H1(QT ); ζ = g on ∂pQT , ζ ≥ 0 a.e.}.(4.4)

∂p represents the parabolic boundary, in the above case ∂pQT = Ω×{0}∪ ∂Ω×{0 <
t < T}, and the boundary value is taken in the trace sense.

It is well known (see, e.g., [8]) that the obstacle problem (4.3) has a unique
solution z, and

z,Dxz,D
2
xz,Dtz ∈ Lp(Ω) for a.e. t ∀p <∞,

z,Dxz,D
2
xz,Dtz ∈ L∞loc(QT ).(4.5)

Moreover, by Caffarelli’s theorem [3], in some cases, it is possible to claim smoothness
of the free boundary ∂{z > 0} ∩QT .

The stability of the free boundaries in the parabolic case is discussed in [8]. The
result is similar as in the case of an elliptic obstacle problem.

As before, we denote zu as the solution of the obstacle problem (4.3) corresponding
to the right-hand side u. It is known (see, e.g., [1]) that the map u 7→ zu is

Lipschitz from L2(QT ) to C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)).(4.6)

As in (2.28) in Proposition 1, we can prove the following.
PROPOSITION 4. The (parabolic) obstacle map u 7→ zu is Lipschitz in the following

sense:

‖zu − zv‖L∞(QT ) ≤ c‖u− v‖Lp(QT )(4.7)

for p > n.
Hence, it is not difficult to prove the following proposition.
PROPOSITION 5. Let u be such that the corresponding free boundary ∂{z > 0}∩QT

is regular, and that the problem (4.10) admits a unique solution. Then

zu+λv − zu
λ

⇀ wu;v(4.8)

weakly in L2(0, T ;H1
0 (Ω)) and weakly* in L∞(QT ), as λ→ 0, where

wu;v =
{
δu;v in {zu > 0},

0 in {zu = 0},(4.9)

and where δ = δu;v is the unique solution of the parabolic equation

δt −∆δ = −v in {zu > 0},
δ = 0 on ∂p{zu > 0}.(4.10)

Let Γu = ∂{zu > 0}∩QT , and let, for every t ∈ (0, T ), Γu(t) = ∂{zu(·, t) > 0}∩Ω.
Also let {zu > 0}(t) = {zu(·, t) > 0} ∩ Ω.

NOTATION 4. Let

X = {ϕ ∈ H1(0, T ;H1
0 (Ω));ϕ|t=T = 0}(4.11)

and let X∗ be the dual of X.
We have the following theorem.
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THEOREM 5 (perturbation formula for regular free boundaries; parabolic obstacle
problem case). Under the previous assumptions the following perturbation formula
holds:

I{zu+λv>0} − I{zu>0}

λ
⇀ − 1

u

∂δu;v

∂νux
dΓu(t)dt(4.12)

weakly in X∗, as λ→ 0.
Proof. It is easy to see that zu solves the semilinear equation

zut −∆zu + uI{zu>0} = 0 a.e. in QT ,
zu = g on ∂pQT .(4.13)

So, writing (4.13) in the weak form for zu+λv and zu, subtracting and dividing
by λ, we get, for any ϕ ∈ X,∫

QT

zu+λv − zu
λ

ϕtdxdt−
∫
QT

∇
(
zu+λv − zu

λ

)
· ∇ϕdxdt

=
∫
QT

vI{zu+λv>0}ϕdxdt

+
∫
QT

u
1
λ

(
I{zu+λv>0} − I{zu>0}

)
ϕdxdt.(4.14)

Using (4.8) and the stability theorem of [8], we can pass the limit λ→ 0 in (2.53) to
conclude ∫

QT

wu;vϕtdxdt−
∫
QT

∇wu;v · ∇ϕdxdt

=
∫
QT

vI{zu>0}ϕdxdt

+ lim
λ→0

∫
QT

u
1
λ

(
I{zu+λv>0} − I{zu>0}

)
ϕdxdt.(4.15)

Now, from (4.9) and (4.15), we conclude that

lim
λ→0

∫ T

0

∫
Ω
u

1
λ

(
I{zu+λv>0} − I{zu>0}

)
ϕdxdt

= −
∫ T

0

∫
Γu(t)

∂δu;v

∂νux
ϕdσxdt(4.16)

and hence

lim
λ→0

∫ T

0

∫
Ω

1
λ

(
I{zu+λv>0} − I{zu>0}

)
ϕdxdt

= −
∫ T

0

∫
Γu(t)

1
u

∂δu;v

∂νux
ϕdσxdt,(4.17)

which proves the theorem.
DEFINITION 4. If there exists a function su;v on Γu, such that

I{zu+λv>0} − I{zu>0}

λ
⇀ su;vdΓu(t)dt(4.18)

weakly in X∗, as λ→ 0, then su;v is called the perturbation function.
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We can rephrase Theorem 5 now as the following formula.
PERTURBATION FORMULA 2.

su;v = − 1
u

∂δu;v

∂νux
,(4.19)

where δu;v is defined by (4.10).
Remark 8. If, instead of the heat operator ∂

∂t−∆, we are dealing with the general
parabolic operator ∂

∂t +A, then the differentiation formula (4.12) becomes

I{zu+λv>0} − I{zu>0}

λ
⇀ − 1

u

∂δu;v

∂νuA
dΓu(t)dt(4.20)

weakly in X∗, as λ→ 0.

4.2. An optimal control problem. We shall consider here only the problem
of minimizing the noncoincidence set. So let

Φ4(u) =
∫
QT

[
I{zu>0} +

ε

2
u2
]
dxdt(4.21)

for ε > 0. The set of controls is

C2 = {u ∈ C0,1(Q̄T );u ≥ λ1 > 0}.(4.22)

We compute the directional derivative

Φ′4(u; v) = lim
λ→0

∫
QT

1
λ

[
I{zu+λv>0} − I{zu>0}

]
dxdt+

∫
QT

εuvdxdt

= −
∫ T

0

∫
Γu(t)

1
u

∂δu;v

∂νux
dσxdt+

∫
QT

εuvdxdt.(4.23)

Let p = pu be defined by

pt + ∆p = 0 in {zu > 0},

p = − 1
u

on Γu,

p = 0 on ∂bp{zu > 0} \ Γu,
p = 0 in {zu = 0}.(4.24)

Here ∂bp represents the backward parabolic boundary. Then

Φ′4(u; v) =
∫ T

0

∫
Γu(t)

pu
∂δu;v

∂νux
dσxdt+

∫
QT

εuvdxdt

=
∫ T

0

∫
{zu>0}(t)

[(∆δu;v)pu − δu;v∆pu] dxdt+
∫
QT

εuvdxdt

=
∫ T

0

∫
{zu>0}(t)

[(δu;v
t + v)pu + δu;vput ] dxdt+

∫
QT

εuvdxdt

=
∫
QT

(pu + εu)vdxdt,(4.25)

and we have proved the following proposition.



2100 SRDJAN STOJANOVIC

PROPOSITION 6. Let u ∈ C2 be such that the corresponding free boundary Γu

is regular and that problems (4.10) and (4.24) admit unique solutions. Then Φ4 is
differentiable at u, and

Φ′4(u; v) =
∫

Ω
(pu + εu)vdx,(4.26)

where pu is defined in (4.24).
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REFERENCES

[1] V. BARBU, Optimal Control of Variational Inequalities, Research Notes in Mathematics 100,
Pitman, London, 1984.

[2] V. BARBU AND S. STOJANOVIC, Controlling the moving boundary of the parabolic obstacle
problem, Appl. Math. Optim., 27 (1993), pp. 213–230.

[3] L. A. CAFFARELLI, Regularity of free boundaries in higher dimensions, Acta Math., 139 (1977),
pp. 155–184.

[4] L. A. CAFFARELLI, Compactness methods in free boundary problems, Comm. Partial Differen-
tial Equations, 5 (1980), pp. 427–448.

[5] L. A. CAFFARELLI, A remark on the Hausdorff measure of a free boundary, and the convergence
of coincidence sets, Boll. Un. Mat. Ital. (5), 18-A (1981), pp. 109–113.

[6] L. C. EVANS AND R. F. GARIEPY, Measure Theory and Fine Properties of Functions, CRC
Press, Boca Raton, FL, 1992.

[7] A. FRIEDMAN, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood
Cliffs, NJ, 1964.

[8] A. FRIEDMAN, Variational Principles and Free-Boundary Problems, John Wiley, New York,
1982.

[9] A. FRIEDMAN, Optimal control for variational inequalities, SIAM J. Control Optim., 24 (1986),
pp. 439–451.

[10] F. MIGNOT, Contrôle dans les inéquationes variationnelles elliptiques, J. Funct. Anal., 22
(1976), pp. 130–185.

[11] F. MIGNOT AND J. P. PUEL, Optimal control in some variational inequalities, SIAM J. Control
Optim., 22 (1984), pp. 466–476.

[12] J. P. PUEL, Some results on optimal control for unilateral problems, in Control of Partial
Differential Equations, A. Bermudez, ed., Springer-Verlag, New York, 1989.

[13] D. G. SCHAEFFER, A stability theorem for the obstacle problem, Adv. Math., 16 (1975), pp.
34–47.

[14] S. STOJANOVIC, Remarks on W 2,p-solutions of bilateral obstacle problems, IMA Preprint 1318,
University of Minnesota, Minneapolis, 1995.

[15] S. STOJANOVIC, Optimal control of free boundaries, in Control of Partial Differential Equations
and Applications, E. Casas, ed., Marcel Dekker, New York, 1996, pp. 277–285.

[16] S. STOJANOVIC, Modeling and minimization of extinction in Volterra-Lotka type equations
with free boundaries, J. Differential Equations, 134 (1977), pp. 320–422.

[17] J. SOKOLOWSKI AND J. P. ZOLESIO, Introduction to Shape Optimization, Springer-Verlag,
Berlin, 1992.
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Abstract. We pursue in this paper our study of approximations of values and ε-saddle-point
policies in dynamic zero-sum games. After extending the general theorem for approximation, we
study zero-sum stochastic games with countable state space and unbounded immediate reward. We
focus on the expected average payoff criterion. We use some tools developed in [M. M. Tidball and
E. Altman, SIAM J. Control Optim., 34 (1996), pp. 311–328] to obtain the convergence of the
values as well as the convergence of the ε saddle-point policies in various approximation problems.
We consider several schemes of truncation of the state space (e.g., finite state approximation) and
approximations of games with discount factor close to one for the game with expected average
cost. We use the extension of the general theorem for approximation to study approximations in
stochastic games with complete information. Finally, we consider the problem of approximating the
sets of policies. We obtain some general results that we apply to a pursuit evasion differential game.

Key words. zero-sum games, approximations, stochastic games, pursuit evasion games

AMS subject classifications. 90D05, 93E05
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1. Introduction. We pursue in this paper our study of approximations of values
and saddle-point policies in dynamic zero-sum games. In a previous paper [34], we de-
veloped some tools for approximating zero-sum games and applied them to stochastic
games with discounted payoff criterion. In this paper we extend the general theory for
approximation to handle cases where a value does not exist for the limit game, and
we apply the general theorems for approximation to some dynamic zero-sum games.

We first consider approximation problems arising in stochastic games with ex-
pected average cost: finite state approximation of stochastic games with a countable
state space, and convergence of stochastic games with discounted cost to the stochas-
tic game with average cost. We then consider approximations in stochastic games
with complete information, and problems in dynamic games related to discretization
of the strategy sets.

There is a rich literature on finite state approximation in the context of a single
controller. The discounted reward was extensively studied; see [2, 13, 21, 22, 35, 36]
and [29, 37, 38] for related discretization results. For the expected average cost, there
exist only few works on state approximations in the context of control, and none in
the context of stochastic games. Even if existing schemes could be extended to the
setting of a stochastic game, they are still quite restricted since their convergence (in
the setting of control) was established under conditions that seem very strong, and are
quite often nonapplicable. Thomas and Stengos [33] obtained several schemes for finite
state approximations. They impose some scrambling conditions which should hold
uniformly in the states. They do not seem to hold for queueing applications, such as
the models in [3, 4, 7]. Altman introduced several finite state approximation schemes
[1, 2] for constrained control. They do not require the scrambling conditions, but
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have other restrictive conditions: the scheme in [1] requires some monotone structure
on the immediate cost, and holds for immediate costs that are only functions of the
state, not of the actions. The scheme in [2] has the “finite neighbor” restriction; i.e.,
from each state, only finitely many states are accessible within one step.

The two approximation schemes that we introduce in the current paper relax the
above restrictions and are thus also useful and new in the case of a single controller.
In addition to the convergence of the value, which is the question studied in most
of the papers on state approximations, we obtain (i) the convergence of the policies
and (ii) the robustness of policies; i.e., an equilibrium point for the limiting (infinite
state) stochastic game G = G∞ is shown to be an ε-equilibrium for the approximating
games Gn for n large enough. On the other hand, for any ε, the equilibrium policies
for Gn are almost optimal for the limiting game for all n large enough.

In the previous paper [34] we focused on approximations of stochastic games with
discounted cost and bounded reward, and mentioned that standard techniques can be
used to transform problems with unbounded reward to problems with bounded ones.
This is, however, not the case for the expected average payoff criterion. The question
of existence of value and of equilibrium stationary policies (under some recurrence
conditions) for the case of unbounded reward was solved recently in [7, 8, 12, 30].
The growing interest in stochastic games with unbounded cost in recent years was
partly driven by applications of stochastic games in telecommunications systems in
general, and in queueing systems in particular. Although queues are always finite in
practice (which results in a finite state space description), models of infinite queues are
frequently more useful, since they are usually easier to solve. Indeed, several dynamic
games arising in such applications were explicitly solved [7, 9] or at least reduced to the
search for equilibrium policies among small classes of policies [4, 5, 7]. The scheduling
problem described in [7, 9], the problem of routing into two queues [4, 7], and the
flow and service control problem in [5] have not been solved for the case of finite state
space, since there is an effect of the boundaries due to the finiteness of the queues
that destroys the nice structure of the problem with infinite state space. In all the
above problems, it is unnatural to consider bounded costs. Since costs represent queue
lengths or waiting times, these typically grow to infinity as the number of “customers”
in the queues grows to infinity. The theory developed in this paper allows the use
of the equilibrium policies obtained for the infinite queues to construct ε-equilibrium
policies for the corresponding problems with finite queues, provided that they are
sufficiently large.

A second issue in this paper is the convergence of stochastic games in the discount
factor. The convergence of the value and equilibrium policies for discounted cost
stochastic games to those of the average cost game are well known; see, e.g., [18].
These were extended recently to unbounded cost (see [8, 30]). We obtain not only an
alternative proof for the above convergence of the values and policies but also new
robustness results.

When the players are restricted to using pure strategies in a stochastic game, the
game in general does not have a value anymore. Using an extension of the general
approximation theorems, we study approximations under that restriction. This yields
approximation theorems for stochastic games with complete information (where player
2 knows at time t the action taken by player 1 at time t).

Finally, we consider the problem of approximating the set of policies by other
sets. We obtain a general approximating theorem for the case when the strategy sets
are endowed with the Hausdorff metric. We apply the theorem to a zero-sum pursuit
evasion differential game introduced in [11, 31].
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The structure of the paper is as follows. We begin in section 2 by citing and
extending the general theory for approximations developed in [34]. We then introduce
in section 3 the model, notation, and assumptions for the stochastic game. We present
two schemes for state approximation in section 4. The convergence in the discount
factor is established in section 5. In section 6 we discuss approximations for stochastic
games with complete information. The approximation of the strategy sets is finally
presented in section 7 together with the application to the pursuit evasion game.

2. Key theorems for approximations. We consider the following sequence
Gn = (Sn, Un, Vn), n = 1, 2, ...,∞, of generic zero-sum games where Un is the set
of strategies (or policies) of player 1 and Vn is the set of strategies of player 2 for
the nth game. We assume that both Un and Vn are endowed with some topology.
Sn : Un × Vn → R is a measurable function for all n. We define the upper (lower)
value of the game:

Rn = inf
v∈Vn

sup
u∈Un

Sn(u, v)
(
Rn = sup

u∈Un
inf
v∈Vn

Sn(u, v)
)
.(2.1)

G = (S,U, V ) def= (S∞, U∞, V∞) will be called the limit game. It will first be assumed
(Theorem 2.1) that it has a value R def= R∞ = Val {S(u, v)}u,v. This assumption will
be relaxed in Theorem 2.5.

A strategy u∗ ∈ Un is said to be ε-optimal for player 1 in game n if

inf
v∈Vn

Sn(u∗, v) ≥ inf
v∈Vn

Sn(u, v)− ε ∀u ∈ Un,(2.2)

which is equivalent to infv∈Vn Sn(u∗, v) ≥ Rn− ε. It is said to be strong ε-optimal for
player 1 in game n if it satisfies

inf
v∈Vn

Sn(u∗, v) ≥ Rn − ε.

A strategy v∗ ∈ Vn is said to be ε-optimal for player 2 in game n if

sup
u∈Un

Sn(u, v∗) ≤ sup
u∈Un

Sn(u, v) + ε ∀v ∈ Vn,(2.3)

which is equivalent to supu∈Un Sn(u, v∗) ≤ Rn + ε. It is said to be strong ε-optimal if

sup
u∈Un

Sn(u, v∗) ≤ Rn + ε.

Note that strong ε-optimality implies ε-optimality. If a game has a value Rn = Rn,
then strong ε-optimality is equivalent to ε-optimality.

Assume that (Sn, Un, Vn) converge (in some sense) to (S,U, V ). We are interested
in the following questions:

(Q1) Convergence of the values: does Rn (or Rn) converge to R?
(Q2) Convergence of policies: fix some ε ≥ 0. Let εn be a sequence of positive real

numbers such that limn→∞ εn ≤ ε. Assume that u∗n and v∗n are εn-optimal policies
for the nth game. Are u∗n and v∗n “almost” optimal for the limit game, for all n large
enough?

(Q3) Let u ∈ U (resp., v ∈ V ) be some limit point of u∗n (resp., v∗n), defined
above. Is u (resp., v) ε-optimal for the limit game?
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(Q4) Robustness of the optimal policy: if u∗ (resp., v∗) is an ε-optimal policy for
the limit game, can we derive from it an “almost” (strong) optimal policy for the nth
approximating game for all n large enough?

A straightforward generalization of Theorem 2.1 in [34] yields our Theorem 2.1.
THEOREM 2.1. Assume that for any ε1 > 0 there exists a sequence of functions,

π1
n : Un → U , π2

n : Vn → V , σ1
n : U → Un, σ2

n : V → Vn, n = 1, 2, ..., such that
(A1) limn→∞[Sn(u, σ2

n(v)) − S(π1
n(u), v)] ≤ ε1 uniformly in u ∈ Un for each

v ∈ V .
(A2) limn→∞[Sn(σ1

n(u), v) − S(u, π2
n(v))] ≥ −ε1 uniformly in v ∈ Vn for each

u ∈ U .
Then

(1) limn→∞Rn = limn→∞Rn = R.
(2) For any ε′ > ε + 3ε1, there exists N such that π1

n(u∗n) (resp., π2
n(v∗n), see

definitions in (Q2)) is ε′-optimal for the limit game for all n ≥ N .
(3) Let u∗ (resp., v∗) be ε-optimal for the limit game. Then for all ε′ > ε + 3ε1,

there exists N(ε′) such that σ1
n(u∗) (resp., σ2

n(v∗)) is strong ε
′
-optimal for the nth

approximating game for all n ≥ N(ε′).
(4) Suppose that
(A3) S(u, v) is a lower semicontinuous function in u for each v.
(A4) S(u, v) is an upper semicontinuous function in v for each u.

Suppose that ū ∈ U (resp., v̄ ∈ V ) is a limit point of π1
n(u∗n) (resp., π2

n(v∗n)). Then ū
(resp., v̄) is (ε+ 5ε1)-optimal for the limit game.

Remark 2.2. (i) Whenever Un = U and Vn = V do not depend on n, πn and σn
will be chosen as the identity maps.

(ii) It follows from the proof of part (1) in the above theorem that if for every
Gn, n = 1, 2, ...,∞, there exist optimal policies for both players, and if Un = U and
Vn = V do not depend on n, then

|Rn −R| ≤ sup
u,v
|Sn(u, v)− S(u, v)|, |Rn −R| ≤ sup

u,v
|Sn(u, v)− S(u, v)|.

Remark 2.3. Some results related to those in Theorem 2.1 can be found in [10, 17,
20, 26] and in [27], whose authors also consider additional constraints on the policies
studied there.

We now relax the assumption that the limit game has a value R∞ 6= R∞. We
show that Theorem 2.1 still holds, by appropriately enlarging the policy spaces and
redefining the cost, so that the upper (or lower) value becomes a real value of a new
game.

We consider the convergence of the upper values (and corresponding optimal or
almost optimal policies) of the approximating games to those of the limit game. The
corresponding convergence for the lower values are obtained in a similar way. Define
Un = {the class of functions Vn → Un}. Define the cost Ŝn : Un × Vn → R by
Ŝn(ψ, v) = Sn(ψ(v), v).

LEMMA 2.4. (i) For all n, the new game Gn = (Ŝn,Un, Vn) has a value Rn, and
Rn = Rn.

(ii) v∗ is ε-optimal for player 2 in game Gn if and only if it is ε-optimal in game
Gn.

Proof.

inf
v∈Vn

sup
ψ∈Un

Ŝn(ψ, v) = inf
v∈Vn

sup
ψ∈Un

Sn(ψ(v), v) = inf
v∈Vn

sup
u∈Un

Sn(u, v) = Rn.(2.4)
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On the other hand,

inf
v∈Vn

sup
ψ∈Un

Sn(ψ(v), v) = sup
ψ∈Un

inf
v∈Vn

Sn(ψ(v), v) = sup
ψ∈Un

inf
v∈Vn

Ŝn(ψ, v).(2.5)

The first equality in (2.5) is due to the following. Clearly,

inf
v∈Vn

sup
ψ∈Un

Sn(ψ(v), v) ≥ sup
ψ∈Un

inf
v∈Vn

Sn(ψ(v), v),

and we have to show that the reverse inequality also holds. Fix some ε′ > 0 and let
ψ∗ be such that for all v and all ψ ∈ Un,

Sn(ψ∗(v), v) ≥ Sn(ψ(v), v)− ε′.

Hence,

inf
v∈Vn

Sn(ψ∗(v), v) ≥ inf
v∈Vn

sup
ψ∈Un

Sn(ψ(v), v)− ε′.

We conclude that

sup
ψ∈Un

inf
v∈Vn

Sn(ψ(v), v) ≥ inf
v∈Vn

sup
ψ∈Un

Sn(ψ(v), v)− ε′,

which establishes the first equality in (2.5). (i) is obtained by combining (2.4) and
(2.5). (ii) follows, since for any v ∈ Vn,

sup
u∈Un

Sn(u, v) = sup
ψ∈Un

Ŝn(ψ, v).

By using the new games for which the values exist, and applying Theorem 2.1,
we may conclude the following convergence properties of the original games.

THEOREM 2.5. Assume that the functions πn and σn exist as in Theorem 2.1,
and that conditions (A1) and (A2) hold. Then

(1) limn→∞Rn = R, limn→∞Rn = R.
(2) For any ε′ > ε + 3ε1, there exists N such that π1

n(u∗n) (resp., π2
n(v∗n); see

definitions in (Q2)) is ε′-optimal for the limit game for all n ≥ N .
(3) Let u∗ (resp., v∗) be ε-optimal for the limit game. Then for all ε′ > ε + 3ε1,

there exists N(ε′) such that σ1
n(u∗) (resp., σ2

n(v∗)) is ε′-optimal for the n approximat-
ing game for all n ≥ N(ε′).

Proof. Consider the new games Gn defined above. We show that the assump-
tions of Theorem 2.1 hold also for Gn. The mapping π̃2

n, σ̃
2
n for the new games are

unchanged:

π̃2
n = π2

n, σ̃2
n = σ2

n.

The mappings π̃1
n : Un → U and σ̃1

n : U → Un for the new games are defined as

[π̃1
n(ψ)](v) = π1

n(ψ(v)) ∀v ∈ V, [σ̃1
n(ψ)](v) = σ1

n(ψ(v)) ∀v ∈ Vn.

With these definitions, as well as the definition of the costs Ŝn, it follows that (A1)
and (A2) hold for Gn. The proof now follows by Lemma 2.4.

We may further obtain convergence results for the optimal (or ε-optimal) re-
sponses (in case the value of the limit game does not exist). To simplify the formula-
tion, this is done below in terms of the new games Gn.
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THEOREM 2.6. Consider the new games Gn, and let ψ∗n, v
∗
n be defined as u∗n in

(Q2) (above Theorem 2.1). Under the conditions of Theorem 2.5,
(1) limn→∞Rn = R = R.
(2) For any ε′ > ε + 3ε1, there exists N such that π̃1

n(ψ∗n) (resp., π̃2
n(v∗n)) is

ε′-optimal for G∞ for all n ≥ N .
(3) Let ψ∗ be ε-optimal for player 1 in the limit game G∞. Then, for all ε′ >

ε + 3ε1, there exists N(ε′) such that σ̃1
n(ψ∗) (resp., σ̃2

n(v∗)) is ε′-optimal for the n
approximating game Gn for all n ≥ N(ε′).

Next, we consider the result corresponding to statement (4) in Theorem 2.1.
THEOREM 2.7. Assume that the conditions of Theorem 2.6 hold, that the set of

response strategies for player 2 in games Gn is endowed with some topology, and that
(A3) and (A4) hold for game G∞. Then statement (4) of Theorem 2.1 holds for games
Gn.

3. Stochastic games with expected average payoff. We consider the two-
person, zero-sum stochastic game defined by the objects {I,A,B, P, r}, where

– I is a countable state space;
– A and B are sets of actions for player 1 and player 2, respectively; at each

state j ∈ I, the available actions for the players are Aj and Bj , respectively.
These sets are assumed to be compact metric sets.

– P (a, b) = [p(i, a, b, j)]i,j , a ∈ A, b ∈ B, i, j ∈ I, are the transition probabili-
ties, so that p(i, a, b, j) is the probability of moving from i to j if the players
use actions a and b.

– r : I×A×B→ R is an immediate reward function.
The game is played in stages t = 0, 1, 2, .... If at some stage t, the state is i, then

the players independently choose actions a ∈ Ai, b ∈ Bi. Player 2 then pays player
1 the amount r(i, a, b), and at stage t + 1, the new state is chosen according to the
transition probabilities p(i, a, b, •). The game continues at this new state.

Let U and V be the set of behavioral strategies for both players. A strategy
u ∈ U is a sequence u = (u0, u1, ...), where ut is a probability measure over the
available actions, given the whole history of previous states and of previous actions
of both players as well as the current state.

A Markov policy q = {q0, q1, ...} is a policy (for either player 1 or 2) where qt is
allowed to depend only on t and on the state at time t.

A stationary (mixed) policy g for player 1 is characterized by a conditional dis-
tribution pg(• | j) over Aj , so that pg(Aj | j) = 1, which is interpreted as the
distribution over the actions available at state j which player 1 uses when it is in
state j. With some abuse of notation, we shall set g(• | j) = pg(• | j) for stationary
g. Let US be the set of stationary policies for player 1, and define similarly the sta-
tionary policies VS for player 2. If both players use stationary policies, say u and v,
then {Xt} becomes a Markov chain with stationary transition probabilities, given by

p(j, u, v, k) :=
∫

Aj

∫
Bj
p(j, a, b, k)u(da|j)v(db|j).(3.1)

The expected immediate reward at state j becomes

r(j, u, v) :=
∫

Aj

∫
Bj
r(j, a, b)u(da|j)v(db|j).

Denote by P (u, v) the (infinite-dimensional) matrix whose (j, k)th component equals
p(j, u, v, k). Similarly, denote by r(u, v) the column vector whose jth component
equals r(j, u, v).
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Next, we introduce a topology on the sets of stationary policies. For any compact
metric set Γ, let M1(Γ) denote the set of probability measures on the Borel subsets
of Γ endowed with the weak topology ξ(Γ) (see [28]). The class of stationary policies
for player 1 (and similarly for player 2) can be identified with the set ∏i∈IM1(Ai)×
M1(Bi); moreover, it is compact with respect to the product topology ∏

i∈Iξ(Ai) ×
ξ(Bi), and it is metrizable (by virtue of Theorem 4.14 in Kelley [23]).

Let (u, v) be a pair of strategies and let i ∈ I be a fixed initial state. Let
It, At, Bt, t = 0, ..., be the resulting stochastic process of the states and actions of
the players. Let Eu,vi denote the expectation with respect to the measure defined by
u, v, i.

Let µ : I→ R be some positive function. Following Dekker and Hordijk [16] and
Spieksma [32], define the µ-norm of any vector x ∈ RI as

‖ x ‖µ= sup
i∈I

|xi|
µi

.

In a similar way, we will use the µ-J-norm, for any finite subset J of the state space
I, defined by

‖ x ‖Jµ= sup
i∈J

|xi|
µi

.

Define the µ-norm of matrices Q ∈ RI×I as

||Q||µ = sup
i∈I

µ−1
i

∑
j∈I

|Qij |µj .

We denote by
∨
µ = {x :‖ x ‖µ<∞} the space of all vectors that are µ-bounded.

We introduce the following assumptions:
• (B1)

– i) The instantaneous reward r(i, a, b) is continuous and µ-bounded, i.e.,

sup
i∈I

sup
a,b

|r(i, a, b)|
µi

≤M < +∞.

This condition can be rewritten as ||r(·, u, v)||µ ≤M < +∞ for all pure
stationary policies u and v.

– ii) The transition probabilities are µ-continuous; i.e., if a(n)→ a, b(n)→
b when n→ +∞, then

lim
n→∞

∑
j∈I

|p(i, a(n), b(n), j)− p(i, a, b, j)| µj = 0 ∀i ∈ I.

• (B2)
– i) Under any pure stationary policies for the players, the state space

does not contain more than one ergodic class.
– ii) There exists a finite set M⊂ E and a constant β < 1 such that∑

j∈I
Mp(i, a, b, j) µj ≤ β µi ∀a, b, ∀i ∈ I,(3.2)

where Mp(i, a, b, j) = p(i, a, b, j) if j does not belong to the set M,
and is null otherwise. (3.2) can be rewritten as

∑
j /∈M p(i, a, b, j) µj ≤

β µi ∀a, b,∀i ∈ I, or as ||MP (u, v)||µ ≤ β for all pure stationary policies
u and v.
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Remark 3.1. If assumptions (B1) and (B2) hold for someM and µ, then one can
choose a state 0 ∈ M and another µ′ such that these assumptions hold with the set
M′ = {0} replacing M, and µ′ replacing µ (see [32]). Therefore, we assume in the
sequel, without loss of generality, that M = {0} for some state 0.

Define

S(i, u, v) = lim
t→∞

1
t
Eu,vi

t−1∑
s=0

r(Is, As, Bs).(3.3)

THEOREM 3.2 (see [8]). Suppose that assumptions (B1) and (B2) hold. Then
(i) The stochastic game with expected average payoff criterion has a value.
(ii) There exists a unique solution pair (g, v), g ∈ R, v ∈ RI, to the functional

equation

v(i) = Val

r(i, a, b)− g +
∑
j∈I

p(i, a, b, j)v(j)


a,b

, i ∈ I,(3.4)

such that ||v||µ is finite and v(0) = 0.
(iii) g = R(i) = Val {S(i, u, v)}u,v is the unique value of the stochastic game.
(iv) Let (u, v) be stationary policies such that u(i), v(i) are optimal for the dummy

game in the curly brackets in (3.4). Then they are optimal for the stochastic game.

4. State truncation and approximation. In the following approximating
schemes, we modify the “limit” stochastic game in the following way. We consider
an increasing sequence of sets of states I1, I2, ... converging to I, such that 0 ∈ I1.
The nth stochastic game is restricted to the set In. In the game Gn, we modify the
transition probabilities so as to eliminate all transitions outside the set In. The two
schemes will differ by the way that such transitions will be replaced. Introduce the
following assumption:

• (B3) δ(r, n) = sup
i∈Ir

a∈A,b∈B

∑
j 6∈In

p(i, a, b, j)µ(j)→ 0 as n→ +∞ ∀r.

Under the assumptions of our model (i.e., (B1)–(B2)), (B3) holds if In are finite sets
∀n (the proof is similar to the one in [34]).

4.1. Scheme I. In the game Gn, we modify the transition probabilities so as
to eliminate all transitions outside the set In; we replace transitions outside of In by
transitions to state 0. Hence, pn(i, a, b, j) is defined by

pn(i, a, b, j) =



p(i, a, b, 0) +
∑
l 6∈In

p(i, a, b, l), j = 0, i ∈ In,

p(i, a, b, j), j 6= 0, i, j ∈ In,

0, j 6∈ In,

1{j = 0}, i /∈ In.

(4.1)

For i ∈ In, Sn(i, u, v) is defined as (3.3), where the expectation is taken with respect
to the signed measure generated by the new transition probabilities (4.1). Sn(i, u, v)
is defined to be 0 for i /∈ In, for all u and v.
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For n ∈ N, let the pair (gn, vn ∈
∨
µ) be the solutions of the dynamic programming

equation

vn(i) = Val
{
r(i, a, b)− gn +

∑
j∈I p

n(i, a, b, j)vn(j)
}
a,b
, i ∈ In, i 6= 0,

vn(i) = 0, i /∈ In or i = 0.
(4.2)

One can show using Theorem 3.2 that for all n, gn and vn indeed exist and are unique.
Moreover, we have that

Rn(i) = Val {Sn(i, u, v)}u,v = gn ∀i ∈ I.

In order to prove the convergence of the state approximation scheme we introduce
the following quantities:

• τ := inf{t ≥ 1, It = 0} is the time to reach state zero (with the convention
that inf{t : t ∈ ∅} =∞).
• w(i, u, v):= the total cost to reach zero from state i when policies u and v are

used:

w(i, u, v) = Eu,vi

τ∑
s=0

r(Is, As, Bs),

which can be rewritten in vector form as

w(u, v) =
∞∑
s=0

[0P (u, v)]sr(u, v).

• wn(i, u, v):= the total cost to reach zero from state i when policies u and v
are used, when the transition probabilities are replaced by (4.1).
• τ(i, u, v), τn(i, u, v):= the expectations of τ when using the original transition

probabilities, and when using those in (4.1), respectively. For i /∈ In we have
τn(i, u, v) = 1 for all policies u and v.

We note that w(·, u, v), wn(·, u, v), τ(·, u, v), and τn(·, u, v) are uniformly µ bounded.
Indeed,

||w(u, v)||µ ≤
∞∑
s=0

[
||0P (u, v)||µ

]s
||r(u, v)||µ ≤

M

1− β(4.3)

with the same bound for wn(u, v). Similarly, ||τ(u, v)||µ and ||τn(u, v)||µ are bounded
by (1− β)−1. It is easily seen that w(·, u, v), wn(·, u, v), τ(·, u, v), and τn(·, u, v) are
the unique solutions in

∨
µ of the fixed point equations

w(i, u, v) = r(i, u, v) +
∑
j 6=0

p(i, u, v, j)w(j, u, v),(4.4)

wn(i, u, v) =


r(i, u, v) +

∑
j 6=0 p

n(i, u, v, j)wn(j, u, v) for i ∈ In,

0 for i 6∈ In,
(4.5)

τ(i, u, v) = 1 +
∑
j 6=0

p(i, u, v, j)τ(j, u, v),(4.6)

τn(i, u, v) =


1 +

∑
j 6=0 p

n(i, u, v, j)τn(j, u, v) for i ∈ In,

1 for i 6∈ In.
(4.7)
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The uniqueness follows from the fact that the above equations are contracting due to
(B2). Note that functions w(., u, v) and wn(., u, v) are µ-bounded for all pairs (u, v)
on every subset J of I. Since both τn(0, u, v) and τ(0, u, v) are both nonzero and
finite, it follows (see Chung [14, pp. 91–92]) that the expected average cost is given
by the following ratio between the total cost and the expected hitting time of state
zero:

S(i, u, v) =
w(0, u, v)
Eτ(0, u, v)

and Sn(i, u, v) =
wn(0, u, v)
Eτn(0, u, v)

.(4.8)

THEOREM 4.1. Assume (B1)–(B3). All statements of Theorem 2.1 hold, where Sn
and S are the expected average payoffs defined in (3.3), with the transition probabilities
p and pn (defined in (4.1)), respectively.

Proof. Fix some initial state i. We use Theorem 2.1. We begin by establishing
conditions (A1) and (A2). Since U = Un and Vn = V for each n, it suffices to show
that Sn(u, v) := Sn(i, u, v) converges to S(u, v) := S(i, u, v) uniformly on I. Hence,
we set π1

n, π2
n, σ1

n, and σ2
n to be identical.

Let J be a given subset of I, and (u, v) a pair of strategies. To avoid cumbersome
notations we will write w(.) (resp., wn(.)) instead of w(., u, v) (resp., wn(., u, v)). We
first want to prove that

lim
n→+∞

‖ wn − w ‖Jµ= 0.

Once we show that, one obtains in the same way that limn→+∞ ‖ Eτ − Eτn ‖Jµ= 0,
and the uniform convergence of Sn(u, v) to S(u, v) now follows from (4.8).

We use an idea introduced by Cavazos-Cadena [13] and used in [34] for a similar
problem. Fix ε arbitrarily small and define the sequence gk in the following way.
g0 = min {m : J ⊂ Im} and, recursively,

gk = g(ε, gk−1), g(ε, r) = min {m : δ(r,m) ≤ ε} ,

where δ is defined in (B3). Due to assumption (B3), this sequence is well defined, and
for all k, gk is finite. Let ν be a given integer; define also

mν(ε) = max {gm,m = 0, 1, ..., ν} .

Let n ≥ mν(ε), i ∈ J . Let us now compute ‖ wn −w ‖Jµ. We obviously have that

‖ wn − w ‖Jµ≤‖ wn − w ‖
Ig0
µ , since J ⊂ Ig0 , and for i ∈ Ig0 ,

1
µi
|wn(i)− w(i)| = 1

µi

∣∣∣∣∣∣
∑
j 6=0

pn(i, u, v, j)wn(j)− p(i, u, v, j)w(j)

∣∣∣∣∣∣
≤ 1
µi

∑
j∈Ig1\{0}

|pn(i, u, v, j)wn(j)− p(i, u, v, j)w(j)|

+
1
µi

∑
j∈In\Ig1

|pn(i, u, v, j)wn(j)− p(i, u, v, j)w(j)|

≤
∑

j∈Ig1\{0}

p(i, u, v, j)µj
µi

|wn(j)− w(j)|
µj

+
1
µi

∑
j∈In\Ig1

p(i, u, v, j)|wn(j)− w(j)|.
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In the last inequality the first term can be bounded by β ‖ w − wn ‖Ig1µ because of
assumption (B2(ii)), and the second by 2 M

1−β ε, since

∑
j∈In\Ig1

p(i, u, v, j)|wn(j)− w(j)| ≤
∑

j∈In\Ig1

µjp(i, u, v, j)
[
|wn(j)|
µj

+
|w(j)|
µj

]
.

This is due to the definition of the sequence Igk , since i belongs to Ig0 due to (B3),
and since wn and w are bounded by M

1−β ; see (4.3). We obtain

‖ wn − w ‖Ig0µ ≤ β ‖ wn − w ‖Ig1µ +2
M

1− β ε.

In exactly the same way we get for k ≤ mν(ε),

‖ wn − w ‖Igkµ ≤ β ‖ wn − w ‖Igk+1
µ +2

M

1− β ε,

and finally,

‖ wn − w ‖Jµ ≤ βν
2M

1− β +
2Mε

1− β

(
1− βν
1− β

)
.(4.9)

Since ν can be chosen arbitrarily large when n tends to infinity, and β is strictly lower
than 1, this bound can be as small as needed for n large enough. This establishes
(A1)–(A2) in Theorem 2.1. It follows from [8] that S is a continuous function of u
and v, which implies (A3)–(A4) of Theorem 2.1. This completes the proof.

4.2. Scheme II. In the previous scheme, we replaced transitions outside of In
by transitions to state 0. In some applications this may be undesirable; this is the
case when the games with truncated space describe real problems that we wish to
approximate by some game with an infinite state space. To illustrate this, consider a
queue with a finite length L, and assume that the state is the number of customers
in the queue. Then, typically, if a transition from state L to state L+ 1 were possible
in the case of an infinite queue, then in the problem with truncated state space,
which corresponds to a finite queue, it is replaced by a transition from L to L. In
the previous scheme, it would be replaced by a transition to state 0. This would
be especially undesirable, since in queueing problems, we usually have the property
of transitions to closest neighbors: from each state, only finitely many neighboring
states can be reached in one step. So, having a transition from state L to 0 does not
describe a realistic model of a finite queue.

Let {qn(i, a, b, j), i, j ∈ I, a ∈ A, b ∈ B} be sequences of measures such that for
all n, i ∈ I, a ∈ A, b ∈ B,

qn(i, a, b, j) ≤ 0 for j ∈ In, qn(i, a, b, j) = 0 for j /∈ In,

∑
j∈In

(p(i, a, b, j) + qn(i, a, b, j)) = 1.

The transitions for the approximating problems are then given by

pn(i, a, b, j) =
{
p(i, a, b, j) + qn(i, a, b, j), i, j ∈ In,
0 otherwise.(4.10)



2112 MABEL TIDBALL, ODILE POURTALLIER, AND EITAN ALTMAN

It follows that ∑
j∈In

qn(i, a, b, j) =
∑
j /∈In

p(i, a, b, j).(4.11)

We make the following assumption on µ and on In:

for any n > m and i ∈ In \ Im, µ(i) ≥ sup
j∈Im

µ(j).

For i ∈ In, Sn(i, u, v) is defined as (3.3), where the expectation is taken with respect to
the measure generated by the new transition probabilities (4.10). We set Sn(i, u, v) =
0 for all i /∈ In.

THEOREM 4.2. Assume (B1)–(B3), and consider the above finite approximation
scheme. Then all statements of Theorem 2.1 hold.

Proof. We consider, as in the previous section, the total expected cost and total
expected time between consecutive epochs until state 0 is reached. By similar argu-
ments to those in the previous scheme, one then establishes that Sn(u, v) converge
to S(u, v) uniformly in all stationary policies (the exact proof can be found in [6,
Chapter 8]). This implies assumptions (A1) and (A2). Assumptions (A3) and (A4)
relate only to the limit game, and therefore the proof is the same as in the previous
section. The theorem now follows from Theorem 2.1.

5. Convergence of the discounted cost to the average cost. Conditions
for the convergence of the value and equilibrium policies for discounted cost stochastic
games to those of the average cost game are well known; see, e.g., [18]. These were
extended recently to unbounded cost (see [8, 30]). Theorem 2.1 enables us not only
to obtain an alternative proof for the above convergence of the values and policies but
also to obtain new robustness results, as in Theorem 5.2 below.

Define the β-discounted game payoff

Sβ(i, u, v) = (1− β)Eu,vi

∞∑
t=0

βtr(It, At, Bt).(5.1)

The following was proved in [8, Theorem 3.4], (see also [15]).
THEOREM 5.1. Assume (B1) and (B2). Then
(1) A value Rβ(i) exists for the discounted cost.
(2) Optimal stationary policies exist for both players for any discount factor 0 <

β < 1 (they are said to be β-optimal).
(3) Any limit-point (as β tends to 1) of β-optimal stationary policies is expected

to be average optimal; moreover, the value of the discounted games converges to the
value of the expected average game.

THEOREM 5.2. (1) Let (u∗, v∗) be any stationary policy pair which is expected to
be average optimal. Then for any ε > 0, (u∗, v∗) is ε-optimal for the β-discounted cost
for all β sufficiently close to 1, and for all u ∈ U , v ∈ V ,

lim
β→1

[Sβ(i, u, v∗)− Sβ(i, u∗, v∗)] ≤ 0, lim
β→1

[Sβ(i, u∗, v)− Sβ(i, u∗, v∗)] ≥ 0.

(2) For any ε > 0 there exists some β0 < 1 such that for any β0 ≤ β < 1 and
any stationary pair uβ , vβ which is β-optimal, (uβ , vβ) is ε-optimal for the expected
average game.
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Proof. It is sufficient to prove that (A1) and (A2) in Theorem 2.1 hold. This
follows indeed from the fact that

lim
β→1
||Sβ(·, u, v)− S(·, u, v)||µ = 0

uniformly over all stationary policies u and v; see [2, p. 166].

6. Stochastic games with complete information. In sections 4 and 5 and in
[34] we described several approximation problems in stochastic games, where we had a
value in the limit game. In all those cases, we considered (without loss of optimality)
the (randomized) stationary or the (randomized) Markov policies. Consider now the
game G0 = (S,UD, VD), where S is given in (3.3) for some fixed initial state i, and
where UD and VD are the classes of the pure stationary policies. Then the game will
generally not have any value: it will have typically a lower and an upper value.

Since we established conditions (A1) and (A2) for all the problems considered in
sections 4 and 5 (and also for the discounted cost, in [34]), they hold in particular
if we restrict to purely stationary strategies. Therefore, the convergence of RDn and
R
D

n to the upper and lower values of the limit game (RD and R
D

) as well as the
convergence of the policies in Theorems 2.5 and 2.6 hold for all these problems. (G0

n

is the nth approximating game, and R
D

n and RDn , its upper and lower values.)
Applying Theorem 2.7 is more delicate, since only in special cases can we define

a topology over the space of responses of player 2 such that assumptions (A3) and
(A4) hold (as opposed to standard stochastic games, where (A3) and (A4) need to
hold for policies, and not for responses). When the action space available to player
1 is finite, one may identify the class of pure stationary response strategies of player
2 (corresponding to purely stationary policies of player 1) with the set of functions
I×A→ B, endowed with topology of weak convergence of measures. The continuity
assumptions (A3) and (A4) can now be established using arguments as in Remark
3.1 in [34] and [8].

We shall now show the usefulness of the above results for stochastic games with
complete information in the sense used, e.g., by Küenle [24, 25]. There, one of the
players—say, player 2—has at each time t the additional information of the action
chosen by player 1 at time t (i.e., in addition to the information of all past states
and actions of both players, plus the current state). The information structure for
the other player is unchanged. We thus define the class of policies V ∗ to be the
set of policies of the form v = (v0, v1, ...), where vt is a probability measure over B
conditioned on the history (x0, a0, b0, x1, a1, b1, ..., xt−1, at−1, bt−1, xt, at).

Consider the following game: G1 = (S,U, V ∗), where S is given by (3.3) for some
fixed initial state i. (The results below will also hold for the expected discounted cost
with infinite horizon, considered in [34].) We shall be interested in approximating

R1 = sup
u∈U

inf
v∈V ∗

S(u, v).

Under quite general conditions [18, 24, 25], there exists optimal policies in UD for
player 1 in the sense that there exists some u1 ∈ UD such that

R1 = sup
u∈U

inf
v∈V ∗

S(u, v) = sup
u∈UD

inf
v∈V ∗

S(u, v) = inf
v∈V ∗

S(u1, v).

(This property does not hold for non-zero-sum games, for which there are counter-
examples; see [18].)
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On the other hand, under the conditions in section 3, we have for any u ∈ UD,

inf
v∈V ∗

S(u, v) = inf
v∈V

S(u, v) = inf
v∈VD

S(u, v).

The first equality follows from the fact that u ∈ UD, so that for any policy v∗ ∈ V ∗,
we have S(u, v) = S(u, v∗), where v = (v0, v1, ...) is given by

vt(x0, a0, b0, ..., xt−1, at−1, bt−1, xt) = v∗t (x0, a0, b0, ..., xt−1, at−1, bt−1, xt, u(xt)).

The second equality follows, since for any u ∈ UD, player 2 is now faced with a
standard Markov decision process (see, e.g., [32]). We thus conclude that R1 = RD.
Thus, the convergence of RDn to RD implies convergence of lower values for the game
with complete information. Similarly, the convergence of the policies in Theorems 2.5
and 2.6 for games G0

n implies the convergence of policies for player 1 in the games
with complete information that approximate G1.

Remark 6.1. An alternative approach to obtaining convergence of values and
policies for games with complete information is to transform these into standard
stochastic games [25]. Note, however, that if the action space is uncountably infinite
(e.g., an interval), then the transformation results in an uncountable state space.

7. A finite approximation of strategy sets. Another type of approximation
that arises in dynamic games is the countable or finite approximation of strategy sets.
This step is necessary when we want to perform numerical computations, and when
the strategy sets are infinite or continuous, or both.

Let U and V be metric sets of policies for players 1 and 2, and let S(u, v) cor-
respond to the cost associated to the pair of strategies u ∈ U , v ∈ V. Introduce the
following sets of strategies: U ⊂ U and V ⊂ V, and the sequences {Un}n∈N ⊂ U and
{Vn}n∈N ⊂ V. Un and Vn are assumed to be countable or finite sets of policies.

THEOREM 7.1. Suppose that
(A′1) limn→+∞ Un = U and limn→+∞ Vn = V , in the Hausdorff topology sense,
(A′3) S(u, v) is a lower semicontinuous function in u ∈ U uniformly in v ∈ V ,
(A′4) S(u, v) is an upper semicontinuous function in v ∈ V uniformly in u ∈ U .
Then the conclusions of Theorem 2.1 hold (where Rn and Rn are defined in (2.1)

and R is defined with respect to the policy sets U and V for ε1 = 0).
Proof. We need to prove that under the set of assumptions (A′1), (A′3), and (A′4)

the hypotheses of Theorem 2.1 are satisfied. (A′3) and (A′4) directly imply (A3) and
(A4). We shall prove only that (A1) holds, since the proof of (A2) is identical. Choose
any ε0 and introduce some sequence of functions:

π1
n : Un −→ U such that d(un, π1

n(un)) < inf
u∈U

d(un, u) + ε0

and

σ2
n : V −→ Vn such that d(σ2

n(v), v) < inf
vn∈Vn

d(vn, v) + ε0.

By (A′1), for all ε2, there exists N1 = N1(ε2) such that for all n > N1,

max
(

sup
un∈Un

inf
u∈U

d(un, u) ; sup
u∈U

inf
un∈Un

d(un, u)
)
≤ ε2;

that is, for all un ∈ Un,

inf
u∈U

d(un, u) ≤ ε2,
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so for all un ∈ Un,

d(un, π1
n(un)) ≤ ε0 + ε2.(7.1)

Similarly, for all ε3, there exists N3 = N3(ε3) such that for all n > N3 and for all
v ∈ V ,

d(v, σ2
n(v)) ≤ ε0 + ε3.(7.2)

To prove (A1) we shall show that for all ε, there exists N = N(ε) such that for all
n > N , and for all un ∈ Un, v ∈ V , we have

(7.3)

S(un, σ2
n(v))− S(π1

n(un), v) = S(un, σ2
n(v))− S(un, v) + S(un, v)− S(π1

n(un), v) < ε.

Since S is upper semicontinuous in v uniformly in u, there exists η1 such that if
d(σ2

n(v), v) ≤ η1, S(un, σ2
n(v))−S(un, v) ≤ ε/2. Choose ε0 and ε3 such that ε0+ε3 = η1

in (7.2); there exists N1 such that for all n > N1,

S(un, σ2
n(v))− S(un, v) ≤ ε

2
.(7.4)

Similarly, it follows from (7.1) and the fact that S is lower semicontinuous in u uni-
formly in v that there exists N2 such that for all n > N2,

S(un, v)− S(π1
n(un), v) ≤ ε

2
.(7.5)

Equations (7.4) and (7.5) imply (7.3) by choosing N = sup(N1, N2), which concludes
the proof.

Remark 7.2. In many applications (e.g., [11, 31]), the strategy sets are compact.
Hence it suffices to require in (A′3) and (A′4) the semicontinuity properties; the
uniform semicontinuity is then a consequence of the compactness of the strategy
sets.

As an application of Theorem 7.1, we present the following continuous-time dif-
ferential pursuit evasion game by Bernhard and Shinar [11, 31]. We shall use the same
notation as in [11, 31]. The game is governed by a differential equation

dx

dt
= f(x, a, b), x ∈ I, a ∈ A, b ∈ B,

where A and B are compact subsets of Rm1 and Rm2 , respectively, and I is a domain
of Rn. Some regularity and growth conditions on f ensure the existence of the solution
of the differential equation over (0,∞) for every pair of measurable functions a(·) (and
b(·)) from (0,∞) to A (resp., B). The players have access to noisy partial information

ya = ha(x,w), yb = hb(x,w),

where w is a noise and ha, hb are globally Lipschitz over I. They are restricted to using
feedback strategies (a(t) = δ1(ya(t)), b(t) = δ2(yb(t))) Lipschitz continuous; then the
set of strategies is compact in the topology of the uniform convergence. It is assumed
that the noise model and the solution concept of the differential equations are such
that the payoff P (the expected value of a continuous function of closest approach) is
a continuous function of the strategies for the topology of uniform convergence.
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If Ω1 and Ω2 are compact metric strategy spaces, and ∆1 and ∆2 are closed
subsets of Ω1 and Ω2, respectively, and U = M1(∆1) and V = M1(∆2) are the sets
of probability measures over ∆1 and ∆2, we know that there exist optimal mixed
strategies that achieve the value

V (∆1,∆2) = min
u∈U

max
v∈V

J(u, v) =
∫

∆1

∫
∆2

P (δ1, δ2)du(δ1)dv(δ2).

Bernhard and Shinar establish the convergence of the values of some approximating
problems to the value of the original one.

We show that, in fact, all the statements concerning the convergence of policies
in Theorem 2.1 also hold (with ε1 = 0). In [11], the continuity of V (., .) is proved; i.e.,
(A′3) and (A′4) are established. They present a finite approximation of this problem
by considering finite subsets of ∆i i = 1, 2, that converge to ∆i in the Hausdorff
topology (and thus, (A′1) holds).
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Abstract. We show that some basic linear control design problems are NP-hard, implying that,
unless P=NP, they cannot be solved by polynomial time algorithms. The problems that we consider
include simultaneous stabilization by output feedback, stabilization by state or output feedback in
the presence of bounds on the elements of the gain matrix, and decentralized control. These results
are obtained by first showing that checking the existence of a stable matrix in an interval family of
matrices is NP-hard.
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1. Introduction. Consider the following three problems; the first was men-
tioned as a “major open problem in systems and control theory” in a recent survey
[5] of experts in the systems and control field, and the other two were mentioned
indirectly.

Stabilization by static output feedback. This is perhaps the most basic problem in
control theory. We are given a linear system

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t),

and we consider a static feedback control law of the form

u(t) = Ky(t).

The resulting closed loop system is

ẋ(t) = (A+BKC)x(t).

The problem is to find necessary and sufficient conditions on the triplet of real matrices
(A,B,C) under which there exists a feedback gain matrix K such that A+ BKC is
stable. In the case of state feedback (C = I), a necessary and sufficient stabilizability
condition is given by the stabilizability of the pair (A,B) [17]. However, if C is not
invertible, no general necessary and sufficient conditions are known.

Simultaneous stabilization by static output or state feedback. (This problem should
not be confused with what is usually referred to as the “simultaneous stabilization
problem” [16, 4], in which dynamic—instead of static—compensation is sought.) Our
second problem is a generalization of the static output feedback problem. Suppose
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that for each i = 1, . . . , k we are given a linear system

ẋ(t) = Aix(t) +Biu(t),

y(t) = Cix(t).

Under the feedback control law,

u(t) = Ky(t),

the ith closed loop system is

ẋ(t) = (Ai +BiKCi)x(t).

The problem is to find conditions on the triplets of real matrices (Ai, Bi, Ci), i =
1, . . . , k, under which there exists a matrix K such that Ai+BiKCi is stable for each
i. This problem is unsolved, even if Ci = I for all i (simultaneous stabilization by
state feedback).

Stabilization by decentralized static output feedback. We now impose some struc-
ture on the feedback gains. Consider a linear system of the form

ẋ(t) = Ax(t) +
k∑
i=1

Biui(t),

yi(t) = Cix(t), i = 1, . . . , k,

and suppose that we are interested in a static decentralized controller of the form

ui(t) = Kiyi(t), i = 1, . . . , k.

The closed loop system is

ẋ(t) =

(
A+

k∑
i=1

BiKiCi

)
x(t),

which is of the same form as in stabilization by static output feedback, except that
several of the entries of K are forced to zero. This leads us to the problem of finding
conditions on the triplet of real matrices (A,B,C) under which there exists a matrix
K with a given structure such that A+BKC is stable. The problem can be further
constrained by requiring the matrix structure to be block diagonal, the blocks to
have a bounded norm, or the blocks to be identical (we discuss all of these cases
later).

The reader is referred to [3, p. 420], where the above three problems are presented
and motivated and where references can be found. A common feature of these three
problems is that, although they are easy to state, neither closed form nor efficient
algorithmic solutions are known. It is rather improbable that closed form solutions
to these problems are possible. On the other hand, algorithmic solutions do exist, as
we now argue.

All of the problems that we have described are finitely parametrized. They all
involve the search for a controller—the (possibly partitioned) matrix K—which can
be specified in terms of finitely many real parameters. In theory, it is thus possible
to apply the following methodology: (a) parametrize the gain matrix K in terms of
finitely many real coefficients; (b) express the matrix stability condition(s) in terms
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of the coefficients of the system(s) and of the controller; (c) use the Routh–Hurwitz
test on the resulting characteristic polynomial(s). One is then left with a (large) set
of multivariable polynomial inequalities that have to be simultaneously satisfied for
some choice of the controller coefficients. As explained in [1], checking the existence
of controller coefficients that satisfy this system of multivariable inequalities can be
performed using the Tarski–Seidenberg elimination theory. The Tarski–Seidenberg
elimination method leads, after a finite number of rational operations, to a yes-no
answer regarding the existence of a solution. The method is systematic and amenable
to computer implementation. Thus, all three problems described above are algorith-
mically solvable.

The advantage of the Tarski–Seidenberg method is its generality; its drawback
is the fact that its computational complexity increases at least exponentially. The
examples that can be worked on paper are very small (the example given in [1] involves
only two parameters), and computer algorithms cannot digest more than five or six
parameters in reasonable time.

In this paper we show that some of the above problems and their variations are
very unlikely to allow for efficient algorithmic solutions. We adhere to the general
consensus in computer science that identifies algorithmic efficiency with polynomial
time computability. We then show that some of the above problems are NP-hard
[8, 13], meaning that every problem in NP can be reduced to them. Thus, unless
P=NP, these problems are not polynomial time solvable.

Our results are as follows (see later for precise definitions):
1. The static output feedback stabilization problem is NP-hard if one constrains

the coefficients of the controller K to lie in prespecified intervals. The same
is true in the case of static state feedback (C = I). We have not been able to
establish the complexity of the problem in the absence of constraints on K,
but we conjecture that it is also NP-hard.

2. Simultaneous stabilization by output feedback is NP-hard.
3. Stabilization by decentralized static output feedback is NP-hard if one im-

poses a bound on the norm of the controller or if the blocks are constrained
to be identical.

These results will be proved as corollaries of the following main theorem: testing
for the presence of a stable matrix in a family of matrices whose members have entries
that are either fixed to some given real number or vary in the closed unit interval
[−1, 1] is an NP-hard problem. This latter result complements a recent theorem of
Nemirovskii [11], who showed that testing for the stability of all elements of such a
family of matrices is an NP-hard problem. Our proof is in fact inspired from his.
This general research direction was initiated by Poljak and Rohn, who showed that
checking nonsingularity of an interval family of matrices is NP-hard [14]. In other
related research, NP-hardness of the computation of the structured singular value µ
was shown by Braatz et al. [6] for the case where some perturbations are complex.
(NP-completeness for the case of real perturbations was a corollary of the results of
Poljak and Rohn.) Also, Coxson and DeMarco show that approximating the minimal
perturbation scaling to achieve instability in an interval matrix is MAX-SNP-hard
[7]. See also [15] for a review of other complexity results for problems in control
theory.

In the next section, we prove the main result and derive some general corollar-
ies. In the last section we link these results with the linear control design problems
mentioned in this introduction.
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2. Checking the existence of a stable matrix in an interval family of
matrices is NP-hard. In this section we show that checking the existence of a stable
matrix in a unit interval family of matrices is an NP-hard problem (a unit interval
family of matrices is a family of matrices whose members have entries that are either
fixed to some given real number or vary in the closed unit interval [−1, 1]). We prove
this result by means of a polynomial time reduction from the following problem, which
is already known to be NP-complete [10, 8].
PARTITION
Instance: A positive integer l, a set of l integers ai ∈ Z.
Question: Do there exist t1, . . . , tl ∈ {−1,+1} such that

∑l
i=1 aiti = 0?

We now formally define the problem of interest.
STABLE MATRIX IN UNIT INTERVAL FAMILY
Instance: A positive integer n, a partition of I = {(i, j) : 1 ≤ i, j ≤ n} into disjoint
sets I1 and I2, rational numbers a∗ij for (i, j) ∈ I1.
Question: Does the set A of n× n matrices defined by

A = {A = (aij) : aij = a∗ij for (i, j) ∈ I1, aij ∈ [−1, 1] for (i, j) ∈ I2}

contain a stable matrix?
Remark. Throughout this paper, when writing “stable” we actually mean “asymp-

totically stable,” i.e., “all eigenvalues have a negative real part.” A slightly different
problem is obtained if we are interested in marginal stability (“all eigenvalues have a
nonpositive real part”). We call this second problem MARGINALLY STABLE MATRIX
IN UNIT INTERVAL FAMILY.

The main result of this paper is as follows.
THEOREM 1. STABLE MATRIX IN UNIT INTERVAL FAMILY and MARGINALLY STA-

BLE MATRIX IN UNIT INTERVAL FAMILY are NP-hard.
Proof. We prove NP-hardness of STABLE MATRIX IN UNIT INTERVAL FAMILY. NP-

hardness of MARGINALLY STABLE MATRIX IN UNIT INTERVAL FAMILY can be shown
in a similar way; we make a comment on this at the end of the proof.

Since PARTITION is NP-complete, it suffices to show that any instance of PARTI-
TION can be transformed in polynomial time into an equivalent instance of STABLE
MATRIX IN UNIT INTERVAL FAMILY.

Let ai ∈ Z (i = 1, . . . , l) be an instance of PARTITION. We construct a unit interval
matrix as follows. Let m be a positive integer such that l < m = k2 for some positive
integer k, and define the m-dimensional vector a by aT = (a1, a2, . . . , al, 0, . . . , 0) ∈
Zm (the superscript T denotes matrix transposition). Let γ = aTa, β = 1−1/(2m(1+
γ)), and

A(x, y) =
( −k(Im + aaT ) y

xT kβ

)
,(1)

with Im the identity matrix of size m and x, y ∈ <m (note that γ > 0 and 0 < β < 1).
The set of matrices

A = {A(x, y) : x, y ∈ [−1, 1]m}(2)

forms an instance of STABLE MATRIX IN UNIT INTERVAL FAMILY and is constructed
in polynomial time from the initial instance of PARTITION. It remains thus to show
that A contains a stable matrix if and only if there exist ti ∈ {−1,+1} such that∑l
i=1 aiti = 0. We prove this in two steps.
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Assume first that ti ∈ {−1,+1} satisfy
∑l
i=1 aiti = 0. Define xT0 = (t1, t2, . . . , tl,

1, . . . , 1) ∈ Zm, y0 = −x0, and note that aTx0 = xT0 a = 0. We claim that the matrix
A0 = A(x0, y0) ∈ A is stable. Indeed, A0 can be decomposed as

A0 = A1 +A2 +A3(3)

= −kIm+1 +
(
−kaaT 0

0 0

)
+
(

0 −x0
xT0 k(1 + β)

)
.(4)

The spectrum of A0 is the spectrum of A2 + A3 shifted to the left by k. The matrix
A0 will thus be stable, provided that the real part of every eigenvalue of A2 + A3 is
strictly less than k.

The matrix A2 has rank one; it has one eigenvalue at −kγ and m eigenvalues at
the origin. The characteristic polynomial of the matrix A3 is

sm−1(s2 − k(1 + β)s+ k2),(5)

whose roots are either at the origin or have a real part equal to k(1 + β)/2 which is
always strictly less than k, since we have already observed that 0 < β < 1.

Due to the fact that aTx0 = xT0 a = 0, we have A2A3 = A3A2 = 0. Let λ and w be
an eigenvalue and an eigenvector, respectively, of A2 +A3. Thus, (A2 +A3)w = λw.
Multiplying by A2, we obtain A2

2w = λA2w. If A2w 6= 0, then λ is an eigenvalue of
A2. If A2w = 0, then λ is an eigenvalue of A3. Consequently, every eigenvalue of
A2 + A3 is either an eigenvalue of A2 or of A3. These eigenvalues have a real part
which is smaller than k, and by our earlier comment, the matrix A0 ∈ A is stable.

For the reverse implication, assume that A contains a stable matrix and let
x0, y0 ∈ [−1, 1]m be such that A0 = A(x0, y0) ∈ A is stable. Consider then the
parametrized family of matrices

B(θ) = A(θx0, θy0)/k.(6)

We now study the dependence of the stability of B(θ) on the variable θ ∈ [0, 1]. When
θ = 0, we have

B(0) =
(
−(Im + aaT ) 0

0 β

)
.(7)

The matrix −(Im+aaT ) is negative definite, hence stable, and thus B(0) has a single
unstable eigenvalue (at β > 0). When θ = 1, we have B(1) = A0/k, and so B(1) is
stable since A0 is.

The eigenvalues of B(θ) are symmetric with respect to the real axis (complex
conjugate), and they vary continuously with θ. When moving from θ = 0 to θ = 1,
we move from a configuration where there is exactly one unstable eigenvalue to a con-
figuration with no unstable eigenvalues. When a conjugate pair of eigenvalues crosses
the jω axis, the number of unstable eigenvalues changes by an even number. Thus,
for the number of unstable eigenvalues to change from one to zero, some eigenvalue
must cross the jω axis at the origin. Therefore, there exists some θ0 ∈ (0, 1) for
which B(θ0) has an eigenvalue at the origin and B(θ0) is singular. Elementary matrix
manipulations show that the singularity condition for B(θ0) is equivalent to

θ2
0x
T
0 (Im + aaT )−1y0 = −k2β.(8)

A standard inversion formula [9, p. 19] gives

θ2
0x
T
0 (Im − aaT /(1 + γ))z0 = k2β,(9)



NP-HARDNESS IN LINEAR CONTROL DESIGN 2123

where we have defined z0 = −y0 and used the definition γ = aTa. Remembering that
m = k2 and θ0 ∈ (0, 1), we finally obtain

xT0 (Im − aaT /(1 + γ))z0 > mβ.(10)

The matrix (Im−aaT /(1 + γ)) is symmetric and positive definite. Using also the
fact that the maximum of a convex function over a bounded polyhedron is attained
at an extreme point, we obtain

max
x,y∈[−1,1]m

xT (Im − aaT /(1 + γ))y = max
x∈[−1,1]m

xT (Im − aaT /(1 + γ))x(11)

= max
x∈{−1,1}m

xT (Im − aaT /(1 + γ))x(12)

= m− min
x∈{−1,1}m

(xTa)2/(1 + γ).(13)

In particular, this shows that

m− min
x∈{−1,1}m

(xTa)2/(1 + γ) ≥ xT0 (I − aaT /(1 + γ))z0.(14)

Combining inequalities (10) and (14), we obtain

m− min
x∈{−1,1}m

(xTa)2/(1 + γ) > mβ.(15)

Using the definition of β, we finally arrive at

min
x∈{−1,1}m

(xTa)2 < 1/2.(16)

The left-hand side in this inequality is a nonnegative integer; we are thus forced to
the conclusion

min
x∈{−1,1}m

(xTa)2 = 0.(17)

Assume that the minimum in (17) is obtained for xT = (x1, x2, . . . , xl, . . . , xm);
we conclude the proof by setting ti = xi for i = 1, . . . , l.

Let us now briefly comment on the case where we are interested in marginal
stability. NP-hardness for this case can be obtained by a small adaptation of the
preceding proof. Let, as before, ai ∈ Z (i = 1, . . . , l) be an instance of partition.
We construct an interval matrix as follows. Let m be a positive integer such that
l < m = k2 for some positive integer k and define the m-dimensional vector a by
aT = (a1, a2, . . . , al, 0, . . . , 0) ∈ Zm and

A(x, y) =
(
−k(Im + aaT ) y

xT k

)
.(18)

The set of matrices A = {A(x, y) : x, y ∈ [−1, 1]m} forms an instance of MARGIN-
ALLY STABLE MATRIX IN UNIT INTERVAL FAMILY and is constructed in polynomial
time from the initial instance of PARTITION. Moreover, by the same argument as
above, it is clear that A contains a marginally stable matrix if and only if there exist
ti ∈ {−1,+1} such that

∑l
i=1 aiti = 0. This shows the equivalence between the

instances and hence proves the second part of the theorem.
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Suppose now that we change the problem by including the additional requirement
that the matrix A must be symmetric. Consider the problem of minimizing λ subject
to λI −A being a positive semidefinite symmetric matrix and subject to the interval
constraints on A. This is a semidefinite programming problem and can be solved,
within any desired accuracy ε, in time which is polynomial in the size of the problem
and the “size” log(1/ε) of ε. Furthermore, the optimal cost in this minimization
problem is less than or equal to zero (respectively, negative) if and only if there exists
a marginally stable (respectively, stable) matrix A in the family. This argument,
brought to our attention by M. Overton [12], comes close but does not quite establish
polynomiality of the problem STABLE MATRIX IN UNIT INTERVAL FAMILY for the
symmetric case; that would require an exact (as opposed to approximate) polynomial
time solution of the semidefinite programming problem. If the symmetric problem is
indeed polynomial time solvable, this would be in contrast to the results of Nemirovskii
[11], who showed that deciding the stability of all elements of the interval family is
NP-hard even if one restricts to symmetric matrices.

As a direct application of our main theorem, we introduce a few matrix and
polynomial stability problems and show that they are NP-hard.
STABLE MATRIX IN INTERVAL FAMILY
Instance: A positive integer n, rational numbers aij , aij for 1 ≤ i, j ≤ n.
Question: Does there exist a stable matrix A = (aij) with aij ≤ aij ≤ aij?
STABLE MATRIX IN RANK ONE PERTURBED MATRIX
Instance: Positive integers n, k, and k + 1 real n × n matrices A0, A1, . . . , Ak with
rational entries, all of which have rank one, with the exception of A0.
Question: Do there exist real values q∗i ∈ [−1, 1] such that A = A0 +q∗1A1 + · · ·+q∗kAk
is stable?
STABLE POLYNOMIAL IN FAMILY OF BILINEAR POLYNOMIALS
Instance: A positive integer r, a multivariable polynomial p(x, q1, . . . , qr) with rational
coefficients whose dependence on the real variables qi is bilinear.
Question: Do there exist real values q∗i ∈ [−1, 1] for which the polynomial p(x, q∗1 , . . . , q

∗
r )

is stable?
COROLLARY 1. The above three problems are all NP-hard.
Proof. STABLE MATRIX IN INTERVAL FAMILY is NP-hard because it is a general-

ization of STABLE MATRIX IN UNIT INTERVAL FAMILY.
A matrix A in the unit interval family defined by I1 and a∗ij , (i, j) ∈ I1, can be

written in the form

A = A0 +
∑

(i,j)/∈I1

qijAij ,

where A0 has entries

a0
ij = a∗ij if (i, j) ∈ I1,

= 0 if (i, j) /∈ I1.

Aij is a matrix with all entries equal to zero except for the (i, j)th entry, which is equal
to 1, and qij ∈ [−1, 1]; note that Aij has rank one. This reduces STABLE MATRIX IN
UNIT INTERVAL FAMILY to STABLE MATRIX IN RANK ONE PERTURBED MATRIX and
shows that the latter problem is NP-hard.

In order to prove that STABLE POLYNOMIAL IN FAMILY OF BILINEAR POLYNOMI-
ALS is NP-hard, we argue as in the proof of Theorem 1. Let ai ∈ Z (i = 1, . . . , l) be
an instance of PARTITION. Let m be a positive integer such that l < m = k2 for some
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positive integer k and define β = 1− 1/(2m(1 +
∑l
i=1 a

2
i )) and

A(q1, . . . , qk, qk+1, . . . , q2k) =
( −k(Im + aaT ) (qk+1, . . . , q2k)T

(q1, . . . , qk) kβ

)
.

From the proof of Theorem 1, we know that the set of matricesA = {A(q1, . . . , qk, qk+1,
. . . , q2k) : qi ∈ [−1, 1]} contains a stable matrix if and only if there exist ti ∈ {−1,+1}
such that

∑l
i=1 aiti = 0. The set of matrices A contains a stable matrix if and only if

the multivariable polynomial p(x, q1, . . . , q2k) = det(xI2k −A(q1, . . . , qk, qk+1, . . . , q2k))
is stable for some choice of qi ∈ [−1, 1]. The latter polynomial is bilinear in the
variables qi. We therefore have an instance of STABLE POLYNOMIAL IN FAMILY
OF BILINEAR POLYNOMIALS which is equivalent to the original instance of
PARTITION.

Remarks.
1. All three problems addressed by Corollary 1 remain NP-hard if “stability” is

replaced by “marginal stability”; the proof is similar.
2. By a similar proof, both Theorem 1 and Corollary 1 remain valid if the interval

constraints aij ∈ [−1, 1] are replaced by the open interval constraints aij ∈ (−1, 1).
3. The decision problem for the existential theory of the reals is solvable in

sk+1dO(k) arithmetic operations where k denotes the number of variables, s is the
number of polynomial (in)equalities, and d is the highest polynomial degree [2]. This
shows that for fixed k, a polynomial time algorithm is possible. In particular, STABLE
MATRIX IN INTERVAL FAMILY becomes polynomial time solvable if an a priori bound
is given on the size of the matrix. The problems discussed in Corollary 1 also become
polynomial time solvable when suitably constrained.

3. Application to linear control design problems. As explained in the in-
troduction, our initial motivation for this work was to address the computational
complexity of linear control design problems. We now introduce some such problems
and show that they are NP-hard.
STATE FEEDBACK STABILIZATION BY BOUNDED CONTROLLER
Instance: A positive integer n, n × n matrices A and B with rational coefficients,
rational numbers kij , kij for 1 ≤ i, j ≤ n.
Question: Does there exist a real matrix K = (kij) satisfying kij ≤ kij ≤ kij and
such that A+BK is stable?
SIMULTANEOUS STABILIZATION BY OUTPUT FEEDBACK
Instance: Positive integers n,m, p, k, a collection of k triplets of matrices (Ai, Bi, Ci)
with rational coefficients of respective sizes n× n, n×m, p× n.
Question: Does there exist a real m× p matrix K such that Ai +BiKCi is stable for
all i = 1, . . . , k?
DECENTRALIZED OUTPUT FEEDBACK STABILIZATION BY NORM BOUNDED CONTROLLER
Instance: Positive integers n and k with n ≥ k, n × n matrices A,B and C with
rational coefficients. A partition of n into k positive integers n = n1 + n2 + · · ·+ nk.
Question: Does there exist a n × n block-diagonal matrix K with blocks Ki of suc-
cessive sizes ni × ni and ||Ki|| < 1 such that A+BKC is stable?
DECENTRALIZED STABILIZATION WITH IDENTICAL CONTROLLERS
Instance: Positive integers n1, n2, three (n1n2) × (n1n2) matrices A,B and C with
rational coefficients.
Question: Does there exist a n1 × n1 matrix M such that the (n1n2 × n1n2) block
diagonal matrix K constructed with n2 identical blocks M is such that A + BKC
is stable?
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COROLLARY 2. The above four problems are all NP-hard.
Proof. (a) STATE FEEDBACK STABILIZATION BY BOUNDED CONTROLLER: Let

n and aij , aij , for 1 ≤ i, j ≤ n be an instance of STABLE MATRIX IN INTERVAL
FAMILY. An equivalent instance of STATE FEEDBACK STABILIZATION BY BOUNDED
CONTROLLER is given by n, A = 0, B = In, kij = aij , and kij = aij for 1 ≤ i, j ≤ n.

(b) SIMULTANEOUS STABILIZATION BY OUTPUT FEEDBACK:
We prove NP-hardness for the case of marginal stability. Let n and akl, akl (1 ≤

i, j ≤ n) be an instance of STABLE MATRIX IN INTERVAL FAMILY. Define the n × n
matrices A+

ij , A
−
ij , Bi, and Cj by

A+
ij = (akl) with

akl = −aij if (k, l) = (1, 1),

= 0 otherwise;

A−ij = (akl) with

akl = aij if (k, l) = (1, 1),

= 0 otherwise;

Bi = (bkl) with

bkl = 1 if (k, l) = (1, i),

= 0 otherwise;

and Cj = (ckl) with

ckl = 1 if (k, l) = (j, 1),

= 0 otherwise.

It is immediate to see that (A+
ij +BiKCj) is marginally stable if and only if kij ≤

aij , and similarly, (A−ij +BiKCj) is marginally stable if and only if kij ≥ aij . Thus, if
we require the simultaneous stabilization of the 2n2 + 1 triplets (0, I, I), (A+

ij , Bi, Cj),
and (A−ij , Bi, Cj) for 1 ≤ i, j ≤ n, we have constructed an equivalent instance of
SIMULTANEOUS STABILIZATION BY OUTPUT FEEDBACK.

(c) DECENTRALIZED OUTPUT FEEDBACK STABILIZATION BY NORM BOUNDED
CONTROLLER: We prove that the problem is NP-hard even for the special case where
all blocks are of size 1×1, in which case A+BKC can be written as A+

∑n
i=1 kibic

T
i ,

where bi is the ith column of B, cTi is the ith row of C, and ki is the ith diagonal entry
of K. Given that an arbitrary rank one matrix can be expressed in the form bcT for
some vectors b and c, it follows that every instance of STABLE MATRIX IN RANK ONE
PERTURBED MATRIX can be expressed as an instance of DECENTRALIZED OUTPUT
FEEDBACK STABILIZATION BY NORM BOUNDED CONTROLLER

(d) DECENTRALIZED STABILIZATION WITH IDENTICAL CONTROLLERS: We prove
NP-hardness for the case of marginal stability. Consider k triplets of n × n matri-
ces (Ai, Bi, Ci) that form an instance of SIMULTANEOUS STABILIZATION BY OUTPUT
FEEDBACK. We define an equivalent instance of DECENTRALIZED STABILIZATION
WITH IDENTICAL CONTROLLERS by letting n1 = n, n2 = k,A = A1 ⊕ A2 ⊕ · · · ⊕
Ak, B = B1⊕B2⊕ · · ·⊕Bk and C = C1⊕C2⊕ · · ·⊕Ck, where ⊕ denotes direct sum
of matrices.
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Remarks.
1. For some of the problems, we provided the proof for the case of stability; for

others, we dealt with marginal stability. With little work and using the remarks at
the end of the preceding section, it is easily shown that all problems are NP-hard for
the case of either stability or marginal stability.

2. STATE FEEDBACK STABILIZATION BY BOUNDED CONTROLLER is easily shown
to remain NP-hard even if the bounds kij , kij are constrained to be either 0 or 1.
We have assumed that we are dealing with square systems; the more general case of
rectangular systems is at least as hard and is therefore also NP-hard. Finally, the
problem of output feedback stabilization by a bounded controller is at least as hard
as that of state feedback and is thus also NP-hard.

3. Our proof shows that SIMULTANEOUS STABILIZATION BY OUTPUT FEEDBACK
remains NP-hard even if all the matrices involved are of the same size (n = m = p).
The degenerate case m = p = 1 corresponds to simultaneous stabilization of single-
input, single-output systems by proportional feedback and can be solved in polynomial
time. (An argument for this follows from footnote 1 on p. 54 of [1].) For a priori fixed
n, m, and p, the problem can also be solved in polynomial time (see Remark 3 in
section 2). We do not know whether the state feedback formulation of this problem
is NP-hard.
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Abstract. Necessary and sufficient conditions are obtained for the existence of ε-weak minima
for constrained convex vector optimization problems. The characterization of ε-weak minima is
given in terms of ε-optimal solutions of the associated scalar optimization problems and ε-directional
derivatives of objective functions. The Lipschitzian continuity of ε-weak minima is proved under
mild conditions.
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1. Introduction. Consider the following convex vector optimization problem:

(P) minimize F (x)
subject to x ∈ C,

where F (x) = (f1(x), . . . , fm(x))T : Rn → Rm, each component fi of F is a finite
convex function on Rn, and C ⊂ Rn is a nonempty closed convex set.

Much has been said about the existence and stability of solutions of problem (P)
[1, 2, 3, 18].

The main theme of this paper is to study approximate solutions of problem (P).
Various concepts of approximate solutions were introduced in [4]. In this paper we
focus on the existence, the characterization, and the Lipschitzian stability of ε-weak
minima of problem (P). In section 2, we provide necessary and sufficient conditions
for the existence of ε-weak minima of problem (P), and characterize ε-weak minima of
problem (P) in terms of ε-optimal solutions of the associated scalar optimization prob-
lems. In section 3, we consider a family of parametrized convex vector optimization
problems and investigate the behavior of ε-weak minima with respect to perturba-
tions on the problem data. Using the results in section 2 and an error bound result of
Robinson for convex inequality systems, we obtain the main result of this paper: the
Lipschitzian continuity of ε-weak minima, which generalizes a similar result in scalar
optimization.

We will use the following notation throughout this paper. All vectors are column
vectors. The superscript T denotes the transpose of vectors. The vector inequalities
≤ or < are assumed to hold pointwise. We denote by [1, k] the set {1, 2, . . . , k}. We
denote by B(x, ρ) the closed Euclidean ball in Rn of radius ρ around a point x. We
denote by || · || and || · ||∞ the Euclidean norms on Rn, Rm, and Rl and the ∞-norms
on Rn, Rm, and Rl, respectively. For a vector x and a nonempty closed set U in some
Euclidean space, we denote by d(x, U) = min{‖x−y‖ | y ∈ U} the Euclidean distance
from any x to U . Given nonempty closed sets U1 and U2 in some Euclidean space,
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we define the Hausdorff distance between them as

haus(U1, U2) = max
{

sup
x∈U1

d(x, U2), sup
x∈U2

d(x, U1)
}
.

We denote by Sm the unit-simplex of Rm; that is,

Sm =

{
µ ∈ Rm | µi ≥ 0, i ∈ [1,m],

m∑
i=1

µi = 1

}
.

For a proper lower semicontinuous (l.s.c.) function φ on Rn, its effective domain is
the set

dom φ = {x ∈ Rn | φ(x) < +∞}.

For a proper l.s.c. convex function φ, we denote by φ∗ the convex conjugate function
of φ. Given ε ≥ 0, for a proper l.s.c. convex function φ, and x ∈ dom φ, we define the
ε-subdifferential of φ at x as

∂εφ(x) =
{
y ∈ Rn | φ(z) ≥ φ(x) + yT (z − x)− ε for all z ∈ Rn

}
.(1)

When ε = 0, ∂0φ(x) = ∂φ(x), the usual subdifferential of φ at x. Given ε ≥ 0, for
a finite convex function φ on Rn, we define its ε-directional derivative at x in the
direction d as

φ′ε(x; d) = inf
t
{(φ(x+ td)− φ(x) + ε)/t | t > 0} .(2)

When ε = 0, φ′0 = φ′, the usual directional derivative of φ. For more about ε-
subdifferentials, ε-directional derivatives, and their applications in scalar optimization,
see [5, 6].

2. ε-weak minima. We first introduce the definition of ε-weak minima of prob-
lem (P) and then study basic properties of ε-weak minima.

Let W = Rm\(−int Rm+ ), where int denotes interior. A vector y ∈ C is a weak
minimum of problem (P) if and only if

F (x)− F (y) ∈W for all x ∈ C.

We denote by E the set of all weak minima of problem (P). For various characteri-
zations of the nonemptiness and compactness of E, see [13].

Let ε ≥ 0, and let 1 ∈ Rm be the vector all of whose coordinates are 1. A vector
y ∈ C is an ε-weak minimum of problem (P) if and only if

F (x) + ε1− F (y) ∈W for all x ∈ C.

We denote by Eε the set of all ε-weak minima of problem (P). Note that E0 = E.
PROPOSITION 1. Consider problem (P). The following statements hold.
(a) Eε is a closed set for ε ≥ 0.
(b) Let εk ↓ 0. Suppose that {x(εk)} is a sequence such that x(εk) ∈ Eεk . Then

any cluster point of {x(εk)} is a weak minimum of problem (P).
Proof. (a) The result is trivially true when Eε is empty. Suppose that {xk} ⊂ Eε

and xk → y. Then y ∈ C by the closedness of C, and

F (x) + ε1− F (xk) ∈W for all x ∈ C.

The vector y ∈ Eε follows from the continuity of F and the closedness of W .
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(b) Since x(εk) ∈ Eεk , F (x) + εk1− F (x(εk)) ∈W for all x ∈ C. Without loss of
generality, suppose that x(εk) → z. Then, it follows from the closedness of C that z
is in C. Since εk ↓ 0, by the continuity of F and the closedness of W , we have

F (x)− F (z) ∈W for all x ∈ C.

This is what we wanted to prove.
For µ ∈ Sm, and ε ≥ 0, we define the ε-optimal solution set of minimizing µTF (x)

over all x ∈ C as

ε-argminx
{
µTF (x) | x ∈ C

}
=
{
y ∈ C | µTF (y) ≤ inf

x

{
µTF (x) | x ∈ C

}
+ ε
}
.

Given below is the first main result of this section, which characterizes the set Eε
in terms of ε-optimal solutions of scalar optimization problems.

THEOREM 2.1. Consider problem (P). Let ε ≥ 0. A vector y ∈ Eε if and only if
there is some µ ∈ Sm such that y ∈ ε-argminx

{
µTF (x) | x ∈ C

}
.

Proof. (Necessity) Let y ∈ Eε. Then F (x) + ε1 − F (y) ∈ W for all x ∈ C. It
follows that (

F (C) + Rm+ + ε1− F (y)
)
∩
(
−int Rm+

)
= ∅.

Since
(
F (C) + Rm+ + ε1− F (y)

)
and

(
−int Rm+

)
are two nonempty disjoint convex

sets, by the separation theorem (see Theorem 11.3 of [5]), there is some nonzero
µ ∈ Rm such that

µT (−d′) ≤ 0 for all d′ ∈ int Rm+ , and(3)

µT (F (x) + d+ ε1− F (y)) ≥ 0 for all x ∈ C and for all d ∈ Rm+ .(4)

It follows from (3) that µ ∈ Rm+ . Normalizing µ if necessary, we can assume that µ ∈
Sm. Thus by (4), µTF (x) ≥ µTF (y)−ε for all x ∈ C. Therefore, infx

{
µTF (x) | x ∈ C

}
is finite and y ∈ ε-argminx

{
µTF (x) | x ∈ C

}
.

(Sufficiency) Suppose that y ∈ ε-argminx
{
µTF (x) | x ∈ C

}
for some µ ∈ Sm, but

y 6∈ Eε. Then there is a vector z ∈ C such that F (z) + ε1− F (y) ∈ −int Rm+ . Conse-
quently, µT (F (z)+ε1−F (y)) < 0, which implies that y 6∈ ε-argminx

{
µTF (x) | x ∈ C

}
.

The contradiction completes the proof.
To obtain necessary and sufficient conditions for the existence of ε-weak minima

of problem (P), we quote Theorem 1.1.2 and Proposition 1.2.1 in Chapter XI of [6]
as the following proposition.

PROPOSITION 2. Let φ be a proper l.s.c. convex function. Then the following
statements hold.

(a) For all x ∈ dom φ, ∂εφ(x) 6= ∅ whenever ε > 0.
(b) For all x ∈ dom φ, and ε ≥ 0, a vector y ∈ ∂εφ(x) if and only if x ∈ ∂εφ∗(y).
THEOREM 2.2. Consider problem (P). For ε > 0, Eε is nonempty if and only if

there is some µ̄ ∈ Sm such that infx
{
µ̄TF (x) |x ∈ C

}
is finite.

Proof. (Necessity) Since Eε is nonempty, there is a y in Eε. By Theorem 2.1,
there is some µ̄ ∈ Sm such that y ∈ ε-argminx

{
µ̄TF (x) | x ∈ C

}
. It follows that

infx
{
µ̄TF (x) | x ∈ C

}
is finite.

(Sufficiency) Suppose that there is some µ̄ ∈ Sm such that infx
{
µ̄TF (x) | x ∈ C

}
is finite. Let ψ(x) = µ̄TF (x)+δC(x), where δC(·) is the indicator function of C. Then
ψ is a proper l.s.c. convex function and {x | 0 ∈ ∂εψ(x)} = ε-argminx

{
µ̄TF (x) | x ∈ C

}
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(see (1)). Furthermore, for ε > 0, by Theorem 2.1, ε-argminx
{
µ̄TF (x) | x ∈ C

}
⊂ Eε.

By Proposition 2, {x | 0 ∈ ∂εψ(x)} = ∂εψ
∗(0), and ∂εψ

∗(0) is nonempty whenever
0 ∈ dom ψ∗. Thus we only have to show that 0 ∈ dom ψ∗. This is true because

ψ∗(0) = sup
x

{
0Tx− ψ(x) | x ∈ Rn

}
= sup

x

{
−µ̄TF (x) | x ∈ C

}
= − inf

x

{
µ̄TF (x) | x ∈ C

}
< +∞.

This completes the proof of the desired result.
We denote by (fi)′ε(x; d) the ε-directional derivative of fi at x in the direction d,

where fi is the ith component of F . The next theorem uses ε-directional derivatives
of fi to describe the set Eε.

THEOREM 2.3. Consider problem (P). Let ε ≥ 0. If

((f1)′ε(y;x− y), . . . , (fm)′ε(y;x− y))T ∈W for all x ∈ C,(5)

then y ∈ Eε. When ε = 0, the converse is also true; that is, if y ∈ E, then (5) holds
with ε = 0.

Proof. For ε ≥ 0, by the definition of ε-directional derivative of a convex function
(see (2)), we have

(F (x) + ε1− F (y))− ((f1)′ε(y;x− y), . . . , (fm)′ε(y;x− y))T ∈ Rm+ for all x ∈ C.

Since ((f1)′ε(y;x− y), . . . , (fm)′ε(y;x− y))T ∈W for all x ∈ C, it follows that

F (x) + ε1− F (y) ∈ Rm+ +W ⊂W for all x ∈ C.

This proves the first part of the theorem.
When ε = 0, by Theorem 23.1 of [5], (fi)′0(y; d) = limt↓0 {(fi(y + td)− fi(y))/t}

for all i ∈ [1,m]. Suppose that y ∈ E. For any x ∈ C, let 0 < α < 1. Then
y + α(x− y) ∈ C by the convexity of C. Consequently, we have

(F (y + α(x− y))− F (y))/α ∈W for all α ∈ (0, 1).

The result thus follows from the fact that W is closed and each component fi of F
has one-sided directional derivatives.

Remark 2.1. When ε = 0, Theorem 2.3 is an extension of Theorem 2.1 of [1],
where each fi is differentiable.

3. Lipschitzian stability of ε-weak minima. We consider a family of parame-
trized convex vector optimization problems,

(P(u)) minimize F (x)
subject to G(x) ≤ u,

where F is the same as in problem (P), u ∈ Rl, and G(x) = (g1(x), . . . , gl(x))T

with each component gi of G being a finite convex function on Rn. For ε ≥ 0, we
denote by Eε(u) all ε-weak minima of problem (P(u)). In this section, our focus is on
Lipschitzian stability of the multifunction Eε : Rl→→Rn. Recall [7] that a multifunction
Γ : Rl→→Rn is Lipschitzian relative to V , a subset of Rl, if Γ(v) is nonempty and
compact for every v ∈ V , and there is a positive scalar λ such that

haus(Γ(v′),Γ(v′′)) ≤ λ||v′ − v′′|| for all v′, v′′ ∈ V.
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We denote by C(u) the solution set of the convex system G(x) ≤ u, which is a
closed convex set. We make the following assumption regarding the convex inequality
system G(x) ≤ 0 throughout this section.

Assumption 3.1. For the convex inequality system G(x) ≤ 0, suppose that there
are some x∗, x̂ ∈ Rn, and some positive scalars δ, ∆ such that max1≤i≤l{gi(x∗)} ≤ −2δ
(the Slater condition) and C(0) ⊂ B(x̂,∆/2) (the boundedness condition).

Assumption 3.1 amounts to ensuring that the multifunction C(·) is Lipschitzian
near 0. To derive the Lipschitzian continuity of Eε near 0, we need the following
form of Robinson’s result on error bounds for convex inequality systems (see [8]). For
related error bound results, see [12, 15, 16, 17].

PROPOSITION 3. Consider an inequality system H(x) ≤ 0, where H(x) =
(h1(x), . . . , hk(x))T and each component hi of H is a finite convex function on Rn.
Let S = {x | H(x) ≤ 0}. Suppose that there are some z∗, ẑ of Rn, and some positive
scalars θ, Θ such that max1≤i≤k{hi(z∗)} ≤ −θ and S ⊂ B(ẑ,Θ/2). Then

d(z, S) ≤ θ−1Θ||[H(z)]+|| for all z ∈ Rn,

where [·]+ is the positive part of a vector.
Consider problem (P(u)). For µ ∈ Rm, u ∈ Rl, and ε ≥ 0, define

p(µ, u) = inf
x

{
µTF (x) | x ∈ C(u)

}
,

P (µ, u) = argminx
{
µTF (x) | x ∈ C(u)

}
,

Pε(µ, u) =
{
x ∈ C(u) | µTF (x) ≤ p(µ, u) + ε

}
.

For ε > 0 and u ∈ Rl, Eε(u) = ∪µ∈SmPε(µ, u) by Theorem 2.1. We will prove
that Eε is Lipschitzian near 0 by showing that Pε(µ, ·) is Lipschitzian near 0 with
a uniform Lipschitzian modulus for all µ ∈ Sm. For this purpose, we need three
lemmas.

LEMMA 3.1. Suppose that Assumption 3.1 holds. Let N1 = {u ∈ Rl | ||u|| ≤
δ}. Then for every u ∈ N1, the Slater condition holds for system G(x) ≤ u, and
C(u) ⊂ B(x̂,∆). In particular, for u ∈ N1 and ε ≥ 0, Eε(u) is nonempty, and
Eε(u) ⊂ B(x̂,∆).

Proof. We first show that for every u ∈ N1, the Slater condition holds for the
convex inequality system G(x) ≤ u. Indeed, since ||u|| ≤ δ, max1≤i≤l{|ui|} ≤ δ. Thus
gi(x∗) − ui ≤ −δ for i ∈ [1, l]. By applying Proposition 3 to the convex inequality
system G(x) ≤ 0, which has C(0) as the solution set, we have, for any z ∈ C(u),

d(z, C(0)) ≤ 1/2δ−1∆||[G(z)]+||
≤ 1/2δ−1∆||u|| ≤ 1/2∆.

A straightforward calculation shows that C(u) ⊂ B(x̂,∆) whenever u ∈ N1. This
completes the first part of the proof. For u ∈ N1 and µ ∈ Sm, since C(u) is nonempty
and compact, Pε(µ, u) is nonempty and Pε(µ, u) ⊂ C(u). It follows that Eε(u) is
nonempty, and Eε(u) ⊂ C(u) ⊂ B(x̂,∆).

For u ∈ N1, by the nonemptiness and the compactness of C(u), p(µ, u) is finite
for every µ ∈ Sm. In view of Lemma 3.1, and by invoking Theorem 3.1 of [7], we
obtain the following lemma about the Lipschitzian continuity of the optimal value
function p. The proof is given in the appendix.

LEMMA 3.2. Suppose that Assumption 3.1 holds and that N1 is the same as in
Lemma 3.1. Then for any (µ, u) ∈ Sm × N1, the function p is finite and locally
Lipschitzian relative to some neighborhood V (⊂ Rm × Rl) of (µ, u).
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Thanks to the convexity and compactness of Sm × N1, it follows from Lemma
3.2 that p is Lipschitzian on Sm × N1; that is, there is a constant L > 0, which is
independent of (µ, u) in Sm ×N1, such that

|p(µ, u)− p(µ′, u′)| ≤ L(||µ− µ′||+ ||u− u′||) for all (µ, u), (µ′, u′) ∈ Sm ×N1.(6)

Also, by the compactness of Sm ×N1, there is some positive scalar M1 such that

sup
(µ,u)∈Sm×N1

|µTF (x∗)− p(µ, u)| ≤M1,(7)

where x∗ is given by Assumption 3.1.
The following lemma, which plays the crucial role for deriving the Lipschitzian

continuity of Eε, establishes a “uniform” Slater condition on Pε(µ, u).
LEMMA 3.3. Suppose that Assumption 3.1 holds and that ε is given with

0 < ε < 2M1, where M1 is given by (7). Let N (ε) = N1 ∩ N2, where N2 ={
u ∈ Rl | ||u||∞ ≤ (εδ)/(2M1)

}
and N1 is the same as in Lemma 3.1. Then for any

(µ, u) ∈ Sm ×N (ε), there is a y(µ, u) ∈ Pε(µ, u) such that

µTF (y(µ, u))−p(µ, u)−ε ≤ −δ̃(ε), g1(y(µ, u))−u1 ≤ −δ̃(ε), . . . , gl(y(µ, u))−ul ≤ −δ̃(ε),

where δ̃(ε) = min {(εδ)/(2M1), ε/2}.
Proof. Suppose that ε is given with 0 < ε < 2M1. For µ ∈ Sm and u ∈

N (ε), P (µ, u) is nonempty since C(u) is nonempty and compact. Choose a vector
x(µ, u) ∈ P (µ, u), and let x∗ be given by Assumption 3.1. Let 0 < α < 1. Then
αx(µ, u) + (1− α)x∗ ∈ C(u). By the convexity of gi and µTF , we have, for i ∈ [1, l],

gi(αx(µ, u) + (1− α)x∗)− ui ≤ αgi(x(µ, u)) + (1− α)gi(x∗)− ui
≤ α (gi(x(µ, u))− ui) + (1− α) (gi(x∗)− ui)
≤ (1− α)(−2δ + δ) = (1− α)(−δ)(8)

and

µTF (αx(µ, u) + (1− α)x∗)− p(µ, u)− ε ≤ αµTF (x(µ, u)) + (1− α)µTF (x∗)(9)

−p(µ, u)− ε
= (1− α)

(
µTF (x∗)− p(µ, u)

)
− ε

≤ (1− α)M1 − ε (by (7)).

Letting α = 1−ε/(2M1) and y(µ, u) = (1− ε/(2M1))x(µ, u)+(ε/(2M1))x∗, we have,
in view of (8) and (9),

gi(y(µ, u))− ui ≤ (1− α)(−δ) = −(εδ)/(2M1) ≤ −δ̃(ε) for i ∈ [1, l], and

µTF (y(µ, u))− p(µ, u)− ε ≤ (1− α)M1 − ε ≤ −ε/2 ≤ −δ̃(ε).

This completes the proof.
We observe that the positive scalar δ̃(ε) in Lemma 3.3 is independent of µ. This

enables us to obtain the main result of this paper.
THEOREM 3.4. Suppose that Assumption 3.1 holds and that ε is given with 0 <

ε < 2M1, where M1 is given by (7). Let N (ε) be the same as in Lemma 3.3 according
to the given ε. Then the multifunction Eε(·) is Lipschitzian relative to N (ε), a closed
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neighborhood of 0, with the Lipschitzian modulus M = 2(δ̃(ε))
−1

∆
√
L2 + 1, where

δ̃(ε) is the same as in Lemma 3.3 and L is given by (6). That is,

haus(Eε(u), Eε(v)) ≤M ||u− v|| for all u, v ∈ N (ε).

Proof. Throughout the proof, suppose that ε is given with 0 < ε < 2M1. For
u ∈ N (ε), µ ∈ Sm, Pε(µ, u) is nonempty since C(u) is nonempty and compact. By
Theorem 2.1, Eε(u) = ∪µ∈SmPε(µ, u) for every u ∈ N (ε). The result follows if we can
show that, for every µ ∈ Sm,

haus(Pε(µ, v), Pε(µ, u)) ≤M ||u− v|| for all u, v ∈ N (ε).

Indeed, for given u, v ∈ N (ε), let z ∈ Pε(µ, v). Applying Proposition 3 along with
Lemmas 3.1 and 3.3 to the convex inequality system µTF (x) ≤ p(µ, u) + ε, g1(x) ≤
u1, . . . , gl(x) ≤ ul, which has Pε(µ, u) as the solution set, we obtain an upper bound
for d(z, Pε(µ, u)).

d(z, Pε(µ, u)) ≤ 2(δ̃(ε))
−1

∆
∥∥∥∥[(µTF (z)− p(µ, u)− ε, g1(z)− u1, . . . , gl(z)− ul

)T ]
+

∥∥∥∥
≤ 2(δ̃(ε))

−1
∆
∥∥∥∥[(p(µ, v)− p(µ, u), v1 − u1, . . . , vl − ul)T

]
+

∥∥∥∥
≤ 2(δ̃(ε))

−1
∆
∥∥∥∥[(L||u− v||, v1 − u1, . . . , vl − ul)T

]
+

∥∥∥∥ (by (6))

≤ 2(δ̃(ε))
−1

∆
√
L2 + 1||u− v||.

Thus supz∈Pε(µ,v) d(z, Pε(µ, u)) ≤ M ||u − v||. Since u, v are any two vectors in N (ε),
we establish the theorem.

Remark 3.1. A similar result in scalar optimization can be found in [9] and [14].
The difficulties in convex vector optimization are to show that the constant M is
independent of µ, which is trivial in the scalar optimization case.

4. Appendix. For a multifunction Γ : Rd→→Rn, we shall use the notation

Γ(V ) = ∪v∈V Γ(v) for any V ⊂ Rd.

We shall say that Γ is locally bounded at v̄ if there is a neighborhood V of v̄ such that
the set Γ(V ) is bounded (see [7]). To prove Lemma 3.2, Theorem 3.1 of [7] is quoted.

THEOREM 4.1. Let h : Rd×Rn → R and H : Rd×Rn → Rl be locally Lipschitzian
functions. Let

ψ(v) = inf
x

{
h(v, x) | H(v, x) ∈ C̃, (v, x) ∈ D̃

}
,

Ψ(v) = argminx
{
h(v, x) | H(v, x) ∈ C̃, (v, x) ∈ D̃

}
,

where C̃ and D̃ are closed. Let v̄ be a point at which ψ(v̄) is finite and suppose that
for some β > ψ(v̄) the multifunction

Ψβ(v) =
{
x ∈ Rn | h(v, x) ≤ β, H(v, x) ∈ C̃, (v, x) ∈ D̃

}
is locally bounded at v̄.

(10)
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Suppose further that the following constraint qualification holds for every x̄ ∈ Ψ(v̄) :
the only vectors y ∈ Rl and z ∈ Rd such that

y ∈ NC̃(H(v̄, x̄)) and (z, 0) ∈ yT∂H(v̄, x̄) +ND̃(v̄, x̄) are y = 0, z = 0,(11)

where the set ∂H(v̄, x̄) denotes the Clarke generalized Jacobian of H at (v̄, x̄) (see
p. 69 of [10]).

Then, relative to some neighborhood V of v̄, ψ is finite and locally Lipschitzian.
Proof of Lemma 3.2. Let v = (µ, u), h(v, x) = µTF (x), H(v, x) = G(x) − u,

d = m+ l, C̃ = Rl−, and D̃ = Rm × Rl × Rn. Then

p(µ, u) = inf
x

{
µTF (x) | G(x)− u ∈ Rl−

}
= ψ(v), and

P (µ, u) = argminx
{
µTF (x) | G(x)− u ∈ Rl−

}
= Ψ(v).

For (µ̄, ū) ∈ Sm ×N1, we will show that p is locally Lipschitzian at (µ̄, ū). In view of
Lemma 3.1, for (µ̄, ū) ∈ Sm×N1, it is easy to see that p(µ̄, ū) is finite and (10) holds
(since C(·) is locally bounded at ū). Thus we only have to verify that (11) holds.
Indeed, for every x̄ ∈ P (µ̄, ū), the fact that y ∈ NRl−(G(x̄)− ū) implies for i ∈ [1, l]

yi =

{
0 if gi(x̄)− ūi < 0,

≥ 0 if gi(x̄)− ūi = 0.
(12)

By Proposition 2.6 of [11], yT∂H(v̄, x̄) = ∂(v,x)
(
yTH(v̄, x̄)

)
=
(
0,−y, ∂x

(
yTG(x̄)

))
.

Since NRm×Rl×Rn(v̄, x̄) = {0}, we only have to show that the only vector y ∈ Rl such
that

y ∈ NRl−(G(x̄)− ū) and 0 ∈ ∂x
(
yTG(x̄)

)
(13)

is y = 0. Suppose to the contrary that there is a nonzero y satisfying (13). By (12),
yTG(·) is convex, and yi ≥ 0 if gi(x̄)− ūi = 0 for i ∈ [1, l]. Let I0 = {i ∈ [1, l] | gi(x̄) =
ūi} and x∗ be given by Assumption 3.1. By Lemma 3.1, gi(x∗)−ūi < 0 for all i ∈ [1, l].
It follows that

yT (G(x∗)−G(x̄)) =
∑
i∈I0

yi(gi(x∗)− ūi) < 0,

which contradicts 0 ∈ ∂x
(
yTG(x̄)

)
. Therefore, by Theorem 4.1, p is locally Lips-

chitzian at (µ̄, ū). This completes the proof.

Acknowledgment. The author thanks an anonymous referee for making a care-
ful reading of this paper and offering many insightful comments on the presentation.

REFERENCES

[1] G. Y. CHEN AND B. D. CRAVEN, Existence and continuity of solutions for vector optimization,
J. Optim. Theory Appl., 81 (1994), pp. 459–467.

[2] T. TANINO, Stability and sensitivity analysis in convex vector optimization, SIAM J. Control
Optim., 26 (1988), pp. 521–536.

[3] Y. SAWARAGI, H. NAKAYAMA, AND T. TANINO, Theory of Multiobjective Optimization, Aca-
demic Press, New York, 1985.

[4] D. J. WHITE, Epsilon efficiency, J. Optim. Theory Appl., 49 (1986), pp. 319–337.
[5] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.



2136 SIEN DENG

[6] J.-B. HIRIART-URRUTY AND C. LEMARECHAL, Convex Analysis and Minimization Algorithms,
Springer-Verlag, Berlin, Heidelberg, 1993.

[7] R. T. ROCKAFELLAR, Lipschitzian properties of multifunctions, Nonlinear Anal., 9 (1985),
pp. 867–885.

[8] S. M. ROBINSON, An application of error bounds for convex programming in a linear space,
SIAM J. Control, 13 (1975), pp. 271–273.

[9] A. A. AUSLENDER AND J.-P. CROUZEIX, Global regularity theorems, Math. Oper. Res., 13
(1988), pp. 243–253.

[10] F. H. CLARKE, Optimization and Nonsmooth Analysis, John Wiley, New York, 1983.
[11] R. T. ROCKAFELLAR, Extensions of subgradient calculus with applications to optimization,

Nonlinear Anal., 9 (1985), pp. 665–698.
[12] J. V. BURKE and P. TSENG, A unified analysis of Hoffman’s bound via Fenchel duality, SIAM

J. Optim., 6 (1996), pp. 265–282.
[13] S. DENG, Characterizations of the nonemptiness and compactness of solution sets in convex

vector optimization, J. Optim. Theory Appl., to appear.
[14] D. KLATTE AND B. KUMMER, Stability properties of infima and optimal solutions of paramet-

ric optimization problems, in Proc. IIASA Workshop on Nondifferentiable Optimization,
Sopron, Hungary, 1984.

[15] S. M., ROBINSON, Regularity and stability for convex multivalued functions, Math. Oper. Res.,
1 (1976), pp. 131–143.

[16] Z. Q. LUO AND J. S. PANG, Error bounds for analytic systems and their applications, Math.
Programming, 67 (1995), pp. 1–28.

[17] Z. Q. LUO AND X. D. LUO, Extension of Hoffman’s error bound to polynomial systems, SIAM
J. Optim., 4 (1994), pp. 383–392.

[18] P. L. YU, Multiple-Criteria Decision Making: Concepts, Techniques, and Extensions, Plenum
Press, New York, 1985.



OPTIMAL CONTROL OF LINEAR PERIODIC RESONANT
SYSTEMS IN HILBERT SPACES∗

VIOREL BARBU†

SIAM J. CONTROL OPTIM. c© 1997 Society for Industrial and Applied Mathematics
Vol. 35, No. 6, pp. 2137–2156, November 1997 015

Abstract. This work concerns existence, the maximum principle, and synthesis for optimal
control problems with linear periodic dynamics in Hilbert spaces in the resonant case. Applications
to distributed and boundary periodic control problems are given.

Key words. distributed optimal control problems, maximum principle, closed range, p-stabiliz-
able
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1. Introduction. In this work we shall study the optimal control problem

(1.1) minimize
∫ T

0
(g(Cy(t)) + h(u(t)))dt

subject to u ∈ L2(0, T ;U) and y ∈ C([0, T ];H) satisfying the state system

(1.2)
dy

dt
+Ay = Bu+ f, t ∈ (0, T ),

y(0) = y(T ).

Here H, U , and Z are real Hilbert spaces, −A is the infinitesimal generator of a
C0 semigroup e−At on H, B ∈ L(U,H), C ∈ L(H,Z), g : Z → R̄ = (−∞,+∞], and
h : U → R̄ are lower semicontinuous convex functions. The solution y to state system
(1.1) is considered in the “mild sense,” i.e.,

(1.2)′ y(t) = e−Aty(T ) +
∫ t

0
e−A(t−s)(Bu(s) + f(s))ds ∀t ∈ [0, T ].

This is the general framework for representing distributed optimal control prob-
lems. In the resonant case, i.e., when the null space of the operator d

dt+A with periodic
condition is not trivial, this is a singular optimal control problem which so far was
studied under the key assumptions that the pair (A,B) is stabilizable and (A,C) is
detectable (see, e.g., [5], [7], [8]). However, though these assumptions are natural for
infinite horizon problems, they are too restrictive for periodic control problems. It is
our aim here to relax them to a closed range hypothesis which will be discussed in
some details in section 2 below. It will be in this framework that we shall treat in
sections 3 and 5 the existence, the Pontryagin maximum principle, and the synthesis
of optimal controllers. In section 4 we shall briefly discuss the corresponding bound-
ary control problem, while section 5 is devoted to construction of optimal feedback
controllers for the linear quadratic problem. In section 6 we shall study the optimal
control problem (1.1) with the dynamics

(1.3) y′′ +Ay = Bu+ f, t ∈ (0, T ); y(0) = y(T ), y′(0) = y′(T ),

where A is a self-adjoint, positive definite operator on H and B ∈ L(U,H).
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†University of Iaşi and Institute of Mathematics of Romanian Academy, University of Iaşi, 6600
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We shall use the standard notations for the spaces of vector-valued functions on
the interval [0,T]. In particular, W 1,2([0, T ];H) is the space of absolutely continuous
functions y : [0, T ] → H such that y′ = dy

dt ∈ L2(0, T ;H). The norms and the scalar
products of H, U , Z are denoted by | · |, | · |U , | · |Z and (·, ·), (·, ·)U , (·, ·)Z , respectively.
Given the lower semicontinuous, convex function ϕ on the Hilbert space X, we shall
denote by ∂ϕ the subdifferential of ϕ and by ϕ∗ the conjugate of ϕ, i.e.,

∂ϕ(y) = {z ∈ H;ϕ(y) ≤ ϕ(p) + (z, y − p) ∀p ∈ H},

ϕ∗(p) = sup{(y, p)− ϕ(y); y ∈ H}.

By ϕε we denote the Moreau–Brezis regularization of ϕ, i.e.,

(1.4) ϕε(x) = inf{(2ε)−1|x− y|2 + ϕ(y); y ∈ X}.

(We refer to [1] and [4] for basic results on convex analysis relevant to this paper.)
Given a linear, densely defined operator W on a Banach space we shall denote by
D(W ) the domain of W and by R(W ) its range. The dual operator will be denoted
by W ∗. In a slightly different form part of the results of this paper were presented in
[3].

2. Weak solutions and the closed range property. Let A be the linear
operator defined in L2(0, T ;H) as

(2.1) Ay = f

if and only if ∫ T

0
((y(t), ϕ′(t)−A∗ϕ(t)) + (f(t), ϕ(t)))dt = 0

for all ϕ ∈ W 1,2([0, T ];H) such that A∗ϕ ∈ L2(0, T ;H);ϕ(0) = ϕ(T ). A function
y ∈ L2(0, T ;H) satisfying (2.1) is called a weak solution to the periodic problem

(2.2)
dy

dt
+Ay = f ; y(0) = y(T ).

It is readily seen that the operator A is closed and densely defined in
L2(0, T ;H). Moreover, the dual operator A∗ is defined as

(2.3) A∗z = g

if and only if

(2.4)
∫ T

0
((z(t), ϕ′(t) +Aϕ(t))− (ϕ(t), g(t)))dt = 0

for all ϕ ∈W 1,2([0, T ];H) such that Aϕ ∈ L2(0, T ;H), ϕ(0) = ϕ(T ).
Let N(A) and N(A∗) be the null spaces of A and A∗, respectively. If R(A) (the

range of A) is closed in L2(0, T ;H), then by virtue of the closed range theorem (see,
e.g., [19, p. 205]), so is R(A∗) and

(2.5) L2(0, T ;H) = R(A)⊕N(A∗) = R(A∗)⊕N(A).
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This means that for each f ∈ R(A) the solutions y to equation Ay = f are expressed
as y = y1 + N(A) where y1 ∈ R(A∗) is uniquely defined. We define A−1f = y1 and
note that by the closed graph theorem, A−1 ∈ L(R(A), L2(0, T ;H)). The operator
(A∗)−1 ∈ L(R(A∗), L2(0, T ;H)) is similarly defined.

Proposition 1 below is related to some earlier result of Prüss [15] (see also Haraux
[9]).

PROPOSITION 1. Assume that for each m ∈ Z, the range Ym of µmiI + A is
closed in H and

(2.6) sup{‖(µmiI +A)−1‖L(Ym,H);m ∈ Z} <∞,

where µm = 2mπ/T . Then R(A) is closed in L2(0, T ;H).
Here we have again denoted A the realization of operator A into the complexified

space H.
Proof. If f ∈ R(A), then there is a y ∈ L2(0, T ;H) such that

(2.7) y(t) =
∑
m

ym exp(µmit), t ∈ (0, T ),

where

ym = (µmi+A)−1fm, fm = T−
1
2

∫ T

0
exp(−µmit)f(t)dt,

and so by (2.6) and Parseval’s identity we get

‖y‖L2(0,T ;H) ≤ C‖f‖L2(0,T ;H)

where Ay = f. This implies that R(A) is closed in L2(0, T ;H), as claimed.
Let A0 : D(A0) ⊂ L2(0, T ;H)→ L2(0, T ;H) be the linear operator defined as

(2.8) A0y = f

if and only if

y(t) = e−Aty(T ) +
∫ t

0
e−A(t−s)f(s)ds, t ∈ (0, T ).

In other words, A0y = f if and only if y is continuous and it is a “mild” periodic
solution to (2.2). It is easily seen that A0 is itself closed and densely defined in
L2(0, T ;H). Moreover, a simple integration by parts shows that A0 ⊂ A. As a
matter of fact we have the following proposition.

PROPOSITION 2. A0 = A.
Proof. Since, as noticed earlier, the inclusion A0 ⊂ A is immediate, we confine

ourselves to checking that A ⊂ A0. Let (y, f) ∈ A. We have

(2.9) y(t) =
∑
m∈Z

ym exp(µmit) in L2(0, T ;H); (µmi+A)ym = fm.

Then the sequence

yN (t) =
∑
|m|≤N

ym exp(iµmt)
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is convergent to y in L2(0, T ;H), and for each N , yN is a mild solution to (2.2) where
f = fN =

∑
|m|≤N fm exp(iµmt). Hence

(2.10) yN (t) = e−A(t−s)yN (s) +
∫ t

s

e−A(t−r)fN (r)dr, 0 < s < t < T,

yN (0) = yN (T ).

Since yN → y and fN → f in L2(0, T ;H) and a.e. on (0, T ) (on some subsequence),
we infer by (2.10) that {yN (T )} is strongly convergent in H to some y1 and therefore
yN (t) is uniformly convergent to y(t) ∈ C([0, T ];H) and Ay = f as claimed.

By Proposition 2 we have

(2.11) R(A) =

{
f ∈ L2(0, T ;H);

∫ T

0
e−A(T−t)f(t)dt ∈ R(I − e−AT )

}
,

(2.12) N(A) = {y ∈ L2(0, T ;H); y(t) = e−Aty0, (I − e−AT )y0 = 0}.

Moreover, the dual operator A∗ is given by A∗z = g if and only if

(2.13) z(t) = e−A
∗(T−t)z(0) +

∫ T

t

e−A
∗(s−t)g(s)ds ∀t ∈ [0, T ].

PROPOSITION 3. R(A) is closed in L2(0, T ;H) if and only if R(I − e−AT ) is
closed in H.

Proof. If R(I− e−AT ) is closed in H, then by (2.11) we see that R(A) is closed in
L2(0, T ;H). Assume now that R(A) is closed and consider the linear subspace of H,

X = {x ∈ H; (e−Atx) ∈ R(A)}.

(Here we have denoted by (e−Atx) the function t −→ e−Atx.) We have

(2.14) X = R(I − e−AT ).

Here is the argument. If x ∈ R(I − e−AT ), then Te−ATx ∈ R(I − e−AT ), and so the
equation

(I − e−AT )y0 = Te−ATx

has at least one solution y0 ∈ H. Then the function

y(t) = e−Aty0 +
∫ t

0
e−A(t−s)e−Asxds = e−Aty0 + te−Atx

is a solution to Ay = e−Atx, i.e., x ∈ X. Now let x be in X and let y(t) = e−Aty(0) +
te−Atx be a solution to Ay = e−Atx. Since y(0) = y(T ) the latter implies that
e−ATx ∈ R(I − e−AT ), and therefore x ∈ R(I − e−AT ). Since X is closed it follows
from (2.14) that so is R(I − e−AT ).

COROLLARY 1. If R(A) is closed in L2(0, T ;H), then A−1f ∈ C([0, T ];H) for
each f ∈ R(A) and

(2.15) ‖A−1f‖C([0,T ];H) ≤ C‖f‖L1(0,T ;H) ∀ f ∈ R(A).
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Proof. Since R(A) is closed, so is R(I − e−AT ), and we have therefore

A−1f(t) = e−At(I − e−AT )−1
∫ T

0
e−A(T−t)f(t)dt+

∫ t

0
e−A(t−s)f(s)ds

∀t ∈ [0, T ]. Recalling that (I − e−AT )−1 is continuous on R(I − e−AT ) the latter
implies (2.15), as desired.

By the Riesz–Fredholm theory we also have the following corollary.
COROLLARY 2. If e−AT is compact, then R(A) is closed and N(A), N(A∗) are

finite-dimensional.
Given F ∈ L(H,U) we shall denote by AF the operator A + BF defined from

L2(0, T ;H) to itself and by A∗F = A∗ + F ∗B∗ its dual.
DEFINITION 1. The pair (A,B) is said to be p-stabilizable if there is an F ∈

L(H,U) such that R(AF ) is closed in L2(0, T ;H) and N(A∗F ) is finite-dimensional.
By virtue of Proposition 3 and of (2.12), the pair (A,B) is p-stabilizable if and

only if there is an F ∈ L(H,U) such that R(I − e−(A+BF )T ) is closed in H and dim
N(I − e−(A∗+F∗B∗)T ) <∞. In particular, this happens if either e−AT is compact in
H or if the pair (A,B) is stabilizable, i.e., there is an F ∈ L(H,U) such that A+BF
generates an exponentially stable semigroup.

DEFINITION 2. The pair (A,C) is said to be p-detectable if there is a K ∈ L(Z,H)
such that R(AK) is closed in L2(0, T ;H) and dim N(AK) <∞.

Here AK = A+KC.
Throughout this paper, by solution y to the state equation (1.2), we mean a weak

solution, i.e., Ay = Bu+ f.

3. Existence and the maximum principle. We shall study first the existence
in problem (1.1) under the following assumptions.

(i) The pair (A,C) is p-detectable.
(ii) g : Z → R̄, h : U → R̄ are convex and lower semicontinuous and

(3.1) g(z) ≥ α|z|Z + β ∀z ∈ Z,

(3.2) h(u) ≥ ω|u|2U + γ ∀u ∈ U,

where α, ω > 0 and β, γ ∈ R.
THEOREM 1. Assume that there is at least one admissible pair (y, u) in prob-

lem (1.1). Then, under hypotheses (i), (ii), problem (1.1) has at least one solution,
(y∗, u∗) ∈ C([0, T ];H)× L2(0, T ;U).

Proof. Let (yn, un) ∈ C([0, T ];H)×L2(0, T ;U) be such that Ayn = Bun + f and

(3.3) inf(1.1) = d ≤
∫ T

0
(g(Cyn(t)) + h(un(t)))dt ≤ d+ n−1.

By (3.1), (3.2) we have

(3.4) ‖Cyn‖L1(0,T ;H) + ‖un‖L2(0,T ;U) ≤ C1.

By (i) there is a K ∈ L(Z,H) such that R(AK) is closed (AK = A + KC) and
dimN(AK) <∞. We have

(3.5) AKyn = Bun +KCyn + f
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and set yn = y1
n+y2

n, where y1
n = A−1

K (Bun+KCyn+f) ∈ R(A∗K) and y2
n ∈ N(AK).

Then by (2.15) and (3.4) we have

(3.6) ‖y1
n‖C([0,T ];H) ≤ C2 ∀n ∈ N.

On the other hand, by the closed range theorem we know that

N(AK) = N(CK)⊕R(C∗K).

We have denoted by CK ∈ L(N(AK), L2(0, T ;Z)) the operator y −→ Cy restricted to
N(AK). Since N(AK) is finite-dimensional, CK has closed range in L2(0, T ;Z), and
because {Cy2

n} if bounded in L1(0, T ;Z), it is bounded in L2(0, T ;Z) as well. We
have, therefore,

y2
n = z1

n + z2
n,

where {z1
n} is bounded in L2(0, T ;H) and Cz2

n = 0 a.e. in (0, T ). We may assume,
therefore, that the sequence {y1

n + z1
n} is weakly compact in L2(0, T ;H) and on a

subsequence again denoted {n} we have

un −→ u∗ weakly in L2(0, T ;U),
y1
n + z1

n −→ y∗ weakly in L2(0, T ;H).

Recalling that A(y1
n + z1

n) = Bun + f we infer that Ay∗ = Bu∗ + f , and since the
convex integrand is weakly lower semicontinuous we get

(3.7) d =
∫ T

0
(g(Cy∗(t)) + h(u∗(t)))dt;

i.e., (y∗, u∗) is optimal in problem (1.1). This completes the proof.
In order to get the maximum principle for problem (1.1) we shall use the following

assumptions.
(j) The pair (A,B) is p-stabilizable.

(jj) The function g : Z → R is convex and continuous, h : U → R̄ is convex and
lower semicontinuous, intD(h) 6= ∅.

(jjj) The function f is in C([0, T ];H) and one of the following two conditions hold:
(jjj)1 D(h) = U and h is bounded on every bounded subset of U .
(jjj)2 f(t) = Bf0(t) where f0 ∈ C([0, T ];U) and −f0(t) ∈ intD(h) ∀t ∈ [0, T ].

Here D(h) = {u ∈ U ;h(u) < +∞} is the effective domain of h and int stands for
interior.

THEOREM 2. Assume that hypotheses (j), (jj), (jjj) hold. Then the pair
(y∗, u∗) ∈ C([0, T ];H) × L2(0, T ;U) is optimal in problem (1.1) if and only if there
are p ∈ C([0, T ];H) and η ∈ L∞(0, T ;Z) such that

(3.8)
dy∗

dt
+Ay∗ = Bu∗ + f in (0, T ); y∗(0) = y∗(T ),

(3.9)
dp

dt
−A∗p = C∗η in (0, T ); p(0) = p(T ),

(3.10) η(t) ∈ ∂g(Cy∗(t)) a.e. t ∈ (0, T ),

(3.11) u∗(t) ∈ ∂h∗(B∗p(t)) a.e. t ∈ (0, T ).
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The system (3.8), (3.9) is considered, of course, in the weak sense:

(3.8)′ Ay = Bu∗ + f ; A∗p = −C∗η.

Proof. It is readily seen that equations (3.8)–(3.11) are sufficient for optimality.
To prove necessity we fix an optimal pair (y∗, u∗) and consider the approximating
control problem

(3.12) Min

{∫ T

0
(gε(Cy) + h(u) + 2−1(|y − y∗|2 + |u− u∗|2U + ε−1|v|2))

}
dt

subject to

Ay = Bu+ v + f, u ∈ L2(0, T ;U), v ∈ L2(0, T ;H), y ∈ C([0, T ];H).

Here gε ∈ C1(Z) is defined as in (1.4).
Arguing as above, it is easily seen that problem (3.12) has a unique solution

(yε, uε, vε) ∈ C([0, T ];H)× L2(0, T ;U)× L2(0, T ;H), and by a standard device (see,
e.g., [1], [4]) we have

(3.13) uε −→ u∗ strongly in L2(0, T ;U),

yε −→ y∗ strongly in L2(0, T ;H).

We also have that

vε −→ 0 strongly in L2(0, T ;H).

Next we have

(3.14)

∫ T

0
((C∗∇gε(Cyε), z) + (yε − y∗, z) + (uε − u∗, w)U + h′(uε, w)

+ε−1(vε, v))dt ≥ 0

∀(z, w, v) ∈ C([0, T ];H)× L2(0, T ;U)× L2(0, T ;H) such that Az = Bw + v. We set
pε = ε−1vε. Then (3.14) yields

(3.14)′
∫ T

0
(C∗∇gε(Cyε) + yε − y∗, z) + (uε − u∗, w)U

+h′(uε, w) + (pε,Az −Bw))dt ≥ 0

∀z ∈ D(A) ,∀w ∈ L2(0, T ;U). (Here h′ is the directional derivative of h.) For w = 0
the latter yields

(3.15) A∗pε = −C∗∇gε(Cyε) + y∗ − yε.

Substituting the latter into (3.14)′, we get∫ T

0
(B∗pε + u∗ − uε, w)Udt ≤

∫ T

0
h′(uε, w)dt ∀w ∈ U.

This yields

(3.16) B∗pε ∈ ∂h(uε) + uε − u∗ a.e. ∈ (0, T ).
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We note also that

(3.17) Ayε = Buε + εpε + f.

We are going to let ε tend to 0 in equations (3.15), (3.16) in order to get (3.9)–(3.11).
To this aim, some a priori estimates on pε are necessary. Assume first that condition
(jjj)2 holds. Then by (3.16) and by the definition of ∂h, we have

(3.18)
(B∗pε(t) + u∗(t)− uε(t), uε(t) + f0(t)− ρw)U

≥ h(uε(t))− h(ρw − f0(t)) a.e. t ∈ (0, T )

∀w ∈ U, |w|U = 1, and ρ positive and sufficiently small. This yields

ρ

∫ T

0
|B∗pε(t)|Udt ≤

∫ T

0
(pε(t),Ayε(t)− εpε(t))dt+ C3.

Finally,

ρ

∫ T

0
(|B∗pε(t)|U + ε|pε(t)|2)dt

≤ −
∫ T

0
((∇gε(Cyε(t)), Cyε(t))Z + (yε(t)− y∗(t), yε(t)))dt ≤ C4

because ∇gε is monotone. On the other hand, it follows that {yε} is strongly conver-
gent to y∗ in C([0, T ];H). Indeed, by (3.17), we see that

yε(t) = e−AF (t−s)yε(s) +
∫ t

s

e−AF (t−r)(Buε(r) + εpε(r)

+BFyε(r))dr, 0 ≤ s ≤ t ≤ T,

and the conclusion follows by (3.13). (Here and everywhere in the following, F ∈
L(H,U) is chosen as in Definition 1.) Since ∂g is locally bounded in H and

∇gε(z) ∈ ∂g((I + ε∂g)−1z) ∀z ∈ Z;
∫ T

0
gε(Cyε)dt ≤ C5,

we have

(3.19) |∇gε(Cyε(t))|Z ≤ C6 ∀ε > 0, t ∈ [0, T ].

We may rewrite equation (3.15) as

(3.20) A∗F pε = −C∗∇gε(Cyε)− (yε − y∗) + F ∗B∗pε.

Then by (3.19) and Corollary 1 it follows that

(3.21) |p1
ε(t)| ≤ C7 ∀t ∈ [0, T ],

where pε = p1
ε + p2

ε and

p1
ε ∈ R(AF ) = N(A∗F )⊥, p2

ε ∈ N(A∗F ).
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Denote by B∗F the operator y −→ B∗y defined from N(A∗F ) to L2(0, T ;U). Recalling
that the space N(A∗F ) is finite-dimensional, we infer that B∗F has closed range in
L2(0, T ;U), and so by the closed range theorem, it has a bounded inverse on its range.
Since N(A∗F ) ⊂ C([0, T ];H) and {B∗F p2

ε} is bounded in L1(0, T ;U), it is bounded in
L2(0, T ;U) too, and we have p2

ε = q1
ε + q2

ε where {q1
ε} is bounded in L2(0, T ;H) and

B∗q2
ε = 0 a.e. in (0, T ). We conclude, therefore, that the sequence {p1

ε + q1
ε} is weakly

compact in L2(0, T ;H). Moreover, we may write (3.20) as

(3.20)′ A∗F (p1
ε + q1

ε) = −C∗∇gε(Cyε)− (yε − y∗) + F ∗B∗(p1
ε + q1

ε).

Selecting further subsequences, if necessary, we may assume that

p1
ε + q1

ε −→ p weakly in L2(0, T ;H),
∇gε(Cyε) −→ η weak star in L∞(0, T ;Z).

Since ∂g and ∂h are maximal monotone (and therefore weakly/strongly closed), we
may pass to the limit in (3.15) and (3.20)′ to get the optimality system (3.8)–(3.11).

Assume now that condition (jjj)1 is satisfied. We set pε = p1
ε + q1

ε . Then by (3.16)
we have

h(uε)− h(ρw) ≤ (B∗pε + u∗ − uε, uε − ρw)

for all w ∈ H, ρ > 0. This yields

ρ

∫ T

0
|B∗pε(t)|Udt ≤ C8 + Th(ρw) +

∫ T

0
(pε(t),Ayε(t)− f(t))dt

≤ Th(ρw) + C9

(
1 +

∫ T

0
|pε(t)|dt

)
.

Finally,

(3.22)
∫ T

0
|B∗pε(t)|Udt ≤ Cρ + C10ρ

−1
∫ T

0
|pε(t)|dt

for all ρ > 0. Choosing ρ sufficiently large it follows by (3.20)′ and (3.2) that {p1
ε+q1

ε}
is bounded in L2(0, T ;H), and so we may conclude the proof as in the previous case.

Remark 1. The proof reveals that Theorem 2 remains true if assumption (j) is
relaxed to: there is an F ∈ L(H,U) such that AF has closed range in L2(0, T ;H) and
B∗F has closed range in L1(0, T ;U).

The optimal control problem

(3.23)

Min

{∫ T

0
(g∗(v(t)) + h∗(B∗p(t)) + (f(t), p(t)))dt;

p ∈ C([0, T ];H), v ∈ L2(0, T ;H)

}
subject to

(3.24) A∗p = −v

is the dual of (1.1) in the sense of Rockafellar (see, e.g., [17]). Here h∗ is the conjugate
of h, and g∗ is the conjugate of the function y → g(Cy).
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THEOREM 3. Under the assumptions of Theorem 2 the pair (y∗, u∗) is optimal in
problem (1.1) if and only if the dual problem (3.23) has a solution (p∗, v∗) and

(3.25)

∫ T

0
(g(Cy∗(t) + h(u∗(t))dt+

∫ T

0
(g∗(v∗(t))

+h∗(B∗p∗(t))) + (f(t), p∗(t)))dt = 0.

Proof. The argument is standard (see, e.g., [4], [16]), so only the proof will be
sketched. If (y∗, u∗) is optimal in (1.1), then by Theorem 2 the optimality system
(3.8)–(3.11) has a solution (p∗, v∗ = C∗η), and in virtue of the conjugacy relation, we
have

(3.26) h(u∗) + h∗(B∗p∗) = (B∗p∗, u∗)U ,

g(Cy∗) + g∗(v∗) = (y∗, v∗).

Integrating from 0 to T we get (3.25). On the other hand, for all (p, v) ∈ C([0, T ];H)×
L2(0, T ;H),A∗p = −v, we have

(3.27) h(u∗) + h∗(B∗p) ≥ (B∗p, u∗)U a.e. on (0, T ),

g(Cy∗) + g∗(v) ≥ (y∗, v) a.e. on (0, T ),

which imply that the pair (p∗, v∗) is optimal in problem (3.23). Conversely, if (3.25)
holds, then by (3.26) and (3.27), we see that y∗, p∗, u∗ satisfy the optimality system
(3.8)–(3.11), and therefore (y∗, u∗) is optimal in problem (1.1).

We end this section with a few examples of linear control systems of the form
(1.2) for which the previous theorems are applicable.

1. Parabolic control problems. Consider the system

(3.28)

∂y
∂t −∆y + b(x) · ∇y + c(x)y = Bu+ f(x, t), (x, t) ∈ Ω×R,
y(x, t) = 0 ∀(x, t) ∈ ∂Ω×R,
y(x, t+ T ) = y(x, t) ∀(x, t) ∈ Ω×R,

where b ∈ W 1,∞(Ω;Rn), c ∈ L∞(Ω), f ∈ L2
loc(R;L2(Ω)) is T -periodic in t, while

B ∈ L(L2(Ω), L2(Ω)). Here Ω is a bounded and open subset of Rn with a sufficiently
smooth boundary ∂Ω. We may write (3.28) under the form (1.2) where H = U =
L2(Ω) and

(3.29) Ay = −∆y + b · ∇y + cy, D(A) = H1
0 (Ω) ∩H2(Ω).

Since the semigroup e−At generated by −A on L2(Ω) is compact, it follows that R(A)
is closed in L2(0, T ;H) and N(A∗) is finite-dimensional (Corollary 2). Hence the p-
stabilizability hypothesis (j) is satisfied in the present situation with F = 0. A similar
conclusion can be reached for the p-detectability hypothesis (i).

2. Linear delay control systems. Consider the control system governed by the
delay system

(3.30)
y′(t) +A0y(t) +A1y(t− h) = B0u(t) + f(t),
y(t) = y(t+ T ) ∀t ∈ R,
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where A0, A1 are n×n matrices, B0 is an n×l matrix, f ∈ L2
loc(R;Rn), f(t+T ) = f(t),

u ∈ L2
loc(R;Rl), and u(t) = u(t+T ). It is well known that this system can be written

in the form (1.2), where H = M2 = Rn × L2(−h, 0;Rn), U = Rl, B = (B0, 0), and

A(y0, y
0) =

{
A0y0 +A1y

0(−h),−dy
0

ds

}
,

D(A) = {(y0, y
0) ∈ Rn ×W 1,2([−h, 0];Rn), y0 = y0(0)}.

For each m ∈ Z, we may rewrite the equation (µmiI +A)y = (f0, f1) as

(3.31) (iµmI +A0 + e−iµmhA1)y0 = f0 +
∫ −h

0
e−iµm(h+s)A1f1(s)ds,

y0(s) = e−iµmsy0 −
∫ s

0
eiµm(s−t)f1(t)dt,

where µm = 2mπT−1. Moreover, after some calculation, we see that

(3.32) N(A∗) =

{∑
m

(ymeiµmt,−A∗1ymeiµm(t−s−h));

(iµmI +A∗0 + e−iµmhA∗1)ym = 0

}
.

By (3.31) we see that R(iµmI + A) is closed and condition (2.5) in Proposition 1 is
satisfied. We conclude, therefore, that the corresponding operator A has closed range
in L2(0, T ;H). Moreover, by (3.31) and (3.32), it follows that N(A) and N(A∗) are
finite-dimensional.

3. First-order hyperbolic systems. Consider the control system governed by the
linear system

(3.33) yt(x, t)− zx(x, t) = u(x, t) + f(x, t), x ∈ (0, 1), t ∈ (0, T ),

zt(x, t)− yx(x, t) = B0v(x, t) + g(x, t), x ∈ (0, 1), t ∈ (0, T ),

y(0, t) = y(1, t) = 0; y(x, T ) = y(x, 0), z(x, T ) = z(x, 0) ∀x ∈ (0, 1).

Here B0 ∈ L(L2(0, 1), L2(0, 1)) and f, g ∈ C([0, T ];L2(0, 1)) are given functions. Sys-
tem (3.33) can be written in the form (1.2) where H = U = L2(0, 1) × L2(0, 1)
B(u, v) = (u,B0v), and A(y, z) = (−zx,−yx), D(A) = {y, z ∈ H1(0, 1), y(0) = y(1) =
0}. Consider the feedback control F (y, z) = (−y, 0). Then it is easily seen that the
corresponding operator AF has closed range in L2(0, T ;H), N(AF ) = N(A∗F ) =
{(0, C);C ∈ R}, and therefore the pair (A,B) is p-stabilizable. This simple example
extends to linear control hyperbolic systems in Rn×Rn, and it is instructive to notice
that in this case if T is irrational, then R(A) is not closed and so assumption (j) does
not hold with F = 0.

4. Periodic boundary control problems. Here we shall extend the previous
results to boundary control problem

(4.1) Min

{∫ T

0
(g(Cy(t)) + h(u(t)))dt, u ∈ L2(0, T ;U)

}
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subject to

(4.2) z′ +Az = Du+ (λI +A)−1f in (0, T ),

z(0) = z(T ), y = (λI +A)z.

Here −A is the infinitesimal generator of a C0 semigroup in H, λ ∈ ρ(−A), and
D ∈ L(U,H). We set B = (λI + A)D. Clearly B ∈ L(U, (D(A∗)′)) and the dual
operator B∗ is in L(D(A∗), U). Dealing with system (4.2), we shall use one of the
following two conditions:

(H1) ‖B∗e−A∗t‖L(H,H) ≤ C1t
γ−1 ∀t ∈ (0, T )

where γ ∈ (0, 1).

(H2)
∫ T

0
|B∗e−A∗tx|2Udt ≤ C2|x|2 ∀x ∈ H.

It is well known that condition (H1) is satisfied by parabolic equations with Dirichlet
boundary control, while condition (H2), due to Lasiecka and Triggiani, is specific to
hyperbolic boundary control systems (see [10]). The state equation (4.2) is considered
in the weak sense, i.e.,

(4.3) Az = Du+ (λI +A)−1f.

We shall study problem (4.1) under the assumption

(4.4) R(A) is closed in L2(0, T ;H) and dimN(A∗) < +∞.

Since, as seen earlier (Proposition 3), this implies that (I − e−AT )−1 ∈ L(R(I −
e−AT );H), it follows that under assumption (H2) the weak solution y = (λI +A)z is
in C([0, T ];H), while under assumption (H1), y ∈ L2(0, T ;H).

THEOREM 4. Assume that R(A) is closed in L2(0, T ;H) and N(A) is finite-
dimensional. Then problem (4.1) has at least one solution (y∗, u∗) ∈ L2(0, T ;H) ×
L2(0, T ;U).

Proof. Let yn, un be as in the proof of Theorem 1 where yn=(λI+A)zn, Azn =
Dun + (λI +A)−1f . We have

‖Cyn‖2L1(0,T ;Z) + ‖un‖2L2(0,T ;U) ≤ C3.

We set yn = y1
n + y2

n, where y1
n ∈ R(A∗) and y2

n ∈ N(A). Since N(A) is finite-
dimensional we may write y2

n = z1
n + z2

n where {z1
n} is compact in L2(0, T ;H) and

z2
n ∈ N(CK) ∩ N(A). Hence {y1

n + z1
n} is weakly compact in L2(0, T ;H), and so we

may pass to the limit in (3.4) to conclude the proof.
As regards the maximum principle, we have the following theorem.
THEOREM 5. Assume that hypotheses (4.4) and (jj), (jjj) hold. Then the pair

(y∗, u∗) is optimal in problem (4.1) if and only if the system (3.8)–(3.11) is satisfied.
Proof. The proof is essentially the same as that of Theorem 2, and so we shall

omit it. We notice only that though B and B∗ are not bounded (or closed), equations
(3.15), (3.16) make sense in this case because

B∗p(t) = B∗e−A
∗(T−t)(I − e−A∗T )−1

∫ T

0
e−A

∗sg(s)ds

+
∫ T

t

B∗e−A
∗(s−t)g(s)ds ∀t ∈ [0, T ]
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for all solutions p to equation A∗p = g. The latter is also used to pass to the limit in
equations (3.15), (3.16).

As an example, consider the optimal control problem with state dynamics

(4.5)
yt −∆y + b(x) · ∇y + c(x)y = f(x, t), (x, t) ∈ Ω×R,
y(x, t) = a(x)u(x, t) ∀(x, t) ∈ ∂Ω×R,
y(x, t+ T ) = y(x, t) ∀(x, t) ∈ Ω×R,

where b ∈W 1,∞(Ω;Rn), c ∈ L∞(Ω), and a ∈ C(∂Ω) is not identically 0.
Define Du = y0, where y0 is the solution to boundary value problem

λy0 −∆y0 + b · ∇y0 + cy0 = 0 in Ω,

y0 = au in ∂Ω,

and

Ay = −∆y + b · ∇y + cy, D(A) = H1
0 (Ω) ∩H2(Ω).

We are in the case described by (H1), where H = L2(Ω) , U = L2(∂Ω), and B∗p =
a ∂p∂ν ∀p ∈ D(A).

5. Synthesis of periodic optimal controller. Here we shall study the exis-
tence of optimal feedback controllers for problem (1.1) in the linear quadratic case,

g(y) = 2−1|Cy|2Z , h(u) = 2−1|u|2U ,

i.e.,

(5.1) Min

{
2−1

∫ T

0
(|Cy|2Z + |u|2U )dt;Ay = Bu+ f

}
,

where B ∈ L(U,H), C ∈ L(H,Z), and the pair (A,C) is detectable, i.e., there is
a K ∈ L(Z,H) such that A + KC generates an exponentially stable semigroup. It
is readily seen that under these assumptions problem (5.1) has a unique optimal
pair (y∗, u∗). The existing results on feedback representation of optimal controller of
problem (5.1) require the stabilizability of pair (A,B) (see, e.g., [7], [8]). Here we
shall obtain such a representation under the following weaker hypothesis.

(j)′ The pair (A,B) is p-stabilizable and

N(A∗) ∩ {p ∈ L2(0, T ;H);B∗p(t) = 0, a.e. t ∈ (0, T )} = {0}.

THEOREM 6. Assume that the pair (A,C) is detectable and that hypothesis (j)′

holds. Then the optimal controller u∗ of problem (5.1) is given by the feedback formula

(5.2) u∗(t) = B∗P−1(y∗(t)− r(t) + z(t)) ∀t ∈ [0, T ],

where P ∈ L(H,H) is a self-adjoint and positive solution to the algebraic Riccati
equation

(5.3) AP + PA∗ + PC∗CP = BB∗,

r ∈ C([0, T ];H) is a weak solution to the periodic problem

(5.4) r′ + (A+ PC∗C)r = f in (0, T ); r(0) = r(T ),
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and z ∈ C([0, T ];H) is such that z(t) ∈ N(C∗C),∀t ∈ [0, T ]. In (5.2) P−1 is the
generalized inverse of P.

Proof. By Theorem 3 it follows that the solution (y∗, u∗) to problem (5.1) is given
by

(5.5) u∗ = B∗p∗, C∗Cy∗ = −v∗,

where (p∗, v∗) ∈ C([0, T ];H)×L2(0, T ;H) is a solution to the optimal control problem

(5.6) Min

{∫ T

0
(2−1|B∗p|2U +H(v))dt+

∫ T

0
(f, p)dt; A∗p = v

}
,

where H(v) = sup{(y, v)− 2−1|Cy|2Z ; y ∈ H}. Since the function H is strictly convex,
the optimal control v∗ is unique and can be expressed as

(5.7) v∗(t) = −C∗CPp∗(t)− C∗Cr(t),

where P ∈ L(H,H) is a self-adjoint, positive solution to the algebraic Riccati equation
(5.3) and r ∈ C([0, T ];H) is a weak solution to (5.4). The solution P to (5.3) is
considered in the following weak sense:

2(Px,A∗x) + |CPx|2 = |B∗x|2 ∀x ∈ D(A).

In fact, it is easily seen, via the optimality system, that the feedback controller v∗

given by (5.7) is optimal in problem (5.6). The existence of a positive, self-adjoint
solution P to Riccati equation (5.3) follows from the general theory of linear quadratic
infinite horizon control problems (see, e.g., [7, p. 265]) because the pair (A∗, C∗) is
stabilizable. We shall prove now that with a such a P equation, (5.4) has at least one
weak solution, r ∈ C([0, T ];H).

Let A1 be the operator defined in L2(0, T ;H) by

A1 = A+ PC∗C.

Then equation (5.4) can be written as

(5.8) A1r = f.

We shall prove that R(A1) is closed in L2(0, T ;H) and N(A∗1) = {0}. Indeed, if
A∗1p = 0, then

p′ − (A∗ + C∗CP )p = 0; p(0) = p(T ).

After some calculation involving this latter equation and (5.3), we get∫ T

0
(|B∗p(t)|2U + |CPp(t)|2Z)dt = 0.

Hence B∗p = 0, CPp = 0. In particular, this implies that p ∈ N(A∗), and so by
assumption (j)′, we infer that p(t) = 0 ∀t ∈ (0, T ). It remains to check that R(A1)
is closed. To this end it suffices to show that R(A∗1) is closed in L2(0, T ;H). Let
{fn} ⊂ L2(0, T ;H) and {yn} ⊂ C([0, T ];H) be such that A∗1yn = fn and

fn −→ f strongly in L2(0, T ;H).
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Then, by equation (5.3), we get∫ T

0
(|B∗yn|2U + |CPyn|2Z − 2(fn, Pyn))dt = 0,

and this yields

(5.9) ‖B∗yn‖2L2(0,T ;U) + ‖Pyn‖2L2(0,T ;H) ≤ C1.

On the other hand, we have

A∗F yn = fn − C∗CPyn + F ∗B∗yn

where F is as in Definition 1. Then by (2.15) and (5.9) we get the estimate

(5.10) ‖y1
n‖C([0,T ];H) + ‖B∗y2

n‖L2(0,T ;U) ≤ C2,

where

yn = y1
n + y2

n, y1
n ∈ R(AF ), y2

n ∈ N(A∗F ).

Since N(A∗F ) is finite-dimensional, it follows by (5.10) and assumption (j)′ that{y2
n}

is bounded in C([0, T ];H). Hence {yn} is bounded in L2(0, T ;H), and therefore
A∗1y = f where y is a weak limit point of {yn} in L2(0, T ;H). Hence equation (5.4)
has at least one weak solution, and so the feedback controller (5.7) is well defined.
Now, by (5.5) and (5.7), we get (5.3), thereby completing the proof.

Let us check hypothesis (j)′ in the case of control system (3.30), where Bu = au,
a ∈ C(Ω). We shall assume also that a is not identically 0. If p ∈ N(A∗) and
B∗p = ap = 0 a.e. in Q = Ω× (0, T ), then p is the solution to the parabolic boundary
value problem

(5.11)
∂p

∂t
+ ∆p+ div (bp)− cp = 0 in Q,

p = 0 in ∂Ω× (0, T ).

Then, by the unique continuation property of solutions to parabolic equations (see,
e.g., [18]), we infer that p ≡ 0, and therefore hypothesis (j)′ is satisfied.

Coming back to the second example, delay control problems, we note that by
(3.32) it follows that if

(5.12) N(iµmI +A∗0 + e−µmihA∗1) ∩N(B∗0) = {0} ∀m ∈ Z,

then hypothesis (j)′ holds. It should be mentioned, however, that the latter condition
does not imply the stabilizability of the pair (A,B), as the following example shows:

x′1(t) = x1(t) + x3(t− h), x′2(t) = x2(t) + x3(t), x′3(t) = u(t).

It is readily seen that condition (5.12) is satisfied, though the system is not stabilizable
[13].

6. The optimal control of the wave equation. We shall study here the
optimal control problem

(6.1) minimize
∫ T

0
(2−1|Cy(t)|2Z + h(u(t)))dt

subject to u ∈ L2(0, T ;H), y ∈ L2(0, T ;U),

(6.2)
y′′ +Ay = Bu+ f, t ∈ (0, T ),
y(0) = y(T ), y′(0) = y′(T ),
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where A is a self-adjoint, linear, and positively defined operator in H, B ∈ L(U,H),
C ∈ L(H,Z), and h is a lower semicontinuous convex function on U . By weak solution
to equation (6.2), we mean a function y ∈ L2(0, T ;H) such that

(6.3)
∫ T

0
(y(t), ϕ′′(t) +Aϕ(t))dt =

∫ T

0
(f(t) +Bu(t), ϕ(t))dt,

for all ϕ ∈ Y = {ϕ ∈ C2([0, T ];H) ∩ C([0, T ];D(A)); ϕ(0) = ϕ(T ), ϕ′(0) = ϕ′(T )}.
Equivalently,

(6.2)′ Wy = Bu+ f,

where W : D(W) ⊂ L2(0, T ;H)→ L2(0, T ;H) is the linear operator defined by

(6.4) Wy = f iff
∫ T

0
(y(t), ϕ′′(t) +Aϕ(t))dt =

∫ T

0
(f(t), ϕ(t))dt ∀ϕ ∈ Y.

It is readily seen that W is densely defined and closed in L2(0, T ;H).
Writing equation (6.2) as a first-order differential equation on the product space

D(A
1
2 ) × H, we may apply the general results obtained in the previous section to

problem (6.1). However, a direct treatment of such a problem requires less restrictive
conditions in specific examples. On the other hand, for the sake of simplicity, we shall
not put the results of this section in the general framework of the p-stabilizability
condition; we shall confine ourselves to assuming that R(W) is closed in L2(0, T ;H).
By virtue of the closed range theorem, this assumption implies that

L2(0, T ;H) = R(W)⊕N(W); W−1 ∈ L(R(W), L2(0, T ;H)).

Arguing as in the proof of Theorem 1, it follows that if R(W) is closed in
L2(0, T ;H) and N(W) is finite-dimensional, then problem (6.1) has at least one so-
lution (y, u) ∈ L2(0, T ;H)×L2(0, T ;U). As regards the maximum principle, we have
the following theorem.

THEOREM 7. Assume that R(W) is closed, dim N(W) < ∞, and h, f satisfy
hypotheses (jj), (jjj). Then the pair (y∗, u∗) ∈ L2(0, T ;H)× L2(0, T ;U) is optimal in
problem (6.1) if and only if there is a p ∈ L2(0, T ;H) such that

(6.5) Wp = −C∗Cy,

(6.6) u∗(t) ∈ ∂h∗(B∗p(t)), a.e. t ∈ (0, T ).

We omit the proof because it is identical with that of Theorem 2. Since in most
applications the null space N(W) is infinite-dimensional (the state equation is highly
resonant), we shall relax this condition as follows.

(k) R(W) is closed and the operator y −→ B∗y defined from N(W) to L2(0, T ;H)
has closed range.

THEOREM 8. Assume that hypotheses (jj), (k) hold, f ∈ C([0, T ];H), and h has
quadratic growth, i.e.,

(6.7) h(u) ≤ α1|u|2U + β1 ∀u ∈ U.

Then the pair (y∗, u∗) ∈ L2(0, T ;H) × L2(0, T ;U) is optimal in problem (6.1) if and
only if it satisfies system (6.5), (6.6).
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Proof. Let (yε, uε, vε) be the solution to the approximating problem (see (3.12))

Min

{∫ T

0
(2−1|Cy|2Z + h(u) + 2−1(|y − y∗|2 + |u− u∗|2U + ε−1|v|2))dt;

Wy = Bu+ v + f

}
.

As in the proof of Theorem 2, we get (3.13) and (see (3.15), (3.16))

(6.8) Wpε = −C∗Cyε + y∗ − yε,
(6.9) B∗pε ∈ ∂h(uε) + uε − u∗ a.e. in (0, T ).

By (6.7) and (6.8) we have

‖B∗pε‖2L2(0,T ;U) ≤ C1 ∀ε > 0,

and so, by virtue of assumption (k), we conclude via the closed range theorem that

{p1
ε + p3

ε} is bounded in L2(0, T ;H),

where

pε = p1
ε + p3

ε + p4
ε

and p1
ε ∈ R(W), p3

ε, p
4
ε ∈ N(W), and B∗p4

ε = 0 a.e. t ∈ (0, T ). Hence we may pass to
the limit in equations (6.8), (6.9) to get (6.5), (6.6), as desired.

The dual problem of (6.1) is (see (3.23), (3.24))

(6.10) Min

{∫ T

0
(g∗(v) + h∗(B∗p) + (f, p))dt;W∗p = −v; v ∈ L2(0, T ;H)

}
.

By using exactly the same argument, it follows that under the assumptions of Theorem
7 or 8, the conclusions of duality Theorem 3 remain valid in the present case.

Now we shall present two examples.
4. The one-dimensional wave equation. Consider the control system

(6.11)

ytt(x, t)− v−1(x)(v(x)yx(x, t))x = Bu(x, t) + f(x, t),
(x, t) ∈ (0, π)×R,

y(0, t) = y(π, t) = 0, t ∈ R,
y(x, t+ T ) = y(x, t), yt(x, t+ T ) = yt(x, t), (x, t) ∈ (0, π)×R,

where v ∈ H2(0, T ), v(x) > 0 ∀x ∈ [0, π], B ∈ L(L2(0, π), L2(0, π)), and

ess sup{(v′(x))2 − 2v′′(x)v(x); x ∈ (0, π)} < 0.

In this case U = L2(0, π), H = L2(0, π) is endowed with the scalar product (y, z) =∫ π
0 v(x)y(x)z(x)dx and

Ay = −v−1(vyx)x, D(A) = H1
0 (0, π) ∩H2(0, π).

Equation (6.11) models the forced vibrations of a nonhomogeneous string as well as
the propagation of waves in nonisotropic media. If T is a rational multiple of π then
R(W) is closed, N(W) is finite-dimensional [6], and so Theorem 8 is applicable.
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5. The n-dimensional wave equation. Consider the control system

(6.12)
ytt −∆y = a(x)u+ f, x ∈ Ω, t ∈ R,
y = 0 in ∂Ω×R;
y(x, t+ T ) = y(x, t), yt(x, t+ T ) = yt(x, t),

where Ω = (0, π)n, a ∈ C(Ω), a 6≡ 0, f ∈ C([0, T ];L2(Ω)), and f(x, t + T ) ≡ f(x, t).
We may write (6.12) in the form (6.2) where H = L2(Ω), A = −∆ , D(A) = H1

0 (Ω)∩
H2(Ω), and Bu = au ∀u ∈ U = L2(Ω). If T is a rational multiple of π, then the
corresponding operator W : L2(Q) −→ L2(Q), Q = Ω × (0, T ), has closed range.
Here is the argument (see [14]). If

Wy = f ; (y, f) ∈ L2(Q)× L2(Q),

then

(6.13) y =
∑

m∈Z,k∈Nn
fmk(µ2

m − λ2
k)−1eiµmtϕk,

where µm = 2mπT−1, λ2
k = k2

1 + k2
2 + · · ·+ k2

n, ki ∈ N , are the eigenvalues of A and
ϕk are the corresponding eigenfunctions; fmk are the Fourier coefficients of f . If T is
a rational multiple of π we have

inf{|λ2
k − µ2

m|;λ2
k = µ2

m} > 0.

Then by (6.13) we see that there is a y1 ∈ L2(Q) such that Wy1 = f and

‖y1‖L2(Q) ≤ C1‖f‖L2(Q) ∀f ∈ L2(Q).

This implies that R(W) is closed in L2(Q).
One might suspect that assumption (k) is true in this case and so that Theorem

8 could be applied to the optimal control problem with dynamics (6.12) and payoff

2−1
∫
Q

|Cy(x, t)|2Zdxdt+
∫ T

0
h(u(t))dt

where C ∈ L(L2(Ω), Z). In the special case a = 1 the maximum principle follows for
general domains Ω, because if we write equation (6.12) under the form (1.2) on the
product space H1

0 (Ω) × L2(Ω), the corresponding pair (A,B) is stabilizable. For a
general a ∈ C(Ω) this happens if the support of a has the optical geometric property
[16], [12]. Note also that in the case n = 1 and m ≡ 1, the interiority condition in
(jjj)2 can be weakened to a similar condition in L∞(Ω) [2], but the argument uses the
special structure of N(A).

We shall conclude this section with the boundary control version of problem (6.1),
i.e.,

(6.14) Min

{∫ T

0
(2−1|Cy(t)|2Z + h(u(t)))dt; (y, u) ∈ L2(0, T ;H)× L2(0, T ;U)

}

subject to

(6.15) z′′ +Az = Du+A−1f ; z(0) = z(T ), z′(0) = z′(T ); y = Az.
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Here A is a self-adjoint, positive definite operator on H, f ∈ L2(0, T ;H), g, h, C are
as above, and D ∈ L(U,H) satisfies the following condition:

(6.16)
∫ T

0
|B∗S(t)y|2Udt ≤ C3|y|2 ∀y ∈ H,

where B∗ = D∗A ∈ L(D(A), U) and S(t) is the sine operator associated with A. In
particular, condition (6.16) is verified by the wave equation with Dirichlet boundary
input on a bounded open set Ω of Rn with smooth boundary (or if Ω is a paral-
lelepiped) (see [11]). In this case A = −∆, D(A) = H1

0 (Ω)∩H2(Ω), U = H = L2(Ω),
and D ∈ L(U,L2(Ω)) is defined as

(6.17) ∆Du = 0 in Ω; Du = B0u in ∂Ω,

where B0 ∈ L(U,U). Note also that if R(W) is closed in L2(0, T ;H), then by (6.16)
it follows that

(6.18) ‖AW−1(Du+A−1f)‖L2(0,T ;H) ≤ C4(‖u‖L2(0,T ;U) + ‖f‖L2(0,T ;H)).

THEOREM 9. Assume that condition (6.16) is satisfied. Then, under the assump-
tions of Theorems 7 and 8 with B∗ defined as above, the pair (y∗, u∗) is optimal in
problem (6.14) if and only if it satisfies system (6.5), (6.6).

The proof is essentially the same as that of Theorems 2 and 8. We mention only
that in this case one uses condition (6.16) and inequality (6.18) in order to pass to
the limit in the corresponding approximating equations

Wpε = −C∗Cyε − yε + y∗,

B∗pε ∈ ∂h(uε) + uε − u∗.
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Abstract. We prove the existence of stationary Blackwell optimal policies in Markov decision
processes with a Borel state space, compact action sets, and continuous-in-action and bounded
transition densities and rewards, satisfying a simultaneous Doeblin-type condition. The proof is based
on a compactification of the randomized stationary policy space in a weak-strong topology, on the
continuity of Laurent coefficients of the discounted rewards in this topology, and on a lexicographical
policy improvement. Until now similar results were obtained for the models with a denumerable
state space or with a Borel state space and finite action sets.

Key words. Markov decision process, Borel space, compact action sets, Blackwell optimality

AMS subject classifications. 93E20, 90C40

PII. S0363012995292469

1. Introduction. In a Markov decision process (MDP) with finite state and
action spaces, a Blackwell optimal policy is optimal for all discount factors β < 1 close
to 1. This concept of optimality was introduced in a pioneering work by Blackwell
[3]. In another basic work Veinott [29] has shown that Blackwell optimality is the
limiting, most selective concept in an infinite series of sensitive criteria starting from
the average optimality, and has developed the Laurent expansions technique for the
analysis of sensitive criteria. Initially studied in MDPs with finite state and action
spaces, sensitive criteria have since been explored in more general MDPs and in some
renewal and continuous-time models. Other early contributions to this field are due
to Chitashvili [6], [7] (see also his survey in [34]), Denardo [10], Denardo and Miller
[11], Lippman [19], Miller and Veinott [20], Puterman [21], Rothblum [22], Sladký
[25], [26], and Veinott [28].

Sensitive optimality in MDPs with a countable state space is treated in more
recent works by Cavazos-Cadena and Lasserre [4], [5], Dekker and Hordijk [8], [9],
Hordijk and Sladký [17], and Lasserre [18]. In the countable models, the definition
of Blackwell optimality required a modification suggested in [8]: to get some kind of
existence results, it appeared necessary to allow the interval β0 < β < 1, where the
optimal policy exceeds any other policy, to depend on that policy and on the initial
state. In discrete-time models with a Borel state space, sensitive optimality began
to be studied in our papers [31], [32]. For a more detailed survey and a discussion
of the concept of Blackwell optimality we refer the reader to [8] and [31]. These two
references are the closest to our work.

Dekker and Hordijk [8] studied the existence of Blackwell optimal policies in
MDPs with a countable state space, compact action sets, and continuous-in-action
transition probabilities and rewards; the rewards were allowed to be unbounded (or
more precisely, unbounded, but bounded in the so-called µ-norms). To get the exis-
tence of Blackwell optimal policies in the class of deterministic stationary policies by
lexicographically maximizing coefficients of the related Laurent series, they assumed
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either a uniform geometric ergodicity of Markov chains generated by such policies or
some substitutes for it directly in terms of those coefficients (in [9] a different uniform
recurrence condition was used). They also introduced lexicographical analogues of
the policy improvement and of the Bellman optimality equation, which they called
the Blackwell optimality equation, and found an elegant way to prove that a policy
Blackwell optimal within the class of stationary policies is Blackwell optimal in com-
parison with all other policies too. All of these ideas are utilized in the present work,
with substantial changes due to a more general state space and a different structure of
the transition law. However, our approach is limited to the case of bounded rewards,
and we do not use the concept of µ-norms.

Progress toward Blackwell optimality in the case of a Borel state space became
possible in models with transition densities (instead of more general transition func-
tions). In contrast to noncontrolled Markov chains, the transition densities are rarely
used in the theory of MDPs. A paper by Georgin [14] on the discounted and average
optimality is an exception, and our assumptions are essentially the same as some of
Georgin’s hypotheses.

In [31] we proved the existence of Blackwell optimal policies in the case of a
Borel state space, a countable action space, and finite action sets. In the present
work we extend this result to the case of compact action sets (in a topological Borel
space). As in [31], we suppose that the transition density and the reward function are
bounded and assume that the transition density satisfies a simultaneous Doeblin-type
condition, which guarantees uniform geometric convergence of the multistep transition
densities of the involved Markov chains, and therefore a uniform convergence of the
Laurent series for the discounted rewards. This condition is simple but restrictive;
it means the existence of a minorant in the case of transition densities. For the
place of this condition in the variety of recurrence conditions considered in different
works on the Borel state MDPs, see Hernández-Lerma, Montes-de-Oca, and Cavazos-
Cadena [15]. Similar to works on MDPs with a countable state space, we require the
continuity-in-action of transition densities and rewards. But in contrast to [8], where
the maximization of Laurent coefficients is performed directly for every initial state in
the class of deterministic stationary policies, we have to work with the wider class of
randomized stationary policies and with an absolutely continuous initial distribution.
We proceed in this way because the space of deterministic stationary policies does
not allow a suitable compactification, and in the compactified space of randomized
policies each policy is determined only up to a set of measure 0 in the state space.

An essential novelty with respect to [31] is the utilization of a weak-strong topol-
ogy for the above compactification. This topology, in a more general context of
nonstationary dynamic programming, was studied by Schäl [23], [24] and Balder [1];
a different approach for our specific case is given in [33]. The transition from a
randomized stationary policy maximizing the Laurent coefficients for an absolutely
continuous initial distribution to a deterministic stationary policy maximizing them
for each initial state is made by lexicographical policy improvement. The related
measurability matters are resolved by means of the Novikov–Kunigui theorem. The
proof that a Blackwell optimal policy within the class of stationary policies is at the
same time Blackwell optimal in the class of all policies is a combination of a similar
proof in [8] with a compactness result in the weak-strong topology.

The paper is organized in the following way. In section 2 we introduce the ter-
minology and notations and formulate the definitions, assumptions, and necessary
measurability results. In section 3 we obtain the Laurent expansions of the expected
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discounted rewards for stationary policies, define a space H of sequences H which
contains all sequences of the corresponding Laurent coefficients, and introduce oper-
ators Lσ on the space H associated with stationary policies σ and used afterwards
for the policy improvement. In section 4 we define the lexicographical ordering in H
and prove a key comparison lemma for the operators Lσ. As a consequence we get
the lexicographical policy improvement, the Blackwell optimality equation H = TH
where T = Lexmaxσ Lσ is the lexicographical Bellman operator, and the necessary
and sufficient conserving condition of optimality. In section 5 we aggregate the space
Σ of all stationary policies into a space S of measures which is compact in the weak-
strong topology, and prove another key result stating that for absolutely continuous
initial distributions the Laurent coefficients are continuous functions on S. In section
6 we prove the existence of a deterministic stationary maximizer ϕ for the equation
H = TH, so that ϕ is Blackwell optimal within the class of stationary policies. It
follows that the equation H = TH has a unique solution in H. In section 7 we prove
that ϕ is optimal in the class of all policies. Section 8 contains examples. In section 9
we discuss our assumptions and some open problems, in particular, problems related
to the concept of strong Blackwell optimality.

Instead of numerous references to [31] with indications of alterations in the proofs,
we give here a self-contained and more readable exposition. However, when closely
following some proof in [31], we first focus on its idea and omit secondary technicalities,
which can be easily reproduced by the reader.

2. Definitions and assumptions. We start by detailing the notations and
terminology. In a space M, let OM and BM denote, respectively, the systems of all
open and all measurable sets (if there are any). It is supposed that in a Polish (i.e.,
complete separable metric) space M the system OM is generated by the metric and
the system BM is generated by OM . Any Borel set B in a Polish space M (i.e., a
set B ∈ BM ) is considered as a topological space (B,OB) with OB = B ∩ OM and
as a measurable space with BB = B ∩ BM . By a Borel space (i.e., standard Borel
space) we understand, as usual, an isomorphic image of (B,BB), where B is a Borel
set in a Polish space. By a topological Borel space we understand a homeomorphic
image of (B,OB), where B is a Borel set in a Polish space. Every topological
Borel space E is also considered a Borel space with BE generated by OE . The term
“compactness” means everywhere the sequential compactness (in a topological Borel
space, these two concepts are equivalent). In a Borel space E, B(E) is the set of all
bounded measurable (with respect to BE) real-valued functions, and ‖ ·‖ denotes the
corresponding supremum norm. Given two Borel spaces X and A, BX×A = BX×BA.
In this case BK = K∩BX×A for every K ∈ BX×A, and if in addition A is a topological
Borel space, then Car(K) denotes the set of all Carathéodory functions on K, i.e.,
functions f ∈ B(K) which are continuous in the second coordinate a at every point
(x, a) ∈ K, x ∈ X, a ∈ A.

An MDP is defined by a state space X, an action space A, action sets Ax, a
transition function P (x, a,B), and a reward function r(x, a) (x ∈ X, a ∈ Ax ⊂ A, B ∈
BX). The components of MDP have the following meaning. At each of the time epochs
t = 0, 1, 2, . . . a controller observes the state xt ∈ X of the process and selects an
action at+1 ∈ Axt on the basis of this and the previous information . The selection of
at+1 determines the immediate reward r(xt, at+1) of the controller and the distribution
P (xt, at+1, ·) of the next state xt+1. The aim of the controller is to maximize the
expectation of the total discounted reward r(x0, a1) + βr(x1, a2) + β2r(x2, a3) + · · ·
for the values of the discount factor β < 1 arbitrary close to 1.
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The following assumptions are supposed throughout the paper.
Assumption 2.1 (measurability and compactness). X is a Borel space, A is a

topological Borel space, all Ax are nonempty compact subsets of A, and

K = {(x, a) : a ∈ Ax, x ∈ X} ∈ BX×A.

Assumption 2.2 (existence of a bounded continuous transition density). For every
x ∈ X, a ∈ Ax, and B ∈ BX

P (x, a,B) =
∫
B

p(x, a, y)m(dy),

where m is a given probability measure on X (a reference measure), and the function
p ∈ B(K × X) is nonnegative, continuous in a ∈ Ax for every pair (x, y) ∈ X × X,
and such that P (x, a,X) = 1 for all (x, a) ∈ K.

Assumption 2.3 (simultaneous Doeblin-type condition). There exist a number δ
and a set D ∈ BX with 0 < δm(D) < 1 such that

p(x, a, y) ≥ δ for all (x, a) ∈ K, y ∈ D.(2.1)

Assumption 2.4 (continuity and boundedness of the reward function). r ∈ Car(K).
The policies are defined as usual in dynamic programming; our notations are closer

to those in [13]. A deterministic stationary policy, or selector, is a measurable map ϕ
from X to A with its graph in the set K; under such a policy the actions are selected by
a rule at+1 = ϕ(xt), t = 0, 1, . . . . A stationary (i.e., randomized stationary) policy is
a stochastic kernel σ from X to A (i.e., a function σ(x,C), x ∈ X, C ∈ BA measurable
in x and such that σ(x, ·) is a probability measure on A), satisfying the constraints
σ(x,Ax) = 1, x ∈ X. Under such a policy each at+1 is selected by random with a
(conditional) distribution σ(xt, ·). A Markov policy is a sequence µ = {σ1, σ2, . . . } of
stationary policies σt; under this policy the action at+1 has a (conditional) distribution
σt(xt, ·). Finally, under an arbitrary policy π the distribution of at+1 depends on the
whole history x0a1x1a2 . . . xt (we omit a formal definition of π since it is not used in
the paper). The sets of all selectors, stationary policies, Markov policies, and arbitrary
policies are denoted, respectively, by Φ ⊂ Σ ⊂ M ⊂ Π. These sets are nonempty in
accordance with the following general measurability and selection result, also utilized
in the following.

PROPOSITION 2.5. Under Assumption 2.1
(i) there exists a measurable map ϕ from X to A such that ϕ(x) ∈ Ax, x ∈ X;

(ii) for every f ∈ Car(K) and every x ∈ X there exists f̂(x) = maxa∈Ax f(x, a),
and f̂ ∈ B(X).

See, for example, [16, pp. 391–392, Theorems 2 and 3] (where only the upper
semicontinuity of f(x, ·) is assumed).

To every initial state x ∈ X and policy π ∈ Π there corresponds a probability
distribution Pπ

x in the space of all infinite-horizon trajectories x0a1x1a2 . . . , defined
by the formulas

Pπ
x{x0 = x} = 1,

Pπ
x{at+1 ∈ C | x0a1 . . . xt} = π(C | x0a1 . . . xt),

Pπ
x{xt+1 ∈ B | x0a1 . . . xtat+1} = P (xt, at+1, B).
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The corresponding expectation is denoted by Eπ
x . Since r is bounded (Assumption

2.4), the expected total discounted reward

vβ(x, π) = Eπ
x

∞∑
t=0

βtr(xt, at+1)(2.2)

is well defined for every initial state x ∈ X, policy π ∈ Π, and discount factor
0 < β < 1. The corresponding value function is defined by

vβ(x) = sup
π∈Π

vβ(x, π), x ∈ X.

According to the original definition due to Blackwell, a policy π∗ is optimal if there
exists a number β0 such that

vβ(x, π∗) = vβ(x) for all x ∈ X, β0 < β < 1.(2.3)

This definition worked well in the case of finite spaces X and A . We do not know
any existence results for Blackwell optimal policies in the sense (2.3) in MDPs with
infinite X and A. Following Dekker and Hordijk [8, p. 399], we will use a weaker
definition, in which π∗ is compared separately with each other policy π, and β0 may
depend on x and π.

DEFINITION 2.6. For a set Π′ ⊂ Π, a policy π∗ ∈ Π′ is said to be Blackwell
optimal within the class Π′, if for every x ∈ X and every π ∈ Π′ there exists a number
β0(x, π) < 1 such that

vβ(x, π∗) ≥ vβ(x, π) for all β0(x, π) < β < 1.(2.4)

If Π′ = Π then π∗ is said to be Blackwell optimal.
In the case when (2.3) holds, i.e., when in (2.4) one may take β0 < 1 independent

of x and π, the policy π∗ is called strong Blackwell optimal. It is an easy exercise to
show that if X is finite and if there exists a strong Blackwell optimal policy, then every
Blackwell optimal policy is strong Blackwell optimal. The existence of deterministic
stationary strong Blackwell optimal policies in MDPs with finite state and action
spaces was proved by Blackwell [3]. Therefore, in this case, the two concepts of
Blackwell optimality coincide.

3. Laurent series and operators related to stationary policies. As in
previous works on sensitive optimality, starting from the original paper by Veinott
[29], our analysis is based on the Laurent series for discounted rewards in terms of
a small parameter as β approaches 1. Following Chitashvili (see Yushkevich and
Chitashvili [34]), we take for such a parameter the variable

α = 1− β, 0 < α < 1.

In Veinott [29] and most of the subsequent works, the interest rate ρ = 1−β
β is used

for this purpose. The expansion formulas in terms of α and ρ are essentially the same,
so that the content of this section is mostly standard. However, in contrast to Dekker
and Hordijk [8], we need the Laurent expansions for all stationary policies, not only
the deterministic ones.

In the case of a stationary policy σ, the sequence x0x1x2 . . . of the observed states
is a Markov chain with a transition function

Qσ(x,B) =
∫
A

P (x, a,B)σ(x, da) =
∫
B

qσ(x, y)m(dy), x ∈ X, B ∈ BX
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where

qσ(x, y) =
∫
Ax

p(x, a, y)σ(x, da), x, y ∈ X;(3.1)

this follows from the structure of Pπ
x in the case of π = σ ∈ Σ and from Assumption

2.2. Moreover, 0 ≤ qσ ≤ ‖p‖, and as follows from Assumption 2.3 and (3.1),

qσ(x, y) ≥ δ for all x ∈ X, y ∈ D.(3.2)

The one-step and multistep transition densities of a Markov chain in general are not
unique. We will use their versions uniquely determined by the recurrence relation

qσt (x, y) =
∫
X

qσt−1(x, z)qσ(z, y)m(dz),(3.3)

x, y ∈ X, t = 2, 3, . . . , with qσ1 = qσ. In these notations

Pσ
x{xt ∈ B} =

∫
B

qσt (x, y)m(dy), x ∈ X, B ∈ BX.(3.4)

For a stationary policy σ also define rσ ∈ B(X) by

rσ(x) =
∫
Ax

r(x, a)σ(x, da), x ∈ X; ‖ rσ‖ ≤‖ r‖.(3.5)

Then by the structure of Pσ
x we have Eσ

x [r(xt, at+1) | x0a1 . . . xt] = rσ(xt), so that in
view of (3.4) the definition (2.2) of the discounted reward reduces to

vβ(x, σ) = Eσ
x

∞∑
t=0

βtrσ(xt) = rσ(x) +
∞∑
t=1

βt
∫
X

qσt (x, y)rσ(y)m(dy).(3.6)

The condition (3.2) is a special case of the general Doeblin condition for Markov
chains considered in Doob [12] (p. 197, Case (b), and pp. 216–217, Examples 2,
3 (continued)). It is proved there that this condition implies a uniform geometric
convergence of the density qσt (x, y) to a limit q̄σ(y) as t→∞, where q̄σ(y) is a version
of the density of the unique stationary distribution of the corresponding Markov chain.
Namely,

| qσt (x, y)− qσ(y) |≤ 2 ‖ p‖ρt−2, x, y ∈ X, t = 1, 2, . . . , σ ∈ Σ(3.7)

where

0 < ρ = 1− δm(D) < 1.

(Formally, to apply Doob’s result to our case, one should multiply m and divide qσ

and δ by ‖p‖.) It follows that there exists a bounded deviation density

zσ(x, y) =
∞∑
t=1

[qσt (x, y)− q̄σ(y)], x, y ∈ X; ‖zσ‖ ≤ 2‖p‖
ρ(1− ρ)

.(3.8)

Next consider the limit of the expected one-step reward corresponding to σ (the
average expected reward known in MDPs):

gσ = lim
t→∞

∫
X

qσt (x, y)rσ(y)m(dy) =
∫
X

q̄σ(y)rσ(y)m(dy); | gσ |≤ ‖r‖,(3.9)
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and subtract termwise the identity

gσ

α
= (1 + β + β2 + · · · )gσ = gσ +

∞∑
t=1

βt
∫
X

q̄σ(y)rσ(y)m(dy)

from (3.6). This leads to a relation

vβ(x, σ)− gσ

α
= rσ(x)− gσ +

∞∑
t=1

βt
∫
X

[qσt (x, y)− q̄σ(y)]rσ(y)m(dy).(3.10)

In view of the bounds in (3.5) and (3.7), the integral factor at βt in (3.10) is majorized
by cρt with c = 2‖r‖ · ‖p‖ρ−2. Therefore the power series in (3.10), as a function of
a complex variable β, is analytic in the circle C1 of radius R1 = 1

ρ centered at 0.
Consider another circle C2: | β − 1 |< 1 − ρ centered at 1 and of radius R2 = 1− ρ.
Since ρ < 1, we have R2 = 1−ρ < 1−ρ

ρ = 1
ρ − 1 < R1− 1, so that C2 ⊂ C1. Therefore

the right side of (3.10) is analytic in C2 too, and can be expanded into a converging
series in powers of β − 1 = α with a radius of convergence ≥ 1−ρ. Thus from (3.10)
we get a Laurent expansion

vβ(x, σ) =
gσ

α
+
∞∑
n=0

hσn(x)αn =
∞∑

n=−1

hσn(x)αn, x ∈ X, 0 < α < 1− ρ.(3.11)

By substituting β = 1 − α into (3.10) and applying the binomial formula, one may
express the coefficients hσn in a form of uniformly convergent series containing integrals
of qσt , q̄σ, and rσ, and see that hσn ∈ B(X), n ≥ −1.

More useful formulas for hσn are obtained by a substitution of the series (3.11)
into the equation

vβ(x, σ) = rσ(x) + (1− α)
∫
X

qσ(x, y)vβ(y, σ)m(dy), x ∈ X,(3.12)

which is an immediate consequence of (3.3) and (3.6). The calculations are standard,
and we briefly outline the main steps, leaving the details to the reader (they may be
found also in [31, pp. 264–266]).

At this point it is convenient to introduce the operator notations. The relations

Qσf(x) =
∫
X

qσ(x, y)f(y)m(dy), Q̄σf(x) =
∫
X

q̄σ(y)f(y)m(dy),(3.13)

Zσf(x) =
∫
X

zσ(x, y)f(y)m(dy), x ∈ X

define the (evidently bounded) operators Qσ, Q̄σ, and Zσ on the space B(X). In
view of (3.7), (Qσ)t → Q̄σ as t → ∞. Also let I be the identity operator, and let
vσβ = vβ(·, σ). In these notations the equation (3.12) becomes

vσβ = rσ + (1− α)Qσvσβ ,(3.14)

and (3.6) simplifies to

vσβ =

[
I +

∞∑
t=1

(βQσ)t
]
rσ =

∞∑
t=0

(βQσ)trσ.(3.15)
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A substitution of (3.11) into (3.14) yields an identity

gσ

α
+ hσ0 + hσ1α+ · · · = rσ + (1− α)

(
Qσgσ

α
+Qσhσ0 +Qσhσ1α+ · · ·

)
valid for 0 < α < 1−ρ. In view of the uniqueness of the Laurent coefficients, it follows
that

gσ = Qσgσ; hσ0 = rσ +Qσ(hσ0 − gσ); hσn = Qσ(hσn − hσn−1), n = 1, 2, . . . .(3.16)

These equations are solved with the help of relations

Q̄σQσ = Q̄σ,(3.17)
(I + Zσ)(I −Qσ) = I − Q̄σ,(3.18)

(I + Zσ)Qσ = Zσ + Q̄σ,(3.19)

known in the theory of Markov chains and implied by the geometric convergence
(Qσ)t → Q̄σ obtained in (3.7) (see, for example, [31, p. 264]). By iterating the
first equation in (3.16), we get gσ = (Qσ)tgσ, and in the limit, gσ = Q̄σgσ. Next,
multiplying the second equation by Q̄σ and utilizing (3.17), we obtain Q̄σhσ0 = Q̄σrσ+
Q̄σhσ0 − Q̄σgσ, so that gσ = Q̄σrσ (as in (3.9)).

This same multiplication applied to the third equation in (3.16) shows that
Q̄σhσn−1 = 0 for n ≥ 1. In particular, Q̄σhσ0 = 0. Multiplying the second equa-
tion by I+Zσ we get (I+Zσ)(I−Qσ)hσ0 = (I+Zσ)(rσ−Qσgσ) or, in view of (3.18)
and since Q̄σhσ0 = 0, hσ0 = (I + Zσ)(rσ −Qσgσ). Here Qσgσ = gσ is a constant, and
therefore ZσQσgσ = 0. Hence hσ0 = (I + Zσ)rσ − gσ.

In a similar way, the third equation hσn = Qσ(hσn − hσn−1), being multiplied by
I + Zσ, with the help of (3.19) and the relation Q̄σhσn−1 = 0, is finally transformed
into hσn = −Zσhσn−1, n ≥ 1. Summarizing and taking into account the bounds in
(3.5), (3.8), and (3.9), we have the following results.

LEMMA 3.1. For every policy σ ∈ Σ, the expected discounted reward vσβ expands
into the Laurent series (3.11) with the coefficients

gσ = h−1 = Q̄σrσ, ‖gσ‖ ≤ ‖r‖;

hσn = (−Zσ)n(rσ + Zσrσ − gσ), ‖hσn‖ ≤ (2 + κ)κn, κ =
2‖p‖

ρ(1− ρ)
, n ≥ 0.

(3.20)

These coefficients belong to B(X) and are uniquely determined by the equations (3.16).

Notice that ‖p‖ ≥ 1 since
∫
X
p(x, a, y)m(dx) = 1 and m(X) = 1. Therefore, for

the constant κ in (3.20), we have

1
κ
≤ ρ(1− ρ)

2
< 1− ρ.

The above results suggest two definitions. In the first of them we specify a vector
space H such that all possible sequences of the Laurent coefficients of vβ(x, σ) belong
to H, and we introduce some notations.

DEFINITION 3.2.
(i) The space H consists of all sequences H = {hn} of functions hn ∈ B(X),

n = −1, 0, 1, . . . , satisfying the following two conditions: 1) h−1 is a constant (often
denoted by g), 2) for every H ∈ H there exists a constant C(H) such that ‖hn‖ ≤
C(H)κn, where κ is defined in (3.20).
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(ii) With every H ∈ H we associate a function Vβ(x;H) defined by the relation

Vβ(x;H) =
∞∑

n=−1

hn(x)αn, x ∈ X, 0 < α = 1− β < 1
κ
.(3.21)

(iii) If for a policy π ∈ Π there exists an (evidently unique) element H ∈ H such
that Vβ(x;H) = vβ(x, π), 0 < 1− β < 1

κ , then this element is denoted Hπ = {hπn}.
The second definition relates with every stationary policy σ an operator Lσ on

the space H such that, similar to (3.14),

Vβ(x;LσH) = rσ(x) + βQσVβ(x;H), H ∈ H.(3.22)

In the same way as we obtained (3.16) from (3.14), we come to the following definition.
DEFINITION 3.3. The operator Lσ, σ ∈ Σ, transforms every H = {hn} ∈ H into

H ′ = {h′n} ∈ H according to the formulas

g′ = g; h′0 = rσ +Qσ(h0 − g); h′n = Qσ(hn − hn−1), n ≥ 1(3.23)

(since ‖Qσ‖ = 1, H ′ ∈ H together with H).
In these notations we have the following evident consequence of Lemma 3.1.
COROLLARY 3.4. For every σ ∈ Σ, Hσ is the unique solution in H of the equation

LσH = H.

4. Lexicographical policy improvement and Blackwell optimality equa-
tion. In this section we obtain lexicographical analogues of the policy improvement
and of the Bellman optimality equation, known in dynamic programming. These two
concepts are closely related: the optimality equation means that it is impossible to
improve.

Similar to Definitions 3.2 and 3.3, we will denote throughout the paper by {bn},
{fn}, etc., sequences of real numbers or of functions on the same space E indexed by
n = −1, 0, 1, 2, . . . ; the sequence as a whole will be denoted by the same capital letter.
In particular, instead of {0, 0, . . . } we may write 0. For two numerical sequences B
and B′, the notation B ≺ B′ (or B′ � B) means that either b−1 < b′−1 or, for some
index N ≥ 0, bn = b′n for all n < N, while bN < b′N . The notations B � B′ and
B′ � B are self-evident. For a family {Bγ} of numerical sequences depending on a
parameter γ ∈ Γ, the notation B = Lexmaxγ∈ΓB

γ means that B � Bγ for all γ ∈ Γ,
and B = Bγ for at least one γ ∈ Γ.

In the case of functions on a space E, the notation F � F ′ (or F ′ � F ) means that
F (x) � F ′(x) for all x ∈ E. An integral of F = {fn} is understood termwise. Elemen-
tary properties of this partial ordering will be used without stating them explicitly.
We formulate only the following less evident one.

PROPOSITION 4.1. Let E be a Borel space with a finite measure ν. If F = {fn} �
F ′ = {f ′n}, where fn, f ′n ∈ B(E), then∫

E

F (x)ν(dx) �
∫
E

F ′(x)ν(dx);

if in addition ν{x ∈ E : F (x) ≺ F ′(x)} > 0, then the same holds with the sign “≺”.
Proof. Consider N = {min n : ν{x : fn(x) 6= f ′n(x)} > 0}.
The following comparison lemma is a key one.
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LEMMA 4.2. If LσH � H for some σ ∈ Σ and H ∈ H, then Hσ � H. If in
addition LσH(x0) � H(x0) at some x0 ∈ X, then Hσ(x0) � H(x0). Similar results
are valid with the opposite inequality signs. If LσH = H then Hσ = H.

Proof. To prove the first statement, it is sufficient to show that for an arbitrary
fixed x ∈ X we have vβ(x, σ) ≥ Vβ(x;H) for β sufficiently close to 1 (see (3.11) and
(3.21)). Since Vβ(H) is linear in H, from (3.22) we have

rσ − Vβ(H) + βQσVβ(H) = Vβ(LσH −H).

To each term of this relation we apply the (geometrically convergent) operator I +
βQσ + (βQσ)2 + · · · . Then the term rσ transforms into vσβ in accordance with (3.15).
The next two terms transform into −(I + βQσ + (βQσ)2 + · · · )(I − βQσ)Vβ(H) =
−Vβ(H), so that we get

vσβ − Vβ(H) =
∞∑
t=0

(βQσ)tVβ(LσH −H).

Since 1 + β + β2 + · · · = 1
α and Zσ =

∑∞
1 [(Qσ)t − Q̄σ] (see (3.8)), the operator on

the right side can be transformed into

∞∑
0

(βQσ)t =
Q̄σ

α
+
∞∑
0

βt[(Qσ)t − Q̄σ]

=
Q̄σ

α
+ (I − Q̄σ) + Zσ +

∞∑
1

(βt − 1)[(Qσ)t − Q̄σ].

In terms of densities, we obtain in that way

vβ(x, σ)− Vβ(x;H) = Vβ(x;LσH −H) +
∫
X

u(α, x, y)Vβ(y;LσH −H)m(dy),(4.1)

where

u(α, x, y) =
q̄σ(y)
α
− q̄σ(y) + zσ(x, y) +

∞∑
t=1

(βt − 1)[qσt (x, y)− q̄σ(y)].(4.2)

Since LσH−H � 0, the first term at the right side of (4.1) is nonnegative for positive
α close enough to 0, so that it remains to prove that the integral in (4.1) becomes
nonnegative as α ↓ 0.

For this purpose consider the Laurent series for V σβ (y;LσH −H):

Vβ(y;LσH −H) =
∞∑

n=−1

ln(y)αn, y ∈ X, 0 < α <
1
κ
.

In accordance with Definitions 3.2 and 3.3, here {ln} ∈ H, so that ‖ln‖ ≤ Cκn for
some constant C, and l−1 = 0. Since LσH − H � 0, we may define disjoint sets
Yn, n = 0, 1, 2, . . . in either of the following two ways:

Yn = {y ∈ X : l0(y) = l1(y) = · · · = ln−1(y) = 0, ln(y) 6= 0}
= {y ∈ X : l0(y) = l1(y) = · · · = ln−1(y) = 0, ln(y) > 0}.
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Consider also the sets

X1 = {y ∈ X : q̄σ(y) > 0},
X2 = X2(x) = {y ∈ X : q̄σ(y) = 0, zσ(x, y) > 0}.

By (3.1) and (3.3), the transition densities qσt (x, y) are nonnegative. Therefore, if
q̄σ(y) = 0 for some y ∈ X, then zσ(x, y) =

∑∞
1 qσ(x, y) ≥ 0 for the same y; and if

also zσ(x, y) = 0, then u(α, x, y) = 0 (see (4.2)). Hence the integral in (4.1) splits
into a sum of integrals over X1 and X2, where

u(α, x, y) =
{

q̄σ(y)
α +O(1), q̄σ(y) > 0 if y ∈ X1,

zσ(x, y) + o(1), zσ(x, y) > 0 if y ∈ X2;
(4.3)

here O(1) and o(1) are uniform in y as α →0 according to the bounds obtained in
(3.7) and (3.8).

To prove that the integral over X1 becomes nonnegative as α ↓ 0, consider N =
min{n : m(X1Yn) > 0}. If N =∞, then ln = 0 (a.e. m) on X1 for all n = 0, 1, 2, . . . ,
and the integral is equal to 0. If N < ∞, then ln = 0 (a.e. m) on X1 for n =
0, 1, . . . , N − 1, so that∫

X1

u(α, x, y)Vβ(y;LσH −H)m(dy) =
∫
X1

[
q̄σ

α
+O(1)

] ∞∑
n=N

ln(y)αnm(dy)

= αN−1
∫
X1

q̄σ(y)lN (y)m(dy) + o(αN−1)

as α ↓ 0 (here the bounds ‖ln‖ ≤ Cκn are used). By the selection of N , we have (1)
lN ≥ 0 (a.e. m) on X1 since LσH −H � 0 and since all the preceding ln vanish a.e.
on X1; (2) lN > 0 on the set X1YN of a positive measure m. By (4.3) the factor q̄σ is
also strictly positive on X1, so that the same is true for the integral factor at αN−1.
Hence, in the case N < ∞, the integral over X1 in (4.1) becomes positive as α ↓ 0.
Thus, in any case, it is nonnegative for α close enough to 0.

The integral overX2 is treated in a similar way, withN = min{n : m(X2Yn) > 0}.
In the case N = ∞ this integral is 0, while in the case N < ∞, in accordance with
(4.3),∫

X2

u(α, x, y)Vβ(y;LσH −H)m(dy) = αN
∫
X2

zσ(x, y)lN (y)m(dy) + o(αN ) > 0

as α ↓ 0. For the case “�” the lemma is proved.
The case Hσ(x0) � H(x0) follows from the already proven nonnegativity of the

integral in (4.1) and from the strict inequality Vβ(x0;LσH −H) > 0 implied by the
relation LσH(x0) � H(x0). The case of the opposite inequalities is similar, only with
negative lN and Vβ(x;LσH−H). The equality case is a consequence of the preceding
cases, since in that case both nonstrict inequalities are satisfied.

COROLLARY 4.3 (lexicographical policy improvement). If LτHσ � Hσ for two
stationary policies σ and τ , then Hτ � Hσ. If, in addition, LτHσ(x0) � Hσ(x0) at
some x0 ∈ X, then Hτ (x0) � Hσ(x0).

The next lemma is an immediate consequence of the Laurent expansion (3.11)
and the definition of the sign “�”.

LEMMA 4.4. For two policies σ, τ ∈ Σ, the relation Hτ � Hσ is equivalent to the
existence for every x ∈ X of a number β0 = β(x, σ, τ) such that

vβ(x, τ) ≥ vβ(x, σ) for all β0 < β < 1.(4.4)
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Consider now the following operator T on the space H:

TH(x) = Lexmax
σ∈Σ

LσH(x), x ∈ X,(4.5)

defined for those H ∈ H for which the Lexmax in (4.5) exists (we avoid a lex-
icographical supremum, since it is something awkward: Lexsupn{− 1

n , 0, 0, . . . } =
{0,−∞,−∞, . . . }).

THEOREM 4.5. For a policy τ ∈ Σ the following statements are equivalent:
(i) τ is Blackwell optimal within the class Σ;
(ii) Hτ � Hσ for every σ ∈ Σ;
(iii) Hτ is a solution of the equation

H = TH, H ∈ H;(4.6)

(iv) LτH = H for some solution of (4.6).
Proof. The equivalence of (i) and (ii) follows from Lemma 4.4 and Definition 2.6.

It remains to prove the implications (iv)→(iii)→(ii) and (ii)→(iii)→(iv). If (iv) holds,
then Hτ = H by Lemma 4.2; therefore Hτ = THτ , and we have (iii). If THτ = Hτ ,
then LσHτ � Hτ for every σ ∈ Σ by the definition of T , hence Hσ � Hτ by
Corollary 4.3, and (ii) holds. The implication (ii)→(iii) is proved by a contradiction.
If (iii) does not hold, then, in view of Corollary 3.4, for some σ ∈ Σ and some x0 ∈ X
we have LσHτ (x0) � Hτ (x0). In this case consider a policy

ρ(x, ·) =
{
σ(x, ·) if x = x0,
τ(x, ·) if x 6= x0,

for which Lρ coincides with Lσ at the point x0 and coincides with Lτ at all other
points x ∈ X (see (3.1), (3.5), and (3.23)). For this policy LρHτ (x0) � Hτ (x0), and
by Corollary 3.4 LρHτ (x) = Hτ (x) at all other x ∈ X. Hence Hρ(x0) � Hτ (x0) by
Corollary 4.3, in contradiction with (ii). Finally, (iii) implies (iv) because LτHτ = Hτ

(Corollary 3.4).
Following Dekker and Hordijk [8, p. 402] we use the name Blackwell optimality

equation for the equation (4.6) and the name conserving condition for the relation
(iv) of Theorem 4.5. For the operator T we suggest the name lexicographical Bellman
operator. Another form of this operator is given in section 6, where the existence of
a unique solution of the Blackwell optimality equation is also proved.

5. Continuity of Laurent coefficients. Our next goal is to compactify the
space Σ in such a way that the Laurent coefficients of vβ(x, σ) become continuous
functions of σ. We will not achieve this goal literally. First, the needed compactifica-
tion of Σ requires an aggregation of Σ into a space S of measures on K; the topology
in S is introduced by means of Carathéodory functions. Furthermore, to turn Hσ

into a function on S, it is necessary to replace in vβ(x, σ) the initial state x by an
absolutely continuous initial distribution. Moreover, to prove the continuity of hσn by
an induction in n, we need to consider initial “distributions” with arbitrary bounded,
maybe negative densities.

DEFINITION 5.1.
(i) The space S consists of all probability measures s on K satisfying the con-

dition

PrXs = m,(5.1)

where m is the reference measure (see Assumption 2.2) and where the projection of a
measure is defined by PrX s(B) = s(K ∩ (B ×X)), B ∈ BX .
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(ii) The weak-strong topology in S is defined by the condition sn
ws→ s if

lim
n→∞

∫
K

fdsn =
∫
K

fds for every f ∈ Car(K).(5.2)

PROPOSITION 5.2. The space S is (sequentially) compact in the weak-strong topol-
ogy.

This is a known result. With a somewhat different class of functions f , in the
context of relaxed controls in the deterministic control theory, it is a part of Theorem
IV.3.11 in Warga [30, p. 287]. In the form we need here, it follows from the existence
of resolution topologies in the dynamic programming proved in Schäl [23], [24] and
Balder [1]. Our Proposition 5.2 is a consequence of Theorem 2.1 and Proposition 3.2
in [1, pp. 144, 148], obtained by a reduction of the dynamic programming model to
its first step. A simpler direct proof is given in [33].

LEMMA 5.3. There is a unique mapping j : Σ→ S such that∫
X

∫
Ax

f(x, a)σ(x, da)m(dx) =
∫
K

fds for every f ∈ B(K)(5.3)

if s = j(σ), and j maps Σ onto S.
Proof. Evidently, (5.3) is satisfied if and only if the measure s on K is defined by

s(dxda) = σ(x, da)m(dx). To verify (5.1) for the so-defined s = j(σ), it is sufficient
to apply (5.3) to the indicator of the set (B × A) ∩ K, B ∈ BX . It remains to
prove that j is a map onto S. For this purpose, given s ∈ S, we first extend s
to the product space X × A by setting s((X × A) \ K) = 0 and then factorize s
into s(dxda) = σ(x, da)m(dx) where σ(x, ·) is a regular conditional distribution on A
given x. (The marginal distribution on X coincides with m in view of (5.1), and the
existence of regular conditional distributions in the case of standard Borel spaces is
a well-known fact.) The so-obtained σ satisfies the definition of a stationary policy,
except that instead of σ(x,Ax) = 1 we have σ(x,A) = 1, so that maybe σ(x,Ax) < 1
for some x ∈ X. From (5.3) with f = 1 we get∫

X

σ(x,Ax)m(dx) = s(K) = 1 =
∫
X

1m(dx),

and since σ(x,Ax) ≤ 1, it follows that σ(x,Ax) = 1 (a.e. m). It remains to fix some
σ0 ∈ Σ and to change σ(x, ·) to σ0(x, ·) on the set {x ∈ X : σ(x,Ax) < 1} of measure
0.

LEMMA 5.4. Suppose that f ∈ Car(K) and that g(x, s), x ∈ X, s ∈ S is a bounded
function, measurable in x and continuous in s. Then the function

F (s) =
∫
K

f(x, a)g(x, s)s(dxda), s ∈ S,

is continuous on S.
Proof. For s, s′ ∈ S we have F (s′)− F (s) = I1 + I2, where

I1 =
∫
K

f(x, a)[g(x, s′)− g(x, s)]ds′, I2 =
∫
K

f(x, a)g(x, s)(ds′ − ds).

Here I2 vanishes as s′ ws→ s by the definition of the topology in S, since the integrand
(with s fixed) is a Carathéodory function on K. For I1, in accordance with (5.1), we
have a bound

| I1 |≤ ‖f‖
∫
K

| g(x, s′)− g(x, s) | s′(dxda) = ‖f‖
∫
X

| g(x, s′)− g(x, s) | m(dx).



2170 ALEXANDER A. YUSHKEVICH

The last integrand is uniformly bounded by ‖g‖ and converges to 0 at every x as
s′

ws→ s. Since m(X) = 1 < ∞, the integral also converges to 0 by the majorized
convergence theorem.

Next we have to replace the initial states x ∈ X by initial densities l ∈ B(X).
Avoiding formalities, we will use the same notations for l as for x, so that

qσt (l, y) =
∫
X

l(x)qσt (x, y)m(dx), t ≥ 1, q̄σ(l, y) =
∫
X

l(x)q̄σ(y)m(dx),(5.4)

and zσ(l, y), Hσ(l) = {hσn(l)}, vβ(l, σ) are similar integrals of zσ(x, y), Hσ(x) =
{hσn(x)}, vβ(x, σ); to avoid confusion, x, y, z will always denote the states, while l, ls, 1
will denote the elements of B(X). It is clear that the new functions satisfy relations
similar to (3.3), (3.8), and (3.11) and are bounded by the same constants as the
previous functions, only multiplied by ‖l‖ (see (3.8), (3.9), and (3.20)).

Our goal is the continuity of hσn(1), n ≥ −1, as functions of s = j(σ), but in order
to proceed with an induction in n, we need to replace the density 1 by an arbitrary
l ∈ B(X).

LEMMA 5.5. For every l ∈ B(X) and y ∈ X, the functions qσt (l, y) (t ≥ 1),
q̄σ(l, y), zσ(l, y), hσn(l, y) (n ≥ −1) of σ depend only on s = j(σ) and are continuous
in s ∈ S.

As soon as this result is proved for some function, we feel free to use s in place of
σ in the notation of that function.

Proof. For qσt (l, y), t ≥ 1, we proceed by an induction in t. For t = 1 from (3.1),
(5.4), and (5.3) we have

qσ(l, y) =
∫
X

∫
Ax

l(x)p(x, a, y)σ(x, da)m(dx)

=
∫
K

l(x)p(x, a, y)s(dxda) = qs(l, y), s = j(σ),

and the continuity of qs(l, y) follows from Lemma 5.4 (l(·)p(·, ·, y) ∈ Car(K) in accor-
dance with Assumption 2.2). From (3.1), (3.3), and (5.3) we have

qσt+1(l, y) =
∫
X

qσt (l, z)qσ(z, y)m(dz) =
∫
X

qst (l, z)
∫
Ax

p(z, a, y)σ(z, da)m(dz)

=
∫
K

qst (l, z)p(z, a, y)s(dzda) = qst+1(l, y), s = j(σ),

and by Lemma 5.4, qst+1(l, y) is continuous in s together with qst (l, y).
Since a uniform limit of a sequence of continuous functions is again a continuous

function, the continuity of q̄σ and zσ in s = j(σ) follows from the relations

| qst (l, y)− qσ(l, y) |≤ 2‖l‖ · ‖p‖ · ρt−2, zσ(l, y) =
∞∑
t=1

[qst (l, y)− q̄s(l, y)]

implied by (3.7) and (3.8).
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Now consider hσn(l). For n = −1, in accordance with (3.20), (3.9), (3.5), and (5.4),
we have

hσ−1(l) =
∫
X

l(x)
∫
X

q̄σ(y)rσ(y)m(dy)m(dx)

=
∫
X

q̄σ(l, y)
∫
Ay

r(a, y)σ(y, da)m(dy)

=
∫
K

q̄s(l, y)r(y, a)s(dyda) = hs−1(l), s = j(σ).

Since q̄s(l, y) is continuous in s, and r ∈ Car(K), the continuity of hs−1(l) follows from
Lemma 5.4. For n = 0 by (3.20), (3.5), and (3.13) we have

hσ0 (l)

=
∫
X

l(x)

[∫
Ax

r(x, a)σ(x, da) +
∫
X

zσ(x, y)
∫
Ay

r(y, a), σ(y, da)m(dy)

]
m(dx)− hσ−1(l)

=
∫
K

l(x)r(x, a)s(dxda) +
∫
X

zs(l, y)
∫
Ay

r(y, a)σ(y, da)m(dy)− hs−1(l)

=
∫
K

[l(x) + zs(l, x)]r(x, a)s(dxda)− hs−1(l) = hs0(l), s = j(σ).

Since zs(l, x) is continuous in s, by Lemma 5.4 the same is true for hs0(l).
Further, we proceed by induction. Suppose that for some n ≥ 0 the continuity of

hsn(l) (= hσn(l) in s = j(σ)) for every l ∈ B(X) is already known. In accordance with
(3.13) and (3.20), and since zσ(l, y) = zs(l, y), we have

hσn+1(l) = −
∫
X

l(x)
∫
X

zσ(x, y)hσn(y)m(dy)m(dx)(5.5)

= −
∫
X

zs(l, y)hσn(y)m(dy) = hσn(ls), s = j(σ),

where ls(·) = −zs(l, ·) ∈ B(X) (cf. (5.4)). If also s = j(τ) for some τ ∈ Σ, then in a
similar way hτn+1(l) = hτn(ls). By the supposition of induction applied to ls in place
of l, we have hσn(ls) = hτn(ls). It follows from (5.5) that hσn+1(l) = hτn+1(l), so that
hσn+1(l) is indeed a function of s = j(σ) and that

hsn+1(l) = hsn(ls), s ∈ S.

It remains to show that the difference

htn+1(l)− hsn+1(l) = [htn(lt)− htn(ls)] + [htn(ls)− hsn(ls)]

converges to 0 as t ws→ s (s, t ∈ S). The second difference at the right side tends to 0
by the supposition of induction applied to ls in place of l. The first difference is equal
to the integral ∫

X

[zs(l, y)− zt(l, y)]hτn(y)m(dy), where j(τ) = t.

Here the integrand is uniformly bounded by the constant (2 + κ)κn ‖ r‖ · 2‖l‖κ (see
(3.8) and (3.20)) and converges to 0 at every y ∈ X as t ws→ s since zs(l, y) is continuous
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in s ∈ S. Since m(X) <∞, the integral converges to 0 by the majorized convergence
theorem.

COROLLARY 5.6. The average reward gσ, σ ∈ Σ, is a continuous function of
s = j(σ).

Proof. The proof follows from the continuity of hs−1(l) in s for every l ∈ B(X)
and the relation hσ−1(1) = gσ

∫
X

1m(dx) = gσ.

6. Blackwell optimality within the class of stationary policies. In this
section we prove the existence of a selector ϕ which is Blackwell optimal within Σ.
This is done in two steps. First we obtain a policy τ ∈ Σ which is the best for a
given initial density l. After that, we obtain ϕ from τ by policy improvement. To be
definite, we take l = 1. The existence of an optimal selector allows us to complete the
results of Theorem 4.5 by proving the existence of a unique solution to the Blackwell
optimality equation.

Notice that in accordance with Lemma 3.1 and with notations introduced in
Lemma 5.5,

vβ(1, s) =
gs

α
+
∞∑
n=0

hsn(1)αn, 0 < α <
1
κ
, s ∈ S,(6.1)

where {gs, hs0(1), . . . } = {hsn(1)} = Hs(1) and Hσ(1) = Hs(1) if s = j(σ), σ ∈ Σ.
LEMMA 6.1. There exists a policy τ ∈ Σ such that

Hτ (1) = Lexmax
σ∈Σ

Hσ(1).(6.2)

Proof. By Lemma 5.5, all the coefficients of the Laurent series (6.1) are continuous
in s. By Proposition 5.2, S is a compact space. Therefore gs = hs−1(1) attains
its maximum over S on a nonempty compact set S0 ⊆ S. In a similar way, by
induction, hsn(1) attains its maximum over Sn on a nonempty compact set Sn+1 ⊆
Sn, n = 0, 1, . . . . The intersection S∞ of the sets S ⊇ S0 ⊇ S1 ⊇ · · · is also a
nonempty compact set, and evidently Ht(1) = Lexmaxs∈S Hs(1) for any t ∈ S∞. By
Lemma 5.3 the set j−1(t) is nonempty, and by Lemma 5.5 the relation (6.2) holds for
any τ ∈ j−1(t).

To perform the next step, we need the analogues La, a ∈ A, of the operators Lσ

such that

LσH(x) =
∫
Ax

LaH(x)σ(x, da), x ∈ X, σ ∈ Σ H ∈ H(6.3)

(see Definition 3.3). In accordance with (3.1) and (3.13), the following definition
implies (6.3).

DEFINITION 6.2. For every H = {g, h0, h1, . . . } ∈ H, x ∈ X, and a ∈ Ax,

LaH(x) = {g, r(x, a) + P ah0(x)− g, P a(h1 − h0)(x), P a(h2 − h1)(x), . . . }(6.4)

where

P af(x) =
∫
X

p(x, a, y)f(y)m(dy), f ∈ B(X).(6.5)

(It is easy to see that LaHσ(x) is indeed the sequence of Laurent coefficients of
vβ(x, π), where π assigns the action a at the state x at the first step of the control
and coincides with σ afterwards.)
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THEOREM 6.3.
(i) The lexicographical Bellman operator T introduced in (4.5) is defined on the

whole space H, and

TH(x) = Lexmax
a∈Ax

LaH(x), x ∈ X, H ∈ H;(6.6)

(ii) for every H ∈ H there exists a selector ϕ such that LϕH = H;
(iii) TH ∈ H for every H ∈ H.

Proof. We first prove that the maximum in (6.6) is attained and determine the
corresponding subsets of the sets Ax. Given H = {hn} ∈ H, denote by hn(x, a), n ≥
−1, the components of LaH(x) defined in (6.4), and fix x. Since hn ∈ B(X), it follows
from (6.4)–(6.5) and Assumptions 2.2 and 2.4 by the majorized convergence theorem
that all hn(x, a) are continuous in a on the compact Ax (so that hn(·, ·) ∈ Car(K)).
The constant term h−1(x, a) = g of LaH(x) attains its maximum ĥ−1(x) (= ĝ) over
Ax on the set A−1(x) = Ax. The next term h0(x, a) attains its maximum ĥ0(x) over
A−1(x) on a nonempty compact set A0(x) ⊂ A−1(x), etc. By an evident induction,
we get nonempty compact sets Ax = A−1(x) ⊃ A0(x) ⊃ A1(x) ⊃ · · · such that
hn(x, a) attains its maximum ĥn(x) over An−1(x) on An(x), n ≥ 0. The intersection
A∞(x) of the sets An(x), n ≥ 0, is a nonempty compact subset of Ax. It is clear that
Ĥ(x) = {ĥn(x)} is the lexicographical maximum on the right side of (6.6) and that
this maximum is attained if and only if a ∈ A∞(x).

Since x is arbitrary, we have LaH (x) � Ĥ(x) for every x ∈ X, a ∈ Ax. Hence by
(6.3) and Proposition 4.1, LσH � Ĥ for every σ ∈ Σ.

In accordance with the preceding paragraph, the set

K∞ = {(x, a) : a ∈ A∞(x), x ∈ X}

has nonempty compact x-sections A∞(x). To choose a selector ϕ with its graph inK∞,
we need to prove that this set is measurable (belongs to BX×A). Since K∞ =

⋂
nKn,

it is sufficient to show that the sets

Kn = {(x, a) : a ∈ An(x), x ∈ X}, n ≥ −1,

are measurable. This is done by induction in n. The set K−1 = K is measurable by
Assumption 2.1. Suppose that Kn−1 is measurable. Since Kn−1 has nonempty com-
pact x-sections, by Proposition 2.5(ii) applied to the Carathéodory function hn(x, a)
and the set Kn−1, the function ĥn(x) is measurable on X and therefore is also mea-
surable on Kn−1 as a function of both x and a. It follows that the set

Kn = {(x, a) ∈ Kn−1 : hn(x, a) = ĥn(x)}

is measurable too, and this completes the induction.
Since K∞ is measurable and has nonempty compact x-sections, by Proposi-

tion 2.5(i) there exists a selector ϕ ∈ Φ such that ϕ(x) ∈ A∞ (x), x ∈ X. For
this selector we have Lϕ(x)H(x) = Ĥ(x) for all x, so that LϕH = Ĥ. Therefore,
because ϕ ∈ Φ ⊂ Σ, and since we already know that LσH � Ĥ for every σ ∈ Σ, we
have LϕH = Lexmaxσ∈Σ L

σH. Thus both (i) and (ii) are proved. Since LϕH ∈ H
together with H, we also have (iii).

THEOREM 6.4.
(i) There exists a selector ϕ ∈ Φ Blackwell optimal within Σ;
(ii) the Blackwell optimality equation H = TH has a unique solution H∗ in H.
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Proof. By Lemma 6.1 there exists a policy τ ∈ Σ lexicographically maximizing
Hσ(1) over Σ, and by Theorem 6.3 there exists a selector ϕ such that

LϕHτ = THτ .(6.7)

Therefore, utilizing the definition (4.5) of T and Corollary 3.4, we have LϕHτ �
LτHτ = Hτ . Hence, by Corollary 4.3, Hϕ � Hτ . Thus, by Proposition 4.1, Hϕ(1) �
Hτ (1), and therefore, since (6.2) holds in particular for σ = ϕ, Hϕ(1) = Hτ (1). The
last relation together with Hϕ � Hτ means that∫

X

Hϕ(x)m(dx) =
∫
X

Hτ (x)m(dx)

while Hϕ(x) � Hτ (x) everywhere on X. Therefore Hϕ(x) = Hτ (x) (a.e. m) on
X. Since the nonconstant components of H enter into LaH(x) only integrated with
respect to m(dx) (Definition 6.2), it follows that LaHϕ(x) = LaHτ (x) for all (x, a) ∈
K (Proposition 4.1). Therefore THϕ = THτ and LϕHτ = LϕHϕ, (see (6.3) and
(6.6)). In accordance with (6.7) and Corollary 3.4, it follows that

THϕ = THτ = LϕHτ = LϕHϕ = Hϕ.

Thus Hϕ ∈ H is a solution of the Bellman optimality equation TH = H, and also, by
Theorem 4.5, ϕ is Blackwell optimal within Σ.

To prove the uniqueness of the solution, suppose that H∗ ∈ H is another solution
of the equation TH = H. Then LϕH∗ � TH∗ = H∗, so that by Lemma 4.2 we
have Hϕ � H∗. On the other hand, by Theorem 6.3 there exists a selector ψ such
that LψH∗ = TH∗ = H∗. By Lemma 4.2, Hψ = H∗, and by Theorem 4.5(ii)
Hϕ � Hψ = H∗. Since both Hϕ � H∗ and Hϕ � H∗, we have Hϕ = H∗.

7. Blackwell optimality in the space of all policies. In this section we
extend to our model the elegant proof of Theorem 5.4 in Dekker and Hordijk [8, pp.
414–416], leading to the conclusion that a policy Blackwell optimal within the class
Σ is Blackwell optimal within the class Π too (in fact, Theorem 5.4 in [8] is stated in
slightly different terms). For the case of a Borel space X and finite sets Ax, such an
extension is done in [31, pp. 283–287]. We give here a more condensed presentation,
with novelties in the definitions of measures corresponding to the components of a
Markov policy and of the limiting measure. The following version of Proposition 5.2
is used in the proof.

PROPOSITION 7.1. For every constant C > 0, the set SC of all measures s on K
satisfying the condition

PrXs ≤ Cm(7.1)

is (sequentially) compact in the weak-strong topology.
Proof. For the case C = 1 this is proved in [33], and our Proposition 5.2 is

obtained as a corollary. It is easy to proceed in the opposite direction too. Namely,
one must add a fictitious action a∗ to A and each of the sets Ax, and assign the
measure m−PrXs to X ×a∗; then (7.1) will turn into an equality. To reduce the case
of an arbitrary C > 0 to the case C = 1, one must multiply f and divide s by C in
the relation (5.2) defining the topology.

THEOREM 7.2. If a stationary policy τ is Blackwell optimal within the class Σ of
stationary policies, then τ is also Blackwell optimal within the class Π of all policies.
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Proof. According to a well-known result by Strauch [27], for every x ∈ X and
π ∈ Π there exists a Markov policy µ such that for each pair xtat+1 its Pπ

x-distribution
coincides with its Pµ

x-distribution, and therefore vβ(x, π) = vβ(x, µ) for all 0 < β < 1.
Hence it is sufficient to prove that τ is Blackwell optimal within the class M, i.e., that
for every x ∈ X and µ ∈ M there exists a number β0 = β0(x, τ, µ) < 1 such that

vβ(x, τ)− vβ(x, µ) ≥ 0 for all β0 < β < 1.(7.2)

Here µ = {σ1, σ2, . . . }, where σt ∈ Σ. To simplify the subsequent formulas, we de-
note the components of Hτ = H∗ by h−1 = g, h0, h1, . . . and write q(t), r(t), Q(t), L(t)

instead of qσt , rσt , Qσt , Lσt (t ≥ 1). Consider also the t-step transition densities
qt corresponding to the policy µ, defined, similar to (3.3), as convolutions qt+1 =
qt ∗ q(t+1) with q1 = q(1), and the corresponding t-step operators Q0 = I, Qt =
Q(1)Q(2) . . . Q(t), t ≥ 1. It is easy to see that the bounds 0 ≤ qσ ≤ ‖p‖, σ ∈ Σ, imply
the same bounds for qt and that Qt are stochastic operators, so that

‖qt‖ ≤ ‖p‖, ‖Qt‖ ≤ 1, t ≥ 1.(7.3)

Under the policy µ, the consecutive states x0 x1 x2 . . . form a nonstationary
Markov chain with the transition operators Q(t) and one-step rewards r(t), so that
(2.2) simplifies to

vβ(x, µ) =
∞∑
t=0

βtQtr
(t+1)(x), x ∈ X, 0 < β < 1.(7.4)

On the other hand, by a remarkable identity exploited in Sladký [25], Hordijk and
Sladký [17], and Dekker and Hordijk [8], we can transform the Laurent expansion
(3.11) of vβ(x, τ) into

vβ(x, τ) =
∞∑

n=−1

hn(x)αn =
∞∑
n=0

αn
∞∑
t=0

βtQt[hn −Q(t+1)(hn − hn−1)](x),(7.5)

x ∈ X, 0 < α = 1− β < 1
κ
.

The identity used in (7.5) is an algebraic one, it is a direct consequence of the relations
QtQ

(t+1) = Qt+1, α
∑
βt = 1, h−1 = const.; the absolute convergence of the double

series in the indicated interval follows from the bounds (3.20) and (7.3) for hn and
Qt.

Next we fix x = x0 ∈ X, subtract (7.4) from (7.5), collect the like terms with βt

in (7.4) and with αnβt in (7.5), and compare the coefficients of the resulting double
series with the components of LσH (see (3.23)). This gives, for the difference in (7.2),
a representation of the form

vβ(x0, τ)− vβ(x0, µ) =
∞∑
n=0

∞∑
t=0

atnα
nβt, 0 < α <

1
κ
,(7.6)

where

atn = Qtbtn (x0) , {0, bt0, bt1, . . . } = H − L(t+1)H.(7.7)
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We need to express the coefficients atn through the components fn (x, a) of the dif-
ference

H(x)− LaH(x) = {0, f0(x, a), f1(x, a), . . . }, (x, a) ∈ K(7.8)

(see Definition 6.2). In accordance with (6.3),

btn(x) =
∫
Ax

fn(x, a)σt+1(x, da), x ∈ X.(7.9)

A substitution of (7.9) into (7.7) gives a representation

atn =
∫
X

qt(x0, x)
∫
Ax

fn(x, a)σt+1(x, da)m(dx) =
∫
K

qt(x0, x)fn(x, a)dst,(7.10)

st = j(σt+1) ∈ S, n ≥ 0, t ≥ 1,

while for the coefficients with t = 0 we have

a0n = b0n(x0), n ≥ 0,(7.11)

since Q0 = I. Finally, we change in (7.10) from dst to ds′t where the measure s′t on
K is defined by

s′t(dxda) = qt(x0, x)st(dxda), t ≥ 1.(7.12)

Then (7.10) becomes

atn =
∫
K

fn(x, a)ds′t, n ≥ 0, t ≥ 1.(7.13)

Next, since H (= Hτ = H∗) is the solution of the Blackwell optimality equation,
both H − L(t+1)H and H(x)− LaH(x) are lexicographically nonnegative (see Theo-
rems 4.5 and 6.3). It follows from (7.8), (7.13), and Proposition 4.1 (or directly from
(7.7) and (7.11) in the case t = 0) that

{at0, at1, at2, . . . } � 0, t ≥ 0.(7.14)

From (7.7), (7.11)–(7.13), and the bounds (3.20) and (7.3) for hn and qt, we conclude
that

| atn |≤ Cκn, n ≥ 0, t ≥ 0,(7.15)

and that

s′t ∈ SC , t ≥ 1,(7.16)

for a sufficiently large C > 0 (see Proposition 7.1). In the proof of Theorem 6.3 we
have seen that the components hn(x, a) of LaH(x) are continuous in a. By (7.8)
fn(x, a) = hn(x)− hn(x, a), and therefore

fn ∈ Car(K), n ≥ 0.(7.17)

To prove the theorem, it remains to show that the relations (7.6), (7.14), (7.15)
together with (7.13), (7.16), (7.17) imply (7.2) for x = x0.
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Following Dekker and Hordijk [8, pp. 414–416], we consider various possibilities
for (7.14) to be satisfied.

Case I. All atn = 0. Then (7.2) obviously holds at x = x0 with the equality sign.
Case II. There is an integer N ≥ 0 such that all atn with n < N (if any) are zeros,

but not all atN are equal to 0. Then evidently

atN ≥ 0 for all t ≥ 0, while a0N + a1N + a2N + · · · = b > 0,(7.18)

and this case splits into two subcases: b =∞ and b <∞.
The subcase b = ∞ is also rather trivial. From (7.6) and (7.18) we have, for α

converging to 0,

vβ(x0, τ)− vβ(x0, µ) = αN
∞∑
t=0

atNβ
t +R(α),(7.19)

where in accordance with (7.15), and since α
∑
βt = 1,

| R(α) |≤ C
∑
n>N

∞∑
t=0

(ακ)nβt = CκN+1αN (1− ακ)−1 = O(αN ).

In view of (7.18), and since β = 1−α, b =∞, the sum of the series in (7.19) approaches
∞ as α ↓ 0, and this implies (7.2) for x = x0.

The subcase 0 < b <∞ is the most interesting one. In this subcase
∑∞
t=0 atNβ

t =
b + o(1), so that similar to the preceding subcase, only taking into account the two
lowest powers of α, we have

vβ(x0, τ)− vβ(x0, µ) = αN
∞∑
t=0

atNβ
t + αN+1

∞∑
t=0

at,N+1β
t +O(αN+1)

= αN (b+R(α)) + o(αN ),

where

R(α) = α

∞∑
t=0

at,N+1β
t.(7.20)

Since b > 0, it is sufficient to prove that lim infα↓0R(α) ≥ 0 or, as follows from (7.20),
that lim inft→∞ at,N+1 ≥ 0.

This is proved by contradiction. If lim inft→∞ at,N+1 < 0, then for some ε > 0 and
some sequence of the values of t we must have lim at,N+1 = −ε. By Proposition 7.1
and in view of (7.16), there exists a subsequence {tj} of the above sequence and a
measure s′ ∈ SC such that s′tj

ws→ s′. By the definition of the weak-strong topology
and in view of (7.13) and (7.17), this implies the existence of the limits

an = lim
j→∞

atjn =
∫
K

fn(x, a)ds′, n ≥ 0.(7.21)

Since all atn with n < N are zeros in Case II, we have an = 0 for n < N . Because b <
∞ in the subcase we consider, the series in (7.18) converges; therefore limt→∞ atN = 0,
and we also have aN = 0. By the selection of {tj}, aN+1 = −ε. It follows that

{0, a0, a1, . . . , aN , aN+1, aN+2, . . . } = {0, 0, 0, . . . , 0,−ε, aN+2, . . . } ≺ 0.(7.22)
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On the other hand, as we have seen,

{0, f0(x, a), f1(x, a), . . . } = H(x)− LaH(x) � 0, (x, a) ∈ K.(7.23)

By Proposition 4.1 we may integrate the nonstrict lexicographical inequalities. There-
fore, (7.22) contradicts (7.21) and (7.23).

8. Examples.
Example 8.1 (the water regulation problem). We consider the water regulation

problem as described in [13, section 2.8]. The water is stored in a reservoir of a finite
capacity M . The amount xt of water in the reservoir after the tth period of time is

xt = (xt−1 − at + ξt) ∧M, t = 1, 2, . . . ,(8.1)

where at is the extent of water taken for the consumption and ξt is the random
influx of water during the tth period of time. Here 0 ≤ at ≤ xt−1, and ξt are
nonnegative i.i.d. (independent identically distributed) random variables. The utility
of the consumption is measured by a function R(at).

To fit into the definitions of section 2, we suppose that the random variables ξt
have an absolutely continuous distribution function

F (x) =
∫ x

0
f(z)dz, 0 ≤ z <∞.(8.2)

Then the components of the model can be defined in the following way. The state
space X = [0,M ], the action space A = [0,M ], the action sets Ax = [0, x], x ∈ X.
The reference measure

m(B) =


λ(B)
2M if B ⊂ [0,M), B ∈ BX ,

1
2 if B = {M},

(8.3)

where λ is the Lebesgue measure. The transition density

p(x, a, y) =


0 if 0 ≤ y < x− a,
2Mf(y − x+ a) if x− a ≤ y < M,
2
∫∞
M−x+a f(z)dz if y = M.

a ∈ Ax, x ∈ X,(8.4)

The reward function r(x, a) = R(a), a ∈ Ax, x ∈ X. (It is easy to see that with these
m and p,∫

B

p(x, a, y)m(dy) = P {xt ∈ B | xt−1 = x, at = a} = P{(x− a+ ξt) ∧M ∈ B}

for every interval B, and hence for every Borel set B ⊂ [0,M ], as should be in
accordance with (8.1).)

Assumptions 2.1–2.4 are satisfied if
(i) the density f(x) is continuous (and therefore nonnegative and bounded) on

the interval [0,M ];
(ii) f(0) = 0;
(iii) 1− F (M) (= P{ξt ≥M}) > 0;
(iv) R(a) is a continuous function on [0,M ].
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Indeed, Assumption 2.1 trivially holds, Assumption 2.2 follows from (i) and (ii),
and Assumption 2.4 is implied by (iv). The simultaneous Doeblin-type condition
(Assumption 2.3) follows from (iii) with D = {M} and δ = 2(1 − F (M)). Thus,
conditions (i)–(iv) imply the existence of a deterministic stationary Blackwell optimal
policy.

Example 8.2 (the inventory problem). The inventory model goes back to Bellman
[2]. In the case of a single commodity, the evolution of the system can be described
by the equation

xt = (xt−1 + at − ξt) ∨ 0, t = 1, 2, . . . ,

where xt−1 is the stock level at the beginning of the tth period of time, at is the amount
of the additional stock that is reordered, the nonnegative i.i.d. random variables ξt
represent the demands, and the stock level is bounded above by a constant M (the
capacity of the storehouse). The (expected) one-step cost is c(xt−1, at) (it consists of
the costs of ordering, stockholding, and shortage).

This model is “symmetric” to the water regulation problem. As in that model,
we suppose that ξt have the distribution function (8.2). As above, we have X = A =
[0,M ], but now Ax = [0,M − x]. The reference measure is similar to (8.3), with the
only difference being that the atom 1

2 is at x = 0 instead of x = M . The transition
density, similar to (8.4), is

p(x, a, y) =


2
∫∞
x+a f(z)dz if y = 0,

2Mf(x+ a− y) if 0 < y ≤ x+ a,
0 if x+ a < y ≤M,

a ∈ Ax, x ∈ X,

and the reward function is r(x, a) = −c(x, a).
Assumptions 2.1–2.4 are satisfied under the same conditions (i)–(iii) as above and

the condition
(iv′) c(x, a), 0 ≤ a ≤M−x ≤M is continuous in a, bounded and measurable.
Notice that in both examples we have a recurrent state x∗ such that P (x, a, x∗) >

δ > 0 for all (x, a) ∈ K.
Example 8.3 (the stabilization problem on a circle). This is a circular version of

the well-known linear regulator problem with Gaussian disturbances (cf. [13, sections
3.11, 6.12, 7.12]). The state of the system is described by an angle x which should be
kept close to 0 but is subject to random fluctuations. The actions a are corrections
of x. Larger deviations of x from 0 and larger values of | a | induce larger costs. To
be definite, let X = A = [−1, 1) with the topology of a circle, so that limx↑1 x = −1.
Then both X and A are compact spaces. The evolution of the system is described by
the equation

xt = xt−1 − at + ξt mod(2), t = 1, 2, . . . ,

where ξt are independent normal random variables with Eξt = 0, Eξ2
t = σ2 > 0. The

costs are of a form R1(a2
t )+R2(x2

t ), where Ri are nondecreasing continuous functions
on [0, 1] with Ri(0) = 0.

Let Ax = A for every x ∈ X, and define the reference measure by m(dx) = 1
2dx.

Then the transition density is

p(x, a, y) =
∞∑

n=−∞

2√
2πσ

e−
(y−x+a−2n)2

2σ2 , −1 ≤ x, a, y < 1.
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This series converges uniformly in (x, a, y), and it follows that p is bounded, strictly
positive, and continuous on the compact X×A×X. Hence p(·) is bounded from below
by a positive constant δ, so that Assumption 2.3 holds with D = X. Assumptions 2.1
and 2.3 are trivially satisfied. The reward function

r(x, a) = −R1(a2)−
∫ 1

−1
R2(y2)p(x, a, y)dy

is bounded and continuous (in both variables) together with p,R1, and R2. It follows
that there exists a deterministic stationary Blackwell optimal policy.

9. Comments and open problems. The measurability and compactness (As-
sumption 2.1) and the continuity in a of the transition law and of the reward function
(parts of Assumptions 2.2 and 2.4) are standard in dynamic programming, when
proving the existence of exactly optimal policies.

The absolute continuity of the transition probabilities and the boundedness of the
transition densities (Assumption 2.2) are restrictions crucial for our analysis. Only a
few works in the theory of MDPs are made in the framework of densities, although
models of this kind are encountered in applications. As a separate object of study,
controlled Markov chains with transition densities are treated by Georgin [14]. In this
paper the discounted and the average rewards are studied. In general, our assumptions
are more restrictive than in [14]. Hypothesis 1a in [14] is similar to our Assumption
2.2, except that the density is not uniformly bounded there, but (in our notations)
p(x, a, y) ≤ q(x, y) where

∫
X
q(x, y)m(dy) <∞ for every x ∈ X.

Another crucial point for our analysis is the boundedness of the reward function
r (Assumption 2.4). This is a severe restriction not satisfied in many applications.
However, if the state space X is a compact set, this assumption is reasonable, and
such models are encountered in practice.

The simultaneous Doeblin-type condition (Assumption 2.3) is an easily checked
assumption needed only for the uniform geometric convergence of the t-step transition
densities qσt (x, y) to their limit q̄σ(y) (see (3.7)). This condition is equivalent to the
existence of a nonnegative function f ∈ B(X) such that p(x, a, y) ≥ f(y) for all x, a, y,
and

∫
X
f(y)m(dy) > 0 (given (2), one may define f(x) = δ1D(x); given f , one may set

D = {x : f(x) ≥ δ} where δ > 0 is so small that m(D) > 0). In terms of the transition
function, the above condition means that P (x, a,B) ≥ ν(B) where ν is a nontrivial
measure on X (in our case ν(dx) = f(x)m(dx)). In [13, section 7.1] such a measure ν
is called a minorant. Models with a minorant are well known in MDPs, especially in
the particular case when ν is concentrated at a single point x∗ ∈ X, so that a simpler
uniform recurrence condition holds: P (x, a, {x∗}) ≥ δ (= ν(x∗)) > 0 (cf. Examples 8.1
and 8.2). For a comprehensive survey of recurrence conditions in MDPs with a Borel
state space and their relation to the convergence of t-step transition probabilities, see
Hernández-Lerma, Montes-de-Oca, and Cavazos-Cadena [15]. Our Assumption 2.3
and its version in terms of a minorant are labeled there as R1(a) and R1(b).

We need the geometric convergence of the transition densities for all randomized
stationary policies. A simple way to weaken Assumption 2.3 is to extend the more
sophisticated convergence conditions known for Markov chains to all chains generated
by σ ∈ Σ. For example, the geometric convergence (3.7) still holds, and our results
remain valid, if Assumption 2.3 is replaced by the following condition considered in
Doob [12, section 5.5, case (b)] for a single Markov chain.
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Assumption 9.1. There exist an integer k ≥ 1 and numbers δ > 0 and ε > 0 such
that for every policy σ ∈ Σ there is a set Dσ ∈ BX with m(Dσ) ≥ ε and with

qσk (x, y) ≥ δ for all x ∈ X, y ∈ Dσ.

However, this assumption is difficult to verify. An open problem is whether As-
sumption 9.1 follows from a similar condition for the deterministic policies ϕ ∈ Φ.

The existence of a strong Blackwell optimal policy is an interesting open question.
A related problem is the asymptotics of the value function vβ as β approaches 1.
Indeed, we have the following result.

LEMMA 9.2. The following three statements are equivalent:
(i) there exists a strong Blackwell optimal selector ϕ ∈ Φ;
(ii) every Blackwell optimal stationary policy σ ∈ Σ is strong Blackwell optimal;

(iii) there exists a number 0 < β0 < 1 such that

vβ(x) =
∞∑

n=−1

h∗n(x)αn, x ∈ X, β0 < β = 1− α < 1(9.1)

where H∗ is the unique solution of the Blackwell optimality equation H = TH in H.
Proof. (iii)→(ii). By Theorems 4.5 and 6.4, for a Blackwell optimal σ ∈ Σ we

have Hσ = H∗, and therefore, if (9.1) holds, vβ(x, σ) has the same Laurent expansion
as vβ(x), only in the interval ρ < β < 1. Hence vβ(x) = vβ(x, σ) if ρ∨ β0 < β < 1, so
that σ is strong Blackwell optimal.

(ii)→(i). The proof follows from Theorems 6.4(i) and 7.2.
(i)→(iii). Given (i), we have vβ(x) = vβ(x, ϕ), x ∈ X, β0 < β < 1 for some

β0 < 1, and (9.1) follows from the Laurent expansion for vβ(x, ϕ) (with β0∨ρ in place
of β0).

The main term of the supposed expansion (9.1) is well known. Utilizing an ap-
proach due to Cavazos-Cadena and Lasserre [4], in [32] we have justified the next term
in (9.1) and proved that

vβ(x) =
g∗

α
+ h∗0(x) + o(1)

uniformly in x as α ↓ 0 in the case of Assumptions 2.1–2.4, but we have no idea how
to obtain the next terms.

Acknowledgments. The author is thankful to the referees and the associate
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[23] M. SCHÄL, On dynamic programming: Compactness of the space of policies, Stochastic Process.
Appl., 3(1975), pp. 345–354.
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Abstract. A method of control is developed in order to compute the variability of the velocity
and pressure (u, p) in an oceanic doman Ω during a time T . The observation is the variability of
p of Γ0×]0, T [, where Γ0 is the upper surface of Ω and corresponds to the undisturbed sea surface.
The observation is deduced from satellite data. The control is the variability of the wind-stress
f , which acts as the forcing of the perturbation. The mean circulation in Ω is supposed to be
known. The equations verified by (u, p) are linearized around this mean circulation. The continuity
of the application: f → (u(f), p(f)) in convenient functional spaces is proved. We deduce from
this result the existence and uniqueness of an optimal control, which is characterized by a set of
equations including the direct problem of linearized Navier–Stokes type verified by (u, p) and the
adjoint problem. The cost function and consequently the optimal control depend on a real parameter
α. We prove the convergence of the sequence (fα), when α tends to 0, toward a wind-stress f which
minimizes the distance between the observed and computed pressures. This result is obtained by
means of minimizing sequences.

Key words. optimal control, Navier–Stokes, assimilation of surface data, minimizing sequences,
oceanography
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1. Introduction. The method developed in this paper allows us to obtain the
deep oceanic circulation from satellite measurements which are obviously surface ob-
servations. Altimetric measurements give the distance between the satellite and the
sea surface. It is now possible to extract from these data the sea level variability
with a precision in the order of centimeters. The pressure variability at a given depth
can be deduced from the sea level and will act as the observation in our model (cf.
Appendix).

The oceanic phenomenon that we want to modelize occurs in the tropical Atlantic
and Pacific oceans: the circulation there is characterized by steady zonal currents
driven by the trade winds and by long waves propagating westward along the equator,
driven by the variability of the wind-stress and superimposed to the mean currents.
The mean velocity u0 is known for each tropical season. The total velocity ũ can
therefore be considered as the sum of two terms: u0, which is given, and a variability u
corresponding to the waves. The same expansion is valid for the pressure: p̃ = p0 + p.
The equations of motion in an oceanic domain Ω are of Navier–Stokes type. We
assume that, at initial time t = 0, the flow Ω is the mean circulation (u0, p0), which
verifies steady equations. In this paper we are dealing only with the linearized case.
The equations verified by the perturbation (u, p) are the following:

∂u

∂t
+ (u0.∇)u+ (u.∇)u0 + FΛu− νh(∆2u)− ∂

∂z

(
νv
∂u

∂z

)
+

1
ρ
∇p = 0,(1.1a)
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div u = 0,(1.1b)

u(0) = 0,(1.1c)

∆2
∂2

∂x2 + ∂
∂y2 . (x, y, z) are the Cartesian coordinates: x and y are measured in the

horizontal plane of the undisturbed sea surface (x toward the east, y toward the north),
and z is vertically ascendant. The density ρ is a constant mean value. Afterward we
will take ρ = 1 g.cm−3. F = (0, 0, 2ω sinϕ) is the Coriolis force, ω is the rotation
rate of earth, and ϕ is the latitude. The dissipative term corresponds to Reynolds
stresses with a coefficient of eddy viscosity ν. Observation of turbulent flows leads to
distinguish between horizontal eddy viscosity νh and vertical eddy viscosity νv. From
now on νh will be constant and νv variable.

We consider a time interval (0, T ) and an oceanic domain Ω extending on both
sides of the equator (10◦S–10◦N) and of constant depthH (for example, H = 3000 m).
The curvature of the earth is neglected. The vertical extension of Ω (−H ≤ z ≤ 0)
corresponds to a part of the physical domain. We assume that for depths greater
than H the variability is negligible. The perturbation (u, p) is not computed in the
thin surface layer 0 ≤ z ≤ ξ(x, y), where ξ(x, y) is the free sea surface observed by
the satellite. The perturbation of the mean flow is made of zonal propagating waves.
We can thus choose the zonal extension of Ω as the greatest wavelength and impose
periodic boundary conditions on the eastern and western boundaries.

The oceanic domain can be defined as Ω =]0, Lx[×]−Ly, Ly[×]−H, 0[.Γ denotes
its boundary; Γ = ∪i=0,5Γi, where Γ0 denotes the surface (z = 0), Γ5 denotes the
bottom (z = −H), Γ1 and Γ2 denote the western and eastern boundaries, and Γ3
and Γ4 denote the southern and northern boundaries. n is the unit outward vector
normal to Γ. On account of the phenomena that we want to describe, we set mixed
boundary conditions.
• The flow is periodic in the x-direction:

u/Γ1 = u/Γ2 .(1.2a)

• We have the following:

u2 = 0,
∂u1

∂y
= 0, and

∂u3

∂y
= 0 on Γ3 and Γ4.(1.2b)

• The perturbation vanishes at z = −H:

u = 0 on Γ5.(1.2c)

• The perturbation is driven by the perturbation of the wind-stress f :

u3 = 0,
∂u1

∂z
= −f1

νv
, and

∂u2

∂z
= −f2

νv
on Γ0(1.2d)

with : u = (u1, u2, u3) and f = (f1, f2).
The variability of the pressure on Γ0, deduced from altimetric data, constitutes the

observation. The variability of the wind-stress f acts as the forcing of the perturbation
and is unknown. We take f as the control. (u(f), p(f)) are the velocity and pressure
corresponding to any control f and satisfying problem (1.1), (1.2). The optimal
control is defined as the wind-stress minimizing a given cost function which measures
the distance between the observed pressure and the pressure p(f) solution of (1.1),
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(1.2). The pressure observed on Γ0 is the trace of a circulation (ue, pe) driven by
a wind fe. The solution (u(f), p(f)) of problem (1.1), (1.2) induced by the optimal
control f has to approach the real circulation (ue, pe). The control method then makes
it possible to compute the velocity and pressure in all the domain Ω by means of data
on a part of the boundary.

In order to solve the problem of optimal control, we have to consider the adjoint
equations associated to (1.1). We then apply the control theory introduced by J. L.
Lions [4]. More recently, G. I. Marchuk developed the method of adjoint equations in
mathematical physics and performed variational data assimilation in environmental
problems [6, 7]. The classical control problem arising in meteorology or oceanography
is the adjustment of the initial condition in order to obtain velocity and temperature
fields which agree with observations in situ. Our purpose is quite different since we
control by the variability of the wind-stress in order to restitute the observed surface
pressure deduced from altimetric data.

The paper is organized as follows.
Section 2 is devoted to problem (1.1), (1.2) satisfied by the perturbation of the

mean flow. Here are some regularity results proven in [2]: if the forcing f is sufficiently
regular, then the weak solution of (1.1), (1.2) is such that u ∈ L2(0, T,H2(Ω)), p ∈
L2(0, T,H1(Ω)). We can then define the trace γ0p of the pressure on Γ0. We prove
the continuity of the applications f → u(f), f → p(f), f → γ0p(f) in convenient
functional spaces.

Section 3 is devoted to the problem of control. We prove the existence and
uniqueness of the solution. The optimal control is given as a function of u∗, the
solution of the adjoint problem associated with the direct problem (1.1), (1.2). We
thus obtain a set of equations characterizing the optimal control.

The cost function and consequently the optimal control depend on a parameter
α. In section 4 we prove a convergence result for the sequence (fα) of optimal controls
by means of minimizing sequences.

2. Regularity and continuity results. We introduce the functional spaces

H = {v ∈ (L2(Ω))3/divv = 0, v. n = 0 on Γ0 ∪ Γ3 ∪ Γ4 ∪ Γ5, (v. n)/Γ1 = −(v. n)/Γ2},
W = {v ∈ (H1(Ω))3/v = 0 on Γ5, v. n = 0 on Γ0 ∪ Γ3 ∪ Γ4, v/Γ1 = v/Γ2},
V = {v ∈W/div v = 0}.

The norm ‖ . ‖1,Ω and the seminorm [ . ]1,Ω defined on H1(Ω) are equivalent in V
and W . We then set ‖v‖ = ‖v‖V = ‖v‖W = [v]1,Ω. | . | denotes the norm in L2(Ω).

We define

a(u, v) = νh(∇2u,∇2v) +
(
νv
∂u

∂z
,
∂v

∂z

)
, with ∇2u =

(∂u
∂x
∂u
∂y

)
,

d(u, v) = (FΛ u, v),
b(u, v, w) = ((u.∇)v, w),
`(u, v) = b(u, u0, v) + b(u0, u, v) + d(u, v), where u0 is the mean velocity given

in V ,
c(v, q) = −(div v, q).
a and d are bilinear continuous forms on W , b is a trilinear continuous form

on W , a is coercive on W , and we denote by ν the constant of coercivity (ν =
Min (νh,Min νv)).
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c is a bilinear continuous form on W × L2(Ω) and verifies the Inf Sup condition

∃ β > 0 such that Inf
q∈L2(Ω)

Sup
v∈W

c(v, q)
|q| ‖v‖ ≥ β.

The initial problem (1.1), (1.2) verified by the perturbation (u, p) of the mean
flow admits two equivalent weak formulations.

Find u ∈ L2(0, T, V ) such that(
∂u

∂t
, v

)
+ a(u, v) + `(u, v) = −(f, γ0v) ∀v ∈ V,(2.1a)

u(0) = 0(2.1b)

and
find (u, p) ∈ L2(0, T,W )× L2(0, T, L2(Ω)) such that(

∂u

∂t
, v

)
+ a(u, v) + `(u, v) + c(v, p) = −(f, γ0v) ∀v ∈W,(2.2a)

c(u, q) = 0 ∀q ∈ L2(Ω),(2.2b)

u(0) = 0.(2.2c)

γ0v denotes the trace of v on Γ0, and (f, γ0v) denotes the scalar product in L2(Γ0).
These results and the following concerning the existence and regularity of the

weak solution (u, p) are proven in [2].
PROPOSITION 2.1. For given u0 and f , u0 ∈ V , and f ∈ L2(0, T, L2(Γ0)), there

exists a unique solution u of problem (2.1) satisfying

u ∈ L2(0, T, V ) ∩ C0([0, T ], H),
∂u

∂t
∈ L2(0, T, V ′).

There is a pressure p ∈ L2(0, T, L2(Ω)), defined regardless of any time-dependent
function, such that (u, p) verifies the problem (1.1), (1.2) in a distribution sense.

We want to choose the pressure p on Γ0 as the observation of the method of
control. The regularity p ∈ L2(Ω) doesn’t make it possible to define γ0p, the trace of
p on Γ0. We have to make stronger assumptions in order to have p ∈ H1(Ω).

From now on we assume the following regularity of the wind-stress:

f ∈ L2(0, T,H1(Γ0)),
∂f

∂t
∈ L2(0, T, L2(Γ0)),(2.3)

Equation (2.3) implies that f ∈ C0([0, T ], L2(Γ0)) a.e. on [0, T ] [5].
f must be consistent with the initial and boundary conditions imposed on the

velocity u. We then have to impose the following compatibility conditions:

f(0) = 0 on Γ0,(2.4a)

f2 = 0 and
∂f1

∂y
= 0 on γ3 ∪ γ4,(2.4b)

f/γ1 = f/γ2 .(2.4c)

Notation: f is defined on the open set Γ0 =]0, Lx[×]−Ly, Ly[. γ denotes the boundary
of Γ0. γ = ∪i=1,4γi, where γ1 and γ2 are the western and eastern boundaries and γ3
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and γ4 the southern and northern boundaries. n is the unit outward vector normal
to γ.

PROPOSITION 2.2. If the wind-stress f verifies the regularity (2.3) and the initial
and boundary conditions (2.4), then the solution (u, p) of problem (2.1) is such that

u ∈ L2(0, T,H2(Ω)), p ∈ L2(0, T,H1(Ω)).

This result is proven in [2] by an extension method, using even–odd reflection on
the boundaries. The presence of corners in the open set Ω makes it impossible to
directly apply a standard result of regularity given in [1].

Remarks.
(i) Since p ∈ H1(Ω), we can now define the trace of p on the boundary Γ. p is

defined regardless of any time-dependent function. We now determine this
function by setting the condition∫

Γ0

p dΓ =
∫

Γ0

pd dΓ,

where pd is the observation.
(ii) The velocity u is such that

u ∈ C0([0, T ], V ),
∂u

∂t
∈ L2(0, T, V ) ∩ C0([0, T ], H).

PROPOSITION 2.3. If the wind-stress f verifies the regularity (2.3) and the condi-
tions (2.4), then the solution (u, p) of problem (2.1) satisfies the following estimates:

(i) ‖u‖L2(0,T,H2(Ω)) ≤ C‖f‖U ,
(ii) ‖p‖L2(0,T,H1(Ω)) ≤ C‖f‖U ,

where

U =
{
f/f ∈ L2(0, T,H1(Γ0)),

∂f

∂t
∈ L2(0, T, L2(Γ0))

}
,

‖f‖U =

(
‖f‖2L2(0,T,H1(Γ0)) +

∥∥∥∥∂f∂t
∥∥∥∥2

L2(0,T,L2(Γ0))

)1/2

.

We denote by C any positive constant.
Proof. The solution (u, p) of problem (2.1) verifies (1.1a) in a distribution sense.

Equation (1.1a) can also be written

−νh∆2u−
∂

∂z

(
νv
∂u

∂z

)
+∇p = −

(
∂u

∂t
+ FΛu+ (u0.∇)u+ (u.∇)u0

)
.

Set G = −(∂u∂t + FΛu + (u0.∇)u + (u.∇)u0). If u0 ∈ V , then G ∈ C0([0, T ], L2(Ω))
[2].

At each time t ∈ [0, T ], the initial problem (1.1), (1.2) can be written as follows:
Given G ∈ L2(Ω), find (u, p) : Ω→ R3 × R such that

− νh∆2u−
∂

∂z

(
νv
∂u

∂z

)
+∇p = G in Ω,(2.5a)

div u = 0 in Ω,(2.5b)

and satisfying the boundary conditions (1.2).
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After extension of problem (2.5) in an open set Ω̃ =]0, Lx[×]−2Ly, 2Ly[×]−H, 0[
in order to cancel the corners of Ω, we obtain the following estimate [2]:

‖u‖H2(Ω) + |∇p|L2(Ω) ≤ C(|G|L2(Ω) + ‖f‖H1(Γ0)) a.e. on [0, T ].(2.6)

C is positive, time-independent constant.
Equation (2.6) implies

‖u‖2L2(0,T,H2(Ω)) ≤ C
(
‖G‖2L2(0,T,L2(Ω)) + ‖f‖2L2(0,T,H1(Γ0))

)
,(2.7)

‖∇p‖2L2(0,T,L2(Ω)) ≤ C
(
‖G‖2L2(0,T,L2(Ω)) + ‖f‖2L2(0,T,H1(Γ0))

)
.(2.8)

If u0 ∈ V , we have the inequality

‖G‖2L2(0,T,L2(Ω)) ≤ C
(∥∥∥∥∂u∂t

∥∥∥∥2

L2(0,T,L2(Ω))
+ ‖u‖2L2(0,T,L2(Ω)) + ‖u‖2L2(0,T,V )

)
.

Setting v = u, (2.1a) gives

d

dt
|u|2 + 2a(u, u) + 2`(u, u) = −2(f, γ0u).

The bilinear form a is coercive on V : a(u, u) ≥ ν‖u‖2V .

`(u, u) = b(u, u0, u);

therefore, if u0 ∈ V : 2|`(u, u)| ≤ C1|u|2.
γ0 is the application trace on Γ0, which is continuous from V into L2(Γ0). Set

C0, the constant of continuity.

2|(f, γ0u)| ≤ 2C0|f |L2(Γ0)‖u‖ ≤ C2‖f‖2H1(Γ0) + ν‖u‖2.

We then obtain from (2.1a)

d

dt
|u|2 + ν‖u‖2 ≤ C2‖f‖2H1(Γ0) + C1|u|2.(2.9)

Applying the Gronwall lemma now gives

|u(t)| ≤ C‖f‖L2(0,T,H1(Γ0)) ∀t ∈ [0, T ],

and therefore

‖u‖L2(0,T,L2(Ω)) ≤ C‖f‖L2(0,T,H1(Γ0)).(2.10)

We deduce from (2.9), (2.10) that

‖u‖L2(0,T,V ) ≤ C‖f‖L2(0,T,H1(Γ0)).(2.11)

Setting v = ∂u
∂t = u′ in (2.1a) gives

|u′|2 + a(u, u′) + `(u, u′) = −(f, γ0u
′)
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and after integration with respect to time

−2
∫ t

0
|u′(s)|2ds+ a(u(t), u(t)) = −2

∫ t

0
`(u, u′)ds+ 2

∫ t

0
(f ′, γ0u) ds

−2(f(t), γ0u(t)) ∀ t ∈ [0, T ].

`(u, u′) = b(u, u0, u
′)+b(u0, u, u

′), which yields |`(u, u′)| ≤ C‖u‖ |u′|, since u0 is given
in V .

Applying the coercivity yields

2
∫ t

0
|u′|2 + ν‖u‖2 ≤ C

∫ t

0
‖u‖ |u′|+ 2C0

∫ t

0
|f ′| ‖u‖+ 2C0|f | ‖u‖.

Since f(t) =
∫ t

0 f
′(s) ds, we have |f(t)|2 ≤ C‖f ′‖2L2(0,T,L2(Γ0))∀ t ∈ [0, T ], and we

obtain the inequality

‖u′‖2L2(0,T,L2(Ω)) ≤ C
(
‖u‖2L2(0,T,V ) + ‖f ′‖2L2(0,T,L2(Γ0))

)
,

which implies, according to (2.11),

‖u′‖2L2(0,T,L2(Ω)) ≤ C
(
‖f‖2L2(0,T,H1(Γ0)) + ‖f ′‖2L2(0,T,L2(Γ0))

)
,

i.e.,

‖u′‖L2(0,T,L2(Ω)) ≤ C‖f‖U .(2.12)

We deduce from (2.10)–(2.12) that ‖G‖L2(0,T,L2(Ω)) ≤ C‖f‖U , and (2.7) now implies
estimate (i).

According to (2.8) we also obtain the majoration

‖∇p‖L2(0,T,L2(Ω)) ≤ C‖f‖U .(2.13)

To prove estimate (ii) we now use the mixed formulation (2.2). According to the Inf
Sup condition verified by c, we have

|p| ≤ 1
β

Sup
v∈W

c(v, p)
‖v‖ .(2.14)

Equation (2.2a) can also be written

c(v, p) = −((u′, v) + a(u, v) + `(u, v) + (f, γ0v)).(2.15)

Equations (2.14) and (2.15) imply

|p| ≤ C(|u′|+ ‖u‖+ |f |),
which gives, according to estimates (2.11), (2.12),

‖p‖L2(0,T,L2(Ω)) ≤ C‖f‖U .(2.16)

Equations (2.13) and (2.16) prove estimate (ii).
COROLLARY.
(i) The application f −→ (u(f), p(f)) is linear and continuous from U into

L2(0, T,H2(Ω))× L2(0, T,H1(Ω)).
(ii) The application f −→ γ0p is linear and continuous from U into

L2(0, T, L2(Γ0)).
Proof. The application trace is continuous from H1(Ω) in L2(Γ0). We thus have

‖γ0p‖L2(0,T,L2(Γ0)) ≤ C‖p‖L2(0,T,H1(Ω)) ≤ C‖f‖U .(2.17)
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3. Characterization of the optimal control. The problem is controlled by
the variability of the wind-stress f . The observation is the pressure on Γ0, deduced
from altimetric measurements. Controls and observations are thus defined on Γ0,
which is a part of the boundary Γ. The control f has to verify the regularity condition
(2.3) in order to obtain p ∈ H1(Ω).

Thereby U = {f/f ∈ L2(0, T,H1(Γ0)), ∂f∂t ∈ L2(0, T, L2(Γ0))} will be the con-
trol space; H = L2(0, T, L2(Γ0)) will be the observation space. For each control f ,
(u(f), p(f)) is the solution of the weak problem (2.1) or (2.2), and the cost function
J is defined by

J(f) =
1
2

(‖Cp(f)− pd‖2H + α‖f‖2U ).(3.1)

pd ∈ H is the observation. pd is the trace of the real pressure pe, which is supposed to
be in L2(0, T,H1(Ω)). C is the application trace on Γ0. C : p ∈ L2(0, T,H1(Ω)) −→
C p = γ0p ∈ H. α is a given positive constant (α 6= 0). The optimal control problem
then is as follows: find f ∈ U such that

J(f) = Inf
h∈U

J(h).(3.2)

PROPOSITION 3.1. Problem (3.2) admits one unique solution f ∈ U .
Proof.
(i) J is continuous on U . Set

r(f, h) = (Cp(f), Cp(h))H + α(f, h)U

and

s(f) = (Cp(f), pd)H ∀f and h ∈ U .

We have

J(f) =
1
2
r(f, f)− s(f) +

1
2
‖pd‖2H.

According to (2.17), we can write

|r(f, h)| ≤ C‖f‖U‖h‖U and |s(f)| ≤ C‖f‖U ,

where C denotes any positive constant. The applications r and s are continuous, and
therefore J is continuous on U .

(ii) J is coercive on U since J(f) ≥ α
2 ‖f‖2U ∀ f ∈ U .

(iii) J is strictly convex.
J is differentiable, and

(J ′(f), h) = r(f, h)− s(h) ∀ f and h ∈ U ,

which gives

(J ′(f)− J ′(h), f − h) = r(f − h, f − h) > α‖f − h‖2U .

(i), (ii), and (iii) imply that problem (3.2) admits one unique solution in U ([4]).
f ∈ U is solution of problem (3.2) if and only if J ′(f) = 0. In order to characterize

the optimal control f we introduce the adjoint problem associated with problem (2.2).
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The bilinear form a is selfadjoint. Let `∗ be the adjoint of `. For a wind-stress
f ∈ U , (u(f), p(f)) is the solution of problem (2.2). We note (u∗(f), p∗(f)), the
adjoint state which is the solution of the adjoint problem (3.3):

−
(
∂u∗

∂t
(f), v

)
+ a(u∗(f), v) + `∗(u∗(f), v) + c(v, p∗(f)) = 0 ∀ v ∈W,(3.3a)

− c(u∗(f), q) = (Cp(f)− pd, Cq) ∀q ∈ H1(Ω),(3.3b)

u∗(f)(T ) = 0.(3.3c)

PROPOSITION 3.2. The adjoint problem (3.3) admits one unique solution such
that u∗(f) ∈ L2(0, T,W ), p∗(f) ∈ L2(0, T, L2(Ω)).

Proof. The compatibility condition
∫

Γ0
(Cp(f)−pd) dΓ = 0 is satisfied. So, almost

everywhere on ]0, T [, there exists ui ∈W such that

−c(u1, q) = (div u1, q) = (Cp(f)− pd, Cq) ∀ q ∈ H1(Ω).

Set ũ = u∗(f)− u1. Equations (3.3) can be written

−
(
∂ũ

∂t
, v

)
+ a(ũ, v) + `∗(ũ, v) + c(v, p∗(f)) = (G, v) ∀ v ∈W,(3.4a)

− c(ũ, q) = 0 ∀ q ∈ H1(Ω),(3.4b)

ũ(T ) = 0.(3.4c)

G depends on u1 and G ∈ L2(Ω).
Problem (3.4), being similar to problem (2.2), admits one unique solution: ũ ∈

L2(0, T,W ). u∗ = ũ+ u1 ∈ L2(0, T,W ) and verifies equation (3.3). The existence of
a solution being proven, demonstrating the uniqueness is fairly simple. There exists
a pressure p∗ ∈ L2(0, T, L2(Ω)) such that equations (3.4a) and (3.3a) are verified [8].

PROPOSITION 3.3. J ′(f) = 0 if and only if αf + Λ−1γ0u
∗(f) = 0 in U .

Λ is the canonical isomorphism U −→ U ′ such that

〈h, v〉U,U ′ = (Λh, v)U ′ = (h,Λ−1v)U ∀ h ∈ U , ∀ v ∈ U ′.

Proof.

(J ′(f), h) = r(f, h)− s(h) = (Cp(f)− pd, Cp(h))H + α(f, h)U ∀ f and h ∈ U .

Equation (3.3b) implies

(Cp(f)− pd, Cp(h))L2(Γ0) = −c(u∗(f), p(h))

and therefore

(J ′(f), h) = α(f, h)U −
∫ T

0
c(u∗(f), p(h)) dt ∀ f and h ∈ U .

(u(h), p(h)) is the solution of problem (2.2),(
∂u(h)
∂t

, v

)
+ a(u(h), v) + `(u(h), v) + c(v, p(h)) = −(h, γ0v) ∀ V ∈W,
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and so, by setting v = u∗(f),

−c(u∗(f), p(h)) =
(
∂

∂t
u(h), u∗(f)

)
+ a(u(h), u∗(f))

+ `(u(h), u∗(f)) + (h, γ0u
∗(f)),

we obtain

(J ′(f), h) = α(f, h)U

+
∫ T

0

(
−
(
∂

∂t
u∗(f), u(h)

)
+ a(u∗(f), u(h)) + `∗(u∗(f), u(h)

)
dt

+
∫ T

0
(h, γ0u

∗(f))dt.

u∗(f) is the solution of the adjoint problem (3.3). We thus have

(J ′(f), h) = α(f, h)U −
∫ T

0
c(u(h), p∗(f))dt+

∫ T

0
(h, γ0u

∗(f)) dt.

According to equation (2.2b),

c(u(h), p∗(f)) = 0

and thus

(J ′(f), h) = α(f, h)U +
∫ T

0
(h, γ0u

∗(f))

= α(f, h)U + (h, γ0u
∗(f))L2(0,T,L2(Γ0))

= α(f, h)U + 〈h, γ0u
∗(f)〉U,U ′

= α(f, h)U + (Λ−1γ0u
∗(f), h)U

= (αf + Λ−1γ0u
∗(f), h)U .

We can now conclude that J ′(f) = 0 if and only if αf + Λ−1γ0u
∗(f) = 0 in U .

Characterization of the optimal control. We have proved that the opti-
mal control f , the solution of problem (3.2), is characterized by the following set of
equations:(

∂

∂t
u(f), v

)
+ a(u(f), v) + `(u(f), v) + c(v, p(f)) = −(f, γ0v) ∀ v ∈W,

−c(u(f), q) = 0 ∀ q ∈ H1(Ω),

−
(
∂

∂t
u∗(f), v

)
+ a(u∗(f), v) + `∗(u∗(f), v) + c(v, p∗(f)) = 0 ∀ v ∈W,

−c(u∗(f), q) = (Cp(f)− pd, Cq)

∀ q ∈ H1(Ω),

u(f)(0) = 0,

u∗(f)(T ) = 0,

αf + Λ−1γ0u
∗(f) = 0 in U .
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4. A convergence result. Jα will now denote the cost function

Jα(h) =
1
2

(‖Cp(h)− pd‖2H + α‖h‖2U ).

Problem (3.2) becomes the following: find fα ∈ U such that

Jα(fα) = Inf
h∈U

Jα(h).(4.1)

We set

J0(h) =
1
2
‖Cp(h)− pd‖2H, Π(h) = Cp(h).

We have already proved that Π is a linear continuous application from U into H. We
consider the functional spaces

U =
{
h/h ∈ L2(0, T,H1(Γ0)),

∂h

∂t
∈ L2(0, T, L2(Γ0))

}
, U∗ = UKer Π.

LEMMA.
(i) Ker Π is a closed subset of U .
(ii) U∗ is a Hilbert space.
Proof.
(i) Let (fm) be a sequence in Ker Π such that (fm) converges towards f in U .

Since Π is continuous, Π(fm) converges toward Π(f). Π(fm) = 0 ∀ m;
therefore, Π(f) = 0 and f ∈ Ker Π.

(ii) Ker Π is a closed subset of the Hilbert space U . Hence Ker Π and (Ker Π)⊥

are Hilbert spaces.
Let f∗ ∈ U∗ : f∗ is a coset of U modulo Ker Π; let f be any element of f∗. f =
f1 + f2, f1 ∈ Ker Π, f2 ∈ (Ker Π)⊥.

We set ‖f∗‖U∗ = ‖f2‖U = Inff∈f∗ ‖f‖U . We define the linear application ψ:

Ψ : U∗ −→ (Ker Π)⊥,
f∗ −→ f2.

Ψ is a bijection:
• if f2 ∈ (Ker Π)⊥, f = f2 + f1 ∈ U∗ ∀ f1 ∈ Ker Π.
• Ψ(f∗) = 0 implies f ∈ Ker Π, i.e., f∗ = 0.
According to the definition of the norm in U∗, ψ and ψ−1 are continuous. ψ is

therefore an homeomorphism; since (Ker Π)⊥ is a Hilbert space, U∗ is also an Hilbert
space.

We now introduce the following problem: find f∗ ∈ U∗ such that

J0(f∗) = Inf
h∗∈U∗

J0(h∗).(4.2)

If there exists f ∈ U such that

J0(f) = inf
h∈U

J0(h),(4.3)

then problem (4.2) admits one unique solution f∗ ∈ U∗. The solution f of (4.3)
is an element of the coset f∗. This will be verified if we assume that f ∈ Uad,
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Uad = {h ∈ U/‖h‖U ≤ c} [4]. f is the variability of the wind-stress and the assumption
that f bounded is sensible.

PROPOSITION 4.1. Let fα be the solution of problem (4.1) and f∗ be the solution
of problem (4.2). When α tends to 0, then

(i) (fα) converges toward f∗ strongly in U∗.
(ii) Jα(fα) converges toward J0(f∗).
Proof.
(ii) Since f∗ verifies (4.2), any element f ∈ f∗ verifies (4.3):

J0(f) ≤ J0(h) ∀ h ∈ U .

Definitions of J0 and Jα imply

J0(h) ≤ Jα(h) ∀h ∈ U .

We thus obtain

J0(f) ≤ Jα(fα) ∀ α ∈ R∗+.(4.4)

Since J0(f) = Infh∈U J0(h) ∀ ε > 0,∃ hε ∈ U such that J0(hε) ≤ ε
2 + J0(f), and

therefore Jα(hε) ≤ ε
2 + J0(f) + α

2 ‖hε‖2U . Set α∗ = ε
‖hε‖2U

. We thus have Jα∗(hε) ≤
ε+ J0(f).

According to (4.4), this gives the following: ∀ ε > 0,∃ α∗ such that ∀ α, 0 < α <
α∗, we have

J0(f) ≤ Jα(fα) ≤ ε+ J0(f).(4.5)

We deduce from (4.5) that limα→0 Jα(fα) = J0(f) = J0(f∗).
(i) fα and f verify (4.1) and (4.3), respectively. We thus have

(J
′

α(fα), h− fα) ≥ 0 ∀ h ∈ U

and

(J
′

0(f), h− f) ≥ 0 ∀ h ∈ U ;

i.e.,

(Π(fα)− pd,Π(h− fα))H + α(fα, h− fα)U ≥ 0 ∀ h ∈ U ,(4.6)

(Π(f)− pd,Π(h− f))H ≥ 0 ∀ h ∈ U .(4.7)

Setting h = f in (4.6) and h = fα in (4.7) gives

α(fα, f − fα)U ≥ ‖Π(f − fα)‖2H ≥ 0,

which yields

‖fα‖2U ≤ (f, fα)U ≤ ‖f‖U‖fα‖U ,

i.e.,

‖fα‖U ≤ ‖f‖U .(4.8)
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The sequence (fα) is bounded in U . We can extract from (fα) a subsequence also
denoted (fα) which converges toward f̃ , weakly in U . Since Jα is lower semicontinuous,
we have [3], [4]

lim inf Jα(fα) ≥ Jα(f̃) ≥ J0(f̃).

The inequality (4.5) implies

lim sup Jα(fα) ≤ J0(f)

and so

J0(f̃) ≤ lim inf Jα(fα) ≤ lim sup Jα(fα) ≤ J0(f).

f verifies (4.3). Therefore, J0(f̃) = J0(f) = J0(f∗).
The sequence (fα) converges towards an element f̃ of f∗, weakly in U . According

to (4.8) we have ‖fα‖U ≤ ‖f̃‖U , which implies lim sup ‖fα‖U ≤ ‖f̃‖U .
Therefore, (fα) converges towards f̃ strongly in U [3]; i.e., (fα) converges toward

f∗ strongly in U∗.
5. Conclusion. The sea level variability is obtained from altimetric measure-

ments. We can deduce from these data the variability of the pressure on Γ0. Γ0
corresponds to the horizontal undisturbed sea surface and is the upper boundary of
the oceanic domain considered in this paper. We have developed a control method
in order to calculate the perturbation (u, p) of the mean velocity and pressure corre-
sponding to the observed variability of p on Γ0. The control is the variability of the
wind-stress f which acts as the forcing of the perturbation. The cost function depends
on a real parameter α. For any α > 0 we have proved the existence and uniqueness
of an optimal control fα. To characterize fα we must consider the direct problem
verified by (u, p) and its adjoint. When α tends to 0, the sequence (fα) converges
toward a wind-stress f . f is an approximation of the unknown real wind-stress fe,
which induced the observed situation. The perturbation (uα, pα) driven by fα is the
unique solution of a linearized Navier–Stokes-type problem. Velocity and pressure
are continuous functions of the wind-stress; therefore, when α tends to 0, (uα, pα)
converges toward the solution (u, p) of the linearized Navier–Stokes problem forced
by f . Since f approaches fe, the perturbation (u, p) is an approximation of the real
circulation (ue, pe) observed by the satellite. We can thus compute the variability of
the velocity and pressure in an oceanic domain Ω, during a time T , from satellite
observations of the sea surface. The assumptions of the model correspond to the
physical features of equatorial waves. It is then easy to deduce from the variability
(u, p) the characteristics of the excited waves.

Appendix. Choice of the observation for the control method. The as-
sumption of hydrostatic pressure is standard in oceanography and justified by the
difference between horizontal and vertical scalings in an oceanic domain. The equa-
tion of hydrostatic pressure is

(A.1)
∂p̃

∂z
+ ρg = 0,

where p̃ is the total pressure, ρ is the density, and g is the constant of gravity.
The sea level is a free surface of equation z = ξ̃(x, y, t). We suppose that the

density ρ is constant in the upper layer 0 ≤ z ≤ ξ̃. Integrating (A.1) with respect to
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FIG. 1.

z between z = 0 and z = ξ̃ gives

(A.2) (p̃)z=ξ̃ = (p̃)z=0 − ρgξ̃.

The surface pressure is equal to the atmospheric pressure: (p̃)z=ξ̃ = p̃atm.
We assume that the velocity ũ can be considered as the sum of two terms: a mean

given velocity u0 and a perturbation u. The same expansion is valid for the pressure
and the sea level:

p̃ = p0 + p,

ξ̃ = ξ0 + ξ.

p0 and ξ0 are the pressure and the free surface corresponding to the mean flow. p and
ξ are the variability of pressure and sea level corresponding to the variability u of the
current.

Equation (A.2) is verified by the mean flow and by the complete evolutive situa-
tion. This implies

(A.3) patm = (p)z=0 − ρgξ.
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Neglecting the variability of the atmospheric pressure gives

(A.4) (p)z=0 = ρgξ.

The variability of the sea level ξ is known from altimetric measurements. Relation
(A.4) makes it possible to take the variability of the pressure at a fixed level (z = 0) as
the observation. Relation (A.4) also induces the choice of the domain Ω. The vertical
extension of Ω is −H ≤ z ≤ 0, H being a constant. We denote by Γ0 the part of the
boundary of equation z = 0. The observation is therefore given on Γ0.

It has to be noted that the studied domain Ω differs from the physical domain,
which extends from the bottom ΓB to the free sea surface ΓS (Fig. 1).
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Dunod, Paris, 1968.
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